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Foreword 
 

This third edition cancels and replaces the second edition, ECMA 335:2002. Major changes from the previous 
edition include: 

• Added support for generic types and methods. 

• Added the constrained., no., and readonly. instruction prefixes. 

• Added the ldelem, stelem, and unbox.any instructions. 

• Created a new Partition V, “Debug Interchange Format”. 

• Renamed Partition V as Partition VI, and added “Extensions to metadata” and “Imprecise faults”. 

• Added the following members and types to the type library: 

1. System: 

a. Action<T> – added this type. 

b. Array – added the following members (or overloads to existing members): AsReadOnly<T>, 
BinarySearch<T>, ConstrainedCopy, ConvertAll<T,U>, Copy, CopyTo, CreateInstance, 
Exists, Find, FindAll, FindIndex, FindLastIndex, ForEach, GetLongLength, GetValue, 
IndexOf<T>, LastIndexOf<T>, Resize<T>, SetValue, Sort<K,V>, Sort<T>, and TrueForAll. 

c. Comparison<T> – added this type. 

d. Converter<T> – added this type. 

e. IComparable<T> – added this type. 

f. IEquatable<T> – added this type. 

g. Nullable<T> – added this type. 

h. Predicate<T> – added this type. 

i. System.RuntimeArgumentHandle – added this type and placed it in the new library, Vararg. 

j. ThreadStaticAttribute – added this type. 

k. Type –  

Added the following methods: MakeArrayType, MakeByRefType, and MakePointerType. 

Added the following properties: IsAnsiClass, IsAutoClass, and IsUnicodeClass. 

Added the following new members to support generics reflection: BindGenericParameters, 
ContainsGenericParameters, DeclaringMethodProperty, GenericParameterAttributes, 
GenericParameterPosition, GetGenericArguments, GetGenericParameterConstraints, 
GetGenericTypeDefinition, HasGenericArguments, IsGenericParameter, and 
IsGenericTypeDefinition. 

Augmented the following members to support generics reflection: Methods: 
GetConstructor, GetConstructors, GetDefaultMembers, GetElementType, GetEvent, 
GetEvents, GetField, GetFields, GetInterface, GetInterfaces, GetMember, GetMembers, 
GetMethod, GetMethods, GetNestedType, GetNestedTypes, GetProperties, GetProperty, 
GetType, InvokeMember, IsAssignableFrom, IsInstanceOfType, IsSubclassOf, and 
ToString. Properties: Assembly, AssemblyQualifiedName, Attributes, BaseType, 
DeclaringTypeProperty, Fullname, HasElementType, IsAbstract, IsArray, IsAutoLayout, 
IsClass, IsEnum, IsExplicitLayout, IsImport, IsInterface, IsLayoutSequential, 
IsNestedAssembly, IsNestedFamANDAssem, IsNestedFamily, IsNestedFamORAssem, 
IsNestedPrivate, IsNestedPublic, IsNotPublic, IsPointer, IsPrimitive, IsPublic, 
IsSealed, IsSpecialName, Module, Namepsace, ReflectedType, and TypeInitializer. 
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l. TypedReference – added this type. 

2. System.Collections.Generics: 

a. Created this namespace and added the following types to it: Dictionary<TKey,TValue>, 
Dictionary<TKey,TValue>.Enumerator, Dictionary<TKey,TValue>.KeyCollection, 
Dictionary<TKey,TValue>.KeyCollection.Enumerator, 
Dictionary<TKey,TValue>.ValueCollection, 
Dictionary<TKey,TValue>.ValueCollection.Enumerator, ICollection<T>, 
IComparer<T>, IDictionary<TKey,TValue>, IEnumerable<T>, IEnumerator<T>, 
IEqualityComparer<T>, IList<T>, KeyNotFoundException, KeyValuePair<K,V>, List<T>, 
and List<T>.Enumerator. 

3. System.Reflection: 

a. MethodBase – added the following new members to support generics reflection: 
BindGenericParameters, ContainsGenericParameters, GetGenericArguments, 
GetGenericMethodDefinition, HasGenericArguments, and IsGenericMethodDefinition. 

b. MethodInfo – added the following new members to support generics reflection: 
BindGenericParameters, ContainsGenericParameters, GetGenericArguments, 
GetGenericMethodDefinition, HasGenericArguments, and IsGenericMethodDefinition. 

c. TypeAttributes – added the following new enumeration values to support a non-standard 
encoding for String Formatting attributes: CustomFormatClass and 
CustomStringFormatMask. 

d. GenericParameterAttributes – added this type. 

4. System.Runtime.CompilerServices: 

a. CompilationRelaxations – added this type and placed it in the library 
RuntimeInfrastructure. 

b. CompilationRelaxationsAttribute – added this type and placed it in the library 
RuntimeInfrastructure. 

5. System.Threading.Parallel: This namespace contains a new family of types that allow 
multithreaded CPUs to be exploited. 

The following companies and organizations have participated in the development of this standard, and their 
contributions are gratefully acknowledged: Borland, Fujitsu Software Corporation, Hewlett-Packard, Intel 
Corporation, IBM Corporation, ISE, IT University of Copenhagen, Jagger Software Ltd., Microsoft 
Corporation, Monash University, Netscape, Novell/Ximian, Phone.Com, Plum Hall, Sun Microsystems, and 
University  of Canterbury (NZ) 
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1  Scope 
This International Standard defines the Common Language Infrastructure (CLI) in which applications written 
in multiple high-level languages can be executed in different system environments without the need to rewrite 
those applications to take into consideration the unique characteristics of those environments. This International 
Standard consists of the following parts: 

• Partition I: Concepts and Architecture – Describes the overall architecture of the CLI, and provides the 
normative description of the Common Type System (CTS), the Virtual Execution System (VES), and 
the Common Language Specification (CLS).  It also provides an informative description of the 
metadata. 

• Partition II: Metadata Definition and Semantics – Provides the normative description of the metadata: its 
physical layout (as a file format), its logical contents (as a set of tables and their relationships), and its 
semantics (as seen from a hypothetical assembler, ilasm).  

• Partition III: CIL Instruction Set – Describes the Common Intermediate Language (CIL) instruction set.  

• Partition IV: Profiles and Libraries – Provides an overview of the CLI Libraries, and a specification of 
their factoring into Profiles and Libraries. A companion file, CLILibraryTypes.xml, considered to be 
part of this Partition, but distributed in XML format, provides details of each class, value type, and 
interface in the CLI Libraries. 

• Partition V: Debug Interchange Format –  

• Partition VI: Annexes – Contains some sample programs written in CIL Assembly Language (ILAsm), 
information about a particular implementation of an assembler, a machine-readable description of the 
CIL instruction set which can be used to derive parts of the grammar used by this assembler as well as 
other tools that manipulate CIL, a set of guidelines used in the design of the libraries of Partition IV, and 
portability considerations. 
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2  Conformance 
A system claiming conformance to this International Standard shall implement all the mandatory requirements 
of this standard, and shall specify the profile (see Partition IV) that it implements. The minimal implementation 
is the Kernel Profile. A conforming implementation can also include additional functionality provided that 
functionality does not prevent running code written to rely solely on the profile as specified in this standard. 
For example, a conforming implementation can provide additional classes, new methods on existing classes, or 
a new interface on a standardized class, but it shall not add methods or properties to interfaces specified in this 
standard. 

A compiler  that generates Common Intermediate Language (CIL, see Partition III) and claims conformance to 
this International Standard shall produce output files in the format specified in this standard, and the CIL it 
generates shall be correct CIL as specified in this standard. Such a compiler can also claim that it generates 
verifiable code, in which case, the CIL it generates shall be verifiable as specified in this standard. 
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3  Normative references 
[Note that many of these references are cited in the XML description of the class libraries.] 

 

Extensible Markup Language (XML) 1.0 (Second Edition), 2000 October 6, http://www.w3.org/TR/2000/REC-
xml-20001006 

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995, April. 

IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously designated IEC 
559:1989). 

ISO 639:1988, Codes for the representation of names of languages. 

ISO 3166:1988, Codes for the representation of names of countries. 

ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange 

ISO/IEC 9899:1990, Programming languages — C. 

ISO/IEC 10646 (all parts), Universal Multiple-Octet Coded Character Set (UCS). 

ISO/IEC 11578:1996 (E) Open Systems Interconnection - Remote Procedure Call (RPC), Annex A: Universal 
Unique Identifier. 

ISO/IEC 14882:2003, Programming languages — C++. 

ISO/IEC 23270:2003, Programming languages — C#. 

RFC-768, User Datagram Protocol. J. Postel. 1980, August. 

RFC-791, Darpa Internet Program Protocol Specification. 1981, September. 

RFC-792, Internet Control Message Protocol. Network Working Group. J. Postel. 1981, September. 

RFC-793, Transmission Control Protocol. J. Postel. 1981, September. 

RFC-919, Broadcasting Internet Datagrams. Network Working Group. J. Mogul. 1984, October. 

RFC-922, Broadcasting Internet Datagrams in the presence of Subnets. Network Working Group. J. Mogul.  
1984, October. 

RFC-1035, Domain Names - Implementation and Specification. Network Working Group. P. Mockapetris. 
1987, November. 

RFC-1036, Standard for Interchange of USENET Messages, Network Working Group. M. Horton and R. 
Adams. 1987, December. 

RFC-1112. Host Extensions for IP Multicasting. Network Working Group. S. Deering 1989, August. 

RFC-1222. Advancing the NSFNET Routing Architecture. Network Working Group. H-W Braun, Y. Rekhter. 
1991 May. ftp://ftp.isi.edu/in-notes/rfc1222.txt 

RFC-1510, The Kerberos Network Authentication Service (V5). Network Working Group. J. Kohl and C. 
Neuman. 1993, September. 

RFC-1741, MIME Content Type for BinHex Encoded Files: Format. Network Working Group. P. Faltstrom, D. 
Crocker, and E. Fair. 1994, December. 

RFC-1764. The PPP XNS IDP Control Protocol (XNSCP).  Network Working Group. S. Senum.  1995, March. 

RFC-1766, Tags for the Identification of Languages. Network Working Group. H. Alvestrand. 1995, March. 

RFC-1792. TCP/IPX Connection Mib Specification. Network Working Group. T. Sung. 1995, April. 

RFC-2236. Internet Group Management Protocol, Version 2.  Network Working Group. W. Fenner.  1997, 
November. 

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
ftp://ftp.isi.edu/in-notes/rfc1222.txt
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RFC-2045, Multipurpose Internet Mail Extensions (MIME) Part One:  Format of Internet Message Bodies. 
Network Working Group.  N. Freed. 1996, November. 

RFC-2068, Hypertext Transfer Protocol -- HTTP/1.1, Network Working Group. R. Fielding, J. Gettys, J. 
Mogul, H. Frystyk, and T. Berners-Lee. 1997, January. 

RFC-2396. Uniform Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force. T. Berners-
Lee, R. Fielding, and L. Masinter. 1998 August. http://www.ietf.org/rfc/rfc2396.txt. 

RFC-2616, Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group. R. Fielding, J. Gettys, J. 
Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.  1999 June. ftp://ftp.isi.edu/in-notes/rfc2616.txt 

RFC-2617, HTTP Authentication: Basic and Digest Access Authentication. Network Working Group. 
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart.  1999 June, 
ftp://ftp.isi.edu/in-notes/rfc2617.txt 

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0 
(Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), and Unicode Technical Report #15: Unicode 
Normalization Forms. 

 

http://www.ietf.org/rfc/rfc2396.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt
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4  Conventions 

4.1  Organization 
The divisions of this International Standard are organized using a hierarchy. At the top level is the Partition. 
The next level is the clause, followed by subclause. Divisions within a subclause are also referred to as 
subclauses. Partitions are numbered using Roman numerals. All other divisions are numbered using Arabic 
digits with their place in the hierarchy indicated by nested numbers. For example, Partition II, 14.4.3.2 refers to 
subclause 2 in subclause 3 in subclause 4 in clause 14 in Partition II. 

4.2  Informative text 
This International Standard is intended to be used by implementers, academics, and application programmers. 
As such, it contains explanatory material that, strictly speaking, is not necessary in a formal specification. 

Examples are provided to illustrate possible forms of the constructions described. References are used to refer 
to related clauses or subclauses. Notes are provided to give advice or guidance to implementers or 
programmers. Annexes provide additional information.  
Except for whole clauses or subclauses that are identified as being informative, informative text that is 
contained within normative clauses and subclauses is identified as follows: 

• The beginning and end of a block of informative text is marked using rectangular boxes. 

• As some informative passages span pages, informative text also contains a bold set of vertical black 
stripes in the right margin. 

• By the use of the following pairs of markers: [Example: … end example], [Note: … end note], and 
[Rationale: … end rationale]. 

Unless text is identified as being informative, it is normative. 
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5  Terms and definitions 
 

For the purposes of this International Standard, the following definitions apply. Other terms are defined where 
they appear in italic type.  

 

ANSI character: A character from an implementation-defined 8-bit character set whose first 128 code points 
correspond exactly to those of ISO/IEC 10646. 

ANSI string: A string of ANSI characters, of which the final character has the value all-bits-zero. 

assembly: A configured set of loadable code modules and other resources that together implement a unit of 
functionality. 

attribute: A characteristic of a type and/or its members that contains descriptive information. While the most 
common attributes are predefined, and have a specific encoding in the metadata associated with them, user-
defined attributes can also be added to the metadata. 

behavior, implementation-specific: Unspecified behavior, for which each implementation is required to 
document the choice it makes. 

behavior, unspecified: Behavior, for a well-formed program construct and correct data, that depends on the 
implementation. The implementation is not required to document which behavior occurs. 

behavior, undefined: Behavior, such as might arise upon use of an erroneous program construct or erroneous 
data, for which this International Standard imposes no requirements. Undefined behavior can also be expected 
in cases when this International Standard omits the description of any explicit definition of behavior. 

boxing: The conversion of a value having some value type, to a newly allocated instance of the reference type 
System.Object.  

Common Intermediate Language (CIL): The instruction set understood by the VES. 

Common Language Infrastructure (CLI): A specification for the format of executable code, and the run-
time environment that can execute that code. 

Common Language Specification (CLS): An agreement between language designers and framework (class 
library) designers.  It specifies a subset of the CTS and a set of usage conventions. 

Common Type System (CTS): A unified type system that is shared by compilers, tools, and the CLI itself. It 
is the model that defines the rules the CLI follows when declaring, using, and managing types. The CTS 
establishes a framework that enables cross-language integration, type safety, and high performance code 
execution. 

delegate: A reference type such that an instance of it can encapsulate one or more methods in an invocation 
list. Given a delegate instance and an appropriate set of arguments, one can invoke all of the methods in a 
delegate’s invocation list with that set of arguments. 

event: A member that enables an object or class to provide notifications. 

Execution Engine: See Virtual Execution System. 

field: A member that designates a typed memory location that stores some data in a program. 

garbage collection : The process by which memory for managed data is allocated and released. 

generic argument: The actual type used to instantiate a particular generic type or generic method.  For 
example, in List<string>, string is the generic argument corresponding to the generic parameter T in the 
generic type definition List<T>. 

generic parameter: A parameter within the definition of a generic type or generic method that acts as a place 
holder for a generic argument.  For example, in the generic type definition List<T>, T is a generic parameter. 
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generics : The feature that allows types and methods to be defined such that they are parameterized with one or 
more generic parameters. 

library: A repository for a set of types, which are grouped into one or more assemblies. A library can also 
contain modifications to types defined in other libraries. For example, a library can include additional methods, 
interfaces, and exceptions for types defined in other libraries. 

managed code: Code that contains enough information to allow the CLI to provide a set of core services. For 
example, given an address for a method inside the code, the CLI must be able to locate the metadata describing 
that method. It must also be able to walk the stack, handle exceptions, and store and retrieve security 
information. 

managed data: Data that is allocated and released automatically by the CLI, through a process called garbage 
collection. 

manifest: That part of an assembly that specifies the following information about that assembly: its version, 
name, culture, and security requirements; which other files, if any, belong to that assembly, along with a 
cryptographic hash of each file; which of the types defined in other files of that assembly are to be exported 
from that assembly; and, optionally, a digital signature for the manifest itself, and the public key used to 
compute it. 

member: Any of the fields, array elements, methods, properties, and events of a type. 

metadata: Data that describes and references the types defined by the CTS. Metadata is stored in a way that is 
independent of any particular programming language. Thus, metadata provides a common interchange 
mechanism for use between tools that manipulate programs (such as compilers and debuggers) as well as 
between these tools and the VES. 

method: A member that describes an operation that can be performed on values of an exact type. 

method, generic: A method (be it static, instance, or virtual), defined within a type, whose signature includes 
one or more generic parameters, not present in the type definition itself.  The enclosing type itself might, or 
might not, be generic.  For example, within the generic type List<T>, the generic method S ConvertTo<S>() is 
generic. 

method, non-generic: A method that is not generic. 

module: A single file containing content that can be executed by the VES. 

object: An instance of a reference type. An object has more to it than a value. An object is self-typing; its type 
is explicitly stored in its representation. It has an identity that distinguishes it from all other objects, and it has 
slots that store other entities (which can be either objects or values). While the contents of its slots can be 
changed, the identity of an object never changes. 

profile: A set of libraries, grouped together to form a consistent whole that provides a fixed level of 
functionality. 

property: A member that defines a named value and the methods that access that value. A property definition 
defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods 
exist and their respective method contracts. 

signature: The part of a contract that can be checked and automatically enforced. Signatures are formed by 
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations 
on a value or location. 

type, generic: A type whose definition is parameterized by one or more other types; for example, List<T>, 
where T is a generic parameter.  The CLI supports the creation and use of instances of generic types.  For 
example, List<int32> or List<string>. 

type, reference: A type such that an instance of it contains a reference to its data. 

type, value: A type such that an instance of it directly contains all its data. 

unboxing: The conversion of a value having type System.Object, whose run-time type is a value type, to a 
value type instance. 
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unmanaged code: Code that is not managed. 

unmanaged data: Data that is not managed. 

value: A simple bit pattern for something like an integer or a float. Each value has a type that describes both 
the storage that it occupies and the meanings of the bits in its representation, and also the operations that can be 
performed on that representation. Values are intended for representing the simple types and non-objects in 
programming languages. 

verification: The checking of both CIL and its related metadata to ensure that the CIL code sequences do not 
permit any access to memory outside the program’s logical address space. In conjunction with the validation 
tests, verification ensures that the program cannot access memory or other resources to which it is not granted 
access. 

Virtual Execution System (VES): This system implements and enforces the CTS model. The VES is 
responsible for loading and running programs written for the CLI.  It provides the services needed to execute 
managed code and data using the metadata to connect separately generated modules together at runtime. The 
VES is also known as the Execution Engine. 
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6  Overview of the Common Language Infrastructure 
The Common Language Infrastructure (CLI) provides a specification for executable code and the execution 
environment (the Virtual Execution System) in which it runs.  Executable code is presented to the VES as 
modules.  A module is a single file containing executable content in the format specified in Partition II. 

The remainder of this clause and its subclauses contain only informative text 
At the center of the CLI is a unified type system, the Common Type System that is shared by compilers, tools, 
and the CLI itself. It is the model that defines the rules the CLI follows when declaring, using, and managing 
types. The CTS establishes a framework that enables cross-language integration, type safety, and high 
performance code execution. This clause describes the architecture of the CLI by describing the CTS.  

The following four areas are covered in this clause:  

• The Common Type System (CTS)—The CTS provides a rich type system that supports the types 
and operations found in many programming languages.  The CTS is intended to support the 
complete implementation of a wide range of programming languages. See §8 

• Metadata—The CLI uses metadata to describe and reference the types defined by the CTS. 
Metadata is stored (that is, persisted) in a way that is independent of any particular programming 
language. Thus, metadata provides a common interchange mechanism for use between tools (such 
as compilers and debuggers) that manipulate programs, as well as between these tools and the 
VES. See §9. 

• The Common Language Specification (CLS)—The CLS is an agreement between language 
designers and framework (that is, class library) designers.  It specifies a subset of the CTS and a 
set of usage conventions.  Languages provide their users the greatest ability to access frameworks 
by implementing at least those parts of the CTS that are part of the CLS.  Similarly, frameworks 
will be most widely used if their publicly exposed aspects (e.g., classes, interfaces, methods, and 
fields) use only types that are part of the CLS and that adhere to the CLS conventions. See §10. 

• The Virtual Execution System (VES)—The VES implements and enforces the CTS model. The 
VES is responsible for loading and running programs written for the CLI.  It provides the services 
needed to execute managed code and data, using the metadata to connect separately generated 
modules together at runtime (late binding). See §12. 

Together, these aspects of the CLI form a unifying infrastructure for designing, developing, deploying, and 
executing distributed components and applications. The appropriate subset of the CTS is available from each 
programming language that targets the CLI. Language-based tools communicate with each other and with the 
VES using metadata to define and reference the types used to construct the application. The VES uses the 
metadata to create instances of the types as needed and to provide data type information to other parts of the 
infrastructure (such as remoting services, assembly downloading, and security). 

6.1  Relationship to type safety 
Type safety is usually discussed in terms of what it does (e.g., guaranteeing encapsulation between different 
objects) or in terms of what it prevents (e.g., memory corruption by writing where one shouldn’t). However, 
from the point of view of the CTS, type safety guarantees that: 

• References are what they say they are – Every reference is typed, the object or value referenced 
also has a type, and these types are assignment compatible (see §8.7). 

• Identities are who they say they are – There is no way to corrupt or spoof an object, and, by 
implication, a user or security domain. Access to an object is through accessible functions and 
fields. An object can still be designed in such a way that security is compromised. However, a 
local analysis of the class, its methods, and the things it uses, as opposed to a global analysis of 
all uses of a class, is sufficient to assess the vulnerabilities. 
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• Only appropriate operations can be invoked – The reference type defines the accessible 
functions and fields. This includes limiting visibility based on where the reference is (e.g., 
protected fields only visible in derived classes). 

The CTS promotes type safety (e.g., everything is typed). Type safety can optionally be enforced. The hard 
problem is determining if an implementation conforms to a type-safe declaration. Since the declarations are 
carried along as metadata with the compiled form of the program, a compiler from the Common Intermediate 
Language (CIL) to native code (see §8.8) can type-check the implementations.  

6.2  Relationship to managed metadata-driven execution 
Metadata describes code by describing the types that the code defines and the types that it references externally. 
The compiler produces the metadata when the code is produced. Enough information is stored in the metadata 
to: 

• Manage code execution – not just load and execute, but also memory management and execution 
state inspection. 

• Administer the code – Installation, resolution, and other services. 

• Reference types in the code – Importing into other languages and tools as well as scripting and 
automation support. 

The CTS assumes that the execution environment is metadata-driven. Using metadata allows the CLI to 
support: 

• Multiple execution models – The metadata allows the execution environment to deal with a 
mixture of interpreted, JITted, native, and legacy code, and still present uniform services to tools 
like debuggers and profilers, consistent exception handling and unwinding, reliable code access 
security, and efficient memory management. 

• Auto support for services – Since the metadata is available at execution time, the execution 
environment and the base libraries can automatically supply support for reflection, automation, 
serialization, remote objects, and inter-operability with existing unmanaged native code with little 
or no effort on the part of the programmer.  

• Better optimization – Using metadata references instead of physical offsets, layouts, and sizes 
allows the CLI to optimize the physical layouts of members and dispatch tables.  In addition, this 
allows the generated code to be optimized to match the particular CPU or environment.  

• Reduced binding brittleness – Using metadata references reduces version-to-version brittleness 
by replacing compile-time object layout with load-time layout and binding by name. 

• Flexible deployment resolution – Since we can have metadata for both the reference and the 
definition of a type, more robust and flexible deployment and resolution mechanisms are possible. 
Resolution means that by looking in the appropriate set of places it is possible to find the 
implementation that best satisfies these requirements for use in this context. There are five 
elements of information in the foregoing: requirements and context are made available via 
metadata; where to look, how to find an implementation, and how to decide the best match all 
come from application packaging and deployment. 

6.2 .1  Managed code 

Managed code is code that provides enough information to allow the CLI to provide a set of core services, 
including 

• Given an address inside the code for a method, locate the metadata describing the method 

• Walk the stack 

• Handle exceptions 

• Store and retrieve security information 
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This standard specifies a particular instruction set, the CIL (see Partition III), and a file format (see Partition II) 
for storing and transmitting managed code. 

6.2 .2  Managed data 

Managed data is data that is allocated and released automatically by the CLI, through a process called 
garbage collection. 

6.2 .3  Summary 

The CTS is about integration between languages: using another language’s objects as if they were one’s own. 

The objective of the CLI is to make it easier to write components and applications in any language. It does this 
by defining a standard set of types, by making all components fully self-describing, and by providing a high 
performance common execution environment. This ensures that all CLI-compliant system services and 
components will be accessible to all CLI-aware languages and tools. In addition, this simplifies deployment of 
components and applications that use them, all in a way that allows compilers and other tools to leverage the 
high performance execution environment. The CTS covers, at a high level, the concepts and interactions that 
make all of this possible. 

The discussion is broken down into four areas: 

• Type System – What types are and how to define them. 
• Metadata – How types are described and how those descriptions are stored. 
• Common Language Specification – Restrictions required for language interoperability. 
• Virtual Execution System – How code is executed and how types are instantiated, interact, and 

die. 

End informative text 
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7  Common Language Specification 

7.1  Introduction 
The CLS is a set of rules intended to promote language interoperability. These rules shall be followed in order 
to conform to the CLS.  They are described in greater detail in subsequent clauses and are summarized in §11. 
CLS conformance is a characteristic of types that are generated for execution on a CLI implementation.  Such 
types must conform to the CLI standard, in addition to the CLS rules.  These additional rules apply only to 
types that are visible in assemblies other than those in which they are defined, and to the members that are 
accessible outside the assembly; that is, those that have an accessibility of public, family (but not on sealed 
types), or family-or-assembly (but not on sealed types). 

[Note: A library consisting of CLS-compliant code is herein referred to as a framework.  Compilers that 
generate code for the CLI can be designed to make use of such libraries, but not to be able to produce or extend 
such library code.  These compilers are referred to as consumers.  Compilers that are designed to both produce 
and extend frameworks are referred to as extenders.  In the description of each CLS rule, additional informative 
text is provided to assist the reader in understanding the rule’s implication for each of these situations. end 
note] 

7.2  Views of CLS compliance 

This subclause and its subclauses contain only informative text 
The CLS is a set of rules that apply to generated assemblies. Because the CLS is designed to support 
interoperability for libraries and the high-level programming languages used to write them, it is often useful to 
think of the CLS rules from the perspective of the high-level source code and tools, such as compilers, that are 
used in the process of generating assemblies. For this reason, informative notes are added to the description of 
CLS rules to assist the reader in understanding the rule’s implications for several different classes of tools and 
users. The different viewpoints used in the description are called framework, consumer, and extender, and 
are described here. 

7.2 .1  CLS framework 

A library consisting of CLS-compliant code is herein referred to as a framework. Frameworks are designed for 
use by a wide range of programming languages and tools, including both CLS consumer and extender 
languages. By adhering to the rules of the CLS, authors of libraries ensure that the libraries will be usable by a 
larger class of tools than if they chose not to adhere to the CLS rules. The following are some additional 
guidelines that CLS-compliant frameworks should follow: 

• Avoid the use of names commonly used as keywords in programming languages. 

• Not expect users of the framework to be able to author nested types. 

• Assume that implementations of methods of the same name and signature on different interfaces 
are independent. 

• Not rely on initialization of value types to be performed automatically based on specified 
initializer values. 

• Assume users can instantiate and use generic types and methods, but do not require them to define 
new generic types or methods, or deal with partially constructed generic types. 

Frameworks shall not: 

• Require users to define new generic types/methods, override existing generic methods, or deal 
with partially constructed generics in any way. 

CLS Rule 48: If two or more CLS-compliant methods declared in a type have the same name and, for a 
specific set of type instantiations, they have the same parameter and return types, then all these methods shall 
be semantically equivalent at those type instantiations.  
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[Note: 

CLS (consumer): May select any one of the methods. 

CLS (extender): Same as consumer. 

CLS (framework): Shall not expose methods that violate this rule. end note] 

7 .2 .2  CLS consumer 

A CLS consumer is a language or tool that is designed to allow access to all of the features supplied by CLS-
compliant frameworks, but not necessarily be able to produce them. The following is a partial list of things 
CLS consumer tools are expected to be able to do: 

• Support calling any CLS-compliant method or delegate. 

• Have a mechanism for calling methods whose names are keywords in the language. 

• Support calling distinct methods supported by a type that have the same name and signature, but 
implement different interfaces. 

• Create an instance of any CLS-compliant type. 

• Read and modify any CLS-compliant field. 

• Access nested types. 

• Access any CLS-compliant property. This does not require any special support other than the 
ability to call the getter and setter methods of the property. 

• Access any CLS-compliant event. This does not require any special support other than the ability 
to call methods defined for the event. 

• Have a mechanism to import, instantiate, and use generic types and methods. 

[Note: Extenders should consider supporting: 

• Type inferencing over generic methods with language-defined rules for matching. 

• Casting syntax to clarify ambiguous casts to a common supertype. 

end note] 

The following is a list of things CLS consumer tools need not support: 

• Creation of new types or interfaces. 

• Initialization metadata (see Partition II) on fields and parameters other than static literal fields. 
Note that consumers can choose to use initialization metadata, but can also safely ignore such 
metadata on anything other than static literal fields. 

7.2 .3  CLS extender 

A CLS extender is a language or tool that is designed to allow programmers to both use and extend CLS-
compliant frameworks. CLS extenders support a superset of the behavior supported by a CLS consumer (i.e., 
everything that applies to a CLS consumer also applies to CLS extenders). In addition to the requirements of a 
consumer, extenders are expected to be able to: 

• Define new CLS-compliant types that extend any (non-sealed) CLS-compliant base class. 

• Have some mechanism for defining types whose names are keywords in the language. 

• Provide independent implementations for all methods of all interfaces supported by a type. That 
is, it is not sufficient for an extender to require a single code body to implement all interface 
methods of the same name and signature. 

• Implement any CLS-compliant interface. 
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• Place any CLS-compliant custom attribute on all appropriate elements of metadata. 

• Define new CLS-compliant (non-generic) types that extend any (non-sealed) CLS-compliant base 
type. Valid base types include normal (non-generic) types and also fully constructed generic 
types. 

[Note: Extenders should consider supporting: 

• Type inferencing over generic methods with language-defined rules for matching. 

• Casting syntax to clarify ambiguous casts to a common supertype. 

end note] 

Extenders need not support the following: 

• Definition of new CLS-compliant interfaces. 

• Definition of nested types. 

• Definition of generic types and methods. 

• Overriding existing virtual generic methods. 

The CLS is designed to be large enough that it is properly expressive yet small enough that all languages can 
reasonably accommodate it. 

End informative text 

7.3  CLS compliance 
As these rules are introduced in detail, they are described in a common format. For an example, see the first 
rule below.  The first paragraph specifies the rule itself. This is then followed by an informative description of 
the implications of the rule from the three different viewpoints as described above. 

The CLS defines language interoperability rules, which apply only to “externally visible” items. The CLS unit 
of that language interoperability is the assembly—that is, within a single assembly there are no restrictions as to 
the programming techniques that can be used. Thus, the CLS rules apply only to items that are visible 
(see §8.5.3) outside of their defining assembly and have public, family, or family-or-assembly accessibility 
(see §8.5.3.2). 

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the defining 
assembly. 

[Note: 

CLS (consumer): no impact. 

CLS (extender): when checking CLS compliance at compile time, be sure to apply the rules only to 
information that will be exposed outside the assembly. 

CLS (framework): CLS rules do not apply to internal implementation within an assembly. A type is CLS-
compliant if all its publicly accessible parts (those classes, interfaces, methods, fields, properties, and events 
that are available to code executing in another assembly) either 
• have signatures composed only of CLS-compliant types, or 
• are specifically marked as not CLS-compliant. end note] 

Any construct that would make it impossible to rapidly verify code is excluded from the CLS. This allows all 
CLS-compliant language translators to produce verifiable code if they so choose. 

7.3 .1  Marking items as CLS-compliant  

The CLS specifies how to mark externally visible parts of an assembly to indicate whether or not they comply 
with the CLS requirements. (Implementers are discouraged from marking extensions to this standard as CLS-
compliant.) This is done using the custom attribute mechanism (see §9.7 and Partition II). The class 
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System.CLSCompliantAttribute (see Partition IV) indicates which types and type members are CLS-
compliant.   It also can be attached to an assembly, to specify the default level of compliance for all top-level 
types that assembly contains.  

The constructor for System.CLSCompliantAttribute takes a Boolean argument indicating whether the item 
with which it is associated is CLS-compliant. This allows any item (assembly, type, or type member) to be 
explicitly marked as CLS-compliant or not. 

The rules for determining CLS compliance are:  

• When an assembly does not carry an explicit System.CLSCompliantAttribute, it shall be 
assumed to carry System.CLSCompliantAttribute(false). 

• By default, a type inherits the CLS-compliance attribute of its enclosing type (for nested types) or 
acquires the level of compliance attached to its assembly (for top-level types).  A type can be 
marked as either CLS-compliant or not CLS-compliant by attaching the 
System.CLSCompliantAttribute attribute. 

• By default, other members (methods, fields, properties, and events) inherit the CLS-compliance of 
their type.  They can be marked as not CLS-compliant by attaching the attribute 
System.CLSCompliantAttribute(false). 

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant. 

[Note: 

CLS (consumer): Can ignore any member that is not CLS-compliant using the above rules.  

CLS (extender): Should encourage correct labeling of newly authored assemblies and publicly exposed types 
and members.  Compile-time enforcement of the CLS rules is strongly encouraged. 

CLS (framework): Shall correctly label all publicly exposed members as to their CLS compliance. The rules 
specified here can be used to minimize the number of markers required (for example, label the entire assembly 
if all types and members are compliant or if there are only a few exceptions that need to be marked). end note] 
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8  Common Type System 
Types describe values and specify a contract (see §8.6) that all values of that type shall support. Because the 
CTS supports Object-Oriented Programming (OOP) as well as functional and procedural programming 
languages, it deals with two kinds of entities: objects and values. Values are simple bit patterns for things like 
integers and floats; each value has a type that describes both the storage that it occupies and the meanings of 
the bits in its representation, and also the operations that can be performed on that representation. Values are 
intended for representing the corresponding simple types in programming languages like C, and also for 
representing non-objects in languages like C++ and Java™. 

Objects  have rather more to them than do values. Each object is self-typing, that is, its type is explicitly stored 
in its representation. It has an identity that distinguishes it from all other objects, and it has slots that store other 
entities (which can be either objects or values). While the contents of its slots can be changed, the identity of an 
object never changes. 

There are several kinds of objects and values, as shown in the (informative) diagram below. 

The generics feature allows a whole family of types and methods to be defined using a pattern, which includes 
placeholders called generic parameters.  These generic parameters are replaced, as required, by specific types, 
to instantiate whichever member of the family is actually required. The design of generics meets the following 
goals: 

• Orthogonality: Where possible, generic types can occur in any context where existing CLI types can 
occur. 

• Language independence: No assumptions about the source language are made.  But CLI-generics 
attempts to support existing generics-like features of as many languages as possible.  Furthermore, the 
design permits clean extensions of languages currently lacking generics. 

• Implementation independence: An implementation of the CLI is allowed to specialize representations 
and code on a case-by-case basis, or to share all representations and code, perhaps boxing and 
unboxing values to achieve this. 

• Implementation efficiency: Performance of generics is no worse than the use of Object to simulate 
generics; a good implementation can do much better, avoiding casts on reference type instantiations, 
and producing specialized code for value type instantiations.  

• Statically checkable at point of definition: A generic type definition can be validated and verified 
independently of its instantiations.  Thus, a generic type is statically verifiable, and its methods are 
guaranteed to JIT-compile for all valid instantiations. 

• Uniform behavior with respect to generic parameters: In general, the behavior of parameterized types 
and generic methods is “the same” at all type instantiations. 

In addition, CLI supports covariant and contravariant generic parameters, with the following characteristics: 

• It is type-safe (based on purely static checking)  

• Simplicity: in particular, variance is only permitted on generic interfaces and generic delegates (not 
classes or value-types)  

• Languages not wishing to support variance can ignore the feature, and treat all generic types as non-
variant.  

• Enable implementation of more complex covariance scheme as used in some languages, e.g. Eiffel. 
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This figure is informative 

Figure 1: Type System 
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End informative figure 
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8.1  Relationship to object-oriented programming 

This subclause contains only informative text 
The term type is often used in the world of value-oriented programming to mean data representation. In the 
object-oriented world it usually refers to behavior rather than to representation. In the CTS, type is used to 
mean both of these things: two entities have compatible types if and only if they have compatible 
representations and compatible behaviors. Thus, in the CTS, if one type is derived from a base type, then 
instances of the derived type can be substituted for instances of the base type because both the representation 
and the behavior are compatible. 

Unlike in some OOP languages, in the CTS, two objects that have fundamentally different representations have 
different types. Some OOP languages use a different notion of type. They consider two objects to have the 
same type if they respond in the same way to the same set of messages. This notion is captured in the CTS by 
saying that the objects implement the same interface. 

Similarly, some OOP languages (e.g., Smalltalk) consider message passing to be the fundamental model of 
computation. In the CTS, this corresponds to calling virtual methods (see §8.4.4), where the signature of the 
virtual method plays the role of the message. 

The CTS itself does not directly capture the notion of “typeless programming.”  That is, there is no way to call 
a non-static method without knowing the type of the object. Nevertheless, typeless programming can be 
implemented based on the facilities provided by the reflection package (see Partition IV) if it is implemented. 

End informative text 

8.2  Values and types 
Types describe values. Any value described by a type is called an instance of that type. Any use of a value—
storing it, passing it as an argument, operating on it—requires a type. This applies in particular to all variables, 
arguments, evaluation stack locations, and method results. The type defines the allowable values and the 
allowable operations supported by the values of the type. All operators and functions have expected types for 
each of the values accessed or used.  

Every value has an exact type that fully describes its type properties.  

Every value is an instance of its exact type, and can be an instance of other types as well. In particular, if a 
value is an instance of a type that inherits from another type, it is also an instance of that other type. 

8.2 .1  Value types and reference types  

There are two kinds of types: value types and reference types. 

• Value types – The values described by a value type are self-contained (each can be understood 
without reference to other values). 

• Reference types –A value described by a reference type denotes the location of another value. 
There are four kinds of reference type: 

o An object type is a reference type of a self-describing value (see §8.2.3).  Some object 
types (e.g., abstract classes) are only a partial description of a value. 

o An interface type is always a partial description of a value, potentially supported by many 
object types. 

o A pointer type is a compile-time description of a value whose representation is a machine 
address of a location. 

o Built-in reference types. 
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8.2 .2  Built- in value and reference types 

The following data types are an integral part of the CTS and are supported directly by the VES. They have 
special encoding in the persisted metadata: 

Table 1: Special Encoding 

Name in CIL assembler 
(see Partition II) 

CLS Type? Name in class library 
(see Partition IV) 

Description 

bool1 Yes System.Boolean True/false value 
char1 Yes System.Char Unicode 16-bit char. 
object Yes System.Object Object or boxed value type 
string Yes System.String Unicode string 
float32 Yes System.Single IEC 60559:1989 32-bit float 
float64 Yes System.Double IEC 60559:1989 64-bit float 
int8 No System.SByte Signed 8-bit integer 
int16 Yes System.Int16 Signed 16-bit integer 
int32 Yes System.Int32 Signed 32-bit integer 
int64 Yes System.Int64 Signed 64-bit integer 
native int Yes System.IntPtr Signed integer, native size 
native unsigned int No System.UIntPtr Unsigned integer, native size 
typedref No System.TypedReference Pointer plus exact type 
unsigned int8 Yes System.Byte Unsigned 8-bit integer 
unsigned int16 No System.UInt16 Unsigned 16-bit integer 
unsigned int32 No System.UInt32 Unsigned 32-bit integer 
unsigned int64 No System.UInt64 Unsigned 64-bit integer 
 

1 bool and char are integer types. 

8.2 .3  Classes ,  interfaces ,  and objects  

A type fully describes a value if it unambiguously defines the value’s representation and the operations defined 
on that value.  

For a value type, defining the representation entails describing the sequence of bits that make up the value’s 
representation. For a reference type, defining the representation entails describing the location and the sequence 
of bits that make up the value’s representation.  

A method describes an operation that can be performed on values of an exact type. Defining the set of 
operations allowed on values of an exact type entails specifying named methods for each operation.  

Some types are only a partial description; for example, interface types. These types describe a subset of the 
operations and none of the representation, and hence, cannot be an exact type of any value. Hence, while a 
value has only one exact type, it can also be a value of many other types as well. Furthermore, since the exact 
type fully describes the value, it also fully specifies all of the other types that a value of the exact type can have. 

While it is true that every value has an exact type, it is not always possible to determine the exact type by 
inspecting the representation of the value. In particular, it is never possible to determine the exact type of a 
value of a value type. Consider two of the built-in value types, 32-bit signed and unsigned integers. While each 
type is a full specification of their respective values (i.e., an exact type) there is no way to derive that exact type 
from a value’s particular 32-bit sequence.  



20 Partition I 

For some values, called objects, it is always possible to determine the exact type from the value. Exact types of 
objects are also called object types. Objects are values of reference types, but not all reference types describe 
objects. Consider a value that is a pointer to a 32-bit integer, a kind of reference type. There is no way to 
discover the type of the value by examining the pointer bits; hence it is not an object. Now consider the built-in 
CTS reference type System.String (see Partition IV). The exact type of a value of this type is always 
determinable by examining the value, hence values of type System.String are objects, and System.String is 
an object type. 

8.2 .4  Boxing and unboxing of  values  

For every value type, the CTS defines a corresponding reference type called the boxed type. The reverse is not 
true: In general, reference types do not have a corresponding value type. The representation of a value of a 
boxed type (a boxed value) is a location where a value of the value type can be stored. A boxed type is an 
object type and a boxed value is an object. 

A boxed type cannot be directly referred to by name, therefore no field or local variable can be given a boxed 
type. The closest named base class to a boxed enumerated value type is System.Enum; for all other value types 
it is System.ValueType. Fields and locals typed System.ValueType or System.Enum can only contain either the 
null value or an instance of a boxed value (enumeration) type, respectively. 

All value types have an operation called box. Boxing a value of any value type produces its boxed value; i.e., a 
value of the corresponding boxed type containing a bitwise copy of the original value. All boxed types have an 
operation called unbox, which results in a managed pointer to the bit representation of the value. 

The box instruction can be applied to more than just value types; such types are called boxable types.  A type is 
boxable if it is one of the following: 

• A value type (including instantiations of generic value types) that does not contain fields that can point into 
the CIL evaluation stack 

[Rationale: A value type that does contain such fields cannot be boxed, else those embedded pointers 
could outlive the entries in the CIL evaluation stack to which they point; e.g., 
System.RuntimeArgumentHandle, System.TypedReference.  Value types that contain such pointers are 
informally described as “byref-like” value types. end rationale] 

• A reference type (including classes, arrays, delegates, and instantiations of generic classes) 

• An unmanaged pointer type 

• A generic parameter (to a generic type definition, or a generic method definition) [Note: Boxing and 
unboxing of generic arguments adds performance overhead to a CLI implementation. The constrained. 
prefix can improve performance during virtual dispatch to a method defined by a value type, by avoiding 
boxing the value type. end note] 

The type System.Void is never boxable. 

Interfaces and inheritance are defined only on reference types. Thus, while a value type definition (see §8.9.7) 
can specify both interfaces that shall be implemented by the value type and the class (System.ValueType or 
System.Enum) from which it inherits, these apply only to boxed values. 

CLS Rule 3: Boxed value types are not CLS-compliant. 

[Note: 

In lieu of boxed types, use System.Object, System.ValueType, or System.Enum, as appropriate. 

CLS (consumer): Need not import boxed value types. 

CLS (extender): Need not provide syntax for defining or using boxed value types. 

CLS (framework): Shall not use boxed value types in its publicly exposed aspects. end note] 
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8.2 .5  Identity and equality of  values 

There are two binary operators defined on all pairs of values: identity and equality. They return a Boolean 
result, and are mathematical equivalence operators; that is, they are: 

• Reflexive – a op a is true. 

• Symmetric – a op b is true if and only if b op a is true. 

• Transitive – if a op b is true and b op c is true, then a op c is true. 

In addition, while identity always implies equality, the reverse is not true. To understand the difference between 
these operations, consider three variables, A, B, and C, whose type is System.String, where the arrow is 
intended to mean “is a reference to”:  

 
The values of the variables are identical if the locations of the sequences of characters are the same (i.e., there 
is, in fact, only one string in memory). The values stored in the variables are equal if the sequences of 
characters are the same. Thus, the values of variables A and B are identical, the values of variables A and C as 
well as B and C are not identical, and the values of all three of A, B, and C are equal. 

8.2 .5.1  Identity  

 The identity operator is defined by the CTS as follows. 

• If the values have different exact types, then they are not identical. 

• Otherwise, if their exact type is a value type, then they are identical if and only if the bit 
sequences of the values are the same, bit by bit. 

• Otherwise, if their exact type is a reference type, then they are identical if and only if the 
locations of the values are the same. 

Identity is implemented on System.Object via the ReferenceEquals method. 

8.2 .5.2  Equality  

For value types, the equality operator is part of the definition of the exact type. Definitions of equality should 
obey the following rules: 

• Equality should be an equivalence operator, as defined above. 

• Identity should imply equality, as stated earlier. 

• If either (or both) operand is a boxed value, equality should be computed by 

o first unboxing any boxed operand(s), and then 

o applying the usual rules for equality on the resulting values. 

Equality is implemented on System.Object via the Equals method. 

[Note: Although two floating point NaNs are defined by IEC 60559:1989 to always compare as unequal, the 
contract for System.Object.Equals requires that overrides must satisfy the requirements for an equivalence 
operator.  Therefore, System.Double.Equals and System.Single.Equals return True when comparing two 
NaNs, while the equality operator returns False in that case, as required by the IEC standard. end note] 
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8.3  Locations 
Values are stored in locations. A location can hold only one value at a time. All locations are typed. The type 
of the location embodies the requirements that shall be met by values that are stored in the location. Examples 
of locations are local variables and parameters.  

More importantly, the type of the location specifies the restrictions on usage of any value that is loaded from 
that location. For example, a location can hold values of potentially many exact types as long as all of the 
values are assignment-compatible with the type of the location (see below). All values loaded from a location 
are treated as if they are of the type of the location. Only operations valid for the type of the location can be 
invoked even if the exact type of the value stored in the location is capable of additional operations.  

8.3 .1  Assignment-compatible  locat ions 

A value can be stored in a location only if one of the types of the value is assignment compatible with the type 
of the location. A type is always assignment-compatible with itself. Assignment compatibility can often be 
determined at compile time, in which case, there is no need for testing at run time. Assignment compatibility is 
described in detail in §8.7. 

8.3 .2  Coercion 

Sometimes it is desirable to take a value of a type that is not assignment-compatible with a location, and 
convert the value to a type that is assignment-compatible. This is accomplished through coercion of the value. 
Coercion takes a value of a particular type and a desired type and attempts to create a value of the desired type 
that has equivalent meaning to the original value. Coercion can result in representation changes as well as type 
changes; hence coercion does not necessarily preserve the identity of two objects. 

There are two kinds of coercion: widening, which never loses information, and narrowing, in which 
information might be lost. An example of a widening coercion would be coercing a value that is a 32-bit signed 
integer to a value that is a 64-bit signed integer. An example of a narrowing coercion is the reverse: coercing a 
64-bit signed integer to a 32-bit signed integer. Programming languages often implement widening coercions as 
implicit  conversions, whereas narrowing coercions usually require an explicit conversion. 

Some widening coercion is built directly into the VES operations on the built-in types (see §12.1). All other 
coercion shall be explicitly requested. For the built-in types, the CTS provides operations to perform widening 
coercions with no runtime checks and narrowing coercions with runtime checks. 

8.3 .3  Cast ing 

Since a value can be of more than one type, a use of the value needs to clearly identify which of its types is 
being used. Since values are read from locations that are typed, the type of the value which is used is the type 
of the location from which the value was read. If a different type is to be used, the value is cast to one of its 
other types. Casting is usually a compile time operation, but if the compiler cannot statically know that the 
value is of the target type, a runtime cast check is done. Unlike coercion, a cast never changes the actual type of 
an object nor does it change the representation. Casting preserves the identity of objects.  

For example, a runtime check might be needed when casting a value read from a location that is typed as 
holding a value of a particular interface. Since an interface is an incomplete description of the value, casting 
that value to be of a different interface type will usually result in a runtime cast check. 

8.4  Type members 

As stated above, the type defines the allowable values and the allowable operations supported by the values of 
the type. If the allowable values of the type have a substructure, that substructure is described via fields or array 
elements of the type. If there are operations that are part of the type, those operations are described via methods 
on the type. Fields, array elements, and methods are called members of the type. Properties and events are also 
members of the type. 

8.4 .1  Fields,  array elements,  and values 

The representation of a value (except for those of built-in types) can be subdivided into sub-values. These sub-
values are either named, in which case, they are called fields, or they are accessed by an indexing expression, in 



 Partition I 23 

which case, they are called array elements. Types that describe values composed of array elements are array 
types. Types that describe values composed of fields are compound types. A value cannot contain both fields 
and array elements, although a field of a compound type can be an array type and an array element can be a 
compound type. 

Array elements and fields are typed, and these types never change. All of the elements in an array shall have 
the same type. Each field of a compound type can have a different type.  

8.4 .2  Methods 

A type can associate operations with that type or with each instance of that type. Such operations are called 
methods. A method is named, and has a signature (see §8.6.1) that specifies the allowable types for all of its 
arguments and for its return value, if any.  

A method that is associated only with the type itself (as opposed to a particular instance of the type) is called a 
static method (see §8.4.3). 

A method that is associated with an instance of the type is either an instance method or a virtual method 
(see §8.4.4). When they are invoked, instance and virtual methods are passed the instance on which this 
invocation is to operate (known as this or a this pointer).  

The fundamental difference between an instance method and a virtual method is in how the implementation is 
located. An instance method is invoked by specifying a class and the instance method within that class. The 
object passed as this can be null (a special value indicating that no instance is being specified) or an instance of 
any type that inherits (see §8.9.8) from the class that defines the method. A virtual method can also be called in 
this manner. This occurs, for example, when an implementation of a virtual method wishes to call the 
implementation supplied by its base class. The CTS allows this to be null inside the body of a virtual method. 

[Rationale: Allowing a virtual method to be called with a non-virtual call eliminates the need for a “call super” 
instruction and allows version changes between virtual and non-virtual methods.  It requires CIL generators to 
insert explicit tests for a null pointer if they don’t want the null this pointer to propagate to called methods. end 
rationale] 

A virtual or instance method can also be called by a different mechanism, a virtual call. Any type that inherits 
from a type that defines a virtual method can provide its own implementation of that method (this is known as 
overriding, see §8.10.4). It is the exact type of the object (determined at runtime) that is used to decide which 
of the implementations to invoke. 

8.4 .3  Stat ic  f ie lds and stat ic methods 

Types can declare locations that are associated with the type rather than any particular value of the type. Such 
locations are static fields of the type. As such, static fields declare a location that is shared by all values of the 
type. Just like non-static (instance) fields, a static field is typed and that type never changes. Static fields are 
always restricted to a single application domain basis (see §12.5), but they can also be allocated on a per-thread 
basis. 

Similarly, types can also declare methods that are associated with the type rather than with values of the type. 
Such methods are static methods of the type. Since an invocation of a static method does not have an 
associated value on which the static method operates, there is no this pointer available within a static method.  

8.4 .4  Virtual methods 

An object type can declare any of its methods as virtual. Unlike other methods, each exact type that 
implements the type can provide its own implementation of a virtual method. A virtual method can be invoked 
through the ordinary method call mechanism that uses the static type, method name, and types of parameters to 
choose an implementation, in which case, the this pointer can be null. In addition, however, a virtual method 
can be invoked by a special mechanism (a virtual call) that chooses the implementation based on the 
dynamically detected type of the instance used to make the virtual call rather than the type statically known at 
compile time. Virtual methods can be marked final (see §8.10.2). 
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8.5  Naming 

Names are given to entities of the type system so that they can be referred to by other parts of the type system 
or by the implementations of the types. Types, fields, methods, properties, and events have names. With respect 
to the type system, values, locals, and parameters do not have names. An entity of the type system is given a 
single name (e.g., there is only one name for a type). 

8.5 .1  Valid names 

All name comparisons are done on a byte-by-byte (i.e., case sensitive, locale-independent, also known as code-
point comparison) basis. Where names are used to access built-in VES-supplied functionality (e.g., the class 
initialization method) there is always an accompanying indication on the definition so as not to build in any set 
of reserved names.  

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 governing 
the set of characters permitted to start and be included in identifiers, available on-line at 
http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format defined 
by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their lowercase mappings 
(as specified by the Unicode locale-insensitive, one-to-one lowercase mappings) are the same.  That is, for two 
identifiers to be considered different under the CLS they shall differ in more than simply their case. However, 
in order to override an inherited definition the CLI requires the precise encoding of the original declaration be 
used. 

[Note: 

CLS (consumer): Need not consume types that violate CLS Rule 4, but shall have a mechanism to allow 
access to named items that use one of its own keywords as the name. 

CLS (extender): Need not create types that violate CLS Rule 4.  Shall provide a mechanism for defining new 
names that obey these rules, but are the same as a keyword in the language. 

CLS (framework): Shall not export types that violate CLS Rule 4.  Should avoid the use of names that are 
commonly used as keywords in programming languages (see Partition VI Annex D) end note] 

8.5 .2  Assemblies and scoping 

Generally, names are not unique. Names are collected into groupings called scopes. Within a scope, a name can 
refer to multiple entities as long as they are of different kinds (methods, fields, nested types, properties, and 
events) or have different signatures. 

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind, except 
where the names are identical and resolved via overloading.  That is, while the CTS allows a single type to use 
the same name for a method and a field, the CLS does not.  

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the CTS 
allows distinct signatures to be distinguished.  Methods, properties, and events that have the same name (by 
identifier comparison) shall differ by more than just the return type, except as specified in CLS Rule 39. 

[Note: 

CLS (consumer): Need not consume types that violate these rules after ignoring any members that are marked 
as not CLS-compliant. 

CLS (extender): Need not provide syntax for defining types that violate these rules. 

CLS (framework): Shall not mark types as CLS-compliant if they violate these rules unless they mark 
sufficient offending items within the type as not CLS-compliant so that the remaining members do not conflict 
with one another. end note] 

A named entity has its name in exactly one scope. Hence, to identify a named entity, both a scope and a name 
need to be supplied. The scope is said to qualify the name. Types provide a scope for the names in the type; 
hence types qualify the names in the type. For example, consider a compound type Point that has a field 

http://www.unicode.org/unicode/reports/tr15/tr15-18.html
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named x. The name “field x” by itself does not uniquely identify the named field, but the qualified name 
“field x in type Point” does.  

Since types are named, the names of types are also grouped into scopes. To fully identify a type, the type name 
shall be qualified by the scope that includes the type name. A type name is scoped by the assembly that 
contains the implementation of the type. An assembly is a configured set of loadable code modules and other 
resources that together implement a unit of functionality. The type name is said to be in the assembly scope of 
the assembly that implements the type. Assemblies themselves have names that form the basis of the 
CTS naming hierarchy. 

The type definition: 

• Defines a name for the type being defined (i.e., the type name) and specifies a scope in which 
that name will be found. 

• Defines a member scope in which the names of the different kinds of members (fields, methods, 
events, and properties) are bound.  The tuple of (member name, member kind, and member 
signature) is unique within a member scope of a type. 

• Implicitly assigns the type to the assembly scope of the assembly that contains the type definition. 

The CTS supports an enum (also known as an enumeration type), an alternate name for an existing type. For 
the purposes of matching signatures, an enum shall not be the same as the underlying type. Instances of an 
enum, however, shall be assignment-compatible with the underlying type, and vice versa. That is, no cast 
(see §8.3.3) or coercion (see §8.3.2) is required to convert from the enum to the underlying type, nor are they 
required from the underlying type to the enum. An enum is considerably more restricted than a true type, as 
follows: 

• It shall have exactly one instance field, and the type of that field defines the underlying type of 
the enumeration. 

• It shall not have any methods of its own. 

• It shall derive from System.Enum (see Partition IV). 

• It shall not implement any interfaces of its own. 

• It shall not have any properties or events of its own. 

• It shall not have any static fields unless they are literal. (see §8.6.1.2) 

The underlying type shall be a built-in integer type. Enums shall derive from System.Enum, hence they are 
value types. Like all value types, they shall be sealed (see §8.9.9). 

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field shall be 
"value__", and that field shall be marked RTSpecialName. 

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the 
System.FlagsAttribute (see Partition IV) custom attribute.  One represents named integer values; the other 
represents named bit flags that can be combined to generate an unnamed value.  The value of an enum is not 
limited to the specified values. 

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself. 

[Note: 

CLS (consumer): Shall accept the definition of enums that follow these rules, but need not distinguish flags 
from named values. 

CLS (extender): Same as consumer. Extender languages are encouraged to allow the authoring of enums, but 
need not do so. 

CLS (framework): Shall not expose enums that violate these rules, and shall not assume that enums have only 
the specified values (even for enums that are named values). end note] 
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8.5 .3  Visibi l ity ,  accessibi l ity ,  and security 

To refer to a named entity in a scope, both the scope and the name in the scope shall be visible (see §8.5.3.1). 
Visibility is determined by the relationship between the entity that contains the reference (the referent) and the 
entity that contains the name being referenced. Consider the following pseudo-code: 

class A 
{ int32 IntInsideA; 
} 
class B inherits from A 
{ method X(int32, int32) 
  { IntInsideA := 15; 
  } 
} 

If we consider the reference to the field IntInsideA in class A: 

• We call class B the referent because it has a method that refers to that field,  

• We call IntInsideA in class A the referenced entity. 

There are two fundamental questions that need to be answered in order to decide whether the referent is 
allowed to access the referenced entity. The first is whether the name of the referenced entity is visible to the 
referent. If it is visible, then there is a separate question of whether the referent is accessible (see §8.5.3.2) . 

Access to a member of a type is permitted only if all three of the following conditions are met: 

1. The type is visible and, in the case of a nested type, accessible. 

2. The member is accessible. 

3. All relevant security demands (see §8.5.3.3) have been granted. 

An instantiated generic type is visible from some assembly if and only if the generic type itself and each of its 
component parts (generic type definition and generic arguments) are visible.  For example, if List is exported 
from assembly A (i.e., declared “public”) and MyClass is defined in assembly B but not exported, then 
List<MyClass> is visible only from within assembly B. 

Accessibility of members of instantiated generic types is independent of instantiation. 

Access to a member C<T1, … Tn>.m is therefore permitted if the following conditions are met: 

• C<T1, … Tn> is visible. 

• Method m within generic type C (i.e., C.m) is accessible. 

• Security permissions have been granted. 

8.5 .3.1  Visibi l i ty  of  types 

Only type names, not member names, have controlled visibility. Type names fall into one of the following three 
categories 

• Exported from the assembly in which they are defined.  While a type can be marked to allow it to 
be exported from the assembly, it is the configuration of the assembly that decides whether the 
type name is made available.  

• Not exported outside the assembly in which they are defined. 

• Nested within another type.  In this case, the type itself has the visibility of the type inside of 
which it is nested (its enclosing type).  See §8.5.3.4. 

A top-level named type is exposed if and only if it has public visibility. A type definer is exposed if and only if 
it is made from exposed types. 

A type definer is visible if all types from which it was generated are visible. 
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8.5 .3.2  Accessibi l ity  of  members and nested types 

A type scopes all of its members, and it also specifies the accessibility rules for its members. Except where 
noted, accessibility is decided based only on the statically visible type of the member being referenced and the 
type and assembly that is making the reference. The CTS supports seven different rules for accessibility: 

• compiler-controlled – accessible only through the use of a definition, not a reference, hence only 
accessible from within a single compilation unit and under the control of the compiler. 

• private: – accessible only to referents in the implementation of the exact type that defines the 
member.  

• family – accessible to referents that support the same type (i.e., an exact type and all of the types 
that inherit from it).  For verifiable code (see §8.8), there is an additional requirement that can 
require a runtime check: the reference shall be made through an item whose exact type supports 
the exact type of the referent.  That is, the item whose member is being accessed shall inherit 
from the type performing the access. 

• assembly – accessible only to referents in the same assembly that contains the implementation of 
the type. 

• family-and-assembly – accessible only to referents that qualify for both family and assembly 
access. 

• family-or-assembly – accessible only to referents that qualify for either family or assembly 
access. 

• public – accessible to all referents. 

A member or nested type is exposed if and only if it has public, family-or-assembly, or family accessibility, and 
its defining type (in the case of members) or its enclosing type (in the case of nested types) is exposed. 

The accessibility of a type definer is the same as that for the type from which it was generated. 

In general, a member of a type can have any one of the accessibility rules assigned to it. There are three 
exceptions, however: 

1. Members (other than nested types) defined by an interface shall be public. 

2. When a type defines a virtual method that overrides an inherited definition, the accessibility shall 
either be identical in the two definitions or the overriding definition shall permit more access than 
the original definition.  For example, it is possible to override an assembly virtual method with a 
new implementation that is public virtual, but not with one that is family virtual.  In the case of 
overriding a definition derived from another assembly, it is not considered restricting access if the 
base definition has family-or-assembly access and the override has only family access. 

3. A member defined by a nested type, or a nested type enclosed by a nested type, shall not have 
greater accessibility than the nested type that defines it (in the case of a member) or the nested 
type that encloses it (in the case of a nested type). 

[Rationale: Languages including C++ allow this “widening” of access.  Restricting access would provide an 
incorrect illusion of security since simply casting an object to the base class (which occurs implicitly on method 
call) would allow the method to be called despite the restricted accessibility.  To prevent overriding a virtual 
method use final (see §8.10.2) rather than relying on limited accessibility. end rationale] 
 

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when overriding a 
method inherited from a different assembly with accessibility family-or-assembly.  In this case, the override 
shall have accessibility family. 

[Note: 

CLS (consumer): Need not accept types that widen access to inherited virtual methods. 

CLS (extender): Need not provide syntax to widen access to inherited virtual methods. 
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CLS (frameworks): Shall not rely on the ability to widen access to a virtual method, either in the exposed 
portion of the framework or by users of the framework. end note] 

8.5 .3.3  Security permissions 

Access to members is also controlled by security demands that can be attached to an assembly, type, method, 
property, or event. Security demands are not part of a type contract (see §8.6), and hence are not inherited. 
There are two kinds of demands: 

• An inheritance demand. When attached to a type, it requires that any type that wishes to inherit 
from this type shall have the specified security permission.  When attached to a non-final virtual 
method, it requires that any type that wishes to override this method shall have the specified 
permission.  It shall not be attached to any other member. 

• A reference demand.  Any attempt to resolve a reference to the marked item shall have specified 
security permission. 

Only one demand of each kind can be attached to any item. Attaching a security demand to an assembly 
implies that it is attached to all types in the assembly unless another demand of the same kind is attached to the 
type. Similarly, a demand attached to a type implies the same demand for all members of the type unless 
another demand of the same kind is attached to the member.  For additional information, see Declarative 
Security in Partition II, and the classes in the System.Security namespace in Partition IV. 

8.5 .3.4  Nested types  

A type can be a member of an enclosing type, in which case, it is a nested type. A nested type has the same 
visibility as the enclosing type and has an accessibility as would any other member of the enclosing type. This 
accessibility determines which other types can make references to the nested type. That is, for a class to define 
a field or array element of a nested type, have a method that takes a nested type as a parameter or returns one as 
value, etc., the nested type shall be both visible and accessible to the referencing type. A nested type is part of 
the enclosing type so its methods have access to all members of its enclosing type, as well as family access to 
members of the type from which it inherits (see §8.9.8). The names of nested types are scoped by their 
enclosing type, not their assembly (only top-level types are scoped by their assembly). There is no requirement 
that the names of nested types be unique within an assembly. 

8.6  Contracts 
Contracts  are named. They are the shared assumptions on a set of signatures (see §8.6.1) between all 
implementers and all users of the contract. The signatures are the part of the contract that can be checked and 
enforced.  

Contracts are not types; rather they specify requirements on the implementation of types. Types state which 
contracts they abide by (i.e., which contracts all implementations of the type shall support). An implementation 
of a type can be verified to check that the enforceable parts of a contract—the named signatures—have been 
implemented. The kinds of contracts are: 

• Class contract– A class contract is specified with a class definition. Hence, a class definition 
defines both the class contract and the class type.  The name of the class contract and the name of 
the class type are the same.  A class contract specifies the representation of the values of the class 
type.  Additionally, a class contract specifies the other contracts that the class type supports (e.g., 
which interfaces, methods, properties, and events shall be implemented). A class contract, and 
hence the class type, can be supported by other class types as well.  A class type that supports the 
class contract of another class type is said to inherit from that class type. 

• Interface contract – An interface contract is specified with an interface definition.  Hence, an 
interface definition defines both the interface contract and the interface type. The name of the 
interface contract and the name of the interface type are the same.  Many types can support the 
same interface contract. Like class contracts, interface contracts specify which other contracts the 
interface supports (e.g., which interfaces, methods, properties, and events shall be implemented).   
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[Note: An interface type can never fully describe the representation of a value.  Therefore an interface 
type can never support a class contract, and hence can never be a class type or an exact type. end note] 

• Method contract – A method contract is specified with a method definition.  A method contract 
is a named operation that specifies the contract between the implementation(s) of the method and 
the callers of the method.  A method contract is always part of a type contract (class, value type, 
or interface), and describes how a particular named operation is implemented.  The method 
contract specifies the contracts that each parameter to the method shall support and the contracts 
that the return value shall support, if there is a return value.  

• Property contract – A property contract is specified with a property definition.  There is an 
extensible set of operations for handling a named value, which includes a standard pair for 
reading the value and changing the value.  A property contract specifies method contracts for the 
subset of these operations that shall be implemented by any type that supports the property 
contract.  A type can support many property contracts, but any given property contract can be 
supported by exactly one type.  Hence, property definitions are a part of the type definition of the 
type that supports the property.   

• Event contract – An event contract is specified with an event definition. There is an extensible 
set of operations for managing a named event, which includes three standard methods (register 
interest in an event, revoke interest in an event, fire the event).  An event contract specifies 
method contracts for all of the operations that shall be implemented by any type that supports the 
event contract. A type can support many event contracts, but any given event contract can be 
supported by exactly one type.  Hence, event definitions are a part of the type definition of the 
type that supports the event. 

8.6 .1  Signatures  

Signatures are the part of a contract that can be checked and automatically enforced. Signatures are formed by 
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations 
on a value or location. Example constraints would be whether a location can be overwritten with a different 
value or whether a value can ever be changed.  

All locations have signatures, as do all values. Assignment compatibility requires that the signature of the 
value, including constraints, be compatible with the signature of the location, including constraints. There are 
four fundamental kinds of signatures: type signatures (see §8.6.1.1), location signatures (see §8.6.1.2), 
parameter signatures (see §8.6.1.4), and method signatures (see §8.6.1.5).  (A fifth kind, a local signature (see 
§8.6.1.3) is really a version of a location signature.) 

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an instantiated 
generic type shall be CLS-compliant. 

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the signature of 
any member shall be visible and accessible whenever the member itself is visible and accessible.  For example, 
a public method that is visible outside its assembly shall not have an argument whose type is visible only 
within the assembly. The visibility and accessibility of types composing an instantiated generic type used in the 
signature of any member shall be visible and accessible whenever the member itself is visible and accessible. 
For example, an instantiated generic type present in the signature of a member that is visible outside its 
assembly shall not have a generic argument whose type is visible only within the assembly. 

[Note: 

CLS (consumer): Need not accept types whose members violate these rules. 

CLS (extender): Need not provide syntax to violate these rules. 

CLS (framework): Shall not violate this rule in its exposed types and their members. end note] 

The following subclauses describe the various kinds of signatures. These descriptions are cumulative: the 
simplest signature is a type signature; a location signature is a type signature plus (optionally) some additional 
attributes; and so forth.  
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8.6 .1.1  Type s ignatures 

Type signatures define the constraints on a value and its usage. A type, by itself, is a valid type signature. The 
type signature of a value cannot be determined by examining the value or even by knowing the class type of the 
value. The type signature of a value is derived from the location signature (see below) of the location from 
which the value is loaded or from the operation that computes it. Normally the type signature of a value is the 
type in the location signature from which the value is loaded.  

[Rationale: The distinction between a Type Signature and a Location Signature (below) is made because 
certain constraints, such as “constant,” are constraints on values not locations.  Future versions of this standard, 
or non-standard extensions, can introduce type constraints, thus making the distinction meaningful. end 
rationale] 

8.6 .1.2  Location s ignatures 

All locations are typed. This means that all locations have a location signature, which defines constraints on 
the location, its usage, and on the usage of the values stored in the location. Any valid type signature is a valid 
location signature. Hence, a location signature contains a type and can additionally contain the constant 
constraint. The location signature can also contain location constraints that give further restrictions on the uses 
of the location. The location constraints are: 

• The init-only constraint  promises (hence, requires) that once the location has been initialized, 
its contents never change.  Namely, the contents are initialized before any access, and after 
initialization, no value can be stored in the location. The contents are always identical to the 
initialized value (see §8.2.3).  This constraint, while logically applicable to any location, shall 
only be placed on fields (static or instance) of compound types. 

• The literal constraint  promises that the value of the location is actually a fixed value of a built-
in type.  The value is specified as part of the constraint.  Compilers are required to replace all 
references to the location with its value, and the VES therefore need not allocate space for the 
location.  This constraint, while logically applicable to any location, shall only be placed on static 
fields of compound types.  Fields that are so marked are not permitted to be referenced from CIL 
(they shall be in-lined to their constant value at compile time), but are available using reflection 
and tools that directly deal with the metadata. 

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata (see 
Partition II). A CLS-compliant literal must have a value specified in field initialization metadata that is of 
exactly the same type as the literal (or of the underlying type, if that literal is an enum). 

[Note: 

CLS (consumer): Must be able to read field initialization metadata for static literal fields and inline the value 
specified when referenced. Consumers can assume that the type of the field initialization metadata is exactly 
the same as the type of the literal field (i.e., a consumer tool need not implement conversions of the values). 

CLS (extender): Must avoid producing field initialization metadata for static literal fields in which the type of 
the field initialization metadata does not exactly match the type of the field. 

CLS (framework): Should avoid the use of syntax specifying a value of a literal that requires conversion of the 
value. Note that compilers can do the conversion themselves before persisting the field initialization metadata 
resulting in a CLS-compliant framework, but frameworks are encouraged not to rely on such implicit 
conversions. end note] 
 

[Note: It might seem reasonable to provide a volatile constraint on a location that would require that the value 
stored in the location not be cached between accesses.  Instead, CIL includes a volatile.  prefix to certain 
instructions to specify that the value neither be cached nor computed using an existing cache.  Such a constraint 
can be encoded using a custom attribute (see §9.7), although this standard does not specify such an attribute. 
end note] 
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8.6 .1.3  Local  s ignatures  

A local signature specifies the contract on a local variable allocated during the running of a method. A local 
signature contains a full location signature, plus it can specify one additional constraint: 

The byref constraint states that the content of the corresponding location is a managed pointer. A managed 
pointer can point to a local variable, parameter, field of a compound type, or element of an array. However, 
when a call crosses a remoting boundary (see §12.5) a conforming implementation can use a copy-in/copy-out 
mechanism instead of a managed pointer. Thus programs shall not rely on the aliasing behavior of true pointers. 

In addition, there is one special local signature. The typed reference local variable signature states that the 
local will contain both a managed pointer to a location and a runtime representation of the type that can be 
stored at that location. A typed reference signature is similar to a byref constraint, but while the byref specifies 
the type as part of the byref constraint (and hence statically as part of the type description), a typed reference 
provides the type information dynamically. A typed reference is a full signature in itself and cannot be 
combined with other constraints. In particular, it is not possible to specify a byref whose type is typed 
reference. 

The typed reference signature is actually represented as a built-in value type, like the integer and floating-point 
types. In the Base Class Library (see Partition IV) the type is known as System.TypedReference and in the 
assembly language used in Partition II it is designated by the keyword typedref. This type shall only be used 
for parameters and local variables. It shall not be boxed, nor shall it be used as the type of a field, element of an 
array, or return value. 

CLS Rule 14: Typed references are not CLS-compliant. 

[Note: 

CLS (consumer): There is no need to accept this type. 

CLS (extender): There is no need to provide syntax to define this type or to extend interfaces or classes that 
use this type. 

CLS (framework): This type shall not appear in exposed members. end note] 

8.6 .1.4  Parameter s ignatures  

A parameter signature, defines constraints on how an individual value is passed as part of a method 
invocation. Parameter signatures are declared by method definitions. Any valid local signature is a valid 
parameter signature.  

8.6 .1.5  Method signatures 

A method signatures is composed of 

• a calling convention,  

• the number of generic parameters, if the method is generic, 

• a list of zero or more parameter signatures—one for each parameter of the method—and, 

• a type signature for the result value, if one is produced. 

Method signatures are declared by method definitions. Only one constraint can be added to a method signature 
in addition to those of parameter signatures: 

• The vararg constraint can be included to indicate that all arguments past this point are optional.  
When it appears, the calling convention shall be one that supports variable argument lists. 

Method signatures are used in two different ways: as part of a method definition and as a description of a 
calling site when calling through a function pointer. In the latter case, the method signature indicates  

• the calling convention (which can include platform-specific calling conventions),  

• the types of all the argument values that are being passed, and 



32 Partition I 

• if needed, a vararg marker indicating where the fixed parameter list ends and the variable 
parameter list begins. 

When used as part of a method definition, the vararg constraint is represented by the choice of calling 
convention. 

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported by the 
CLS is the standard managed calling convention. 

[Note: 

CLS (consumer): There is no need to accept methods with variable argument lists or unmanaged calling 
convention. 

CLS (extender): There is no need to provide syntax to declare vararg methods or unmanaged calling 
conventions. 

CLS (framework): Neither vararg methods nor methods with unmanaged calling conventions shall be exposed 
externally. end note] 

8.7  Assignment compatibil ity 
Assignment compatibility refers to the ability to store a value V (statically described by a type signature) into 
a location L (described by a location signature), and is abbreviated L := V. Because the type signature for V is 
described statically, V might not actually be a value of the type described by the signature, but rather something 
compatible with that type. No location or value shall have type System.Void. 

The formal description of assignment compatibility is captured in Partition III, where it is referred to as 
verification type compatibility. In essence, a value V is assignment compatible with a location L if it meets one 
of the following conditions: 

• The exact static type referred to by the type signature of V matches the exact type of the location. 

• V, described by the generic type signature G<U1,...,Un>, is assignment compatible with L, 
described by the generic type signature H<T1,…,Tn>, if and only if G=H, and for each generic 
parameter of G with a variance annotation of var_i we have: 

o var_i = none or Ti is a value type or Ti is a generic parameter: Ui is the same exact 
type as Ti 

o var_i = + (Covariant): Ti := Ui (i.e., an instance of Ui can be stored in a location of 
type Ti) 

o var_i = - (Contravariant): Ui := Ti (i.e., an instance of Ti can be stored in a location of 
type Ui). 

• V, described by type signature U[] is assignment compatible with L, described by location 
signature T[], if and only if T and U are either reference types or interfaces, T := U, and the 
array types are either both vectors (zero-based, rank one) or neither is a vector and both have 
the same rank. [Note: This means that array types are covariant. end note] 

• Vector V, described by type signature U[], is assignment compatible with 
System.Collections.Generic.IList<U>, and also System.Collections.Generic.IList<B> where B 
is the set of types supported by U. 

• V’s type signature is an enumeration type and L’s location signature is the underlying type of 
that enumeration.  

• The type signature of V is a byref to a signed integer and the location signature of L is a byref 
to an unsigned integer of the same size, and vice versa; e.g., int32& := uint32&.  

• The type signature of V is an int32 and the location signature of L is a bool. [Note: The CLI 
stack only traces int32s even if a short integer is pushed. See Partition III. end note]  
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• One of the types supported by the exact type of V is assignment compatible to the type of L. 
This allows, for example, an instance of a class that inherits from a base class (hence supports 
the base class’s type contract) to be stored into a location whose type is that of the base class.  
[Note: Recall that a location constraint is just a type constraint plus two additional possible 
constraints (literal and constant), and thus a location constraint can be converted into a type 
constraint in a natural way. end note] Under this set of rules, transitivity of assignment 
compatibility holds: if L := V and M := L, then M := V.  

• Signed and unsigned integral primitive types can be assigned to each other; e.g., int8 := uint8 is valid. 
For this purpose, bool shall be considered compatible with uint8 and vice versa, which makes bool := 
uint8 valid, and vice versa. This is also true for arrays of signed and unsigned integral primitive types 
of the same size; e.g., int32[] := uint32[] is valid. 

8.8  Type safety and verification 
Since types specify contracts, it is important to know whether a given implementation lives up to these 
contracts. An implementation that lives up to the enforceable part of the contract (the named signatures) is said 
to be type-safe. An important part of the contract deals with restrictions on the visibility and accessibility of 
named items as well as the mapping of names to implementations and locations in memory. 

Type-safe implementations only store values described by a type signature in a location that is assignment-
compatible (§8.7) with the location signature of the location (see §8.6.1). Type-safe implementations never 
apply an operation to a value that is not defined by the exact type of the value. Type-safe implementations only 
access locations that are both visible and accessible to them. In a type-safe implementation, the exact type of a 
value cannot change. 

Verification is a mechanical process of examining an implementation and asserting that it is type-safe. 
Verification is said to succeed if the process proves that an implementation is type-safe. Verification is said to 
fail if that process does not prove the type safety of an implementation. Verification is necessarily conservative: 
it can report failure for a type-safe implementation, but it never reports success for an implementation that is 
not type-safe. For example, most verification processes report implementations that do pointer-based arithmetic 
as failing verification, even if the implementation is, in fact, type-safe. 

There are many different processes that can be the basis of verification. The simplest possible process simply 
says that all implementations are not type-safe. While correct and efficient this is clearly not particularly useful. 
By spending more resources (time and space) a process can correctly identify more type-safe implementations. 
It has been proven, however, that no mechanical process can, in finite time and with no errors, correctly 
identify all implementations as either type-safe or not type-safe. The choice of a particular verification process 
is thus a matter of engineering, based on the resources available to make the decision and the importance of 
detecting the type safety of different programming constructs. 

8.9  Type definers 
Type definers construct a new type from existing types. Implicit types (e.g., built-in types, arrays, and pointers 
including function pointers) are defined when they are used. The mention of an implicit type in a signature is in 
and of itself a complete definition of the type. Implicit types allow the VES to manufacture instances with a 
standard set of members, interfaces, etc. Implicit types need not have user-supplied names. 

All other types shall be explicitly defined using an explicit type definition. The explicit type definers are: 

• interface definitions – used to define interface types 

• class definitions – used to define class types, which can be either of the following: 

o object types (including delegates) 

o value types and their associated boxed types 

[Note: While class definitions always define class types, not all class types require a class definition.  Array 
types and pointer types, which are implicitly defined, are also class types.  See §8.2.3. 
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Similarly, not all types defined by a class definition are object types.  Array types, explicitly defined object 
types, and boxed types are object types.  Pointer types, function pointer types, and value types are not object 
types.  See §8.2.3. end note] 

Class, interface, and value type definitions can be parameterized, a feature known as generic type definitions.  
That is, the definition of a class, interface, or value type can include generic parameters.  When used, a specific 
instantiation of the generic class, interface, or value type is made, at which point the generic parameters are 
bound to specific generic arguments.  The generic parameters can be constrained, so that only generic 
arguments that match these constraints can be used for instantiations. 

8.9 .1  Array types  

An array type shall be defined by specifying the element type of the array, the rank (number of dimensions) 
of the array, and the upper and lower bounds of each dimension of the array. Hence, no separate definition of 
the array type is needed. The bounds (as well as indices into the array) shall be signed integers. While the 
actual bounds for each dimension are known only at runtime, the signature can specify the information that is 
known at compile time (e.g., no bounds, a lower bound, or both an upper and a lower bound). 

Array elements shall be laid out within the array object in row-major order (i.e., the elements associated with 
the rightmost array dimension shall be laid out contiguously from lowest to highest index).  The actual storage 
allocated for each array element can include platform-specific padding. (The size of this storage, in bytes, is 
returned by the sizeof instruction when it is applied to the type of that array’s elements.) 

Values of an array type are objects; hence an array type is a kind of object type (see §8.2.3). Array objects are 
defined by the CTS to be a repetition of locations where values of the array element type are stored. The 
number of repeated values is determined by the rank and bounds of the array.  

Only type signatures, not location signatures, are allowed as array element types.  

Exact array types are created automatically by the VES when they are required. Hence, the operations on an 
array type are defined by the CTS. These generally are: allocating the array based on size and lower-bound 
information, indexing the array to read and write a value, computing the address of an element of the array (a 
managed pointer), and querying for the rank, bounds, and the total number of values stored in the array. 

Additionally, a created vector with element type T, implements the interface 
System.Collections.Generic.IList<U>, where U := T. 

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array shall 
have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be 
required to distinguish between overloads.  When overloading is based on two or more array types the element 
types shall be named types. 

[Note: So-called “jagged arrays” are CLS-compliant, but when overloading multiple array types they are one-
dimensional, zero-based arrays of type System.Array. 

CLS (consumer): There is no need to support arrays of non-CLS types, even when dealing with instances of 
System.Array.  Overload resolution need not be aware of the full complexity of array types.  Programmers 
should have access to the Get, Set, and Address methods on instances of System.Array if there is no language 
syntax for the full range of array types. 

CLS (extender): There is no need to provide syntax to define non-CLS types of arrays or to extend interfaces 
or classes that use non-CLS array types.  Shall provide access to the type System.Array, but can assume that all 
instances will have a CLS-compliant type.  While the full array signature must be used to override an inherited 
method that has an array parameter, the full complexity of array types need not be made visible to 
programmers.  Programmers should have access to the Get, Set, and Address methods on instances of 
System.Array if there is no language syntax for the full range of array types. 

CLS (framework): Non-CLS array types shall not appear in exposed members.  Where possible, use only one-
dimensional, zero-based arrays (vectors) of simple named types, since these are supported in the widest range 
of programming languages.  Overloading on array types should be avoided, and when used shall obey the 
restrictions. end note] 
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Array types form a hierarchy, with all array types inheriting from the type System.Array. This is an abstract 
class (see §8.9.6.2) that represents all arrays regardless of the type of their elements, their rank, or their upper 
and lower bounds. The VES creates one array type for each distinguishable array type.  In general, array types 
are only distinguished by the type of their elements and their rank.  However, the VES treats single 
dimensional, zero-based arrays (also known as vectors) specially.  Vectors are also distinguished by the type of 
their elements, but a vector is distinct from a single-dimensional array of the same element type that has a non-
zero lower bound. Zero-dimensional arrays are not supported. 

Consider the following examples, using the syntax of CIL as described in Partition II: 

Table 2: Array Examples 

Static specification of type Actual type constructed Allowed in CLS? 
int32[] vector of int32 Yes 
int32[0...5] vector of int32 Yes 
int32[1...5] array, rank 1, of int32 No  
int32[,] array, rank 2, of int32 Yes 
int32[0...3, 0...5] array, rank 2, of int32 Yes 
int32[0..., 0...] array, rank 2, of int32 Yes 
int32[1..., 0...] array, rank 2, of int32 No 
 

8.9 .2  Unmanaged pointer types 

An unmanaged pointer type (also known simply as a “pointer type”) is defined by specifying a location 
signature for the location the pointer references. Any signature of a pointer type includes this location 
signature. Hence, no separate definition of the pointer type is needed. 

While pointer types are reference types, values of a pointer type are not objects (see §8.2.3), and hence it is not 
possible, given a value of a pointer type, to determine its exact type. The CTS provides two type-safe 
operations on pointer types: one to load the value from the location referenced by the pointer and the other to 
store an assignment compatible value into that location. The CTS also provides three operations on pointer 
types (byte-based address arithmetic): adding to and subtracting integers from pointers, and subtracting one 
pointer from another. The results of the first two operations are pointers to the same type signature as the 
original pointer. See Partition III for details. 

CLS Rule 17: Unmanaged pointer types are not CLS-compliant. 

[Note: 

CLS (consumer): There is no need to support unmanaged pointer types. 

CLS (extender): There is no need to provide syntax to define or access unmanaged pointer types. 

CLS (framework): Unmanaged pointer types shall not be externally exposed. end note] 

8.9 .3  Delegates  

Delegates are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are 
object-oriented, type-safe, and secure. Delegates are created by defining a class that derives from the base type 
System.Delegate (see Partition IV). Each delegate type shall provide a method named Invoke with appropriate 
parameters, and each instance of a delegate forwards calls to its Invoke method to one or more compatible 
static or instance methods on particular objects. The objects and methods to which it delegates are chosen when 
the delegate instance is created. 

In addition to an instance constructor and an Invoke method, delegates can optionally have two additional 
methods: BeginInvoke and EndInvoke. These are used for asynchronous calls. 
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While, for the most part, delegates appear to be simply another kind of user-defined class, they are tightly 
controlled. The implementations of the methods are provided by the VES, not user code. The only additional 
members that can be defined on delegate types are static or instance methods. 

8.9 .4  Interface type def init ion 

An interface definition defines an interface type. An interface type is a named group of methods, locations, 
and other contracts that shall be implemented by any object type that supports the interface contract of the same 
name. An interface definition is always an incomplete description of a value, and, as such, can never define a 
class type or an exact type, nor can it be an object type. 

Zero or more object types can support an interface type, and only object types can support an interface type. An 
interface type can require that objects that support it shall also support other (specified) interface types. An 
object type that supports the named interface contract shall provide a complete implementation of the methods, 
locations, and other contracts specified (but not implemented by) the interface type. Hence, a value of an object 
type is also a value of all of the interface types the object type supports. Support for an interface contract is 
declared, never inferred; i.e., the existence of implementations of the methods, locations, and other contracts 
required by the interface type does not imply support of the interface contract.  

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods in 
order to implement them. 

[Note: 

CLS (consumer): There is no need to deal with such interfaces. 

CLS (extender): Need not provide a mechanism for defining such interfaces.  

CLS (framework): Shall not expose any non-CLS compliant methods on interfaces it defines for external use. 
end note] 

Interface types are necessarily incomplete since they say nothing about the representation of the values of the 
interface type. For this reason, an interface type definition shall not provide field definitions for values of the 
interface type (i.e., instance fields), although it can declare static fields (see §8.4.3).  

Similarly, an interface type definition shall not provide implementations for any methods on the values of its 
type. However, an interface type definition can—and usually does—define method contracts (method name and 
method signature) that shall be implemented by supporting types. An interface type definition can define and 
implement static methods (see §8.4.3) since static methods are associated with the interface type itself rather 
than with any value of the type. 

Interfaces can have static or virtual methods, but shall not have instance methods. 

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields. 

[Note: 

CLS-compliant interfaces can define properties, events, and virtual methods. 

CLS (consumer): Need not accept interfaces that violate these rules. 

CLS (extender): Need not provide syntax to author interfaces that violate these rules. 

CLS (framework): Shall not externally expose interfaces that violate these rules. Where static methods, 
instance methods, or fields are required, a separate class can be defined that provides them. end note] 

Interface types can also define event and property contracts that shall be implemented by object types that 
support the interface. Since event and property contracts reduce to sets of method contracts (§8.6), the above 
rules for method definitions apply. For more information, see §8.11.4 and §8.11.3. 

Interface type definitions can specify other interface contracts that implementations of the interface type are 
required to support. See §8.9.11 for specifics. 

An interface type is given a visibility attribute, as described in §8.5.3, that controls from where the interface 
type can be referenced. An interface type definition is separate from any object type definition that supports the 
interface type. Hence, it is possible, and often desirable, to have a different visibility for the interface type and 
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the implementing object type. However, since accessibility attributes are relative to the implementing type 
rather than the interface itself, all members of an interface shall have public accessibility, and no security 
permissions can be attached to members or to the interface itself. 

8.9 .5  Class type def init ion 

All types other than interfaces and those types for which a definition is automatically supplied by the CTS, are 
defined by class definitions. A class type is a complete specification of the representation of the values of the 
class type and all of the contracts (class, interface, method, property, and event) that are supported by the class 
type. Hence, a class type is an exact type. Unless it specifies that the class is an abstract object type, a class 
definition not only defines the class type, it also provides implementations for all of the contracts supported by 
the class type.  

A class definition, and hence the implementation of the class type, always resides in some assembly. (An 
assembly is a configured set of loadable code modules and other resources that together implement a unit of 
functionality.) 

[Note: While class definitions always define class types, not all class types require a class definition.  Array 
types and pointer types, which are implicitly defined, are also class types.  See §8.2.3. end note] 

An explicit class definition is used to define: 

• An object type (see §8.2.3).  

• A value type and its associated boxed type (see §8.2.4).  

An explicit class definition: 

• Names the class type. 

• Implicitly assigns the class type name to a scope, i.e., the assembly that contains the class 
definition,   (see §8.5.2). 

• Defines the class contract of the same name (see §8.6). 

• Defines the representations and valid operations of all values of the class type using member 
definitions for the fields, methods, properties, and events (see §8.11). 

• Defines the static members of the class type (see §8.11). 

• Specifies any other interface and class contracts also supported by the class type. 

• Supplies implementations for member and interface contracts supported by the class type. 

• Explicitly declares a visibility for the type, either public or assembly (see §8.5.3). 

• Can optionally specify a method (called .cctor) to be called to initialize the type. 

The semantics of when and what triggers execution of such type initialization methods, is as follows: 

1. A type can have a type-initializer method, or not. 

2. A type can be specified as having a relaxed semantic for its type-initializer method (for 
convenience below, we call this relaxed semantic BeforeFieldInit). 

3. If marked BeforeFieldInit then the type’s initializer method is executed at, or sometime before, 
first access to any static field defined for that type. 

4. If not marked BeforeFieldInit then that type’s initializer method is executed at (i.e., is triggered 
by): 

• first access to any static field of that type, or 

• first invocation of any static method of that type or 

• first invocation of any constructor for that type. 
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5. Execution of any type's initializer method will not trigger automatic execution of any initializer 
methods defined by its base type, nor of any interfaces that the type implements 

For reference types, a constructor has to be called to create a non-null instance. Thus, for reference types, the 
.cctor will be called before instance fields can be accessed and methods can be called on non-null instances. For 
value types, an “all-zero” instance can be created without a constructor (but only this value can be created 
without a constructor). Thus for value types, the .cctor is only guaranteed to be called for instances of the value 
type that are not “all-zero”.  [Note: This changes the semantics slightly in the reference class case from the first 
edition of this standard, in that the .cctor might not be called before an instance method is invoked if the 'this' 
argument is null. The added performance of avoiding class constructors warrants this change. end note] 

[Note: BeforeFieldInit behavior is intended for initialization code with no interesting side-effects, where exact 
timing does not matter.  Also, under BeforeFieldInit semantics, type initializers are allowed to be executed at 
or before first access to any static field of that type, at the discretion of the CLI. 

If a language wishes to provide more rigid behavior—e.g., type initialization automatically triggers execution 
of base class’s initializers, in a top-to-bottom order—then it can do so by either: 

• defining hidden static fields and code in each class constructor that touches the hidden static field of its 
base class and/or interfaces it implements, or 

• by making explicit calls to System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor 
(see Partition IV).  

end note] 

8.9 .6  Object  type def init ions 

All objects are instances of an object type. The object type of an object is set when the object is created and it 
is immutable. The object type describes the physical structure of the instance and the operations that are 
allowed on it. All instances of the same object type have the same structure and the same allowable operations. 
Object types are explicitly declared by a class type definition, with the exception of array types, which are 
intrinsically provided by the VES. 

8.9 .6.1  Scope and vis ibi l i ty  

Since object type definitions are class type definitions, object type definitions implicitly specify the scope of 
the name of object type to be the assembly that contains the object type definition, see §8.5.2. Similarly, object 
type definitions shall also explicitly state the visibility attribute of the object type (either publicor assembly); 
see §8.5.3. 

8.9 .6.2  Concreteness  

An object type can be marked as abstract by the object type definition. An object type that is not marked 
abstract is, by definition, concrete. Only object types can be declared as abstract. Only an abstract object type 
is allowed to define method contracts for which the type or the VES does not also provide the implementation. 
Such method contracts are called abstract methods (see §8.11). Methods on an abstract class need not be 
abstract. 

It is an error to attempt to create an instance of an abstract object type, whether or not the type has abstract 
methods. An object type that derives from an abstract object type can be concrete if it provides 
implementations for all abstract methods in the base object type and is not itself marked as abstract. Instances 
can be made of such a concrete derived class. Locations can have an abstract type, and instances of a concrete 
type that derives from the abstract type can be stored in them. 

8.9 .6.3  Type members 

Object type definitions include member definitions for all of the members of the type. Briefly, members of a 
type include fields into which values are stored, methods that can be invoked, properties that are available, and 
events that can be raised. Each member of a type can have attributes as described in §8.4.  
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• Fields of an object type specify the representation of values of the object type by specifying the 
component pieces from which it is composed (see 8.4.1).  Static fields specify fields associated 
with the object type itself (see §8.4.3).  The fields of an object type are named and they are typed 
via location signatures.  The names of the members of the type are scoped to the type (see §8.5.2).  
Fields are declared using a field definition (see §8.11.2). 

• Methods of an object type specify operations on values of the type (see §8.4.2).  Static methods 
specify operations on the type itself (see §8.4.3).  Methods are named and they have a method 
signature.  The names of methods are scoped to the type (see §8.5.2). Methods are declared using 
a method definition (see §8.11.1). 

• Properties of an object type specify named values that are accessible via methods that read and 
write the value.  The name of the property is the grouping of the methods; the methods themselves 
are also named and typed via method signatures.  The names of properties are scoped to the type 
(see §8.5.2).  Properties are declared using a property definition (see §8.11.3). 

• Events of an object type specify named state transitions in which subscribers can 
register/unregister interest via accessor methods.  When the state changes, the subscribers are 
notified of the state transition.  The name of the event is the grouping of the accessor methods; 
the methods themselves are also named and typed via method signatures.  The names of events 
are scoped to the type (see §8.5.2).  Events are declared using an event definition (see §8.11.4). 

8.9 .6.4  Support ing interface contracts  

Object type definitions can declare that they support zero or more interface contracts. Declaring support for an 
interface contract places a requirement on the implementation of the object type to fully implement that 
interface contract. Implementing an interface contract always reduces to implementing the required set of 
methods, i.e., the methods required by the interface type. 

The different types that the object type implements (i.e., the object type and any implemented interface types), 
are each a separate logical grouping of named members. If a class Foo implements an interface IFoo, and IFoo 
declares a member method int a(), and Foo also declares a member method int a(), there are two members, 
one in the IFoo interface type and one in the Foo class type. An implementation of Foo will provide an 
implementation for both, potentially shared. 

Similarly, if a class implements two interfaces IFoo and IBar, each of which defines a method int a(), the 
class will supply two method implementations, one for each interface, although they can share the actual code 
of the implementation. 

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation of non-
CLS-compliant members. 

[Note: 

CLS (consumer): Need not accept classes, value types or interfaces that violate this rule. 

CLS (extender): Need not provide syntax to author classes, value types, or interfaces that violate this rule. 

CLS (framework): Shall not externally expose classes, value types, or interfaces that violate this rule. If a 
CLS-compliant framework exposes a class implementing a non-CLS-compliant interface, the framework shall 
provide concrete implementations of all non-CLS-compliant members. This ensures that CLS extenders do not 
need syntax for implementing non-CLS-compliant members. end note] 

8.9 .6.5  Support ing class contracts  

Object type definitions can declare support for one other class contract. Declaring support for another class 
contract is synonymous with object type inheritance (see §8.9.9). 

8.9 .6.6  Constructors  

New values of an object type are created via constructors. Constructors shall be instance methods, defined via 
a special form of method contract, which defines the method contract as a constructor for a particular object 
type. The constructors for an object type are part of the object type definition. While the CTS and VES ensure 
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that only a properly defined constructor is used to make new values of an object type, the ultimate correctness 
of a newly constructed object is dependent on the implementation of the constructor itself. 

Object types shall define at least one constructor method, but that method need not be public. Creating a new 
value of an object type by invoking a constructor involves the following steps, in order: 

1. Space for the new value is allocated in managed memory. 

2. VES data structures of the new value are initialized and user-visible memory is zeroed. 

3. The specified constructor for the object type is invoked.  

Inside the constructor, the object type can do any initialization it chooses (possibly none).  

CLS Rule 21: An object constructor shall call some class constructor of its base class before any access occurs 
to inherited instance data. (This does not apply to value types, which need not have constructors.) 

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and an object 
shall not be initialized twice. 

[Note: 

CLS (consumer): Shall provide syntax for choosing the constructor to be called when an object is created. 

CLS (extender): Shall provide syntax for defining constructor methods with different signatures.  It can issue a 
compiler error if the constructor does not obey these rules. 

CLS (framework): Can assume that object creation includes a call to one of the constructors, and that no 
object is initialized twice.  System.Object.MemberwiseClone (see Partition IV) and deserialization (including 
object remoting) shall not run constructors. end note] 

8.9 .6.7  Finalizers 

A class definition that creates an object type can supply an instance method (called a finalizer) to be called 
when an instance of the class is no longer reachable. The class System.GC (see Partition IV) provides limited 
control over the behavior of finalizers through the methods SuppressFinalize and ReRegisterForFinalize.  
Conforming implementations of the CLI can specify and provide additional mechanisms that affect the 
behavior of finalizers. 

A conforming implementation of the CLI shall not automatically call a finalizer twice for the same object 
unless  

• there has been an intervening call to ReRegisterForFinalize (not followed by a call to 
SuppressFinalize), or 

• the program has invoked an implementation-specific mechanism that is clearly specified to 
produce an alteration to this behavior. 

[Rationale: Programmers expect that finalizers are run precisely once on any given object unless they take an 
explicit action to cause the finalizer to be run multiple times. end rationale] 

It is valid to define a finalizer for a value type.  However, that finalizer will only be run for boxed instances of 
that value type.  

[Note: Since programmers might depend on finalizers to be called, the CLI should make every effort, before it 
shuts down, to ensure that finalizers are called for all objects that have not been exempted from finalization by 
a call to SuppressFinalize. The implementation should specify any conditions under which this behavior 
cannot be guaranteed. end note] 
 

[Note: Since resources might become exhausted if finalizers are not called expeditiously, the CLI should ensure 
that finalizers are called soon after the instance becomes inaccessible.  While relying on memory pressure to 
trigger finalization is acceptable, implementers should consider the use of additional metrics. end note] 
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8.9 .7  Value type def init ion 

Not all types defined by a class definition are object types (see §8.2.3); in particular, value types are not object 
types, but they are defined using a class definition. A class definition for a value type defines both the 
(unboxed) value type and the associated boxed type (see §8.2.4). The members of the class definition define the 
representation of both: 

1. When a non-static method (i.e., an instance or virtual method) is called on the value type, its this 
pointer is a managed reference to the instance, whereas when the method is called on the 
associated boxed type, the this pointer is an object reference. 

Instance methods on value types receive a this pointer that is a managed pointer to the unboxed 
type whereas virtual methods (including those on interfaces implemented by the value type) 
receive an instance of the boxed type. 

2. Value types do not support interface contracts, but their associated boxed types do. 

3. A value type does not inherit; rather the base type specified in the class definition defines the 
base type of the boxed type. 

4. The base type of a boxed type shall not have any fields.   

5. Unlike object types, instances of value types do not require a constructor to be called when an 
instance is created.  Instead, the verification rules require that verifiable code initialize instances 
to zero (null for object fields). 

8.9 .8  Type inheritance 

Inheritance of types is another way of saying that the derived type guarantees support for all of the type 
contracts of the base type. In addition, the derived type usually provides additional functionality or specialized 
behavior. A type inherits from a base type by implementing the type contract of the base type. An interface type 
implements zero or more other interfaces. Value types do not inherit, although the associated boxed type is an 
object type and hence inherits from other types. 

The derived class type shall support all of the supported interfaces contracts, class contracts, event contracts, 
method contracts, and property contracts of its base type. In addition, all of the locations defined by the base 
type are also defined in the derived type. The inheritance rules guarantee that code that was compiled to work 
with a value of a base type will still work when passed a value of the derived type. Because of this, a derived 
type also inherits the implementations of the base type. The derived type can extend, override, and/or hide these 
implementations.  

8.9 .9  Object  type inheritance 

With the sole exception of System.Object, which does not inherit from any other object type, all object types 
shall either explicitly or implicitly declare support for (i.e., inherit from) exactly one other object type. The 
graph of the inherits-relation shall form a singly rooted tree with System.Object at the base; i.e., all object 
types eventually inherit from the type System.Object. The introduction of generic types makes it more difficult 
to give a precise definition; see §Partition II. 

An object type declares that it shall not be used as a base type (be inherited from) by declaring that it is a sealed 
type.  

CLS Rule 23:  System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-
compliant class. 

Arrays are object types and, as such, inherit from other object types. Since array object types are manufactured 
by the VES, the inheritance of arrays is fixed. See §8.9.1. 

8.9 .10  Value type inheritance 

In their unboxed form value types do not inherit from any type. Boxed value types shall inherit directly from 
System.ValueType unless they are enumerations, in which case, they shall inherit from System.Enum.   Boxed 
value types shall be sealed. 
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Logically, the boxed type corresponding to a value type 

• Is an object type. 

• Will specify which object type is its base type (i.e., the object type from which it inherits).  

• Will have a base type that has no fields defined. 

• Will be sealed to avoid dealing with the complications of value slicing. 

The more restrictive rules specified here allow for more efficient implementation without severely 
compromising functionality. 

8.9 .11  Interface type derivation 

Interface types can require the implementation of one or more other interfaces. Any type that implements 
support for an interface type shall also implement support for any required interfaces specified by that interface.  
This is different from object type inheritance in two ways: 

• Object types form a single inheritance tree; interface types do not. 

• Object type inheritance specifies how implementations are inherited; required interfaces do not, 
since interfaces do not define implementation. Required interfaces specify additional contracts 
that an implementing object type shall support. 

To highlight the last difference, consider an interface, IFoo, that has a single method. An interface, IBar, which 
derives from it, is requiring that any object type that supports IBar also support IFoo. It does not say anything 
about which methods IBar itself will have.  

8.10  Member inheritance 
Only object types can inherit implementations, hence only object types can inherit members (see §8.9.8). While 
interface types can be derived from other interface types, they only “inherit” the requirement to implement 
method contracts, never fields or method implementations. 

8.10.1  Field inheritance 

A derived object type inherits all of the non-static fields of its base object type. This allows instances of the 
derived type to be used wherever instances of the base type are expected (the shapes, or layouts, of the 
instances will be the same). Static fields are not inherited. Just because a field exists does not mean that it can 
be read or written. The type visibility, field accessibility, and security attributes of the field definition 
(see §8.5.3) determine if a field is accessible to the derived object type.  

8.10.2  Method inheritance 

A derived object type inherits all of the instance and virtual methods of its base object type. It does not inherit 
constructors or static methods. Just because a method exists does not mean that it can be invoked. It shall be 
accessible via the typed reference that is being used by the referencing code. The type visibility, method 
accessibility, and security attributes of the method definition (see §8.5.3) determine if a method is accessible to 
the derived object type.  

A derived object type can hide a non-virtual (i.e., static or instance) method of its base type by providing a new 
method definition with the same name or same name and signature. Either method can still be invoked, subject 
to method accessibility rules, since the type that contains the method always qualifies a method reference. 

Virtual methods can be marked as final, in which case, they shall not be overridden in a derived object type. 
This ensures that the implementation of the method is available, by a virtual call, on any object that supports 
the contract of the base class that supplied the final implementation. If a virtual method is not final it is possible 
to demand a security permission in order to override the virtual method, so that the ability to provide an 
implementation can be limited to classes that have particular permissions. When a derived type overrides a 
virtual method, it can specify a new accessibility for the virtual method, but the accessibility in the derived 
class shall permit at least as much access as the access granted to the method it is overriding. See §8.5.3. 
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8.10.3  Property and event inheritance 

Fundamentally, properties and events are constructs of the metadata intended for use by tools that target the 
CLI and are not directly supported by the VES itself. Therefore, it is the job of the source language compiler 
and the reflection library (see Partition IV) to determine rules for name hiding, inheritance, and so forth. The 
source compiler shall generate CIL that directly accesses the methods named by the events and properties, not 
the events or properties themselves. 

8.10.4  Hiding,  overriding,  and layout  

There are two separate issues involved in inheritance. The first is which contracts a type shall implement and 
hence which member names and signatures it shall provide. The second is the layout of the instance so that an 
instance of a derived type can be substituted for an instance of any of its base types. Only the non-static fields 
and the virtual methods that are part of the derived type affect the layout of an object. 

The CTS provides independent control over both the names that are visible from a base type (hiding) and the 
sharing of layout slots in the derived class (overriding). Hiding is controlled by marking a member in the 
derived class as either hide by name or hide by name-and-signature. Hiding is always performed based on 
the kind of member, that is, derived field names can hide base field names, but not method names, property 
names, or event names. If a derived member is marked hide by name, then members of the same kind in the 
base class with the same name are not visible in the derived class; if the member is marked hide by name-and-
signature then only a member of the same kind with exactly the same name and type (for fields) or method 
signature (for methods) is hidden from the derived class. Implementation of the distinction between these two 
forms of hiding is provided entirely by source language compilers and the reflection library; it has no direct 
impact on the VES itself. 

For example: 
class Base 
{ field  int32         A; 
  field  System.String A; 
  method int32         A(); 
  method int32         A(int32); 
} 
class Derived inherits from Base 
{ field  int32 A; 
  hidebysig method int32 A(); 
} 

The member names available in type Derived are: 

Table 3: Member names 

Kind of member Type / Signature of member Name of member 
Field int32 A 

Method () -> int32 A 

Method (int32) -> int32 A 

 

While hiding applies to all members of a type, overriding deals with object layout and is applicable only to 
instance fields and virtual methods. The CTS provides two forms of member overriding, new slot and expect 
existing slot. A member of a derived type that is marked as a new slot will always get a new slot in the object’s 
layout, guaranteeing that the base field or method is available in the object by using a qualified reference that 
combines the name of the base type with the name of the member and its type or signature. A member of a 
derived type that is marked as expect existing slot will re-use (i.e., share or override) a slot that corresponds to a 
member of the same kind (field or method), name, and type if one already exists from the base type; if no such 
slot exists, a new slot is allocated and used. 

The general algorithm that is used for determining the names in a type and the layout of objects of the type is 
roughly as follows: 
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• Flatten the inherited names (using the hide by name or hide by name-and-signature rule) 
ignoring accessibility rules.  

• For each new member that is marked “expect existing slot”, look to see if an exact match on kind 
(i.e., field or method), name, and signature exists and use that slot if it is found, otherwise 
allocate a new slot.  

• After doing this for all new members, add these new member-kind/name/signatures to the list of 
members of this type  

• Finally, remove any inherited names that match the new members based on the hide by name or 
hide by name-and-signature rules. 

8.11  Member definitions 
Object type definitions, interface type definitions, and value type definitions can include member definitions. 
Field definitions define the representation of values of the type by specifying the substructure of the value. 
Method definitions define operations on values of the type and operations on the type itself (static methods). 
Property and event definitions shall only be defined on object types. Properties and events define named groups 
of accessor method definitions that implement the named event or property behavior. Nested type declarations 
define types whose names are scoped by the enclosing type and whose instances have full access to all 
members of the enclosing class. 

Depending on the kind of type definition, there are restrictions on the member definitions allowed. 

8.11.1  Method definit ions 

Method definitions are composed of a name, a method signature, and optionally an implementation of the 
method. The method signature defines the calling convention, type of the parameters to the method, and the 
return type of the method (see §8.6.1). The implementation is the code to execute when the method is invoked. 
A value type or object type shall define only one method of a given name and signature. However, a derived 
object type can have methods that are of the same name and signature as its base object type. See §8.10.2 
and §8.10.4.  

The name of the method is scoped to the type (see §8.5.2). Methods can be given accessibility attributes 
(see §8.5.3). Methods shall only be invoked with arguments that are assignment compatible with the parameter 
types of the method signature. The return value of the method shall also be assignment compatible with the 
location in which it is stored. 

Methods can be marked as static, indicating that the method is not an operation on values of the type but rather 
an operation associated with the type as a whole. Methods not marked as static define the valid operations on a 
value of a type. When a non-static method is invoked, a particular value of the type, referred to as this or the 
this pointer, is passed as an implicit parameter. 

A method definition that does not include a method implementation shall be marked as abstract. All non-static 
methods of an interface definition are abstract. Abstract method definitions are only allowed in object types that 
are marked as abstract. 

A non-static method definition in an object type can be marked as virtual, indicating that an alternate 
implementation can be provided in derived types. All non-static method definitions in interface definitions shall 
be virtual methods. Virtual method can be marked as final, indicating that derived object types are not allowed 
to override the method implementation.  

Method definitions can be parameterized, a feature known as generic method definitions.  When used, a 
specific instantiation of the generic method is made, at which point the generic parameters are bound to specific 
generic arguments.  Generic methods can be defined as members of a non-generic type; or can be defined as 
members of a generic type, but parameterized by different generic parameter (or parameters) than its owner 
type.  For example, the Stack<T> class might include a generic method S ConvertTo<S> (), where the S 
generic parameter is distinct from the T generic parameter in Stack<T>. 
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8.11.2  Field def init ions 

Field definitions are composed of a name and a location signature. The location signature defines the type of 
the field and the accessing constraints, see §8.6.1. A value type or object type shall define only one field of a 
given name and type. However, a derived object type can have fields that are of the same name and type as its 
base object type. See §8.10.1 and §8.10.4.  

The name of the field is scoped to the type (see §8.5.2). Fields can be given accessibility attributes, see §8.5.3. 
Fields shall only store values that are assignment compatible with the type of the field (see §8.3.1).  

Fields can be marked as static, indicating that the field is not part of values of the type but rather a location 
associated with the type as a whole. Locations for the static fields are created when the type is loaded and 
initialized when the type is initialized. 

Fields not marked as static define the representation of a value of a type by defining the substructure of the 
value (see §8.4.1). Locations for such fields are created within every value of the type whenever a new value is 
constructed. They are initialized during construction of the new value. A non-static field of a given name is 
always located at the same place within every value of the type.  

A field that is marked serializable is to be serialized as part of the persistent state of a value of the type. This 
standard does not require that a conforming implementation provide support for serialization (or its counterpart, 
deserialization), not does it specify the mechanism by which these operations might be accomplished. 

8.11.3  Property def init ions  

A property definition defines a named value and the methods that access the value. A property definition 
defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods 
exist and their respective method contracts. An implementation of a type that declares support for a property 
contract shall implement the accessing methods required by the property contract. The implementation of the 
accessing methods defines how the value is retrieved and stored. 

A property definition is always part of either an interface definition or a class definition. The name and value of 
a property definition is scoped to the type that includes the property definition. The CTS requires that the 
method contracts that comprise the property shall match the method implementations, as with any other method 
contract. There are no CIL instructions associated with properties, just metadata.  

By convention, properties define a getter method (for accessing the current value of the property) and 
optionally a setter method (for modifying the current value of the property). The CTS places no restrictions on 
the set of methods associated with a property, their names, or their usage. 

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be marked 
SpecialName in the metadata.   

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated “The accessibility of 
a property’s accessors shall be identical.” However, that rule was removed. end note] 

CLS Rule 26: A property’s accessors shall all be static, all be virtual, or all be instance.   

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last argument of 
the setter.  The types of the parameters of the property shall be the types of the parameters to the getter and the 
types of all but the final parameter of the setter.  All of these types shall be CLS-compliant, and shall not be 
managed pointers (i.e., shall not be passed by reference). 

CLS Rule 28: Properties shall adhere to a specific naming pattern.  See §10.4.  The SpecialName attribute 
referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere to identifier rules. 
A property shall have a getter method, a setter method, or both. 

[Note: 

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to 
identifier rules.  Otherwise, no direct support other than the usual access to the methods that define the 
property. 



46 Partition I 

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to 
identifier rules.  Otherwise, no direct support other than the usual access to the methods that define the 
property.  In particular, an extender need not be able to define properties. 

CLS (framework): Shall design understanding that not all CLS languages will access the property using 
special syntax. end note] 

8.11.4  Event def init ions 

The CTS supports events in precisely the same way that it supports properties (see §8.11.3). The conventional 
methods, however, are different and include means for subscribing and unsubscribing to events as well as for 
firing the event. 

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata. 

CLS Rule 30: The accessibility of an event and of its accessors shall be identical. 

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.  

CLS Rule 32:  The add and remove methods for an event shall each take one parameter whose type defines the 
type of the event and that shall be derived from System.Delegate.  

CLS Rule 33: Events shall adhere to a specific naming pattern.  See §10.4. The SpecialName attribute referred 
to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.  

[Note: 

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to 
identifier rules.  Otherwise, no direct support other than the usual access to the methods that define the event. 

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to 
identifier rules.  Otherwise, no direct support other than the usual access to the methods that define the event.  
In particular, an extender need not be able to define events. 

CLS (framework): Shall design based on the understanding that not all CLS languages will access the event 
using special syntax. end note] 

8.11.5  Nested type def init ions 

A nested type definition is identical to a top-level type definition, with one exception: a top-level type has a 
visibility attribute, while the visibility of a nested type is the same as the visibility of the enclosing type. 
See §8.5.3. 
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9  Metadata 

This clause and its subclauses contain only informative text, with the exception 
of the CLS rules introduced here and repeated in §11.  The metadata format is 
specified in Partition II 

New types—value types and reference types—are introduced into the CTS via type declarations expressed in 
metadata. In addition, metadata is a structured way to represent all information that the CLI uses to locate and 
load classes, lay out instances in memory, resolve method invocations, translate CIL to native code, enforce 
security, and set up runtime context boundaries. Every CLI PE/COFF module (see Partition II) carries a 
compact metadata binary that is emitted into the module by the CLI-enabled development tool or compiler.  

Each CLI-enabled language will expose a language-appropriate syntax for declaring types and members and for 
annotating them with attributes that express which services they require of the infrastructure. Type imports are 
also handled in a language-appropriate way, and it is the development tool or compiler that consumes the 
metadata to expose the types that the developer sees.  

Note that the typical component or application developer will not need to be aware of the rules for emitting and 
consuming CLI metadata. While it can help a developer to understand the structure of metadata, the rules 
outlined in this clause are primarily of interest to tool builders and compiler writers.  

9.1  Components and assemblies 
Each CLI component carries the metadata for declarations, implementations, and references specific to that 
component. Therefore, the component-specific metadata is referred to as component metadata, and the 
resulting component is said to be self-describing. In object models such as COM or CORBA, this information 
is represented by a combination of typelibs, IDL files, DLLRegisterServer, and a myriad of custom files in 
disparate formats and separate from the actual executable file. In contrast, the metadata is a fundamental part of 
a CLI component.  

Collections of CLI components and other files are packaged together for deployment into assemblies, 
discussed in more detail in a later subclause. An assembly is a logical unit of functionality that serves as the 
primary unit of reuse in the CLI. Assemblies establish a name scope for types.  

Types declared and implemented in individual components are exported for use by other implementations via 
the assembly in which the component participates. All references to a type are scoped by the identity of the 
assembly in whose context the type is being used. The CLI provides services to locate a referenced assembly 
and request resolution of the type reference. It is this mechanism that provides an isolation scope for 
applications: the assembly alone controls its composition. 

9.2  Accessing metadata 
Metadata is emitted into and read from a CLI module using either direct access to the file format as described 
in Partition II or through the Reflection library. It is possible to create a tool that verifies a CLI module, 
including the metadata, during development, based on the specifications supplied in Partition II and 
Partition III.  

When a class is loaded at runtime, the CLI loader imports the metadata into its own in-memory data structures, 
which can be browsed via the CLI Reflection services. The Reflection services should be considered as similar 
to a compiler; they automatically walk the inheritance hierarchy to obtain information about inherited methods 
and fields, they have rules about hiding by name or name-and-signature, rules about inheritance of methods and 
properties, and so forth. 

9.2 .1  Metadata tokens 

A metadata token is an implementation-dependent encoding mechanism. Partition II describes the manner in 
which metadata tokens are embedded in various sections of a CLI PE/COFF module. Metadata tokens are 
embedded in CIL and native code to encode method invocations and field accesses at call sites; the token is 
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used by various infrastructure services to retrieve information from metadata about the reference and the type 
on which it was scoped in order to resolve the reference.  

A metadata token is a typed identifier of a metadata object (such as type declaration and member declaration). 
Given a token, its type can be determined and it is possible to retrieve the specific metadata attributes for that 
metadata object. However, a metadata token is not a persistent identifier. Rather it is scoped to a specific 
metadata binary. A metadata token is represented as an index into a metadata data structure, so access is fast 
and direct.  

9.2 .2  Member s ignatures in  metadata 

Every location—including fields, parameters, method return values, and properties—has a type, and a 
specification for its type is carried in metadata.  

A value type describes values that are represented as a sequence of bits. A reference type describes values that 
are represented as the location of a sequence of bits. The CLI provides an explicit set of built-in types, each of 
which has a default runtime form as either a value type or a reference type. The metadata APIs can be used to 
declare additional types, and part of the type specification of a variable encodes the identity of the type as well 
as which form (value or reference) the type is to take at runtime. 

Metadata tokens representing encoded types are passed to CIL instructions that accept a type (newobj, 
newarray, ldtoken). (See the CIL instruction set specification in Partition III.) 

These encoded type metadata tokens are also embedded in member signatures. To optimize runtime binding of 
field accesses and method invocations, the type and location signatures associated with fields and methods are 
encoded into member signatures in metadata. A member signature embodies all of the contract information that 
is used to decide whether a reference to a member succeeds or fails. 

9.3  Unmanaged code 
It is possible to pass data from CLI managed code to unmanaged code. This always involves a transition from 
managed to unmanaged code, which has some runtime cost, but data can often be transferred without copying. 
When data must be reformatted the VES provides a reasonable specification of default behavior, but it is 
possible to use metadata to explicitly require other forms of marshalling (i.e., reformatted copying). The 
metadata also allows access to unmanaged methods through implementation-specific pre-existing mechanisms. 

9.4  Method implementation metadata 
For each method for which an implementation is supplied in the current CLI module, the tool or compiler will 
emit information used by the CIL-to-native code compilers, the CLI loader, and other infrastructure services. 
This information includes: 

• Whether the code is managed or unmanaged. 

• Whether the implementation is in native code or CIL (note that all CIL code is managed). 

• The location of the method body in the current module, as an address relative to the start of the 
module file in which it is located (a Relative Virtual Address, or RVA). Or, alternatively, the 
RVA is encoded as 0 and other metadata is used to tell the infrastructure where the method 
implementation will be found, including: 

o An implementation to be located via the CLI Interoperability Services. See related 
specifications for details.  

o Forwarding calls through an imported global static method. 

9.5  Class layout 
In the general case, the CLI loader is free to lay out the instances of a class in any way it chooses, consistent 
with the rules of the CTS. However, there are times when a tool or compiler needs more control over the 
layout. In the metadata, a class is marked with an attribute indicating whether its layout rule is: 
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• autolayout:: A class marked “autolayout” indicates that the loader is free to lay out the class in 
any way it sees fit; any layout information that might have been specified is ignored. This is the 
default.   

• sequentiallayout: A class marked “sequentiallayout” guides the loader to preserve field order as 
emitted, but otherwise the specific offsets are calculated based on the CLI type of the field; these 
can be shifted by explicit offset, padding, and/or alignment information.  

• explicitlayout: A class marked “explicitlayout” causes the loader to ignore field sequence and to 
use the explicit layout rules provided, in the form of field offsets and/or overall class size or 
alignment.  There are restrictions on valid layouts, specified in Partition II. 

It is also possible to specify an overall size for a class. This enables a tool or compiler to emit a value type 
specification where only the size of the type is supplied. This is useful in declaring CLI built-in types (such as 
32-bit integer). It is also useful in situations where the data type of a member of a structured value type does 
not have a representation in CLI metadata (e.g., C++ bit fields). In the latter case, as long as the tool or 
compiler controls the layout, and CLI doesn’t need to know the details or play a role in the layout, this is 
sufficient. Note that this means that the VES can move bits around but can’t marshal across machines – the 
emitting tool or compiler will need to handle the marshaling.  

Optionally, a developer can specify a packing size for a class. This is layout information that is not often used, 
but it allows a developer to control the alignment of the fields. It is not an alignment specification, per se, but 
rather serves as a modifier that places a ceiling on all alignments. Typical values are 1, 2, 4, 8, or 16. Generic 
types shall not be specified to have ExplicitLayout. 

For the full specification of class layout attributes, see the classes in System.Runtime.InteropServices in 
Partition IV. 

9.6  Assemblies:  name scopes for types 
An assembly is a collection of resources that are built to work together to deliver a cohesive set of 
functionality. An assembly carries all of the rules necessary to ensure that cohesion. It is the unit of access to 
resources in the CLI.  

Externally, an assembly is a collection of exported resources, including types. Resources are exported by name. 
Internally, an assembly is a collection of public (exported) and private (internal to the assembly) resources. It is 
the assembly that determines which resources are to be exposed outside of the assembly and which resources 
are accessible only within the current assembly scope. It is the assembly that controls how a reference to a 
resource, public or private, is mapped onto the bits that implement the resource. For types in particular, the 
assembly can also supply runtime configuration information. A CLI module can be thought of as a packaging 
of type declarations and implementations, where the packaging decisions can change under the covers without 
affecting clients of the assembly.  

The identity of a type is its assembly scope and its declared name. A type defined identically in two different 
assemblies is considered two different types.  

Assembly Dependencies: An assembly can depend on other assemblies. This happens when implementations 
in the scope of one assembly reference resources that are scoped in or owned by another assembly. 

• All references to other assemblies are resolved under the control of the current assembly scope. 
This gives an assembly an opportunity to control how a reference to another assembly is mapped 
onto a particular version (or other characteristic) of that referenced assembly (although that target 
assembly has sole control over how the referenced resource is resolved to an implementation). 

• It is always possible to determine which assembly scope a particular implementation is running 
in. All requests originating from that assembly scope are resolved relative to that scope. 

From a deployment perspective, an assembly can be deployed by itself, with the assumption that any other 
referenced assemblies will be available in the deployed environment. Or, it can be deployed with its dependent 
assemblies.  

Manifests: Every assembly has a manifest that declares which files make up the assembly, what types are 
exported, and what other assemblies are required to resolve type references within the assembly.  Just as CLI 
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components are self-describing via metadata in the CLI component, so are assemblies self-describing via their 
manifests. When a single file makes up an assembly it contains both the metadata describing the types defined 
in the assembly and the metadata describing the assembly itself.  When an assembly contains more than one file 
with metadata, each of the files describes the types defined in the file, if any, and one of these files also 
contains the metadata describing the assembly (including the names of the other files, their cryptographic 
hashes, and the types they export outside of the assembly). 
Applications: Assemblies introduce isolation semantics for applications. An application is simply an assembly 
that has an external entry point that triggers (or causes a hosting environment such as a browser to trigger) the 
creation of a new application domain. This entry point is effectively the root of a tree of request invocations 
and resolutions. Some applications are a single, self-contained assembly. Others require the availability of other 
assemblies to provide needed resources. In either case, when a request is resolved to a module to load, the 
module is loaded into the same application domain from which the request originated. It is possible to monitor 
or stop an application via the application domain. 

References: A reference to a type always qualifies a type name with the assembly scope within which the 
reference is to be resolved; that is, an assembly establishes the name scope of available resources. However, 
rather than establishing relationships between individual modules and referenced assemblies, every reference is 
resolved through the current assembly. This allows each assembly to have absolute control over how references 
are resolved.  See Partition II. 

9.7  Metadata extensibil ity 
CLI metadata is extensible. There are three reasons this is important: 

• The CLS is a specification for conventions that languages and tools agree to support in a uniform 
way for better language integration. The CLS constrains parts of the CTS model, and the CLS 
introduces higher-level abstractions that are layered over the CTS. It is important that the 
metadata be able to capture these sorts of development-time abstractions that are used by tools 
even though they are not recognized or supported explicitly by the CLI.  

• It should be possible to represent language-specific abstractions in metadata that are neither CLI 
nor CLS language abstractions. For example, it should be possible, over time, to enable languages 
like C++ to not require separate headers or IDL files in order to use types, methods, and data 
members exported by compiled modules. 

• It should be possible, in member signatures, to encode types and type modifiers that are used in 
language-specific overloading.  For example, to allow C++ to distinguish int from long even on 
32-bit machines where both map to the underlying type int32. 

This extensibility comes in the following forms: 

• Every metadata object can carry custom attributes, and the metadata APIs provide a way to 
declare, enumerate, and retrieve custom attributes. Custom attributes can be identified by a simple 
name, where the value encoding is opaque and known only to the specific tool, language, or 
service that defined it. Or, custom attributes can be identified by a type reference, where the 
structure of the attribute is self-describing (via data members declared on the type) and any tool 
including the CLI reflection services can browse the value encoding.  

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes.  The only types that 
shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char, 
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single, 

System.Double, and any enumeration type based on a CLS-compliant base integer type.  

[Note: 

CLS (consumer): Shall be able to read attributes encoded using the restricted scheme. 

CLS (extender): Must meet all requirements for CLS consumer and be able to author new classes and 
new attributes.  Shall be able to attach attributes based on existing attribute classes to any metadata that is 
emitted.  Shall implement the rules for the System.AttributeUsageAttribute (see Partition IV). 
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CLS (framework): Shall externally expose only attributes that are encoded within the CLS rules and 
following the conventions specified for System.AttributeUsageAttribute end note] 

• In addition to CTS type extensibility, it is possible to emit custom modifiers into member 
signatures (see Types in Partition II). The CLI will honor these modifiers for purposes of method 
overloading and hiding, as well as for binding, but will not enforce any of the language-specific 
semantics.  These modifiers can reference the return type or any parameter of a method, or the 
type of a field.  They come in two kinds: required modifiers that anyone using the member must 
understand in order to correctly use it, and optional modifiers that can be ignored if the modifier 
is not understood.  

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II), 
but does allow optional modifiers (modopt, see Partition II) it does not understand. 

[Note: 

CLS (consumer): Shall be able to read metadata containing optional modifiers and correctly copy 
signatures that include them.  Can ignore these modifiers in type matching and overload resolution.  Can 
ignore types that become ambiguous when the optional modifiers are ignored, or that use required 
modifiers. 

CLS (extender): Shall be able to author overrides for inherited methods with signatures that include 
optional modifiers.  Consequently, an extender must be able to copy such modifiers from metadata that it 
imports.  There is no requirement to support required modifiers, nor to author new methods that have any 
kind of modifier in their signature. 

CLS (framework): Shall not use required modifiers in externally visible signatures unless they are 
marked as not CLS-compliant.  Shall not expose two members on a class that differ only by the use of 
optional modifiers in their signature, unless only one is marked CLS-compliant. end note] 

9.8  Globals,  imports,  and exports 
The CTS does not have the notion of global statics: all statics are associated with a particular class. 
Nonetheless, the metadata is designed to support languages that rely on static data that is stored directly in a 
PE/COFF file and accessed by its relative virtual address. In addition, while access to managed data and 
managed functions is mediated entirely through the metadata itself, the metadata provides a mechanism for 
accessing unmanaged data and unmanaged code. 

CLS Rule 36: Global static fields and methods are not CLS-compliant. 

[Note: 

CLS (consumer): Need not support global static fields or methods. 

CLS (extender): Need not author global static fields or methods. 

CLS (framework): Shall not define global static fields or methods. end note] 

9.9  Scoped statics 
The CTS does not include a model for file- or function-scoped static functions or data members. However, 
there are times when a compiler needs a metadata token to emit into CIL for a scoped function or data member. 
The metadata allows members to be marked so that they are never visible or accessible outside of the PE/COFF 
file in which they are declared and for which the compiler guarantees to enforce all access rules. 

End informative text 
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10 Name and type rules for the Common Language Specification 

10.1  Identifiers 
Languages that are either case-sensitive or case-insensitive can support the CLS. Since its rules apply only to 
items exposed to other languages, private members or types that aren’t exported from an assembly can use any 
names they choose. For interoperation, however, there are some restrictions. 

In order to make tools work well with a case-sensitive language it is important that the exact case of identifiers 
be maintained. At the same time, when dealing with non-English languages encoded in Unicode, there might be 
more than one way to represent precisely the same identifier that includes combining characters. The CLS 
requires that identifiers obey the restrictions of the appropriate Unicode standard and they are persisted in 
Canonical form C, which preserves case but forces combining characters into a standard representation. See 
CLS Rule 4, in §8.5.1. 

At the same time, it is important that externally visible names not conflict with one another when used from a 
case-insensitive programming language. As a result, all identifier comparisons shall be done internally to CLS-
compliant tools using the Canonical form KC, which first transforms characters to their case-canonical 
representation. See CLS Rule 4, in §8.5.1. 

When a compiler for a CLS-compliant language supports interoperability with a non-CLS-compliant language 
it must be aware that the CTS and VES perform all comparisons using code-point (i.e., byte-by-byte) 
comparison. Thus, even though the CLS requires that persisted identifiers be in Canonical form C, references to 
non-CLS identifiers will have to be persisted using whatever encoding the non-CLS language chose to use. It is 
a language design issue, not covered by the CTS or the CLS, precisely how this should be handled. 

10.2  Overloading 
[Note: Although the CTS describes inheritance, object layout, name hiding, and overriding of virtual methods, 
it does not discuss overloading at all. While this is surprising, it arises from the fact that overloading is entirely 
handled by compilers that target the CTS and not the type system itself. In the metadata, all references to types 
and type members are fully resolved and include the precise signature that is intended. This choice was made 
since every programming language has its own set of rules for coercing types and the VES does not provide a 
means for expressing those rules. end note] 

Following the rules of the CTS, it is possible for duplicate names to be defined in the same scope as long as 
they differ in either kind (field, method, etc.) or signature. The CLS imposes a stronger restriction for 
overloading methods. Within a single scope, a given name can refer to any number of methods provided they 
differ in any of the following: 

• Number of parameters 

• Type of any parameter 

Notice that the signature includes more information, but CLS-compliant languages need not produce or 
consume classes that differ only by that additional information (see Partition II for the complete list of 
information carried in a signature): 

• Calling convention 

• Custom modifiers 

• Return type 

• Whether a parameter is passed by value or by reference 

There is one exception to this rule. For the special names op_Implicit and op_Explicit, described 
in §10.3.3, methods can be provided that differ only by their return type. These are marked specially and can 
be ignored by compilers that don’t support operator overloading. 



 Partition I 53 

Properties shall not be overloaded by type (that is, by the return type of their getter method), but they can be 
overloaded with different number or types of indices (that is, by the number and types of the parameters of their 
getter methods). The overloading rules for properties are identical to the method overloading rules. 

CLS Rule 37: Only properties and methods can be overloaded. 

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their 
parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be 
overloaded based on their return type. 

[Note: 

CLS (consumer): Can assume that only properties and methods are overloaded, and need not support 
overloading based on return type unless providing special syntax for operator overloading.  If return type 
overloading isn’t supported, then the op_Implicit and op_Explicit can be ignored since the functionality 
shall be provided in some other way by a CLS-compliant framework. Consumers must first apply the hide-by-
name and hide-by-signature-and-name rules (§8.10.4) to avoid any ambiguity. 

CLS (extender): Should not permit the authoring of overloads other than those specified here.  It is not 
necessary to support operator overloading at all, hence it is possible to entirely avoid support for overloading 
on return type. 

CLS (framework): Shall not publicly expose overloading except as specified here.  Frameworks authors 
should bear in mind that many programming languages, including object-oriented languages, do not support 
overloading and will expose overloaded methods or properties through mangled names. Most languages 
support neither operator overloading nor overloading based on return type, so op_Implicit and op_Explicit 
shall always be augmented with some alternative way to gain the same functionality. end note] 

[Note: The names visible on any class C, are the names visible in that class and its base classes. As a consequence, the 
names of methods on interfaces implemented by C that are only implemented via MethodImpls (see Partition II) are 
not visible on class C. The names visible on an interface I, consist only of the names directly defined on this interface. 
As a consequence, the names of methods from other interfaces (which I requires be implemented) are not visible on I 
itself. end note] 

10.3  Operator overloading 
CLS-compliant consumer and extender tools are under no obligation to allow defining of operator overloading. 
CLS-compliant consumer and extender tools do not have to provide a special mechanism to call these methods. 

[Note: This topic is addressed by the CLS so that 

• languages that do provide operator overloading can describe their rules in a way that other languages can 
understand, and  

• languages that do not provide operator overloading can still access the underlying functionality without the 
addition of special syntax.  

end note] 

Operator overloading is described by using the names specified below, and by setting a special bit in the 
metadata (SpecialName) so that they do not collide with the user’s name space. A CLS-compliant producer 
tool shall provide some means for setting this bit. If these names are used, they shall have precisely the 
semantics described here.  

10.3 .1  Unary operators  

Unary operators take one operand, perform some operation on it, and return the result. They are represented as 
static methods on the class that defines the type of their one operand. Table 4: Unary Operator Names shows 
the names that are defined. 

Table 4: Unary Operator Names 

Name ISO/IEC 14882:2003 C++ Operator Symbol 
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op_Decrement Similar to --1 

op_Increment Similar to ++1 

op_UnaryNegation - (unary) 

op_UnaryPlus + (unary) 

op_LogicalNot ! 

op_True2 Not defined 

op_False2 Not defined 

op_AddressOf & (unary) 

op_OnesComplement ~ 

op_PointerDereference * (unary) 

1 From a pure C++ point of view, the way one must write these functions for the CLI differs in one very 
important aspect. In C++, these methods must increment or decrement their operand directly, whereas, in CLI, 
they must not; instead, they simply return the value of their operand +/- 1, as appropriate, without modifying 
their operand. The operand must be incremented or decremented by the compiler that generates the code for the 
++/-- operator, separate from the call to these methods. 
2 The op_True and op_False operators do not exist in C++.  They are provided to support tri-state Boolean 
types, such as those used in database languages. 

10.3 .2  Binary operators 

Binary operators take two operands, perform some operation on them, and return a value. They are represented 
as static methods on the class that defines the type of one of their two operands. Table 5: Binary Operator 
Names shows the names that are defined. 

Table 5: Binary Operator Names 

Name ISO/IEC 14882:2003 C++ Operator Symbol 
op_Addition + (binary) 

op_Subtraction - (binary) 

op_Multiply * (binary) 

op_Division / 

op_Modulus % 

op_ExclusiveOr ^ 

op_BitwiseAnd & (binary) 

op_BitwiseOr | 

op_LogicalAnd && 

op_LogicalOr || 

op_Assign Not defined (= is not the same) 

op_LeftShift << 

op_RightShift >> 

op_SignedRightShift Not defined 

op_UnsignedRightShift Not defined 

op_Equality == 

op_GreaterThan > 

op_LessThan < 

op_Inequality != 
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op_GreaterThanOrEqual >= 

op_LessThanOrEqual <= 

op_UnsignedRightShiftAssignment Not defined 

op_MemberSelection -> 

op_RightShiftAssignment >>= 

op_MultiplicationAssignment *= 

op_PointerToMemberSelection ->* 

op_SubtractionAssignment -= 

op_ExclusiveOrAssignment ^= 

op_LeftShiftAssignment <<= 

op_ModulusAssignment %= 

op_AdditionAssignment += 

op_BitwiseAndAssignment &= 

op_BitwiseOrAssignment |= 

op_Comma , 

op_DivisionAssignment /= 

 

10.3 .3  Conversion operators  

Conversion operators are unary operations that allow conversion from one type to another. The operator 
method shall be defined as a static method on either the operand or return type. There are two types of 
conversions:  

• An implicit (widening) coercion shall not lose any magnitude or precision.  These should be 
provided using a method named op_Implicit. 

• An explicit (narrowing) coercion can lose magnitude or precision.  These should be provided 
using a method named op_Explicit. 

[Note: Conversions provide functionality that can’t be generated in other ways, and many languages do not 
support the use of the conversion operators through special syntax.  Therefore, CLS rules require that the same 
functionality be made available through an alternate mechanism. It is recommended that the more common 
ToXxx (where Xxx is the target type) and FromYyy (where Yyy is the name of the source type) naming pattern 
be used. end note] 

Because these operations can exist on the class of their operand type (so-called “from” conversions) and would 
therefore differ on their return type only, the CLS specifically allows that these two operators be overloaded 
based on their return type. The CLS, however, also requires that if this form of overloading is used then the 
language shall provide an alternate means for providing the same functionality since not all CLS languages will 
implement operators with special syntax. 

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the coercion 
shall be provided. 

[Note: 

CLS (consumer): Where appropriate to the language design, use the existence of op_Implicit and/or 
op_Explicit in choosing method overloads and generating automatic coercions. 

CLS (extender): Where appropriate to the language design, implement user-defined implicit or explicit 
coercion operators using the corresponding op_Implicit, op_Explicit, ToXxx, and/or FromXxx methods.   

CLS (framework): If coercion operations are supported, they shall be provided as FromXxx and ToXxx, and 
optionally op_Implicit and op_Explicit as well.  CLS frameworks are encouraged to provide such coercion 
operations. end note] 
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10.4  Naming patterns 
See also Partition VI. 

While the CTS does not dictate the naming of properties or events, the CLS does specify a pattern to be 
observed. 

For Events: 

An individual event is created by choosing or defining a delegate type that is used to indicate the event. Then, 
three methods are created with names based on the name of the event and with a fixed signature. For the 
examples below we define an event named Click that uses a delegate type named EventHandler. 

EventAdd, used to add a handler for an event 
        Pattern: void add_<EventName> (<DelegateType> handler) 
        Example: void add_Click (EventHandler handler); 

EventRemove, used to remove a handler for an event 
        Pattern: void remove_<EventName> (<DelegateType> handler) 
        Example: void remove_Click (EventHandler handler); 

EventRaise, used to indicate that an event has occurred 
        Pattern: void family raise_<EventName> (Event e) 

For Properties: 

An individual property is created by deciding on the type returned by its getter method and the types of the 
getter’s parameters (if any). Then, two methods are created with names based on the name of the property and 
these types. For the examples below we define two properties: Name takes no parameters and returns a 
System.String, while Item takes a System.Object parameter and returns a System.Object. Item is referred to 
as an indexed property, meaning that it takes parameters and thus can appear to the user as through it were an 
array with indices. 

PropertyGet, used to read the value of the property 
        Pattern: <PropType> get_<PropName> (<Indices>) 
        Example: System.String get_Name (); 
        Example: System.Object get_Item (System.Object key); 

PropertySet, used to modify the value of the property 
        Pattern: void set_<PropName> (<Indices>, <PropType>) 
        Example: void set_Name (System.String name); 
        Example: void set_Item (System.Object key, System.Object value); 

10.5  Exceptions 
The CLI supports an exception handling model, which is introduced in §12.4.2.  CLS-compliant frameworks 
can define and throw externally visible exceptions, but there are restrictions on the type of objects thrown: 

CLS Rule 40:  Objects that are thrown shall be of type System.Exception or a type inheriting from it. 
Nonetheless, CLS-compliant methods are not required to block the propagation of other types of exceptions. 

[Note: 

CLS (consumer): Need not support throwing or catching of objects that are not of the specified type. 

CLS (extender): Must support throwing of objects of type System.Exception or a type inheriting from it.  
Need not support the throwing of objects having other types. 

CLS (framework): Shall not publicly expose thrown objects that are not of type System.Exception or a type 
inheriting from it. end note] 

10.6  Custom attributes 
In order to allow languages to provide a consistent view of custom attributes across language boundaries, the 
Base Class Library provides support for the following rule defined by the CLS: 

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it.  
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[Note: 

CLS (consumer): Need not support attributes that are not of the specified type. 

CLS (extender): Must support the authoring of custom attributes. 

CLS (framework): Shall not publicly expose attributes that are not of type System.Attribute or a type 
inheriting from it. end note] 

The use of a particular attribute class can be restricted in various ways by placing an attribute on the attribute 
class. The System.AttributeUsageAttribute is used to specify these restrictions. The restrictions supported 
by the System.AttributeUsageAttribute are: 

• What kinds of constructs (types, methods, assemblies, etc.) can have the attribute applied to them. 
By default, instances of an attribute class can be applied to any construct. This is specified by 
setting the value of the ValidOn property of System.AttributeUsageAttribute. Several 
constructs can be combined. 

• Multiple instances of the attribute class can be applied to a given piece of metadata. By default, 
only one instance of any given attribute class can be applied to a single metadata item. The 
AllowMultiple property of the attribute is used to specify the desired value. 

• Do not inherit the attribute when applied to a type. By default, any attribute attached to a type 
should be inherited to types that derive from it. If multiple instances of the attribute class are 
allowed, the inheritance performs a union of the attributes inherited from the base class and those 
explicitly applied to the derived class type. If multiple instances are not allowed, then an attribute 
of that type applied directly to the derived class overrides the attribute supplied by the base class. 
This is specified by setting the Inherited property of System.AttributeUsageAttribute to the 
desired value. 

[Note: Since these are CLS rules and not part of the CTS itself, tools are required to specify explicitly the 
custom attributes they intend to apply to any given metadata item.  That is, compilers or other tools that 
generate metadata must implement the AllowMultiple and Inherit rules.  The CLI does not supply attributes 
automatically. The usage of attributes in the CLI is further described in Partition II. end note] 

10.7  Generic types and methods 
The following subclauses describe the CLS rules for generic types and methods. 

10.7 .1  Nested type parameter re-declaration 

Any type exposed by a CLS-compliant framework, that is nested in a generic type, itself declares, by position, 
all the generic parameters of that enclosing type. (The nested type can also introduce new generic parameters.) 
As such, any CLS-compliant type nested inside a generic type is itself generic. Such redeclared generic 
parameters shall precede any newly introduced generic parameters. [Example: Consider the following C# 
source code: 

public class A<T> { 
  public class B {} 
  public class C<U,V> { 
    public class D<W> {} 
  } 
} 
public class X { 
  public class Y<T> {} 
} 

The relevant corresponding ILAsm code is: 
.class … A`1<T> … {    // T is introduced 
  .class … nested … B<T> … { }  // T is redeclared 
  .class … nested … C`2<T,U,V> … {  // T is redeclared; U and V are introduced 
    .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced 
  } 
} 
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.class … X … { 
  .class … nested Y`1<T> … { }  // Nothing is redeclared; T is introduced 
} 

As generic parameter re-declaration is based on parameter position matching, not on parameter name matching, 
the name of a redeclared generic parameter need not be the same as the one it re-declares. For example: 
.class … A`1<T> … {    // T is introduced 
  .class … nested … B<Q> … { }   // T is redeclared (as Q) 
  .class … nested … C`2<T1,U,V> … {  // T is redeclared (as T1); U and V 
       // are introduced 
    .class … nested … D`1<R1,R2,R3,W> … { } // T1, U, and V are redeclared (as R1, R2, 
       // and R3); W is introduced 
  } 
} 

A CLS-compliant Framework should therefore expose the following types: 

Lexical Name Total Generic 
Parameters 

Redeclared Generic 
Parameters 

Introduced Generic 
Parameters 

A<T> 1 (T) 0 1 T 

A<T>.B 1 (T) 1 T 0 

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V 

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W 

X  0 0 0 

A.Y<T> 1 (T) 0 1 T 

end example] 

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type. Generic 
parameters in a nested type correspond by position to the generic parameters in its enclosing type. 

[Note: 

CLS (consumer): Need not consume types that violate this rule. 

CLS (extender): Same as consumers. Extenders choosing to support definition of types nested in generic types 
shall follow this rule for externally visible types. 

CLS (framework):  Shall not expose types that violate this rule. end note] 

10.7 .2  Type names and arity encoding 

CLS-compliant generic type names are encoded using the format “name[`arity]” , where […] indicates that the 
grave accent character “`” and arity together are optional. The encoded name shall follow these rules: 

1. name shall be an ID (see Partition II) that does not contain the “`” character. 

2. arity is specified as an unsigned decimal number without leading zeros or spaces. 

3. For a normal generic type, arity is the number of type parameters declared on the type. 

4. For a nested generic type, arity is the number of newly introduced type parameters. 

[Example: Consider the following C# source code: 
public class A<T> { 
  public class B {} 
  public class C<U,V> { 
    public class D<W> {} 
  } 
} 

public class X { 
  public class Y<T> {} 
} 

The relevant corresponding ILAsm code is: 
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.class … A`1<T> … {    // T is introduced 
  .class … nested … B<T> … { }  // T is redeclared 
  .class … nested … C`2<T,U,V> … {  // T is redeclared; U and V are introduced 
    .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced 
  } 
} 

.class … X … { 
  .class … nested Y`1<T> … { }  // Nothing is redeclared; T is introduced 
} 

A CLS-compliant Framework should expose the following types:  

Lexical Name Total Generic 
Parameters 

Redeclared Generic 
Parameters 

Introduced 
Generic 
Parameters 

Metadata 
Encoding 

A<T> 1 (T) 0 1 T A`1 

A<T>.B 1 (T) 1 T 0 B 

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V C`2 

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W D`1 

X  0 0 0 X 

A.Y<T> 1 (T) 0 1 T Y`1 

 

While a type name encoded in metadata does not explicitly mention its enclosing type, the CIL and Reflection 
type name grammars do include this detail: 

Lexical Name Metadata 
Encoding 

CIL Reflection 

A<T> A`1 A`1 A`1[T] 

A<T>.B B A`1/B A`1+B[T] 

A<T>.C<U,V> C`2 A`1/C`2 A`1+C`2[T,U,V] 

A<T>.C<U,V>.D<W> D`1 A`1/C`2/D`1 A`1+C`2+D`1[T,U,V,W] 

X  X X X 

A.Y<T> Y`1 X/Y`1 X+Y`1[T] 

end example] 

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the non-
nested type, or newly introduced to the type if nested, according to the rules defined above. 

[Note: 

CLS (consumer): Need not consume types that violate this rule.  

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow 
this rule for externally visible types. 

CLS (framework):  Shall not expose types that violate this rule. end note] 

10.7 .3  Type constraint  re-declarat ion 

CLS Frameworks shall ensure that a generic type explicitly re-declares any constraints present on generic 
parameters in its base class and all implemented interfaces. Put another way, CLS Extenders and Consumers 
should be able to examine just the specific type in question, to determine the set of constraints that need to be 
satisfied. 

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on the base 
type, or interfaces would be satisfied by the generic type constraints. 
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[Note: 

CLS (consumer):  Need not consume types that violate this rule. Consumers who check constraints need only 
look at the type being instantiated to determine the applicable constraints. 

CLS (extender): Same as consumers.  Extenders choosing to support definition of generic types shall follow 
this rule. 

CLS (framework):  Shall not expose types that violate this rule. end note] 

10.7 .4  Constraint  type restrict ions 

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant. 

[Note: 

CLS (consumer): Need not consume types that violate this rule. 

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow 
this rule when checking for CLS compliance, and need not provide syntax to violate this rule. 

CLS (framework): Shall not expose types that violate this rule. end note] 

10.7 .5  Frameworks and accessibi l ity  of  nested types 

CLI generics treat the generic type declaration and all instantiations of that generic type as having the same 
accessibility scope. However, language accessibility rules may differ in this regard, with some choosing to 
follow the CLI accessibility model, while others use a more restrictive, per-instantiation model. To enable 
consumption by all CLR languages, CLS frameworks shall be designed with a conservative per-instantiation 
model of accessibility in mind, and not expose nested types or require access to protected members based on 
specific, alternate instantiations of a generic type.  

This has implications for signatures containing nested types with family accessibility. Open generic types shall 
not expose fields or members with signatures containing a specific instantiation of a nested generic type with 
family accessibility. Non-generic types extending a specific instantiation of a generic base class or interface, 
shall not expose fields or members with signatures containing a different instantiation of a nested generic type 
with family accessibility. [Example: Consider the following C# source code: 

public class C<T> { 
  protected class N {…} 
  protected void M1(C<int>.N n) {…} // Not CLS-compliant - C<int>.N not  
     // accessible from within C<T> in all languages 
  protected void M2(C<T>.N n) {…} // CLS-compliant – C<T>.N accessible inside C<T> 
} 

public class D : C<long> { 
  protected void M3(C<int>.N n) {…} // Not CLS-compliant – C<int>.N is not 
      // accessible in D (extends C<long>) 
  protected void M4(C<long>.N n) {…} // CLS-compliant, C<long>.N is 
     // accessible in D (extends C<long>) 
} 

The relevant corresponding ILASM code is: 
.class public … C`1<T> … { 
  .class … nested … N<T> … {} 
  .method family hidebysig instance void  M1(class C`1/N<int32> n) … {} 
  // Not CLS-compliant - C<int>.N is not accessible from within C<T> in all languages 
 
  .method family hidebysig instance void  M2(class C`1/N<!0> n) … {} 
  // CLS-compliant – C<T>.N is accessible inside C<T> 
} 

.class public … D extends class C`1<int64> { 
  .method family hidebysig instance void  M3(class C`1/N<int32> n) … {} 
  // Not CLS-compliant – C<int>.N is not accessible in D (extends C<long>) 
 
  .method family hidebysig instance void  M4(class C`1/N<int64> n) … {} 
  // CLS-compliant, C<long>.N is accessible in D (extends C<long>) 
} 
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end example] 

CLS Rule 46:  The visibility and accessibility of members (including nested types) in an instantiated generic 
type shall be considered to be scoped to the specific instantiation rather than the generic type declaration as a 
whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply. 

[Note: 

CLS (consumer): Need not consume types that violate this rule. 

CLS (extender): Shall use this more restrictive notion of accessibility when determining CLS compliance. 

CLS (framework): Shall not expose members that violate this rule. end note] 

10.7 .6  Frameworks and abstract  or virtual methods 

CLS Frameworks shall not expose libraries that require CLS Extenders to override or implement generic 
methods to use the framework. This does not imply that virtual or abstract generic methods are non-compliant; 
rather, the framework shall also provide concrete implementations with appropriate default behavior. 

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non-abstract) 
implementation. 

[Note: 

CLS (consumer): No impact.  

CLS (extender): Need not provide syntax for overriding generic methods. 

CLS (framework):  Shall not expose generic methods that violate this rule without also providing appropriate 
concrete implementations. end note] 
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11 Collected Common Language Specification rules 
The complete set of CLS rules are collected here for reference. Recall that these rules apply only to “externally 
visible” items—types that are visible outside of their own assembly and members of those types that have 
public, family, or family-or-assembly accessibility. Furthermore, items can be explicitly marked as CLS-
compliant or not using the System.CLSCompliantAttribute.  The CLS rules apply only to items that are 
marked as CLS-compliant. 

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the 
defining assembly. (§7.3) 

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant. (§7.3.1) 

CLS Rule 3: Boxed value types are not CLS-compliant. (§8.2.4.) 

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 
governing the set of characters permitted to start and be included in identifiers, available on-line at 
http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format 
defined by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their 
lowercase mappings (as specified by the Unicode locale-insensitive, one-to-one lowercase mappings) 
are the same.  That is, for two identifiers to be considered different under the CLS they shall differ in 
more than simply their case. However, in order to override an inherited definition the CLI requires the 
precise encoding of the original declaration be used. (§8.5.1) 

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind, 
except where the names are identical and resolved via overloading.  That is, while the CTS allows a 
single type to use the same name for a method and a field, the CLS does not. (§8.5.2) 

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the 
CTS allows distinct signatures to be distinguished.  Methods, properties, and events that have the same 
name (by identifier comparison) shall differ by more than just the return type, except as specified in 
CLS Rule 39. (§8.5.2) 

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field 
shall be "value__", and that field shall be marked RTSpecialName. (§8.5.2) 

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the 
System.FlagsAttribute (see Partition IV) custom attribute.  One represents named integer values; the 
other represents named bit flags that can be combined to generate an unnamed value.  The value of an 
enum is not limited to the specified values. (§8.5.2) 

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself. (§8.5.2) 

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when 
overriding a method inherited from a different assembly with accessibility family-or-assembly.  In this 
case, the override shall have accessibility family. (§8.5.3.2) 

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an 
instantiated generic type shall be CLS-compliant. (§8.6.1) 

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the 
signature of any member shall be visible and accessible whenever the member itself is visible and 
accessible.  For example, a public method that is visible outside its assembly shall not have an 
argument whose type is visible only within the assembly. The visibility and accessibility of types 
composing an instantiated generic type used in the signature of any member shall be visible and 
accessible whenever the member itself is visible and accessible. For example, an instantiated generic 
type present in the signature of a member that is visible outside its assembly shall not have a generic 
argument whose type is visible only within the assembly. (§8.6.1) 

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata 
(see Partition II). A CLS-compliant literal must have a value specified in field initialization metadata 
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that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum). 
(§8.6.1.2) 

CLS Rule 14: Typed references are not CLS-compliant. (§8.6.1.3) 

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported 
by the CLS is the standard managed calling convention. (§8.6.1.5) 

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array 
shall have lower bounds of zero. Only the fact that an item is an array and the element type of the array 
shall be required to distinguish between overloads.  When overloading is based on two or more array 
types the element types shall be named types. (§8.9.1) 

CLS Rule 17: Unmanaged pointer types are not CLS-compliant. (§8.9.2) 

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods 
in order to implement them. (§8.9.4) 

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields. 
(§8.9.4) 

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation 
of non-CLS-compliant members. (§8.9.6.4) 

CLS Rule 21: An object constructor shall call some class constructor of its base class before any access 
occurs to inherited instance data. (This does not apply to value types, which need not have 
constructors.) (§8.9.6.6) 

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and 
an object shall not be initialized twice. (§8.9.6.6) 

CLS Rule 23:  System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a 
CLS-compliant class. (§8.9.9) 

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be 
marked SpecialName in the metadata. (§8.11.3) 

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated “The 
accessibility of a property’s accessors shall be identical.” However, that rule was removed. end note] 
(§8.11.3) 

CLS Rule 26: A property’s accessors shall all be static, all be virtual, or all be instance. (§8.11.3) 

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last 
argument of the setter.  The types of the parameters of the property shall be the types of the parameters 
to the getter and the types of all but the final parameter of the setter.  All of these types shall be CLS-
compliant, and shall not be managed pointers (i.e., shall not be passed by reference). (§8.11.3) 

CLS Rule 28: Properties shall adhere to a specific naming pattern.  See §10.4.  The SpecialName 
attribute referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere 
to identifier rules. A property shall have a getter method, a setter method, or both. (§8.11.3) 

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata. 
(§8.11.4) 

CLS Rule 30: The accessibility of an event and of its accessors shall be identical. (§8.11.4) 

CLS Rule 31: The add and remove methods for an event shall both either be present or absent. 
(§8.11.4) 

CLS Rule 32:  The add and remove methods for an event shall each take one parameter whose type 
defines the type of the event and that shall be derived from System.Delegate. (§8.11.4) 

CLS Rule 33: Events shall adhere to a specific naming pattern.  See §10.4. The SpecialName attribute 
referred to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to 
identifier rules. (§8.11.4) 
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CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes.  The only types that 
shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char, 
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single, 

System.Double, and any enumeration type based on a CLS-compliant base integer type. (§9.7) 

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II), 
but does allow optional modifiers (modopt, see Partition II) it does not understand. (§9.7) 

CLS Rule 36: Global static fields and methods are not CLS-compliant. (§9.8) 

CLS Rule 37: Only properties and methods can be overloaded. (§10.2) 

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their 
parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be 
overloaded based on their return type. (§10.2) 

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the 
coercion shall be provided. (§10.3.3) 

CLS Rule 40:  Objects that are thrown shall be of type System.Exception or a type inheriting from it. 
Nonetheless, CLS-compliant methods are not required to block the propagation of other types of 
exceptions. (§10.5) 

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it. (§10.6) 

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type. 
Generic parameters in a nested type correspond by position to the generic parameters in its enclosing 
type. (§10.7.1) 

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the 
non-nested type, or newly introduced to the type if nested, according to the rules defined above. 
(§10.7.2) 

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on 
the base type, or interfaces would be satisfied by the generic type constraints. (§10.7.3) 

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant. 
(§10.7.4) 

CLS Rule 46:  The visibility and accessibility of members (including nested types) in an instantiated 
generic type shall be considered to be scoped to the specific instantiation rather than the generic type 
declaration as a whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply. 
(§10.7.5) 

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non-
abstract) implementation. (§10.7.6) 

CLS Rule 48: If two or more CLS-compliant methods declared in a type have the same name and, for a 
specific set of type instantiations, they have the same parameter and return types, then all these methods 
shall be semantically equivalent at those type instantiations. (§7.2.1) 
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12 Virtual Execution System 
The Virtual Execution System (VES) provides an environment for executing managed code. It provides direct 
support for a set of built-in data types, defines a hypothetical machine with an associated machine model and 
state, a set of control flow constructs, and an exception handling model. To a large extent, the purpose of the 
VES is to provide the support required to execute the CIL instruction set (see Partition III). 

12.1  Supported data types 
The CLI directly supports the data types shown in Table 6: Data Types Directly Supported by the CLI. That is, 
these data types can be manipulated using the CIL instruction set (see Partition III). 

Table 6: Data Types Directly Supported by the CLI 

Data Type Description 
int8 8-bit two’s-complement signed value  
unsigned int8 8-bit unsigned binary value  
int16 16-bit two’s-complement signed value   
unsigned int16 16-bit unsigned binary value  
int32 32-bit two’s-complement signed value  
unsigned int32 32-bit unsigned binary value 
int64 64-bit two’s-complement signed value  
unsigned int64 64-bit unsigned binary value 
float32 32-bit IEC 60559:1989 floating-point value 
float64 64-bit IEC 60559:1989 floating-point value 
native int native size two’s-complement signed value 
native unsigned int native size unsigned binary value, also unmanaged pointer 
F native size floating-point number (internal to VES, not user visible) 
O native size object reference to managed memory 
& native size managed pointer (can point into managed memory) 
 

The CLI model uses an evaluation stack. Instructions that copy values from memory to the evaluation stack are 
“loads”; instructions that copy values from the stack back to memory are “stores”. The full set of data types in 
Table 6: Data Types Directly Supported by the CLI can be represented in memory. However, the CLI supports 
only a subset of these types in its operations upon values stored on its evaluation stack—int32, int64, and 
native int. In addition, the CLI supports an internal data type to represent floating-point values on the internal 
evaluation stack. The size of the internal data type is implementation-dependent.  For further information on the 
treatment of floating-point values on the evaluation stack, see §12.1.3 and Partition III.  Short numeric values 
(int8, int16, unsigned int8, and unsigned int16) are widened when loaded and narrowed when stored. This 
reflects a computer model that assumes, for numeric and object references, memory cells are 1, 2, 4, or 8 bytes 
wide, but stack locations are either 4 or 8 bytes wide. User-defined value types can appear in memory locations 
or on the stack and have no size limitation; the only built-in operations on them are those that compute their 
address and copy them between the stack and memory. 

The only CIL instructions with special support for short numeric values (rather than support for simply the 4- 
or 8-byte integral values) are: 

• Load and store instructions to/from memory: ldelem, ldind, stelem, stind 

• Data conversion: conv, conv.ovf 
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• Array creation: newarr 

The signed integer types (int8, int16, int32, int64, and native int) and their corresponding unsigned 
integer types (unsigned int8, unsigned int16, unsigned int32, unsigned int64, and native unsigned 
int) differ only in how the bits of the integer are interpreted. For those operations in which an unsigned integer 
is treated differently from a signed integer (e.g., in comparisons or arithmetic with overflow) there are separate 
instructions for treating an integer as unsigned (e.g., cgt.un and add.ovf.un). 

This instruction set design simplifies CIL-to-native code (e.g., JIT) compilers and interpreters of CIL by 
allowing them to internally track a smaller number of data types. See §12.3.2.1. 

As described below, CIL instructions do not specify their operand types. Instead, the CLI keeps track of 
operand types based on data flow and aided by a stack consistency requirement described below. For example, 
the single add instruction will add two integers or two floats from the stack. 

12.1 .1  Native s ize:  nat ive int ,  native unsigned int ,  O and & 

The native-size types (native int, native unsigned int, O, and &) are a mechanism in the CLI for deferring 
the choice of a value’s size. These data types exist as CIL types; however, the CLI maps each to the native size 
for a specific processor. (For example, data type I would map to int32 on a Pentium processor, but to int64 on 
an IA64 processor.) So, the choice of size is deferred until JIT compilation or runtime, when the CLI has been 
initialized and the architecture is known. This implies that field and stack frame offsets are also not known at 
compile time. For languages like Visual Basic, where field offsets are not computed early anyway, this is not a 
hardship. In languages like C or C++, where sizes must be known when source code is compiled, a 
conservative assumption that they occupy 8 bytes is sometimes acceptable (for example, when laying out 
compile-time storage).  

12.1 .1.1  Unmanaged pointers as type nat ive unsigned int  

[Rationale: For languages like C, when compiling all the way to native code, where the size of a pointer is 
known at compile time and there are no managed objects, the fixed-size unsigned integer types (unsigned 
int32 or unsigned int64) can serve as pointers.  However choosing pointer size at compile time has its 
disadvantages.  If pointers were chosen to be 32- bit quantities at compile time, the code would be restricted to 
4 gigabytes of address space, even if it were run on a 64-bit machine.  Moreover, a 64-bit CLI would need to 
take special care so those pointers passed back to 32-bit code would always fit in 32 bits.  If pointers were 
chosen at compile time to be 64 bits, the code would run on a 32-bit machine, but pointers in every data 
structure would be twice as large as necessary on that CLI.   

For other languages, where the size of a data type need not be known at compile time, it is desirable to defer the 
choice of pointer size from compile time to CLI initialization time.  In that way, the same CIL code can handle 
large address spaces for those applications that need them, while also being able to reap the size benefit of 32-
bit pointers for those applications that do not need a large address space. end rationale] 

The native unsigned int type is used to represent unmanaged pointers with the VES. The metadata allows 
unmanaged pointers to be represented in a strongly typed manner, but these types are translated into type 
native unsigned int for use by the VES. 

12.1 .1.2  Managed pointer types:  O and & 

The O data type represents an object reference that is managed by the CLI. As such, the number of specified 
operations is severely limited. In particular, references shall only be used on operations that indicate that they 
operate on reference types (e.g., ceq and ldind.ref), or on operations whose metadata indicates that references 
are allowed (e.g., call, ldsfld, and stfld). 

The & data type (managed pointer) is similar to the O type, but points to the interior of an object. That is, a 
managed pointer is allowed to point to a field within an object or an element within an array, rather than to 
point to the ‘start’ of object or array.  

Object references (O) and managed pointers (&) can be changed during garbage collection, since the data to 
which they refer might be moved. 
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[Note: In summary, object references, or O types, refer to the ‘outside’ of an object, or to an object as-a-whole.  
But managed pointers, or & types, refer to the interior of an object.  The & types are sometimes called “byref 
types” in source languages, since passing a field of an object by reference is represented in the VES by using an 
& type to represent the type of the parameter. end note] 

In order to allow managed pointers to be used more flexibly, they are also permitted to point to areas that aren’t 
under the control of the CLI garbage collector, such as the evaluation stack, static variables, and unmanaged 
memory. This allows them to be used in many of the same ways that unmanaged pointers (U) are used. 
Verification restrictions guarantee that, if all code is verifiable, a managed pointer to a value on the evaluation 
stack doesn’t outlast the life of the location to which it points. 

12.1 .1.3  Portabil i ty:  storing pointers  in memory 

Several instructions, including calli, cpblk, initblk, ldind.*, and stind.*, expect an address on the top of the 
stack. If this address is derived from a pointer stored in memory, there is an important portability consideration.  

1. Code that stores pointers in a native-sized integer or pointer location (types native int, O, 
native unsigned int, or &) is always fully portable.  

2. Code that stores pointers in an 8-byte integer (type int64 or unsigned int64) can be portable.  
But this requires that a conv.ovf.un instruction be used to convert the pointer from its memory 
format before its use as a pointer. This might cause a runtime exception if run on a 32-bit 
machine.   

3. Code that uses any smaller integer type to store a pointer in memory (int8, unsigned int8, 
int16, unsigned int16, int32, unsigned int32) is never portable, even though the use of an 
unsigned int32 or int32 will work correctly on a 32-bit machine. 

12.1 .2  Handling of  short  integer data types 

The CLI defines an evaluation stack that contains either 4-byte or 8-byte integers; however, it also has a 
memory model that encompasses 1- and 2-byte integers. To be more precise, the following rules are part of the 
CLI model: 

• Loading from 1- or 2-byte locations (arguments, locals, fields, statics, pointers) expands to 4-byte 
values.  For locations with a known type (e.g., local variables) the type being accessed determines 
whether the load sign-extends (signed locations) or zero-extends (unsigned locations).    For 
pointer dereference (ldind.*), the instruction itself identifies the type of the location (e.g., 
ldind.u1 indicates an unsigned location, while ldind.i1 indicates a signed location). 

• Storing into a 1- or 2-byte location truncates to fit and will not generate an overflow error.  
Specific instructions (conv.ovf.*) can be used to test for overflow before storing. 

• Calling a method assigns values from the evaluation stack to the arguments for the method, hence 
it truncates just as any other store would when the argument is larger than the parameter. 

• Returning from a method assigns a value to an invisible return variable, so it also truncates as a 
store would when the type of the value returned is larger than the return type of the method.  
Since the value of this return variable is then placed on the evaluation stack, it is then sign-
extended or zero-extended as would any other load.  Note that this truncation followed by 
extending is not identical to simply leaving the computed value unchanged. 

It is the responsibility of any translator from CIL to native machine instructions to make sure that these rules 
are faithfully modeled through the native conventions of the target machine. The CLI does not specify, for 
example, whether truncation of short integer arguments occurs at the call site or in the target method. 

12.1 .3  Handling of  f loat ing-point  data  types  

Floating-point calculations shall be handled as described in IEC 60559:1989. This standard describes encoding 
of floating-point numbers, definitions of the basic operations and conversion, rounding control, and exception 
handling.  
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The standard defines special values, NaN, (not a number), +infinity, and –infinity. These values are returned 
on overflow conditions. A general principle is that operations that have a value in the limit return an 
appropriate infinity while those that have no limiting value return NaN (see the standard for details).  

[Note: The following examples show the most commonly encountered cases. 
X rem 0 = NaN  
0 *  +infinity = 0 * -infinity = NaN 
(X / 0) = +infinity, if X > 0 
  NaN, if X = 0 
  infinity, if X < 0 
NaN op X = X op NaN = NaN for all operations 
(+infinity) + (+infinity) =  (+infinity) 
X / (+infinity) = 0 
X mod (-infinity) = -X 
(+infinity) - (+infinity) =  NaN 

This standard does not specify the behavior of arithmetic operations on denormalized floating-point numbers, 
nor does it specify when or whether such representations should be created.  This is in keeping with IEC 
60559:1989.  In addition, this standard does not specify how to access the exact bit pattern of NaNs that are 
created, nor the behavior when converting a NaN between 32-bit and 64-bit representation.  All of this behavior 
is deliberately left implementation-specific. end note] 

For purposes of comparison, infinite values act like a number of the correct sign, but with a very large 
magnitude when compared with finite values. For comparison purposes, NaN is ‘unordered’ (see clt, clt.un).  

While the IEC 60559:1989 standard also allows for exceptions to be thrown under unusual conditions (such as 
overflow and invalid operand), the CLI does not generate these exceptions. Instead, the CLI uses the NaN, 
+infinity, and –infinity return values and provides the instruction ckfinite to allow users to generate an 
exception if a result is NaN, +infinity, or –infinity. 

The rounding mode defined in IEC 60559:1989 shall be set by the CLI to “round to the nearest number,” and 
neither the CIL nor the class library provide a mechanism for modifying this setting. Conforming 
implementations of the CLI need not be resilient to external interference with this setting. That is, they need not 
restore the mode prior to performing floating-point operations, but rather, can rely on it having been set as part 
of their initialization. 

For conversion to integers, the default operation supplied by the CIL is “truncate towards zero”. Class libraries 
are supplied to allow floating-point numbers to be converted to integers using any of the other three traditional 
operations (round to nearest integer, floor (truncate towards –infinity), ceiling (truncate towards +infinity)). 

Storage locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. The 
supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, as arguments, as 
return types, and as local variables) floating-point numbers are represented using an internal floating-point 
type. In each such instance, the nominal type of the variable or expression is either R4 or R8, but its value can 
be represented internally with additional range and/or precision.  The size of the internal floating-point 
representation is implementation-dependent, can vary, and shall have precision at least as great as that of the 
variable or expression being represented. An implicit widening conversion to the internal representation from 
float32 or float64 is performed when those types are loaded from storage. The internal representation is 
typically the native size for the hardware, or as required for efficient implementation of an operation.  The 
internal representation shall have the following characteristics: 

• The internal representation shall have precision and range greater than or equal to the nominal 
type. 

• Conversions to and from the internal representation shall preserve value. 

[Note: This implies that an implicit widening conversion from float32 (or float64) to the internal 
representation, followed by an explicit conversion from the internal representation to float32 (or float64), 
will result in a value that is identical to the original float32 (or float64) value. end note] 

[Rationale: This design allows the CLI to choose a platform-specific high-performance representation for 
floating-point numbers until they are placed in storage locations.  For example, it might be able to leave 
floating-point variables in hardware registers that provide more precision than a user has requested.  At the 
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same time, CIL generators can force operations to respect language-specific rules for representations through 
the use of conversion instructions. end rationale] 

When a floating-point value whose internal representation has greater range and/or precision than its nominal 
type is put in a storage location, it is automatically coerced to the type of the storage location.  This can involve 
a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value 
might be retained in the internal representation for future use, if it is reloaded from the storage location without 
having been modified.  It is the responsibility of the compiler to ensure that the retained value is still valid at 
the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see 
memory model section).  This freedom to carry extra precision is not permitted, however, following the 
execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be 
exactly representable in the associated type. 

[Note: To detect values that cannot be converted to a particular storage type, a conversion instruction (conv.r4, 
or conv.r8) can be used, followed by a check for a non-finite value using ckfinite. Underflow can be detected  
by converting to a particular storage type, comparing to zero before and after the conversion. end note] 

[Note: The use of an internal representation that is wider than float32 or float64 can cause differences in 
computational results when a developer makes seemingly unrelated modifications to their code, the result of 
which can be that a value is spilled from the internal representation (e.g., in a register) to a location on the 
stack. end note] 

12.1 .4  CIL instruct ions and numeric types  

This subclause contains only informative text  
Most CIL instructions that deal with numbers take their operands from the evaluation stack (see §12.3.2.1), and 
these inputs have an associated type that is known to the VES. As a result, a single operation like add can have 
inputs of any numeric data type, although not all instructions can deal with all combinations of operand types. 
Binary operations other than addition and subtraction require that both operands be of the same type. Addition 
and subtraction allow an integer to be added to or subtracted from a managed pointer (types & and O). Details 
are specified in Partition II. 

Instructions fall into the following categories: 

Numeric: These instructions deal with both integers and floating point numbers, and consider integers to be 
signed. Simple arithmetic, conditional branch, and comparison instructions fit in this category.  

Integer: These instructions deal only with integers. Bit operations and unsigned integer division/remainder fit 
in this category. 

Floating-point: These instructions deal only with floating-point numbers. 

Specific: These instructions deal with integer and/or floating-point numbers, but have variants that deal 
specially with different sizes and unsigned integers. Integer operations with overflow detection, data conversion 
instructions, and operations that transfer data between the evaluation stack and other parts of memory 
(see §12.3.2) fit into this category. 

Unsigned/unordered: There are special comparison and branch instructions that treat integers as unsigned and 
consider unordered floating-point numbers specially (as in “branch if greater than or unordered”): 

Load constant: The load constant (ldc.*) instructions are used to load constants of type int32, int64, 
float32, or float64. Native size constants (type native int) shall be created by conversion from int32 
(conversion from int64 would not be portable) using conv.i or conv.u. 

Table 7: CIL Instructions by Numeric Category shows the CIL instructions that deal with numeric values, 
along with the category to which they belong. Instructions that end in “.*” indicate all variants of the 
instruction (based on size of data and whether the data is treated as signed or unsigned). 

Table 7: CIL Instructions by Numeric Category 

add Numeric  div Numeric 
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add.ovf.* Specific   div.un Integer  

and Integer  ldc.* Load constant 

beq[.s] Numeric  ldelem. * Specific 

bge[.s] Numeric  ldind.* Specific 

bge.un[.s] Unsigned/unordered  mul Numeric 

bgt[.s] Numeric  mul.ovf.* Specific 

bgt.un[.s] Unsigned/unordered  neg Integer 

ble[.s] Numeric  newarr.* Specific 

ble.un[.s] Unsigned/unordered  not Integer 

blt[.s] Numeric  or Integer 

blt.un[.s] Unsigned/unordered  rem Numeric 

bne.un[.s] Unsigned/unordered  rem.un Integer  

ceq Numeric  shl Integer 

cgt Numeric  shr Integer 

cgt.un Unsigned/unordered  shr.un Specific 

ckfinite Floating point  stelem.* Specific 

clt Numeric  stind.* Specific 

clt.un Unsigned/unordered  sub Numeric 

conv.* Specific   sub.ovf.* Specific 

conv.ovf.* Specific  xor Integer 
 

End informative text  

12.1 .5  CIL instruct ions and pointer types 

This subclause contains only informative text 
[Rationale: Some implementations of the CLI will require the ability to track pointers to objects and to collect 
objects that are no longer reachable (thus providing memory management by “garbage collection”).  This 
process moves objects in order to reduce the working set and thus will modify all pointers to those objects as 
they move.  For this to work correctly, pointers to objects can only be used in certain ways.  The O (object 
reference) and & (managed pointer) data types are the formalization of these restrictions. end rationale] 

The use of object references is tightly restricted in the CIL. They are used almost exclusively with the “virtual 
object system” instructions, which are specifically designed to deal with objects. In addition, a few of the base 
instructions of the CIL handle object references. In particular, object references can be: 

1. Loaded onto the evaluation stack to be passed as arguments to methods (ldloc, ldarg), and stored 
from the stack to their home locations (stloc, starg) 

2. Duplicated or popped off the evaluation stack (dup, pop) 

3. Tested for equality with one another, but not other data types (beq, beq.s, bne, bne.s, ceq) 

4. Loaded-from / stored-into unmanaged memory, in type unmanaged code only (ldind.ref, 
stind.ref) 

5. Created as a null reference (ldnull) 
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6. Returned as a value (ret) 

Managed pointers have several additional base operations.  

1. Addition and subtraction of integers, in units of bytes, returning a managed pointer (add, 
add.ovf.u, sub, sub.ovf.u) 

2. Subtraction of two managed pointers to elements of the same array, returning the number of bytes 
between them (sub, sub.ovf.u) 

3. Unsigned comparison and conditional branches based on two managed pointers (bge.un, 
bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s, cgt.un, clt.un) 

Arithmetic operations upon managed pointers are intended only for use on pointers to elements of the same 
array. If other uses of arithmetic on managed pointers are made, the behavior is unspecified. 

[Rationale: Since the memory manager runs asynchronously with respect to programs and updates managed 
pointers, both the distance between distinct objects and their relative position can change. end rationale] 

End informative text 

12.1 .6  Aggregate data 

This subclause contains only informative text 
The CLI supports aggregate data, that is, data items that have sub-components (arrays, structures, or object 
instances) but are passed by copying the value. The sub-components can include references to managed 
memory. Aggregate data is represented using a value type, which can be instantiated in two different ways:  

• Boxed: as an object, carrying full type information at runtime, and typically allocated on the heap 
by the CLI memory manager. 

• Unboxed: as a “value type instance” that does not carry type information at runtime and that is 
never allocated directly on the heap.  It can be part of a larger structure on the heap – a field of a 
class, a field of a boxed value type, or an element of an array.  Or it can be in the local variables 
or incoming arguments array (see §12.3.2).  Or it can be allocated as a static variable or static 
member of a class or a static member of another value type. 

Because value type instances, specified as method arguments, are copied on method call, they do not have 
“identity” in the sense that objects (boxed instances of classes) have.  

12.1 .6.1  Homes for values  

The home  of a data value is where it is stored for possible reuse. The CLI directly supports the following home 
locations: 

• An incoming argument 

• A local variable of a method 

• An instance field of an object or value type 

• A static field of a class, interface, or module 

• An array element 

For each home location, there is a means to compute (at runtime) the address of the home location and a means 
to determine (at JIT compile time) the type of a home location. These are summarized in Table 8: Address and 
Type of Home Locations. 

Table 8: Address and Type of Home Locations 

Type of Home  Runtime Address Computation JIT-time Type Determination 
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Argument ldarga for by-value arguments or ldarg for 
byref arguments 

Method signature 

Local Variable ldloca for by-value locals or ldloc for byref 
locals 

Locals signature in method 
header 

Field ldflda Type of field in the class, 
interface, or module 

Static ldsflda Type of field in the class, 
interface, or module 

Array Element ldelema for single-dimensional zero-based 
arrays or call the instance method Address 

Element type of array 

 

In addition to homes, built-in values can exist in two additional ways (i.e., without homes):  

1. as constant values (typically embedded in the CIL instruction stream using ldc.* instructions) 

2. as an intermediate value on the evaluation stack, when returned by a method or CIL instruction. 

12.1 .6.2  Operations on value type instances 

Value type instances can be created, passed as arguments, returned as values, and stored into and extracted 
from locals, fields, and elements of arrays (i.e., copied). Like classes, value types can have both static and non-
static members (methods and fields). But, because they carry no type information at runtime, value type 
instances are not substitutable for items of type System.Object; in this respect, they act like the built-in types 
int32, int64, and so forth. There are two operations, box and unbox, that convert between value type instances 
and objects. 

12.1 .6.2.1  Init ia l iz ing instances of  value types 
There are three options for initializing the home of a value type instance. You can zero it by loading the address 
of the home (see Table 8: Address and Type of Home Locations) and using the initobj instruction (for local 
variables this is also accomplished by setting the localsinit bit in the method’s header). You can call a user-
defined constructor by loading the address of the home (see Table 8: Address and Type of Home Locations) 
and then calling the constructor directly. Or you can copy an existing instance into the home, as described 
in §12.1.6.2.2. 

12.1 .6.2.2  Loading and storing instances of  value types 
There are two ways to load a value type onto the evaluation stack: 

• Directly load the value from a home that has the appropriate type, using an ldarg, ldloc, ldfld, or 
ldsfld instruction. 

• Compute the address of the value type, then use an ldobj instruction.  

Similarly, there are two ways to store a value type from the evaluation stack: 

• Directly store the value into a home of the appropriate type, using a starg, stloc, stfld, or stsfld 
instruction. 

• Compute the address of the value type, then use a stobj instruction. 

12.1 .6.2.3  Passing and returning value types 
Value types are treated just as any other value would be treated: 

• To pass a value type by value, simply load it onto the stack as you would any other argument: 
use ldloc, ldarg, etc., or call a method that returns a value type.  To access a value generic 
parameter that has been passed by value use the ldarga instruction to compute its address or the 
ldarg instruction to load the value onto the evaluation stack. 

• To pass a value type by reference, load the address of the value type as you normally would (see 
Table 8: Address and Type of Home Locations).  To access a value generic parameter that has 
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been passed by reference use the ldarg instruction to load the address of the value type and then 
the ldobj instruction to load the value type onto the evaluation stack. 

• To return a value type, just load the value onto an otherwise empty evaluation stack and then 
issue a ret instruction. 

12.1 .6.2.4  Call ing methods 
Static methods on value types are handled no differently from static methods on an ordinary class: use a call 
instruction with a metadata token specifying the value type as the class of the method. Non-static methods (i.e., 
instance and virtual methods) are supported on value types, but they are given special treatment. A non-static 
method on a reference type (rather than a value type) expects a this pointer that is an instance of that class. This 
makes sense for reference types, since they have identity and the this pointer represents that identity. Value 
types, however, have identity only when boxed. To address this issue, the this pointer on a non-static method of 
a value type is a byref parameter of the value type rather than an ordinary by-value parameter. 

A non-static method on a value type can be called in the following ways: 

• For unboxed instances of a value type, the exact type is known statically.  The call instruction can 
be used to invoke the function, passing as the first parameter (the this pointer) the address of the 
instance.  The metadata token used with the call instruction shall specify the value type itself as 
the class of the method. 

• Given a boxed instance of a value type, there are three cases to consider: 

o Instance or virtual methods introduced on the value type itself: unbox the instance and call 
the method directly using the value type as the class of the method. 

o Virtual methods inherited from a base class: use the callvirt instruction and specify the 
method on the System.Object, System.ValueType or System.Enum class as appropriate. 

o Virtual methods on interfaces implemented by the value type: use the callvirt instruction 
and specify the method on the interface type. 

12.1 .6.2.5  Boxing and unboxing 
Box and unbox are conceptually equivalent to (and can be seen in higher-level languages as) casting between a 
value type instance and System.Object. Because they change data representations, however, boxing and 
unboxing are like the widening and narrowing of various sizes of integers (the conv and conv.ovf instructions) 
rather than the casting of reference types (the isinst and castclass instructions). The box instruction is a 
widening (always type-safe) operation that converts a value type instance to System.Object by making a copy 
of the instance and embedding it in a newly allocated object. unbox is a narrowing (runtime exception can be 
generated) operation that converts a System.Object (whose exact type is a value type) to a value type instance. 
This is done by computing the address of the embedded value type instance without making a copy of the 
instance. 

12.1 .6.2.6  castclass  and is inst  on value types 
Casting to and from value type instances isn’t permitted (the equivalent operations are box and unbox). When 
boxed, however, it is possible to use the isinst instruction to see whether a value of type System.Object is the 
boxed representation of a particular class. 

12.1 .6.3  Opaque classes  

Some languages provide multi-byte data structures whose contents are manipulated directly by address 
arithmetic and indirection operations. To support this feature, the CLI allows value types to be created with a 
specified size but no information about their data members. Instances of these “opaque classes” are handled in 
precisely the same way as instances of any other class, but the ldfld, stfld, ldflda, ldsfld, and stsfld instructions 
shall not be used to access their contents. 

End informative text 
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12.2  Module information 
Partition II provides details of the CLI PE file format. The CLI relies on the following information about each 
method defined in a PE file: 

• The instructions composing the method body, including all exception handlers. 

• The signature of the method, which specifies the return type and the number, order, parameter 
passing convention, and built-in data type of each of the arguments.  It also specifies the native 
calling convention (this does not affect the CIL virtual calling convention, just the native code). 

• The exception handling array.  This array holds information delineating the ranges over which 
exceptions are filtered and caught.  See Partition II and §12.4.2. 

• The size of the evaluation stack that the method will require.   

• The size of the locals array that the method will require. 

• A “localsinit  flag” that indicates whether the local variables and memory pool should be 
initialized by the CLI (see also localloc). 

• Type of each local variable in the form of a signature of the local variable array (called the 
“locals signature”).  

In addition, the file format is capable of indicating the degree of portability of the file. There is one kind of 
restriction that can be described: 

• Restriction to a specific (32-bit) native size for integers. 

By stating which restrictions are placed on executing the code, the CLI class loader can prevent non-portable 
code from running on an architecture that it cannot support. 

12.3  Machine state 
One of the design goals of the CLI is to hide the details of a method call frame from the CIL code generator. 
This allows the CLI (and not the CIL code generator) to choose the most efficient calling convention and stack 
layout. To achieve this abstraction, the call frame is integrated into the CLI. The machine state definitions 
below reflect these design choices, where machine state consists primarily of global state and method state.  

12.3 .1  The global  s tate  

The CLI manages multiple concurrent threads of control (not necessarily the same as the threads provided by a 
host operating system), multiple managed heaps, and a shared memory address space. 

[Note: A thread of control can be thought of, somewhat simplistically, as a singly linked list of method states, 
where a new state is created and linked back to the current state by a method call instruction – the traditional 
model of a stack-based calling sequence. Notice that this model of the thread of control doesn’t correctly 
explain the operation of tail., jmp, or throw instructions. end note] 

Figure 2: Machine State Model illustrates the machine state model, which includes threads of control, method 
states, and multiple heaps in a shared address space. Method state, shown separately in Figure 3: Method State, 
is an abstraction of the stack frame. Arguments and local variables are part of the method state, but they can 
contain Object References that refer to data stored in any of the managed heaps. In general, arguments and 
local variables are only visible to the executing thread, while instance and static fields and array elements can 
be visible to multiple threads, and modification of such values is considered a side-effect. 
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Figure 2: Machine State Model 

 
Figure 3: Method State 

12.3 .2  Method state 

Method state describes the environment within which a method executes. (In conventional compiler 
terminology, it corresponds to a superset of the information captured in the “invocation stack frame”). The CLI 
method state consists of the following items: 

• An instruction pointer (IP) – This points to the next CIL instruction to be executed by the CLI in 
the present method.  
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• An evaluation stack – The stack is empty upon method entry.  Its contents are entirely local to the 
method and are preserved across call instructions (that’s to say, if this method calls another, once 
that other method returns, our evaluation stack contents are “still there”).  The evaluation stack is 
not addressable.  At all times it is possible to deduce which one of a reduced set of types is stored 
in any stack location at a specific point in the CIL instruction stream (see §12.3.2.1). 

• A local variable array (starting at index 0) – Values of local variables are preserved across calls 
(in the same sense  as for the evaluation stack).  A local variable can hold any data type.  
However, a particular slot shall be used in a type consistent way (where the type system is the one 
described in §12.3.2.1).  Local variables are initialized to 0 before entry if the localsinit  flag for 
the method is set (see §12.2).  The address of an individual local variable can be taken using the 
ldloca instruction.  

• An argument array – The values of the current method’s incoming arguments (starting at 
index 0).  These can be read and written by logical index.  The address of an argument can be 
taken using the ldarga instruction.  The address of an argument is also implicitly taken by the 
arglist instruction for use in conjunction with type-safe iteration through variable-length 
argument lists. 

• A methodInfo handle – This contains read-only information about the method.  In particular it 
holds the signature of the method, the types of its local variables, and data about its exception 
handlers. 

• A local memory pool – The CLI includes instructions for dynamic allocation of objects from the 
local memory pool (localloc).  Memory allocated in the local memory pool is addressable.  The 
memory allocated in the local memory pool is reclaimed upon method context termination.   

• A return state handle – This handle is used to restore the method state on return from the current 
method.  Typically, this would be the state of the method’s caller.  This corresponds to what in 
conventional compiler terminology would be the dynamic link. 

• A security descriptor – This descriptor is not directly accessible to managed code but is used by 
the CLI security system to record security overrides (assert, permit-only, and deny).   

The four areas of the method state—incoming arguments array, local variables array, local memory pool and 
evaluation stack—are specified as if logically distinct areas. A conforming implementation of the CLI can map 
these areas into one contiguous array of memory, held as a conventional stack frame on the underlying target 
architecture, or use any other equivalent representation technique. 

12.3 .2.1  The evaluation stack 

Associated with each method state is an evaluation stack. Most CLI instructions retrieve their arguments from 
the evaluation stack and place their return values on the stack. Arguments to other methods and their return 
values are also placed on the evaluation stack. When a procedure call is made the arguments to the called 
methods become the incoming arguments array (see §12.3.2.2) to the method. This can require a memory copy, 
or simply a sharing of these two areas by the two methods. 

The evaluation stack is made up of slots that can hold any data type, including an unboxed instance of a value 
type. The type state of the stack (the stack depth and types of each element on the stack) at any given point in a 
program shall be identical for all possible control flow paths. For example, a program that loops an unknown 
number of times and pushes a new element on the stack at each iteration would be prohibited.  

While the CLI, in general, supports the full set of types described in §12.1, the CLI treats the evaluation stack 
in a special way. While some JIT compilers might track the types on the stack in more detail, the CLI only 
requires that values be one of: 

• int64, an 8-byte signed integer 

• int32, a 4-byte signed integer 

• native int, a signed integer of either 4 or 8 bytes, whichever is more convenient for the target 
architecture 
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• F, a floating point value (float32, float64, or other representation supported by the underlying 
hardware) 

• &, a managed pointer 

• O, an object reference 

• *, a “transient pointer,” which can be used only within the body of a single method, that points to 
a value known to be in unmanaged memory (see the CIL Instruction Set specification for more 
details.  * types are generated internally within the CLI; they are not created by the user). 

• A user-defined value type 

The other types are synthesized through a combination of techniques: 

• Shorter integer types in other memory locations are zero-extended or sign-extended when loaded 
onto the evaluation stack; these values are truncated when stored back to their home location. 

• Special instructions perform numeric conversions, with or without overflow detection, between 
different sizes and between signed and unsigned integers. 

• Special instructions treat an integer on the stack as though it were unsigned. 

• Instructions that create pointers which are guaranteed not to point into the memory manager’s 
heaps (e.g., ldloca, ldarga, and ldsflda) produce transient pointers (type *) that can be used 
wherever a managed pointer (type &) or unmanaged pointer (type native unsigned int) is 
expected. 

• When a method is called, an unmanaged pointer (type native unsigned int or *) is permitted to 
match a parameter that requires a managed pointer (type &).  The reverse, however, is not 
permitted since it would allow a managed pointer to be “lost” by the memory manager. 

• A managed pointer (type &) can be explicitly converted to an unmanaged pointer (type native 
unsigned int), although this is not verifiable and might produce a runtime exception. 

12.3 .2.2  Local  variables  and arguments 

Part of each method state is an array that holds local variables and an array that holds arguments. Like the 
evaluation stack, each element of these arrays can hold any single data type or an instance of a value type. Both 
arrays start at 0 (that is, the first argument or local variable is numbered 0). The address of a local variable can 
be computed using the ldloca instruction, and the address of an argument using the ldarga instruction. 

Associated with each method is metadata that specifies: 

• whether the local variables and memory pool memory will be initialized when the method is 
entered. 

• the type of each argument and the length of the argument array (but see below for variable 
argument lists). 

• the type of each local variable and the length of the local variable array. 

The CLI inserts padding as appropriate for the target architecture. That is, on some 64-bit architectures all local 
variables can be 64-bit aligned, while on others they can be 8-, 16-, or 32-bit aligned. The CIL generator shall 
make no assumptions about the offsets of local variables within the array. In fact, the CLI is free to reorder the 
elements in the local variable array, and different JITters might choose to order them in different ways. 

12.3 .2.3  Variable argument l ists  

The CLI works in conjunction with the class library to implement methods that accept argument lists of 
unknown length and type (“vararg methods”). Access to these arguments is through a type-safe iterator in the 
library, called System.ArgIterator (see Partition IV).  

The CIL includes one instruction provided specifically to support the argument iterator, arglist. This instruction 
shall only be used within a method that is declared to take a variable number of arguments. It returns a value 
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that is needed by the constructor for a System.ArgIterator object. Basically, the value created by arglist 
provides access both to the address of the argument list that was passed to the method and a runtime data 
structure that specifies the number and type of the arguments that were provided. This is sufficient for the class 
library to implement the user visible iteration mechanism. 

From the CLI point of view, vararg methods have an array of arguments like other methods. But only the initial 
portion of the array has a fixed set of types and only these can be accessed directly using the ldarg, starg, and 
ldarga instructions. The argument iterator allows access to both this initial segment and the remaining entries 
in the array. 

12.3 .2.4  Local  memory pool  

Part of each method state is a local memory pool. Memory can be explicitly allocated from the local memory 
pool using the localloc instruction. All memory in the local memory pool is reclaimed on method exit, and that 
is the only way local memory pool memory is reclaimed (there is no instruction provided to free local memory 
that was allocated during this method invocation). The local memory pool is used to allocate objects whose 
type or size is not known at compile time and which the programmer does not wish to allocate in the managed 
heap. 

Because the local memory pool cannot be shrunk during the lifetime of the method, a language implementation 
cannot use the local memory pool for general-purpose memory allocation. 

12.4  Control f low 
The CIL instruction set provides a rich set of instructions to alter the normal flow of control from one CIL 
instruction to the next. 

• Conditional and Unconditional Branch instructions for use within a method, provided the 
transfer doesn’t cross a protected region boundary (see §12.4.2). 

• Method call instructions to compute new arguments, transfer them and control to a known or 
computed destination method (see §12.4.1). 

• Tail call prefix to indicate that a method should relinquish its stack frame before executing a 
method call (see §12.4.1). 

• Return from a method, returning a value if necessary. 

• Method jump instructions to transfer the current method’s arguments to a known or computed 
destination method (see §12.4.1). 

• Exception-related instructions (see §12.4.2).  These include instructions to initiate an exception, 
transfer control out of a protected region, and end a filter, catch clause, or finally clause. 

While the CLI supports control transfers within a method, there are several restrictions that shall be observed: 

1. Control transfer is never permitted to enter a catch handler or finally clause (see §12.4.2) except 
through the exception handling mechanism. 

2. Control transfer out of a protected region is covered in §12.4.2. 

3. The evaluation stack shall be empty after the return value is popped by a ret instruction. 

4. Regardless of the control flow that allows execution to arrive there, each slot on the stack shall 
have the same data type at any given point within the method body. 

5. In order for the JIT compilers to efficiently track the data types stored on the stack, the stack shall 
normally be empty at the instruction following an unconditional control transfer instruction (br, 
br.s, ret, jmp, throw, endfilter, endfault, or endfinally).  The stack shall be non-empty at such 
an instruction only if at some earlier location within the method there has been a forward branch 
to that instruction. 

6. Control is not permitted to simply “fall through” the end of a method.  All paths shall terminate 
with one of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt). 
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12.4 .1  Method calls  

Instructions emitted by the CIL code generator contain sufficient information for different implementations of 
the CLI to use different native calling conventions. All method calls initialize the method state areas 
(see §12.3.2) as follows: 

1. The incoming arguments array is set by the caller to the desired values. 

2. The local variables array always has null for object types and for fields within value types that 
hold objects.  In addition, if the localsinit  flag is set in the method header, then the local 
variables array is initialized to 0 for all integer types and to 0.0 for all floating-point types.  Value 
types are not initialized by the CLI, but verified code will supply a call to an initializer as part of 
the method’s entry point code. 

3. The evaluation stack is empty. 

12.4 .1.1  Call  s ite descriptors  

Call sites specify additional information that enables an interpreter or JIT compiler to synthesize any native 
calling convention. All CIL calling instructions (call, calli, and callvirt) include a description of the call site. 
This description can take one of two forms. The simpler form, used with the calli instruction, is a “call site 
description” (represented as a metadata token for a stand-alone call signature) that provides: 

• The number of arguments being passed. 

• The data type of each argument. 

• The order in which they have been placed on the call stack. 

• The native calling convention to be used 

The more complicated form, used for the call and callvirt instructions, is a “method reference” (a metadata 
methodref token) that augments the call site description with an identifier for the target of the call instruction. 

12.4 .1.2  Call ing instruct ions 

The CIL has three call instructions that are used to transfer argument values to a destination method. Under 
normal circumstances, the called method will terminate and return control to the calling method. 

• call is designed to be used when the destination address is fixed at the time the CIL is linked.  In 
this case, a method reference is placed directly in the instruction.  This is comparable to a direct 
call to a static function in C.  It can be used to call static or instance methods or the (statically 
known) base class method within an instance method body. 

• calli is designed for use when the destination address is calculated at run time.  A method pointer 
is passed on the stack and the instruction contains only the call site description. 

• callvirt, part of the CIL common type system instruction set, uses the class of an object (known 
only at runtime) to determine the method to be called.  The instruction includes a method 
reference, but the particular method isn’t computed until the call actually occurs.  This allows an 
instance of a derived class to be supplied and the method appropriate for that derived class to be 
invoked.  The callvirt instruction is used both for instance methods and methods on interfaces.   
For further details, see the CTS specification and the CIL instruction set specification. 

In addition, each of these instructions can be immediately preceded by a tail. instruction prefix. This specifies 
that the calling method terminates with this method call (and returns whatever value is returned by the called 
method). The tail. prefix instructs the JIT compiler to discard the caller’s method state prior to making the 
call (if the call is from untrusted code to trusted code the frame cannot be fully discarded for security reasons). 
When the called method executes a ret instruction, control returns not to the calling method but rather to 
wherever that method would itself have returned (typically, return to caller’s caller). Notice that the tail. 
instruction shortens the lifetime of the caller’s frame so it is unsafe to pass managed pointers (type &) as 
arguments.  

Finally, there are two instructions that indicate an optimization of the tail. case: 
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• jmp is followed by a methodref or methoddef token and indicates that the current method’s state 
should be discarded, its arguments should be transferred intact to the destination method, and 
control should be transferred to the destination.  The signature of the calling method shall exactly 
match the signature of the destination method.  

12.4 .1.3  Computed dest inat ions 

The destination of a method call can be either encoded directly in the CIL instruction stream (the call and jmp 
instructions) or computed (the callvirt, and calli instructions). The destination address for a callvirt instruction 
is automatically computed by the CLI based on the method token and the value of the first argument (the this 
pointer). The method token shall refer to a virtual method on a class that is a direct ancestor of the class of the 
first argument. The CLI computes the correct destination by locating the nearest ancestor of the first argument’s 
class that supplies an implementation of the desired method. 

[Note: The implementation can be assumed to be more efficient than the linear search implied here. end note] 

For the calli instruction the CIL code is responsible for computing a destination address and pushing it on the 
stack. This is typically done through the use of an ldftn or ldvirtfn instruction at some earlier time. The ldftn 
instruction includes a metadata token in the CIL stream that specifies a method, and the instruction pushes the 
address of that method. The ldvirtfn instruction takes a metadata token for a virtual method in the CIL stream 
and an object on the stack. It performs the same computation described above for the callvirt instruction but 
pushes the resulting destination on the stack rather than calling the method. 

The calli instruction includes a call site description that includes information about the native calling 
convention that should be used to invoke the method. Correct CIL code shall specify a calling convention in the 
calli instruction that matches the calling convention for the method that is being called.  

12.4 .1.4  Virtual  cal l ing convention 

The CIL provides a “virtual calling convention” that is converted by the JIT into a native calling convention. 
The JIT determines the optimal native calling convention for the target architecture. This allows the native 
calling convention to differ from machine to machine, including details of register usage, local variable homes, 
copying conventions for large call-by-value objects (as well as deciding, based on the target machine, what is 
considered “large”). This also allows the JIT to reorder the values placed on the CIL virtual stack to match the 
location and order of arguments passed in the native calling convention. 

The CLI uses a single uniform calling convention for all method calls. It is the responsibility of the JITters to 
convert this into the appropriate native calling convention. The contents of the stack at the time of a call 
instruction (call, calli, or callvirt any of which can be preceded by tail.) are as follows: 

1. If the method being called is an instance method (class or interface) or a virtual method, the this 
pointer is the first object on the stack at the time of the call instruction.  For methods on objects 
(including boxed value types), the this pointer is of type O (object reference).  For methods on 
value types, the this pointer is provided as a byref parameter; that is, the value is a pointer 
(managed, &, or unmanaged, * or native int) to the instance. 

2. The remaining arguments appear on the stack in left-to-right order (that is, the lexically leftmost 
argument is the lowest on the stack, immediately following the this pointer, if any).  §12.4.1.5 
describes how each of the three parameter passing conventions (by-value, byref, and typed 
reference) should be implemented. 

12.4 .1.5  Parameter passing 

The CLI supports three kinds of parameter passing, all indicated in metadata as part of the signature of the 
method. Each parameter to a method has its own passing convention (e.g., the first parameter can be passed by-
value while all others are passed byref). Parameters shall be passed in one of the following ways (see detailed 
descriptions below): 

• By-value – where the value of an object is passed from the caller to the callee.  

• By-ref – where the address of the data is passed from the caller to the callee, and the type of the 
parameter is therefore a managed or unmanaged pointer. 
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• Typed reference – where a runtime representation of the data type is passed along with the 
address of the data, and the type of the parameter is therefore one specially supplied for this 
purpose. 

It is the responsibility of the CIL generator to follow these conventions. Verification checks that the types of 
parameters match the types of values passed, but is otherwise unaware of the details of the calling convention. 

12.4 .1.5.1  By-value parameters  
For built-in types (integers, floats, etc.) the caller copies the value onto the stack before the call. For objects the 
object reference (type O) is pushed on the stack. For managed pointers (type &) or unmanaged pointers (type 
native unsigned int), the address is passed from the caller to the callee. For value types, see the protocol 
in §12.1.6.2.  

12.4 .1.5.2  By-ref  parameters  
By-ref parameters are the equivalent of C++ reference parameters or PASCAL var parameters: instead of 
passing as an argument the value of a variable, field, or array element, its address is passed instead; and any 
assignment to the corresponding parameter actually modifies the corresponding caller’s variable, field, or array 
element. Much of this work is done by the higher-level language, which hides from the user the need to 
compute addresses to pass a value and the use of indirection to reference or update values. 

Passing a value by reference requires that the value have a home (see §12.1.6.1) and it is the address of this 
home that is passed. Constants, and intermediate values on the evaluation stack, cannot be passed as byref 
parameters because they have no home. 

The CLI provides instructions to support byref parameters: 

• calculate addresses of home locations (see Table 8: Address and Type of Home Locations) 

• load and store built-in data types through these address pointers (ldind.*, stind.*, ldfld, etc.) 

• copy value types (ldobj and cpobj).   

Some addresses (e.g., local variables and arguments) have lifetimes tied to that method invocation. These shall 
not be referenced outside their lifetimes, and so they should not be stored in locations that last beyond their 
lifetime. The CIL does not (and cannot) enforce this restriction, so the CIL generator shall enforce this 
restriction or the resulting CIL will not work correctly. For code to be verifiable (see §8.8) byref parameters 
shall only be passed to other methods or referenced via the appropriate stind or ldind instructions.  

12.4 .1.5.3  Typed reference parameters  
By-ref parameters and value types are sufficient to support statically typed languages (C++, Pascal, etc.). They 
also support dynamically typed languages that pay a performance penalty to box value types before passing 
them to polymorphic methods (Lisp, Scheme, Smalltalk, etc.). Unfortunately, they are not sufficient to support 
languages like Visual Basic that require byref passing of unboxed data to methods that are not statically 
restricted as to the type of data they accept. These languages require a way of passing both the address of the 
home of the data and the static type of the home. This is exactly the information that would be provided if the 
data were boxed, but without the heap allocation required of a box operation. 

Typed reference parameters address this requirement. A typed reference parameter is very similar to a standard 
byref parameter but the static data type is passed as well as the address of the data. Like byref parameters, the 
argument corresponding to a typed reference parameter will have a home. 

[Note: If it were not for the fact that verification and the memory manager need to be aware of the data type 
and the corresponding address, a byref parameter could be implemented as a standard value type with two 
fields: the address of the data and the type of the data. end note] 

Like a regular byref parameter, a typed reference parameter can refer to a home that is on the stack, and that 
home will have a lifetime limited by the call stack. Thus, the CIL generator shall apply appropriate checks on 
the lifetime of byref parameters; and verification imposes the same restrictions on the use of typed reference 
parameters as it does on byref parameters (see §12.4.1.5.2). 

A typed reference is passed by either creating a new typed reference (using the mkrefany instruction) or by 
copying an existing typed reference. Given a typed reference argument, the address to which it refers can be 
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extracted using the refanyval instruction; the type to which it refers can be extracted using the refanytype 
instruction. 

12.4 .1.5.4  Parameter interact ions 
A given parameter can be passed using any one of the parameter passing conventions: by-value, byref, or typed 
reference. No combination of these is allowed for a single parameter, although a method can have different 
parameters with different calling mechanisms.  

A parameter that has been passed in as typed reference shall not be passed on as byref or by-value without a 
runtime type check and (in the case of by-value) a copy.  

A byref parameter can be passed on as a typed reference by attaching the static type.  

Table 9: Parameter Passing Conventions illustrates the parameter passing convention used for each data type. 

Table 9: Parameter Passing Conventions 

Type of data  Pass By  How data is sent  

Value Copied to called method, type statically known at both sides  

Reference Address sent to called method, type statically known at both sides 

Built-in value type 
(int, float, etc.) 

Typed 
reference 

Address sent along with type information to called method 

Value Called method receives a copy; type statically known at both sides 

Reference Address sent to called method, type statically known at both sides 

User-defined value 
type 

Typed 
reference 

Address sent along with type information to called method  

Value Reference to data sent to called method, type statically known and class 
available from reference  

Reference Address of reference sent to called method, type statically known and 
class available from reference  

Object 

Typed 
reference 

Address of reference sent to called method along with static type 
information, class (i.e., dynamic type) available from reference 

 

12.4 .2  Exception handling 

Exception handling is supported in the CLI through exception objects and protected blocks of code. When an 
exception occurs, an object is created to represent the exception. All exception objects are instances of some 
class (i.e., they can be boxed value types, but not pointers, unboxed value types, etc.). Users can create their 
own exception classes, typically by deriving from System.Exception (see Partition IV). 

There are four kinds of handlers for protected blocks. A single protected block shall have exactly one handler 
associated with it: 

• A finally handler that shall be executed whenever the block exits, regardless of whether that 
occurs by normal control flow or by an unhandled exception. 

• A fault handler that shall be executed if an exception occurs, but not on completion of normal 
control flow. 

• A catch handler that handles any exception of a specified class or any of its sub-classes. 

• A filter handler that runs a user-specified set of CIL instructions to determine if the exception 
should be handled by the associated handler, or passed on to the next protected block. 

Protected regions, the type of the associated handler, and the location of the associated handler and (if needed) 
user-supplied filter code are described through an Exception Handler Table associated with each method. The 
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exact format of the Exception Handler Table is specified in detail in Partition II. Details of the exception 
handling mechanism are also specified in Partition II. 

12.4 .2.1  Exceptions thrown by the CLI  

CLI instructions can throw the following exceptions as part of executing individual instructions. The 
documentation for each instruction lists all the exceptions the instruction can throw (except for the general 
purpose System.ExecutionEngineException described below that can be generated by all instructions). 

Base Instructions (see Partition III) 

• System.ArithmeticException 

• System.DivideByZeroException 

• System.ExecutionEngineException 

• System.InvalidAddressException 

• System.OverflowException 

• System.SecurityException 

• System.StackOverflowException 

Object Model Instructions (see Partition III) 

• System.TypeLoadException 

• System.IndexOutOfRangeException 

• System.InvalidAddressException 

• System.InvalidCastException 

• System.MissingFieldException 

• System.MissingMethodException 

• System.NullReferenceException 

• System.OutOfMemoryException 

• System.SecurityException 

• System.StackOverflowException 

The System.ExecutionEngineException is special. It can be thrown by any instruction and indicates an 
unexpected inconsistency in the CLI. Running exclusively verified code can never cause this exception to be 
thrown by a conforming implementation of the CLI. However, unverified code (even though that code is 
conforming CIL) can cause this exception to be thrown if it might corrupt memory. Any attempt to execute 
non-conforming CIL or non-conforming file formats can result in unspecified behavior: a conforming 
implementation of the CLI need not make any provision for these cases.  

There are no exceptions for things like ‘MetaDataTokenNotFound.’ CIL verification (see Partition III) will 
detect this inconsistency before the instruction is executed, leading to a verification violation. If the CIL is not 
verified this type of inconsistency shall raise System.ExecutionEngineException.  

Exceptions can also be thrown by the CLI, as well as by user code, using the throw instruction. The handling of 
an exception is identical, regardless of the source. 

12.4 .2.2  Deriving from exception classes  

Certain types of exceptions thrown by the CLI can be derived from to provide more information to the user.  
The specification of CIL instructions in Partition III describes what types of exceptions should be thrown by 
the runtime environment when an abnormal situation occurs.  Each of these descriptions allows a conforming 
implementation to throw an object of the type described or an object of a derived class of that type. 
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[Note: For instance, the specification of the ckfinite instruction requires that an exception of type 
System.ArithmeticException or a derived class of ArithmeticException be thrown by the CLI.  A 
conforming implementation might simply throw an exception of type ArithmeticException, but it might also 
choose to provide more information to the programmer by throwing an exception of type 
NotFiniteNumberException with the offending number. end note] 

12.4 .2.3  Resolution exceptions 

CIL allows types to reference, among other things, interfaces, classes, methods, and fields.  Resolution errors 
occur when references are not found or are mismatched.  Resolution exceptions can be generated by references 
from CIL instructions, references to base classes, to implemented interfaces, and by references from signatures 
of fields, methods and other class members. 

To allow scalability with respect to optimization, detection of resolution exceptions is given latitude such that it 
might occur as early as install time and as late as execution time.   

The latest opportunity to check for resolution exceptions from all references except CIL instructions is as part 
of initialization of the type that is doing the referencing (see Partition II). If such a resolution exception is 
detected the static initializer for that type, if present, shall not be executed. 

The latest opportunity to check for resolution exceptions in CIL instructions is as part of the first execution of 
the associated CIL instruction.  When an implementation chooses to perform resolution exception checking in 
CIL instructions as late as possible, these exceptions, if they occur, shall be thrown prior to any other non-
resolution exception that the VES might throw for that CIL instruction.  Once a CIL instruction has passed the 
point of throwing resolution errors (it has completed without exception, or has completed by throwing a non-
resolution exception), subsequent executions of that instruction shall no longer throw resolution exceptions. 

If an implementation chooses to detect some resolution errors, from any references, earlier than the latest 
opportunity for that kind of reference, it is not required to detect all resolution exceptions early. 

An implementation that detects resolution errors early is allowed to prevent a class from being installed, loaded 
or initialized as a result of resolution exceptions detected in the class itself or in the transitive closure of types 
from following references of any kind. 

For example, each of the following represents a permitted scenario.  An installation program can throw 
resolution exceptions (thus failing the installation) as a result of checking CIL instructions for resolution errors 
in the set of items being installed.  An implementation is allowed to fail to load a class as a result of checking 
CIL instructions in a referenced class for resolution errors.  An implementation is permitted to load and 
initialize a class that has resolution errors in its CIL instructions. 

The following exceptions are among those considered resolution exceptions: 

• BadImageFormatException 
• EntryPointNotFoundException 
• MissingFieldException 
• MissingMemberException 
• MissingMethodException 
• NotSupportedException 
• TypeLoadException 
• TypeUnloadedException 

For example, when a referenced class cannot be found, a TypeLoadException is thrown.  When a referenced 
method (whose class is found) cannot be found, a MissingMethodException is thrown.  If a matching method 
being used consistently is accessible, but violates declared security policy, a SecurityException is thrown. 

12.4 .2.4  Timing and choice of  exceptions 

Certain types of exceptions thrown by CIL instructions might be detected before the instruction is executed.  In 
these cases, the specific time of the throw is not precisely defined, but the exception should be thrown no later 
than the instruction is executed.  Relaxation of the timing of exceptions is provided so that an implementation 
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can choose to detect and throw an exception before any code is run (e.g., at the time of CIL to native code 
conversion). 

There is a distinction between the time of detecting the error condition and throwing the associated exception.  
An error condition can be detected early (e.g., at JIT time), but the condition can be signaled later (e.g., at the 
execution time of the offending instruction) by throwing an exception. 

The following exceptions are among those that can be thrown early by the runtime: 

• MissingFieldException 
• MissingMethodException 
• SecurityException 
• TypeLoadException 

In addition, as to when class initialization (see Partition II) occurs is not fully specified. In particular, there is 
no guarantee when System.TypeInitializationException might be thrown. 

If more than one exception's conditions are met by a method invocation, as to which exception is thrown is 
unspecified. 

12.4 .2.5  Overview of  exception handling 

See the exception handling specification in Partition II for details. 

Each method in an executable has associated with it a (possibly empty) array of exception handling 
information. Each entry in the array describes a protected block, its filter, and its handler (which shall be a 
catch handler, a filter handler, a finally handler, or a fault handler). When an exception occurs, the CLI 
searches the array for the first protected block that 

• Protects a region including the current instruction pointer and 

• Is a catch handler block and 

• Whose filter wishes to handle the exception 

If a match is not found in the current method, the calling method is searched, and so on. If no match is found 
the CLI will dump a stack trace and abort the program. 

[Note: A debugger can intervene and treat this situation like a breakpoint, before performing any stack 
unwinding, so that the stack is still available for inspection through the debugger. end note] 

If a match is found, the CLI walks the stack back to the point just located, but this time calling the finally and 
fault handlers. It then starts the corresponding exception handler. Stack frames are discarded either as this 
second walk occurs or after the handler completes, depending on information in the exception handler array 
entry associated with the handling block. 

Some things to notice are: 

• The ordering of the exception clauses in the Exception Handler Table is important.  If handlers 
are nested, the most deeply nested try blocks shall come before the try blocks that enclose them. 

• Exception handlers can access the local variables and the local memory pool of the routine that 
catches the exception, but any intermediate results on the evaluation stack at the time the 
exception was thrown are lost. 

• An exception object describing the exception is automatically created by the CLI and pushed onto 
the evaluation stack as the first item upon entry of a filter or catch clause. 

• Execution cannot be resumed at the location of the exception, except with a filter handler. 

12.4 .2.6  CIL support for exceptions 

The CIL has special instructions to: 

• Throw and rethrow a user-defined exception. 
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• Leave a protected block and execute the appropriate finally clauses within a method, without 
throwing an exception.  This is also used to exit a catch clause.  Notice that leaving a protected 
block does not cause the fault clauses to be called. 

• End a user-supplied filter clause (endfilter) and return a value indicating whether to handle the 
exception. 

• End a finally clause (endfinally) and continue unwinding the stack. 

12.4 .2.7  Lexical  nest ing of  protected blocks 

A protected region (also called a try block) is described by an address and a length: the trystart is the address 
of the first instruction to be protected, and the trylength is the length of the protected region. (The tryend, the 
address immediately following the last instruction to be protected, can be trivially computed from these two). 
 A handler region is described by an address and a length: the handlerstart is the address of the first 
instruction of the handler and the handlerlength is the length of the handler region. (The handlerend, the 
address immediately following the last instruction of the handler, can be trivially computed from these two.) 

Every method can have associated with it a set of exception entries, called the exception set. Each exception 
entry consists of 

• Optional: a type token (the type of exception to be handled) or filterstart (the address of the first 
instruction of the user-supplied filter code)  

• Required: protected block  

• Required: handler region. There are four kinds of handler regions: catch handlers, filtered 
handlers, finally handlers, and fault handlers. (A filtered handler is the code that runs if the filter 
evaluates to true.) 

If an exception entry contains a filterstart, then filterstart strictly precedes handlerstart. The filter starts at 
the instruction specified by filterstart and contains all instructions up to (but not including) that specified by 
handlerstart. The lexically last instruction in the filter must be endfilter. If there is no filterstart then the filter 
is empty (hence it does not overlap with any region). 

No two regions (protected block, filter, handler region) of a single exception entry may overlap with one 
another. 

Each region must begin and end on an instruction boundary. 

For every pair of exception entries in an exception set, one of the following must be true: 

• They nest: all three regions of one entry shall be within a single region of the other entry, with 
the further restriction that the enclosing region shall not be a filter. [Note: Functions called from 
within a filter can contain exception handling. end note] 

• They are disjoint: all six regions of the two entries are pairwise-disjoint (no addresses overlap).  

• They mutually protect: the protected blocks are the same and the other regions are pairwise-
disjoint. In this case, all handlers shall be either catch handlers or filtered handlers. The 
precedence of the handler regions is determined by their ordering in the Exception Handler Table 
(Partition II). 

The encoding of an exception entry in the file format (see Partition II) guarantees that only a filtered handler 
(not a catch handler, fault handler or finally handler) can have a filter. 

An exception-handling block is either a protected region, a filter, a catch handler, a filter handler, a fault 
handler, or a finally handler. 

12.4 .2.8  Control f low restrict ions on protected blocks 

12.4 .2.8.1  Fall  Through 
An instruction I1 is capable of fall through if one of the following is true: 
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• I1 is not a control-flow instruction (i.e., the only way control flow could be altered by I1 would 
be if it threw an exception). 

• I1 is a switch or conditional branch. [Note: Fall through would be the not-taken case. end note] 

• I1 is a method call instruction. 

[Note: For the purposes of this section, the ability of an instruction to fall through can be determined purely by 
the type of the instruction. end note] 

[Note: Most instructions can allow control to fall through after their execution—only unconditional branches, 
ret, jmp, leave(.s), endfinally, endfault, endfilter, throw, and rethrow do not. Call instructions do allow 
control to fall through, since the next instruction to be executed in the current method is the one lexically 
following the call instruction, which executes after the call returns. end note] 

[Note: The determination of validity with respect to fall through can be done lexically; no control-flow or data-
flow analysis is required. end note] 

Entry to filters or handlers can only be accomplished through the CLI exception system; that is, it is not valid 
for control to fall through into such blocks. This means filters and handlers cannot appear at the beginning of a 
method, or immediately following any instruction that can cause control flow to fall through. 

[Note: Conditional branches can have multiple effects on control flow. Since one of the possible effects is to 
allow control flow to fall through, a filter or handler cannot appear immediately following a conditional branch. 
end note] 

Entry to protected blocks can be accomplished by fall-through, at which time the evaluation stack shall be 
empty. 

Exit from protected blocks, filters, or handlers cannot be accomplished via fall through.  

12.4 .2.8.2  Control-f low Instruct ions 
Instructions that affect control flow have restrictions on how they are used in protected blocks, filters, and 
handlers. The particular rules depend on the type of instruction. This subclause describes restrictions based on 
the following: 

• The source of the instruction; i.e., the address of the start of the instruction. 

• The target(s) of the instruction; i.e., the address(es) of all instructions within the same method 
that might be executed following it, excluding fall through (which has been addressed above). If 
an instruction has a target rule, the exact definition of the target precedes that rule. 

For the source and each target of an instruction, consider each protected block, filter, or handler that encloses 
that address. If all rules are satisfied for all enclosing protected blocks, filters, or handlers, for the source of an 
instruction and all targets, then the instruction is valid with respect to exception-handling. (Obviously, the 
instruction shall still follow all other validity rules.) An instruction is considered to be within a block even if 
the source of the instruction is at the very start of that block. 

12.4.2.8.2.1 throw (and all CIL instructions not listed below) 
source 

1. There are no source restrictions. 

target 

1. There are no target restrictions. 

12.4.2.8.2.2 rethrow: 
source 

1. Shall be enclosed in a catch handler 
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[Note: The catch handler need not be the innermost enclosing exception-handling block. For example, the 
rethrow may be within a finally that is within a catch. In such a case, the exception to be rethrown is the one 
caught by the innermost enclosing catch handler. end note] 

target 

1. There are no target restrictions. 

12.4.2.8.2.3 ret: 
source 

1. Shall not be enclosed in any protected block, filter, or handler. 

[Note: To return from a protected block, filtered handler, or catch handler, a leave(.s) instruction is needed to 
transfer control to an address outside all exception-handling blocks, then a ret instruction is needed at that 
address. end note] 

[Note: Since the tail. prefix on an instruction requires that that instruction be followed by ret, tail calls are not 
allowed from within protected blocks, filters, or handlers. end note] 

target 

1. There are no target restrictions. 

12.4.2.8.2.4 jmp: 
source 

1. Shall not be enclosed in any protected block, filter, or handler 

target 

1. There are no target restrictions. 

12.4.2.8.2.5 endfilter: 
source 

1. Shall appear as the lexically last instruction in the filter. 

[Note: The endfilter is required even if no control-flow path reaches it. This can happen if, for example, the 
filter does a throw. end note] 

[Note: The lexical nesting rules prohibit nesting other exception-handling entries inside a filter. Thus the 
innermost exception-handling block enclosing an endfilter instruction shall be a filter. end note] 

target 

1. There are no target restrictions. 

12.4.2.8.2.6 endfinally/endfault: 
source 

1. The innermost enclosing protected block, filter, or handler shall be a finally or fault handler 

[Note: endfinally and endfault are aliases for the same CIL opcode. Conventionally, CIL assemblers require 
that endfinally be used within a finally handler, and endfault be used within a fault handler, but the instruction 
emitted is exactly the same by either name. end note] 

[Note: A finally or fault handler can contain more than one endfinally/endfault. The lexically last instruction 
in the finally or fault handler need not be endfinally/endfault. In fact, a finally or fault handler might not 
require an endfinally/endfault at all if all control-flow paths terminate through other means. This can happen 
if, for example, the finally or fault handler throws. end note] 
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target 

1. There are no target restrictions.  

12.4.2.8.2.7 Branches (br, br.s, conditional branches, switch): 
source 

1. If the source of the branch is within a protected block, filter, or handler, the target(s) shall be 
within the same protected block, filter, or handler 

target 

The target of br, br.s, and the conditional branches, is the address specified. The targets of switch are all of the 
addresses specified in the jump table. 

1. If any target of the branch is within a protected block, except the first instruction of that protected 
block, the source shall be within the same protected block. 

2. If any target of the branch is within a filter or handler, the source shall be within the same filter or 
handler. 

[Note: Code can branch to the first instruction of a protected block, but not into the middle of one. end note] 

[Note: Since the conditional branches and switch have a fall-through case, they shall also obey the rules for fall 
through. end note] 

12.4.2.8.2.8 leave and leave.s: 
source 

1. If the source is within a filter, fault handler, or finally handler, the target shall be within the same 
filter, fault handler, or finally handler. 

[Note: This means control cannot be transferred out of a filter, fault handler, or finally handler via 
the leave(.s) instruction. end note] 

2. If the source is within a protected block, the target shall be within the same protected block, 
within an enclosing protected block, the first instruction of a disjoint protected block, or not 
within any protected block. 

3. If the source is within a catch handler or filtered handler, the target shall be within the same catch 
handler or filtered handler, within the associated protected block, within a protected block that 
encloses the catch handler or filtered handler, the first instruction of a disjoint protected block, or 
not within any protected block. 

[Note: If the source is outside any exception-handling block, that fact implies no additional restrictions on the 
target. In effect, a leave from outside of exception handling acts like a branch, with the side-effect of emptying 
the evaluation stack. end note] 

target 

The target of leave(.s) is the address specified by leave(.s). 

1. If the target is within a filter or handler, the source shall be within the same filter or handler. 

2. If the target is within a protected block, except the first instruction of that protected block, the 
source shall be within the same protected block, or within the associated catch handler or filtered 
handler. 

[Note: To be clear, if the target is the first instruction of a protected block, the source can be outside of the 
protected block. end note] 

[Note: This means that it is possible to transfer control from a catch handler or a filtered handler to the 
associated protected block. end note] 
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12.4.2.8.2.9 Examples 
 [Example: Example 1 

{ 
EX1: 
 br TryStart2 
 .try 
 { 
TryStart1: 
  .try 
  { 
TryStart2: 
   leave End 
  } 

  finally 
  { 
   endfinally 
  } 
 } 

 finally 
 { 
  endfinally 
 } 
End: 
 ret 
} 

Consider the br TryStart2 instruction at EX1. It is not contained within any exception-handling block, so the 
source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the 
target rules are applied once for each region.  

Considering the outermost protected region, branch target rule 1 is satisfied since the target is the first 
instruction of the outermost protected region. Branch target rule 2 does not apply to protected regions and is 
thus satisfied.  

Considering the innermost protected region, branch target rule 1 is satisfied since the target is the first 
instruction of the innermost protected region. Branch target rule 2 does not apply to protected regions and is 
thus satisfied. 

Thus, the branch instruction at EX1 is valid from the exception-handling perspective. end example] 

[Example: Example 2 
{ 
 ldc.i4.0 
EX2: 
 brtrue TryStart2 
 .try 
 { 

TryStart1: 
EX3: 
  br TryStart2 
  .try 
  { 
TryStart2: 
   leave End 
  } 

  finally 
  { 
   endfinally 
  } 
 } 

 finally 
 { 
  endfinally 
 } 
End: 
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 ret 
} 

Consider the brtrue TryStart2 instruction at EX2. It is not contained within any exception-handling block, so 
the source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the 
target rules are applied once for each region.  

Branch target rule 1 is satisfied for the inner protected block since the target is the first instruction of the block. 
However, branch target rule 1 is not satisfied for the outer protected block since the source is not within the 
outer protected block and the target is not the first instruction of that block.  

Thus the conditional branch instruction at EX2 is invalid from an exception-handling perspective. 

Now consider the br TryStart2 instruction at EX3. It is within one protected block, so the source rules are 
applied considering that protected block. Branch source rule 1 is satisfied since the target is within that 
protected block. The target is contained within two protected regions, so the target rules are applied once for 
each region. 

Considering the outer protected block, branch target rule 1 is satisfied since the source is also within the outer 
protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied. 

Considering the inner protected block, branch target rule 1 is satisfied since the target is the first instruction of 
the inner protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied. 

Thus, the branch instruction at EX3 is valid from an exception-handling perspective. end example] 

[Example: Example 3 
 { 
  .try 
  { 
   newobj instance void [mscorlib]System.Exception::.ctor() 
   throw 
AfterThrow: 
   leave End 
  } 

  catch [mscorlib]System.Exception 
  { 
   .try 
   { 
    newobj instance void [mscorlib]System.Exception::.ctor() 
    throw 
   } 

   catch [mscorlib]System.Exception 
   { 
EX4: 
    leave AfterThrow 
   } 
   leave End 
  } 
End: 
  ret 
 } 

Consider the leave instruction at EX4. It is contained within two catch handlers, so the source rules are applied 
once for each region. 

Considering the outer catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus 
satisfied. Leave source rule #3 is satisfied since the target is within the associated protected region. 

Considering the inner catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus 
satisfied. Leave source rule 3 is not satisfied since the target is in the middle of a disjoint protected region. 

Thus, the leave instruction at EX4 is invalid from an exception-handling perspective. However, for illustration 
purposes, consider the target rules as well. 
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The target is within one protected region, so the target rules are applied considering that protected region. 
Leave target rule 1 does not apply to protected regions, and is thus satisfied. Leave target rule 2 is satisfied 
because the source is within a catch block associated with the protected region. end example] 

[Example: Example 4 
{ 

  .try 
  { 
   .try 
   { 
    newobj instance void [mscorlib]System.Exception::.ctor() 
    throw 
   } 

   catch [mscorlib] System.Exception 
   { 
EX5: 
    leave EndOfOuterTry 
   } 
EndOfOuterTry: 
   // … 
   leave End 
  } 

  catch [mscorlib]System.Exception 
  { 
   leave End 
  } 
End: 
  ret 
} 

Consider the leave instruction at EX5. It is contained within a protected region and within a catch handler, so 
the source rules are applied once for each. 

Considering the protected region, leave source rules 1 and 3 do not apply to protected regions and are thus 
satisfied. Leave source rule 2 is satisfied because the target is within the same protected region. 

Considering the catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus satisfied. 
Leave source rule 3 is satisfied because the target is within a protected block that encloses the catch handler. 

The target is within one protected region, so the target rules are applied considering that protected region. 
Target rule 1 does not apply to protected regions and is thus satisfied. Target rule 2 is satisfied because the 
source is within the same protected block. 

Thus the leave instruction at EX5 is valid from an exception-handling perspective. end example] 

12.5  Proxies and remoting 
A remoting boundary exists if it is not possible to share the identity of an object directly across the boundary. 
For example, if two objects exist on physically separate machines that do not share a common address space, 
then a remoting boundary will exist between them. There are other administrative mechanisms for creating 
remoting boundaries. 

The VES provides a mechanism, called the application domain, to isolate applications running in the same 
operating system process from one another. Types loaded into one application domain are distinct from the 
same type loaded into another application domain, and instances of objects shall not be directly shared from 
one application domain to another. Hence, the application domain itself forms a remoting boundary. 

The VES implements remoting boundaries based on the concept of a proxy. A proxy is an object that exists on 
one side of the boundary and represents an object on the other side. The proxy forwards references to instance 
fields and methods to the actual object for interpretation. Proxies do not forward references to static fields or 
calls to static methods. 

The implementation of proxies is provided automatically for instances of types that derive from 
System.MarshalByRefObject (see Partition IV). 
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12.6  Memory model and optimizations 

12.6 .1  The memory store 

By “memory store” we mean the regular process memory that the CLI operates within. Conceptually, this store 
is simply an array of bytes. The index into this array is the address of a data object. The CLI accesses data 
objects in the memory store via the ldind.* and stind.* instructions.  

12.6 .2  Alignment 

Built-in data types shall be properly aligned, which is defined as follows: 

• 1-byte, 2-byte, and 4-byte data is properly aligned when it is stored at a 1-byte, 2-byte, or 4-byte 
boundary, respectively. 

• 8-byte data is properly aligned when it is stored on the same boundary required by the underlying 
hardware for atomic access to a native int. 

Thus, int16 and unsigned int16 start on even address; int32, unsigned int32, and float32 start on an 
address divisible by 4; and int64, unsigned int64, and float64 start on an address divisible by 4 or 8, 
depending upon the target architecture. The native size types (native int, native unsigned int, and &) are 
always naturally aligned (4 bytes or 8 bytes, depending on the architecture). When generated externally, these 
should also be aligned to their natural size, although portable code can use 8-byte alignment to guarantee 
architecture independence.  It is strongly recommended that float64 be aligned on an 8-byte boundary, even 
when the size of native int is 32 bits. 

There is a special prefix instruction, unaligned., that can immediately precede an ldind, stind, initblk, or cpblk 
instruction. This prefix indicates that the data can have arbitrary alignment; the JIT is required to generate code 
that correctly performs the effect of the instructions regardless of the actual alignment. Otherwise, if the data is 
not properly aligned, and no unaligned. prefix has been specified, executing the instruction can generate 
unaligned memory faults or incorrect data. 

12.6 .3  Byte ordering 

For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that depends on byte 
ordering might not run on all platforms. The PE file format (see §12.2) allows the file to be marked to indicate 
that it depends on a particular type ordering. 

12.6 .4  Optimizat ion 

Conforming implementations of the CLI are free to execute programs using any technology that guarantees, 
within a single thread of execution, that side-effects and exceptions generated by a thread are visible in the 
order specified by the CIL.  For this purpose only volatile operations (including volatile reads) constitute 
visible side-effects.  (Note that while only volatile operations constitute visible side-effects, volatile operations 
also affect the visibility of non-volatile references.) Volatile operations are specified in §12.6.7. There are no 
ordering guarantees relative to exceptions injected into a thread by another thread (such exceptions are 
sometimes called “asynchronous exceptions” (e.g., System.Threading.ThreadAbortException).    

[Rationale: An optimizing compiler is free to reorder side-effects and synchronous exceptions to the extent that 
this reordering does not change any observable program behavior. end rationale] 

[Note: An implementation of the CLI is permitted to use an optimizing compiler, for example, to convert CIL 
to native machine code provided the compiler maintains (within each single thread of execution) the same order 
of side-effects and synchronous exceptions.   

This is a stronger condition than ISO C++ (which permits reordering between a pair of sequence points) or ISO 
Scheme (which permits reordering of arguments to functions). end note] 

Optimizers are granted additional latitude for relaxed exceptions in methods.  A method is E-relaxed for a kind 
of exception if the innermost custom attribute System.Runtime.CompilerServices. 
CompilationRelaxationsAttribute pertaining to exceptions of kind E is present and specifies to relax 
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exceptions of kind E.  (Here, “innermost” means inspecting the method, its class, and its assembly, in that 
order.) 

A E-relaxed sequence is a sequence of instructions executed by a thread, where  

• Each instruction causing visible side effects or exceptions is in an E-relaxed method. 

• The sequence does not cross the boundary of a non-trivial protected or handler region.  A region 
is trivial if it can be optimized away under the rules for non-relaxed methods.  

Below, an E-check is defined as a test performed by a CIL instruction that upon failure causes an exception of 
kind E to be thrown. Furthermore, the type and range tests performed by the methods that set or get an array 
element’s value, or that get an array element’s address are considered checks here. 

A conforming implementation of the CLI is free to change the timing of relaxed E-checks in an E-relaxed 
sequence, with respect to other checks and instructions as long as the observable behavior of the program is 
changed only in the case that a relaxed E-check fails.  If an E-check fails in an E-relaxed sequence: 

• The rest of the associated instruction must be suppressed, in order to preserve verifiability.  If the 
instruction was expected to push a value on the VES stack, no subsequent instruction that uses 
that value should visibly execute.  

• It is unspecified whether or not any or all of the side effects in the E-relaxed sequence are made 
visible by the VES. 

• The check’s exception is thrown some time in the sequence, unless the sequence throws another 
exception.  When multiple relaxed checks fail, it is unspecified as to which exception is thrown 
by the VES. 

[Note: Relaxed checks preserve verifiability, but not necessarily security.  Because a relaxed check’s exception 
might be deferred and subsequent code allowed to execute, programmers should never rely on implicit checks 
to preserve security, but instead use explicit checks and throws when security is an issue. end note] 

[Rationale: Different programmers have different goals.  For some, trading away precise exception behavior is 
unacceptable.  For others, optimization is more important.   The programmer must specify their preference. 
Different kinds of exceptions may be relaxed or not relaxed separately because different programmers have 
different notions of which kinds of exceptions must be timed precisely.  end rationale]  

[Note: For background and implementation information for relaxed exception handling , plus examples, see 
Annex F of Partition VI. end note] 

12.6 .5  Locks and threads 

The logical abstraction of a thread of control is captured by an instance of the System.Threading.Thread 
object in the class library.  Classes beginning with the prefix “System.Threading” (see Partition IV) provide 
much of the user visible support for this abstraction. 

To create consistency across threads of execution, the CLI provides the following mechanisms: 

1. Synchronized methods. A lock that is visible across threads controls entry to the body of a 
synchronized method.  For instance and virtual methods the lock is associated with the this pointer.  
For static methods the lock is associated with the type to which the method belongs.  The lock is 
taken by the logical thread (see System.Threading.Thread in Partition IV) and can be entered any 
number of times by the same thread; entry by other threads is prohibited while the first thread is 
still holding the lock.  The CLI shall release the lock when control exits (by any means) the method 
invocation that first acquired the lock. 

2. Explicit locks and monitors.  These are provided in the class library, see 
System.Threading.Monitor.  Many of the methods in the System.Threading.Monitor class accept 
an Object as argument, allowing direct access to the same lock that is used by synchronized 
methods.  While the CLI is responsible for ensuring correct protocol when this lock is only used by 
synchronized methods, the user must accept this responsibility when using explicit monitors on 
these same objects. 
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3. Volatile reads and writes.  The CIL includes a prefix, volatile., that specifies that the 
subsequent operation is to be performed with the cross-thread visibility constraints described 
in §12.6.7.  In addition, the class library provides methods to perform explicit volatile reads 
(System.Thread.VolatileRead) and writes (System.Thread.VolatileWrite), as well as barrier 
synchronization (System.Thread.MemoryBarrier). 

4. Built-in atomic reads and writes.  All reads and writes of certain properly aligned data types are 
guaranteed to occur atomically.  See §12.6.6. 

5. Explicit atomic operations.  The class library provides a variety of atomic operations in the 
System.Threading.Interlocked class. These operations (e.g., Increment, Decrement, Exchange, 
and CompareExchange) perform implicit acquire/release operations. 

Acquiring a lock (System.Threading.Monitor.Enter or entering a synchronized method) shall implicitly 
perform a volatile read operation, and releasing a lock (System.Threading.Monitor.Exit or leaving a 
synchronized method) shall implicitly perform a volatile write operation.  See §12.6.7. 

12.6 .6  Atomic reads and writes  

A conforming CLI shall guarantee that read and write access to properly aligned memory locations no larger 
than the native word size (the size of type native int) is atomic (see §12.6.2) when all the write accesses to a 
location are the same size.  Atomic writes shall alter no bits other than those written.  Unless explicit layout 
control (see Partition II (Controlling Instance Layout)) is used to alter the default behavior, data elements no 
larger than the natural word size (the size of a native int) shall be properly aligned.  Object references shall 
be treated as though they are stored in the native word size. 

[Note: There is no guarantee about atomic update (read-modify-write) of memory, except for methods provided 
for that purpose as part of the class library (see Partition IV).   An atomic write of a “small data item” (an item 
no larger than the native word size) is required to do an atomic read/modify/write on hardware that does not 
support direct writes to small data items. end note] 

[Note: There is no guaranteed atomic access to 8-byte data when the size of a native int is 32 bits even 
though some implementations might perform atomic operations when the data is aligned on an 8-byte 
boundary. end note] 

12.6 .7  Volat i le  reads and writes  

The volatile. prefix on certain instructions shall guarantee cross-thread memory ordering rules.  They do not 
provide atomicity, other than that guaranteed by the specification of §12.6.6. 

A volatile read has “acquire semantics” meaning that the read is guaranteed to occur prior to any references to 
memory that occur after the read instruction in the CIL instruction sequence.  A volatile write has “release 
semantics” meaning that the write is guaranteed to happen after any memory references prior to the write 
instruction in the CIL instruction sequence. 

A conforming implementation of the CLI shall guarantee this semantics of volatile operations.   This ensures 
that all threads will observe volatile writes performed by any other thread in the order they were performed. But 
a conforming implementation is not required to provide a single total ordering of volatile writes as seen from 
all threads of execution. 

An optimizing compiler that converts CIL to native code shall not remove any volatile operation,  nor shall it 
coalesce multiple volatile operations into a single operation. 

[Rationale: One traditional use of volatile operations is to model hardware registers that are visible through 
direct memory access.  In these cases, removing or coalescing the operations might change the behavior of the 
program. end rationale] 
 

[Note: An optimizing compiler from CIL to native code is permitted to reorder code, provided that it guarantees 
both the single-thread semantics described in §12.6 and the cross-thread semantics of volatile operations. end 
note] 
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12.6 .8  Other memory model  issues  

All memory allocated for static variables (other than those assigned RVAs within a PE file, see Partition II) and 
objects shall be zeroed before they are made visible to any user code. 

A conforming implementation of the CLI shall ensure that, even in a multi-threaded environment and without 
proper user synchronization, objects are allocated in a manner that prevents unauthorized memory access and 
prevents invalid operations from occurring.  In particular, on multiprocessor memory systems where explicit 
synchronization is required to ensure that all relevant data structures are visible (for example, vtable pointers) 
the Execution Engine shall be responsible for either enforcing this synchronization automatically or for 
converting errors due to lack of synchronization into non-fatal, non-corrupting, user-visible exceptions. 

It is explicitly not a requirement that a conforming implementation of the CLI guarantee that all state updates 
performed within a constructor be uniformly visible before the constructor completes.  CIL generators can 
ensure this requirement themselves by inserting appropriate calls to the memory barrier or volatile write 
instructions.  
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1  Introduction 
This specification provides the normative description of the metadata: its physical layout (as a file format), its 
logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical 
assembler, ilasm).  
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2  Overview 
This partition focuses on the semantics and the structure of metadata.  The semantics of metadata, which dictate 
much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.  
The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International 
Standard.  (An implementation of an assembler for ILAsm is described in Partition VI.)  The structure (both 
logical and physical) is covered in clauses 22 through 25. 

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL 
instructions in that file.   Specifying ILAsm provides a means of interchanging programs written directly for the 
CLI without the use of a higher-level language; it also provides a convenient way to express examples. 

The semantics of the metadata can also be described independently of the actual format in which the metadata 
is stored.  This point is important because the storage format as specified in clauses 22 through 25 is engineered 
to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for 
describing its semantics. end rationale] 
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3  Validation and verification 
Validation refers to the application of a set of tests on any file to check that the file’s format, metadata, and CIL 
are self-consistent. These tests are intended to ensure that the file conforms to the mandatory requirements of 
this specification.  When a conforming implementation of the CLI is presented with a non-conforming file, the 
behavior is unspecified. 

Verification refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences 
do not permit any access to memory outside the program’s logical address space. In conjunction with the 
validation tests, verification ensures that the program cannot access memory or other resources to which it is 
not granted access.  

Partition III specifies the rules for both correct and verifiable use of CIL instructions.  Partition III also provides 
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit 
indirectly, from the specification in this Partition); it also contains a normative description of the verification 
algorithm.  A mathematical proof of soundness of the underlying type system is possible, and provides the 
basis for the verification requirements.  Aside from these rules, this standard leaves as unspecified: 

• The time at which (if ever) such an algorithm should be performed. 

• What a conforming implementation should do in the event of a verification failure. 

The following graph makes this relationship clearer (see next paragraph for a description): 

 

Figure 1: Relationship between correct and verifiable CIL 

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle 
represents all code that is correct CIL. The striped inner circle represents all type-safe code.  Finally, the black 
innermost circle contains all code that is verifiable.  (The difference between type-safe code and verifiable code 
is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that 
simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).  
Note that even if a program follows the syntax described in Partition VI, the code might still not be valid, 
because valid code shall adhere to restrictions presented in this Partition and in Partition III. 

The verification process is very stringent. There are many programs that will pass validation, but will fail 
verification. The VES cannot guarantee that these programs do not access memory or resources to which they 
are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these 
resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. 
Ordinarily, a conforming implementation of the CLI can allow unverifiable code  (valid code that does not pass 
verification) to be executed, although this can be subject to administrative trust controls that are not part of this 
standard.  A conforming implementation of the CLI shall allow the execution of verifiable code, although this 
can be subject to additional implementation-specified trust controls. 
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4  Introductory examples 

This clause and its subclauses contain only informative text. 

4.1   “Hello world!” 
To get the general feel of ILAsm, consider the following simple example, which prints the well known “Hello 
world!” salutation. The salutation is written by calling WriteLine, a static method found in the class 
System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example: 

.assembly extern mscorlib {} 

.assembly hello {} 

.method static public void main() cil managed 

{ .entrypoint 
  .maxstack 1 
  ldstr "Hello world!" 
  call void [mscorlib]System.Console::WriteLine(class System.String) 
  ret 
} 

end example] 

The .assembly extern declaration references an external assembly, mscorlib, which contains the 
definition of System.Console. The .assembly declaration in the second line declares the name of the 
assembly for this program.  (Assemblies are the deployment unit for executable content for the CLI.)  The 
.method declaration defines the global method main, the body of which follows, enclosed in braces.  The first 
line in the body indicates that this method is the entry point for the assembly (.entrypoint), and the second 
line in the body specifies that it requires at most one stack slot (.maxstack). 

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string 
constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing 
the string as its only argument. (Note that string literals in CIL are instances of the standard class 
System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the 
last instruction, ret, returns from main. 

4.2  Other examples  
This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude 
with an example showing a typical use of some feature. All these examples are written using the ILAsm 
assembly language.  In addition, Partition VI  contains a longer example of a program written in the ILAsm 
assembly language.  All examples are, of course, informative only. 

End informative text 
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5  General syntax 
This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar. 

5.1  General syntax notation 
This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this 
notation. 

Terminals are written in a constant-width font (e.g., .assembly, extern, and float64); however, 
terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., ‘:’, ‘[’, and ‘(’). 
The names of syntax categories are capitalized and italicized (e.g.  ClassDecl) and shall be replaced by actual 
instances of the category.  Items placed in [ ] brackets (e.g., [Filename] and [Float], are optional, and any item 
followed by * (e.g., HexByte* and [‘.’ Id]*) can appear zero or more times.  The character “|” means that the 
items on either side of it are acceptable (e.g., true | false).  The options are sorted in alphabetical order (to 
be more specific: in ASCII order, and case-insensitive).  If a rule starts with an optional term, the optional term 
is not considered for sorting purposes. 

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause. 

[Example: A grammar such as 

Top ::= Int32  |  float Float  |  floats  [ Float  [ ‘,’ Float ]* ]  |  else QSTRING 

would consider all of the following to be valid: 
12 
float 3 
float –4.3e7 
floats 
floats 2.4 
floats 2.4, 3.7 
else "Something \t weird" 

but all of the following to be invalid: 
else 3 
3, 4 
float 4.3, 2.4 
float else 
stuff 

end example] 

5.2  Basic syntax categories 
These categories are used to describe syntactic constraints on the input intended to convey logical restrictions 
on the information encoded in the metadata. 

Int32 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 
32 bits. [Note:  ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a 
constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant 
bytes. end note] 

Int64 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in 
64 bits. 

HexByte is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F. 

RealNumber is any syntactic representation for a floating-point number that is distinct from that for all other 
syntax categories.  In this partition, a period (.) is used to separate the integer and fractional parts, and “e” 
or “E” separates the mantissa from the exponent.  Either of the period or the mantissa separator (but not both) 
can be omitted. 

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note] 
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QSTRING is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can be 
used as an escape character, with “\t” representing a tab character, “\n” representing a newline character, or “\” 
followed by three octal digits representing a byte with that value. The “+” operator can be used to concatenate 
string literals. This way, a long string can be broken across multiple lines by using “+” and a new string on 
each line. An alternative is to use “\” as the last character in a line, in which case, that character and the line 
break following it are not entered into the generated string. Any white space characters (space, line-feed, 
carriage-return, and tab) between the “\” and the first non-white space character on the next line are ignored. 

[Example: The following result in strings that are equivalent to "Hello World from CIL!": 
ldstr "Hello " + "World " + 
"from CIL!" 

and 
ldstr "Hello World\ 
 \040from CIL!" 

end example] 

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode 
encodings, see Partition I (especially CLS Rule 4). end note] 

SQSTRING is just like QSTRING except that the former uses single quote (′) marks instead of double. 

ID is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of “_”, 
“$”, “@”, “`” (grave accent), or “?”, and is followed by any number of alphanumeric characters  (A–Z, a–z, 0–
9) or the characters “_”, “$”, “@”, “`” (grave accent), and “?”. An ID is used in only two ways: 

• As a label of a CIL instruction (§5.4). 

• As an Id (§5.3). 

5.3  Identifiers 
Identifiers are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax 
allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve 
this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar. 

Id ::=  

  ID 

| SQSTRING 

 

A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI  for a 
list of all keywords). 

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (.). An Id formed in 
this way is called a DottedName. 

DottedName ::= Id [‘.’ Id]* 
 

[Rationale: DottedName is provided for convenience, since “.” can be included in an Id using the SQSTRING 
syntax.  DottedName is used in the grammar where “.” is considered a common character (e.g., in fully 
qualified type names) end rationale] 

[Example: The following are simple identifiers: 
A  Test   $Test   @Foo?   ?_X_   MyType`1 

The following are identifiers in single quotes: 
′Weird Identifier′   ′Odd\102Char′   ′Embedded\nReturn′ 

The following are dotted names: 
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System.Console  ′My Project′.′My Component′.′My Name′   System.IComparable`1 

end example] 

5.4  Labels and lists  of labels 
Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.  
The value represented by a label is typically an offset in bytes from the beginning of the current method, 
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the 
label occurs.  For details of how labels are encoded in the metadata, see clauses 22 through 25; for their 
encoding in CIL instructions see Partition III. 

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus, 
labels can be single quoted and can contain Unicode characters. 

A list of labels is comma separated, and can be any combination of simple labels. 

LabelOrOffset ::= Id 

Labels ::= LabelOrOffset [ ‘,’ LabelOrOffset ]* 
 

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather 
than requiring symbolic labels. end note] 

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a 
colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction 
and they represent the address of the instruction that immediately follows the label. A particular code label 
name shall not be declared more than once in a method. 

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon 
character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A 
particular data label name shall not be declared more than once in a module. 

CodeLabel ::= Id ‘:’ 

DataLabel ::= Id 
 

[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr 
instruction: 

ldstr_label: ldstr "A label" 

end example] 

5.5  Lists of hex bytes 
A list of bytes consists simply of one or more hexbytes. 

Bytes ::= HexByte [ HexByte* ] 
 

5.6  Floating-point numbers 
There are two different ways to specify a floating-point number: 

1. As a RealNumber. 

2. By using the keyword float32 or float64, followed by an integer in parentheses, where the 
integer value is the binary representation of the desired floating-point number. For example, 
float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte 
value 4.94065645841247E-324. 

Float32 ::= 

  RealNumber 
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| float32 ‘(’ Int32 ‘)’ 

Float64 ::= 

  RealNumber 

| float64 ‘(’ Int64 ‘)’ 
 

[Example:  
5.5 
1.1e10 
float64(128) // note: this results in an 8-byte value whose bits are the same 
  // as those for the integer value 128. 

end example] 

5.7  Source l ine information 
The metadata does not encode information about the lexical scope of variables or the mapping from source line 
numbers to CIL instructions.  Nonetheless, it is useful to specify an assembler syntax for providing this 
information for use in creating alternate encodings of the information. 

.line takes a line number, optionally followed by a column number (preceded by a colon), optionally 
followed by a single-quoted string that specifies the name of the file to which the line number is referring: 

ExternSourceDecl ::= .line Int32 [ ‘:’ Int32 ] [ SQSTRING ] 
 

5.8  File names 
Some grammar elements require that a file name be supplied. A file name is like any other name where “.” is 
considered a normal constituent character. The specific syntax for file names follows the specifications of the 
underlying operating system. 

Filename ::= Clause 

  DottedName 5.3 
 

5.9  Attributes and metadata 
Attributes of types and their members attach descriptive information to their definition. The most common 
attributes are predefined and have a specific encoding in the metadata associated with them (§23).  In addition, 
the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings. 

From a syntactic point of view, there are several ways for specifying attributes in ILAsm: 

• Using special syntax built into ILAsm. For example, the keyword private in a ClassAttr 
specifies that the visibility attribute on a type shall be set to allow access only within the defining 
assembly. 

• Using a general-purpose syntax in ILAsm.  The non-terminal CustomDecl describes this grammar 
(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in 
setting special encodings within the metadata (§21.2.1). 

• Security attributes are treated specially.  There is special syntax in ILAsm that allows the XML 
representing security attributes to be described directly (§20).  While all other attributes defined 
either in the standard library or by user-provided extension are encoded in the metadata using one 
common mechanism described in §22.10, security attributes (distinguished by the fact that they 
inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute, see 
Partition IV) shall be encoded as described in §22.11. 
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5.10  i lasm  source fi les 
An input to ilasm is a sequence of top-level declarations, defined as follows: 

ILFile ::= Reference 

 Decl* 5.10 
 

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of 
the corresponding productions of this grammar. These productions begin with a name having a ‘.’ prefix. Such 
a name is referred to as a directive. 

Decl ::= Reference 

  .assembly DottedName ‘{’ AsmDecl* ‘}’ 6.2 

| .assembly extern DottedName ‘{’ AsmRefDecl* ‘}’ 6.3 

| .class ClassHeader ‘{’ ClassMember* ‘}’ 10 

| .class extern ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’ 6.7 

| .corflags Int32 6.2 

| .custom CustomDecl 21 

| .data DataDecl 16.3.1 

| .field FieldDecl 16 

| .file [ nometadata ] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint ]  6.2.3 

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 15 

| .module [ Filename ] 6.4 

| .module extern Filename 6.5 

| .mresource [ public  | private ] DottedName ‘{’ ManResDecl* ‘}’ 6.2.2 

| .subsystem Int32 6.2 

| .vtfixup VTFixupDecl 15.5.1 

| ExternSourceDecl 5.7 

| SecurityDecl 20 
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6  Assemblies, manifests and modules 
Assemblies and modules are grouping constructs, each playing a different role in the CLI. 

An assembly is a set of one or more files deployed as a unit.  An assembly always contains a manifest that 
specifies (§6.1): 

• Version, name, culture, and security requirements for the assembly. 

• Which other files, if any, belong to the assembly, along with a cryptographic hash of each file.  
The manifest itself resides in the metadata part of a file, and that file is always part of the 
assembly. 

• The types defined in other files of the assembly that are to be exported from the assembly.  Types 
defined in the same file as the manifest are exported based on attributes of the type itself. 

• Optionally, a digital signature for the manifest itself, and the public key used to compute it. 

A module is a single file containing executable content in the format specified here.  If the module contains a 
manifest then it also specifies the modules (including itself) that constitute the assembly.  An assembly shall 
contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than 
simply being dynamically loaded) the manifest shall reside in the module that contains the entry point. 

While some programming languages introduce the concept of a namespace, the only support in the CLI for this 
concept is as a metadata encoding technique.  Type names are always specified by their full name relative to 
the assembly in which they are defined. 

6.1  Overview of modules,  assemblies,  and fi les 

This subclause contains informative text only. 
Consider the following figure: 

 

Figure 2: References to Modules and Files 

Eight files are shown, each with its name written below it. The six files that each declare a module have an 
additional border around them, and their names begin with M. The other two files have a name beginning 
with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.  

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B, 
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For 
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies 
reference M3.  

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When 
assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the 
same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies. 
Both assemblies also reference F2, for which similar rules apply.  
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The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of 
assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. 
Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that 
assembly B shall also have a module reference to M6. 

End informative text 

6.2  Defining an assembly 
An assembly is specified as a module that contains a manifest in the metadata; see §22.2.  The information for 
the manifest is created from the following portions of the grammar:   

Decl ::= Clause 

  .assembly DottedName ‘{’ AsmDecl* ‘}’ 6.2 

| .assembly extern DottedName ‘{’ AsmRefDecl* ‘}’ 6.3 

| .corflags Int32 6.2 

| .file [ nometadata ] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint ] 6.2.3 

| .module extern Filename 6.5 

| .mresource [ public | private ] DottedName ‘{’ ManResDecl* ‘}’ 6.2.2 

| .subsystem Int32 6.2 

| …  
 

The .assembly directive declares the manifest and specifies to which assembly the current module belongs. 
A module shall contain at most one .assembly directive. The DottedName specifies the name of the 
assembly. [Note: The standard library assemblies are described in Partition IV. end note]) 

[Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that 
differ only in case should not be declared. end note] 

The .corflags directive sets a field in the CLI header of the output PE file (see §25.3.3.1).  A conforming 
implementation of the CLI shall expect this field’s value to be 1.  For backwards compatibility, the three least-
significant bits are reserved.  Future versions of this standard might provide definitions for values between 8 
and 65,535. Experimental and non-standard uses should thus use values greater than 65,535. 

The .subsystem directive is used only when the assembly is executed directly (as opposed to its being used 
as a library for another program).  This directive specifies the kind of application environment required for the 
program, by storing the specified value in the PE file header (see §25.2.2).  While any 32-bit integer value can 
be supplied, a conforming implementation of the CLI need only respect the following two values: 

• If the value is 2, the program should be run using whatever conventions are appropriate for an application 
that has a graphical user interface. 

• If the value is 3, the program should be run using whatever conventions are appropriate for an application 
that has a direct console attached. 

 

[Example: 
.assembly CountDown 
{ .hash algorithm 32772 
  .ver 1:0:0:0 
} 
.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7  
02 BE E7 52 3A CB 17 AF) 

end example] 
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6.2 .1  Information about the assembly (AsmDecl)  

The following grammar shows the information that can be specified about an assembly: 

AsmDecl ::= Description Claus
e 

  .custom CustomDecl Custom attributes 21 

  .hash algorithm Int32 Hash algorithm used in the .file directive 6.2.1.1 

| .culture QSTRING Culture for which this assembly is built 6.2.1.2 

| .publickey ‘=’ ‘(’ Bytes ‘)’ The originator's public key. 6.2.1.3 

| .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and 
revision 

6.2.1.4 

| SecurityDecl Permissions needed, desired, or prohibited 20 
 

6.2 .1.1  Hash algorithm 

AsmDecl ::= .hash algorithm Int32 | … 
 

When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the 
name and cryptographic hash of the contents of each file other than its own.  The algorithm used to compute the 
hash can be specified, and shall be the same for all files included in the assembly.  All values are reserved for 
future use, and conforming implementations of the CLI shall use the SHA1 (see Partition I) hash function and 
shall specify this algorithm by using a value of 32772 (0x8004). 

[Rationale: SHA1 was chosen as the best widely available technology at the time of standardization (see 
Partition I).   A single algorithm was chosen since all conforming implementations of the CLI would be 
required to implement all algorithms to ensure portability of executable images.end rationale] 

6.2 .1.2  Culture 

AsmDecl ::= .culture QSTRING | … 
 

When present, this indicates that the assembly has been customized for a specific culture.  The strings that shall 
be used here are those specified in Partition IV as acceptable with the class 
System.Globalization.CultureInfo. When used for comparison between an assembly reference and an 
assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.) 

[Note: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>”, 
where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter 
code in ISO 3166. end note] 

6.2 .1.3  Originator’s  public  key 

AsmDecl ::= .publickey ‘=’ ‘(’ Bytes ‘)’ | … 
 

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using 
the SHA1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private 
key pair of the producer’s choosing.  The results of this (an “SHA1/RSA digital signature”) can then be stored 
in the metadata along with the public part of the key pair required by the RSA algorithm.  The .publickey 
directive is used to specify the public key that was used to compute the signature.  To calculate the hash, the 
signature is zeroed, the hash calculated, and then the result is stored into the signature. 

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04 
00 00 00 00 00 00 00. This key is known as the Standard Public Key. 



 

 Partition II 13 

A reference to an assembly (§6.3) captures some of this information at compile time.  At runtime, the 
information contained in the assembly reference can be combined with the information from the manifest of the 
assembly located at runtime to ensure that the same private key was used to create both the assembly seen when 
the reference was created (compile time) and when it is resolved (runtime). 

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An 
SHA1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For 
verification purposes the public key is stored into the PE file as well as the signed hash value.  

Except for the following, all portions of the PE File are hashed: 

• The Authenticode Signature entry: PE files can be authenticode signed. The authenticode 
signature is contained in the 8-byte entry at offset 128 of the PE Header Data Directory 
(“Certificate Table” in §25.2.3.3) and the contents of the PE File in the range specified by this 
directory entry.  [Note: In a conforming PE File, this entry shall be zero. end note] 

• The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (“StrongNameSignature” 
in §25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte 
entry is 0, there is no associated strong name signature. 

• The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific 
Fields (“File Checksum” in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero. 
end note] 

6.2 .1.4  Version numbers 

AsmDecl ::= .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 | … 
 

The version number of an assembly is specified as four 32-bit integers.  This version number shall be captured 
at compile time and used as part of all references to the assembly within the compiled module. 

All standardized assemblies shall have the last two 32-bit integers set to 0.  This standard places no other 
requirement on the use of the version numbers, although individual implementers are urged to avoid setting 
both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard. 

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a 
standardized assembly if any additional functionality is added or any additional features of the VES are 
required to implement it.  Furthermore, future versions of this standard shall change one or both of the first two 
32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to 
distinguish between different versions of the Execution Engine required to run programs. 

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match 
precisely when binding a reference, or it can exhibit any other behavior deemed appropriate.  By convention: 

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the 
same name, but different major versions, are not interchangeable.  This would be appropriate, for example, 
for a major rewrite of a product where backwards compatibility cannot be assumed. 

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the 
same name and major version, but different minor versions, indicate significant enhancements, but with the 
intention of being backwards compatible.  This would be appropriate, for example, on a “point release” of 
a product or a fully backward compatible new version of a product. 

3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by 
build number are intended to represent a recompilation from the same source.  This would be appropriate, 
for example, because of processor, platform, or compiler changes. 

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same 
name, major and minor version number, but different revisions, are intended to be fully interchangeable. 
This would be appropriate, for example, to fix a security hole in a previously released assembly. 

end note] 
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6.2 .2  Manifest  resources  

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is 
introduced using the .mresource directive, which adds the manifest resource to the assembly manifest 
begun by a preceding .assembly declaration. 

Decl ::= Clause 

  .mresource [ public | private ] DottedName ‘{’ ManResDecl* ‘}’  

| … 5.10 
 

If the manifest resource is declared public, it is exported from the assembly. If it is declared private, it is 
not exported, in which case, it is only available from within the assembly. The DottedName is the name of the 
resource.  

ManResDecl ::= Description Clause 

  .assembly extern DottedName Manifest resource is in external 
assembly with name DottedName. 

6.3 

| .custom CustomDecl Custom attribute. 21 

| .file DottedName at Int32 Manifest resource is in file DottedName 
at byte offset Int32. 

 

 

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared 
in the manifest using a separate (top-level) .file declaration (see §6.2.3) and the byte offset shall be zero.  A 
resource that is defined in another assembly is referenced using .assembly extern, which requires that 
the assembly has been defined in a separate (top-level) .assembly extern directive (§6.3). 

6.2 .3  Associat ing f i les  with an assembly 

Assemblies can be associated with other files (such as documentation and other files that are used during 
execution). The declaration .file is used to add a reference to such a file to the manifest of the assembly:  
(See §22.19) 

Decl ::= Clause 

  .file [ nometadata ] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [ .entrypoint ]   

| … 5.10 
 

The attribute nometadata is specified if the file is not a module according to this specification.  Files that are 
marked as nometadata can have any format; they are considered pure data files. 

The Bytes after the .hash specify a hash value computed for the file. The VES shall recompute this hash value 
prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to 
calculate this hash value is specified with .hash algorithm (§6.2.1.1). 

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained 
in this file. 

6.3  Referencing assemblies 

AsmRefDecl ::= .assembly extern DottedName [ as DottedName ] ‘{’ AsmRefDecl* ‘}’ 
 

An assembly mediates all accesses to other assemblies from the files that it contains.  This is done through the 
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly 
referenced by the executing code.  A top-level .assembly extern declaration is used for this purpose.  
The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the 
same name, but differing in version, culture, etc. 
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The dotted name used in .assembly extern shall exactly match the name of the assembly as declared 
with an .assembly directive, in a case-sensitive manner.  (So, even though an assembly might be stored 
within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-
sensitive, and shall match exactly.) 

AsmRefDecl ::= Description Clause 

  .hash ‘=’ ‘(’ Bytes ‘)’ Hash of referenced assembly  6.2.3 

| .custom CustomDecl Custom attributes 21 

| .culture QSTRING Culture of the referenced assembly 6.2.1.2 

| .publickeytoken ‘=’ ‘(’ Bytes ‘)’ The low 8 bytes of the SHA1 hash of the 
originator's public key. 

6.3 

| .publickey ‘=’ ‘(’ Bytes ‘)’ The originator’s full public key 6.2.1.3 

| .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and 
revision 

6.2.1.4 

 

These declarations are the same as those for .assembly declarations (§6.2.1), except for the addition of 
.publickeytoken.  This declaration is used to store the low 8 bytes of the SHA1 hash of the originator’s 
public key in the assembly reference, rather than the full public key.  

An assembly reference can store either a full public key or an 8-byte “public key token.” Either can be used to 
validate that the same private key used to sign the assembly at compile time also signed the assembly used at 
runtime.  Neither is required to be present, and while both can be stored, this is not useful.  

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it 
can refuse to load an assembly for which the validation fails.  A conforming implementation of the CLI can 
also refuse to permit access to an assembly unless the assembly reference contains either the public key or the 
public key token.  A conforming implementation of the CLI shall make the same access decision independent 
of whether a public key or a token is used. 

[Rationale: The full public key is cryptographically safer, but requires more storage space in the assembly 
reference. end rationale] 

[Example:  

.assembly extern MyComponents 
{ .publickey = (BB AA BB EE 11 22 33 00) 
  .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24) 
  .ver 2:10:2002:0 
} 

end example] 

6.4  Declaring modules 
All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file 
name.  See §22.30. 

Decl ::= Clause 

| .module Filename  

| … 5.10 
 

[Example:  
.module CountDown.exe 

end example] 



 

16 Partition II 

6.5  Referencing modules 
When an item is in the current assembly, but is part of a module other than the one containing the manifest, the 
defining module shall be declared in the manifest of the assembly using the .module extern directive.  
The name used in the .module extern directive of the referencing assembly shall exactly match the name 
used in the .module directive (§6.4) of the defining module.  See §22.31.   

Decl ::= Clause 

| .module extern Filename  

| … 5.10 
 

[Example:  
.module extern Counter.dll 

end example] 

6.6  Declarations inside a module or assembly 
Declarations inside a module or assembly are specified by the following grammar. More information on each 
option can be found in the corresponding clause or subclause. 

Decl ::= Clause 

| .class ClassHeader ‘{’ ClassMember* ‘}’ 10 

| .custom CustomDecl 21 

| .data DataDecl 16.3.1 

| .field FieldDecl 16 

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 15 

| ExternSourceDecl 5.7 

| SecurityDecl 20 

| …  
 

6.7  Exported type definitions 
The manifest module, of which there can only be one per assembly, includes the .assembly directive.  To 
export a type defined in any other module of an assembly requires an entry in the assembly’s manifest.  The 
following grammar is used to construct such an entry in the manifest: 

Decl ::= Clause 

  .class extern ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’  
 

ExternClassDecl ::= Clause 

.file DottedName 21 

| .class extern DottedName 21 

| .custom CustomDecl 21 
 

The ExportAttr value shall be either public or nested public and shall match the visibility of the type. 

For example, suppose an assembly consists of two modules, A.EXE and B.DLL.  A.EXE contains the manifest.  
A public class Foo is defined in B.DLL.  In order to export it—that is, to make it visible by, and usable from, 
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other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar 
defined in A.EXE does not need any .class extern directive. 

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete 
set of types defined by the assembly.  Therefore, information from other modules within the assembly is 
replicated in the manifest module.  By convention, the manifest module is also known as the assembly. end 
rationale] 
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7  Types and signatures 
The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated 
with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used 
to reference types is divided into two parts: 

• A logical description of user-defined types that are referenced, but (typically) not defined in the current 
module.  This is stored in a table in the metadata (§22.38). 

• A signature that encodes one or more type references, along with a variety of modifiers.  The grammar 
non-terminal Type describes an individual entry in a signature.  The encoding of a signature is specified 
in §23.1.16. 

7.1  Types 
The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It 
also shows the syntax for user defined types that can be defined in the CLI system: 

Type ::= Description Clause 

  ‘!’ Int32 Generic parameter in a type definition, 
accessed by index from 0 

9.1 

| ‘!!’ Int32 Generic parameter in a method 
definition, accessed by index from 0 

9.2 

| bool Boolean 7.2 

| char 16-bit Unicode code point 7.2 

| class TypeReference User defined reference type 7.3 

| float32 32-bit floating-point number 7.2 

| float64 64-bit floating-point number 7.2 

| int8 Signed 8-bit integer 7.2 

| int16 Signed 16-bit integer 7.2 

| int32 Signed 32-bit integer 7.2 

| int64 Signed 64-bit integer 7.2 

| method CallConv Type ‘*’  

      ‘(’ Parameters ‘)’ 

Method pointer 14.5 

| native int 32- or 64-bit signed integer whose size 
is platform-specific 

7.2 

| native unsigned int 32- or 64-bit unsigned integer whose 
size is platform-specific 

7.2 

| object See System.Object in Partition IV  

| string See System.String in Partition IV  

| Type ‘&’ Managed pointer to Type. Type shall 
not be a managed pointer type or 
typedref 

14.4 

| Type ‘*’ Unmanaged pointer to Type 14.4 

| Type ‘<’ GenArgs  ‘>’ Instantiation of generic type 9.4 
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Type ::= Description Clause 

| Type ‘[’ [ Bound [ ‘,’ Bound ]*] ‘]’ Array of Type with optional rank 
(number of dimensions) and bounds. 

14.1and 14.2 

| Type modopt ‘(’ TypeReference ‘)’ Custom modifier that can be ignored 
by the caller. 

7.1.1 

| Type modreq ‘(’ TypeReference ‘)’ Custom modifier that the caller shall 
understand. 

7.1.1 

| Type pinned For local variables only. The garbage 
collector shall not move the referenced 
value. 

7.1.2 

| typedref Typed reference (i.e., a value of type 
System.TypedReference), created by 
mkrefany and used by 
refanytype or refanyval. 

7.2 

| valuetype TypeReference (Unboxed) user defined value type 13 

| unsigned int8 Unsigned 8-bit integer 7.2 

| unsigned int16 Unsigned 16-bit integer 7.2 

| unsigned int32 Unsigned 32-bit integer 7.2 

| unsigned int64 Unsigned 64-bit integer 7.2 

| void No type.  Only allowed as a return 
type or as part of void * 

7.2 

 

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g., 
“System.GC” can be used instead of  “class System.GC”.  Such representations are called type specifications: 

TypeSpec ::= Clause 

  ‘[’ [ .module ] DottedName ‘]’ 7.3 

| TypeReference 7.2 

| Type 7.1 
 

7.1 .1  modreq and modopt  

Custom modifiers, defined using modreq (“required modifier”) and modopt (“optional modifier”),  are 
similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a 
declaration.  Each modifer associates a type reference with an item in the signature. 

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only 
by the addition of a custom modifier (required or optional) shall not be considered to match.  Custom modifiers 
have no other effect on the operation of the VES. 

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI 
that deal with the metadata, typically compilers and program analysers.  A required modifier indicates that 
there is a special semantics to the modified item that should not be ignored, while an optional modifier can 
simply be ignored.   

For example, the const qualifier in the C programming language can be modelled with an optional modifier 
since the caller of a method that has a const-qualified parameter need not treat it in any special way.  On the 
other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute 
since it is the caller who makes the copy. end rationale] 
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7.1 .2  pinned 

The signature encoding for pinned shall appear only in signatures that describe local variables (§15.4.1.3).  
While a method with a pinned local variable is executing, the VES shall not relocate the object to which the 
local refers.  That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector 
shall not move objects that are referenced by an active pinned local variable. 

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned.  This 
happens, for example, when a managed object is passed to a method designed to operate with unmanaged data. 
end rationale] 

7.2  Built-in types  
The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be 
referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype 
TypeReference syntax).  Partition I specifies the built-in types. 

7.3  References to user-defined types (TypeReference)  
User-defined types are referenced either using their full name and a resolution scope or, if one is available in 
the same module, a type definition (§10). 

A TypeReference is used to capture the full name and resolution scope:   

TypeReference ::= 

  [ ResolutionScope ] DottedName [ ‘/’ DottedName ]* 
 

ResolutionScope ::= 

‘[’ .module Filename ‘]’ 

| ‘[’ AssemblyRefName ‘]’ 
 

AssemblyRefName ::= Clause 

  DottedName 5.1 
 

The following resolution scopes are specified for un-nested types: 

• Current module (and, hence, assembly).  This is the most common case and is the default if no 
resolution scope is specified.  The type shall be resolved to a definition only if the definition 
occurs in the same module as the reference.   

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type 
definition.  Where this is not possible (e.g., when referencing a nested type that has compilercontrolled 
accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used. 
end note] 

• Different module, current assembly.  The resolution scope shall be a module reference 
syntactically represented using the notation [.module Filename]. The type shall be resolved to 
a definition only if the referenced module (§6.4) and type (§6.7) have been declared by the 
current assembly and hence have entries in the assembly’s manifest.  Note that in this case the 
manifest is not physically stored with the referencing module. 

• Different assembly.  The resolution scope shall be an assembly reference syntactically 
represented using the notation [AssemblyRefName]. The referenced assembly shall be declared in 
the manifest for the current assembly (§6.3), the type shall be declared in the referenced 
assembly’s manifest, and the type shall be marked as exported from that assembly (§6.7 
and §10.1.1). 
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• For nested types, the resolution scope is always the enclosing type.  (See §10.6).  This is indicated 
syntactically by using a slash (“/”) to separate the enclosing type name from the nested type’s 
name. 

[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib): 
.assembly extern mscorlib { } 
.class [mscorlib]System.Console 

A reference to the type named C.D in the module named x in the current assembly: 
.module extern x 
.class [.module x]C.D 

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named 
MyAssembly: 

.assembly extern MyAssembly { } 

.class [MyAssembly]Foo.Bar/C 

end example] 

7.4  Native data types 
Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that 
specify data types required to perform certain functions.  The metadata allows interaction with these native data 
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native 
data types.  This marshalling information can be specified (using the keyword marshal) for 

• the return type of a method, indicating that a native data type is actually returned and shall be 
marshalled back into the specified CLI data type 

• a parameter to a method, indicating that the CLI data type provided by the caller shall be 
marshalled into the specified native data type. (If the parameter is passed by reference, the 
updated value shall be marshalled back from the native data type into the CLI data type when the 
call is completed.) 

• a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to 
platform methods shall make a copy of the object, replacing the field by the specified native data 
type. (If the object is passed by reference, then the updated value shall be marshalled back when 
the call is completed.) 

The following table lists all native types supported by the CLI, and provides a description for each of them. (A 
more complete description can be found in Partition IV in the definition of the enum 
System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these 
types.)  All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing 
implementations of the CLI.  Values in the range 64–127 are reserved for future use in this and related 
Standards. 

NativeType ::= Description Name in the class 
library enum type 
UnmanagedType 

‘[’ ‘]’ Native array. Type and size are determined at 
runtime from the actual marshaled array. 

LPArray 

| bool Boolean. 4-byte integer value where any non-
zero value represents TRUE, and 0 represents 
FALSE. 

Bool 

| float32 32-bit floating-point number. R4 

| float64 64-bit floating-point number. R8 
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NativeType ::= Description Name in the class 
library enum type 
UnmanagedType 

| [ unsigned ] int Signed or unsigned integer, sized to hold a 
pointer on the platform 

SysUInt or SysInt 

| [ unsigned ] int8 Signed or unsigned 8-bit integer U1 or I1 

| [ unsigned ] int16 Signed or unsigned 16-bit integer U2 or I2 

| [ unsigned ] int32 Signed or unsigned 32-bit integer U4 or I4 

| [ unsigned ] int64 Signed or unsigned 64-bit integer U8 or I8 

| lpstr A pointer to a null-terminated array of ANSI 
characters.  The code page is implementation-
specific. 

LPStr 

| lpwstr A pointer to a null-terminated array of Unicode 
characters.  The character encoding is 
implementation-specific. 

LPWStr 

| method A function pointer. FunctionPtr 

| NativeType ‘[’ ‘]’ Array of NativeType. The length is determined 
at runtime by the size of the actual marshaled 
array. 

LPArray 

| NativeType ‘[’ Int32 ‘]’ Array of NativeType of length Int32. LPArray 

| NativeType  
‘[’ ‘+’ Int32 ‘]’ 

Array of NativeType with runtime supplied 
element size. The Int32 specifies a parameter to 
the current method (counting from parameter 
number 0) that, at runtime, will contain the size 
of an element of the array in bytes.  Can only be 
applied to methods, not fields. 

LPArray 

| NativeType  
‘[’ Int32 ‘+’ Int32 ‘]’ 

Array of NativeType with runtime supplied 
element size. The first Int32 specifies the 
number of elements in the array.  The second 
Int32 specifies which parameter to the current 
method (counting from parameter number 0) 
will specify the additional number of elements 
in the array.   Can only be applied to methods, 
not fields  

LPArray 

 

[Example:  

.method int32 M1( int32 marshal(int32), bool[] marshal(bool[5]) ) 

Method M1 takes two arguments: an int32, and an array of 5 bools. 
.method int32 M2( int32 marshal(int32), bool[] marshal(bool[+1]) ) 

Method M2 takes two arguments: an int32, and an array of bools: the number of elements in that array is 
given by the value of the first parameter. 

.method int32 M3( int32 marshal(int32), bool[] marshal(bool[7+1]) ) 

Method M3 takes two arguments: an int32, and an array of bools: the number of elements in that array is 
given as 7 plus the value of the first parameter. end example] 
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8  Visibility, accessibility and hiding 
Partition I specifies visibility and accessibility.  In addition to these attributes, the metadata stores information 
about method name hiding. Hiding controls which method names inherited from a base type are available for 
compile-time name binding.  

8.1  Visibil ity of top-level  types and accessibil ity of nested types 
Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the 
same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of 
another type) the nested type has an accessibility that further refines the set of methods that can reference the 
type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility 
attribute of its own, using the visibility of its enclosing type instead. 

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type 
cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an 
assembly then a nested type with public accessibility is still only available within that assembly. By contrast, 
a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing 
type is visible outside the assembly. 

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility 
of a nested type are encoded using the same mechanism in the logical model of §23.1.15. 

8.2  Accessibil ity 
Accessibility is encoded directly in the metadata (see §22.26 for an example). 

8.3  Hiding 
Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two 
mechanisms for hiding, specified by a single bit: 

• hide-by-name, meaning that the introduction of a name in a given type hides all inherited 
members of the same kind with the same name. 

• hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited 
member of the same kind, but with precisely the same type (in the case of nested types and fields) 
or signature (in the case of methods, properties, and events). 

There is no runtime support for hiding.  A conforming implementation of the CLI treats all references as though 
the names were marked hide-by-name-and-sig.  Compilers that desire the effect of hide-by-name can do so by 
marking method definitions with the newslot attribute (§15.4.2.3) and correctly choosing the type used to 
resolve a method reference (§15.1.3). 
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9  Generics 
As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern, 
which includes placeholders called generic parameters.  These generic parameters are replaced, as required, by 
specific types, to instantiate whichever member of the family is actually required.  For example, class 
List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three 
possible instantiations; however, as we’ll see below, the CLS-compliant names of these types are really class 
List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>. 

A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or 
more generic types shall not be defined with the same name, but different numbers of generic parameters, in the 
same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is 
defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a 
type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer 
constant (without leading zeros) representing the number of generic parameters that C has. For example: the 
types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [Note: The 
names of all standard library types are CLS-compliant; e.g., 
System.Collections.Generic.IEnumerable`1<T>. end note] 

Before generics is discussed in detail, here are the definitions of some new terms: 

• public class List`1<T> {} is a generic type definition.  

• <T> is a generic parameter list, and T is a generic parameter.  

• List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because 
it has at least one generic parameter.  This partition will use the term open type. 

• List`1<int> is a closed generic type because it has no unbound generic parameters.  (It is 
sometimes called an instantiated generic type or a generic type instantiation).  This partition will 
use the term closed type. 

• Note that generics includes generic types which are neither strictly open nor strictly closed; e.g., 
the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class 
B`2<T,U> {}.  

• If a distinction need be made between generic types and ordinary types, the latter are referred to 
as non-generic types.  

• <int> is a generic argument list, and int is a generic argument.  

• This standard maintains the distinction between generic parameters and generic arguments. If at 
all possible, use the phrase “int is the type used for generic parameter T” when speaking of 
List`1<int>. (In Reflection, this is sometimes referred to as “T is bound to int”)  

• “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T. 

[Note: Conside the following definition: 
class C`2<(I1,I2) S, (Base,I3) T> { … } 

This denotes a class called C, with two generic parameters, S and T.  S is constrained to implement two 
interfaces, I1 and I2.  T is constrained to derive from the class Base, and also to implement the interface I3. 
end note] 

Within a generic type definition, its generic parameters are referred to by their index.  Generic parameter zero 
is referred to as !0, generic parameter one as !1, and so on.  Similarly, within the body of a generic method 
definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0, 
generic parameter one as !!1, and so on.  

This block contains only informative text  
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A class definition for a stack might be denoted Stack<T>, where T is a generic parameter.  In general, fields and 
methods of the Stack class will use the generic parameter T in their definition.  For example, Stack might be 
defined as follows: 

.assembly extern mscorlib {} 

.assembly Stack {} 
 
.class public Stack`1<([mscorlib]System.Object) T> extends [mscorlib]System.Object { 
  .field private !0[] data 
  .field private int32 top 
 
  .method public specialname rtspecialname instance void .ctor() { 
    .maxstack  8 
    ldarg.0 
    call       instance void [mscorlib]System.Object::.ctor() 
    ldarg.0 
    ldc.i4.s   100 
    newarr     !0 
    stfld      !0[] class Stack`1<!0>::data 
    ldarg.0 
    ldc.i4.m1 
    stfld      int32 class Stack`1<!0>::top 
    ret 
  } 
 
  .method public hidebysig instance void Push(!0 t) { 
    .maxstack  4 
    .locals init ([0] int32) 
    ldarg.0 
    ldfld      !0[] class Stack`1<!0>::data 
    ldarg.0 
    dup 
    ldfld      int32 class Stack`1<!0>::top 
    ldc.i4.1 
    add 
    dup 
    stloc.0 
    stfld      int32 class Stack`1<!0>::top 
    ldloc.0 
    ldarg.1 
    stelem     !0 
    ret 
  } 
 
  .method public hidebysig instance !0 Pop() { 
    .maxstack  4 
    .locals init ([0] !0, [1] int32) 
    ldarg.0 
    ldfld      !0[] class Stack`1<!0>::data 
    ldarg.0 
    dup 
    ldfld      int32 class Stack`1<!0>::top 
    dup 
    stloc.1 
    ldc.i4.1 
    sub 
    stfld      int32 class Stack`1<!0>::top 
    ldloc.1 
    ldelem     !0 
    stloc.0 
    ldloc.0 
    ret 
  } 
} 
 

For simplicity, this example omits overflow and underflow checking. 

An example of using the Stack class, is as follows: 
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.class App extends [mscorlib]System.Object { 
  .method private static void Main() { 
    .entrypoint 
    .maxstack  2 
    .locals init ([0] class Stack`1<int32>) 
    newobj     instance void class Stack`1<int32>::.ctor() 
    stloc.0 
    ldloc.0 
    ldc.i4.1 
    callvirt   instance void class Stack`1<int32>::Push(!0) 
    ldloc.0 
    ldc.i4.2 
    callvirt   instance void class Stack`1<int32>::Push(!0) 
    ldloc.0 
    callvirt   instance !0 class Stack`1<int32>::Pop() 
    call       void [mscorlib]System.Console::WriteLine(int32) 
    ldloc.0 
    callvirt   instance !0 class Stack`1<int32>::Pop() 
    call       void [mscorlib]System.Console::WriteLine(int32) 
    ret 
  } 
  .method public specialname rtspecialname instance void .ctor() { 
    .maxstack  8 
    ldarg.0 
    call       instance void [mscorlib]System.Object::.ctor() 
    ret 
  } 
 

End informative text 

9.1  Generic type definitions 
A generic type definition is one that includes generic parameters.  Each such generic parameter can have a 
name and an optional set of constraints—types with which generic arguments shall be assignment-compatible. 
Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below, 
see §9.4. ) The generic parameter is in scope in the declarations of:  

• its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>) 

• any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T> 
extends class Set`1<!0[]>) 

• any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D> 
implements class IDictionary`2<!0,!1>) 

• all members (instance and static fields, methods, constructors, properties and events) except 
nested classes.  [Note: C# allows generic parameters from an enclosing class to be used in a 
nested class, but adds any required extra generic parameters to the nested class definition in 
metadata. end note] 

A generic type definition can include static, instance, and virtual methods. 

Generic type definitions are subject to the following restrictions: 

• A generic parameter, on its own, cannot be used to specify the base class, or any implemented 
interfaces.  So, for example, .class … G`1<T> extends !0 is invalid.  However, it is valid for 
the base class, or interfaces, to use that generic parameter when nested within another generic 
type.  For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends 
class B`2<!0,int32> are valid.   

[Rationale: This permits checking that generic types are valid at definition time rather than at 
instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override 
what others because no information is available about the base class; indeed, we do not even know 
whether T is a class: it might be an array or an interface.  Similarly, for .class … C`2<(!1)T,U> where 
we are in the same situation of knowing nothing about the base class/interface definition. end rationale] 



 

 Partition II 27 

• Varargs methods cannot be members of generic types 

[Rationale: Implementing this feature would take considerable effort.  Since varargs has very limited use 
among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end 
rationale] 

• When generic parameters are ignored, there shall be no cycles in the inheritance/interface 
hierarchy.  To be precise, define a graph whose nodes are possibly-generic (but open) classes and 
interfaces, and whose edges are the following: 

o If a (possibly-generic) class or interface D extends or implements a class or 
interface B, then add an edge from D to B. 

o If a (possibly-generic) class or interface D extends or implements an instantiated class 
or interface B<type-1, …, type-n>, then add an edge from D to B. 

o The graph is valid if it contains no cycles. 

[Note: This algorithm is a natural generalization of the rules for non-generic types.  See Partition I, §8.9.9 
end note] 

9.2  Generics and recursive inheritance graphs 
[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or 
interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g., 
C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).  
end rationale] 
Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows: 

1. Create a set containing a single generic type definition. 

2. Form the closure of this set by adding all generic types referenced in the type signatures of 
base classes and implemented interfaces of all types in the set. Include nested instantiations in 
this set, so a referenced type Stack<List<T>> actually counts as both List<T> and 
Stack<List<T>>.  

3. Construct a graph: 

• Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as 
needed to avoid name clashes. 

• If T appears as the actual type argument to be substituted for U in some referenced 
type D<…, U, …> add a non-expanding (->) edge from T to U.  

• If T appears somewhere inside (but not as) the actual type argument to be substituted 
for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.  

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge 
(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above 
contains no expanding-cycles.  

[Example: 
class B<U> 
class A<T> : B<A<A<T>>>  

generates the edges (using => for expanding-edges and -> for non-expanding-edges) 

T  ->   T   (generated by referenced type A<T>) 
T  =>  T   (generated by referenced type A<A<T>>) 
T  =>  U   (generated by referenced type B<A<A<T>>>) 

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example] 

[Example: 
class B<U> 
class A<T> : B<A<T>> 
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generates the edges 

T -> T (generated by referenced type A<T>) 
T => U (generated by referenced type B<A<T>>) 

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example] 

[Example: 
class P<T> 
class C<U,V> : P<D<V,U>> 
class D<W,X> : P<C<W,X>> 

generates the edges 

U -> X    V -> W   U => T   V => T   (generated by referenced type D<V,U> and P<D<V,U>>) 
W -> U   X -> V   W => T   W => T  (generated by referenced type C<W,X> and P<C<W,X>>) 

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so 
the instantiation closure is finite. end example] 

9.3  Generic method definitions 
A generic method definition is one that includes a generic parameter list.  A generic method can be defined 
within a non-generic type; or within a generic type, in which case the method’s generic parameter(s) shall be 
additional to the generic parameter(s) of the owner.  As with generic type definitions, each generic parameter 
on a generic method definition has a name and an optional set of constraints.  

Generic methods can be static, instance, or virtual.  Class or instance constructors (.cctor, or .ctor, 
respectively) shall not be generic. 

The method generic parameters are in scope in the signature and body of the method, and in the generic 
parameter constraints.  [Note: The signature includes the method return type.  So, in the example:  

.method … !!0 M`1<T>() { … } 

the !!0 is in scope—it’s the generic parameter of M`1<T> even though it preceeds that parameter in the 
declaration..  end note] 

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case 
the generic parameters of both the generic type and the generic method are in scope in the method signature and 
body, and in constraints on method generic parameters. 

9.4  Instantiating generic types 
GenArgs is used to represent a generic argument list:   

GenArgs ::= 

  Type   [‘,’  Type ]*   [‘,’]* 

 

We say that a type is closed if it contains no generic parameters; otherwise, it is open.   

A given generic type definition can be instantiated with generic arguments to produce an instantiated type.   

[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate 
them as follows: 

newobj instance void class MyList`1<int32>::.ctor() 
initobj valuetype Pair`2<int32, valuetype Pair<string,int32>> 

end example]  

[Example:  
ldtoken !0   // !0 = generic parameter 0 in generic type definition 
castclass class List`1<!1> // !1 = generic parameter 1 in generic type definition 
box !!1    // !!1 = generic parameter 1 in generic method definition 
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end example]  

The number of generic arguments in an instantiation shall match the number of generic parameters specified in 
the type or method definition. 

The CLI does not support partial instantiation of generic types.  And generic types shall not appear 
uninstantiated anywhere in metadata signature blobs. 

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods): 

• Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid) 

• Value types that contain fields that can point into the CIL evaluation stack (e.g.,  
List<System.RuntimeArgumentHandle>) 

• void (e.g., List<System.Void> is invalid) 

Unmanaged pointer types (e.g., int32*) can be used as generic arguments to generic types and methods. 

[Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would 
be invalid.  For example, since byrefs are not allowed as field types or as method return types, in the definition 
of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end 
rationale] 

Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including 
the types and number of their generic arguments).  [Rationale: This is required to correctly implement casting 
and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale] 

9.5  Generics variance 
The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces 
and delegate classes.  

The symbol “+” is used in the syntax of §10.1.7 to denote a covariant generic parameter, while “-” is used to 
denote a contravariant generic parameter 

This block contains only informative text  
Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all 
instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from 
assignment compatibility.  So, for example, an instance of type IA`1<string> can be assigned to a local of type 
type IA`1<object>. 

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-
T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB. 

[Example:  (The syntax used is illustrative of a high-level language.) 
// Covariant parameters can be used as result types 
interface IEnumerator<+T> { 
 T Current { get; } 
 bool MoveNext(); 
} 

// Covariant parameters can be used in covariant result types 
interface IEnumerable<+T> { 
 IEnumerator<T> GetEnumerator(); 
} 

// Contravariant parameters can be used as argument types 
interface IComparer<-T> {  
 bool Compare(T x, T y); 
} 

// Contravariant parameters can be used in contravariant interface types 
interface IKeyComparer<-T> : IComparer<T> { 
 bool Equals(T x, T y); 
 int GetHashCode(T obj); 
} 
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// A contravariant delegate type 
delegate void EventHandler<-T>(T arg); 

// No annotation indicates non-variance.  Non-variant parameters can be used anywhere. 
// The following type shall be non-variant because T appears in as a method argument as 
// well as in a covariant interface type 
interface ICollection<T> : IEnumerable<T> { 
 void CopyTo(T[] array, int index);  
 int Count { get; } 
} 

end example] 

End informative text 

9.6  Assignment compatibil ity of instantiated types 

• Assignment compatibility is defined in Partition I.  

[Example: 

Assuming Employee := Manager, 
IEnumerable<Manager> eManager = ... 
IEnumerable<Employee> eEmployee = eManager;   // Covariance  
IComparer<object> objComp = ... 
IComparer<string> strComp = objComp;    // Contravariance  
EventHandler<Employee> employeeHandler = ... 
EventHandler<Manager> managerHandler = employeeHandler; // Contravariance 

end example] 

 [Example: Given the following: 
interface IConverter<-T,+U> { 
  U Convert(T x); 
} 

IConverter<string, object> := IConverter<object, string> 

Given the following: 
delegate U Function<-T,+U>(T arg); 

Function<string, object> := Function<object, string>. end example] 

[Example:  
IComparer<object> objComp = ... 
// Contravariance and interface inheritance 
IKeyComparer<string> strKeyComp = objComp; 

IEnumerable<string[]> strArrEnum = … 
// Covariance on IEnumerable and covariance on arrays 
IEnumerable<object[]> objArrEnum = strArrEnum; 

IEnumerable<string>[] strEnumArr = ... 
// Covariance on IEnumerable and covariance on arrays 
IEnumerable<object>[] objEnumArr = strEnumArr; 

IComparer<object[]> objArrComp = ... 
// Contravariance on IComparer and covariance on arrays 
IComparer<string[]> strArrComp = objArrComp; 

IComparer<object>[] objCompArr = ... 
// Contravariance on IComparer and covariance on arrays 
IComparer<string>[] strCompArr = objCompArr; 

end example] 
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9.7  Validity of member signatures 
To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures 
of members of covariant and contravariant generic types. 

This block contains only informative text  
• Covariant parameters can only appear in “producer,” “reader,” or “getter” positions in the type 

definition; i.e., in 

o result types of methods 

o inherited interfaces 

• Contravariant parameters can only appear in “consumer,” “writer,” or “setter” positions in the 
type definition; i.e., in 

o argument types of methods 

• NonVariant parameters can appear anywhere. 

End informative text 
We now define formally what it means for a co/contravariant generic type definition to be valid. 

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or 
delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or 
nothing: 

• Every instance method and virtual method declaration is valid with respect to S 

• Every inherited interface declaration is valid with respect to S 

• There are no restrictions on static members, instance constructors, or on the type’s own generic 
parameter constraints. 

Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various 
components of the type definition to be valid with respect to S. We define a negation operation on annotations, 
written –S, to mean “flip negatives to positives, and positives to negatives”. 

Think of  

• “valid with respect to S” as “behaves covariantly” 

• “valid with respect to –S” as “behaves contravariantly” 

• “valid with respect to S and to –S” as “behaves non-variantly”.  

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e., 
all generic parameters appearing shall be non-variant. 

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if 

• its result type signature t is valid with respect to S; and 

• each argument type signature t_i is valid with respect to –S. 

• each method generic parameter constraint type t_j is valid with respect to –S. 

[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on 
generic parameters also behave contravariantly. end note] 

Type signatures. A type signature t is valid with respect to S if it is 

• a non-generic type (e.g., an ordinary class or value type) 

• a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked 
covariant or non-variant) 



 

32 Partition II 

• an array type u[] and u is valid with respect to S; i.e., array types behave covariantly 

• a closed generic type G<t_1,…,t_n> for which each  

o t_i is valid with respect to S, if the i’th parameter of G is declared covariant 

o t_i is valid with respect to –S, if the i’th parameter of G is declared contravariant 

o t_i is valid with respect to S and with respect to –S, if the i’th parameter of G is 
declared non-variant. 

9.8  Signatures and binding 
Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token, 
which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts: 

1. The type in which the member is declared, in this case, an instantiation of the generic type 
definition.  For example: IComparer`1<String>. 

2. The name and generic (uninstantiated) signature of the member.  For example: int32 
Compare(!0,!0). 

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by 
MemberRef. 

[Example: 
.class public C`2<S,T> { 
  .field string f 
  .field !0 f 
  .method instance void m(!0 x) {...} 
  .method instance void m(!1 x) {...} 
  .method instance void m(string x) {...} 
}  

The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type; 
and two fields called f with the same type.  They are all distinguished through the MemberRef encoding 
described above: 

string C`2<string, string>::f 
!0  C<string, string>::f 
void C`2<string, string>::m(!0) 
void C`2<string, string>::m(!1) 
void C`2<string, string>::m(string) 

The way in which a source language might resolve this kind of overloading is left to each individual language.  
For example, many might disallow such overloads. 

end example] 

9.9  Inheritance and overriding 
Member inheritance is defined in Partition I, in  “Member Inheritance”. (Overriding and hiding are also defined 
in that partition, in “Hiding, overriding, and layout”.) This definition is extended, in an obvious manner, in the 
presence of generics.  Specifically, in order to determine whether a member hides (for static or instance 
members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each 
generic parameter with its generic argument, and compare the resulting member signatures.  [Example: The 
following illustrates this point: 

Suppose the following definitions of a base class B, and a derived class D. 
.class B  
{ .method public virtual void V(int32 i) { … } } 

.class D extends B 
{ .method public virtual void V(int32 i) { … } } 

In class D, D.V overrides the inherited method B.V, because their names and signatures match.   
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How does this simple example extend in the presence of generics, where class D derives from a generic 
instantiation?  Consider this example: 
.class B`1<T> 
{ .method public virtual void V(!0) { … } } 

.class D extends B`1<int32> 
{ .method public virtual void V(int32) { … } } 

.class E extends B`1<string> 
{ .method public virtual void V(int32) { … } } 

Class D derives from B<int32>.  And class B<int32> defines the method: 
   public virtual void V(int32 t) { … } 

where we have simply substituted B’s generic parameter T, with the specific generic argument int32.  This 
matches the method D.V (same name and signature).  Thus, for the same reasons as in the non-generic example 
above, it’s clear that D.V overrides the inherited method B.V.   

Contrast this with class E, which derives from B<string>.  In this case, substituting B’s T with string, we see 
that B.V has this signature: 

   public virtual void V(string t) { … } 

This signature differs from method E.V, which therefore does not override the base class’s B.V method.    

end example] 

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same 
name and signature (including return type).  The following illustrates this point: 

[Example: 
.class B`1<T> 
{ .method public virtual void V(!0 t)     { … } 
  .method public virtual void V(string x) { … } 
} 

.class D extends B`1<string> { } // Invalid 

Class D is invalid, because it will inherit from B<string> two methods with identical signatures: 
void V(string) 

However, the following version of D is valid: 
.class D extends B`1<string> 
{ .method public virtual void  V(string t)  { … } 
  .method public virtual void  W(string t) 
  { … 
    .override  method instance void class B`1<string>::V(!0) 
    … 
  } 
} 

end example] 

When overriding generic methods (that is, methods with their own generic parameters) the number of generic 
parameters shall match exactly those of the overridden method.   If an overridden generic method has one or 
more constraints on its generic arguments then: 

• The overriding method can have constraints only on the same generic arguments; 

• Any such constraint on a generic argument specified by the overriding method shall be no more 
restrictive than the constraint specified by the overridden method for the same generic argument; 

 [Note: Within the body of an overriding method, only constraints directly specified in its signature apply. 
When a method is invoked, it’s the constraints associated with the metadata token in the call or callvirt 
instruction that are enforced. end note] 
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9.10  Explicit  method overrides 
A type, be it generic or non-generic, can implement particular virtual methods (whether the method was 
introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.) 

The rules governing overrides are extended, in the presence of generics, as follows: 

• If the implementing method is part of a non-generic type or a closed generic type, then the 
declaring method shall be part of a base class of that type or an interface implemented by that 
type. [Example: 
.class interface I`1<T> 
{ .method public abstract virtual void M(!0) {} 
} 

.class C implements class I`1<string> 
{ .override method instance void class I`1<string>::M(!0) with  
  method instance void class C::MInC(string) 
  .method virtual void MInC(string s) 
  { ldstr "I.M" 
    call void [mscorlib]System.Console::WriteLine(string) 
    ret 
  } 
} 

end example] 

• If the implementing method is generic, then the declared method shall also be generic and shall 
have the same number of method generic parameters.  

Neither the implementing method nor the declared method shall be an instantiated generic method.  This 
means that an instantiated generic method cannot be used to implement an interface method, and that it is 
not possible to provide a special method for instantiating a generic method with specific generic 
parameters. 
[Example: Given the following 
  .class interface I 
{ .method public abstract virtual void M<T>(!!0) {} 
  .method public abstract virtual void N() {} 
} 

neither of the following .override statements is allowed 

.class C implements class I`1<string> 
{ .override class I::M<string> with instance void class C::MInC(string) 
  .override class I::N with instance void class C::MyFn<string> 
  .method virtual void MInC(string s) { … } 
  .method virtual void MyFn<T>() { … } 
} 
end example] 

9.11  Constraints on generic parameters  
A generic parameter declared on a generic class or generic method can be constrained by one or more types  
(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).  
Generic parameters can be instantiated only with generic arguments that are assignment compatible (when 
boxed) with each of the declared constraints and that satisfy all specified special constraints. 

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic 
method definition itself.  

[Note: There are no other restrictions on generic parameter constraints.  In particular, the following uses are 
valid: Constraints on generic parameters of generic classes can make recursive reference to the generic 
parameters, and even to the class itself.  
 

.class public Set`1<(class IComparable<!0>) T> { … } 

// can only be instantiated by a derived class! 
.class public C`1<(class C<!0>) T> {} 



 

 Partition II 35 

.class public D extends C`1<class D> { … } 
 

Constraints on generic parameters of generic methods can make recursive reference to the generic 
parameters of both the generic method and its enclosing class (if generic). The constraints can also 
reference the enclosing class itself.  

.class public A`1<T> { 
  .method public void M<(class IDictionary<!0,!!0>) U>() {} 
} 

 

Generic parameter constraints can be generic parameters or non-generic types such as arrays.  
.class public List`1<T> { 
  // The constraint on U is T itself 
  .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … } 
} 

 end note] 

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified, 
the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for 
using constraints with a class or method is defined in §10.1.7.) [Example:   

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is 
constrained to inherit both from the class Employee, and to implement the interface IComparable<T>: 

.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … } 
 

end example] 

[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated 
with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known 
to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is 
first boxed (see Partition III) or the callvirt instruction is prefixed with the constrained. prefix instruction (see 
Partition III). end note] 

This block contains only informative text  

9.12  References to members of generic types 
CIL instructions that reference type members are generalized to permit reference to members of instantiated 
types. 

The number of generic arguments specified in the reference shall match the number specified in the 
definition of the type. 

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods. 

End informative text 
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10 Defining types 
Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module: 

Decl ::= 

  .class ClassHeader ‘{’ ClassMember* ‘}’ 

| … 
 

The logical metadata table created by this declaration is specified in §22.37. 

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use 
“class” instead of “type” in their name.  All classes are types, but “types” is a broader term encompassing value 
types, and interfaces as well. end rationale] 

10.1  Type header (ClassHeader)  
A type header consists of 

• any number of type attributes, 

• optional generic parameters 

• a name (an Id), 

• a base type (or base class type), which defaults to [mscorlib]System.Object, and 

• an optional list of interfaces whose contract this type and all its descendent types shall satisfy. 

ClassHeader ::= 

  ClassAttr* Id [‘<’ GenPars ‘>’ ] [ extends TypeSpec  [ implements TypeSpec ] [ ‘,’ 
TypeSpec ]* ] 
 

The optional generic parameters are used when defining a generic type (§10.1.7). 

The extends keyword specifies the base type of a type. A type shall extend from exactly one other type. If no 
type is specified, ilasm will add an extends clause to make the type inherit from System.Object. 

The implements keyword specifies the interfaces of a type.  By listing an interface here, a type declares that 
all of its concrete implementations will support the contract of that interface, including providing 
implementations of any virtual methods the interface declares.  See also §11 and §12. 

[Example: This code declares the class CounterTextBox, which extends the class 
System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface 
CountDisplay in the module Counter of the current assembly. The attributes private, auto and autochar 
are described in the following subclauses. 

.class private auto autochar CounterTextBox 
   extends [System.Windows.Forms]System.Windows.Forms.TextBox 
   implements [.module Counter]CountDisplay 
{ // body of the class 
} 

end example] 

A type can have any number of custom attributes attached.  Custom attributes are attached as described in §21. 
The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout 
information, type semantics information, inheritance rules, interoperation information, and information on 
special handling. The following subclauses provide additional information on each group of predefined 
attributes. 

ClassAttr ::= Description Clause 
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ClassAttr ::= Description Clause 

  abstract Type is abstract. 10.1.4 

| ansi Marshal strings to platform as ANSI. 10.1.5 

| auto Layout of fields is provided automatically. 10.1.2 

| autochar Marshal strings to platform as ANSI or Unicode 
(platform-specific). 

10.1.5 

| beforefieldinit Need not initialize the type before a static method is 
called. 

10.1.6 

| explicit Layout of fields is provided explicitly. 10.1.2 

| interface Declares an interface. 10.1.3 

| nested assembly Assembly accessibility for nested type. 10.1.1 

| nested famandassem Family and assembly accessibility for nested type. 10.1.1 

| nested family Family accessibility for nested type. 10.1.1 

| nested famorassem Family or assembly accessibility for nested type. 10.1.1 

| nested private Private accessibility for nested type. 10.1.1 

| nested public Public accessibility for nested type. 10.1.1 

| private Private visibility of top-level type. 10.1.1 

| public Public visibility of top-level type. 10.1.1 

| rtspecialname Special treatment by runtime. 10.1.6 

| sealed The type cannot be derived from. 10.1.4 

| sequential Layout of fields is sequential. 10.1.2 

| serializable Reserved (to indicate this type can be serialized). 10.1.6 

| specialname Might get special treatment by tools. 10.1.6 

| unicode Marshal strings to platform as Unicode. 10.1.5 
 

10.1 .1  Visibi l ity  and accessibi l i ty  attributes  

ClassAttr ::= … 

| nested assembly 

| nested famandassem 

| nested family 

| nested famorassem 

| nested private 

| nested public 

| private 

| public 
 

See Partition I.  A type that is not nested inside another type shall have exactly one visibility (private or 
public) and shall not have an accessiblity.  Nested types shall have no visibility, but instead shall have 
exactly one of the accessibility attributes nested assembly, nested famandassem, nested 
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family, nested famorassem, nested private, or nested public. The default visibility for top-
level types is private. The default accessibility for nested types is nested private. 

10.1 .2  Type layout attributes 

ClassAttr ::= … 

| auto 

| explicit 

| sequential 
 

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one 
layout attribute specified.  By convention, ilasm supplies auto if no layout attribute is specified. The layout 
attributes are: 

auto: The layout shall be done by the CLI, with no user-supplied constraints. 

explicit: The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have 
explicit layout. 

sequential: The CLI shall lay out the fields in sequential order, based on the order of the fields in the 
logical metadata table (§22.15). 

[Rationale: The default auto layout should provide the best layout for the platform on which the code is 
executing.  sequential layout is intended to instruct the CLI to match layout rules commonly followed by 
languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable 
layout.  explicit layout allows the CIL generator to specify the precise layout semantics. end rationale] 

10.1 .3  Type semantics  attributes  

ClassAttr ::= … 

| interface 
 

The type semantic attributes specify whether an interface, class, or value type shall be defined.  The 
interface attribute specifies an interface.  If this attribute is not present and the definition extends (directly 
or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§13).   
Otherwise, a class shall be defined (§11). 

[Example:  
.class interface public abstract auto ansi ’System.IComparable’ { … } 

System.IComparable is an interface because the interface attribute is present. 
.class public sequential ansi serializable sealed beforefieldinit 
    ’System.Double’ extends System.ValueType implements System.IComparable, 
     … { … } 

System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so 
System.Double is a value type. 

.class public abstract auto ansi serializable beforefieldinit ’System.Enum’ 
    extends System.ValueType implements System.IComparable, … { … } 

Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class. 
.class public auto ansi serializable beforefieldinit ’System.Random’ 
    extends System.Object { … } 

System.Random is a class because it is not an interface or a value type. 

end example] 

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes) 
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10.1 .4  Inheritance attributes 

ClassAttr ::= … 

| abstract 

| sealed 
 

Attributes that specify special semantics are abstract and sealed. These attributes can be used together. 

abstract specifies that this type shall not be instantiated.  If a type contains abstract methods, that type 
shall be declared as an abstract type. 

sealed specifies that a type shall not have derived classes.  All value types shall be sealed. 

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden. 
Framework authors should use sealed classes sparingly since they do not provide a convenient building block 
for user extensibility.  Sealed classes can be necessary when the implementation of a set of virtual methods for 
a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation 
details not visible to potential derived classes.  

A type that is both abstract and sealed should have only static members, and serves as what some 
languages call a “namespace” or “static class”. end rationale] 

10.1 .5  Interoperation attributes  

ClassAttr ::= … 

| ansi 

| autochar 

| unicode 
 

These attributes are for interoperation with unmanaged code.  They specify the default behavior to be used 
when calling a method (static, instance, or virtual) on the class, that has an argument or return type of 
System.String and does not itself specify marshalling behavior.  Only one value shall be specified for any 
type, and the default value is ansi. The interoperation attributes are: 

ansi specifies that marshalling shall be to and from ANSI strings. 

autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the 
CLI is running. 

unicode specifies that marshalling shall be to and from Unicode strings. 

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and 
CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation 
has no support for them, a System.NotSupportedException is thrown. 

10.1 .6  Special  handling attributes  

ClassAttr ::= … 

| beforefieldinit 

| rtspecialname 

| serializable 

| specialname 
 

These attributes can be combined in any way. 

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called.  See 
§10.5.3. 
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rtspecialname indicates that the name of this item has special significance to the CLI.  There are no 
currently defined special type names; this is for future use.  Any item marked rtspecialname shall also be 
marked specialname. 

serializable Reserved for future use, to indicate that the fields of the type are to be serialized into a data 
stream (should such support be provided by the implementation). 

specialname indicates that the name of this item can have special significance to tools other than the CLI.  
See, for example, Partition I . 

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that.  The 
converse is not true. end rationale] 

10.1 .7  Generic  parameters (GenPars)  

Generic parameters are included when defining a generic type.   

GenPars ::= 

  GenPar [ ‘,’ GenPars ] 

The GenPar non-terminal has the following production: 

GenPar::= 

   [  [  GenParAttribs ]* [ ‘(’ [ GenConstraints ] ‘)’ ]  Id  

 

GenParAttribs::= 

  ‘+’  

| ‘-’  

| class  

| valuetype  

| .ctor  

 

+ denotes a covariant generic parameter (§9.5). 

- denotes a contravariant generic parameter (§9.5). 

class is a special-purpose constraint that constrains Id to being a reference type. [Note: This includes type 
parameters which are themselves constrained to be reference types through a class or base type constraint. end 
note] 

valuetype is a special-purpose constraint that constrains Id to being a value type, except that that type shall 
not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type 
parameters which are themselves constrained to be value types. end note] 

.ctor is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract) 
that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This 
includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a 
value type. end note] 

class and valuetype shall not both be specified for the same Id. 

[Example:  
.class C< + class .ctor (class System.IComparable<!0>) T > { … } 
 
This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that 
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it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end 
example] 

Finally, the GenConstraints non-terminal has the following production: 

GenConstraints ::= 

  Type [ ‘,’ GenConstraints ] 

 

There shall be no duplicates of Id in the GenPars production.  

[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines 
a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1 
and I2, and V is constrained to derive from class Base: 

.class Dict`2<(I1,I2)K, (Base)V> { … } 

end example] 

The following table shows the valid combinations of type and special constraints for a representative set of 
types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is 
specified or when the base class constraint is System.Object. The symbol 9 means “set”, the symbol 8 means 
“not set”, and the symbol * means “either set or not set” or “don’t care”. 

 

Special Constraint Type Constraint 

class valuetype .ctor

Meaning 

8 8 8 Any type 

9 8 8 Any reference type 

9 8 9 Any reference type having a default 
constructor 

8 9 * Any value type except 
System.Nullable<T> 

8 8 9 Any type with a public default 
constructor 

(System.Object) 

9 9 * Invalid 

8 8 9 Any value type including 
System.Nullable<T> 

8 9 * Any value type except 
System.Nullable<T> 

8 8 8 Any value type and System.ValueType, 
and System.Enum 

9 8 8 System.ValueType and System.Enum 
only 

9 8 9 Not meaningful: Cannot be 
instantiated (no instantiable reference 
type can derived from 
System.ValueType) 

System.ValueType 

9 9 * Invalid 

System.Enum 8 8 9 Any enum type 
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8 9 * 

8 8 8 Any enum type and System.Enum 

9 8 8 System.Enum only 

9 8 9 Not meaningful: Cannot be 
instantiated (no instantiable reference 
type can be derived from System.Enum) 

9 9 * Invalid 

8 8 8 Any System.Nullable<T> or other type 
implementing interface 

8 8 9 Any System.Nullable<T> or other type 
implementing interface with default 
constructor 

9 8 8 Any reference type implementing 
System.INullableValue (note: this 
excludes System.Nullable<T>) 

9 8 9 Any reference type implementing 
System.INullableValue with a default 
constructor (note: this excludes 
System.Nullable<T>) 

8 9 * Any valuetype implementing 
System.INullableValue (note: this 
includes System.Nullable<T>) 

System.INullableValue 

9 9 * Invalid 

8 8 8 System.Exception, or any class derived 
from System.Exception 

8 8 9 Any System.Exception with a public 
default constructor 

9 8 8 System.Exception, or any class derived 
from System.Exception. This is exactly 
the same result as if the class 
constraint was not specified 

9 8 9 Any Exception with a public default 
constructor. This is exactly the same 
result as if the class constraint was not 
specified 

8 9 * Not meaningful: Cannot be 
instantiated (a value type cannot be 
derived from a reference type) 

System.Exception (an 
example of any non-special 

reference Type) 

9 9 * Invalid 

8 8 8 System.Delegate, or any class derived 
from System.Delegate 

System.Delegate 

8 8 9 Not meaningful: Cannot be 
instantiated (there is no default 
constructor) 
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9 8 8 System.Delegate, or any class derived 
from System.Delegate 

9 8 9 Any Delegate with a public .ctor. 
Invalid for known delegates 
(System.Delegate) 

8 9 * Not meaningful: Cannot be 
instantiated (a value type cannot be 
derived from a reference type) 

9 9 * Invalid 

8 8 8 Any array 

* 8 9 Not meaningful: Cannot be 
instantiated (no default constructor) 

9 8 8 Any array 

8 9 * Not meaningful: Cannot be 
instantiated (a value type cannot be 
derived from a reference type) 

System.Array 

9 9 * Invalid 

 

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these 
instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the 
specified type fails verification, while those marked Valid do not. 

.class public auto ansi beforefieldinit Bar`1<valuetype T> 

Valid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<Nullable`1<int32>> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit 'Bar`1'<class T> 

Invalid ldtoken  class Bar`1<int32> 

Valid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit Bar`1<(class 
 [mscorlib]System.ValueType) T> 

Valid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Valid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Valid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 

.class public auto ansi beforefieldinit Bar`1<class (int32)> T> 

Invalid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType> 
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Note: This type cannot be instantiated as no reference type can extend int32 

.class public auto ansi beforefieldinit Bar`1<valuetype 
  (class [mscorlib]System.Exception)> T> 

Invalid ldtoken  class Bar`1<int32> 

Invalid ldtoken  class Bar`1<class [mscorlib]System.Exception> 

Invalid ldtoken  class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>  

Invalid ldtoken  class Bar`1<class [mscorlib]System.ValueType>  

Note: This type cannot be instantiated as no value type can extend System.Exception 

.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T> 

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor: 
Invalid ldtoken  class Bar`1<class Foo> 

Valid ldtoken  class Bar`1<class FooBar> 

end example] 

10.2  Body of a type definition 
A type can contain any number of further declarations. The directives .event, .field, .method, and 
.property are used to declare members of a type. The directive .class inside a type declaration is used to 
create a nested type, which is discussed in further detail in §10.6. 

ClassMember ::= Description Clause 

  .class ClassHeader ‘{’ ClassMember* ‘}’ Defines a nested type. 10.6 

| .custom CustomDecl Custom attribute. 21 

| .data DataDecl Defines static data 
associated with the type. 

16.3 

| .event EventHeader ‘{’ EventMember* ‘}’ Declares an event. 18 

| .field FieldDecl Declares a field belonging 
to the type. 

16 

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ Declares a method of the 
type. 

15 

| .override TypeSpec ‘::’ MethodName with 
CallConv Type TypeSpec ‘::’ MethodName ‘(’ 
Parameters ‘)’ 

Specifies that the first 
method is overridden by 
the definition of the 
second method. 

10.3.2 

| .pack Int32 Used for explicit layout of 
fields. 

10.7 

| .param type ‘[’ Int32 ‘]’ Specifies a type parameter 
for a generic type; for use 
in associating a custom 
attribute with that type 
parameter. 

15.4.1.5 

| .property PropHeader ‘{’ PropMember* ‘}’ Declares a property of the 
type. 

17 

| .size Int32 Used for explicit layout of 
fields. 

10.7 

| ExternSourceDecl Source line information. 5.7 



 

 Partition II 45 

ClassMember ::= Description Clause 

| SecurityDecl Declarative security 
permissions. 

20 

 

10.3  Introducing and overriding virtual methods 
A virtual method of a base type is overridden by providing a direct implementation of the method (using a 
method definition, see §15.4) and not specifying it to be newslot (§15.4.2.3).  An existing method body can 
also be used to implement a given virtual declaration using the .override directive (§10.3.2). 

10.3 .1  Introducing a  virtual method 

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4).  The definition 
can be marked newslot to always create a new virtual method for the defining class and any classes derived 
from it: 

• If the definition is marked newslot, the definition always creates a new virtual method, even if 
a base class provides a matching virtual method.  A reference to the virtual method via the class 
containing the method definition, or via a class derived from that class, refers to the new 
definition (unless hidden by a newslot definition in a derived class).  Any reference to the 
virtual method not via the class containing the method definition, nor via its derived classes, 
refers to the original definition. 

• If the definition is not marked newslot, the definition creates a new virtual method only if there 
is not virtual method of the same name and signature inherited from a base class. 

It follows that when a virtual method is marked newslot, its introduction will not affect any existing 
references to matching virtual methods in its base classes. 

10.3 .2  The .override direct ive 

The .override directive specifies that a virtual method shall be implemented (overridden), in this type, by a 
virtual method with a different name, but with the same signature.  This directive can be used to provide an 
implementation for a virtual method inherited from a base class, or a virtual method specified in an interface 
implemented by this type.  The .override directive specifies a Method Implementation (MethodImpl) in the 
metadata (§15.1.4). 

ClassMember ::= Clause 

  .override TypeSpec ‘::’ MethodName with CallConv Type TypeSpec ‘::’ 
MethodName ‘(’ Parameters ‘)’ 

 

  .override method CallConv Type TypeSpec ‘::’ MethodName GenArity ‘(’ 
Parameters ‘)’ with method CallConv Type TypeSpec ‘::’ MethodName GenArity 
‘(’ Parameters ‘)’ 

 

| … 10.2 
 

 

GenArity ::= [ ‘<’ ‘[’ Int32 ‘]’ ‘>’ ] 

 

Int32 is the number of generic parameters. 

The first TypeSpec::MethodName pair specifies the virtual method that is being overridden, and shall be either 
an inherited virtual method or a virtual method on an interface that the current type implements.  The remaining 
information specifies the virtual method that provides the implementation.   



 

46 Partition II 

While the syntax specified here (as well as the actual metadata format (§22.27 )) allows any virtual method to 
be used to provide an implementation, a conforming program shall provide a virtual method actually 
implemented directly on the type containing the .override directive. 

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the 
VES. end rationale] 

[Example: The following shows a typical use of the .override directive. A method implementation is 
provided for a method declared in an interface (see §12). 

.class interface I 
{ .method public virtual abstract void M() cil managed {} 
} 

.class C implements I 
{ .method virtual public void M2() 
  { // body of M2 
  } 
  .override I::M with instance void C::M2() 
} 

The .override directive specifies that the C::M2 body shall provide the implementation of be used to 
implement I::M on objects of class C. 

end example] 

10.3 .3  Accessibi l i ty and overriding 

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.  

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not 
narrow, the accessibility of that method.  As a principle, if a client of a type is allowed to access a method of 
that type, then it should also be able to access that method (identified by name and signature) in any derived 
type.  Table 7.1 specifies narrow and widen in this context—a “Yes” denotes that the derived class can apply 
that accessibility, a “No” denotes it is invalid. 

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that 
method. 

Table 7.1: Valid Widening of Access to a Virtual Method 

Derived 
class\Base type 
Accessibility 

Compiler-
controlled 

private family assembly famandassem famorassem public 

Compiler-
controlled 

See note 3 No No No No No No 

private See note 3 Yes No No No No No 

family See note 3 Yes Yes No Yes See note 1 No 

assembly See note 3 Yes No See note 2 See note 2 No No 

famandassem See note 3 Yes No No See note 2 No No 

famorassem See note 3 Yes Yes See note 2 Yes Yes No 

public See note 3 Yes Yes Yes Yes Yes Yes 
 
1 Yes, provided both are in different assemblies; otherwise, No. 
2 Yes, provided both are in the same assembly; otherwise, No. 
3 Yes, provided both are in the same module; otherwise, No. 

[Note: A method can be overridden even if it might not be accessed by the derived class.  
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If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a 
method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed 
outside the assembly. In both cases assembly or famandassem, respectively, can be used inside the same 
assembly. end note] 

A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is 
apparently narrowed by the derived class. A famorassem method can be overridden with family 
accessibility by a type in another assembly.  

[Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify 
that the accessibility should be unchanged.  To avoid narrowing access, it would be necessary to specify an 
accessibility of public, which would force widening of access even when it is not desired.  As a compromise, 
the minor narrowing of “family” alone is permitted. end rationale] 

10.4  Method implementation requirements 
A type (concrete or abstract) can provide  

• implementations for instance, static, and virtual methods that it introduces 

• implementations for methods declared in interfaces that it has specified it will implement, or that 
its base type has specified it will implement 

• alternative implementations for virtual methods inherited from its base class 

• implementations for virtual methods inherited from an abstract base type that did not provide an 
implementation 

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for 

• all methods declared by the type itself 

• all virtual methods of interfaces implemented by the type 

• all virtual methods that the type inherits from its base type  

10.5  Special  members 
There are three special members, all of which are methods that can be defined as part of a type: instance 
constructors, instance finalizers, and type initializers.  

10.5 .1  Instance constructor 

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by 
the newobj instruction (see Partition III).  An instance constructor shall be an instance (not static or virtual) 
method, it shall be named .ctor, and marked instance, rtspecialname, and specialname 
(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor 
cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several 
instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other 
methods, instance constructors can write into fields of the type that are marked with the initonly attribute 
(§16.1.2). 

[Example: The following shows the definition of an instance constructor that does not take any parameters: 
.class X { 
  .method public rtspecialname specialname instance void .ctor() cil managed 
    { .maxstack 1 
    // call super constructor 
    ldarg.0  // load this pointer 
    call instance void [mscorlib]System.Object::.ctor() 
    // do other initialization work 
    ret 
  } 
} 
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end example] 

10.5 .2  Instance f inal izer 

The behavior of finalizers is specified in Partition I.  The finalize method for a particular type is specified by 
overriding the virtual method Finalize in System.Object. 

10.5 .3  Type init ia l izer 

A type (class, interface, or value type) can contain a special method called a type initializer, which is used to 
initialize the type itself. This method shall be static, take no parameters, return no value, be marked with 
rtspecialname and specialname (§15.4.2.6), and be named .cctor.  

Like instance constructors, type initializers can write into static fields of their type that are marked with the 
initonly attribute (§16.1.2). 

[Example: The following shows the definition of a type initializer: 
.class public EngineeringData extends [mscorlib]System.Object 
{ 
.field private static initonly float64[] coefficient 
.method private specialname rtspecialname static void .cctor() cil managed 
  { 
  .maxstack 1 

  // allocate array of 4 Double 
  ldc.i4.4 
  newarr     [mscorlib]System.Double 
  // point initonly field to new array 
  stsfld     float64[] EngineeringData::coefficient 
  // code to initialize array elements goes here 
  ret 
  } 
} 

end example] 

[Note: Type initializers are often simple methods that initialize the type’s static fields from stored constants or 
via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end 
note] 

10.5 .3.1  Type init ia l izat ion guarantees  

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and 
§10.5.3.3): 

1. As to when type initializers are executed is specified in Partition I. 

2. A type initializer shall be executed exactly once for any given type, unless explicitly called by 
user code. 

3. No methods other than those called directly or indirectly from the type initializer are able to 
access members of a type before its initializer completes execution. 

10.5 .3.2  Relaxed guarantees 

A type can be marked with the attribute beforefieldinit (§10.1.6) to indicate that the guarantees 
specified in §10.5.3.1 are not necessarily required.  In particular, the final requirement above need not be 
provided: the type initializer need not be executed before a static method is called or referenced. 

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to 
ensure this final guarantee.  At the same time, examination of large bodies of managed code have shown that 
this final guarantee is rarely required, since type initializers are almost always simple methods for initializing 
static fields.  Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether 
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this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees. 
end rationale] 

10.5 .3.3  Races and deadlocks 

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further 
guarantees for code that is called from a type initializer: 

1. Static variables of a type are in a known state prior to any access whatsoever. 

2. Type initialization alone shall not create a deadlock unless some code called from a type 
initializer (directly or indirectly) explicitly invokes blocking operations. 

[Rationale: Consider the following two class definitions: 
.class public A extends [mscorlib]System.Object 
{ .field static public class A a 
  .field static public class B b 
  .method public static rtspecialname specialname void .cctor () 
  { ldnull   // b=null 
    stsfld class B A::b 
    ldsfld class A B::a // a=B.a 
    stsfld class A A::a 
    ret 
  } 
} 

.class public B extends [mscorlib]System.Object 
{ .field static public class A a 
  .field static public class B b 
  .method public static rtspecialname specialname void .cctor () 
  { ldnull   // a=null 
    stsfld class A B::a 
    ldsfld class B A::b // b=A.b 
    stsfld class B B::b 
    ret 
  } 
} 

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type 
initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no 
access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the 
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But 
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to 
guarantee repeatable results. 

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system. 
In these cases, for example, two separate threads might start attempting to access static variables of separate 
types (A and B) and then each would have to wait for the other to complete initialization. 

A rough outline of an algorithm to ensure points 1 and 2 above is as follows: 

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type. 

2. If the type is initialized, you are done. 

2.1. If the type is not yet initialized, try to take an initialization lock.   

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3. 

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds 
the lock. 

2.2.2. If so, return since blocking would create a deadlock.  This thread will now see an incompletely initialized 
state for the type, but no deadlock will arise. 

2.2.3 If not, block until the type is initialized then return. 
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2.3 Initialize the base class type and then all interfaces implemented by this type. 

2.4 Execute the type initialization code for this type. 

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be 
initialized, and return. 

end rationale] 

10.6  Nested types 
Nested types are specified in Partition I. For information about the logical tables associated with nested types, 
see §22.32. 

[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base 
type, and can be instantiated independently of its enclosing type. This means that the instance members of the 
enclosing type are not accessible using the this pointer of the nested type. 

A nested type can access any members of its enclosing type, including private members, as long as those 
members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested 
types, a type can give access to its private members to another type. 

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only 
members with assembly, famorassem, or public accessibility can be accessed by the enclosing type. 
end note] 

[Example: The following shows a class declared inside another class. Each class declares a field. The nested 
class can access both fields, while the enclosing class does not have access to the enclosed class’s field b. 

.class public auto ansi X 
{ .field static private int32 a 
  .class auto ansi nested public Y  
  { .field static private int32 b 
    // ... 
  } 
} 

end example] 

10.7  Controll ing instance layout  
The CLI supports both sequential and explicit layout control, see § 10.1.2.  For explicit layout it is also 
necessary to specify the precise layout of an instance; see also §22.18 and §22.16. 

FieldDecl ::= 

  [ ‘[’ Int32 ‘]’ ] FieldAttr* Type Id  
 

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the 
beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members 
explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly 
inherits.) This form of explicit layout control shall not be used with global fields specified using the at 
notation §16.3.2). 

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an 
object reference shall not overlap with offsets occupied by a built-in value type or a part of another object 
reference. While one object reference can completely overlap another, this is unverifiable. 

Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field 
indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every 
field shall be assigned an offset. 

The .pack  directive specifies that fields should be placed within the runtime object at byte addresses which 
are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller.  For 
example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any 
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.pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4.  The 
integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128.  (A value of zero 
indicates that the pack size used should match the default for the current platform.)  The .pack directive shall 
not be supplied for any type with explicit layout control. 

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of 
memory allocated is the maximum of the size calculated from the layout and the .size directive. Note that if 
this directive applies to a value type, then the size shall be less than 1 MByte. 

[Note: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be 
supported by all conforming implementations of the CLI. end note] 

[Example: The following class uses sequential layout of its fields: 
.class sequential public SequentialClass 
{ .field public int32 a  // store at offset 0 bytes 
  .field public int32 b  // store at offset 4 bytes 
} 

The following class uses explicit layout of its fields: 
.class explicit public ExplicitClass 
{ .field [0] public int32 a // store at offset 0 bytes 
  .field [6] public int32 b // store at offset 6 bytes 
} 

The following value type uses .pack to pack its fields together: 
.class value sealed public MyClass extends [mscorlib]System.ValueType 
{ .pack 2 
  .field  public int8  a  // store at offset 0 bytes 
  .field  public int32 b // store at offset 2 bytes (not 4) 
} 

The following class specifies a contiguous block of 16 bytes: 
.class public BlobClass 
{ .size 16 
} 

end example] 

10.8  Global f ields and methods 
In addition to types with static members, many languages have the notion of data and methods that are not part 
of a type at all. These are referred to as global fields and methods. 

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply 
members of an invisible abstract public class. In fact, the CLI defines such a special class, named 
<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class; 
i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when 
multiple modules are combined together, as is done by a class loader.  This process is known as metadata 
merging. 

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition 
on the assumption they are equivalent, and that any anomaly will be discovered when the type is used.  For the 
special class that holds global members, however, members are unioned across all modules at merge time. If 
the same name appears to be defined for cross-module use in multiple modules then there is an error.  In detail: 

• If no member of the same kind (field or method), name, and signature exists, then add this 
member to the output class. 

• If there are duplicates and no more than one has an accessibility other than 
compilercontrolled, then add them all to the output class. 

• If there are duplicates and two or more have an accessibility other than 
compilercontrolled, an error has occurred. 
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[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might 
be thought of as such. All global fields and methods in a module are owned by the manufactured class 
"<Module>".  However, each module has its own "<Module>" class. There's no way to even refer, early-bound, 
to such a global field or method in another module. (You can, however, "reach" them, late-bound, via 
Reflection.)  end note] 
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11 Semantics of classes 
Classes, as specified in Partition I, define types in an inheritance hierarchy.  A class (except for the built-in 
class System.Object and the special class <Module>) shall declare exactly one base class.  A class shall declare 
zero or more interfaces that it implements (§12).  A concrete class can be instantiated to create an object, but an 
abstract class (§10.1.4) shall not be instantiated.   A class can define fields (static or instance), methods 
(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces). 

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III).  
When a variable or field that has a class as its type is created (for example, by calling a method that has a local 
variable of a class type), the value shall initially be null, a special value that := with all class types even though 
it is not an instance of any particular class. 
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12 Semantics of interfaces 
Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have 
static fields and methods, but they shall not have instance fields or methods.  Interfaces can define virtual 
methods, but only if those methods are abstract (see Partition I and §15.4.2.4). 

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple 
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation 
technique that is both efficient when used and has no cost when not used.  By contrast, providing static fields 
and methods need not affect the layout of instances and therefore does not raise these issues. end rationale] 

Interfaces can be nested inside any type (interface, class, or value type). 

12.1  Implementing interfaces 
Classes and value types shall implement zero or more interfaces.  Implementing an interface implies that all 
concrete instances of the class or value type shall provide an implementation for each abstract virtual 
method declared in the interface.   In order to implement an interface, a class or value type shall either 
explicitly declare that it does so (using the implements attribute in its type definition, see §10.1) or shall be 
derived from a base class that implements the interface. 

[Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual 
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation. 

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a 
type implement that interface.  Conceptually, this represents the fact that an interface represents a contract that 
can have more requirements than are captured in the set of abstract methods.  From an implementation 
point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly 
declared. end note] 

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface, 
A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires 
the implementation of all interfaces required by B. If a class or value type declares that it implements A, then 
all concrete instances shall provide implementations of the virtual methods declared in A and all of the 
interfaces A requires. [Note:  The class need not explicitly declare that it implements the interfaces required 
by A. end note] 

[Example: The following class implements the interface IStartStopEventSource defined in the module 
Counter. 

.class private auto autochar StartStopButton  
       extends [System.Windows.Forms]System.Windows.Forms.Button 
       implements [.module Counter]IstartStopEventSource 
{ // body of class 
} 

end example] 

12.2  Implementing virtual methods on interfaces 
Classes that implement an interface (§12.1) are required to provide implementations for the abstract virtual 
methods defined by that interface.  There are three mechanisms for providing this implementation: 

• Directly specifying an implementation, using the same name and signature as appears in the 
interface. 

• Inheritance of an existing implementation from the base type. 

• Use of an explicit MethodImpl (§15.1.4). 

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual 
abstract methods: 
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• If the base class implements the interface, start with the same virtual methods that it provides; 
otherwise, create an interface that has empty slots for all virtual functions. 

• If this class explicitly specifies that it implements the interface  (i.e., the interfaces that appear in 
this class’s InterfaceImpl table, §22.23) 

o If the class defines any public virtual newslot methods whose name and 
signature match a virtual method on the interface, then use these new virtual methods 
to implement the corresponding interface method. 

• If there are any virtual methods in the interface that still have empty slots, see if there are any 
public virtual methods, but not public virtual newslot methods, available on this 
class (directly or inherited) having the same name and signature, then use these to implement the 
corresponding methods on the interface. 

• Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual 
methods into the interface in preference to those inherited or chosen by name matching.  

• If the current class is not abstract and there are any interface methods that still have empty 
slots, then the program is invalid. 

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be 
implemented by any class that implements the interface.  The class specifies a mapping from its own virtual 
methods to those of the interface.  Thus it is virtual methods, not specific implementations of those methods 
that are associated with interfaces.  Overriding a virtual method on a class with a specific implementation will 
thus affect not only the virtual method named in the class but also any interface virtual methods to which that 
same virtual method has been mapped. end rationale] 
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13 Semantics of value types 
In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored 
directly in the location of that type. 

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as 
opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since 
there is no additional indirection involved. As elements of arrays they do not require allocating memory for the 
pointers as well as for the data itself.  Typical value types are complex numbers, geometric points, and dates. 
end rationale] 

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual), 
properties, events, and nested types.  A value of some value type can be converted into an instance of a 
corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a 
value type is defined) by a process called boxing. A boxed value type can be converted back into its value type 
representation, the unboxed form, by a process called unboxing.  Value types shall be sealed, and they shall 
have a base type of either System.ValueType or System.Enum (see Partition IV).  Value types shall implement 
zero or more interfaces, but this has meaning only in their boxed form (§13.3). 

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction 
(see Partition III) on unboxed value types. The isinst instruction can be used for boxed value types, however.  
Unboxed value types shall not be assigned the value null and they shall not be compared to null. 

Value types support layout control in the same way as do reference types (§10.7). This is especially important 
when values are imported from native code. 

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x; 
S y;} are not permitted. A struct shall have an acyclic finite flattening graph: 

For a value type S, define the flattening graph G of S to be the smallest directed graph such that: 

• S is in G. 
• Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T 

to X. 
• Whenever T is in G and T has a static field of value type Y then Y is in G. 

[Example: 
class C<U> { } 

struct S1<V> { 
  S1<V> x; 
} 

struct S2<V> { 
  static S2<V> x; 
} 

struct S3<V> { 
  static S3<C<V>> x; 
} 

struct S4<V> { 
  S4<C<V>>[] x; 
} 

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and 
is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is 
valid because field S4<C<V>>.x has reference type, not value type.  

The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether 
something like the following 
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   struct S3<V> { 
     static S3<S3<V>> x; 
   } 

is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example] 

13.1  Referencing value types 
The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type 
reference.   The boxed form of a value type shall be referred to by using the boxed keyword followed by a 
type reference. 

ValueTypeReference ::=      

  boxed TypeReference 

| valuetype TypeReference 
 

13.2  Initial izing value types 
Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3).  Unlike 
classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee 
about the initilization of (unboxed) value types: 

• Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose 
type is a value type are zero-initialized when the type is loaded.  

• Local variables shall be initialized to zero if the localsinit  bit in the method header 
(§25.4.4) is set. 

• Arrays shall be zero-initialized. 

• Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance 
constructor. 

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive, 
especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI 
and then passed to the CLI for management. end rationale] 
 

[Note: Boxed value types are classes and follow the rules for classes. end note] 

The instruction initobj (see Partition III) performs zero-initialization under program control.  If a value type has 
a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction 
(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The 
instance of the value type will be allocated on the stack. The Base Class Library provides the method 
System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types. 

[Example: The following code declares and initializes three value type variables.  The first variable is zero-
initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the 
stack and storing it into the local. 

.assembly Test { } 

.assembly extern System.Drawing { 
  .ver 1:0:3102:0 
  .publickeytoken = (b03f5f7f11d50a3a) 
} 

.method public static void Start() 
{ .maxstack 3 
  .entrypoint 
  .locals init (valuetype [System.Drawing]System.Drawing.Size Zero, 
          valuetype [System.Drawing]System.Drawing.Size Init, 
          valuetype [System.Drawing]System.Drawing.Size Store) 
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  // Zero initialize the local named Zero 
  ldloca Zero           // load address of local variable 
  initobj valuetype [System.Drawing]System.Drawing.Size 

  // Call the initializer on the local named Init 
  ldloca Init           // load address of local variable 
  ldc.i4 425            // load argument 1 (width) 
  ldc.i4 300            // load argument 2 (height) 
  call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32) 

  // Create a new instance on the stack and store into Store.  Note that 
  // stobj is used here – but one could equally well  use stloc, stfld, etc. 
  ldloca Store 
  ldc.i4 425            // load argument 1 (width) 
  ldc.i4 300            // load argument 2 (height) 
  newobj instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32) 
  stobj valuetype [System.Drawing]System.Drawing.Size 
  ret 
} 

end example] 

13.3  Methods of value types 
Value types can have static, instance and virtual methods. Static methods of value types are defined and called 
the same way as static methods of class types.  As with classes, both instance and virtual methods of a boxed or 
unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with 
unboxed value types (see Partition I), but it can be used on boxed value types. 

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the 
this pointer.  By contrast, instance and virtual methods of value types shall be coded to expect a managed 
pointer (see Partition I) to an unboxed instance of the value type.  The CLI shall convert a boxed value type 
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a 
virtual method whose implementation is provided by the unboxed value type. 

[Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is 
defined to return a managed pointer to the value type that shares memory with the original boxed instance. 

The following diagrams are intended to help the reader understand the relationship between the boxed and 
unboxed representations of a value type. 
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end note] 

[Rationale: An important use of instance methods on value types is to change internal state of the instance.  
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be 
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed 
as arguments. 

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes 
that implement the virtual method share a common representation defined by the class that first introduces the 
method.  Since value types can (and in the Base Class Library do) implement interfaces and virtual methods 
defined on System.Object,  it is important that the virtual method be callable using a boxed value type so  it 
can be manipulated as would any other type that implements the interface.  This leads to the requirement that 
the EE automatically unbox value types on virtual calls. end rationale] 

Table 1: Type of this given the CIL instruction and the declaring type of instance method. 

 Value Type (Boxed or Unboxed) Interface Object Type 

call managed pointer to value type invalid object reference 

callvirt managed pointer to value type object reference object reference 
 

[Example: The following converts an integer of the value type int32 into a string. Recall that int32 
corresponds to the unboxed value type System.Int32 defined in the Base Class Library.  Suppose the integer is 
declared as: 

.locals init (int32 x) 

Then the call is made as shown below: 
ldloca x  // load managed pointer to local variable 
call instance string valuetype [mscorlib]System.Int32::ToString() 

However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the 
value of x shall be boxed before the call is made and the code becomes: 

ldloc x 
box valuetype [mscorlib]System.Int32 
callvirt instance string [mscorlib]System.Object::ToString() 

end example] 
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14 Semantics of special types 
Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies 
the definitions automatically based on information available from the reference. 

14.1  Vectors 

Type ::= …  

     | Type ‘[’ ‘]’ 
 

Vectors are single-dimension arrays with a zero lower bound.  They have direct support in CIL instructions 
(newarr, ldelem, stelem, and ldelema, see Partition III).  The CIL Framework also provides methods that 
deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2).  Two 
vectors have the same type if their element types are the same, regardless of their actual upper bounds.  

Vectors have a fixed size and element type, determined when they are created.  All CIL instructions shall 
respect these values.  That is, they shall reliably detect attempts to do the following: index beyond the end of 
the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a 
vector with an incorrect data type.  See Partition III. 

[Example: Declare a vector of Strings: 
.field string[] errorStrings 

Declare a vector of function pointers: 
.field method instance void*(int32) [] myVec 

Create a vector of 4 strings, and store it into the field errorStrings.  The 4 strings lie at errorStrings[0] 
through errorStrings[3]: 

ldc.i4.4 
newarr string 
stfld string[] CountDownForm::errorStrings 

Store the string "First" into errorStrings[0]: 
ldfld string[] CountDownForm::errorStrings 
ldc.i4.0 
ldstr "First" 
stelem  

end example] 

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI.  It provides several methods 
that can be applied to all vectors. See Partition IV. 

14.2  Arrays 
While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES 
by creating subtypes of the abstract class System.Array (see Partition IV) 

Type ::= … 

   | Type ‘[’ [ Bound [ ‘,’ Bound ]*] ‘]’ 
 

The rank of an array is the number of dimensions.  The CLI does not support arrays with rank 0.  The type of 
an array (other than a vector) shall be determined by the type of its elements and the number of dimensions. 

Bound ::= Description 

  ‘...’ Lower and upper bounds unspecified.  In the case of 
multi-dimensional arrays, the ellipsis can be omitted 



 

 Partition II 61 

| Int32 Zero lower bound, Int32 upper bound 

| Int32 ‘...’ Lower bound only specified 

| Int32 ‘...’ Int32 Both bounds specified 
 

The class that the VES creates for arrays contains several methods whose implementation is supplied by the 
VES:   

• A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify 
the number of elements in each dimension beginning with the first dimension.  A lower bound of zero is 
assumed.   

• A constructor that takes twice as many int32 arguments as there are dimensions of the array. These 
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the 
lower bound for that dimension, and the second argument specifying the total number of elements in that 
dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for 
vectors. 

•  A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns 
a value whose type is the element type of the array. This method is used to access a specific element of the 
array where the arguments specify the index into each dimension, beginning with the first, of the element 
to be returned.  

• A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by 
a value whose type is the element type of the array. The return type of Set is void. This method is used to 
set a specific element of the array where the arguments specify the index into each dimension, beginning 
with the first, of the element to be set and the final argument specifies the value to be stored into the target 
element. 

• An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and 
has a return type that is a managed pointer to the array’s element type. This method is used to return a 
managed pointer to a specific element of the array where the arguments specify the index into each 
dimension, beginning with the first, of the element whose address is to be returned. 

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and 
3…7.  It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out.  Then it computes the 
address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out. 

.assembly Test { } 

.assembly extern mscorlib { } 

.method public static void Start() 
{ .maxstack 5 
  .entrypoint 
  .locals (class [mscorlib]System.String[,] myArray) 

  ldc.i4.5 // load lower bound for dim 1 
  ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1 
  ldc.i4.3 // load lower bound for dim 2 
  ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2 
  newobj instance void string[,]::.ctor(int32, int32, int32, int32) 
  stloc  myArray 

  ldloc myArray 
  ldc.i4.5 
  ldc.i4.3 
  ldstr "One" 
  call instance void string[,]::Set(int32, int32, string) 

  ldloc myArray 
  ldc.i4.5 
  ldc.i4.3 
  call instance string string[,]::Get(int32, int32) 
  call void [mscorlib]System.Console::WriteLine(string) 
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  ldloc myArray 
  ldc.i4.5 
  ldc.i4.4 
  call instance string & string[,]::Address(int32, int32) 
  ldstr "Test" 
  stind.ref 

  ldloc myArray 
  ldc.i4.5 
  ldc.i4.4 
  call instance string string[,]::Get(int32, int32) 
  call void [mscorlib]System.Console::WriteLine(string) 
  ret 
} 

end example] 
 

The following text is informative 
Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of 
arrays are different – each dimension (except the last) holds an array reference.  The following picture 
illustrates the difference: 

  
On the left is a [6, 10] rectangular array.  On the right is not one, but a total of five arrays.  The vertical array is 
an array of arrays, and references the four horizontal arrays.  Note how the first and second elements of the 
vertical array both reference the same horizontal array. 

Note that all dimensions of a multi-dimensional array shall have the same size.  But in an array of arrays, it is 
possible to reference arrays of different sizes.  For example, the figure on the right shows the vertical array 
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively. 

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES.  They 
are simply vectors whose elements reference other (recursively) jagged arrays. 

End of informative text 

14.3  Enums 
An enum (short for enumeration) defines a set of symbols that all have the same type.  A type shall be an enum 
if and only if it has an immediate base type of System.Enum.  Since System.Enum itself has an immediate base 
type of System.ValueType, (see Partition IV) enums are value types (§13) The symbols of an enum are 
represented by an underlying integer type:  one of { bool, char, int8, unsigned int8, int16, unsigned int16, 
int32, unsigned int32, int64, unsigned int64, native int, unsigned native int } 

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers 
corresponding to one of the symbols.  In fact, the CLS (see Partition I, CLS) defines a convention for using 
enums to represent bit flags which can be combined to form integral value that are not named by the enum type 
itself. end note] 

Enums obey additional restrictions beyond those on other value types.  Enums shall contain only fields as 
members (they shall not even define type initializers or instance constructors); they shall not implement any 
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interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be 
of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be 
initialized with the initobj instruction. 

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]  

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an 
enum declare the mapping of the symbols of the enum to the underlying values.  All of these fields shall have 
the type of the enum and shall have field init metadata that assigns them a value (§16.2). 

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums 
shall be distinct from their underlying type.  For all other purposes, including verification and execution of 
code, an unboxed enum freely interconverts with its underlying type.  Enums can be boxed (§13) to a 
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so 
boxing does not lose the original type of the enum. 

[Example: Declare an enum type and then create a local variable of that type.  Store a constant of the 
underlying type into the enum (showing automatic coersion from the underlying type to the enum type).  Load 
the enum back and print it as the underlying type (showing automatic coersion back).  Finally, load the address 
of the enum and extract the contents of the instance field and print that out as well. 

.assembly Test { } 

.assembly extern mscorlib { } 

.class sealed public ErrorCodes extends [mscorlib]System.Enum 
{ .field public unsigned int8 MyValue 
  .field public static literal valuetype ErrorCodes no_error = int8(0) 
  .field public static literal valuetype ErrorCodes format_error = int8(1) 
  .field public static literal valuetype ErrorCodes overflow_error = int8(2) 
  .field public static literal valuetype ErrorCodes nonpositive_error = int8(3) 
} 

.method public static void Start() 
{ .maxstack 5 
  .entrypoint 
  .locals init (valuetype ErrorCodes errorCode) 

  ldc.i4.1           // load 1 (= format_error) 
  stloc errorCode    // store in local, note conversion to enum 
  ldloc errorCode 
  call void [mscorlib]System.Console::WriteLine(int32) 
  ldloca errorCode   // address of enum 
  ldfld unsigned int8 valuetype ErrorCodes::MyValue 
  call void [mscorlib]System.Console::WriteLine(int32) 
  ret 
} 

end example] 

14.4  Pointer types 

Type ::= … Clause 

   | Type ‘&’  14.4.2 

   | Type ‘*’ 14.4.1 
 

A pointer type shall be defined by specifying a signature that includes the type of the location at which it 
points.  A pointer can be managed  (reported to the CLI garbage collector, denoted by &, see §14.4.2) or 
unmanaged (not reported, denoted by *, see §14.4.1) 

Pointers can contain the address of a field (of an object or value type) or of an element of an array.  Pointers 
differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an 
instance.  The CLI provides two type-safe operations on pointers:  

• Loading the value from the location referenced by the pointer. 
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• Storing an assignment-compatible value into the location referenced  by the pointer. 

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported: 

• Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which 
results in a pointer of the same kind 

• Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes), 
which results in a pointer of the same kind. Note that subtracting a pointer from an integer value 
is not permitted.   

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer value 
that specifies the number of bytes between the addresses they reference.  

The following is informative text 
Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on 
64-bit architectures.  They are best considered as unsigned int, whose size varies depending upon the 
runtime machine architecture. 

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables, 
arguments, and elements of vectors: 

Instruction Description 

ldarga Load address of argument 

ldelema Load address of vector element 

ldflda Load address of field 

ldloca Load address of local variable 

ldsflda Load address of static field 
 

Once a pointer is loaded onto the stack, the ldind class of instructions can be used to load the data item to 
which it points.   Similarly, the stind family of instructions can be used to store data into the location. 

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not 
within the current application domain.  This situation arises typically only from the use of objects with a base 
type of System.MarshalByRefObject (see Partition IV). 

14.4 .1  Unmanaged pointers  

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions 
on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to 
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how 
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data. 
This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer 
type for a field or array element. 

• Unmanaged pointers are not reported to the garbage collector and can be used in any way that an 
integer can be used.  

• Verifiable code cannot dereference unmanaged pointers. 

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This 
is safe only if one of the following is true: 

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for 
storing instances of objects (“garbage-collected memory” or “managed memory”). 

b. The unmanaged pointer contains the address of a field within an object. 

c. The unmanaged pointer contains the address of an element within an array. 
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d. The unmanaged pointer contains the address where the element following the last 
element in an array would be located. 

14.4 .2  Managed pointers  

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an 
element of an array, or the address where an element just past the end of an array would be stored (for pointer 
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage 
collector even if they do not point to managed memory.   

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by 
using a byref type for a field or array element. 

• Managed pointers can be passed as arguments, stored in local variables, and returned as values. 

• If a parameter is passed by reference, the corresponding argument is a managed pointer. 

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 
types.  

• Managed pointers are not interchangeable with object references.   

• A managed pointer cannot point to another managed pointer, but it can point to an object 
reference or a value type.  

• A managed pointer can point to a local variable, or a method argument 

• Managed pointers that do not point to managed memory can be converted (using conv.u or 
conv.ovf.u) into unmanaged pointers, but this is not verifiable. 

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can 
seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more 
details. 

End informative text 

14.5  Method pointers 

Type ::= … 

   | method CallConv Type ‘*’ ‘(’ Parameters ‘)’ 
 

Variables of type method pointer shall store the address of the entry point to a method with compatible 
signature.  A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a 
virtual method is obtained with the ldvirtftn instruction.  A method can be called by using a method pointer 
with the calli instruction.  See Partition III for the specification of these instructions. 

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures, 
and with unsigned int32 and on 32-bit architectures.  The preferred usage, however, is unsigned 
native int, which works on both 32- and 64-bit architectures. end note] 

[Example: Call a method using a pointer.  The method MakeDecision::Decide returns a method pointer to 
either AddOne or Negate, alternating on each call.  The main program calls MakeDecision::Decide three times, 
and after each call uses a calli instruction to call the method specified.  The output printed is "-1 2 –1" 
indicating successful alternating calls. 

.assembly Test { } 

.assembly extern mscorlib { } 
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.method public static int32 AddOne(int32 Input) 
{ .maxstack 5 
  ldarg Input 
  ldc.i4.1 
  add 
  ret 
} 

.method public static int32 Negate(int32 Input) 
{ .maxstack 5 
  ldarg Input 
  neg 
  ret 
} 

.class value sealed public MakeDecision extends 
   [mscorlib]System.ValueType 
{ .field static bool Oscillate 
  .method public static method int32 *(int32) Decide() 
  { ldsfld bool valuetype MakeDecision::Oscillate 
    dup 
    not 
    stsfld bool valuetype MakeDecision::Oscillate 
    brfalse NegateIt 
    ldftn int32 AddOne(int32) 
    ret 

NegateIt: 
    ldftn int32 Negate(int32) 
    ret 
  } 
} 

.method public static void Start() 
{ .maxstack 2 
  .entrypoint 

  ldc.i4.1 
  call method int32 *(int32) valuetype MakeDecision::Decide() 
  calli int32(int32) 
  call  void [mscorlib]System.Console::WriteLine(int32) 

  ldc.i4.1 
  call method int32 *(int32) valuetype MakeDecision::Decide() 
  calli int32(int32) 
  call  void [mscorlib]System.Console::WriteLine(int32) 

  ldc.i4.1 
  call method int32 *(int32) valuetype MakeDecision::Decide() 
  calli int32(int32) 
  call  void [mscorlib]System.Console::WriteLine(int32) 
  ret 
} 

end example] 

14.6  Delegates 
Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers, 
delegates are object-oriented, type-safe, and secure.  Delegates are reference types, and are declared in the form 
of classes.  Delegates shall have a base type of System.Delegate (see Partition IV). 

Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all 
four methods as specified here. These methods shall be declared runtime and managed (§15.4.3).  They 
shall not have a body, since that body shall be created automatically by the VES.  Other methods available on 
delegates are inherited from the class System.Delegate in the Base Class Library (see Partition IV). The 
delegate methods are: 
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• The instance constructor (named .ctor and marked specialname and rtspecialname, 
see §10.5.1) shall take exactly two parameters, the first having type System.Object, and the second having 
type System.IntPtr.  When actually called (via a newobj instruction, see Partition III), the first argument 
shall be an instance of the class (or one of its derived classes) that defines the target method, and the 
second argument shall be a method pointer to the method to be called. 

• The Invoke method shall be virtual and its signature constrains the target method to which it can be 
bound; see §14.6.1. The verifier treats calls to the Invoke method on a delegate just like it treats calls to 
any other method. 

• The BeginInvoke method (§14.6.3.1), if present, shall be virtual and have a signature related to, but 
not the same as, that of the Invoke method.  There are two differences in the signature.   First, the return 
type shall be System.IAsyncResult (see Partition IV).  Second, there shall be two additional parameters 
that follow those of Invoke: the first of type System.AsyncCallback and the second of type 
System.Object.  

• The EndInvoke method (§14.6.3) shall be virtual and have the same return type as the Invoke method. 
It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order 
they occur in the signature for Invoke.  In addition, there shall be an additional parameter of type 
System.IAsyncResult. 

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods, 
BeginInvoke and EndInvoke. 

[Example: The following declares a Delegate used to call functions that take a single integer and return 
nothing.  It provides all four methods so it can be called either synchronously or asynchronously.  Because no 
parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke. 

.assembly Test { } 

.assembly extern mscorlib { } 

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate 
 { .method public specialname rtspecialname instance void .ctor(object Instance, 
          native int Method) runtime managed {} 
   .method public virtual void Invoke(int32 action) runtime managed {} 
   .method public virtual class [mscorlib]System.IAsyncResult  
        BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback, 
           object Instance) runtime managed {} 
   .method public virtual void EndInvoke(class  
        [mscorlib]System.IAsyncResult result) runtime managed {} 
} 

end example] 

As with any class, an instance is created using the newobj instruction in conjunction with the instance 
constructor.  The first argument to the constructor shall be the object on which the method is to be called, or it 
shall be null if the method is a static method.  The second argument shall be a method pointer to a method on 
the corresponding class and with a signature that matches that of the delegate class being instantiated. 

14.6 .1  Delegate s ignature compatibil i ty 

Delegates can only be bound to target methods where the signatures of the delegate and the target method are 
compatible. Compatibility is determined by examining the parameter types, return type and calling convention. 
(Custom modifiers are not considered significant and do not impact compatibility.) 

For a delegate and target method to be compatible, the calling conventions shall match exactly. 

For a delegate and target method to be compatible, the parameter types shall be compatible per the following 
rules:  

Use D and T to denote the types of parameters to a delegate and a target method (respectively), use D := T to 
indicate that the types of the parameters are compatible, use D != T to indicate the types of the parameters are 
incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to 
indicate the type parameter used for V. 
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1. [:= is reflexive] For all parameter types D, D := D. 
2. [:= is transitive] For all parameter types D, T and U, if D := U and U := T then D := T. 
3. D := T if T is the base class of D or an interface implemented by D and D is not a value type 

(includes primitives, pointers, function pointers) 
4. D := T if D and T are both interfaces and the implementation of D requires the implementation 

of T. 
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a 

vector and both have the same rank. 
6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling 

convention, custom modifiers) are compatible per these rules. 
7. D := T if D and T are instantiations of the generic type G<+V> and VD is a subtype of VT. 
8. D := T if D and T are instantiations of the generic type G<-V> and VT is a subtype of VD. 
9. D := T if D and T are instantiations of the generic type G<V> and VD == VT. 
10. Otherwise, D != T. 

For a delegate and target method to be compatible, the return type shall be compatible per the following rules: 
Use D and T to denote the return type of a delegate and a target method (respectively), use D := T to indicate 
that the return types are compatible, use D !:= T to indicate that the return types are incompatible, use D[] to 
indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter 
used for V. 

1. [:= is reflexive] For all return types D, D := D. 
2. [:= is transitive] For all return types D, T and U, if D := U and U := T then D := U. 
3. D := T if D is the base class of T or an interface implemented by T and T is not a value type 

(includes primitives, pointers, function pointers) 
4. D := T if D and T are both interfaces and the implementation of T requires the implementation 

of D. 
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a 

vector and both have the same rank. 
6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling 

convention, custom modifiers) are compatible per these rules. 
7. D := T if D and T are instantiations of the generic type G<+V> and VT is a subtype of VD. 
8. D := T if D and T are instantiations of the generic type G<-V> and VD is a subtype of VT. 
9. D := T if D and T are instantiations of the generic type G<V> and VD == VT. 
10. Otherwise D != T. 

14.6 .2  Synchronous cal ls  to delegates  

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the 
virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as 
the this pointer), followed by the other arguments as specified in the signature.  When this call is made, the 
caller shall block until the called method returns. The called method shall be executed on the same thread as the 
caller. 

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop, 
appropriate for use as the target for the delegate. 

.class public Test 
{ .field public int32 MyData 
  .method public void onStartStop(int32 action) 
  { ret        // put your code here 
  } 
  .method public specialname rtspecialname  
          instance void .ctor(int32 Data) 
  { ret        // call base class constructor, store state, etc. 
  } 
} 

Then define a main program. This one constructs an instance of Test and then a delegate that targets the 
onStartStop method of that instance.  Finally, call the delegate. 
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.method public static void Start() 
{ .maxstack 3 
  .entrypoint 
  .locals (class StartStopEventHandler DelegateOne, 
           class Test InstanceOne) 
  // Create instance of Test class 
  ldc.i4.1 
  newobj instance void Test::.ctor(int32) 
  stloc InstanceOne 

 
  // Create delegate to onStartStop method of that class 
  ldloc InstanceOne 
  ldftn instance void Test::onStartStop(int32) 
  newobj void StartStopEventHandler::.ctor(object, native int) 
  stloc DelegateOne 

  // Invoke the delegate, passing 100 as an argument 
  ldloc DelegateOne 
  ldc.i4 100 
  callvirt instance void StartStopEventHandler::Invoke(int32) 
  ret 
} 

Note that the example above creates a delegate to a non-virtual function.  If onStartStop had been a virtual 
function, use the following code sequence instead: 

ldloc InstanceOne 
dup 
ldvirtftn instance void Test::onStartStop(int32) 
newobj void StartStopEventHandler::.ctor(object, native int) 
stloc DelegateOne 
// Invoke the delegate, passing 100 as an argument 
ldloc DelegateOne 

end example] 

[Note: The code sequence above shall use dup – not ldloc InstanceOne twice.  The dup code sequence is 
easily recognized as type-safe, whereas alternatives would require more complex analysis.  Verifiability of 
code is discussed in Partition III end note] 

14.6 .3  Asynchronous cal ls  to delegates  

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the 
method to return. The called method shall be executed on a separate thread.  

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used. 

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected.  The callee 
thread continues execution and terminates silently 

Note: the callee can throw exceptions.  Any unhandled exception propagates to the caller via the EndInvoke 
method. 

14.6 .3.1  The BeginInvoke method 

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.  
BeginInvoke is similar to the Invoke method (§14.6.1), but has two differences: 

• It has two additional parameters, appended to the list, of type System.AsyncCallback, and 
System.Object. 

• The return type of the method is System.IAsyncResult. 

Although the BeginInvoke method therefore includes parameters that represent return values, these values are 
not updated by this method.  The results instead are obtained from the EndInvoke method (see below). 
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Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call 
has been completed.  The CLI provides two such mechanisms.  The first is through the result returned from the 
call.  This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be 
computed, it can be queried for the current status of the method call, and it contains the System.Object value 
that was passed to the call to BeginInvoke.  See Partition IV. 

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke.  The VES 
shall call this delegate when the value is computed or an exception has been raised indicating that the result will 
not be available.  The value passed to this callback is the same value passed to the call to BeginInvoke.  A 
value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback. 

[Rationale: This model supports both a polling approach (by checking the status of the returned 
System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to 
asynchronous calls. end rationale] 

A synchronous call returns information both through its return value and through output parameters.  Output 
parameters are represented in the CLI as parameters with managed pointer type.  Both the returned value and 
the values of the output parameters are not available until the VES signals that the asynchronous call has 
completed successfully.  They are retrieved by calling the EndInvoke method on the delegate that began the 
asynchronous call.  

14.6 .3.2  The EndInvoke method 

The EndInvoke method can be called at any time after BeginInvoke.   It shall suspend the thread that calls it 
until the asynchronous call completes.  If the call completes successfully, EndInvoke will return the value that 
would have been returned had the call been made synchronously, and its managed pointer arguments will point 
to values that would have been returned to the out parameters of the synchronous call. 

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different 
calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed 
pointers that were passed as arguments (so their return values can be provided). 
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15 Defining, referencing, and calling methods 
Methods can be defined at the global level (outside of any type): 

Decl ::= … 

   | .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 

 

as well as inside a type: 

ClassMember ::= … 

   | .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 

 

15.1  Method descriptors 
There are four constructs in ILAsm connected with methods.  These correspond with different metadata 
constructs, as described in §23. 

15.1 .1  Method declarat ions 

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types), 
but not its body.  That is, a method declaration provides a MethodHeader but no MethodBodyItems.  These are 
used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract 
method.  A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a 
MethodRef. 

15.1 .2  Method definit ions 

A Method, or method definition, supplies the method name, attributes, signature, and body.  That is, a method 
definition provides a MethodHeader as well as one or more MethodBodyItems.  The body includes the method's 
CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata 
about the method.  See §10. 

15.1 .3  Method references  

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that 
method’s definition lies in another module or assembly.  A MethodRef shall be resolved by the VES into a 
Method before the method is called at runtime.  If a matching Method cannot be found, the VES shall throw a 
System.MissingMethodException.  See §22.25. 

15.1 .4  Method implementat ions 

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method.  It 
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method).  A 
MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an 
interface when the default mechanism (matching by name and signature) would not provide the correct result.  
See §22.27. 

15.2  Static,  instance,  and virtual methods 
Static methods are methods that are associated with a type, not with its instances. 

Instance methods are associated with an instance of a type: within the body of an instance method it is possible 
to reference the particular instance on which the method is operating (via the this pointer).  It follows that 
instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e., 
globally).  However, notice 

1. Instance methods on classes (including boxed value types), have a this pointer that is by default 
an object reference to the class on which the method is defined. 



 

72 Partition II 

2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed 
pointer to an instance of the type on which the method is defined. 

3. There is a special encoding (denoted by the syntactic item explicit in the calling convention, 
see §15.3) to specify the type of the this pointer, overriding the default values specified here. 

4. The this pointer can be null. 

Virtual methods are associated with an instance of a type in much the same way as for instance methods. 
However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation 
of the method shall be chosen at runtime by the VES depending upon the type of object used for the this 
pointer.  The particular Method that implements a virtual method is determined dynamically at runtime (a 
virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when 
invoked via the call instruction (see Partition III). 

With virtual calls (only), the notion of inheritance becomes important.  A derived class can override a virtual 
method inherited from its base classes, providing a new implementation of the method.  The method attribute 
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat 
the new definition as an independent virtual method definition.   

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with 
a callvirt instruction.  Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn 
instruction, and the ldftn instruction shall not be used. 

[Rationale: With a concrete virtual method there is always an implementation available from the class that 
contains the definition, thus there is no need at runtime to have an instance of a class available.  Abstract virtual 
methods, however, receive their implementation only from a subtype or a class that implements the appropriate 
interface, hence an instance of a class that actually implements the method is required. end rationale] 

15.3  Calling convention 

CallConv ::= [ instance [ explicit ]] [ CallKind ] 
 

A calling convention specifies how a method expects its arguments to be passed from the caller to the called 
method.   It consists of two parts: the first deals with the existence and type of the this pointer, while the second 
relates to the mechanism for transporting the arguments. 

If the attribute instance is present, it indicates that a this pointer shall be passed to the method.  This 
attribute shall be used for both instance and virtual methods.  

Normally, a parameter list (which always follows the calling convention) does not provide information about 
the type of the this pointer, since this can be deduced from other information.  When the combination 
instance explicit is specified, however, the first type in the subsequent parameter list specifies the type 
of the this pointer and subsequent entries specify the types of the parameters themselves. 

CallKind ::= 

  default 

| unmanaged cdecl 

| unmanaged fastcall 

| unmanaged stdcall 

| unmanaged thiscall 

| vararg 
 

Managed code shall have only the default or vararg calling kind.  default shall be used in all cases 
except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.  
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When dealing with methods implemented outside the CLI it is important to be able to specify the calling 
convention required.  For this reason there are 16 possible encodings of the calling kind.  Two are used for the 
managed calling kinds.  Four are reserved with defined meaning across many platforms, as follows:  

• unmanaged cdecl is the calling convention used by Standard C 

• unmanaged stdcall specifies a standard C++ call 

• unmanaged fastcall is a special optimized C++ calling convention 

• unmanaged thiscall is a C++ call that passes a this pointer to the method 

Four more are reserved for existing calling conventions, but their use is not maximally portable.  Four more are 
reserved for future standardization, and two are available for non-standard experimental use. 

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.) 

15.4  Defining methods 

MethodHeader ::= 

  MethAttr* [ CallConv ] Type  

              [ marshal ‘(’ [ NativeType ] ‘)’ ]  

              MethodName [ ‘<’ GenPars‘>’ ] ‘(’ Parameters ‘)’ ImplAttr* 
 

The method head (see also §10) consists of 

• the calling convention (CallConv, see §15.3) 

• any number of predefined method attributes (MethAttr, see §15.4.1.5) 

• a return type with optional attributes  

• optional marshalling information (§7.4) 

• a method name 

• optional generic parameters (when defining generic methods, see §10.1.7) 

• a signature  

• and any number of implementation attributes (ImplAttr, see §15.4.3) 

Methods that do not have a return value shall use void as the return type. 

MethodName ::= 

  .cctor 

| .ctor 

| DottedName 
 

Method names are either simple names or the special names used for instance constructors and type initializers. 

Parameters ::= [ Param [ ‘,’ Param ]* ] 

Param ::= 

  ... 

| [ ParamAttr* ] Type [ marshal ‘(’ [ NativeType ] ‘)’ ] [ Id ] 
 

The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the 
zero-based index of the parameter.  In CIL instructions it is always encoded using the zero-based index (the 
name is for ease of use in ILAsm). 
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Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any 
ellipsis (“…”) 

ParamAttr ::= 

  ‘[’ in ‘]’ 

| ‘[’ opt ‘]’ 

| ‘[’ out ‘]’ 
 

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method 
signature. 

[Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature.  Thus, 
modifiers form part of the method’s contract while parameter attributes do not. end note] 

in and out shall only be attached to parameters of pointer (managed or unmanaged) type.  They specify 
whether the parameter is intended to supply input to the method, return a value from the method, or both.  If 
neither is specified in is assumed.  The CLI itself does not enforce the semantics of these bits, although they 
can be used to optimize performance, especially in scenarios where the call site and the method are in different 
application domains, processes, or computers. 

opt specifies that this parameter is intended to be optional from an end-user point of view.  The value to be 
supplied is stored using the .param syntax (§15.4.1.4). 

15.4 .1  Method body 

The method body shall contain the instructions of a program. However, it can also contain labels, additional 
syntactic forms and many directives that provide additional information to ilasm and are helpful in the 
compilation of methods of some languages. 

MethodBodyItem ::= Description Clause 

  .custom CustomDecl Definition of custom attributes. 21 

| .data DataDecl Emits data to the data section  16.3 

| .emitbyte Int32 Emits an unsigned byte to the code section 
of the method. 

15.4.1.1 

| .entrypoint Specifies that this method is the entry point 
to the application (only one such method is 
allowed). 

15.4.1.2 

| .locals [ init ]  

  ‘(’ LocalsSignature ‘)’ 

Defines a set of local variables for this 
method. 

15.4.1.3 

| .maxstack Int32 The int32 specifies the maximum number 
of elements on the evaluation stack during 
the execution of the method. 

15.4.1 

| .override TypeSpec ‘::’ MethodName Use current method as the implementation 
for the method specified. 

10.3.2 

| .override method CallConv Type 
TypeSpec ‘::’ MethodName GenArity ‘(’ 
Parameters ‘)’ 

Use current method as the implementation 
for the method specified. 

10.3.2 

| .param ‘[’ Int32 ‘]’ [ ‘=’ FieldInit ] Store a constant FieldInit value for 
parameter Int32 

15.4.1.4 

| .param type ‘[’ Int32 ‘]’ Specifies a type parameter for a generic 
method 

15.4.1.5 
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MethodBodyItem ::= Description Clause 

| ExternSourceDecl .line or #line 5.7 

| Instr An instruction Partition VI  

| Id ‘:’  A label 5.4 

| ScopeBlock Lexical scope of local variables 15.4.4 

| SecurityDecl .permission or .permissionset 20 

| SEHBlock An exception block 19 
 

15.4 .1.1  The .emitbyte direct ive 

MethodBodyItem ::= …  

   | .emitbyte Int32 
 

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the 
point at which the directive appears. 

[Note: The .emitbyte directive is used for generating tests.  It is not required in generating regular 
programs. end note] 

15.4 .1.2  The .entrypoint  direct ive 

MethodBodyItem ::= …  

   | .entrypoint 
 

The .entrypoint directive marks the current method, which shall be static, as the entry point to an 
application. The VES shall call this method to start the application. An executable shall have exactly one entry 
point method. This entry point method can be a global method or it can appear inside a type.  (The effect of the 
directive is to place the metadata token for this method into the CLI header of the PE file) 

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings, 
the strings shall represent the arguments to the executable, with index 0 containing the first argument.  The 
mechanism for specifying these arguments is platform-specific and is not specified here. 

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or 
unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0 
shall indicate that the application terminated ordinarily.  

The accessibility of the entry point method shall not prevent its use in starting execution.  Once started the VES 
shall treat the entry point as it would any other method. 

The entry point method cannot be defined in a generic class. 

 [Example: The following prints the first argument and returns successfully to the operating system: 
.method public static int32 MyEntry(string[] s) cil managed 
{ .entrypoint 
  .maxstack 2 
  ldarg.0   // load and print the first argument 
  ldc.i4.0 
  ldelem.ref 
  call void [mscorlib]System.Console::WriteLine(string) 
  ldc.i4.0   // return success 
  ret 
} 

end example] 
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15.4 .1.3  The . locals  direct ive 

The .locals statement declares one or more local variables (see Partition I) for the current method.  

MethodBodyItem ::= …  

   | .locals  [ init ] ‘(’ LocalsSignature ‘)’ 

LocalsSignature ::= Local [ ‘,’ Local ]* 

Local ::= Type [ Id ] 
 

If present, the Id is the name of the corresponding local variable. 

If init is specified, the variables are initialized to their default values according to their type: reference types 
are initialized to null and value types are zeroed out.  

[Note: Verifiable methods shall include the init keyword.   See Partition III. end note] 

[Example: The following declares 4 local variables, each of which is to be initialized to its default value: 
.locals init ( int32 i, int32 j, float32 f, int64[] vect) 

end example] 

15.4 .1.4  The .param direct ive 

MethodBodyItem ::= …  

   | .param ‘[’ Int32 ‘]’ [ ‘=’ FieldInit ] 
 

This directive stores in the metadata a constant value associated with method parameter number Int32, 
see §22.9.  While the CLI requires that a value be supplied for the parameter, some tools can use the presence 
of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.   
Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the 
first parameter of the method, index 2 to specify the second parameter of the method, and so on. 

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement 
any semantic they wish (e.g., so-called default argument values). end note] 

15.4 .1.5  The .param type directive 

MethodBodyItem ::= …  

   | .param type ‘[’ Int32 ‘]’ 
 

This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal 
of the type or method parameter to which the directive applies. [Note: This directive is used in conjunction with 
a .custom directive to associate a custom attribute with a type parameter. end note] 
When a .param type directive is used within class scope, it refers to a type parameter of that class. When the 
directive is used within method scope inside a class definition, it refers to a type parameter of that method. 
Otherwise, the program is ill-formed. 

[Example: 
.class public G<T,U> { 
  .param type [1]  // refers to T 
  .custom instance void TypeParamAttribute::.ctor() = (01 00 ... ) 
  .method public void Foo<M>(!!0 m) { 
     .param type [1] // refers to M 
     .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ... ) 
      … 
  } 
  … 
} 
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end example] 

15.4 .2  Predef ined attributes on methods 

MethAttr ::= Description Clause 

  abstract The method is abstract (shall also be 
virtual). 

15.4.2.4 

| assembly Assembly accessibility 15.4.2.1 

| compilercontrolled Compiler-controlled accessibility. 15.4.2.1 

| famandassem Family and Assembly accessibility 15.4.2.1 

| family Family accessibility 15.4.2.1 

| famorassem Family or Assembly accessibility 15.4.2.1 

| final This virtual method cannot be overridden by 
derived classes. 

15.4.2.2 

| hidebysig Hide by signature. Ignored by the runtime. 15.4.2.2 

| newslot Specifies that this method shall get a new slot 
in the virtual method table. 

15.4.2.3 

| pinvokeimpl ‘(’ 
    QSTRING [ as QSTRING ] 
    PinvAttr* ‘)’ 

Method is actually implemented in native 
code on the underlying platform 

15.4.2.5 

| private Private accessibility 15.4.2.1 

| public Public accessibility. 15.4.2.1 

| rtspecialname The method name needs to be treated in a 
special way by the runtime. 

15.4.2.6 

| specialname The method name needs to be treated in a 
special way by some tool. 

15.4.2.6 

| static Method is static. 15.4.2.2 

| virtual Method is virtual. 15.4.2.2 

| strict Check accessibility on override 15.4.2.2 
 

The following combinations of predefined attributes are invalid: 

• static combined with any of final, newslot, or virtual 

• abstract combined with any of final or pinvokeimpl 

• compilercontrolled combined with any of final, rtspecialname, specialname, or 
virtual 

15.4 .2.1  Accessibi l ity  information 

MethAttr ::= …  

| assembly 

| compilercontrolled 

| famandassem 

| family 
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| famorassem 

| private 

| public 
 

Only one of these attributes shall be applied to a given method.  See Partition I.  

15.4 .2.2  Method contract  attributes  

MethAttr ::= …  

| final 

| hidebysig 

| static 

| virtual 

| strict 
 

These attributes can be combined, except a method shall not be both static and virtual; only virtual 
methods shall be final or strict; and abstract methods shall not be final.  

final methods shall not be overridden by derived classes of this type.  

hidebysig is supplied for the use of tools and is ignored by the VES.  It specifies that the declared method 
hides all methods of the base class types that have a matching method signature; when omitted, the method 
should hide all methods of the same name, regardless of the signature. 

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use 
a hide-by-name-and-signature semantics. end rationale] 

static and virtual are described in §15.2. 

strict virtual methods can only be overridden if they are also accessible. See §23.1.10. 

15.4 .2.3  Overriding behavior 

MethAttr ::= …  

   | newslot 
 

newslot shall only be used with virtual methods. See 10.3. 

15.4 .2.4  Method attributes 

MethAttr ::= …  

   | abstract 
 

abstract shall only be used with virtual methods that are not final. It specifies that an implementation 
of the method is not provided but shall be provided by a derived class.  abstract methods shall only appear 
in abstract types (§10.1.4). 

15.4 .2.5  Interoperation attributes  

MethAttr ::= …  

   | pinvokeimpl ‘(’ QSTRING [ as QSTRING ] PinvAttr* ‘)’ 
 

See §15.5.2and §22.20. 
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15.4 .2.6  Special  handling attributes  

MethAttr ::= …  

   | rtspecialname 

   | specialname 
 

The attribute rtspecialname specifies that the method name shall be treated in a special way by the 
runtime. Examples of special names are .ctor (object constructor) and .cctor (type initializer).  

specialname indicates that the name of this method has special meaning to some tools. 

15.4 .3  Implementat ion attributes of  methods 

ImplAttr ::= Description Clause 

  cil The method contains standard CIL code. 15.4.3.1 

| forwardref The body of this method is not specified 
with this declaration. 

15.4.3.3 

| internalcall Denotes the method body is provided by 
the CLI itself 

15.4.3.3 

| managed The method is a managed method. 15.4.3.2 

| native The method contains native code. 15.4.3.1 

| noinlining The runtime shall not expand the method 
inline. 

15.4.3.3 

| runtime The body of the method is not defined, but 
is produced by the runtime. 

15.4.3.1 

| synchronized The method shall be executed in a single 
threaded fashion. 

15.4.3.3 

| unmanaged Specifies that the method is unmanaged. 15.4.3.2 
 

15.4 .3.1  Code implementation attributes  

ImplAttr ::= …  

   | cil 

   | native 

   | runtime 
 

These attributes are mutually exclusive; they specify the type of code the method contains. 

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of 
the method shall be provided if cil is used. 

native specifies that a method was implemented using native code, tied to a specific processor for which it 
was generated. native methods shall not have a body but instead refer to a native method that declares the 
body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.  

runtime specifies that the implementation of the method is automatically provided by the runtime and is 
primarily used for the methods of delegates (§14.6). 

15.4 .3.2  Managed or unmanaged 

ImplAttr ::= …  
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   | managed 

   | unmanaged 
 

These shall not be combined.  Methods implemented using CIL are managed.  unmanaged is used primarily 
with PInvoke (§15.5.2). 

15.4 .3.3  Implementat ion information 

ImplAttr ::= …  

   | forwardref 

   | internalcall 

   | noinlining  

   | synchronized 
 

These attributes can be combined. 

forwardref specifies that the body of the method is provided elsewhere.  This attribute shall not be present 
when an assembly is loaded by the VES.  It is used for tools (like a static linker) that will combine separately 
compiled modules and resolve the forward reference. 

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level 
methods in a system library).  It shall not be applied to methods that are intended for use across 
implementations of the CLI.   

noinlining specifies that the body of this method should not be included into the code of any caller 
methods, by a  CIL-to-native-code compiler; it shall be kept as a separate routine.  

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g., 
displaying stack traces) and profiling.  It also provides a mechanism for the programmer to override the default 
heuristics a CIL-to-native-code compiler uses for inlining. end rationale] 

synchronized specifies that the whole body of the method shall be single-threaded. If this method is an 
instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is 
a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be 
obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock 
is released when the method exits, either through a normal return or an exception.  Exiting a synchronized 
method using a tail. call shall be implemented as though the tail. had not been specified.  noinlining 
specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call 
instruction with the body of the called method. This can be done by the runtime for optimization purposes. 

15.4 .4  Scope blocks 

    ScopeBlock ::= ‘{’ MethodBodyItem* ‘}’ 

A ScopeBlock is used to group elements of a method body together.  For example, it is used to designate the 
code sequence that constitutes the body of an exception handler. 

15.4 .5  vararg methods 

vararg methods accept a variable number of arguments.  They shall use the vararg calling convention 
(§15.3). 

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that 
are passed.  The fixed part of the argument list shall be separated from the additional arguments with an ellipsis 
(see Partition I). [Note: The method reference is represented by either a MethodRef  (§22.25) or MethodDef 
(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the 
MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional 
arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note] 
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The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction 
arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator 
which provides a type-safe mechanism for accessing the arguments (see Partition IV). 

[Example: The following example shows how a vararg method is declared and how the first vararg 
argument is accessed, assuming that at least one additional argument was passed to the method: 

.method public static vararg void MyMethod(int32 required) { 
  .maxstack 3 
  .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x) 

  ldloca it    // initialize the iterator 
  initobj  valuetype [mscorlib]System.ArgIterator 
  ldloca it 
  arglist     // obtain the argument handle 
  call instance void [mscorlib]System.ArgIterator::.ctor(valuetype  
     [mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator 

  /* argument value will be stored in x when retrieved, so load 
   address of x */ 
  ldloca x 
  ldloca it 
  // retrieve the argument, the argument for required does not matter 
  call instance typedref [mscorlib]System.ArgIterator::GetNextArg() 

  call object [mscorlib]System.TypedReference::ToObject(typedref) /* retrieve 
the 
     object */ 
  castclass [mscorlib]System.Int32  // cast and unbox 
  unbox int32 
  cpobj int32    // copy the value into x 
  // first vararg argument is stored in x 
  ret 
} 

end example] 

15.5  Unmanaged methods 
In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-
existing native code from the underlying platform, known as unmanaged code.  These facilities are, by 
necessity, platform-specific and hence are only partially specified here.   

This Standard specifies: 

• A mechanism in the file format for providing function pointers to managed code that can be called 
from unmanaged code (§15.5.1).  

• A mechanism for marking certain method definitions as being implemented in unmanaged code 
(called platform invoke, see §15.5.2).  

• A mechanism for marking call sites used with method pointers to indicate that the call is to an 
unmanaged method (§15.5.3).  

• A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on 
all implementations of the CLI (§15.5.4).  The set of types is extensible through the use of custom 
attributes and modifiers, but these extensions are platform-specific. 

15.5 .1  Method transit ion thunks 

[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming 
implementations of the CLI.  See Partition IV. end note] 

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to 
be performed.  In addition, some platforms require that the representation of data types be converted (data 
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marshaling).  Both of these problems are solved by the .vtfixup directive. This directive can appear several 
times, but only at the top level of a CIL assembly file, as shown by the following grammar: 

Decl ::= Clause 

  .vtfixup VTFixupDecl   

| … 5.10 
 

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata 
tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion 
automatically when the file containing the .vtfixup directive is loaded into memory for execution.  The 
declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of 
an entry in the table, and the location of the table: 

VTFixupDecl ::= 

  [ Int32 ] VTFixupAttr* at DataLabel 
 

VTFixupAttr ::= 

 fromunmanaged 

| int32 

| int64 
 

The attributes int32 and int64 are mutually exclusive, with int32 being the default. These attributes 
specify the width of each slot in the table.  Each slot contains a 32-bit metadata token (zero-padded if the table 
has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.  

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call 
to a managed call, call the method, and return the result to the unmanaged environment.  The thunk will also 
perform data marshalling in the platform-specific manner described for platform invoke. 

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply 
emit the tokens as byte literals into a block specified using the .data directive. 

15.5 .2  Platform invoke 

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke) 
functionality of the CLI.  Platform invoke will switch from managed to unmanaged state and back, and also 
handle necessary data marshalling. Methods that need to be called using PInvoke are marked as 
pinvokeimpl. In addition, the methods shall have the implementation attributes native and unmanaged 
(§15.4.2.4).   

MethAttr ::= Description Clause 

  pinvokeimpl ‘(’ QSTRING [ as QSTRING ] 
PinvAttr* ‘)’ 

Implemented in native code  

| …  15.4.1.5 
 

The first quoted string is a platform-specific description indicating where the implementation of the method is 
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the 
method).  The second (optional) string is the name of the method as it exists on that platform, since the 
platform can use name-mangling rules that force the name as it appears to a managed program to differ from 
the name as seen in the native implementation (this is common, for example, when the native code is generated 
by a C++ compiler). 

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl. A 
method declared with pinvokeimpl shall not have a body specified as part of the definition. 
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PinvAttr ::= Description (platform-specific, suggestion only) 

  ansi ANSI character set. 

| autochar Determine character set automatically. 

| cdecl Standard C style call 

| fastcall C style fastcall. 

| stdcall Standard C++ style call. 

| thiscall The method accepts an implicit this pointer. 

| unicode Unicode character set. 

| platformapi Use call convention appropriate to target platform. 
 

The attributes ansi, autochar, and unicode are mutually exclusive.  They govern how strings will be 
marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a 
platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this 
would match the representation of a C or C++ string constant); autochar indicates a platform-specific 
representation that is “natural” for the underlying platform; and unicode indicates a platform-specific 
representation that corresponds to a string encoded for use with Unicode methods on that platform.  

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive.  
They are platform-specific and specify the calling conventions for native code. 

[Example: The following shows the declaration of the method MessageBeep located in the Microsoft 
Windows™ DLL user32.dll: 

.method public static pinvokeimpl("user32.dll" stdcall) int8 
      MessageBeep(unsigned int32) native unmanaged {} 

end example] 

15.5 .3  Method calls  v ia function pointers 

Unmanaged methods can also be called via function pointers. There is no difference between calling managed 
or unmanaged methods with pointers. However, the unmanaged method needs to be declared with 
pinvokeimpl as described in §15.5.2. Calling managed methods with function pointers is described 
in §14.5. 

15.5 .4  Data type marshaling 

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data 
types that shall be supported by all conforming implementations of the CLI.  Additional data types can be 
supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special 
handling required on the particular implementation. 

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type 
to which they conform is implementation-specific: 

• All integer data types (int8, int16, unsigned int8, bool, char, etc.) including the 
native integer types. 

• Enumerations, as their underlying data type. 

• All floating-point data types (float32 and float64), if they are supported by the CLI 
implementation for managed code. 

• The type string. 

• Unmanaged pointers to any of the above types. 
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In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but 
need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as 
parameters when calling from unmanaged methods into managed methods): 

• One-dimensional zero-based arrays of any of the above 

• Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it 
should not be assumed that marshaling a delegate will produce a function pointer that can be used 
directly from unmanaged code). 

Finally, the type System.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged 
code.  The unmanaged code receives a platform-specific data type that can be used as an “opaque handle” to a 
specific object.   See Partition IV. 
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16 Defining and referencing fields 
Fields are typed memory locations that store the data of a program.  The CLI allows the declaration of both 
instance and static fields. While static fields are associated with a type, and are shared across all instances of 
that type, instance fields are associated with a particular instance of that type.  Once instantiated, an instance 
has its own copy of each instance field.  

The CLI also supports global fields, which are fields declared outside of any type definition.  Global fields shall 
be static.  

A field is defined by the .field directive:  (§22.15) 

Field ::= .field FieldDecl 
 

FieldDecl ::= 

  [ ‘[’ Int32 ‘]’ ] FieldAttr* Type Id [ ‘=’ FieldInit | at DataLabel ] 
 

The FieldDecl has the following parts: 

• An optional integer specifying the byte offset of the field within an instance (§10.7). If present, 
the type containing this field shall have the explicit layout attribute. An offset shall not be 
supplied for global or static fields. 

• Any number of field attributes (§16.2). 

• Type. 

• Name. 

• Optionally, either a FieldInit clause (§16.2) or a DataLabel (§5.4) clause. 

Global fields shall have a data label associated with them.  This specifies where, in the PE file, the data for that 
field is located.  Static fields of a type can, but need not, be assigned a data label. 

[Example:  
.field private class [.module Counter.dll]Counter counter 
.field public static initonly int32 pointCount 
.field private int32 xOrigin 
.field public static int32 count at D_0001B040 

end example] 

16.1  Attributes of f ields 
Attributes of a field specify information about accessibility, contract information, interoperation attributes, as 
well as information on special handling. 

The following subclauses contain additional information on each group of predefined attributes of a field. 

FieldAttr ::= Description Clause 

  assembly Assembly accessibility. 16.1.1 

| famandassem Family and Assembly accessibility. 16.1.1 

| family Family accessibility. 16.1.1 

| famorassem Family or Assembly accessibility. 16.1.1 

| initonly Marks a constant field. 16.1.2 

| literal Specifies metadata field.  No memory is allocated 
at runtime for this field. 

16.1.2 
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FieldAttr ::= Description Clause 

| marshal ‘(’ NativeType ‘)’ Marshaling information. 16.1.3 

| notserialized Reserved (indicates this field is not to be 
serialized). 

16.1.2 

| private Private accessibility. 16.1.1 

| compilercontrolled Compiler controlled accessibility. 16.1.1 

| public Public accessibility. 16.1.1 

| rtspecialname Special treatment by runtime. 16.1.4 

| specialname Special name for other tools. 16.1.4 

| static Static field. 16.1.2 
 

16.1 .1  Accessibi l ity  information 

The accessibility attributes are assembly, famandassem, family, famorassem, private, 
compilercontrolled, and public.  These attributes are mutually exclusive.   

Accessibility attributes are described in §8.2. 

16.1 .2  Field contract attributes  

Field contract attributes are initonly, literal, static and notserialized.  These attributes can be 
combined; however, only static fields shall be literal.  The default is an instance field that can be 
serialized. 

static specifies that the field is associated with the type itself rather than with an instance of the type.  Static 
fields can be accessed without having an instance of a type, e.g., by static methods.  As a consequence, within 
an application domain, a static field is shared between all instances of a type, and any modification of this field 
will affect all instances. If static is not specified, an instance field is created. 

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside 
a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in 
which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors 
of the type in which it was defined. It shall not be mutated in any other method or in any other constructor, 
including constructors of derived classes. 

[Note: The use of ldflda or ldsflda on an initonly field makes code unverifiable.  In unverifiable code, the 
VES need not check whether initonly fields are mutated outside the constructors. The VES need not report 
any errors if a method changes the value of a constant. However, such code is not valid. end note] 

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast 
to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them. 
literal fields become part of the metadata, but cannot be accessed by the code. literal fields are 
assigned a value by using the FieldInit syntax (§16.2).   

[Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its 
actual value.  Hence changing the value of a literal requires recompilation of any code that references the 
literal.  Literal values are, thus, not version-resilient. end note] 

16.1 .3  Interoperation attributes  

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall 
not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and 
specifies that the field’s contents should be converted to and from a specified native data type when passed to 
unmanaged code.  Every conforming implementation of the CLI will have default marshaling rules as well as 
restrictions on what automatic conversions can be specified using the marshal attribute.  See also §15.5.4. 
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[Note: Marshaling of user-defined types is not required of all implementations of the CLI.  It is specified in this 
standard so that implementations which choose to provide it will allow control over its behavior in a consistent 
manner.  While this is not sufficient to guarantee portability of code that uses this feature, it does increase the 
likelihood that such code will be portable. end note] 

16.1 .4  Other attributes  

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.   

[Rationale: There are currently no field names that are required to be marked with rtspecialname.  It is 
provided for extensions, future standardization, and to increase consistency between the declaration of fields 
and methods (instance and type initializer methods shall be marked with this attribute). end rationale] 

The attribute specialname indicates that the field name has special meaning to tools other than the runtime, 
typically because it marks a name that has meaning for the CLS (see Partition I). 

16.2  Field init metadata 
The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be 
combined with a data label. 

The FieldInit information is stored in metadata and this information can be queried from metadata.  But the CLI 
does not use this information to automatically initialize the corresponding fields.  The field initializer is 
typically used with literal fields (§16.1.2) or parameters with default values.  See §22.9. 

The following table lists the options for a field initializer. Note that while both the type and the field initializer 
are stored in metadata there is no requirement that they match.  (Any importing compiler is responsible for 
coercing the stored value to the target field type).  The description column in the table below provides 
additional information. 

FieldInit ::= Description 

  bool ‘(’ true | false ‘)’ Boolean value, encoded as true or false 

| bytearray ‘(’ Bytes ‘)’ String of bytes, stored without conversion.  Can be 
padded with one zero byte to make the total byte-count 
an even number 

| char ‘(’ Int32 ‘)’ 16-bit unsigned integer (Unicode character) 

| float32 ‘(’ Float64 ‘)’ 32-bit floating-point number, with the floating-point 
number specified in parentheses.  

| float32 ‘(’ Int32 ‘)’ Int32 is binary representation of float 

| float64 ‘(’ Float64 ‘)’ 64-bit floating-point number, with the floating-point 
number specified in parentheses. 

| float64 ‘(’ Int64 ‘)’ Int64 is binary representation of double 

| [ unsigned ] int8 ‘(’ Int32 ‘)’ 8-bit integer with the value specified in parentheses. 

| [ unsigned ] int16 ‘(’ Int32 ‘)’ 16-bit integer with the value specified in parentheses. 

| [ unsigned ] int32 ‘(’ Int32 ‘)’ 32-bit integer with the value specified in parentheses. 

| [ unsigned ] int64 ‘(’ Int64 ‘)’ 64-bit integer with the value specified in parentheses. 

| QSTRING String. QSTRING is stored as Unicode 

| nullref Null object reference 
 

[Example: The following shows a typical use of this: 
.field public static literal valuetype ErrorCodes no_error = int8(0) 
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The field named no_error is a literal of type ErrorCodes (a value type) for which no memory is 
allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer 
whose value is 0. end example] 

16.3  Embedding data in a PE fi le 
There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is 
used. 

Data can be embedded in a PE file by using the .data directive at the top-level. 

Decl ::= Clause 

  .data DataDecl  

| … 6.6 
 

Data can also be declared as part of a type: 

ClassMember ::= Clause 

  .data DataDecl  

| … 10.2 
 

Yet another alternative is to declare data inside a method: 

MethodBodyItem ::= Clause 

  .data DataDecl  

| … 15.4.1 
 

16.3 .1  Data declaration 

A .data directive contains an optional data label and the body which defines the actual data. A data label 
shall be used if the data is to be accessed by the code. 

DataDecl ::= [ DataLabel ‘=’ ] DdBody 

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an 
array. 

DdBody ::= 

  DdItem 

| ‘{’ DdItemList ‘}’ 
 

A list of items consists of any number of items: 

DdItemList ::= DdItem [ ‘,’ DdItemList ] 
 

The list can be used to declare multiple data items associated with one label. The items will be laid out in the 
order declared. The first data item is accessible directly through the label. To access the other items, pointer 
arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer 
arithmetic will make the application non-verifiable.  (Each data item shall have a DataLabel if it is to be 
referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items) 

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains 
items of the same type and initial value, the grammar below can be used as a short cut for some of the types: 
the number of times the item shall be replicated is put in brackets after the declaration.  

DdItem ::= Description 
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  ‘&’ ‘(’ Id ‘)’ Address of label 

| bytearray ‘(’ Bytes ‘)’ Array of bytes 

| char ‘*’ ‘(’ QSTRING ‘)’ Array of (Unicode) characters 

| float32 [ ‘(’ Float64 ‘)’ ] [ ‘[’ Int32 ‘]’ ] 32-bit floating-point number, can be 
replicated 

| float64 [ ‘(’ Float64 ‘)’ ] [ ‘[’ Int32 ‘]’ ] 64-bit floating-point number, can be 
replicated 

| int8 [ ‘(’ Int32 ‘)’ ] [‘[’ Int32 ‘]’ ] 8-bit integer, can be replicated 

| int16 [ ‘(’ Int32 ‘)’ ] [ ‘[’ Int32 ‘]’ ] 16-bit integer, can be replicated 

| int32 [ ‘(’ Int32 ‘)’ ] [‘[’ Int32 ‘]’ ] 32-bit integer, can be replicated 

| int64 [ ‘(’ Int64 ‘)’ ] [ ‘[’ Int32 ‘]’ ] 64-bit integer, can be replicated 

 

[Example:  

The following declares a 32-bit signed integer with value 123: 
.data theInt = int32(123) 

The following declares 10 replications of an 8-bit unsigned integer with value 3: 
.data theBytes = int8 (3) [10] 

end example] 

16.3 .2  Accessing data from the PE f i le  

The data stored in a PE File using the .data directive can be accessed through a static variable, either 
global or a member of a type, declared at a particular position of the data: 

FieldDecl ::= FieldAttr* Type Id at DataLabel 
 

The data is then accessed by a program as it would access any other static variable, using instructions such as 
ldsfld, ldsflda, and so on (see Partition III). 

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to 
section access permissions within the PE File format itself. 

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to 
be declared for the data, e.g., a global static variable: 

.field public static int32 myInt at theInt 

Then the static variable can be used to load the data: 
ldsfld int32 myInt 
// data on stack 

end example] 

16.4  Initial ization of non-literal static data 

This subclause and its subclauses contain only informative text. 
Many languages that support static data provide for a means to initialize that data before the program begins 
execution. There are three common mechanisms for doing this, and each is supported in the CLI. 

16.4 .1  Data known at  l ink t ime 

When the correct value to be stored into the static data is known at the time the program is linked (or compiled 
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into 
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the data area (§16.3). References to the variable are made directly to the location where this data has been 
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads 
at an address other than the one assumed by the linker. 

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is 
a value type with explicit type layout and no embedded references to managed objects. In this case the data is 
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start 
of the PE file) by using a data label with the field declaration (using the at syntax).   

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I). 
An application domain is intended to isolate two applications running in the same OS process from one another 
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data 
accessed via this mechanism is visible to all application domains in the process, thus violating the application 
domain isolation boundary. 

16.5  Data known at load time 
When the correct value is not known until the PE file is loaded (for example, if it contains values computed 
based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file 
is loaded, but this mechanism is platform-specific and might not be available in all conforming 
implementations of the CLI. 

16.5 .1  Data known at  run t ime 

When the correct value cannot be determined until type layout is computed, the user shall supply code as part 
of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1. 
As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the 
same guarantees apply to both global and type statics. 

Because the layout of managed types need not occur until a type is first referenced, it is not possible to 
statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type 
initialization process that proceeds in the following steps: 

1. All static variables are zeroed. 

2. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3. 

Within a type initialization procedure there are several techniques: 

• Generate explicit code that stores constants into the appropriate fields of the static variables. For 
small data structures this can be efficient, but it requires that the initializer be converted to native 
code, which can prove to be both a code space and an execution time problem. 

• Box value types. When the static variable is simply a boxed version of a primitive numeric type or 
a value type with explicit layout, introduce an additional static variable with known RVA that 
holds the unboxed instance and then simply use the box instruction to create the boxed copy. 

• Create a managed array from a static native array of data. This can be done by marshaling the 
native array to a managed array. The specific marshaler to be used depends on the native array. 
e.g., it can be a safearray. 

• Default initialize a managed array of a value type. The Base Class Library provides a method that 
zeroes the storage for every element of an array of unboxed value types 
(System.Runtime.CompilerServices.InitializeArray) 

End informative text 
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17 Defining properties 
A Property is declared by the using the .property directive.  Properties shall only be declared inside of 
types (i.e., global properties are not supported). 

ClassMember ::= 

  .property PropHeader ‘{’ PropMember* ‘}’ 
 

See §22.34 and §22.35 for how property information is stored in metadata. 

PropHeader ::= 

 [ specialname ][ rtspecialname ] CallConv Type Id ‘(’ Parameters ‘)’ 
 
The .property directive specifies a calling convention (§15.3), type, name, and parameters in parentheses. 
specialname marks the property as special to other tools, while rtspecialname marks the property as 
special to the CLI.  The signature for the property (i.e., the PropHeader production) shall match the signature 
of the property's .get method (see below) 

[Rationale: There are currently no property names that are required to be marked with rtspecialname.  It is 
provided for extensions, future standardization, and to increase consistency between the declaration of 
properties and methods (instance and type initializer methods shall be marked with this attribute). end 
rationale] 

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies 
a set of consistency constraints. 

A property can contain any number of methods in its body.  The following table shows how these methods are 
identified, and provides short descriptions of each kind of item: 

PropMember ::= Description Clause 

| .custom CustomDecl Custom attribute. 21 

| .get CallConv Type [ TypeSpec ‘::’ ] MethodName 
‘(’ Parameters ‘)’ 

Specifies the getter for the 
property. 

 

| .other CallConv Type [ TypeSpec ‘::’ ] 
MethodName ‘(’ Parameters ‘)’ 

Specifies a method for the 
property other than the getter or 
setter. 

 

| .set CallConv Type [ TypeSpec ‘::’ ] MethodName 
‘(’ Parameters ‘)’ 

Specifies the setter for the 
property. 

 

| ExternSourceDecl .line or #line 5.7 
 

.get specifies the getter for this property.  The TypeSpec defaults to the current type.  Only one getter can be 
specified for a property.  To be CLS-compliant, the definition of getter shall be marked specialname. 

.set specifies the setter for this property.  The TypeSpec defaults to the current type.  Only one setter can be 
specified for a property.  To be CLS-compliant, the definition of setter shall be marked specialname. 

.other is used to specify any other methods that this property comprises.  

In addition, custom attributes (§21) or source line declarations can be specified. 

[Example: This shows the declaration of the property called count. 
.class public auto autochar MyCount extends [mscorlib]System.Object { 
  .method virtual hidebysig public specialname instance int32 get_Count() { 
  // body of getter 
  } 
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  .method virtual hidebysig public specialname instance void set_Count( 
      int32 newCount) { 
  // body of setter 
  } 

  .method virtual hidebysig public instance void reset_Count() { 
  // body of refresh method 
  } 

  // the declaration of the property 
  .property int32 Count() { 
    .get instance int32 MyCount::get_Count() 
    .set instance void MyCount::set_Count(int32) 
    .other instance void MyCount::reset_Count() 
  } 
} 

end example] 
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18 Defining events 
Events are declared inside types, using the .event directive; there are no global events. 

ClassMember ::= Clause 

  .event EventHeader ‘{’ EventMember* ‘}’  

| … 9 
 

See §22.13 and §22.11 

EventHeader ::= 

  [ specialname ] [ rtspecialname ] [ TypeSpec ] Id 
 

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed 
to the event’s fire method. 

The event head can contain the keywords specialname or rtspecialname. specialname marks the 
name of the property for other tools, while rtspecialname marks the name of the event as special for the 
runtime. 

[Rationale: There are currently no event names that are required to be marked with rtspecialname.  It is 
provided for extensions, future standardization, and to increase consistency between the declaration of events 
and methods (instance and type initializer methods shall be marked with this attribute). end rationale] 

EventMember ::= Description Clause 

  .addon CallConv Type [ TypeSpec ‘::’ ] MethodName 
‘(’ Parameters ‘)’ 

Add method for event.  

| .custom CustomDecl Custom attribute. 21 

| .fire CallConv Type [ TypeSpec ‘::’ ] MethodName ‘(’ 
Parameters ‘)’ 

Fire method for event.  

| .other CallConv Type [ TypeSpec ‘::’ ] MethodName 
‘(’ Parameters ‘)’ 

Other method.  

| .removeon CallConv Type [ TypeSpec ‘::’ ] MethodName 
‘(’ Parameters ‘)’ 

Remove method for event.  

| ExternSourceDecl .line or #line 5.7 
 

The .addon directive specifies the add method, and the TypeSpec defaults to the same type as the event.  The 
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 
add method be marked with specialname. 

The .removeon directive specifies the remove method, and the TypeSpec defaults to the same type as the 
event.  The CLS specifies naming conventions and consistency constraints for events, and requires that the 
definition of the remove method be marked with specialname. 

The .fire directive specifies the fire method, and the TypeSpec defaults to the same type as the event.  The 
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the 
fire method be marked with specialname. 

An event can contain any number of other methods specified with the .other directive. From the point of 
view of the CLI, these methods are only associated with each other through the event. If they have special 
semantics, this needs to be documented by the implementer. 

Events can also have custom attributes (§21) associated with them and they can declare source line information. 
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[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of 
the add, remove, and fire method of the event. The event and the methods are declared in a class called 
Counter. 

// the delegate 
.class private sealed auto autochar TimeUpEventHandler extends 
     [mscorlib]System.Delegate { 
  .method public hidebysig specialname rtspecialname instance void .ctor(object 
      'object', native int 'method') runtime managed {} 

  .method public hidebysig virtual instance void Invoke() runtime managed {} 

  .method public hidebysig newslot virtual instance class 
    [mscorlib]System.IAsyncResult BeginInvoke(class  
    mscorlib]System.AsyncCallback callback, object 'object') runtime managed {} 

  .method public hidebysig newslot virtual instance void EndInvoke(class 
     [mscorlib]System.IAsyncResult result) runtime managed {} 
} 
 

// the class that declares the event 
.class public auto autochar Counter extends [mscorlib]System.Object { 
  // field to store the handlers, initialized to null 
  .field private class TimeUpEventHandler timeUpEventHandler 
  // the event declaration 
  .event TimeUpEventHandler startStopEvent { 
    .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler') 
    .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler 
'handler') 
    .fire instance void Counter::fire_TimeUpEvent() 
  } 
  // the add method, combines the handler with existing delegates 
  .method public hidebysig virtual specialname instance void add_TimeUp(class  
      TimeUpEventHandler 'handler') { 
    .maxstack 4 
    ldarg.0 
    dup 

    ldfld class TimeUpEventHandler Counter::TimeUpEventHandler 
    ldarg 'handler' 
    call class[mscorlib]System.Delegate  
      [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class  
      [mscorlib]System.Delegate) 
    castclass TimeUpEventHandler 
    stfld class TimeUpEventHandler Counter::timeUpEventHandler 
    ret 
  } 

  // the remove method, removes the handler from the delegate 
  .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler  
        'handler') { 
    .maxstack 4 
    ldarg.0 
    dup 
    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 

    ldarg 'handler' 
    call class[mscorlib]System.Delegate 
       [mscorlib]System.Delegate::Remove(class  
       [mscorlib]System.Delegate, class [mscorlib]System.Delegate) 
    castclass TimeUpEventHandler 
    stfld class TimeUpEventHandler Counter::timeUpEventHandler 
    ret 
  } 
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  // the fire method 
  .method virtual family specialname void fire_TimeUpEvent() { 
    .maxstack 3 
    ldarg.0 
    ldfld class TimeUpEventHandler Counter::timeUpEventHandler 
    callvirt instance void TimeUpEventHandler::Invoke() 
    ret 
  } 
} // end of class Counter 

end example] 
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19 Exception handling 
In the CLI, a method can define a range of CIL instructions that are said to be protected.  This is called a try 
block.  It can then associate one or more handlers with that try block.  If an exception occurs during execution 
anywhere within the try block, an exception object is created that describes the problem.  The CLI then takes 
over, transferring control from the point at which the exception was thrown, to the block of code that is willing 
to handle that exception.  See Partition I. 

No two handlers (fault, filter, catch, or finally) can have the same starting address.  When an exception occurs it 
is necessary to convert the execution address to the correct most lexically nested try block in which the 
exception occurred. 

SEHBlock ::= 

  TryBlock SEHClause [ SEHClause* ] 
 

The next few subclauses expand upon this simple description, by describing the five kinds of code block that 
take part in exception processing: try, catch, filter, finally, and fault.   (Note that there are 
restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for 
details.) 

The remaining syntax items are described in detail below; they are collected here for reference. 

TryBlock ::= Description 

.try Label to Label Protect region from first label to prior to second  

| .try ScopeBlock ScopeBlock is protected 
 

SEHClause ::= Description 

  catch TypeReference HandlerBlock Catch all objects of the specified type 

| fault HandlerBlock Handle all exceptions but not normal exit 

| filter Label HandlerBlock Enter handler only if filter succeeds 

| finally HandlerBlock Handle all exceptions and normal exit 
 

HandlerBlock::= Description 

handler Label to Label Handler range is from first label to prior to second 

| ScopeBlock  ScopeBlock is the handler block 
 

19.1  Protected blocks 
A try, or protected, or guarded, block is declared with the .try directive.   

TryBlock ::= Descriptions 

.try Label to Label Protect region from first label to prior to second. 

| .try ScopeBlock ScopeBlock is protected 
 

In the first case, the protected block is delimited by two labels.  The first label is the first instruction to be 
protected, while the second label is the instruction just beyond the last one to be protected.  Both labels shall be 
defined prior to this point.  

The second case uses a scope block (§15.4.4) after the .try directive—the instructions within that scope are 
the ones to be protected.  
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19.2  Handler blocks 

HandlerBlock ::= Description 

| handler Label to Label Handler range is from first label to prior to second 

| ScopeBlock ScopeBlock is the handler block 
 

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction 
of the handler while the second is the instruction immediately after the handler. In the second case, the handler 
block is just a scope block. 

19.3  Catch blocks 
A catch block is declared using the catch keyword.  This specifies the type of exception object the clause is 
designed to handle, and the handler code itself. 

SEHClause ::= 

  catch TypeReference HandlerBlock 
 

[Example:  
.try { 
 …    // protected instructions 
 leave exitSEH  // normal exit 
} catch [mscorlib]System.FormatException { 
 …    // handle the exception 
 pop    // pop the exception object 
 leave exitSEH  // leave catch handler 
} 
exitSEH:    // continue here 

end example] 

19.4  Filter blocks 
A filter block is declared using the filter keyword. 

SEHClause ::= … 

| filter Label HandlerBlock 

| filter Scope HandlerBlock 
 

The filter code begins at the specified label and ends at the first instruction of the handler block.  (Note that the 
CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler 
block.) 

[Example:  
.method public static void m () { 
    .try { 
      …   // protected instructions 
      leave exitSEH // normal exit 
    } 

    filter { 
      …   // decide whether to handle 
      pop   // pop exception object 
      ldc.i4.1  // EXCEPTION_EXECUTE_HANDLER 
      endfilter  // return answer to CLI 
    } 
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    { 
      …   // handle the exception 
      pop   // pop the exception object 
      leave exitSEH // leave filter handler 
    } 
exitSEH: 
    … 
} 

end example] 

19.5  Finally blocks 
A finally block is declared using the finally keyword.  This specifies the handler code, with this grammar: 

SEHClause ::= … 

| finally HandlerBlock 
 

The last possible CIL instruction that can be executed in a finally handler shall be endfinally. 

[Example:  
.try { 
 …   // protected instructions 
 leave exitTry  // shall use leave 
} finally { 
 …   // finally handler 
 endfinally 
} 
exitTry:   // back to normal 

19.6  Fault handlers 
end example] 

A fault block is declared using the fault keyword.  This specifies the handler code, with this grammar: 

SEHClause ::= … 

| fault HandlerBlock 
 

The last possible CIL instruction that can be executed in a fault handler shall be endfault. 

[Example:  
.method public static void m() { 
  startTry: 
 …   // protected instructions 
 leave exitSEH // shall use leave 
  endTry: 

startFault: 
 …   // fault handler instructions 
 endfault 

endFault: 
 .try startTry to endTry fault handler startFault to endFault 

exitSEH:   // back to normal 
} 

end example] 
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20 Declarative security 
Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the 
metadata. This information is actually converted by the compiler into an XML-based representation that is 
stored in the metadata, see §22.11.  By contrast, ilasm requires the conversion information to be represented in 
its input. 

SecurityDecl ::= 

  .permissionset SecAction = ‘(’ Bytes ‘)’ 

| .permission SecAction TypeReference ‘(’ NameValPairs ‘)’ 
 

NameValPairs ::= NameValPair [ ‘,’ NameValPair ]* 
 

NameValPair ::= SQSTRING ‘=’ SQSTRING 

In .permission, TypeReference specifies the permission class and NameValPairs specifies the settings.   
See §22.11 

In .permissionset the bytes specify the encoded version of the security settings: 

SecAction ::= Description 

  assert Assert permission so that callers do not need it. 

| demand Demand permission of all callers. 

| deny Deny permission so checks will fail. 

| inheritcheck Demand permission of a derived class. 

| linkcheck Demand permission of caller. 

| permitonly Reduce permissions so check will fail. 

| reqopt Request optional additional permissions. 

| reqrefuse Refuse to be granted these permissions. 

| request Hint that permission might be required. 
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21 Custom attributes 
Custom attributes add user-defined annotations to the metadata.  Custom attributes allow an instance of a type 
to be stored with any element of the metadata. This mechanism can be used to store application-specific 
information at compile time, and to access it either at runtime or when another tool reads the metadata. While 
any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of 
types whose base class is System.Attribute. The CLI predefines some attribute types and uses them to control 
runtime behavior. Some languages predefine attribute types to represent language features not directly 
represented in the CTS. Users or other tools are welcome to define and use additional attribute types. 

Custom attributes are declared using the directive .custom, followed by the method declaration for a type 
constructor, optionally followed by a Bytes in parentheses: 

CustomDecl ::= 

  Ctor [ ‘=’ ‘(’ Bytes ‘)’ ]  
 

The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is 
.ctor. [Example: 
.custom instance void myAttribute::.ctor(bool, bool) = ( 01 00 00 01 00 
00 ) 

end example] 

Custom attributes can be attached to any item in metadata, except a custom attribute itself.  Commonly, custom 
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties, 
generic parameters, and events (the custom attribute is attached to the immediately preceding declaration) 

The Bytes item is not required if the constructor takes no arguments.  In such cases, all that matters is the 
presence of the custom attribute. 

If the constructor takes parameters, their values shall be specified in the Bytes item.  The format for this ‘blob’ 
is defined in §23.3. 

[Example: The following shows a class that is marked with the attribute called 
System.CLSCompliantAttribute and a method that is marked with the attribute called 
System.ObsoleteAttribute. 

.class public MyClass extends [mscorlib]System.Object 
{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) = 
    ( 01 00 01 00 00 ) 
  .method public static void CalculateTotals() cil managed 
{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =  
    ( 01 00 00 00 ) 
  ret 
} 

end example] 

21.1  CLS conventions: custom attribute usage  
CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language 
operation.  See Partition I for details. 

21.2  Attributes used by the CLI 
There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes. 
Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows: 

• A custom attribute is stored directly into the metadata; the‘blob’ which holds its defining data is 
stored as-is. That ‘blob’ can be retrieved later. 



 

 Partition II 101 

• A pseudo custom attribute is recognized because its name is one of a short list.  Rather than store 
its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used to set 
bits and/or fields within metadata tables.  The ‘blob’ is then discarded; it cannot be retrieved 
later. 

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler 
provides for genuine custom attributes, but these user directives are then stored into the more space-efficient 
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes. 

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI, 
without its knowing or caring what they ‘mean’.  But all pseudo custom attributes, plus a collection of genuine 
custom attributes, are of special interest to compilers and to the CLI.  An example of such custom attributes is 
System.Reflection.DefaultMemberAttribute.  This is stored in metadata as a genuine custom attribute 
‘blob’, but reflection uses this custom attribute when called to invoke the default member (property) for a type. 

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where 
distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in 
some way. 

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved 
for standardization. 

21.2 .1  Pseudo custom attributes 

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this 
Standard, but all of their names are reserved and shall not be used for other purposes.  For details on these 
attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the 
namespaces System.Reflection, System.Runtime.CompilerServices, and 
System.Runtime.InteropServices namespaces.   

Attribute Description 
AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only) 
AssemblyFlagsAttribute Records the flags for this assembly (reserved only) 
DllImportAttribute Provides information about code implemented within an unmanaged 

library 
FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type 
InAttribute Indicates that a method parameter is an [in] argument 
MarshalAsAttribute Specifies how a data item should be marshalled between managed and 

unmanaged code (see §23.4). 
MethodImplAttribute Specifies details of how a method is implemented 
OutAttribute Indicates that a method parameter is an [out] argument 
StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid 

out in managed memory 
 

These attributes affect bits and fields in metadata, as follows: 

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field. 

AssemblyFlagsAttribute: sets the Assembly.Flags field. 

DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row 
into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns). 

FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field. 

InAttribute: sets the Param.Flags.In bit for the attributed parameter. 
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MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the 
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal 
table for both Parent and NativeType columns.  

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method. 

OutAttribute: sets the Param.Flags.Out bit for the attributed parameter. 

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally, 
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields 
for that type. 

21.2 .2  Custom attributes def ined by the CLS 

 The CLS specifies certain Custom Attributes and requires that conformant languages support them. These 
attributes are located under System. 

Attribute Description 
AttributeUsageAttribute Used to specify how an attribute is intended to be used. 
ObsoleteAttribute Indicates that an element is not to be used. 
CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant 

through an instance field on the attribute object. 
 

21.2 .3  Custom attributes for security  

The following custom attributes are defined in the System.Net and System.Security.Permissions 
namespaces.   Note that these are all base classes; the actual instances of security attributes found in assemblies 
will be sub-classes of these. 

Attribute Description 
CodeAccessSecurityAttribute This is the base attribute class for declarative security using 

custom attributes. 
DnsPermissionAttribute Custom attribute class for declarative security with 

DnsPermission 
EnvironmentPermissionAttribute Custom attribute class for declarative security with 

EnvironmentPermission. 
FileIOPermissionAttribute  Custom attribute class for declarative security with 

FileIOPermission. 
ReflectionPermissionAttribute Custom attribute class for declarative security with 

ReflectionPermission. 
SecurityAttribute This is the base attribute class for declarative security from 

which CodeAccessSecurityAttribute is derived. 
SecurityPermissionAttribute Indicates whether the attributed method can affect security 

settings 
SocketPermissionAttribute Custom attribute class for declarative security with 

SocketPermission. 
WebPermissionAttribute Custom attribute class for declarative security with 

WebPermission. 
 

Note that any other security-related custom attributes (i.e., any custom attributes that derive from 
System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming 
implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any 
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attempt is made to access those security-related custom attributes.  (This statement holds true for any custom 
attributes that cannot be resolved; security-related custom attributes are just one particular case) 

21.2 .4  Custom attributes for TLS 

A custom attribute that denotes a TLS (thread-local storage, see §Error! Reference source not found.) field is 
defined in the System namespace. 

Attribute Description 
ThreadStaticAttribute Provides for type member fields that are relative for the thread. 
 

21.2 .5  Custom attributes,  various 

The following custom attributes control various aspects of the CLI: 

Attribute Namespace Description 
ConditionalAttribute System.Diagnostics Used to mark methods as callable, 

based on some compile-time condition.  
If the condition is false, the method will 
not be called 

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant 
in metadata 

DefaultMemberAttribute System.Reflection Defines the member of a type that is the 
default member used by reflection’s 
InvokeMember. 

FaultModeAttribute System.Runtime.CompilerServices Indicates whether exceptions from 
instruction checks are precise or 
imprecise. 

FlagsAttribute System Custom attribute indicating an 
enumeration should be treated as a 
bitfield; that is, a set of flags 

IndexerNameAttribute System.Runtime.CompilerServices Indicates the name by which a property 
having one or more parameters will be 
known in programming languages that 
do not support such a facility directly 

ParamArrayAttribute System Indicates that the method will allow a 
variable number of arguments in its 
invocation 
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22 Metadata logical format: tables 
This clause defines the structures that describe metadata, and how they are cross-indexed.  This corresponds to 
how metadata is laid out, after being read into memory from a PE file.  (For a description of metadata layout 
inside the PE file itself, see §24) 

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps.  There are four heaps in any 
module: String, Blob, Userstring, and Guid.  The first three are byte arrays (so valid indexes into these heaps 
might be 0, 23, 25, 39, etc).  The Guid heap is an array of GUIDs, each 16 bytes wide.  Its first element is 
numbered 1, its second 2, and so on. 

Each entry in each column of each table is either a constant or an index.  

Constants are either literal values (e.g.,  ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly 
table), or, more commonly, bitmasks.  Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g., 
the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef 
table). 

Each index is either 2 or 4 bytes wide.  The index points into the same or another table, or into one of the four 
heaps.  The size of each index column in a table is only made 4 bytes if it needs to be for that particular 
module.   So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value, 
the indexer column need only be 2 bytes wide.  Conversely, for tables containing 64K or more rows, an indexer 
of that table will be 4 bytes wide. 

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table.  (An index value of 
zero denotes that it does not index a row at all; that is, it behaves like a null reference.) 

There are two kinds of columns that index a metadata table. (For details of the physical representation of these 
tables, see §24.2.6): 

• Simple – such a column indexes one, and only one, table.  For example, the FieldList column in 
the TypeDef table always indexes the Field table.  So all values in that column are simple 
integers, giving the row number in the target table 

• Coded – such a column indexes any of several tables. For example, the Extends column in the 
TypeDef table can index into the TypeDef or TypeRef table.   A few bits of that index value are 
reserved to define which table it targets.  For the most part, this specification talks of index 
values after being decoded into row numbers within the target table.  However, the specification 
includes a description of these coded indexes in the section that describes the physical layout of 
Metadata (§24). 

Metadata preserves name strings, as created by a compiler or code generator, unchanged.  Essentially, it treats 
each string as an opaque blob.  In particular, it preserves case.  The CLI imposes no limit on the length of 
names stored in metadata and subsequently processed by the CLI 

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed 
case-blind (see Partition I).  However, all other name matches (type, field, method, property, event) shall be 
exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not. 

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20).  The number for each table is listed 
immediately with its title in the following subclauses. The table numbers indicate the order in which their 
corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table 
exists or not.  The number of a table is the position within that set of bits. 

A few of the tables represent extensions to regular CLI files.  Specifically, ENCLog and ENCMap, which occur 
in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst 
debugging.  Both table types are reserved for future use. 

References to the methods or fields of a type are stored together in a metadata table called the MemberRef 
table.  However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of 
reference, calling them “MethodRef” and “FieldRef”. 

Certain tables are required to be sorted by a primary key, as follows: 
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Table Primary Key Column 

ClassLayout Parent 

Constant Parent 

CustomAttribute Parent 

DeclSecurity Parent 

FieldLayout Field 

FieldMarshal Parent 

FieldRVA Field 

GenericParam Owner 

GenericParamConstraint Owner 

ImplMap MemberForwarded 

InterfaceImpl Class 

MethodImpl Class 

MethodSemantics Association 

NestedClass NestedClass 

 

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the 
GenericParam table is sorted using the Number column as a secondary key. 

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede 
the definition of all classes it encloses. 

Metadata items (records in the metadata tables) are addressed by metadata tokens.  Uncoded metadata tokens 
are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based 
record index in the three least-significant bytes.  Metadata tables and their respective indexes are described in 
§22.2 and later subclauses. 

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the 
encoding, see §24.2.6. 

22.1  Metadata validation rules 

This contains informative text only 
The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules 
that guarantee metadata emitted into any PE file is valid.  Checking that metadata is valid ensures that later 
processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-
code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.  

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even 
though these are not related to valid Metadata.  These are marked with a trailing [CLS] tag. 

The rules for valid metadata refer to an individual module.  A module is any collection of metadata that could 
typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script 
compilers (where the metadata is often held only in memory, but never actually saved to a file on disk). 

The rules address intra-module validation only.  As such, software that checks conformance with this standard 
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules, 
A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g., 
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a call from Module A, to a method defined in module B, might specify a call site signature that does not match 
the signatures defined for that method in B). 

All checks are categorized as ERROR, WARNING, or CLS.  

• An ERROR check reports something that might cause a CLI to crash or hang, it might run but 
produce wrong answers; or it might be entirely benign.   Conforming implementations of the CLI 
can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata 
is invalid and is not portable. 

• A WARNING check reports something, not actually wrong, but possibly a slip on the part of the 
compiler.  Normally, it indicates a case where a compiler could have encoded the same 
information in a more compact fashion or where the metadata represents a construct that can have 
no actual use at runtime.  All conforming implementations shall support metadata that violate 
only WARNING rules; hence such metadata is both valid and portable. 

• A CLS check reports lack of compliance with the Common Language Specification (see 
Partition I).  Such metadata is both valid and portable, but programming languages might exist 
that cannot process it, even though all conforming implementations of the CLI support the 
constructs. 

Validation rules fall into the following broad categories: 

• Number of Rows:  A few tables are allowed only one row (e.g., Module table).  Most have no 
such restriction. 

• Unique Rows: No table shall contain duplicate rows, where “duplicate” is defined in terms of its 
key column, or combination of columns. 

• Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows: 

o Every index into the String, Blob, or Userstring heaps shall point into that heap, 
neither before its start (offset 0), nor after its end. 

o Every index into the Guid heap shall lie between 1 and the maximum element number 
in this module, inclusive. 

o Every index (row number) into another metadata table shall lie between 0 and that 
table’s row count + 1  (for some tables, the index can point just past the end of any 
target table, meaning it indexes nothing). 

• Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set. 

• Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative 
Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding 
PE file is loaded into memory). 

Note that some of the rules listed below really don’t say anything—for example, some rules state that a 
particular table is allowed zero or more rows—in which case, there is no way that the check can fail.  This is 
done simply for completeness, to record that such details have indeed been addressed, rather than overlooked. 

End informative text 
The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI 
implementation. 

22.2  Assembly :  0x20 
The Assembly table has the following columns: 

• HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1) 

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 
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• PublicKey (an index into the Blob heap) 

• Name (an index into the String heap) 

• Culture (an index into the String heap)  

The Assembly table is defined using the .assembly directive (§6.2); its columns are obtained from the 
respective .hash algorithm, .ver, .publickey, and .culture (§6.2.1). (For an example, see §6.2.) 

This contains informative text only 
1. The Assembly table shall contain zero or one row  [ERROR] 

2. HashAlgId shall be one of the specified values  [ERROR] 

3. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value 

4. Flags shall have only those values set that are specified [ERROR] 

5. PublicKey can be null or non-null 

6. Name shall index a non-empty string in the String heap [ERROR] 

7. The string indexed by Name can be of unlimited length 

8. Culture can be null or non-null 

9. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note] 

End informative text 

22.3  AssemblyOS : 0x22 
The AssemblyOS table has the following columns: 

• OSPlatformID (a 4-byte constant) 

• OSMajorVersion (a 4-byte constant) 

• OSMinorVersion (a 4-byte constant) 

This record should not be emitted into any PE file.  However, if present in a PE file, it shall be treated as if all 
its fields were zero.  It shall be ignored by the CLI. 

22.4  AssemblyProcessor :  0x21 
The AssemblyProcessor table has the following column: 

• Processor (a 4-byte constant) 

This record should not be emitted into any PE file.  However, if present in a PE file, it should be treated as if its 
field were zero.  It should be ignored by the CLI. 

22.5  AssemblyRef :  0x23 
The AssemblyRef table has the following columns: 

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants) 

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2) 

• PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies 
the author of this Assembly) 

• Name (an index into the String heap) 
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• Culture (an index into the String heap) 

• HashValue (an index into the Blob heap) 

The table is defined by the .assembly extern directive (§6.3).  Its columns are filled using directives 
similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the 
.publickeytoken directive.  (For an example, see §6.3.) 

This contains informative text only 
1. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value 

2. Flags shall have only one bit set, the PublicKey bit (§23.1.2).   All other bits shall be zero. 
[ERROR] 

3. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey bit specifies 
whether the 'blob' is a full public key, or the short hashed token) 

4. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR] 

5. Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR] 

6. Culture can be null or non-null. 

7. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR] 

8. HashValue can be null or non-null 

9. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR] 

10. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those 
having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber, 
PublicKeyOrToken, Name, and Culture) [WARNING] 

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note] 

End informative text 

22.6  AssemblyRefOS : 0x25 
The AssemblyRefOS table has the following columns: 

• OSPlatformId (a 4-byte constant) 

• OSMajorVersion (a 4-byte constant) 

• OSMinorVersion (a 4-byte constant) 

• AssemblyRef  (an index into the AssemblyRef table) 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 
as-if their fields were zero.  They should be ignored by the CLI. 

22.7  AssemblyRefProcessor :  0x24 
The AssemblyRefProcessor table has the following columns: 

• Processor (a 4-byte constant) 

• AssemblyRef  (an index into the AssemblyRef table) 

These records should not be emitted into any PE file.  However, if present in a PE file, they should be treated 
as-if their fields were zero.  They should be ignored by the CLI. 
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22.8  ClassLayout : 0x0F 
The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI. 
(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.) 

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged 
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields 
exactly as if that block of memory had been laid out by unmanaged code. end rationale] 

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout, 
SequentialLayout, ExplicitLayout} in the owner class or value type.  

A type has layout if it is marked SequentialLayout or ExplicitLayout.  If any type within an inheritance chain 
has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType 
(if it exists in the type’s hierarchy); otherwise, from System.Object. 

This contains informative text only 
Layout cannot begin part way down the chain.  But it is valid to stop “having layout” at any point down the 
chain. 

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C 
derives from B.  System.Object has no layout.  But A, B and C are all defined with layout, and that is valid. 

 
 

The situation with classes E, F, and G is similar.  G has no layout, and this too is valid.   The following picture 
shows two invalid setups: 

 
 

On the left, the “chain with layout” does not start at the ‘highest’ class.  And on the right, there is a ‘hole’ in the 
“chain with layout” 
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Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in 
the following diagram: 

 
In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class, 
called “MyClass”).  Rows 4–6 of the FieldLayout table point to corresponding rows in the Field table.  This 
illustrates how the CLI stores the explicit offsets for the three fields that are defined in “MyClass” (there is 
always one row in the FieldLayout table for each field in the owning class or value type)   So, the ClassLayout 
table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not 
have layout info, overall, this design saves space. 

End informative text 
The ClassLayout table has the following columns: 

• PackingSize (a 2-byte constant) 

• ClassSize (a 4-byte constant) 

• Parent (an index into the TypeDef table) 

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type 
declaration in which this type is declared (§10.2). When either of these directives is omitted, its corresponding 
value is zero.  (See §10.7.) 

ClassSize of zero does not mean the class has zero size.  It means that no .size directive was specified at 
definition time, in which case, the actual size is calculated from the field types, taking account of packing size 
(default or specified) and natural alignment on the target, runtime platform. 

This contains informative text only 
1. A ClassLayout table can contain zero or more rows 

2. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but 
not to an Interface)  [ERROR] 

3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout 
(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.) 
[ERROR] 

4. If Parent indexes a SequentialLayout type, then: 

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}.  (0 means use the default 
pack size for the platform on which the application is running.)  [ERROR] 

o If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 
bytes).  [ERROR] 

5. If Parent indexes an ExplicitLayout type, then 

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 
bytes)  [ERROR] 

o PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as 
well as a packing size.)  [ERROR] 
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6. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not 
create a type whose fields overlap. 

7. Layout along the length of an inheritance chain shall follow the rules specified above (starting at 
‘highest’ Type, with no ‘holes’, etc.)   [ERROR] 

End informative text 

22.9  Constant :  0x0B 
The Constant table is used to store compile-time, constant values for fields, parameters, and properties. 

The Constant table has the following columns: 

• Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 .  The encoding of Type 
for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT_TYPE_CLASS with a Value of a 4-
byte zero.  Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type 
token. 

• Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant 
(§24.2.6) coded index) 

• Value (an index into the Blob heap) 

Note that Constant information does not directly influence runtime behavior, although it is visible via 
Reflection (and hence can be used to implement functionality such as that provided by 
System.Enum.ToString).  Compilers inspect this information, at compile time, when importing metadata, but 
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits.  There are 
no CIL instructions to access the Constant table at runtime. 

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent. 
(For an example, see §16.2. ) 

This contains informative text only 
1. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, 

ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, 
ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or 
ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero  (§23.1.16) [ERROR] 

2. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or 
ELEMENT_TYPE_U8 (§23.1.16)  [CLS] 

3. Parent shall index a valid row in the Field, Property, or Param table.  [ERROR] 

4. There shall be no duplicate rows, based upon Parent  [ERROR] 

5. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent 
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).  
[CLS] 

End informative text 

22.10  CustomAttribute :  0x0C 
The CustomAttribute table has the following columns: 

• Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely, 
a HasCustomAttribute  (§24.2.6) coded index) 

• Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType  
(§24.2.6) coded index) 

• Value (an index into the Blob heap) 
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The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an 
object of the specified Custom Attribute class) at runtime.  The column called Type is slightly misleading—it 
actually indexes a constructor method—the owner of that constructor method is the Type of the Custom 
Attribute. 

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of 
the Type column and optionally that of the Value column (§21). 

This contains informative text only 
All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count 
for the number of bytes to follow in a UTF8 string). 

1. No CustomAttribute is required; that is, Value is permitted to be null. 

2. Parent can be an index into any metadata table, except the CustomAttribute table itself  [ERROR] 

3. Type shall index a valid row in the Method or MethodRef table.  That row shall be a constructor 
method (for the class of which this information forms an instance)  [ERROR] 

4. Value can be null or non-null. 

5. If Value is non-null, it shall index a 'blob' in the Blob heap  [ERROR] 

6. The following rules apply to the overall structure of the Value 'blob' (§23.3): 

o Prolog shall be 0x0001  [ERROR] 

o There shall be as many occurrences of FixedArg as are declared in the Constructor 
method  [ERROR] 

o NumNamed can be zero or more 

o There shall be exactly NumNamed occurrences of NamedArg  [ERROR] 

o Each NamedArg shall be accessible by the caller  [ERROR] 

o If NumNamed = 0 then there shall be no further items in the CustomAttrib  [ERROR] 

7. The following rules apply to the structure of FixedArg (§23.3): 

o If this item is not for a vector (a single-dimension array with lower bound of 0), then 
there shall be exactly one Elem  [ERROR] 

o If this item is for a vector, then: 

o NumElem shall be 1 or more  [ERROR] 

o This shall be followed by NumElem occurrences of Elem  [ERROR] 

8. The following rules apply to the structure of Elem (§23.3): 

o If this is a simple type or an enum (see §23.3 for how this is defined), then Elem 
consists simply of its value  [ERROR] 

o If this is a string or a Type, then Elem consists of a SerString – PackedLen count of 
bytes, followed by the UTF8 characters   [ERROR]  

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16, 
int32, int64, unsigned int8, unsigned int16, unsigned int32, or unsigned 
int64), then Elem consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN, 
ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, 
ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, 
ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value.  
[ERROR] 

9. The following rules apply to the structure of NamedArg (§23.3): 

o The single byte FIELD (0x53) or PROPERTY (0x54)  [ERROR] 
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o The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN, 
ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, 
ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, 
ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the 
constant 0x50 (for an argument of type System.Type) [ERROR] 

o The name of the Field or Property, respectively with the previous item, as a SerString 
– PackedLen count of bytes, followed by the UTF8 characters of the name  [ERROR] 

o A FixedArg  (see above)  [ERROR] 

End informative text 

22.11  DeclSecurity :  0x0E 
Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV), 
can be attached to a TypeDef, a Method, or an Assembly.  All constructors of this class shall take a 
System.Security.Permissions.SecurityAction value as their first parameter, describing what should be 
done with the permission on the type, method or assembly to which it is attached.  Code access security 
attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any 
of the security actions. 

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below).  All 
security custom attributes for a given security action on a method, type, or assembly shall be gathered together, 
and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced 
from the DeclSecurity table. 

[Note: The general flow from a compiler’s point of view is as follows.  The user specifies a custom attribute 
through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is 
derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security 
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply 
recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and 
provides a method (CreatePermission) to convert it into a security permission object (an object derived from 
System.Security.Permission). All the permission objects attached to a given metadata item with the same 
security action are combined together into a System.Security.PermissionSet.  This permission set is 
converted into a form that is ready to be stored in XML using its ToXML method to create a 
System.Security.SecurityElement.  Finally, the XML that is required for the metadata is created using the 
ToString method on the security element. end note] 

The DeclSecurity table has the following columns: 

• Action (a 2-byte value) 

• Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a 
HasDeclSecurity  (§24.2.6) coded index) 

• PermissionSet (an index into the Blob heap)  

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).  
The values 0–0xFF are reserved for future standards use.  Values 0x20–0x7F and 0x100–0x07FF are for uses 
where the action can be ignored if it is not understood or supported.  Values 0x80–0xFF and 0x0800–0xFFFF 
are for uses where the action shall be implemented for secure operation; in implementations where the action is 
not available, no access to the assembly, type, or method shall be permitted. 

Security Action Note Explanation of behavior Valid Scope 

Assert 1 Without further checks, satisfy Demand for the 
specified permission. 

Method, Type  

Demand 1 Check that all callers in the call chain have been 
granted specified permission, throw 
SecurityException (see Partition IV) on failure. 

Method, Type  
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Deny 1 Without further checks refuse Demand for the 
specified permission. 

Method, Type  

InheritanceDemand 1 The specified permission shall be granted in order 
to inherit from class or override virtual method.  

Method, Type  

LinkDemand 1 Check that the immediate caller has been granted 
the specified permission; throw 
SecurityException (see Partition IV) on failure. 

Method, Type  

NonCasDemand 2 Check that the current assembly has been granted 
the specified permission; throw 
SecurityException (see Partition IV) otherwise. 

Method, Type  

NonCasLinkDemand 2 Check that the immediate caller has been granted 
the specified permission; throw 
SecurityException (see Partition IV) otherwise. 

Method, Type 

PrejitGrant  Reserved for implementation-specific use. Assembly 

PermitOnly 1 Without further checks, refuse Demand for all 
permissions other than those specified. 

Method, Type  

RequestMinimum  Specify the minimum permissions required to run. Assembly 

RequestOptional  Specify the optional permissions to grant. Assembly 

RequestRefuse  Specify the permissions not to be granted. Assembly 
 

Note 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-
SecurityAttribute 

Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not 
derive from System.Security.Permissions.CodeAccessSecurityAttribute 

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes 
encoded in PermissionSet was defined. 

PermissionSet is a 'blob' having the following format: 

• A byte containing a period (.). 

• A compressed int32 containing the number of attributes encoded in the blob. 

• An array of attributes each containing the following: 

o A String, which is the fully-qualified type name of the attribute. (Strings are encoded 
as a compressed int to indicate the size followed by an array of UTF8 characters.) 

o A set of properties, encoded as the named arguments to a custom attribute would be (as 
in §23.3, beginning with NumNamed). 

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or 
Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with 
that particular Action. 

[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations 
should continue supporting this encoding for backward compatibility. end note] 

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive 
that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2). 

This contains informative text only 
1. Action shall have only those values set that are specified  [ERROR] 
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2. Parent shall be one of TypeDef, MethodDef, or Assembly.   That is, it shall index a valid row in 
the TypeDef table, the MethodDef table, or the Assembly table.  [ERROR] 

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface.  The 
security system ignores any such parent; compilers should not emit such permissions sets.  
[WARNING] 

4. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set  [ERROR] 

5. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set  [ERROR] 

6. PermissionSet shall index a 'blob' in the Blob heap  [ERROR] 

7. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object 
graph.  (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR] 

End informative text 

22.12  EventMap : 0x12 
The EventMap table has the following columns: 

• Parent (an index into the TypeDef table) 

• EventList (an index into the Event table).  It marks the first of a contiguous run of Events owned 
by this Type.  That run continues to the smaller of: 

o the last row of the Event table 

o the next run of Events, found by inspecting the EventList of the next row in the 
EventMap  table 

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for 
each method that the event comprises.  

The EventMap and Event tables result from putting the .event directive on a class (§18). 

This contains informative text only 
1. EventMap table can contain zero or more rows 

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the 
start of its event list)  [ERROR] 

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the 
Event table)  [ERROR] 

End informative text 

22.13  Event :  0x14 
Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods 
defined on a given class.  There are two required methods (add_ and remove_) plus an optional one (raise_); 
others are permitted.  All of the methods gathered together as an Event shall be defined on the class. 

The association between a row in the TypeDef table and the collection of methods that make up a given Event 
is held in three separate tables (exactly analogous to the approach used for Properties), as follows: 
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Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4 
of the Event table on the right (the row for an Event called DocChanged).  This setup establishes that MyClass 
has an Event called DocChanged.  But what methods in the MethodDef table are gathered together as 
‘belonging’ to event DocChanged?  That association is contained in the MethodSemantics table – its row 2 
indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called 
add_DocChanged).  Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in 
the MethodDef table to the left (a method called remove_DocChanged).  As the shading suggests, MyClass has 
another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut. 

Event tables do a little more than group together existing rows from other tables.  The Event table has columns 
for EventFlags, Name (e.g., DocChanged and TimedOut in  the example here), and EventType.  In addition, the 
MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_, 
or other function. 

The Event table has the following columns: 

• EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4) 

• Name (an index into the String heap) 

• EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a 
TypeDefOrRef  (§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the 
Type that owns this event.) 

Note that Event information does not directly influence runtime behavior; what counts is the information stored 
for each method that the event comprises. 

The EventMap and Event tables result from putting the .event directive on a class (§18). 

This contains informative text only 
1. The Event table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the EventMap table  [ERROR] 

3. EventFlags shall have only those values set that are specified (all combinations valid)  [ERROR] 

4. Name shall index a non-empty string in the String heap  [ERROR] 

5. The Name string shall be a valid CLS identifier  [CLS] 

6. EventType can be null or non-null 

7. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table  
[ERROR] 
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8. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes 
shall be a Class (not an Interface or a ValueType)  [ERROR] 

9. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table  
[ERROR] 

10. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the 
MethodSemantics table  [ERROR] 

11. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 
upon Name  [ERROR] 

12. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS 
conflicting-identifier-rules  [CLS] 

End informative text 

22.14  ExportedType :  0x27 
The ExportedType table holds a row for each type, defined within other modules of this Assembly; that is 
exported out of this Assembly.  In essence, it stores TypeDef row numbers of all types that are marked public in 
other modules that this Assembly comprises.   

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row number) and 
Implementation (in effect, the module that holds the target TypeDef table).  Note that this is the only occurrence 
in metadata of foreign tokens; that is, token values that have a meaning in another module.  (A regular token 
value is an index into a table in the current module) 

The full name of the type need not be stored directly.  Instead, it can be split into two parts at any included “.” 
(although typically this is done at the last “.” in the full name).  The part preceding the “.” is stored as the 
TypeNamespace and that following the “.” is stored as the TypeName.  If there is no “.” in the full name, then 
the TypeNamespace shall be the index of the empty string. 

The ExportedType table has the following columns: 

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 

• TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly).  This 
column is used as a hint only.  If the entry in the target TypeDef table matches the TypeName and 
TypeNamespace entries in this table, resolution has succeeded.  But if there is a mismatch, the 
CLI shall fall back to a search of the target TypeDef table 

• TypeName (an index into the String heap) 

• TypeNamespace (an index into the String heap) 

• Implementation.  This is an index (more precisely, an Implementation (§24.2.6) coded index) into 
either of the following tables: 

o File table, where that entry says which module in the current assembly holds the 
TypeDef 

o ExportedType table, where that entry is the enclosing Type of the current nested Type 

The rows in the ExportedType table are the result of the .class extern directive (§6.7). 

This contains informative text only 
 The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the 
TypeName, otherwise use the concatenation of Typenamespace, “.”, and TypeName. 

1. The ExportedType table can contain zero or more rows 

2. There shall be no entries in the ExportedType table for Types that are defined in the current 
module—just for Types defined in other modules within the Assembly  [ERROR] 
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3. Flags shall have only those values set that are specified   [ERROR] 

4. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15) 
[ERROR] 

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be 
NestedPublic (§23.1.15)  [ERROR] 

6. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within 
this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1  
(§23.1.15)  [WARNING] 

7. TypeName shall index a non-empty string in the String heap  [ERROR] 

8. TypeNamespace can be null, or non-null 

9. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap  [ERROR]  

10. FullName shall be a valid CLS identifier  [CLS] 

11. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the 
unmangled, simple name of the nested Type  [ERROR] 

12. Implementation shall be a valid index into either of the following:  [ERROR] 

o the File table; that file shall hold a definition of the target Type in its TypeDef table 

o a different row in the current ExportedType table—this identifies the enclosing Type of 
the current, nested Type 

13. FullName shall match exactly the corresponding FullName for the row in the TypeDef table 
indexed by TypeDefId  [ERROR] 

14. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR] 

15. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type  
[ERROR] 

16. The complete list of Types exported from the current Assembly is given as the catenation of the 
ExportedType table with all public Types in the current TypeDef table, where “public” means a 
Flags.VisibilityMask of either Public or NestedPublic.  There shall be no duplicate rows, in this 
concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is 
a nested Type)  [ERROR] 

End informative text 

22.15  Field :  0x04 
The Field table has the following columns: 

• Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5) 

• Name (an index into the String heap) 

• Signature (an index into the Blob heap) 

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However, 
the owner of any row in the Field table is not stored anywhere in the Field table itself.   There is merely a 
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following 
illustration.   
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The TypeDef table has rows 1–4.  The first row in the TypeDef table corresponds to a pseudo type, inserted 
automatically by the CLI.  It is used to denote those rows in the Field table corresponding to global variables.  
The Field table has rows 1–6.  Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the Field table.  Type 2 
owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table.  Type 3 owns 
rows 3–5 in the Field table.  Type 4 owns row 6 in the Field table.  So, in the Field table, rows 1 and 2 belong 
to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4. 

Each row in the Field table results from a top-level .field directive (§5.10), or a .field directive inside a 
Type (§10.2).  (For an example, see §14.5.) 

This contains informative text only 
1. The Field table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 

3. The owner row in the TypeDef table shall not be an Interface  [CLS] 

4. Flags shall have only those values set that are specified  [ERROR] 

5. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled, 
Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5)  [ERROR] 

6. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5)   [ERROR] 

7. If Flags.Literal = 1 then Flags.Static shall also be 1  (§23.1.5)  [ERROR] 

8. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1  (§23.1.5)  [ERROR] 

9. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal 
table  (§23.1.5)   [ERROR] 

10. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table  
(§23.1.5)  [ERROR] 

11. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table  
(§23.1.5)   [ERROR] 

12. Name shall index a non-empty string in the String heap  [ERROR] 

13. The Name string shall be a valid CLS identifier  [CLS] 

14. Signature shall index a valid field signature in the Blob heap   [ERROR] 

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate 
checking.  

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field 
is defined at module scope (commonly called a global variable). In this case: 

o Flags.Static shall be 1  [ERROR] 

o Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or 
Private (§23.1.5)  [ERROR] 

o module-scope fields are not allowed  [CLS] 
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17. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where 
owner is the owning row in the TypeDef table, as described above)  (Note however that if 
Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)  
[ERROR] 

18. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields 
are compared using CLS conflicting-identifier-rules.  So, for example,"int i" and "float i" 
would be considered CLS duplicates.  (Note however that if Flags.CompilerControlled = 1, then 
this row is completely excluded from duplicate checking, as noted above)  [CLS] 

19. If this is a field of an Enum, and Name string = "value__" then: 

a. RTSpecialName shall be 1  [ERROR] 

b. owner row in TypeDef table shall derive directly from System.Enum  [ERROR] 

c. the owner row in TypeDef table shall have no other instance fields  [CLS] 

d. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or 
ELEMENT_TYPE_I8 (§23.1.16 ): [CLS] 

20. its Signature shall be an integral type. [ERROR] 

End informative text 

22.16  FieldLayout :  0x10 
The FieldLayout table has the following columns: 

• Offset (a 4-byte constant) 

• Field (an index into the Field table) 

Note that each Field in any Type is defined by its Signature.  When a Type instance (i.e., an object) is laid out 
by the CLI, each Field is one of four kinds: 

• Scalar: for any member of built-in type, such as int32.  The size of the field is given by the size 
of that intrinsic, which varies between 1 and 8 bytes 

• ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT, 
ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY 

• Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR 

• ValueType: for ELEMENT_TYPE_VALUETYPE.  The instance of that ValueType is actually laid out in 
this object, so the size of the field is the size of that ValueType 

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another, 
since some of the rules specified here are dependent on platform-specific alignment rules. 

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field 
offset (§16). 

This contains informative text only 
1. A FieldLayout table can contain zero or more or rows 

2. The Type whose Fields are described by each row of the FieldLayout table shall have 
Flags.ExplicitLayout (§23.1.15) set  [ERROR] 

3. Offset shall be zero or more  [ERROR] 

4. Field shall index a valid row in the Field table  [ERROR] 

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)  
[ERROR] 
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6. Among the rows owned by a given Type there shall be no duplicates, based upon Field.  That is, a 
given Field of a Type cannot be given two offsets.   [ERROR] 

7. Each Field of kind ObjectRef shall be naturally aligned within the Type  [ERROR] 

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same 
value of Offset.  ObjectRef and a valuetype cannot have the same offset  [ERROR] 

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the 
FieldLayout table  [ERROR] 

End informative text 

22.17  FieldMarshal :  0x0D 
The FieldMarshal table has two columns.  It ‘links’ an existing row in the Field or Param table, to information 
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as 
parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch. 

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.  
In order to execute such paths, the caller, on most platforms, would be installed with elevated security 
permission.  Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply 
trusted not to violate the type system. 

The FieldMarshal table has the following columns: 

• Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded 
index) 

• NativeType (an index into the Blob heap) 

For the detailed format of the 'blob', see §23.4 

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a 
marshal attribute (§16.1). 

This contains informative text only 
1. A FieldMarshal table can contain zero or more rows 

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say 
which of these two tables each refers to)  [ERROR] 

3. NativeType shall index a non-null 'blob' in the Blob heap  [ERROR]  

4. No two rows shall point to the same parent.  In other words, after the Parent values have been 
decoded to determine whether they refer to the Field or the Param table, no two rows can point to 
the same row in the Field table or in the Param table [ERROR] 

5. The following checks apply to the MarshalSpec 'blob' (§23.4): 

a. NativeIntrinsic shall be exactly one of the constant values in its production (§23.4)  
[ERROR] 

b. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production  
[ERROR] 

c. If ARRAY, then ParamNum can be zero 

d. If ARRAY, then ParamNum cannot be < 0  [ERROR] 

e. If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the 
Field table  [ERROR] 
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f. If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters 
supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a 
member  [ERROR] 

g. If ARRAY, then ElemMult shall be >= 1  [ERROR] 

h. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake  [WARNING] 

i. If ARRAY and ParamNum = 0, then NumElem shall be >= 1  [ERROR] 

j. If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because  it is 
probably a mistake  [WARNING] 

End informative text 

22.18  FieldRVA : 0x1D 
The FieldRVA table has the following columns: 

• RVA (a 4-byte constant) 

• Field (an index into Field table) 

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records 
the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored. 

A row in the FieldRVA table is created for each static parent field that has specified the optional data 
label §16).  The RVA column is the relative virtual address of the data in the PE file (§16.3). 

This contains informative text only 
1. RVA shall be non-zero  [ERROR] 

2. RVA shall point into the current module’s data area (not its metadata area)  [ERROR] 

3. Field shall index a valid row in the Field table  [ERROR] 

4. Any field with an RVA shall be a ValueType (not a Class or an Interface).  Moreover, it shall not 
have any private fields (and likewise for any of its fields that are themselves ValueTypes).  (If 
any of these conditions were breached, code could overlay that global static and access its private 
fields.)  Moreover, no fields of that ValueType can be Object References (into the GC heap)  
[ERROR] 

5. So long as two RVA-based fields comply with the previous conditions, the ranges of memory 
spanned by the two ValueTypes can overlap, with no further constraints.  This is not actually an 
additional rule; it simply clarifies the position with regard to overlapped RVA-based fields 

End informative text 

22.19  File :  0x26 
The File table has the following columns: 

• Flags (a 4-byte bitmask of type FileAttributes, §23.1.6) 

• Name (an index into the String heap) 

• HashValue (an index into the Blob heap) 

The rows of the File table result from .file directives in an Assembly (§6.2.3) 

This contains informative text only 
1. Flags shall have only those values set that are specified (all combinations valid)  [ERROR] 
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2. Name shall index a non-empty string in the String heap.  It shall be in the format 
<filename>.<extension>  (e.g., “foo.dll”, but not “c:\utils\foo.dll”)  [ERROR] 

3. HashValue shall index a non-empty 'blob' in the Blob heap  [ERROR] 

4. There shall be no duplicate rows; that is, rows with the same Name value  [ERROR] 

5. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”) 
then there shall not be any row in the File table for this module; i.e., no self-reference  [ERROR] 

6. If the File table is empty, then this, by definition, is a single-file assembly.  In this case, the 
ExportedType table should be empty  [WARNING] 

End informative text 

22.20  GenericParam : 0x2A 
The GenericParam table has the following columns: 

• Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero) 

• Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7) 

• Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which 
this generic parameter applies; more precisely, a TypeOrMethodDef  (§24.2.6) coded index) 

• Name (a non-null index into the String heap, giving the name for the generic parameter.  This is 
purely descriptive and is used only by source language compilers and by Reflection) 

The GenericParam table stores the generic parameters used in generic type definitions and generic method 
definitions.  These generic parameters can be constrained (i.e., generic arguments shall extend some class 
and/or implement certain interfaces) or unconstrained.  (Such constraints are stored in the 
GenericParamConstraint table.) 

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or 
MethodDef tables.  

[Example: 
.class Dict`2<([mscorlib]System.IComparable) K, V> 
  

The generic parameter K of class Dict is constrained to implement System.IComparable. 
.method static void ReverseArray<T>(!!0[] 'array') 

There is no constraint on the generic parameter T of the generic method ReverseArray. 

end example] 

This contains informative text only 
1. GenericParam table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table  (i.e., no 
row sharing) [ERROR] 

3. Every generic type shall own one row in the GenericParam table for each of its generic 
parameters  [ERROR] 

4. Every generic method shall own one row in the GenericParam table for each of its generic 
parameters  [ERROR] 

Flags: 

• Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a 
generic interface, or a generic delegate class.  [ERROR] 
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• Otherwise, shall hold the value NonVariant (i.e., where the owner is a non delegate class, a value-
type, or a generic method)  [ERROR] 

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as 
[ERROR]: 

• The result type of a method 

• A generic parameter to an inherited interface 

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only 
as the argument to a method  [ERROR] 

Number shall have a value >= 0 and < the number of generic parameters in owner type or method.  
[ERROR] 

Successive rows of the GenericParam table that are owned by the same method shall be ordered by 
increasing Number value; there shall be no gaps in the Number sequence  [ERROR] 

Name shall be non-null and index a string in the String heap  [ERROR]  

[Rationale: Otherwise, Reflection output is not fully usable. end rationale] 

There shall be no duplicate rows based upon Owner+Name  [ERROR]  [Rationale: Otherwise, code 
using Reflection cannot disambiguate the different generic parameters. end rationale] 

There shall be no duplicate rows based upon Owner+Number [ERROR] 

End informative text 

22.21  GenericParamConstraint :  0x2C 
The GenericParamConstraint table has the following columns: 

• Owner (an index into the GenericParam table, specifying to which generic parameter this row 
refers) 

• Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class 
this generic parameter is constrained to derive; or which interface this generic parameter is 
constrained to implement;  more precisely, a TypeDefOrRef  (§24.2.6) coded index) 

The GenericParamConstraint table records the constraints for each generic parameter.  Each generic parameter 
can be constrained to derive from zero or one class.  Each generic parameter can be constrained to implement 
zero or more interfaces. 

Conceptually, each row in the GenericParamConstraint table is ‘owned’ by a row in the GenericParam table. 

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints. 

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be 
System.ValueType, or one of its sub types.  However, since System.ValueType itself is a reference type, this 
particular mechanism does not guarantee that the type is a non-reference type. 

This contains informative text only 
1. The GenericParamConstraint table can contain zero or more rows  

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)  
[ERROR] 

3. Each row in the GenericParam table shall ‘own’ a separate row in the GenericParamConstraint 
table for each constraint that generic parameter has  [ERROR] 

4. All of the rows in the GenericParamConstraint table that are owned by a given row in the 
GenericParam table shall form a contiguous range (of rows)  [ERROR] 
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5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one 
row in the GenericParamConstraint table corresponding to a class constraint.  [ERROR] 

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more 
rows in the GenericParamConstraint table corresponding to an interface constraint.  [ERROR] 

7. There shall be no duplicate rows based upon Owner+Constraint  [ERROR] 

8. Constraint shall not reference System.Void. [ERROR] 

End informative text 

22.22  ImplMap : 0x1C 
The ImplMap table holds information about unmanaged methods that can be reached from managed code, 
using PInvoke dispatch.  

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of 
a routine (ImportName) in some unmanaged DLL (ImportScope).   

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so 
MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string 
indexed by ImportName) in the DLL called “kernel32” (the string in the ModuleRef table indexed by 
ImportScope).  The CLI intercepts calls to managed Method number N, and instead forwards them as calls to 
the unmanaged routine called “GetEnvironmentVariable” in “kernel32.dll” (including marshalling any 
arguments, as required) 

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end 
note] 

The ImplMap table has the following columns: 

• MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7) 

• MemberForwarded (an index into the Field or MethodDef table; more precisely, a 
MemberForwarded  (§24.2.6) coded index).  However, it only ever indexes the MethodDef table, 
since Field export is not supported. 

• ImportName (an index into the String heap) 

• ImportScope (an index into the ModuleRef table) 

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl 
interoperation attribute specifying the MappingFlags, ImportName, and ImportScope. 

This contains informative text only 
1. ImplMap can contain zero or more rows 

2. MappingFlags shall have only those values set that are specified  [ERROR] 

3. MemberForwarded shall index a valid row in the MethodDef table  [ERROR] 

4. The MappingFlags.CharSetMask (§23.1.7) in the row of the MethodDef table indexed by 
MemberForwarded shall have at most one of the following bits set: CharSetAnsi, 
CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec)  [ERROR] 

5. ImportName shall index a non-empty string in the String heap  [ERROR] 

6. ImportScope shall index a valid row in the ModuleRef table  [ERROR] 

7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl 
= 1, and Flags.Static = 1  [ERROR] 
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End informative text 

22.23  InterfaceImpl :  0x09 
The InterfaceImpl table has the following columns: 

• Class (an index into the TypeDef table) 

• Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  
(§24.2.6) coded index) 

The InterfaceImpl table records the interfaces a type implements explicitly.  Conceptually, each row in the 
InterfaceImpl table indicates that Class implements Interface. 

This contains informative text only 
1. The InterfaceImpl table can contain zero or more rows 

2. Class shall be non-null [ERROR] 

3. If Class is non-null, then: 

a. Class shall index a valid row in the TypeDef table  [ERROR] 

b. Interface shall index a valid row in the TypeDef or TypeRef table  [ERROR] 

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an 
interface (Flags.Interface = 1), not a Class or ValueType  [ERROR] 

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface 
values  [WARNING] 

5. There can be many rows with the same value for Class (since a class can implement many 
interfaces) 

6. There can be many rows with the same value for Interface (since many classes can implement the 
same interface) 

End informative text 

22.24  ManifestResource :  0x28 
The ManifestResource table has the following columns: 

• Offset  (a 4-byte constant) 

• Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)  

• Name (an index into the String heap) 

• Implementation (an index into a File table, a AssemblyRef table, or  null; more precisely, an 
Implementation  (§24.2.6) coded index) 

The Offset specifies the byte offset within the referenced file at which this resource record begins.  The 
Implementation specifies which file holds this resource.  The rows in the table result from .mresource 
directives on the Assembly (§6.2.2). 

This contains informative text only 
1. The ManifestResource table can contain zero or more rows 

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI 
header  [ERROR] 

3. Flags shall have only those values set that are specified  [ERROR] 
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4. The VisibilityMask (§23.1.9) subfield of Flags shall be one of Public or Private  [ERROR] 

5. Name shall index a non-empty string in the String heap  [ERROR] 

6. Implementation can be null or non-null (if null, it means the resource is stored in the current file) 

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the 
Resource entry in the CLI header  [ERROR] 

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table  
[ERROR] 

9. There shall be no duplicate rows, based upon Name  [ERROR] 

10. If the resource is an index into the File table, Offset shall be zero  [ERROR] 

End informative text 

22.25  MemberRef :  0x0A 
The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as 
‘MethodRef’ and ‘FieldRef’, respectively.    The MemberRef table has the following columns: 

• Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more 
precisely, a MemberRefParent  (§24.2.6) coded index) 

• Name (an index into the String heap) 

• Signature (an index into the Blob heap) 

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field 
which is defined in another module or assembly.  (Also, an entry is made for a call to a method with a VARARG 
signature, even when it is defined in the same module as the call site.)  

This contains informative text only 
1. Class shall be one of the following:  [ERROR] 

a. a TypeRef token, if the class that defines the member is defined in another module.  (Note 
that it is unusual, but valid, to use a TypeRef token when the member is defined in this same 
module, in which case, its TypeDef token can be used instead.) 

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a 
global function or variable. 

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is 
defined in this module.  The Name shall match the Name in the corresponding MethodDef 
row.  The Signature shall match the Signature in the target method definition  [ERROR] 

d. a TypeSpec token, if the member is a member of a generic type 

2. Class shall not be null (as this would indicate an unresolved reference to a global function or 
variable)  [ERROR] 

3. Name shall index a non-empty string in the String heap  [ERROR] 

4. The Name string shall be a valid CLS identifier  [CLS] 

5. Signature shall index a valid field or method signature in the Blob heap.  In particular, it shall 
embed exactly one of the following ‘calling conventions’:  [ERROR] 

a. DEFAULT (0x0) 

b. VARARG (0x5) 

c. FIELD (0x6) 

d. GENERIC (0x10) 
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6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class, 
Name, and Signature  [WARNING] 

7. Signature shall not have the VARARG (0x5) calling convention  [CLS] 

8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-
identifier-rules.  (In particular, note that the return type and whether parameters are marked 
ELEMENT_TYPE_BYREF (§23.1.16) are ignored in the CLS.  For example, .method int32 M()and 
.method float64 M() result in duplicate rows by CLS rules.  Similarly, .method void 
N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.)  [CLS] 

9. If Class and Name resolve to a field, then that field shall not have a value of CompilerControlled 
(§23.1.5) in its Flags.FieldAccessMask subfield  [ERROR]  

10. If Class and Name resolve to a method, then that method shall not have a value of 
CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield  [ERROR] 

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an 
instantiated type. 

End informative text 

22.26  MethodDef : 0x06 
The MethodDef table has the following columns: 

• RVA (a 4-byte constant) 

• ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10) 

• Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10) 

• Name (an index into the String heap) 

• Signature (an index into the Blob heap) 

• ParamList (an index into the Param table).  It marks the first of a contiguous run of Parameters 
owned by this method.  The run continues to the smaller of: 

o the last row of the Param table 

o the next run of Parameters, found by inspecting the ParamList of the next row in the 
MethodDef  table 

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table. 

The rows in the MethodDef table result from .method directives (§15). The RVA column is computed when 
the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method 
(§25.4)  

[Note: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20). 
end note] 

This contains informative text only 
1. The MethodDef table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR] 

3. ImplFlags shall have only those values set that are specified   [ERROR] 

4. Flags shall have only those values set that are specified  [ERROR] 

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the 
GenericParam table which has this MethodDef as its owner. [ERROR] 
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6. The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of 
CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR] 

7. The following combined bit settings in Flags are invalid  [ERROR] 

a. Static | Final 

b. Static | Virtual 

c. Static | NewSlot 

d. Final  | Abstract 

e. Abstract | PinvokeImpl 

f. CompilerControlled | SpecialName 

g. CompilerControlled | RTSpecialName 

8. An abstract method shall be virtual.  So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1  
[ERROR] 

9. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1  [ERROR] 

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  [ERROR] 

o this Method owns at least row in the DeclSecurity table  

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 

11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 
be 1  [ERROR] 

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 
Flags.HasSecurity shall be 1  [ERROR] 

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no 
effect whatsoever upon the value of its Flags.HasSecurity 

14. Name shall index a non-empty string in the String heap  [ERROR] 

15. Interfaces cannot have instance constructors.  So, if this Method is owned by an Interface, then its 
Name cannot be .ctor  [ERROR] 

16. Interfaces can only own virtual methods (not static or instance methods).  So, if this Method is 
owned by an Interface, Flags.Static shall be clear  [ERROR] 

17. The Name string shall be a valid CLS identifier  (unless Flags.RTSpecialName is set - for 
example, .cctor is valid)   [CLS] 

18. Signature shall index a valid method signature in the Blob heap  [ERROR] 

19. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking 

20. If the owner of this method is the internally-generated type called <Module>, it denotes that this 
method is defined at module scope. [Note: In C++, the method is called global and can be 
referenced only within its compiland, from its point of declaration forwards. end note]  In this 
case: 

a. Flags.Static shall be 1  [ERROR] 

b. Flags.Abstract shall be 0  [ERROR] 

c. Flags.Virtual shall be 0  [ERROR] 

d. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or 
Private  [ERROR] 

e. module-scope methods are not allowed  [CLS] 
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21. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless 
they are boxed).  So, if the owner of this method is a ValueType then the method cannot be 
synchronized.  That is, ImplFlags.Synchronized shall be 0  [ERROR] 

22. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature 
(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether 
or not the method is generic, and for generic methods, it encodes the number of generic 
parameters.)  (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded 
from duplicate checking)  [ERROR] 

23. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature, 
where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in 
the signatures shall be different.  So, for example, "int i" and "float i" would be considered 
CLS duplicates; also, the return type of the method is ignored  (Note, however, that if 
Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)  
[CLS] 

24. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set  [ERROR] 

25. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0  [ERROR] 

26. If Flags.Abstract != 1 then exactly one of the following shall also be true:  [ERROR] 

o RVA != 0 

o Flags.PInvokeImpl = 1 

o ImplFlags.Runtime = 1 

27. If the method is CompilerControlled, then the RVA shall be non-zero or marked with 
PinvokeImpl = 1  [ERROR] 

28. Signature shall have exactly one of the following managed calling conventions  [ERROR] 

a. DEFAULT (0x0) 

b. VARARG (0x5) 

c. GENERIC (0x10) 

29. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS] 

30. Signature: If and only if the method is not Static then the calling convention byte in Signature 
has its HASTHIS (0x20) bit set  [ERROR] 

31. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall 
be 0  [ERROR]  

32. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set  (note that if 
EXPLICITTHIS is set, then the code is not verifiable)  [ERROR] 

33. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose 
MethodDefSig is preceded by FNPTR (0x1B)  [ERROR] 

34. If RVA = 0, then either: [ERROR] 

o Flags.Abstract = 1, or 

o ImplFlags.Runtime = 1, or 

o Flags.PinvokeImpl = 1, or 

35. If RVA != 0, then: [ERROR] 

a. Flags.Abstract shall be 0, and 

b. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native,  CIL, or 
Runtime, and 
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c. RVA shall point into the CIL code stream in this file 

36. If Flags.PinvokeImpl = 1 then  [ERROR] 

o RVA = 0 and the method owns a row in the ImplMap table 

37. If Flags.RTSpecialName = 1 then Name shall be one of:  [ERROR] 

a. .ctor (an object constructor method) 

b. .cctor (a class constructor method) 

38. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set  
[ERROR] 

39. If Name = .ctor (an object constructor method) then: 

a. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)  [ERROR]  

b. Flags.Static shall be 0  [ERROR] 

c. Flags.Abstract shall be 0  [ERROR]  

d. Flags.Virtual shall be 0  [ERROR] 

e. ‘Owner’ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the 
TypeDef table  [ERROR] 

f. there can be zero or more .ctors for any given ‘owner’  

40. If Name = .cctor (a class constructor method) then: 

a. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16)   [ERROR]  

b. Signature shall have DEFAULT (0x0) for its calling convention [ERROR] 

c. there shall be no parameters supplied in Signature  [ERROR] 

d. Flags.Static shall be set  [ERROR] 

e. Flags.Virtual shall be clear  [ERROR] 

f. Flags.Abstract shall be clear  [ERROR] 

41. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1 
methods named .cctor  [ERROR] 

End informative text 

22.27  MethodImpl :  0x19 
MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use 
was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for 
both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other 
reasons too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation 
rules below. 

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method 
which provides the implementation for I::M (either a method body within C, or a method body implemented by 
a base class of C). 

The MethodImpl table has the following columns: 

• Class (an index into the TypeDef table) 

• MethodBody (an index into the MethodDef or MemberRef table; more precisely, a 
MethodDefOrRef  (§24.2.6) coded index) 
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• MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a 
MethodDefOrRef  (§24.2.6) coded index) 

ILAsm uses the .override directive to specify the rows of the MethodImpl table (§10.3.2 and §15.4.1). 

This contains informative text only 
1. The MethodImpl table can contain zero or more rows 

2. Class shall index a valid row in the TypeDef table  [ERROR] 

3. MethodBody shall index a valid row in the MethodDef or MethodRef table  [ERROR] 

4. The method indexed by MethodDeclaration shall have Flags.Virtual set  [ERROR] 

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0  
[ERROR] 

6. The method indexed by MethodBody shall be a member of Class or some base class of Class 
(MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies)  [ERROR] 

7. The method indexed by MethodBody shall be virtual  [ERROR] 

8. The method indexed by MethodBody shall have its Method.RVA != 0  (cannot be an unmanaged 
method reached via PInvoke, for example)  [ERROR] 

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends 
chain) or in the interface tree of Class (reached via its InterfaceImpl entries)  [ERROR] 

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)  
[ERROR] 

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be 
accessible to Class.  [ERROR] 

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration  
[ERROR] 

13. There shall be no duplicate rows, based upon Class+MethodDeclaration  [ERROR] 

End informative text 

22.28  MethodSemantics :  0x18 
The MethodSemantics table has the following columns: 

• Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12) 

• Method (an index into the MethodDef table) 

• Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6) 
coded index)  

The rows of the MethodSemantics table are filled by .property (§17) and .event directives (§18).   
(See §22.13 for more information.) 

This contains informative text only 
1. MethodSemantics table can contain zero or more rows 

2. Semantics shall have only those values set that are specified  [ERROR] 

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined 
on the same class as the Property or Event this row describes  [ERROR] 

4. All methods for a given Property or Event shall have the same accessibility (ie the 
MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled  [CLS] 
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5. Semantics: constrained as follows: 

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set  
[ERROR] 

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall 
be set  [ERROR] 

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef 
table indexed by Method shall take a Delegate as a parameter, and return void  [ERROR] 

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table 
by Method can return any type 

8. For each property, there shall be a setter, or a getter, or both [CLS] 

9. Any getter method for a property whose Name is xxx shall be called get_xxx  [CLS] 

10. Any setter method for a property whose Name is xxx shall be called set_xxx  [CLS] 

11. If a property provides both getter and setter methods, then these methods shall have the same 
value in the Flags.MemberAccessMask subfield  [CLS] 

12. If a property provides both getter and setter methods, then these methods shall have the same 
value for their Method.Flags.Virtual  [CLS] 

13. Any getter and setter methods shall have Method.Flags.SpecialName = 1  [CLS] 

14. Any getter method shall have a return type which matches the signature indexed by the 
Property.Type field  [CLS] 

15. The last parameter for any setter method shall have a type which matches the signature indexed 
by the Property.Type field  [CLS] 

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16) in Method.Signature  
[CLS] 

17. If the property is indexed, the indexes for getter and setter shall agree in number and type  [CLS] 

18. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx 
(<DelegateType> handler)  [CLS] 

19. Any RemoveOn method for an event whose Name is xxx shall have the signature: void 
remove_xxx(<DelegateType> handler)  [CLS] 

20. Any Fire method for an event whose Name is xxx shall have the signature: void 
raise_xxx(Event e)  [CLS] 

End informative text 

22.29  MethodSpec :  0x2B 
The MethodSpec table has the following columns: 

• Method (an index into the MethodDef or MethodRef table, specifying to which generic method 
this row refers; that is, which generic method this row is an instantiation of; more precisely, a 
MethodDefOrRef  (§24.2.6) coded index) 

• Instantiation  (an index into the Blob heap (§23.2.15), holding the signature of this instantiation) 

The MethodSpec table records the signature of an instantiated generic method.  

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be 
represented by a single row in the table. 

This contains informative text only 
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1. The MethodSpec table can contain zero or more rows 

2. One or more rows can refer to the same row in the MethodDef or MethodRef table.  (There can be 
multiple instantiations of the same generic method.) 

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic 
method stored at Method  [ERROR] 

4. There shall be no duplicate rows based upon Method+Instantiation  [ERROR] 

End informative text 

22.30  Module :  0x00 
The Module table has the following columns: 

• Generation (a 2-byte value, reserved, shall be zero) 

• Name (an index into the String heap) 

• Mvid  (an index into the Guid heap; simply a Guid used to distinguish between two versions of the 
same module) 

• EncId (an index into the Guid heap; reserved, shall be zero) 

• EncBaseId (an index into the Guid heap; reserved, shall be zero) 

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the 
module.  The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be 
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another 
compatible algorithm. 

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using 
its hexadecimal encoding.  A GUID can be generated by several well-known algorithms including those used 
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in 
COM. end note] 
 

[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside 
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end 
rationale] 

The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming 
implementations of the CLI.  The rows in the Module table result from .module directives in the Assembly 
(§6.4). 

This contains informative text only 
1. The Module table shall contain one and only one row  [ERROR] 

2. Name shall index a non-empty string.  This string should match exactly any corresponding 
ModuleRef.Name string that resolves to this module.  [ERROR] 

3. Mvid shall index a non-null GUID in the Guid heap  [ERROR] 

End informative text 

22.31  ModuleRef :  0x1A 
The ModuleRef table has the following column: 

• Name (an index into the String heap) 

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5). 
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This contains informative text only 
1. Name shall index a non-empty string in the String heap.  This string shall enable the CLI to locate 

the target module (typically, it might name the file used to hold the module)  [ERROR]  

2. There should be no duplicate rows  [WARNING] 

3. Name should match an entry in the Name column of the File table.  Moreover, that entry shall 
enable the CLI to locate the target module (typically it might name the file used to hold the 
module)  [ERROR] 

End informative text 

22.32  NestedClass :  0x29 
The NestedClass table has the following columns: 

• NestedClass (an index into the TypeDef table) 

• EnclosingClass (an index into the TypeDef table) 

NestedClass is defined as lexically ‘inside’ the text of its enclosing Type. 

This contains informative text only 
The NestedClass table records which Type definitions are nested within which other Type definition. In a 
typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type 

1. The NestedClass table can contain zero or more rows 

2. NestedClass shall index a valid row in the TypeDef table  [ERROR] 

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to 
index the TypeRef table)  [ERROR] 

4. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)  
[WARNING] 

5. A given Type can only be nested by one encloser.  So, there cannot be two rows with the same 
value for NestedClass, but different value for EnclosingClass  [ERROR] 

6. A given Type can ‘own’ several different nested Types, so it is perfectly valid to have two or 
more rows with the same value for EnclosingClass but different values for NestedClass 

End informative text 

22.33  Param : 0x08 
The Param table has the following columns: 

• Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13) 

• Sequence (a 2-byte constant) 

• Name (an index into the String heap) 

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table  

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param 
attribute attached to a method (§15.4.1). 

This contains informative text only 
1. Param table can contain zero or more rows 
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2. Each row shall have one, and only one, owner row in the MethodDef table  [ERROR] 

3. Flags shall have only those values set that are specified (all combinations valid)  [ERROR] 

4. Sequence shall have a value >= 0 and <= number of parameters in owner method.  A Sequence 
value of 0 refers to the owner method’s return type; its parameters are then numbered from 1 
onwards  [ERROR] 

5. Successive rows of the Param table that are owned by the same method shall be ordered by 
increasing Sequence value - although gaps in the sequence are allowed  [WARNING] 

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table  [ERROR] 

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row  
[ERROR] 

8. parameters cannot be given default values, so Flags.HasDefault shall be 0  [CLS] 

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table  
[ERROR] 

10. Name can be null or non-null 

11. If Name is non-null, then it shall index a non-empty string in the String heap  [WARNING] 

End informative text 

22.34  Property : 0x17 
Properties within metadata are best viewed as a means to gather together collections of methods defined on a 
class, give them a name, and not much else.  The methods are typically get_ and set_ methods, already defined 
on the class, and inserted like any other methods into the MethodDef table.  The association is held together by 
three separate tables, as shown below: 

 
Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing 
row 4 of the Property table on the right – the row for a property called Foo.  This setup establishes that 
MyClass has a property called Foo.  But what methods in the MethodDef table are gathered together as 
‘belonging’ to property Foo?  That association is contained in the MethodSemantics table – its row 2 indexes 
property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo).  Also, row 3 
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method 
called set_Foo).  As the shading suggests, MyClass has another property, called Bar, with two methods, 
get_Bar and set_Bar. 

Property tables do a little more than group together existing rows from other tables.  The Property table has 
columns for Flags, Name (eg Foo and Bar in  the example here) and Type.  In addition, the MethodSemantics 
table has a column to record whether the method it points at is a set_, a get_ or other. 
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[Note: The CLS (see Partition I) refers to instance, virtual, and static properties.  The signature of a property 
(from the Type column) can be used to distinguish a static property, since instance and virtual properties will 
have the “HASTHIS” bit set in the signature (§23.2.1) while a static property will not.  The distinction between 
an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS 
requires to be either both virtual or both instance. end note] 

The Property ( 0x17 ) table has the following columns: 

• Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14) 

• Name (an index into the String heap) 

• Type (an index into the Blob heap)  (The name of this column is misleading.  It does not index a 
TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property) 

This contains informative text only 

1. Property table can contain zero or more rows 

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)  
[ERROR] 

3. PropFlags shall have only those values set that are specified (all combinations valid)  [ERROR] 

4. Name shall index a non-empty string in the String heap  [ERROR] 

5. The Name string shall be a valid CLS identifier  [CLS] 

6. Type shall index a non-null signature in the Blob heap  [ERROR] 

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading 
byte is 0x8).  Apart from this leading byte, the signature is the same as the property’s get_ method  
[ERROR] 

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based 
upon Name+Type  [ERROR] 

9. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS 
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class 
cannot have two properties, "int Foo" and "String Foo", for example)  [CLS] 

End informative text 

22.35  PropertyMap : 0x15 
The PropertyMap table has the following columns: 

• Parent (an index into the TypeDef table) 

• PropertyList (an index into the Property table).  It marks the first of a contiguous run of 
Properties owned by Parent.  The run continues to the smaller of: 

o the last row of the Property table 

o the next run of Properties, found by inspecting the PropertyList of the next row in this 
PropertyMap table 

The PropertyMap and Property tables result from putting the .property directive on a class (§17). 

This contains informative text only 
1. PropertyMap table can contain zero or more rows 

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the 
start of its property list)  [ERROR] 
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3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in 
the Property table)  [ERROR] 

End informative text 

22.36  StandAloneSig :  0x11 
Signatures are stored in the metadata Blob heap.  In most cases, they are indexed by a column in some table—
Field.Signature, Method.Signature, MemberRef.Signature, etc.  However, there are two cases that require a 
metadata token for a signature that is not indexed by any metadata table.  The StandAloneSig table fulfils this 
need.  It has just one column, which points to a Signature in the Blob heap. 

The signature shall describe either: 

• a method – code generators create a row in the StandAloneSig table for each occurrence of a calli 
CIL instruction.  That row indexes the call-site signature for the function pointer operand of the 
calli instruction 

• local variables – code generators create one row in the StandAloneSig table for each method, to 
describe all of its local variables.  The .locals directive (§15.4.1) in ILAsm generates a row in 
the StandAloneSig table. 

TheStandAloneSig table has the following column: 

• Signature (an index into the Blob heap) 

[Example:  
// On encountering the calli instruction, ilasm generates a signature 
// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),  
// indexed by the StandAloneSig table: 
.assembly Test {} 
.method static int32 AddTen(int32) 
{ ldarg.0 
  ldc.i4  10 
  add 
  ret  
} 

.class Test 
{ .method static void main() 
  { .entrypoint 
    ldc.i4.1 
    ldftn int32 AddTen(int32) 
    calli int32(int32) 
    pop 
    ret 
  } 
} 

end example] 

This contains informative text only 
1. The StandAloneSig table can contain zero or more rows 

2. Signature shall index a valid signature in the Blob heap  [ERROR] 

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature  [ERROR] 

4. Duplicate rows are allowed 

End informative text 
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22.37  TypeDef :  0x02 
The TypeDef table has the following columns: 

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15) 

• TypeName (an index into the String heap) 

• TypeNamespace (an index into the String heap) 

• Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef  
(§24.2.6) coded index) 

• FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by 
this Type).  The run continues to the smaller of: 

o the last row of the Field table 

o the next run of Fields, found by inspecting the FieldList of the next row in this 
TypeDef table 

• MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods 
owned by this Type).  The run continues to the smaller of: 

o the last row of the MethodDef table 

o the next run of Methods, found by inspecting the MethodList of the next row in this 
TypeDef table 

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables 
defined at module scope. 

Note that any type shall be one, and only one, of 

• Class (Flags.Interface = 0, and derives ultimately from System.Object) 

• Interface (Flags.Interface = 1) 

• Value type, derived ultimately from System.ValueType 

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are 
actually implemented as indexes into metadata tables).  The two chains are: 

• Extension chain – defined via the Extends column of the TypeDef table.  Typically, a derived 
Class extends a base Class (always one, and only one, base Class) 

• Interface chains – defined via the InterfaceImpl table.  Typically, a Class implements zero, one or 
more Interfaces 

These two chains (extension and interface) are always kept separate in metadata.  The Extends chain represents 
one-to-one relations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its 
immediate base class).  The Interface chains can represent one-to-many relations—that is, one Class might well 
implement two or more Interfaces.  

An interface can also implement one or more other interfaces—metadata stores those links via the 
InterfaceImpl table (the nomenclature is a little inappropriate here—there is no “implementation” involved; 
perhaps a clearer name might have been Interface table, or InterfaceInherit table)   

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an 
enclosing type declaration.   Whether a type is nested can be determined by the value of its Flags.Visibility sub-
field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly, 
NestedFamANDAssem, NestedFamORAssem}.  

If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the 
GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the 
GenericParam table. 
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This contains informative text only 
The roots of the inheritance hierarchies look like this: 

 
 

There is one system-defined root, System.Object.  All Classes and ValueTypes shall derive, ultimately, from 
System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth 
required.  This Extends inheritance chain is shown with heavy arrows. 

(See below for details of the System.Delegate Class) 

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which 
shall be implemented.  The Interface requirement chain is shown as light, dashed arrows.  This includes links 
between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces. 

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from 
System.ValueType.  Regular ValueTypes cannot be derived to a depth of more than one.  (Another way to state 
this is that user-defined ValueTypes shall be sealed.)  User-defined Enums shall derive directly from 
System.Enum.  Enums cannot be derived to a depth of more than one below System.Enum.  (Another way to 
state this is that user-defined Enums shall be sealed.)  System.Enum derives directly from System.ValueType. 

User-defined delegates derive from System.Delegate.   Delegates cannot be derived to a depth of more than 
one. 

For the directives to declare types see §9. 

1. A TypeDef table can contain one or more rows. 

2. Flags: 

a. Flags shall have only those values set that are specified  [ERROR] 

b. can set 0 or 1 of SequentialLayout and  ExplicitLayout (if none set, then defaults to 
AutoLayout)  [ERROR]  

c. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)  
[ERROR] 

d. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:  
[ERROR] 

• this Type owns at least one row in the DeclSecurity table  

• this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute 

e. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall 
be 1  [ERROR] 
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f. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then 
Flags.HasSecurity shall be 1  [ERROR] 

g. Note that it is valid for an Interface to have HasSecurity set.  However, the security system 
ignores any permission requests attached to that Interface 

3. Name shall index a non-empty string  in the String heap  [ERROR] 

4. The TypeName string shall be a valid CLS identifier  [CLS] 

5. TypeNamespace can be null or non-null 

6. If non-null, then TypeNamespace shall index a non-empty string in the String heap  [ERROR] 

7. If non-null, TypeNamespace’s string shall be a valid CLS Identifier  [CLS] 

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend 
one, and only one, other Class - so Extends for a Class shall be non-null [ERROR] 

9. System.Object shall have an Extends value of null  [ERROR] 

10. System.ValueType shall have an Extends value of System.Object  [ERROR] 

11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall 
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <= 
rowcount.  In addition, that row itself shall be a Class (not an Interface or ValueType)  In 
addition, that base Class shall not be sealed (its Flags.Sealed shall be 0)  [ERROR] 

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would 
introduce loops in the hierarchy tree  [ERROR] (For generic types, see §9.1 and §9.2.) 

13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other 
Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the 
Extends column)  [ERROR] 

14. FieldList can be null or non-null 

15. A Class or Interface can ‘own’ zero or more fields 

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a 
non-zero ClassSize  [ERROR] 

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row 
<= rowcount+1  [ERROR] 

18. MethodList can be null or non-null 

19. A Type can ‘own’ zero or more methods 

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes)  [ERROR] 

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1 
<= row <= rowcount+1  [ERROR] 

22. A Class which has one or more abstract methods cannot be instantiated, and shall have 
Flags.Abstract = 1.   Note that the methods owned by the class include all of those inherited from 
its base class and interfaces it implements, plus those defined via its MethodList.  (The CLI shall 
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but 
has Flags.Abstract = 0, it will throw an exception)  [ERROR] 

23. An Interface shall have Flags.Abstract = 1  [ERROR] 

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor) 

25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every 
method its contract requires.  Its methods can be inherited from its base class, from the interfaces 
it implements, or defined by itself.  The implementations can be inherited from its base class, or 
defined by itself  [ERROR] 
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26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance 
fields (Field.Static = 0)  [ERROR] 

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0)  [ERROR] 

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract 
= 1)  [ERROR] 

29. There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName 
(unless this is a nested type - see below)  [ERROR] 

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon 
TypeNamespace+TypeName+OwnerRowInNestedClassTable  [ERROR] 

31. There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using 
CLS conflicting-identifier-rules (unless this is a nested type - see below)  [CLS] 

32. If this is a nested type, there shall be no duplicate rows, based upon 
TypeNamespace+TypeName+OwnerRowInNestedClassTable and where 
TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules  [CLS] 

33. If Extends = System.Enum  (i.e., type is a user-defined Enum) then: 

a. shall be sealed (Sealed = 1)  [ERROR] 

b. shall not have any methods of its own (MethodList chain shall be zero length)  [ERROR] 

c. shall not implement any interfaces (no entries in InterfaceImpl table for this type)  
[ERROR] 

d. shall not have any properties   [ERROR] 

e. shall not have any events   [ERROR] 

f. any static fields shall be literal (have Flags.Literal = 1)  [ERROR] 

g. shall have one or more static, literal fields, each of which has the type of the Enum  [CLS] 

h. shall be exactly one instance field, of built-in integer type  [ERROR] 

i. the Name string of the instance field shall be "value__", the field shall be marked 
RTSpecialName, and that field shall have one of the CLS integer types [CLS] 

j. shall not have any static fields unless they are literal [ERROR] 

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‘owns’ 
means a row in that NestedClass table whose NestedClass column holds the TypeDef token for 
this type definition  [ERROR] 

35. A ValueType shall be sealed  [ERROR] 

End informative text 

22.38  TypeRef :  0x01 
The TypeRef table has the following columns: 

• ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null; 
more precisely, a ResolutionScope  (§24.2.6) coded index) 

• TypeName (an index into the String heap) 

• TypeNamespace (an index into the String heap) 

This contains informative text only 
1. ResolutionScope shall be exactly one of: 
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a. null - in this case, there shall be a row in the ExportedType table for this Type - its 
Implementation field shall contain a File token or an AssemblyRef token that says where the 
type is defined [ERROR] 

b. a TypeRef token, if this is a nested type (which can be determined by, for example, 
inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the 
tdNestedXXX set)  [ERROR] 

c. a ModuleRef token, if the target type is defined in another module within the same 
Assembly as this one [ERROR] 

d. a Module token, if the target type is defined in the current module - this should not occur in 
a CLI (“compressed metadata”) module  [WARNING] 

e. an AssemblyRef token, if the target type is defined in a different Assembly from the current 
module [ERROR] 

2. TypeName shall index a non-empty string in the String heap  [ERROR] 

3. TypeNamespace can be null, or non-null 

4. If non-null, TypeNamespace shall index a non-empty string in the String heap  [ERROR] 

5. The TypeName string shall be a valid CLS identifier  [CLS] 

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and 
TypeNamespace  [ERROR] 

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared 
using CLS conflicting-identifier-rules  [CLS] 

End informative text 

22.39  TypeSpec :  0x1B 
The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.  
This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required, 
typically, for array operations, such as creating, or calling methods on the array class. 

The TypeSpec table has the following column: 

• Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14) 

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token; 
specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj, 
box, and unbox. 

This contains informative text only 
1. The TypeSpec table can contain zero or more rows 

2. Signature shall index a valid Type specification in the Blob heap  [ERROR] 

3. There shall be no duplicate rows, based upon Signature  [ERROR] 

End informative text 
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23 Metadata logical format: other structures 

23.1  Bitmasks and flags 
This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation 
encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the 
implementation is unspecified. 

23.1 .1  Values for AssemblyHashAlgorithm 

Algorithm Value 
None 0x0000 
Reserved (MD5) 0x8003 
SHA1  0x8004 
 

23.1 .2  Values for AssemblyFlags 

Flag Value Description 
PublicKey 0x0001 The assembly reference holds the full (unhashed) 

public key. 
SideBySideCompatible 0x0000 The assembly is side-by-side compatible 
<reserved> 0x0030 Reserved: both bits shall be zero 
Retargetable 0x0100 The implementation of this assembly used at runtime is 

not expected to match the version seen at compile time. 
(See the text following this table.) 

EnableJITcompileTracking  0x8000 Reserved  (a conforming implementation of the CLI 
can ignore this setting on read; some implementations 
might use this bit to indicate that a CIL-to-native-code 
compiler should generate CIL-to-native code map) 

DisableJITcompileOptimizer 0x4000 Reserved  (a conforming implementation of the CLI 
can ignore this setting on read; some implementations 
might use this bit to indicate that a CIL-to-native-code 
compiler should not generate optimized code) 

 

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this 
Standard. 

23.1 .3  Values for Culture 
ar-SA ar-IQ ar-EG ar-LY 

ar-DZ ar-MA ar-TN ar-OM 

ar-YE ar-SY ar-JO ar-LB 

ar-KW ar-AE ar-BH ar-QA 

bg-BG ca-ES zh-TW zh-CN 

zh-HK zh-SG zh-MO cs-CZ 

da-DK de-DE de-CH de-AT 

de-LU de-LI el-GR en-US 

en-GB en-AU en-CA en-NZ 



 

 Partition II 145 

en-IE en-ZA en-JM en-CB 

en-BZ en-TT en-ZW en-PH 

es-ES-Ts es-MX es-ES-Is es-GT 

es-CR es-PA es-DO es-VE 

es-CO es-PE es-AR es-EC 

es-CL es-UY es-PY es-BO 

es-SV es-HN es-NI es-PR 

Fi-FI fr-FR fr-BE fr-CA 

Fr-CH fr-LU fr-MC he-IL 

hu-HU is-IS it-IT it-CH 

Ja-JP ko-KR nl-NL nl-BE 

nb-NO nn-NO pl-PL pt-BR 

pt-PT ro-RO ru-RU hr-HR 

Lt-sr-SP Cy-sr-SP sk-SK sq-AL 

sv-SE sv-FI th-TH tr-TR 

ur-PK id-ID uk-UA be-BY 

sl-SI et-EE lv-LV lt-LT 

fa-IR vi-VN hy-AM Lt-az-AZ 

Cy-az-AZ eu-ES mk-MK af-ZA 

ka-GE fo-FO hi-IN ms-MY 

ms-BN kk-KZ ky-KZ sw-KE 

Lt-uz-UZ Cy-uz-UZ tt-TA pa-IN 

gu-IN ta-IN te-IN kn-IN 

mr-IN sa-IN mn-MN gl-ES 

kok-IN syr-SY div-MV  

 

Note on RFC 1766, Locale names: a typical string would be “en-US”.  The first part (“en” in the example) uses 
ISO 639 characters (“Latin-alphabet characters in lowercase.  No diacritical marks of modified characters are 
used”).  The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase); 
that is, the familiar ASCII characters a–z and A–Z, respectively.  However, whilst RFC 1766 recommends the 
first part be lowercase and the second part be uppercase, it allows mixed case.  Therefore,  the validation rule 
checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-
blind is the familiar fold on values less than U+0080 

23.1 .4  Flags for events [EventAttributes]  

Flag Value Description 
SpecialName 0x0200 Event is special. 
RTSpecialName  0x0400 CLI provides 'special' behavior, depending upon the name of the 

event 
 

23.1 .5  Flags for f ields [FieldAttributes]  

Flag Value Description 
FieldAccessMask 0x0007 These 3 bits contain one of the following values: 
CompilerControlled 0x0000 Member not referenceable 
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Private 0x0001 Accessible only by the parent type 
FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 
Assembly 0x0003 Accessibly by anyone in the Assembly 
Family 0x0004 Accessible only by type and sub-types 
FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 
Public 0x0006 Accessibly by anyone who has visibility to this scope field 

contract attributes 
Static 0x0010 Defined on type, else per instance 
InitOnly 0x0020 Field can only be initialized, not written to after init 
Literal 0x0040 Value is compile time constant 
NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when 

type is remoted) 
SpecialName 0x0200 Field is special 

Interop Attributes 
PInvokeImpl 0x2000 Implementation is forwarded through PInvoke. 

Additional flags 
RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the 

field 
HasFieldMarshal 0x1000 Field has marshalling information 
HasDefault 0x8000 Field has default 
HasFieldRVA 0x0100 Field has RVA 
 

23.1 .6  Flags for f i les  [Fi leAttributes]  

Flag Value Description 
ContainsMetaData 0x0000 This is not a resource file 
ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file 
 

23.1 .7  Flags for Generic Parameters [GenericParamAttributes]  

Flag Value Description 
VarianceMask 0x0003 These 2 bits contain one of the following values: 
None 0x0000 The generic parameter is non-variant and has no special 

constraints 
Covariant 0x0001 The generic parameter is covariant 
Contravariant 0x0002 The generic parameter is contravariant 
SpecialConstraintMask 0x001C These 3 bits contain one of the following values: 
ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint 
NotNullableValueTypeConstraint 0x0008 The generic parameter has the valuetype special 

constraint 
DefaultConstructorConstraint 0x0010 The generic parameter has the .ctor special constraint 
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23.1 .8  Flags for ImplMap [PInvokeAttributes]  

Flag Value Description 
NoMangle 0x0001 PInvoke is to use the member name as specified 

Character set 
CharSetMask 0x0006 This is a resource file or other non-metadata-containing file. 

These 2 bits contain one of the following values: 
CharSetNotSpec 0x0000  
CharSetAnsi 0x0002  
CharSetUnicode 0x0004  
CharSetAuto 0x0006  
SupportsLastError 0x0040 Information about target function. Not relevant for fields 

Calling convention 
CallConvMask 0x0700 These 3 bits contain one of the following values: 
CallConvWinapi 0x0100  
CallConvCdecl 0x0200  
CallConvStdcall 0x0300  
CallConvThiscall 0x0400  
CallConvFastcall 0x0500  
 

23.1 .9  Flags for ManifestResource [ManifestResourceAttributes]  

Flag Value Description 
VisibilityMask 0x0007 These 3 bits contain one of the following values: 
Public 0x0001 The Resource is exported from the Assembly 
Private 0x0002 The Resource is private to the Assembly 
 

23.1 .10  Flags for methods [MethodAttributes]  
 

Flag Value Description 
MemberAccessMask 0x0007 These 3 bits contain one of the following values: 
CompilerControlled 0x0000 Member not referenceable 
Private 0x0001 Accessible only by the parent type 
FamANDAssem 0x0002 Accessible by sub-types only in this Assembly 
Assem 0x0003 Accessibly by anyone in the Assembly 
Family 0x0004 Accessible only by type and sub-types 
FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly 
Public 0x0006 Accessibly by anyone who has visibility to this scope 
Static 0x0010 Defined on type, else per instance 
Final 0x0020 Method cannot be overridden 
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Virtual 0x0040 Method is virtual 
HideBySig 0x0080 Method hides by name+sig, else just by name 
VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains 

one of the following values: 
ReuseSlot 0x0000 Method reuses existing slot in vtable 
NewSlot 0x0100 Method always gets a new slot in the vtable 
Strict 0x0200 Method can only be overriden if also accessible 
Abstract 0x0400 Method does not provide an implementation 
SpecialName 0x0800 Method is special 
Interop attributes 

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke 
UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations 
Additional flags 

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of 
the method 

HasSecurity 0x4000 Method has security associate with it 
RequireSecObject 0x8000 Method calls another method containing security code. 
 

23.1 .11  Flags for methods [MethodImplAttributes]  

Flag Value Description 
CodeTypeMask 0x0003 These 2 bits contain one of the following values: 
IL 0x0000 Method impl is CIL 
Native 0x0001 Method impl is native 
OPTIL 0x0002 Reserved: shall be zero in conforming implementations 
Runtime 0x0003 Method impl is provided by the runtime 
ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged. 

This bit contains one of the following values: 
Unmanaged 0x0004 Method impl is unmanaged, otherwise managed 
Managed 0x0000 Method impl is managed 

Implementation info and interop 
ForwardRef 0x0010 Indicates method is defined; used primarily in merge 

scenarios 
PreserveSig 0x0080 Reserved: conforming implementations can ignore 
InternalCall 0x1000 Reserved: shall be zero in conforming implementations 
Synchronized 0x0020 Method is single threaded through the body 
NoInlining 0x0008 Method cannot be inlined 
MaxMethodImplVal 0xffff Range check value     
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23.1 .12  Flags for MethodSemantics  [MethodSemanticsAttributes]  

Flag Value Description 
Setter 0x0001 Setter for property 
Getter 0x0002 Getter for property 
Other 0x0004 Other method for property or event 
AddOn 0x0008 AddOn method for event 
RemoveOn 0x0010 RemoveOn method for event 
Fire 0x0020 Fire method for event 
 

23.1 .13  Flags for params [ParamAttributes]  

Flag Value Description 
In 0x0001 Param is [In] 
Out 0x0002 Param is [out] 
Optional 0x0010 Param is optional 
HasDefault 0x1000 Param has default value 
HasFieldMarshal 0x2000 Param has FieldMarshal 
Unused 0xcfe0 Reserved: shall be zero in a conforming implementation 
 

23.1 .14  Flags for propert ies  [PropertyAttributes]  

Flag Value Description 
SpecialName 0x0200 Property is special 
RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name 

encoding 
HasDefault 0x1000 Property has default 
Unused 0xe9ff Reserved: shall be zero in a conforming implementation 
 

23.1 .15  Flags for types [TypeAttributes]  

Flag Value Description 

Visibility attributes 
VisibilityMask 0x00000007 Use this mask to retrieve visibility information. 

These 3 bits contain one of the following 
values:  

NotPublic 0x00000000 Class has no public scope 
Public 0x00000001 Class has public scope 
NestedPublic 0x00000002 Class is nested with public visibility 
NestedPrivate 0x00000003 Class is nested with private visibility 
NestedFamily 0x00000004 Class is nested with family visibility 
NestedAssembly 0x00000005 Class is nested with assembly visibility 
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NestedFamANDAssem 0x00000006 Class is nested with family and assembly 
visibility 

NestedFamORAssem 0x00000007 Class is nested with family or assembly 
visibility 

Class layout attributes 
LayoutMask 0x00000018 Use this mask to retrieve class layout 

information. These 2 bits contain one of the 
following values: 

AutoLayout 0x00000000 Class fields are auto-laid out 
SequentialLayout 0x00000008 Class fields are laid out sequentially 
ExplicitLayout 0x00000010 Layout is supplied explicitly 

Class semantics attributes 
ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics 

information. This bit contains one of the 
following values: 

Class 0x00000000 Type is a class 
Interface 0x00000020 Type is an interface 

Special semantics in addition to class semantics 
Abstract 0x00000080 Class is abstract 
Sealed 0x00000100 Class cannot be extended 
SpecialName 0x00000400 Class name is special 

Implementation Attributes 
Import 0x00001000 Class/Interface is imported 
Serializable 0x00002000 Reserved (Class is serializable) 

String formatting Attributes 
StringFormatMask 0x00030000 Use this mask to retrieve string information for 

native interop. These 2 bits contain one of the 
following values: 

AnsiClass 0x00000000 LPSTR is interpreted as ANSI 
UnicodeClass 0x00010000 LPSTR is interpreted as Unicode 
AutoClass 0x00020000 LPSTR is interpreted automatically 
CustomFormatClass 0x00030000 A non-standard encoding specified by 

CustomStringFormatMask 
CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard 

encoding information for native interop. The 
meaning of the values of these 2 bits is 
unspecified. 

Class Initialization Attributes 
BeforeFieldInit 0x00100000 Initialize the class before first static field 

access 

Additional Flags 
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RTSpecialName 0x00000800 CLI provides 'special' behavior, depending 
upon the name of the Type 

HasSecurity 0x00040000 Type has security associate with it 
 

23.1 .16  Element types used in s ignatures  

The following table lists the values for ELEMENT_TYPE constants.  These are used extensively in metadata 
signature blobs – see §23.2 

Name Value Remarks 
ELEMENT_TYPE_END 0x00 Marks end of a list 
ELEMENT_TYPE_VOID  0x01  
ELEMENT_TYPE_BOOLEAN  0x02  
ELEMENT_TYPE_CHAR  0x03  
ELEMENT_TYPE_I1  0x04  
ELEMENT_TYPE_U1  0x05  
ELEMENT_TYPE_I2  0x06  
ELEMENT_TYPE_U2  0x07  
ELEMENT_TYPE_I4  0x08  
ELEMENT_TYPE_U4  0x09  
ELEMENT_TYPE_I8  0x0a  
ELEMENT_TYPE_U8  0x0b  
ELEMENT_TYPE_R4  0x0c  
ELEMENT_TYPE_R8  0x0d  
ELEMENT_TYPE_STRING  0x0e  
ELEMENT_TYPE_PTR    0x0f Followed by type 
ELEMENT_TYPE_BYREF  0x10 Followed by type 
ELEMENT_TYPE_VALUETYPE  0x11 Followed by TypeDef or TypeRef token 
ELEMENT_TYPE_CLASS  0x12 Followed by TypeDef or TypeRef token 
ELEMENT_TYPE_VAR 0x13 Generic parameter in a generic type definition, 

represented as number 
ELEMENT_TYPE_ARRAY  0x14 type rank boundsCount bound1 … loCount lo1 … 
ELEMENT_TYPE_GENERICINST 0x15 Generic type instantiation.  Followed by type type-

arg-count  type-1 ... type-n 
ELEMENT_TYPE_TYPEDBYREF 0x16  
ELEMENT_TYPE_I 0x18 System.IntPtr 
ELEMENT_TYPE_U  0x19 System.UIntPtr 

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature 
ELEMENT_TYPE_OBJECT 0x1c System.Object 

ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower bound 
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Name Value Remarks 
ELEMENT_TYPE_END 0x00 Marks end of a list 
ELEMENT_TYPE_VOID  0x01  
ELEMENT_TYPE_BOOLEAN  0x02  
ELEMENT_TYPE_CHAR  0x03  
ELEMENT_TYPE_I1  0x04  
ELEMENT_TYPE_U1  0x05  
ELEMENT_TYPE_I2  0x06  
ELEMENT_TYPE_U2  0x07  
ELEMENT_TYPE_I4  0x08  
ELEMENT_TYPE_U4  0x09  
ELEMENT_TYPE_I8  0x0a  
ELEMENT_TYPE_U8  0x0b  
ELEMENT_TYPE_R4  0x0c  
ELEMENT_TYPE_R8  0x0d  
ELEMENT_TYPE_STRING  0x0e  
ELEMENT_TYPE_PTR    0x0f Followed by type 
ELEMENT_TYPE_BYREF  0x10 Followed by type 
ELEMENT_TYPE_VALUETYPE  0x11 Followed by TypeDef or TypeRef token 
ELEMENT_TYPE_CLASS  0x12 Followed by TypeDef or TypeRef token 
ELEMENT_TYPE_MVAR 0x1e Generic parameter in a generic method definition, 

represented as number 
ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a TypeDef or 

TypeRef token 
ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or 

TypeRef token 
ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI 
ELEMENT_TYPE_MODIFIER  0x40 Or’d with following element types 
ELEMENT_TYPE_SENTINEL 0x41 Sentinel for vararg method signature 
ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned 

object 
 0x50 Indicates an argument of type System.Type. 
 0x51 Used in custom attributes to specify a boxed object 

(§23.3). 
 0x52 Reserved 
 0x53 Used in custom attributes to indicate a FIELD 

(§22.10, 23.3). 
 0x54 Used in custom attributes to indicate a PROPERTY 

(§22.10, 23.3). 
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Name Value Remarks 
ELEMENT_TYPE_END 0x00 Marks end of a list 
ELEMENT_TYPE_VOID  0x01  
ELEMENT_TYPE_BOOLEAN  0x02  
ELEMENT_TYPE_CHAR  0x03  
ELEMENT_TYPE_I1  0x04  
ELEMENT_TYPE_U1  0x05  
ELEMENT_TYPE_I2  0x06  
ELEMENT_TYPE_U2  0x07  
ELEMENT_TYPE_I4  0x08  
ELEMENT_TYPE_U4  0x09  
ELEMENT_TYPE_I8  0x0a  
ELEMENT_TYPE_U8  0x0b  
ELEMENT_TYPE_R4  0x0c  
ELEMENT_TYPE_R8  0x0d  
ELEMENT_TYPE_STRING  0x0e  
ELEMENT_TYPE_PTR    0x0f Followed by type 
ELEMENT_TYPE_BYREF  0x10 Followed by type 
ELEMENT_TYPE_VALUETYPE  0x11 Followed by TypeDef or TypeRef token 
ELEMENT_TYPE_CLASS  0x12 Followed by TypeDef or TypeRef token 
 0x55 Used in custom attributes to specify an enum 

(§23.3).    

23.2  Blobs and signatures 
The word signature is conventionally used to describe the type info for a function or method; that is, the type of 
each of its parameters, and the type of its return value.  Within metadata, the word signature is also used to 
describe the type info for fields, properties, and local variables.  Each Signature is stored as a (counted) byte 
array in the Blob heap.  There are several kinds of Signature, as follows: 

• MethodRefSig (differs from a MethodDefSig only for VARARG calls) 

• MethodDefSig 

• FieldSig 

• PropertySig 

• LocalVarSig 

• TypeSpec 

• MethodSpec 

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one 
of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3), 
which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or 
PROPERTY, which denotes a property signature (whose value is defined in §23.2.5).  This subclause defines the 
binary 'blob' format for each kind of Signature.  In the syntax diagrams that accompany many of the definitions, 
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shading is used to combine into a single diagram what would otherwise be multiple diagrams; the 
accompanying text describes the use of shading. 

Signatures are compressed before being stored into the Blob heap (described below) by compressing the 
integers embedded in the signature.  The maximum encodable integer is 29 bits long, 0x1FFFFFFF. The 
compression algorithm used is as follows (bit 0 is the least significant bit): 

• If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer (bit 7 is 
clear, value held in bits 6 through 0) 

• If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte integer 
with bit 15 set, bit 14 clear (value held in bits 13 through 0) 

• Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value held in bits 28 
through 0) 

• A null string should be represented with the reserved single byte 0xFF, and no following data 

[Note: The table below shows several examples. The first column gives a value, expressed in familiar (C-like) 
hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file, 
with successive bytes of the result lying at successively higher byte offsets within the file.  (This is the opposite 
order from how regular binary integers are laid out in a PE file.) end note] 

Original Value Compressed Representation 

0x03 03 

0x7F 7F (7 bits set) 

0x80 8080 

0x2E57 AE57 

0x3FFF BFFF 

0x4000 C000 4000 

0x1FFF FFFF DFFF FFFF 

 

The most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal whether it 
occupies 1, 2, or 4 bytes, as well as its value.  For this to work, the “compressed” value, as explained above, is 
stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file. 

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16.  In particular, 
signatures include two modifiers called: 

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I).  This modifier can only occur in the 
definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11).  It shall not occur within the 
definition of a Field (§23.2.4)  

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I).  This modifier can occur in the 
definition of LocalVarSig (§23.2.6), Param (§23.2.10),  RetType (§23.2.11) or Field (§23.2.4) 

23.2 .1  MethodDefSig  

A MethodDefSig is indexed by the Method.Signature column.  It captures the signature of a method or global 
function.  The syntax diagram for a MethodDefSig is: 
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This diagram uses the following abbreviations: 

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3 

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3 

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see §15.3 

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3 

GENERIC = 0x10, used to indicate that the method has one or more generic parameters. 

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG, 
or GENERIC).  These are ORed together.  

GenParamCount is the number of generic parameters for the method.  This is a compressed int32. [Note: For 
generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention, together with 
GenParamCount; these are significant for binding—they enable the CLI to overload on generic methods by the 
number of generic parameters they include. end note] 

ParamCount is an integer that holds the number of parameters (0 or more).  It can be any number between 0 
and 0x1FFFFFFF.  The compiler compresses it too (see Partition II Metadata Validation) – before storing into 
the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return type) 

The RetType item describes the type of the method’s return value (§23.2.11) 

The Param item describes the type of each of the method’s parameters.  There shall be ParamCount instances 
of the Param item (§23.2.10). 

23.2 .2  MethodRefSig  

A MethodRefSig is indexed by the MemberRef.Signature column.  This provides the call site Signature for a 
method.  Normally, this call site Signature shall match exactly the Signature specified in the definition of the 
target method.  For example, if a method Foo is defined that takes two unsigned int32s and returns void; then 
any call site shall index a signature that takes exactly two unsigned int32s and returns void.  In this case, the 
syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1 
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The Signature at a call site differs from that at its definition, only for a method with the VARARG calling 
convention.  In this case, the call site Signature is extended to include info about the extra VARARG arguments 
(for example, corresponding to the “...” in C syntax).  The syntax diagram for this case is: 

 

 
This diagram uses the following abbreviations: 

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3 

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3 

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3 

SENTINEL = 0x41 (§23.1.16), used to encode “...” in the parameter list, see §15.3 

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention 
VARARG.   These are ORed together.  

• ParamCount is an integer that holds the number of parameters (0 or more).  It can be any number 
between 0 and 0x1FFFFFFF  The compiler compresses it too (see Partition II Metadata 
Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it 
does not include the method’s return type) 

• The RetType item describes the type of the method’s return value (§23.2.11) 

• The Param item describes the type of each of the method’s parameters.  There shall be 
ParamCount instances of the Param item (§23.2.10). 

The Param item describes the type of each of the method’s parameters.  There shall be ParamCount instances 
of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1).  But then a SENTINEL 
token is appended, followed by extra Param items to describe the extra VARARG arguments.  Note that the 
ParamCount item shall  indicate the total number of Param items in the Signature – before and after the 
SENTINEL byte (0x41).   

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this 
is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig 
definition). 

23.2 .3  StandAloneMethodSig 

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column.  It is typically created as 
preparation for executing a calli instruction.  It is similar to a MethodRefSig, in that it represents a call site 
signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either 
managed, or unmanaged code).  Its syntax diagram is: 
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This diagram uses the following abbreviations (§15.3): 

HASTHIS for 0x20 

EXPLICITTHIS for 0x40 

DEFAULT for 0x0 

VARARG for 0x5 

C for 0x1 

STDCALL for 0x2 

THISCALL for 0x3 

FASTCALL for 0x4 

SENTINEL for  0x41 (§23.1.16 and §15.3) 

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention – 
DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL.   These are OR’d together.  

• ParamCount is an integer that holds the number of non-vararg and vararg parameters, combined.  
It can be any number between 0 and 0x1FFFFFFF  The compiler compresses it too (see 
Partition II Metadata Validation) – before storing into the blob (ParamCount counts just the 
method parameters – it does not include the method’s return type) 

• The RetType item describes the type of the method’s return value (§23.2.11) 

• The first Param item describes the type of each of the method’s non-vararg parameters.  The 
(optional) second Param item describes the type of each of the method’s vararg parameters.  
There shall be ParamCount instances of Param (§23.2.10). 

This is the most complex of the various method signatures.   Two separate diagrams have been combined into 
one in this diagram, using shading to distinguish between them.  Thus, for the following calling conventions: 
DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the 
SENTINEL item (these are all non vararg signatures).  However, for the managed and unmanaged vararg calling 
conventions: 

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are 
not required, however).   These options are  indicated by the shading of boxes in the syntax diagram. 
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23.2 .4  FieldSig 

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case 
where it specifies a reference to a field, not a method, of course).   The Signature captures the field’s definition.  
The field can be a static or instance field in a class, or it can be a global variable.  The syntax diagram for a 
FieldSig looks like this: 

 
This diagram uses the following abbreviations: 

FIELD for 0x6 

CustomMod is defined in §23.2.7.  Type is defined in §23.2.12 

23.2 .5  PropertySig 

A PropertySig is indexed by the Property.Type column.  It captures the type information for a Property – 
essentially, the signature of its getter method: 

the number of parameters supplied to its getter method 

the base type of the Property (the type returned by its getter method) 

type information for each parameter in the getter method (that is,  the index parameters) 

Note that the signatures of getter and setter are related precisely as follows: 

• The types of a getter’s  paramCount parameters are exactly the same as the first paramCount 
parameters of the setter 

• The return type of a getter is exactly the same as the type of the last parameter supplied to the 
setter 

The syntax diagram for a PropertySig looks like this: 

 
The first byte of the Signature holds bits for HASTHIS and PROPERTY.  These are OR’d together.  

Type specifies the type returned by the Getter method for this property.  Type is defined in §23.2.12.  Param is 
defined in §23.2.10. 

ParamCount is an integer that holds the number of index parameters in the getter methods (0 or more). 
(§23.2.1)  (ParamCount counts just the method parameters – it does not include the method’s base type of the 
Property) 

23.2 .6  LocalVarSig 

A LocalVarSig is indexed by the StandAloneSig.Signature column.  It captures the type of all the local 
variables in a method.  Its syntax diagram is: 
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This diagram uses the following abbreviations: 

LOCAL_SIG for 0x7, used for the .locals directive, see§15.4.1.3 

BYREF for ELEMENT_TYPE_BYREF (§23.1.16) 

Constraint is defined in §23.2.9.  

Type is defined in §23.2.12 

Count is an unsigned integer that holds the number of local variables.  It can be any number between 1 and 
0xFFFE.   

There shall be Count instances of the Type in the LocalVarSig 

23.2 .7  CustomMod 

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this: 

 
This diagram uses the following abbreviations: 

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (§23.1.16) 

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (§23.1.16) 

The CMOD_OPT or CMOD_REQD value is compressed, see §23.2. 

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the 
TypeRef table.  However, these tokens are encoded and compressed – see §23.2.8 for details 

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely.  
Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‘understand’ the 
semantic implied by this CustomModifier in order to reference the surrounding Signature. 

23.2 .8  TypeDefOrRefEncoded  

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12). 

Consider a regular TypeRef token, such as 0x01000012.  The top byte of 0x01 indicates that this is a TypeRef 
token (see Partition VI  for a list of the supported metadata token types).  The lower 3 bytes (0x000012) index 
row number 0x12 in the TypeRef table. 

The encoded version of this TypeRef token is made up as follows: 
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1. encode the table that this token indexes as the least significant 2 bits.  The bit values to use are 0, 
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively   

2. shift the 3-byte row index (0x000012 in  this example) left by 2 bits and OR into the 2-bit 
encoding from step 1 

3. compress the resulting value (§23.2).   This example yields the following encoded value: 

a)  encoded = value for TypeRef table = 0x01 (from 1. above)  

b)  encoded = ( 0x000012 << 2 ) |  0x01 

            = 0x48 | 0x01 

            = 0x49 

c)  encoded = Compress (0x49)  

            = 0x49 

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the 
Signature 'blob',  this TypeRef token is encoded as a single byte.  

23.2 .9  Constraint  

The Constraint item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED (§23.1.16), 
which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of 
garbage collection.   

A Constraint can only be applied within a LocalVarSig (not a FieldSig).  The Type of the local variable shall 
either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String); 
or it shall include the BYREF item.  The reason is that local variables are allocated on the runtime stack – they 
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC 
heap, pinning makes no sense. 

23.2 .10  Param 

The Param (parameter) item in Signatures has this syntax diagram: 

 
This diagram uses the following abbreviations: 

BYREF for 0x10 (§23.1.16) 

TYPEDBYREF for 0x16 (§23.1.16) 

CustomMod is defined in §23.2.7.  Type is defined in §23.2.12 

23.2 .11  RetType 

The RetType (return type) item in Signatures has this syntax diagram: 
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RetType is identical to Param except for one extra possibility, that it can include the type VOID.  This diagram 
uses the following abbreviations: 

BYREF for ELEMENT_TYPE_BYREF (§23.1.16) 

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (§23.1.16) 

VOID for ELEMENT_TYPE_VOID (§23.1.16) 

23.2 .12  Type 

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for 
ELEMENT_TYPE_U1, and so on; see 23.1.16): 

Type ::=    

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U | 

| ARRAY Type ArrayShape (general array, see §23.2.13) 

| CLASS TypeDefOrRefEncoded 

| FNPTR MethodDefSig 

| FNPTR MethodRefSig 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type * 

| MVAR number 

| OBJECT 

| PTR CustomMod* Type 

| PTR CustomMod* VOID 

| STRING 

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector) 

| VALUETYPE TypeDefOrRefEncoded 

| VAR number 

The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in 
this signature. 

23.2 .13  ArrayShape 

An ArrayShape has the following syntax diagram: 
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Rank is an integer (stored in compressed form, see §23.2) that specifies the number of dimensions in the array 
(shall be 1 or more).  NumSizes is a compressed integer that says how many dimensions have specified sizes (it 
shall be 0 or more).  Size is a compressed integer specifying the size of that dimension – the sequence starts at 
the first dimension, and goes on for a total of NumSizes items.  Similarly, NumLoBounds is a compressed 
integer that says how many dimensions have specified lower bounds (it shall be 0 or more). And LoBound is a 
compressed integer specifying the lower bound of that dimension – the sequence starts at the first dimension, 
and goes on for a total of NumLoBounds items.  None of the dimensions in these two sequences can be skipped, 
but the number of specified dimensions can be less than Rank. 

Here are a few examples, all for element type int32: 

 Type Rank NumSizes Size NumLoBounds LoBound 
[0...2] I4 1 1 3 0  

[,,,,,,] I4 7 0  0  

[0...3, 0...2,,,,] I4 6 2 4  3 2 0  0 

[1...2, 6...8] I4 2 2 2  3 2 1  6 

[5, 3...5, , ] I4 4 2 5  3 2 0  3 

 

[Note: definitions can nest, since the Type can itself be an array. end note] 

23.2 .14  TypeSpec 

The signature in the Blob heap indexed by a TypeSpec token has the following format – 
TypeSpecBlob ::= 

  PTR      CustomMod*  VOID 

| PTR      CustomMod*  Type 

| FNPTR    MethodDefSig 

| FNPTR    MethodRefSig 

| ARRAY    Type  ArrayShape 

| SZARRAY  CustomMod*  Type 

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type* 

For compactness, the ELEMENT_TYPE_ prefixes  have been omitted from this list.  So, for example, “PTR” is 
shorthand for ELEMENT_TYPE_PTR.  (§23.1.16)   Note that a TypeSpecBlob does not begin with a calling-
convention byte, so it differs from the various other signatures that are stored into Metadata. 

23.2 .15  MethodSpec 

The signature in the Blob heap indexed by a MethodSpec token has the following format – 
MethodSpecBlob ::= 

  GENRICINST GenArgCount Type Type* 

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST in 
the Microsoft CLR implementation. end note]  The GenArgCount is a compressed int32 indicating the number 
of generic arguments in the method.  The blob then specifies the instantiated type, repeating a total of 
GenArgCount times. 
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23.2 .16  Short form signatures  

The general specification for signatures leaves some leeway in how to encode certain items.  For example, it 
appears valid to encode a String as either 

long-form:    (ELEMENT_TYPE_CLASS, TypeRef-to-System.String ) 

short-form:   ELEMENT_TYPE_STRING 

Only the short form is valid.  The following table shows which short-forms should be used in place of each 
long-form item.  (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE 
is short for ELEMENT_TYPE_VALUETYPE) 

Long Form Short Form 

Prefix TypeRef to:  
CLASS System.String STRING 

CLASS System.Object OBJECT 

VALUETYPE System.Void VOID 

VALUETYPE System.Boolean BOOLEAN 

VALUETYPE System.Char CHAR 

VALUETYPE System.Byte U1 

VALUETYPE System.Sbyte I1 

VALUETYPE System.Int16 I2 

VALUETYPE System.UInt16 U2 

VALUETYPE System.Int32 I4 

VALUETYPE System.UInt32 U4 

VALUETYPE System.Int64 I8 

VALUETYPE System.UInt64 U8 

VALUETYPE System.IntPtr I 

VALUETYPE System.UIntPtr U 

VALUETYPE System.TypedReference TYPEDBYREF 

 

[Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY.  
There is no long form involving a TypeRef to System.Array. end note] 

23.3  Custom attributes 
A Custom Attribute has the following syntax diagram: 

 
All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for 
the number of bytes to follow in a UTF8 string).  If there are no fields, parameters, or properties specified the 
entire attribute is represented as an empty blob. 

CustomAttrib starts with a Prolog – an unsigned int16, with value 0x0001. 

Next comes a description of the fixed arguments for the constructor method.  Their number and type is found 
by examining that constructor’s row in the MethodDef table; this information is not repeated in the 
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CustomAttrib itself.  As the syntax diagram shows, there can be zero or more FixedArgs.  (Note that VARARG 
constructor methods are not allowed in the definition of Custom Attributes.) 

Next is a description of the optional “named” fields and properties.  This starts with NumNamed – an unsigned 
int16 giving the number of “named” properties or fields that follow.  Note that NumNamed shall always be 
present.  A value of zero indicates that there are no “named” properties or fields to follow (and of course, in this 
case, the CustomAttrib shall end immediately after NumNamed).  In the case where NumNamed is non-zero, it 
is followed by NumNamed repeats of NamedArgs. 

 
The format for each FixedArg depends upon whether that argument is an SZARRAY or not – this is shown in the 
lower and upper paths, respectively, of the syntax diagram.  So each FixedArg is either a single Elem, or 
NumElem repeats of Elem.  

(SZARRAY is the single byte 0x1D, and denotes a vector – a single-dimension array with a lower bound of zero.) 

NumElem is an unsigned int32 specifying the number of elements in the SZARRAY, or 0xFFFFFFFF to indicate 
that the value is null. 

 
 

An Elem takes one of the forms in this diagram, as follows: 

• If the parameter kind is simple (first line in the above diagram) (bool, char, float32, 
float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned 
int32 or unsigned int64) then the 'blob' contains its binary value (Val). (A bool is a single 
byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have 
their obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store 
the value of the enum's underlying integer type. 

• If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString – 
a PackedLen count of bytes, followed by the UTF8 characters.  If the string is null, its PackedLen 
has the value 0xFF (with no following characters).  If the string is empty (“”), then PackedLen 
has the value 0x00 (with no following characters). 
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• If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored 
as a SerString (as defined in the previous paragraph), representing its canonical name.  The 
canonical name is its full type name, followed optionally by the assembly where it is defined, its 
version, culture and public-key-token.  If the assembly name is omitted, the CLI looks first in the 
current assembly, and then in the system library (mscorlib); in these two special cases, it is 
permitted to omit the assembly-name, version, culture and public-key-token.   

• If the parameter kind is System.Object, (third line in the above diagram) the value stored 
represents the “boxed” instance of that value-type.  In this case, the blob contains the actual type's 
FieldOrPropType (see below), followed by the argument’s unboxed value.  [Note: it is not 
possible to pass a value of null in this case. end note] 

 

 
 

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or 
property it represents.  [Note: Recall that the CLI allows fields and properties to have the same name; so we 
require a means to disambiguate such situations. end note] 

FIELD is the single byte 0x53. 

PROPERTY is the single byte 0x54. 

If the type of the named field or property is a boxed simple value type (bool, char, float32, float64, 
int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned int32 or 
unsigned int64) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 . 

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, 
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, 
ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, 

ELEMENT_TYPE_STRING.  A single-dimensional, zero-based array is specified as a single byte 0x1D followed by 
the FieldOrPropType of the element type.  (See §23.1.16)  An enum is specified as a single byte 0x55 followed 
by a SerString.  

The FieldOrPropName is the name of the field or property, stored as a SerString (defined above). 

A number of examples involving custom attributes are contained in Annex B of Partition VI. 

23.4  Marshalling descriptors 
A Marshalling Descriptor is like a signature – it’s a 'blob' of binary data.  It describes how a field or parameter 
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or 
from unmanaged code via PInvoke dispatch.  The ILAsm syntax marshal can be used to create a marshalling 
descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1) 

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier 
– see §15.5.4. 

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx.  Their names and values are listed 
in the following table: 

Name Value 
NATIVE_TYPE_BOOLEAN 0x02 
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NATIVE_TYPE_I1 0x03 

NATIVE_TYPE_U1 0x04 

NATIVE_TYPE_I2 0x05 

NATIVE_TYPE_U2 0x06 

NATIVE_TYPE_I4 0x07 

NATIVE_TYPE_U4 0x08 

NATIVE_TYPE_I8 0x09 

NATIVE_TYPE_U8 0x0a 

NATIVE_TYPE_R4 0x0b 

NATIVE_TYPE_R8 0x0c 

NATIVE_TYPE_LPSTR  0x14 

NATIVE_TYPE_LPWSTR  0x15 

NATIVE_TYPE_INT  0x1f 

NATIVE_TYPE_UINT  0x20 

NATIVE_TYPE_FUNC 0x26 

NATIVE_TYPE_ARRAY 0x2a 

 

The 'blob' has the following format – 
MarshalSpec ::= 
  NativeIntrinsic 
| ARRAY ArrayElemType 
| ARRAY ArrayElemType ParamNum 
| ARRAY ArrayElemType ParamNum NumElem 

NativeIntrinsic ::= 
  BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 
| LPSTR | LPSTR | INT | UINT | FUNC  

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, “ARRAY” is 
shorthand for NATIVE_TYPE_ARRAY. 

ArrayElemType ::= 
   NativeIntrinsic  

ParamNum is an integer (compressed as described in §23.2) specifying the parameter in the method call that 
provides the number of elements in the array – see below. 

NumElem is an integer compressed as described in §23.2 (specifying the number of elements or additional 
elements – see below). 

[Note: For example, in the method declaration: 
.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … } 

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap 
with the format: 

ARRAY  MAX  2  1 

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY.  There is no additional info about the type of 
each element (signified by that NATIVE_TYPE_MAX).  The value of ParamNum is 2, which indicates that 
parameter number 2 in the method (the one called size1) will  specify the number of elements in the actual 
array – let’s suppose its value on a particular call is 42.  The value of NumElem is 0.  The calculated total size, 
in bytes, of the array is given by the formula: 
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if ParamNum = 0 
   SizeInBytes = NumElem * sizeof (elem) 
else 
   SizeInBytes = ( @ParamNum +  NumElem ) * sizeof (elem) 
endif 

 The syntax “@ParamNum” is used here to denote the value passed in for parameter number ParamNum – it 
would be 42 in this example.  The size of each element is calculated from the metadata for the ar1 parameter in 
Foo’s signature – an ELEMENT_TYPE_I4 (§23.1.16) of size 4 bytes. end note] 
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24 Metadata physical layout 
The physical on-disk representation of metadata is a direct reflection of the logical representation described 
in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main 
complication is that, where the logical representation is abstracted from the number of bytes needed for 
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how 
to map logical metadata heaps and tables into their physical representations. 

 Unless stated otherwise, all binary values are stored in little-endian format. 

24.1  Fixed fields 
Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable 
Executable (PE) File Format (§25).  Because of this heritage, some of the fields in the physical representation 
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on 
reading they should be ignored.  

24.2  File headers 

24.2 .1  Metadata root  

The root of the physical metadata starts with a magic signature, several bytes of version and other 
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is 
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of 
headers. 

Offset Size Field Description 

0 4 Signature Magic signature for physical metadata : 0x424A5342. 
4 2 MajorVersion Major version, 1 (ignore on read) 
6 2 MinorVersion Minor version, 1 (ignore on read)  
8 4 Reserved Reserved, always 0 (§24.1). 
12 4 Length Length of version string in bytes, say  m (<= 255), rounded 

up to a multiple of four. 
16 m Version UTF8-encoded version string of length m (see below) 
16+m   Padding to next 4 byte boundary, say x. 
x 2 Flags Reserved, always 0 (§24.1). 
x+2 2 Streams Number of streams, say n. 
x+4  StreamHeaders Array of n StreamHdr structures. 
 

The Version string shall be “Standard CLI 2005” for any file that is intended to be executed on any conforming 
implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this 
version string.  Other strings shall be used when the file is restricted to a vendor-specific implementation of the 
CLI.  Future versions of this standard shall specify different strings, but they shall begin “Standard CLI”. Other 
standards that specify additional functionality shall specify their own specific version strings beginning with 
“Standard□”, where “□” represents a single space.  Vendors that provide implementation-specific extensions 
shall provide a version string that does not begin with “Standard□”. (For the first version of this Standard, the 
Version string was “Standard CLI 2002”.) 
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24.2 .2  Stream header 

A stream header gives the names, and the position and length of a particular table or heap. Note that the length 
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-
terminated string).  

Offset Size Field Description 

0 4 Offset Memory offset to start of this stream from start of the 
metadata root (§24.2.1) 

4 4 Size Size of this stream in bytes, shall be a multiple of 4. 
8  Name Name of the stream as null-terminated variable length array 

of ASCII characters, padded to the next 4-byte boundary 
with \0 characters. The name is limited to 32 characters. 

 

Both logical tables and heaps are stored in streams.  There are five possible kinds of streams. A stream header 
with name “#Strings” that points to the physical representation of the string heap where identifier strings are 
stored; a stream header with name “#US” that points to the physical representation of the user string heap; a 
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header 
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with 
name “#~” that points to the physical representation of a set of tables. 

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two “#US” streams, or 
five “#Blob” streams. Streams need not be there if they are empty. 

The next subclauses describe the structure of each kind of stream in more detail. 

24.2 .3  #Strings heap 

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap. 
The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables, 
but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String 
heap is present, the first entry is always the empty string (i.e., \0). 

24.2 .4  #US and #Blob heaps 

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical 
Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is 
reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in 
the first few bytes: 

• If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2 
bytes of actual data. 

• If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the 
(bbbbbb2 << 8 + x) bytes of actual data. 

• If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the 
(bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.  

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00. 

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is 
the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte 
counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string 
has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D, 
0x7F.  Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally 
provided for 8-bit encoding sets. 



 

170 Partition II 

24.2 .5  #GUID heap 

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the 
stream. 

24.2 .6  #~ stream 

The “#~” streams contain the actual physical representations of the logical metadata tables (§22).  A  “#~” 
stream has the following top-level structure: 

Offset Size Field Description 

0 4 Reserved Reserved, always 0 (§24.1). 
4 1 MajorVersion Major version of table schemata; shall be 2 (§24.1). 
5 1 MinorVersion Minor version of table schemata; shall be 0 (§24.1). 
6 1 HeapSizes Bit vector for heap sizes. 
7 1 Reserved Reserved, always 1 (§24.1). 
8 8 Valid Bit vector of present tables, let n be the number of bits that 

are 1. 
16 8 Sorted Bit vector of sorted tables. 
24 4*n Rows Array of n 4-byte unsigned integers indicating the number of 

rows for each present table. 
24+4*n  Tables The sequence of physical tables. 
 

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps.  If bit 0 is set, 
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes 
wide; if bit 2 is set, indexes into the “#Blob” heap are 4 bytes wide.  Conversely, if the HeapSize bit for a 
particular heap is not set, indexes into that heap are 2 bytes wide. 

Heap size flag Description 

0x01 Size of “#String” stream >= 216. 
0x02 Size of “#GUID” stream >= 216. 
0x04 Size of “#Blob” stream >= 216. 
 

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the 
mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in 
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in 
Valid, so all bits above 0x2c shall be zero.  

The Rows array contains the number of rows for each of the tables that are present. When decoding physical 
metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array. 

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For 
example, the table with assigned index 0x02 is a TypeDef  table, which, according to its specification in §22.37, 
has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String 
heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into 
MethodDef table.  

The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the 
concatenation of the physical representation of each of its rows. The physical representation of a row with 
schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical 
representation of a row cell e at a column with type C is defined as follows: 
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• If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a 
2-bit mask of type PropertyAttributes) 

• If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes 
as defined in the HeapSizes field. 

• If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216 
rows, otherwise it is stored using 4 bytes. 

• If  e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e 
<< (log n) | tag{ t0, …tn-1}[ ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1, 
is less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is 
defined below. Note that decoding a physical row requires the inverse of this mapping. [For 
example, the Parent column of the Constant table indexes a row in the Field, Param, or Property 
tables.  The actual table is encoded into the low 2 bits of the number, using the values: 0 => 
Field, 1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed.  
For example, a value of 0x321, indexes row number 0xC8 in the Param table.] 

TypeDefOrRef: 2 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

TypeSpec 2 

 

HasConstant: 2 bits to encode tag Tag 

Field 0 

Param 1 

Property 2 

 

HasCustomAttribute: 5 bits to encode tag Tag 

MethodDef 0 

Field 1 

TypeRef 2 

TypeDef 3 

Param 4 

InterfaceImpl 5 

MemberRef 6 

Module 7 

Permission 8 

Property 9 

Event 10 

StandAloneSig 11 

ModuleRef 12 

TypeSpec 13 

Assembly 14 

AssemblyRef 15 

File 16 

ExportedType 17 
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ManifestResource 18 

 

[Note: HasCustomAttributes only has values for tables that are “externally visible”; that is, that correspond to items 
in a user source program.  For example, an attribute can be attached to a TypeDef table and a Field table, but not a 
ClassLayout table.  As a result, some table types are missing from the enum above. end note] 

HasFieldMarshall: 1 bit to encode tag Tag 

Field 0 

Param 1 

 

HasDeclSecurity: 2 bits to encode tag Tag 

TypeDef 0 

MethodDef 1 

Assembly 2 

 

MemberRefParent: 3 bits to encode tag Tag 

TypeDef 0 

TypeRef 1 

ModuleRef 2 

MethodDef 3 

TypeSpec 4 

 

HasSemantics: 1 bit to encode tag Tag 

Event 0 

Property 1 

 

MethodDefOrRef: 1 bit to encode tag Tag 

MethodDef 0 

MemberRef 1 

 

MemberForwarded: 1 bit to encode tag Tag 

Field 0 

MethodDef 1 

 

Implementation: 2 bits to encode tag Tag 

File 0 

AssemblyRef 1 

ExportedType 2 

 

CustomAttributeType: 3 bits to encode tag Tag 

Not used 0 

Not used 1 

MethodDef 2 

MemberRef 3 
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Not used 4 

 

ResolutionScope: 2 bits to encode tag Tag 

Module 0 

ModuleRef 1 

AssemblyRef 2 

TypeRef 3 

 

TypeOrMethodDef: 1 bit to encode tag Tag 

TypeDef 0 

MethodDef 1 
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25 File format extensions to PE 

This contains informative text only 
The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format. 
This extended PE format enables the operating system to recognize runtime images, accommodates code 
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.    
There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a 
tool or compiler can use the specifications to emit valid CLI images.  

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item 
once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the 
base address where the file is loaded). The RVA of an item will almost always differ from its position within 
the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find 
the section with RVA s, length l and file position p in which the RVA lies, ie s ≤ r < s+l. The file position of 
the item is then given by p+(r-s). 

Unless stated otherwise, all binary values are stored in little-endian format. 

End informative text 

25.1  Structure of the runtime fi le format 
The figure below provides a high-level view of the CLI file format.  All runtime images contain the following:  

• PE headers, with specific guidelines on how field values should be set in a runtime file. 

• A CLI header that contains all of the runtime specific data entries. The runtime header is read-
only and shall be placed in any read-only section. 

• The sections that contain the actual data as described by the headers, including imports/exports, 
data, and code. 

 
The CLI header (§25.3.3) is found using CLI Header directory entry in the PE header.  The CLI header in turn 
contains the address and sizes of the runtime data (for metadata, see §24; for CIL see § 25.4) in the rest of the 
image.  Note that the runtime data can be merged into other areas of the PE format with the other data based on 
the attributes of the sections (such as read only versus execute, etc.).  

25.2  PE headers 
A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and 
then the PE optional header followed by PE section headers. 
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25.2 .1  MS-DOS header 

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the 
module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall 
be “PE\0\0”), immediately followed by the PE file header.   
0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00 

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00 

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

0x00 0x00 0x00 0x00 lfanew 

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd 

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68 

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72 

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f 

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e 

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20 

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a 

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00 

 

25.2 .2  PE f i le  header 

Immediately after the PE signature is the PE File header consisting of the following: 

Offset Size Field Description 
0 2 Machine Always 0x14c (§24.1). 
2 2 Number of Sections Number of sections; indicates size of the Section Table, 

which immediately follows the headers. 
4 4 Time/Date Stamp Time and date the file was created in seconds since 

January 1st 1970 00:00:00 or 0. 
8 4 Pointer to Symbol Table Always 0 (§24.1). 
12 4 Number of Symbols Always 0 (§24.1). 
16 2 Optional Header Size Size of the optional header, the format is described below. 
18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1. 
 

25.2 .2.1  Characterist ics  

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero: 

Flag Value Description 
IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).  
 

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, and 0x0100 shall all be set, while 
all others shall always be zero (§24.1). 
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25.2 .3  PE optional header 

Immediately after the PE Header is the PE Optional Header. This header contains the following information: 

Offset Size Header part Description 
0 28 Standard fields These define general properties of the PE file, see §25.2.3.1. 
28 68 NT-specific fields These include additional fields to support specific features of 

Windows, see 25.2.3.2. 
96 128 Data directories These fields are address/size pairs for special tables, found in 

the image file (for example, Import Table and Export Table). 
 

25.2 .3.1  PE header standard f ields  

These fields are required for all PE files and contain the following information: 

Offset Size Field Description 
0 2 Magic Always 0x10B (§24.1). 
2 1 LMajor Always 6 (§24.1). 
3 1 LMinor Always 0 (§24.1). 
4 4 Code Size Size of the code (text) section, or the sum of all code sections 

if there are multiple sections.  
8 4 Initialized Data Size Size of the initialized data section, or the sum of all such 

sections if there are multiple data sections. 
12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such 

sections if there are multiple unitinitalized data sections. 
16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25 

followed by the RVA in a section marked execute/read for 
EXEs or 0 for DLLs 

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.) 
24 4 Base Of Data RVA of the data section. (This is a hint to the loader.) 
 

This contains informative text only 
The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this 
stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use 
the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI 
header. 

End informative text 

25.2 .3.2  PE header Windows NT-specif ic  f ie lds  

These fields are Windows NT specific: 

Offset Size Field Description 
28 4 Image Base Always 0x400000 (§24.1).  
32 4 Section Alignment Always 0x2000 (§24.1). 
36 4 File Alignment Either 0x200 or 0x1000. 
40 2 OS Major Always 4 (§24.1). 
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42 2 OS Minor Always 0 (§24.1). 
44 2 User Major Always 0 (§24.1). 
46 2 User Minor Always 0 (§24.1). 
48 2 SubSys Major Always 4 (§24.1). 
50 2 SubSys Minor  Always 0 (§24.1). 
52 4 Reserved Always 0 (§24.1). 
56 4 Image Size Size, in bytes, of image, including all headers and padding; 

shall be a multiple of Section Alignment. 
60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional 

Header and padding; shall be a multiple of the file alignment. 
64 4 File Checksum Always 0 (§24.1). 
68 2 SubSystem Subsystem required to run this image.  Shall be either 

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or 
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2). 

70 2 DLL Flags Always 0 (§24.1). 
72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1). 
76 4 Stack Commit Size Always 0x1000 (4Kb) (§24.1). 
80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1). 
84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1). 
88 4 Loader Flags Always 0 (§24.1) 
92 4 Number of Data 

Directories 
Always 0x10 (§24.1).  

 

25.2 .3.3  PE header data directories  

The optional header data directories give the address and size of several tables that appear in the sections of the 
PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.  

Offset Size Field Description 
96 8 Export Table Always 0 (§24.1). 
104 8 Import Table RVA and Size of Import Table, (§25.3.1). 
112 8 Resource Table Always 0 (§24.1). 
120 8 Exception Table Always 0 (§24.1). 
128 8 Certificate Table Always 0 (§24.1). 
136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.1). 
144 8 Debug Always 0 (§24.1). 
152 8 Copyright Always 0 (§24.1). 
160 8 Global Ptr Always 0 (§24.1). 
168 8 TLS Table Always 0 (§24.1). 
176 8 Load Config Table Always 0 (§24.1). 
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184 8 Bound Import Always 0 (§24.1). 
192 8 IAT RVA and Size of Import Address Table, 

(§25.3.1). 
200 8 Delay Import Descriptor Always 0 (§24.1). 
208 8 CLI Header CLI Header with directories for runtime data, 

(§25.3.1). 
216 8 Reserved Always 0 (§24.1). 
 

The tables pointed to by the directory entries are stored in one of the PE file’s sections; these sections 
themselves are described by section headers.  

25.3  Section headers 
Immediately following the optional header is the Section Table, which contains a number of section headers. 
This positioning is required because the file header does not contain a direct pointer to the section table; the 
location of the section table is determined by calculating the location of the first byte after the headers. 

Each section header has the following format, for a total of 40 bytes per entry: 

Offset Size Field Description 
0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null 

if the string is exactly eight characters long. 
8 4 VirtualSize Total size of the section in bytes. If this value is greater than 

SizeOfRawData, the section is zero-padded. 
12 4 VirtualAddress For executable images this is the address of the first byte of the 

section, when loaded into memory, relative to the image base.  
16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of 

FileAlignment from the PE header. If this is less than VirtualSize 
the remainder of the section is zero filled. Because this field is 
rounded while the VirtualSize field is not it is possible for this to 
be greater than VirtualSize as well. When a section contains only 
uninitialized data, this field should be 0. 

20 4 PointerToRawData Offset of section’s first page within the PE file. This shall be a 
multiple of FileAlignment from the optional header. When a 
section contains only uninitialized data, this field should be 0. 

24 4 PointerToRelocations RVA of Relocation section.  
28 4 PointerToLinenumbers Always 0 (§24.1). 
32 2 NumberOfRelocations Number of relocations, set to 0 if unused. 
34 2 NumberOfLinenumbers Always 0 (§24.1). 
36 4 Characteristics Flags describing section’s characteristics, see below. 
 

The following table defines the possible characteristics of the section. 

Flag Value Description 
IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable code. 
IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data. 
IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data. 
IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code. 
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IMAGE_SCN_MEM_READ 0x40000000 Section can be read. 
IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to. 
 

25.3 .1  Import  Table and Import Address Table (IAT) 

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or 
_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to 
a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each 
imported DLL): 

Offset Size Field Description 
0 4 ImportLookupTable RVA of the Import Lookup Table  
4 4 DateTimeStamp Always 0 (§24.1). 
8 4 ForwarderChain Always 0 (§24.1). 
12 4 Name RVA of null-terminated ASCII string “mscoree.dll”. 
16 4 ImportAddressTable RVA of Import Address Table (this is the same as the 

RVA of the IAT descriptor in the optional header).  
20 20  End of Import Table. Shall be filled with zeros. 
 

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of 
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in 
this table for every imported symbol.  

Offset Size Field Description 
0 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31 

shall be set to 0 indicating import by name. 
4 4  End of table, shall be filled with zeros. 
 

The IAT should be in an executable and writable section as the loader will replace the pointers into the 
Hint/Name table by the actual entry points of the imported symbols. 

The Hint/Name table contains the name of the dll-entry that is imported. 

Offset Size Field Description 
0 2 Hint Shall be 0. 
2 variable Name Case sensitive, null-terminated ASCII string containing name to 

import. Shall be “_CorExeMain” for a .exe file and 
“_CorDllMain” for a .dll file. 

 

25.3 .2  Relocat ions 

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86 
startup stub which access the IAT to load the runtime engine on down level loaders.  When building a mixed 
CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains 
relocations for these as well.     

The relocations shall be in their own section, named “.reloc”, which shall be the final section in the PE file. The 
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block 
represents the fixups for a 4K page, and each block shall start on a 32-bit boundary. 

Each fixup block starts with the following structure: 

Offset Size Field Description 
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0 4 PageRVA The RVA of the block in which the fixup needs to be 
applied. The low 12 bits shall be zero. 

4 4 Block Size Total number of bytes in the fixup block, including the 
Page RVA and Block Size fields, as well as the 
Type/Offset fields that follow, rounded up to the next 
multiple of 4. 

 

The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has 
the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length): 

Offset Size Field Description 

0 4 bits Type Stored in high 4 bits of word. Value indicating which 
type of fixup is to be applied (described above) 

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting 
address specified in the Page RVA field for the block. 
This offset specifies where the fixup is to be applied. 

 

25.3 .3  CLI header 

The CLI header contains all of the runtime-specific data entries and other information.  The header should be 
placed in a read-only, sharable section of the image.  This header is defined as follows: 

Offset Size Field Description 
0 4 Cb Size of the header in bytes 
4 2 MajorRuntimeVersion The minimum version of the runtime required to run 

this program, currently 2. 
6 2 MinorRuntimeVersion The minor portion of the version, currently 0. 
8 8 MetaData RVA and size of the physical metadata (§24). 
16 4 Flags Flags describing this runtime image.  (§25.3.3.1). 
20 4 EntryPointToken Token for the MethodDef or File of the entry point 

for the image 
24 8 Resources RVA and size of implementation-specific resources. 
32 8 StrongNameSignature RVA of the hash data for this PE file used by the 

CLI loader for binding and versioning 
40 8 CodeManagerTable Always 0 (§24.1). 
48 8 VTableFixups RVA of an array of locations in the file that contain 

an array of function pointers (e.g., vtable slots), see 
below. 

56 8 ExportAddressTableJumps Always 0 (§24.1). 
64 8 ManagedNativeHeader Always 0 (§24.1). 
 

25.3 .3.1  Runtime f lags 

The following flags describe this runtime image and are used by the loader. 

Flag Value Description 
COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1 (§24.1). 
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COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process, 
for instance if there are 32-bit vtablefixups, or 
casts from native integers to int32. CLI 
implementations that have 64-bit native 
integers shall refuse loading binaries with this 
flag set. 

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature. 
COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1). 
 

25.3 .3.2  Entry point  metadata token 

• The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19 ) 
when the entry point for a multi-module assembly is not in the manifest assembly.  The signature 
and implementation flags in metadata for the method indicate how the entry is run 

25.3 .3.3  Vtable f ixup 

Certain languages, which choose not to follow the common type system runtime model, can have virtual 
functions which need to be represented in a v-table.  These v-tables are laid out by the compiler, not by the 
runtime.  Finding the correct v-table slot and calling indirectly through the value held in that slot is also done 
by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of 
Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.   

Each entry in this array describes a contiguous array of v-table slots of the specified size.  Each slot starts out 
initialized to the metadata token value for the method they need to call.  At image load time, the runtime 
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.  

Offset Size Field Description 
0 4 VirtualAddress RVA of Vtable 

4 2 Size Number of entries in Vtable 
6 2 Type Type of the entries, as defined in table below 
 

Constant Value Description 
COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits. 
COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits. 
COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code. 
COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the 

token (only valid for virtual methods). 
 

25.3 .3.4  Strong name s ignature 

This header entry points to the strong name hash for an image that can be used to deterministically identify a 
module from a referencing point (§6.2.1.3). 

25.4  Common Intermediate Language physical  layout 
This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method 
bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry 
each method's RVA.  

A method consists of a method header immediately followed by the method body, possibly followed by extra 
method data sections (§25.4.5), typically exception handling data.  If exception-handling data is present, then 
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CorILMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after 
that. 

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a 
method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the 
method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the 
method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat 
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can 
start on any byte boundary.  Fat method headers shall start on a 4-byte boundary. 

25.4 .1  Method header type values 

The two least significant bits of the first byte of the method header indicate what type of header is present.  
These 2 bits will be one and only one of the following: 

Value Value Description 
CorILMethod_TinyFormat 0x2 The method header is tiny (§25.4.2) . 
CorILMethod_FatFormat 0x3 The method header is fat (§25.4.3). 
 

25.4 .2  Tiny format 

Tiny headers use a 6-bit length encoding.  The following is true for all tiny headers: 

• No local variables are allowed 

• No exceptions 

• No extra data sections 

• The operand stack shall be no bigger than 8 entries 

A Tiny Format header is encoded as follows: 

Start Bit Count of Bits Description 
0 2 Flags (CorILMethod_TinyFormat shall be set, see §25.4.4). 
2 6 Size, in bytes, of the method body immediately following this 

header. 
 

25.4 .3  Fat format 

The fat format is used whenever the tiny format is not sufficient.  This can be true for one or more of the 
following reasons: 

• The method is too large to encode the size (i.e., at least 64 bytes) 

• There are exceptions 

• There are extra data sections 

• There are local variables 

• The operand stack needs more than 8 entries 

A fat header has the following structure  

Offset  Size  Field Description 

0 12 (bits) Flags Flags (CorILMethod_FatFormat shall be set in bits 0:1, 
see §25.4.4) 

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte 
integers occupied (currently 3) 
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2  2  MaxStack Maximum number of items on the operand stack 
4 4 CodeSize Size in bytes of the actual method body 
8 4 LocalVarSigTok Meta Data token for a signature describing the layout 

of the local variables for the method.  0 means there 
are no local variables present 

 

25.4 .4  Flags for method headers  

The first byte of a method header can also contain the following flags, valid only for the Fat format, that 
indicate how the method is to be executed: 

Flag Value Description 
CorILMethod_FatFormat 0x3 Method header is fat. 
CorILMethod_TinyFormat 0x2 Method header is tiny. 
CorILMethod_MoreSects 0x8 More sections follow after this header (§25.4.5). 
CorILMethod_InitLocals 0x10 Call default constructor on all local variables. 
 

25.4 .5  Method data sect ion  

At the next 4-byte boundary following the method body can be extra method data sections. These method data 
sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data)  or a 4-byte 
header  (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the 
header, and what data is in the actual section:  

Flag Value Description 
CorILMethod_Sect_EHTable 0x1 Exception handling data. 
CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0. 
CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-

byte length least-significant byte first format.  If not 
set, the header is small with a  1-byte length 

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section 
 

Currently, the method data sections are only used for exception tables (§19). The layout of a small exception 
header structure as is a follows: 

Offset Size Field Description 

0 1 Kind Flags as described above. 
1 1 DataSize Size of the data for the block, including the header, say 

n*12+4. 
2 2 Reserved Padding, always 0. 
4 n Clauses n small exception clauses (§25.4.6). 
 

The layout of a fat exception header structure is as follows: 

Offset Size Field Description 

0 1 Kind Which type of exception block is being used 
1 3 DataSize Size of the data for the block, including the header, say 

n*24+4. 
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4 n Clauses n fat exception clauses (§25.4.6). 
 

25.4 .6  Exception handling clauses  

Exception handling clauses also come in small and fat versions.  

The small form of the exception clause should be used whenever the code sizes for the try block and the 
handler code are both smaller than 256 bytes and both their offsets are smaller than 65536.  The format for a 
small exception clause is as follows: 

Offset Size Field Description 

0 2 Flags Flags, see below. 
2 2 TryOffset Offset in bytes of try block from start of method body. 
4 1 TryLength Length in bytes of the try block 
5 2 HandlerOffset Location of the handler for this try block 
7 1 HandlerLength Size of the handler code in bytes 
8 4 ClassToken Meta data token for a type-based exception handler 
8 4 FilterOffset Offset in method body for filter-based exception handler 
 

The layout of the fat form of exception handling clauses is as follows: 

Offset Size Field Description 

0 4 Flags Flags, see below. 
4 4 TryOffset Offset in bytes of try block from start of method body. 
8 4 TryLength Length in bytes of the try block 
12 4 HandlerOffset Location of the handler for this try block 
16 4 HandlerLength Size of the handler code in bytes 
20 4 ClassToken Meta data token for a type-based exception handler 
20 4 FilterOffset Offset in method body for filter-based exception handler 
 

The following flag values are used for each exception-handling clause: 

Flag Value Description 
COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause 
COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause 
COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause 
COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on 

exception only) 
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1  Introduction 
This partition is a detailed description of the Common Intermediate Language (CIL) instruction set, part of the 
specification of the CLI. Partition I describes the architecture of the CLI and provides an overview of a large 
number of issues relating to the CIL instruction set. That overview is essential to an understanding of the 
instruction set as described here. 

In this partition, each instruction is described in its own subclause, one per page. Related CLI machine instructions 
are described together. Each instruction description consists of the following parts: 

• A table describing the binary format, assembly language notation,  and description of each variant of 
the instruction. See §1.2. 

• A stack transition diagram, that describes the state of the evaluation stack before and after the 
instruction is executed. (See §1.3.) 

• An English description of the instruction. See §1.4. 

• A list of exceptions that might be thrown by the instruction. (See Partition I for details.) There are 
three exceptions which can be thrown by any instruction and are not listed with the instruction: 

System.ExecutionEngineException: indicates that the internal state of the Execution Engine is 
corrupted and execution cannot continue. [Note: in a system that executes only verifiable code this exception 
is not thrown. end note] 

System.StackOverflowException: indicates that the hardware stack size has been exceeded. The 
precise timing of this exception and the conditions under which it occurs are implementation-specific. [Note: 
this exception is unrelated to the maximum stack size described in §1.7.4. That size relates to the depth of the 
evaluation stack that is part of the method state described in Partition I, while this exception has to do with 
the implementation of that method state on physical hardware.] 

System.OutOfMemoryException: indicates that the available memory space has been exhausted, 
either because the instruction inherently allocates memory (newobj, newarr) or for an implementation-
specific reason (e.g., an implementation based on JIT compilation to native code can run out of space to store 
the translated method while executing the first call or callvirt to a given method). 

• A section describing the verifiability conditions associated with the instruction. See §1.8. 

In addition, operations that have a numeric operand also specify an operand type table that describes how they 
operate based on the type of the operand. See §1.5. 

Note that not all instructions are included in all CLI Profiles. See Partition IV for details. 

1.1  Data types 
While the CTS defines a rich type system and the CLS specifies a subset that can be used for language 
interoperability, the CLI itself deals with a much simpler set of types. These types include user-defined value types 
and a subset of the built-in types.  The subset, collectively known as the “basic CLI types”, contains the following 
types: 

• A subset of the full numeric types (int32, int64, native int, and F). 

• Object references (O) without distinction between the type of object referenced. 

• Pointer types (native unsigned int and &) without distinction as to the type pointed to. 

Note that object references and pointer types can be assigned the value null. This is defined throughout the CLI to 
be zero (a bit pattern of all-bits-zero). 
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[Note: As far as VES operations on the evaluation stack are concerned, there is only one floating-point type, and the 
VES does not care about its size. The VES makes the distinction about the size of numerical values only when 
storing these values to, or reading from, the heap, statics, local variables, or method arguments. end note] 

1.1 .1  Numeric data types 

• The CLI only operates on the numeric types int32 (4-byte signed integers), int64 (8-byte signed 
integers), native int (native-size integers), and F (native-size floating-point numbers). However, 
the CIL instruction set allows additional data types to be implemented: 

• Short integers: The evaluation stack only holds 4- or 8-byte integers, but other locations (arguments, 
local variables, statics, array elements, fields) can hold 1- or 2-byte integers. Loading from these 
locations onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends (ldind.i*, 
ldelem.i*, etc.) to a 4-byte value. Storing to integers (stind.i1, stelem.i2, etc.) truncates. Use the 
conv.ovf.* instructions to detect when this truncation results in a value that doesn’t correctly 
represent the original value. 

[Note: Short integers are loaded as 4-byte numbers on all architectures and these 4-byte numbers are always 
tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that the default arithmetic 
behavior (i.e., when no conv or conv.ovf instruction is executed) will have identical results on all 
implementations. end note] 

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it 
is guaranteed that only the low bits have meaning (i.e., the more significant bits are all zero for the unsigned 
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer 
operations a conversion to the short form is required before the div, rem, shr, comparison and conditional 
branch instructions. 

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in 
a special way: 

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer 
type automatically truncates to the size specified for the local or argument. 

2. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a short signed 
integer type automatically sign extends. 

3. Calling a procedure with an argument that is a short integer type is equivalent to assignment to 
the argument value, so it truncates. 

4. Returning a value from a method whose return type is a short integer is modeled as storing into 
a short integer within the called procedure (i.e., the CLI automatically truncates) and then 
loading from a short integer within the calling procedure (i.e., the CLI automatically zero- or 
sign-extends). 

In the last two cases it is up to the native calling convention to determine whether values are actually 
truncated or extended, as well as whether this is done in the called procedure or the calling procedure. The 
CIL instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv 
instruction. 

• 4-byte integers: The shortest value actually stored on the stack is a 4-byte integer. These can be 
converted to 8-byte integers or native-size integers using conv.* instructions. Native-size integers can 
be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i4 and 
conv.u4 can be used for this conversion if the excess significant bits should be ignored; the 
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information. Arithmetic 
operations allow 4-byte integers to be combined with native size integers, resulting in native size 
integers. 4-byte integers cannot be directly combined with 8-byte integers (they shall be converted to 
8-byte integers first). 
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• Native-size integers: Native-size integers can be combined with 4-byte integers using any of the 
normal arithmetic instructions, and the result will be a native-size integer. Native-size integers shall 
be explicitly converted to 8-byte integers before they can be combined with 8-byte integers. 

• 8-byte integers: Supporting 8-byte integers on 32-bit hardware can be expensive, whereas 32-bit 
arithmetic is available and efficient on current 64-bit hardware. For this reason, numeric instructions 
allow int32 and I data types to be intermixed (yielding the largest type used as input), but these 
types cannot be combined with int64s. Instead, a native int or int32 shall be explicitly 
converted to int64 before it can be combined with an int64. 

• Unsigned integers: Special instructions are used to interpret integers on the stack as though they 
were unsigned, rather than tagging the stack locations as being unsigned. 

• Floating-point numbers: See also Partition I, Handling of Floating Point Datatypes. Storage 
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. 
The supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, 
as arguments, as return types, and as local variables) floating-point numbers are represented using an 
internal floating-point type. In each such instance, the nominal type of the variable or expression is 
either float32 or float64, but its value might be represented internally with additional range 
and/or precision. The size of the internal floating-point representation is implementation-dependent, 
might vary, and shall have precision at least as great as that of the variable or expression being 
represented. An implicit widening conversion to the internal representation from float32 or 
float64 is performed when those types are loaded from storage. The internal representation is 
typically the natural size for the hardware, or as required for efficient implementation of an operation. 
The internal representation shall have the following characteristics: 

o The internal representation shall have precision and range greater than or equal to the nominal 
type. 

o Conversions to and from the internal representation shall preserve value. [Note: This implies 
that an implicit widening conversion from float32 (or float64) to the internal 
representation, followed by an explicit conversion from the internal representation to float32 
(or float64), will result in a value that is identical to the original float32 (or float64) 
value.] 

 [Note: The above specification allows a compliant implementation to avoid rounding to the precision of the 
target type on intermediate computations, and thus permits the use of wider precision hardware registers, as 
well as the application of optimizing transformations (such as contractions), which result in the same or 
greater precision. Where exactly reproducible behavior precision is required by a language or application 
(e.g., the Kahan Summation Formula), explicit conversions can be used.  Reproducible precision does not 
guarantee reproducible behavior, however.  Implementations with extra precision might round twice: once for 
the floating-point operation, and once for the explicit conversion. Implementations without extra precision 
effectively round only once.  In rare cases, rounding twice versus rounding once can yield results differing by 
one unit of least precision. end note] 

When a floating-point value whose internal representation has greater range and/or precision than its nominal 
type is put in a storage location, it is automatically coerced to the type of the storage location. This might 
involve a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, 
the value might be retained in the internal representation for future use, if it is reloaded from the storage 
location without having been modified. It is the responsibility of the compiler to ensure that the memory 
location is still valid at the time of a subsequent load, taking into account the effects of aliasing and other 
execution threads (see memory model section). This freedom to carry extra precision is not permitted, 
however, following the execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal 
representation shall be exactly representable in the associated type. 
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[Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction 
(conv.r4, or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when 
converting to a particular storage type, a comparison to zero is required before and after the conversion. end 
note] 

[Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point 
numbers, nor does it specify when or whether such representations should be created. This is in keeping with 
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that 
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this 
behavior is deliberately left implementation-specific. end note] 

1.1 .2  Boolean data type 

A CLI Boolean type occupies 1 byte in memory. A bit pattern of all zeroes denotes a value of false. A bit pattern 
with any one or more bits set (analogous to a non-zero integer) denotes a value of true. 

1.1 .3  Object  references 

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object references 
as operands, and the only comparison operations permitted are equality and inequality between two object 
references. There are no conversion operations defined on object references. Object references are created by 
certain CIL object instructions (notably newobj and newarr). Object references can be passed as arguments, stored 
as local variables, returned as values, and stored in arrays and as fields of objects. 

1.1 .4  Runtime pointer types 

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or 
object (see Partition I), the following arithmetic operations are defined: 

• Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a 
pointer of the same kind. 

• Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. (Note 
that subtracting a pointer from an integer is not permitted.) 

• Two pointers, regardless of kind, can be subtracted one from the other, producing a signed integer 
that specifies the number of bytes between the addresses they reference. 

None of these operations is allowed in verifiable code. 

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of 
pointers. Since unmanaged pointers shall never reference memory that is controlled by the garbage collector, 
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable), but since 
they are not reported to the garbage collector there is no impact on its operation. 

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of 
the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed 
pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory, 
or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by 
the garbage collector it shall point to either a field of an object, an element of an array, or the address of the element 
just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other 
location (an object header or a gap in the allocated memory) the garbage collector’s behavior is unspecified. 

1.1 .4.1  Unmanaged pointers  

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on their 
use, although for the most part they result in code that cannot be verified. While it is perfectly valid to mark 
locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are 
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treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by 
using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an argument or by using a pointer 
type for a field or array element. 

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be 
used. 

• Unmanaged pointers should be treated as unsigned (i.e., using conv.ovf.u rather than conv.ovf.i, 
etc.). 

• Verifiable code cannot use unmanaged pointers to reference memory. 

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is 
safe only if one of the following is true: 

a. The unmanaged pointer refers to memory that is not in memory managed by the garbage 
collector. 

b. The unmanaged pointer refers to a field within an object. 

c. The unmanaged pointer refers to an element within an array. 

d. The unmanaged pointer refers to the location where the element following the last element in an 
array would be located. 

1.1 .4.2  Managed pointers  (type &)  

Managed pointers (&) can point to a local variable, a method argument, a field of an object, a field of a value type, 
an element of an array, a static field, or the address where an element just past the end of an array would be stored 
(for pointer indexes into managed arrays). Managed pointers cannot be null. (They shall be reported to the 
garbage collector, even if they do not point to managed memory) 

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return value, local variable 
or an argument or by using a byref type for a field or array element. 

• Managed pointers can be passed as arguments and stored in local variables. 

• If you pass a parameter by reference, the corresponding argument is a managed pointer. 

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value 
types. 

• Managed pointers are not interchangeable with object references. 

• A managed pointer cannot point to another managed pointer, but it can point to an object reference or 
a value type. 

• Managed pointers that do not point to managed memory can be converted (using conv.u or 
conv.ovf.u) into unmanaged pointers, but this is not verifiable. 

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously 
compromise the integrity of the CLI. This conversion is safe if any of the following is known to be 
true: 

a. the managed pointer does not point into the garbage collector’s memory area 

b. the memory referred to has been pinned for the entire time that the unmanaged pointer is in use 

c. a garbage collection cannot occur while the unmanaged pointer is in use 

d. the garbage collector for the given implementation of the CLI is known to not move the 
referenced memory 
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1.2  Instruction variant table 
In §3 an Instruction Variant Table is presented for each instruction. It describes each variant of the instructions. The 
format column of the table lists the opcode for the instruction variant, along with any operands that follow the 
instruction in the instruction stream. For example: 

Format Assembly Format Description 

FE 0A <unsigned int16> ldarga argNum Fetch the address of argument argNum. 

0F <unsigned int8>  ldarga.s argNum Fetch the address of argument argNum, short form. 
 

The first one or two hex numbers in the format show how this instruction is encoded (its “opcode”). For example, 
the ldarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type names 
delimited by < and > represent numbers that should follow in the instruction stream; for example, a 2-byte quantity 
that is to be treated as an unsigned integer directly follows the FE 0A opcode. [Example: One of the forms of the 
ldc.<type> instruction is ldc.r8 num, which has a Format “23 <float64>”. For the instruction ldc.r8 
3.1415926535897931, the resulting code is 23 182D4454FB210940, where 182D4454FB210940 is the 8-byte hex 
representation for 3.1415926535897931. 

Similarly, another of the forms of the ldc.<type> instruction is ldc.i4.s num, which a Format of “1F <int8>”. For 
the instruction ldc.i4.s -3, the resulting code is 1F FD, where FD is the 1-byte hex representation for -3. end 
example] 

Any of the fixed-size built-in types (int8, unsigned int8, int16, unsigned int16, int32, 
unsigned int32, int64, unsigned in64, float32, and float64) can appear in format descriptions. 
These types define the number of bytes for the operand and how it should be interpreted (signed, unsigned or 
floating-point). In addition, a metadata token can appear, indicated as <T>. Tokens are encoded as 4-byte integers. 
All operand numbers are encoded least-significant-byte-at-smallest-address (a pattern commonly termed “little-
endian”). Bytes for instruction opcodes and operands are packed as tightly as possible (no alignment padding is 
done). 

The assembly format column defines an assembly code mnemonic for each instruction variant. For those 
instructions having instruction stream operands, this column also assigns names to each of the operands to the 
instruction. For each instruction operand, there is a name in the assembly format. These names are used later in the 
instruction description. 

1.2 .1  Opcode encodings 

CIL opcodes are one or more bytes long; they can be followed by zero or more operand bytes. All opcodes whose 
first byte lies in the ranges 0x00 through 0xEF, or 0xFC through 0xFF are reserved for standardization. Opcodes 
whose first byte lies in the range 0xF0 through 0xFB inclusive, are available for experimental purposes. The use of 
experimental opcodes in any method renders the method invalid and hence unverifiable. 

The currently defined encodings are specified in Table 1: Opcode Encodings. 
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Table 1: Opcode Encodings 

Opcode Instruction 

0x00 nop 

0x01 break 

0x02 ldarg.0 

0x03 ldarg.1 

0x04 ldarg.2 

0x05 ldarg.3 

0x06 ldloc.0 

0x07 ldloc.1 

0x08 ldloc.2 

0x09 ldloc.3 

0x0A stloc.0 

0x0B stloc.1 

0x0C stloc.2 

0x0D stloc.3 

0x0E ldarg.s 

0x0F ldarga.s 

0x10 starg.s 

0x11 ldloc.s 

0x12 ldloca.s 

0x13 stloc.s 

0x14 ldnull 

0x15 ldc.i4.m1 

0x16 ldc.i4.0 

0x17 ldc.i4.1 

0x18 ldc.i4.2 

0x19 ldc.i4.3 

0x1A ldc.i4.4 

0x1B ldc.i4.5 

0x1C ldc.i4.6 

0x1D ldc.i4.7 

0x1E ldc.i4.8 

Opcode Instruction 

0x1F ldc.i4.s 

0x20 ldc.i4 

0x21 ldc.i8 

0x22 ldc.r4 

0x23 ldc.r8 

0x25 dup 

0x26 pop 

0x27 jmp 

0x28 call 

0x29 calli 

0x2A ret 

0x2B br.s 

0x2C brfalse.s 

0x2D brtrue.s 

0x2E beq.s 

0x2F bge.s 

0x30 bgt.s 

0x31 ble.s 

0x32 blt.s 

0x33 bne.un.s 

0x34 bge.un.s 

0x35 bgt.un.s 

0x36 ble.un.s 

0x37 blt.un.s 

0x38 br 

0x39 brfalse 

0x3A brtrue 

0x3B beq 

0x3C bge 

0x3D bgt 

0x3E ble 

0x3F blt 

0x40 bne.un 
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Opcode Instruction 

0x41 bge.un 

0x42 bgt.un 

0x43 ble.un 

0x44 blt.un 

0x45 switch 

0x46 ldind.i1 

0x47 ldind.u1 

0x48 ldind.i2 

0x49 ldind.u2 

0x4A ldind.i4 

0x4B ldind.u4 

0x4C ldind.i8 

0x4D ldind.i 

0x4E ldind.r4 

0x4F ldind.r8 

0x50 ldind.ref 

0x51 stind.ref 

0x52 stind.i1 

0x53 stind.i2 

0x54 stind.i4 

0x55 stind.i8 

0x56 stind.r4 

0x57 stind.r8 

0x58 add 

0x59 sub 

0x5A mul 

0x5B div 

0x5C div.un 

0x5D rem 

0x5E rem.un 

0x5F and 

0x60 or 

0x61 xor 

Opcode Instruction 

0x62 shl 

0x63 shr 

0x64 shr.un 

0x65 neg 

0x66 not 

0x67 conv.i1 

0x68 conv.i2 

0x69 conv.i4 

0x6A conv.i8 

0x6B conv.r4 

0x6C conv.r8 

0x6D conv.u4 

0x6E conv.u8 

0x6F callvirt 

0x70 cpobj 

0x71 ldobj 

0x72 ldstr 

0x73 newobj 

0x74 castclass 

0x75 isinst 

0x76 conv.r.un 

0x79 unbox 

0x7A throw 

0x7B ldfld 

0x7C ldflda 

0x7D stfld 

0x7E ldsfld 

0x7F ldsflda 

0x80 stsfld 

0x81 stobj 

0x82 conv.ovf.i1.un 

0x83 conv.ovf.i2.un 

0x84 conv.ovf.i4.un 
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Opcode Instruction 

0x85 conv.ovf.i8.un 

0x86 conv.ovf.u1.un 

0x87 conv.ovf.u2.un 

0x88 conv.ovf.u4.un 

0x89 conv.ovf.u8.un 

0x8A conv.ovf.i.un 

0x8B conv.ovf.u.un 

0x8C box 

0x8D newarr 

0x8E ldlen 

0x8F ldelema 

0x90 ldelem.i1 

0x91 ldelem.u1 

0x92 ldelem.i2 

0x93 ldelem.u2 

0x94 ldelem.i4 

0x95 ldelem.u4 

0x96 ldelem.i8 

0x97 ldelem.i 

0x98 ldelem.r4 

0x99 ldelem.r8 

0x9A ldelem.ref 

0x9B stelem.i 

0x9C stelem.i1 

0x9D stelem.i2 

0x9E stelem.i4 

0x9F stelem.i8 

0xA0 stelem.r4 

0xA1 stelem.r8 

0xA2 stelem.ref 

0xA3 ldelem 

0xA4 stelem 

0xA5 unbox.any 

Opcode Instruction 

0xB3 conv.ovf.i1 

0xB4 conv.ovf.u1 

0xB5 conv.ovf.i2 

0xB6 conv.ovf.u2 

0xB7 conv.ovf.i4 

0xB8 conv.ovf.u4 

0xB9 conv.ovf.i8 

0xBA conv.ovf.u8 

0xC2 refanyval 

0xC3 ckfinite 

0xC6 mkrefany 

0xD0 ldtoken 

0xD1 conv.u2 

0xD2 conv.u1 

0xD3 conv.i 

0xD4 conv.ovf.i 

0xD5 conv.ovf.u 

0xD6 add.ovf 

0xD7 add.ovf.un 

0xD8 mul.ovf 

0xD9 mul.ovf.un 

0xDA sub.ovf 

0xDB sub.ovf.un 

0xDC endfinally 

0xDD leave 

0xDE leave.s 

0xDF stind.i 

0xE0 conv.u 

0xFE 0x00 arglist 

0xFE 0x01 ceq 

0xFE 0x02 cgt 

0xFE 0x03 cgt.un 

0xFE 0x04 clt 
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Opcode Instruction 

0xFE 0x05 clt.un 

0xFE 0x06 ldftn 

0xFE 0x07 ldvirtftn 

0xFE 0x09 ldarg 

0xFE 0x0A ldarga 

0xFE 0x0B starg 

0xFE 0x0C ldloc 

0xFE 0x0D ldloca 

0xFE 0x0E stloc 

0xFE 0x0F localloc 

0xFE 0x11 endfilter 

0xFE 0x12 unaligned. 

0xFE 0x13 volatile. 

0xFE 0x14 tail. 

0xFE 0x15 initobj 

0xFE 0x17 cpblk 

0xFE 0x18 initblk 

0xFE 0x1A rethrow 

0xFE 0x1C sizeof 

0xFE 0x1D refanytype 



 

 Partition III 11 

1.3  Stack transit ion diagram 
The stack transition diagram displays the state of the evaluation stack before and after the instruction is 
executed. Below is a typical stack transition diagram. 

…, value1, value2  …, result 

This diagram indicates that the stack shall have at least two elements on it, and in the definition the topmost 
value (“top-of-stack” or “most-recently-pushed”) will be called value2 and the value underneath (pushed prior 
to value2) will be called value1. (In diagrams like this, the stack grows to the right, across the page). The 
instruction removes these values from the stack and replaces them by another value, called result in the 
description. 

1.4  English description 
The English description describes any details about the instructions that are not immediately apparent once the 
format and stack transition have been described. 

1.5  Operand type table 
Many CIL operations take numeric operands on the stack. These operations fall into several categories, 
depending on how they deal with the types of the operands. The following tables summarize the valid kinds of 
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI 
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are: 
int32, int64, native int, F, O, and &. 

A op B (used for add, div, mul, rem, and sub). The table below shows the result type, for each possible 
combination of operand types. Boxes holding simply a result type, apply to all five instructions. Boxes 
marked  indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable. 
Boxes with a list of instructions are valid only for those instructions. 

Table 2: Binary Numeric Operations 

B's Type A's Type 

int32 int64 native 
int 

F & O 

int32 int32  native 
int 

 & (add)  

int64  int64     

native 
int 

native 
int 

 native 
int 

 & (add)  

F    F   

& & (add, 
sub) 

 & (add, 
sub) 

 native 
int (sub) 

 

O       
 

Used for the neg instruction. Boxes marked  indicate an invalid CIL instruction. All valid uses of this 
instruction are verifiable. 

Table 3: Unary Numeric Operations 

Operand 
Type 

int32 int64 native 
int 

F & O 

Result 
Type 

int32 int64 native 
int 

F   
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These return a Boolean value or branch based on the top two values on the stack. Used for beq, beq.s, bge, 
bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un, blt.un.s, 
bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked  indicate that all instructions are valid for that 
combination of operand types. Boxes marked  indicate invalid CIL sequences. Shaded boxes boxes indicate a 
CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those instructions. 

Table 4: Binary Comparison or Branch Operations 

 int32 int64 native 
int 

F & O 

int32       

int64       

native 
int 

    beq[.s], 
bne.un[.s], 
ceq 

 

F       

&   beq[.s], 
bne.un[.s], 
ceq 

 1  

O      beq[.s], 
bne.un[.s] 
ceq2 

 

1. Except for beq, bne.un (or short versions), or ceq these combinations make sense if both 
operands are known to be pointers to elements of the same array. However, there is no security 
issue for a CLI that does not check this constraint 

[Note: if the two operands are not pointers into the same array, then the result is simply the distance apart 
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly 
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful 
end note] 

2. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an 
ObjectRef with null (there is no “compare-not-equal” instruction, which would otherwise be a 
more obvious solution) 

These operate only on integer types. Used for and, div.un, not, or, rem.un, xor. The div.un and rem.un 
instructions treat their operands as unsigned integers and produce the bit pattern corresponding to the unsigned 
result. As described in the CLI standard, however, the CLI makes no distinction between signed and unsigned 
integers on the stack. The not instruction is unary and returns the same type as the input. The shl and shr 
instructions return the same type as their first operand, and their second operand shall be of type int32 or 
native int. Boxes marked  indicate invalid CIL sequences. All other boxes denote verifiable 
combinations of operands. 

Table 5: Integer Operations 

 int32 int64 native 
int 

F & O 

int32 int32  native 
int 

   

int64  int64     

native 
int 

native 
int 

 native 
int 
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F       

&       

O       
 
Below are the valid combinations of operands and result for the shift instructions: shl, shr, shr.un. Boxes 
marked  indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the 
“Shift-By” operand is larger than the width of the “To-Be-Shifted” operand, then the results are unspecified. 
(e.g., shift an int32 integer left by 37 bits) 

Table 6: Shift Operations 

Shift-By  

int32 int6
4 

native 
int 

F & O 

int32 int32  int32    

int64 int64  int64    

native 
int 

native 
int 

 native 
int 

   

F       

&       

 

 

To Be 
Shifted 

O       
 

These operations generate an exception if the result cannot be represented in the target data type. Used for 
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, and sub.ovf.un The shaded uses are not verifiable, while 
boxes marked  indicate invalid CIL sequences. 

Table 7: Overflow Arithmetic Operations 

 int32 int6
4 

native int F & O 

int32 int32  native int  & add.ovf.un  

int64  int6
4 

    

native 
int 

native int  native int  & add.ovf.un  

F       

& & 
add.ovf.un, 
sub.ovf.un 

 & 
add.ovf.un, 
sub.ovf.un 

 native int 
sub.ovf.un 

 

O       
 
These operations convert the top item on the evaluation stack from one numeric type to another. The result type 
is guaranteed to be representable as the data type specified as part of the operation (i.e., the conv.u2 instruction 
returns a value that can be stored in an unsigned int16). The stack, however, can only store values that 
are a minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un 
instructions. The shaded uses are not verifiable, while boxes marked  indicate invalid CIL sequences. 

Table 8: Conversion Operations 

Convert-To Input (from evaluation stack) 
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int32 int64 native 
int 

F & O 

int8 
unsigned 
int8 
int16 
unsigned 
int16 

Truncate1 Truncate1 Truncate1 Truncate to 
zero2 

  

int32 
unsigned 
int32 

Nop Truncate1 Truncate1 Truncate to 
zero2 

  

int64 Sign extend Nop Sign extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

unsigned 
int64 

Zero extend Nop Zero extend Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native int Sign extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

native 
unsigned int 

Zero extend Truncate1 Nop Truncate to 
zero2 

Stop GC 
tracking 

Stop GC 
tracking 

All Float Types To Float To Float To Float Change 
precision3 

  

 
3. 1 “Truncate” means that the number is truncated to the desired size (i.e., the most significant bytes 

of the input value are simply ignored). If the result is narrower than the minimum stack width of 
4 bytes, then this result is zero extended (if the target type is unsigned) or sign-extended (if the target 
type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an 8-bit datum 
yields the result 0xCD; if the target type were int8, this is sign-extended to give 0xFFFF FFCD; if, 
instead, the target type were unsigned int8, this is zero-extended to give 0x0000 00CD. 

4. 2 “Truncate to zero” means that the floating-point number will be converted to an integer by 
truncation toward zero. Thus 1.1 is converted to 1, and –1.1 is converted to –1. 

5. 3 Converts from the current precision available on the evaluation stack to the precision specified 
by the instruction. If the stack has more precision than the output size the conversion is performed 
using the IEC 60559:1989 “round-to-nearest” mode to compute the low order bit of the result. 

6. 4 “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported 
to subsequent garbage-collection operations (and therefore will not be updated by such operations). 

7. Rounding mode for integer to and from F conversions is the same as for arithmetic. 

1.6  Implicit  argument coercion 
While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a 
much richer model for parameters of methods. When about to call a method, the CLI performs implicit type 
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the 
CIL stream, which might result in an information loss through truncation or rounding) This implicit conversion 
occurs for boxes marked . Shaded boxes are not verifiable. Boxes marked  indicate invalid CIL sequences. 
(A compiler is, of course, free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired effect.) 

Table 9: Signature Matching 

Stack Parameter Type In 
Signature int32 native 

int 
int64 F & O 
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int8       

unsigned 
int8, 
bool 

      

int16       

unsigned 
int16, 
char 

      

int32       

unsigned 
int32 

      

int64       

unsigned 
int64 

      

native 
int 

 Sign 
extend 

     

native 
unsigned 
int 

 Zero 
extend 

 Zero 
extend 

    

float32    Note4   

float64    Note4   

Class       

Value Type 
(Note2) 

Note1 Note1 Note1 Note1   

By-Ref 
(&) 

  Start GC 
tracking 

    

Ref Any 
(Note3) 

      

 

8. 1 Passing a built-in type to a parameter that is required to be a value type is not allowed. 

9. 2 The CLI’s stack can contain a value type. These can only be passed if the particular value type 
on the stack exactly matches the class required by the corresponding parameter. 

10. 3 There are special instructions to construct and pass a Ref Any. 

11. 4 The CLI is permitted to pass floating point arguments using its internal F type, see §1.1.1. CIL 
generators can, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction. 

Further notes concerning this table: 

• On a 32-bit machine passing a native int argument to an unsigned int32 parameter 
involves no conversion. On a 64-bit machine it is implicitly converted. 

•  “Start GC Tracking” means that, following the implicit conversion, the item’s value will be 
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the 
item pointed-to being relocated in the heap. 

1.7  Restrictions on CIL code sequences 
As well as detailed restrictions on CIL code sequences to ensure: 

• Valid CIL 
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• Verifiable CIL 

There are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code 
compiler.  This subclause specifies the general restrictions that apply in addition to this listed for individual 
instructions. 

1.7 .1  The instruct ion stream 

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified 
below. The address of the instruction block for a method as well as its length is specified in the file format (see 
Partition II, CIL Physical Layout). The first instruction is at the first byte (lowest address) of the instruction 
block. 

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of 
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each 
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment 
and byte-order insensitive. 

Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next 
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the 
block’s length) to end without forming a complete last instruction. 

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction 
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction 
prefix. 

[Note: Until the end of the instruction block, the instruction following any control transfer instruction is 
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a 
branch. Only instructions can appear in the instruction stream, even if unreachable. There are no address-
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain 
instructions allow embedding of immediate data as part of the instruction; however that differs from allowing 
raw data embedded directly in the instruction stream. Unreachable code can appear as the result of machine-
generated code and is allowed, but it shall always be in the form of properly formed instruction sequences. 

The instruction stream can be translated and the associated instruction block discarded prior to execution of the 
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be 
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream. end note] 

1.7 .2  Valid branch targets  

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines 
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions, 
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler 
targets. 

Branch instructions specify branch targets as either a 1-byte or 4-byte signed relative offset; the size of the 
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte 
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following 
instruction.] 

The value of a 1-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a 4-
byte offset is can be computed by concatenating the bytes into a signed integer in the following manner: the 
byte of lowest address forms the least significant byte, and the byte with highest address forms the most 
significant byte of the integer. [Note: This representation is often called “a signed integer in little-endian byte-
order”.] 

1.7 .3   Exception ranges 

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see 
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid 
branch target as specified in §1.7.2. It is invalid for a protected block, filter clause, or handler to end without 
forming a complete last instruction. 
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1.7 .4  Must provide maxstack 

Every method specifies a maximum number of items that can be pushed onto the CIL evaluation stack. The 
value is stored in the IMAGE_COR_ILMETHOD structure that precedes the CIL body of each method. A 
method that specifies a maximum number of items less than the amount required by a static analysis of the 
method (using a traditional control flow graph without analysis of the data) is invalid (hence also unverifiable) 
and need not be supported by a conforming implementation of the CLI. 

[Note: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify 
the maximum size in bytes of a stack frame, but rather the number of items that shall be tracked by an analysis 
tool. end note] 
 

[Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be 
pushed on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-
native-code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating 
internal data structures that model the stack and/or verification algorithm. end rationale] 

1.7 .5  Backward branch constraints  

It shall be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the 
exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each 
item on the evaluation stack). 

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an 
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the 
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that 
the evaluation stack at X be empty. 

Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a 
non-empty evaluation stack 

[Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It 
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single, 
forward-pass analysis of the instruction stream. end rationale] 

[Note: the stack state at location X in the above can be inferred by various means: from a previous forward 
branch to X; because X marks the start of an exception handler, etc. end note] 

See the following for further information: 

• Exceptions: Partition I 

• Verification conditions for branch instructions: §3 

• The tail. prefix: §3.19 

1.7 .6  Branch verif icat ion constraints  

The target of all branch instruction shall be a valid branch target (see§1.7.2) within the method holding that 
branch instruction. 

1.8  Verifiabil ity and correctness 
Memory safety is a property that ensures programs running in the same address space are correctly isolated 
from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to 
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test 
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs 
that are not verifiable are still memory safe.  

Correct CIL is CIL that executes on all conforming implementations of the CLI, with well-defined behavior as 
specified in this standard. However, correct CIL need not result in identical behavior across conforming 
implementations; that is, the behavior might be implementation-specific. 
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It is perfectly acceptable to generate correct CIL code that is not verifiable, but which is known to be memory 
safe by the compiler writer. Thus, correct CIL might not be verifiable, even though the producing compiler 
might know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the 
pointer arithmetic versions of add that are required for the faithful and efficient compilation of C programs. 
For non-verifiable code, memory safety is the responsibility of the application programmer. 

Correct CIL contains a verifiable subset. The Verifiability description gives details of the conditions under 
which a use of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in 
much finer detail than is required for the basic functioning of the CLI, because it is checking that a CIL code 
sequence respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also 
the typing rules of the CTS. This helps to guarantee the sound operation of the entire CLI. 

The verifiability section of each operation description specifies requirements both for correct CIL generation 
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack 
correspond to the types shown in the stack transition diagram. The verifiability section specifies only 
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the 
requirements for correct CIL generation and the specific verification conditions that are described with the 
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified. 
The operation of CIL sequences that meet the correctness requirements, but which are not verifiable, might 
violate type safety and hence might violate security or memory access constraints. 

1.8 .1  Flow control  restrict ions for verif iable CIL 

This subclause specifies a verification algorithm that, combined with information on individual CIL 
instructions (see §3) and metadata validation (see Partition II), guarantees memory integrity. 

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense 
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly 
on all compliant implementations of the CLI. 

The CLI provides a security permission (see Partition IV) that controls whether or not the CLI shall run 
programs that might violate memory safety. Any program that is verifiable according to this standard does not 
violate memory safety, and a conforming implementation of the CLI shall run such programs. The 
implementation might also run other programs provided it is able to show they do not violate memory safety 
(typically because they use a verification algorithm that makes use of specific knowledge about the 
implementation). 

[Note: While a compliant implementation is required to accept and run any program this verification algorithm 
states is verifiable, there might be programs that are accepted as verifiable by a given implementation but 
which this verification algorithm will fail to consider verifiable. Such programs will run in the given 
implementation but need not be considered verifiable by other implementations. 

For example, an implementation of the CLI might choose to correctly track full signatures on method pointers 
and permit programs to execute the calli instruction even though this is not permitted by the verification 
algorithm specified here. 

Implementers of the CLI are urged to provide a means for testing whether programs generated on their 
implementation meet this portable verifiability standard. They are also urged to specify where their verification 
algorithms are more permissive than this standard. end note] 

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here 
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity 
conditions are specified on a per-CIL instruction basis (see §3), and on the overall file format in Partition II. 

1.8 .1.1  Verif icat ion algorithm 

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack 
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type 
that shall be present in that slot. The initial stack state is empty (there are no items on the stack). 

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to 
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore, 
verifiable methods shall have the localsinit bit set, see Partition II (Flags for Method Headers). If this bit is not 
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set, then a CLI might throw a Verification exception at any point where a local variable is accessed, and where 
the assembly containing that method has not been granted SecurityPermission.SkipVerification. 

[Rationale: This requirement strongly enhances program portability, and a well-known technique (definite 
assignment analysis) allows a CIL-to-native-code compiler to minimize its performance impact. Note that a 
CLI might optionally choose to perform definite-assignment analysis – in such a case, it might confirm that a 
method, even without the localsinit bit set, might in fact be verifiable (and therefore not throw a Verification 
exception) end rationale] 
 

[Note: Definite assignment analysis can be used by the CLI to determine which locations are written before 
they are read. Such locations needn’t be zeroed, since it isn’t possible to observe the contents of the memory as 
it was provided by the EE. 

Performance measurements on C++ implementations (which do not require definite-assignment analysis) 
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore, 
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often 
fails when small, unrelated changes are made to the program. end note] 

The verification algorithm shall simulate all possible control flow paths through the code and ensure that a 
valid stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage 
of any data values during its simulation (e.g., it does not perform constant propagation), but uses only type 
assignments. Details of the type system used for verification and the algorithm used to merge stack states are 
provided in §1.8.1.3. The verification algorithm terminates as follows: 

1. Successfully, when all control paths have been simulated. 

2. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL 
instruction. 

3. Unsuccessfully when additional tests specified in this clause fail. 

With the exception of the unconditional branch instructions, throw, rethrow, and ret, there is a control flow 
path from every instruction to the subsequent instruction. There is also a control flow path from each branch 
instruction (conditional or unconditional) to the branch target (or targets, in the case of the switch instruction). 

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type 
mismatch between the specified conditions on the stack state (see §3) and the simulated stack state shall cause 
the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it does not 
perform the actual computation). The algorithm shall also fail if there is an existing stack state at the next 
instruction address (for conditional branches or instructions within a try block there might be more than one 
such address) that cannot be merged with the stack state just computed. For rules of this merge operation, 
see §1.8.1.3. 

The CLI supports the notion of a controlled-mutability managed pointer. (See §1.8.1.2.2, the merging rules in 
§1.8.1.3, the readonly. instruction prefix in §2.3, the ldfld instruction in §4.10, the stfld instruction in §4.30, 
and the unbox instruction in §4.32.) 

The VES ensures that both special constraints and type constraints are satisfied. The constraints can be checked 
as early as when a closed type is constructed, or as late as when a method on the constrained generic type is 
invoked, a constrained generic method is invoked, a field in a constrained generic type is accessed, or an 
instance of a constrained generic type is created. 

To accommodate generics, the type compatibility relation is extended to deal with: 

• generic parameters: a generic parameter is compatible only with itself. 

• boxed generic parameters: a boxed generic parameter is compatible with the constraint types 
declared on the generic parameter. 

In the verification semantics, boxing a value of primitive or value type on the stack introduces a value 
of type “boxed” type.  This notion of boxed type is extended to generic parameters.  Boxing a value 
whose type is a generic parameter (!0, for example) introduces a value of the boxed parameter type on 
the stack (“boxed” !0, for example).  The boxed forms of value types, and now generic parameters, are 
used to support efficient instance and virtual method calls on boxed values.  Because the “boxed” type 
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statically records the exact type of the underlying value, there is no need to perform a checked cast on 
the instance from some less informative, but syntactically expressible, reference type. 

Just like the boxed forms of primitive and non-primitive value types, the boxed forms of generic 
parameters only occur on the verification stack (after being introduced by a box instruction).  They 
cannot be explicitly specified using metadata signatures. 

1.8 .1.2  Verif icat ion type system 

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory 
safety violations. The types used by the verification algorithm are specified in §1.8.1.2.1, the type compatibility 
rules are specified in §1.8.1.2.2, and the rules for merging stack states are in §1.8.1.3. 

1.8 .1.2.1  Verif icat ion types  
The following table specifies the mapping of types used in the CLI and those used in verification. Notice that 
verification compresses the CLI types to a smaller set that maintains information about the size of those types 
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4-byte 
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as 
64-bit quantities regardless of the actual representation. 

Arrays are objects, but with special compatibility rules. 

There is a special encoding for null that represents an object known to be the null value, hence with 
indeterminate actual type. 

In the following table, “CLI Type” is the type as it is described in metadata. The “Verification Type” is a 
corresponding type used for type compatibility rules in verification (see §1.8.1.2.2) when considering the types 
of local variables, arguments, and parameters on methods being called. The column “Verification Type (in 
stack state)” is used to simulate instructions that load data onto the stack, and shows the types that are actually 
maintained in the stack state information of the verification algorithm. The column “Managed Pointer to Type” 
shows the type tracked for managed pointers. 

CLI Type Verification Type Verification Type 
(in stack state) 

Managed Pointer to Type 

int8, unsigned int8, 
bool 

int8 int32 int8& 

int16, unsigned int16, 
char 

int16 int32 int16& 

int32, unsigned int32 int32 int32 int32& 

int64, unsigned int64 int64 int64 int64& 

native int, native 
unsigned int 

native int native int native int& 

float32 float32 float64 float32& 

float64 float64 float64 float64& 

Any value type Same type Same type Same type& 

Any object type Same type Same type Same type& 

Method pointer Same type Same type Not valid 

 

A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable. When 
returning byrefs, verification is done at the return site, not at the call site. 

[Rationale: Some uses of returning a managed pointer are perfectly verifiable (e.g., returning a reference to a 
field in an object); but some not (e.g., returning a pointer to a local variable of the called method). Tracking this 
in the general case is a burden, and therefore not included in this standard. end rationale] 
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1.8 .1.2.2  Controlled-mutabil i ty  managed pointers  
The readonly. prefix and unbox instructions can produce what is called a controlled-mutability managed 
pointer. Unlike ordinary managed pointer types, a controlled-mutability managed pointer is incompatible with 
ordinary managed pointers; e.g., it cannot be passed as a byref argument to a method. At control flow points, a 
controlled-mutability managed pointer can be merged with a managed pointer of the same type to yield a 
controlled-mutability managed pointer. 

Controlled-mutability managed pointers can only be used in the following ways: 

1. As the object parameter for an ldfld, ldflda, stfld, call, callvirt, or constrained. callvirt 
instruction. 

2. As the pointer parameter to a ldind.* or ldobj instruction. 

3. As the source parameter to a cpobj instruction. 

All other operations (including stobj, stind.*, initobj, and mkrefany) are invalid. 

The pointer is called a controlled-mutability managed pointer because the defining type decides whether the 
value can be mutated. For value classes that expose no public fields or methods that update the value in place, 
the pointer is read-only (hence the name of the prefix). In particular, the classes representing primitive types 
(such as System.Int32) do not expose mutators and thus are read-only. 

1.8 .1.2.3  Verif icat ion type compatibi l i ty  
The following rules define type compatibility. We use S and T to denote verification types, and the notation 
“S := T” to indicate that the verification type T can be used wherever the verification type S can be used, 
while “S !:= T” indicates that T cannot be used where S is expected. These are the verification type 
compatibility (see Partition I) rules. We use T[] to denote an array (of any rank) whose elements are of type T, 
and T& to denote a managed pointer to type T. 

1. [:= is reflexive] For all verification types S, S := S 

2. [:= is transitive] For all verification types S, T, and U if S := T and T := U, then S := U. 

3. S := T if S is the base class of T or an interface implemented by T and T is not a value type. 

4. object := T if T is an interface type. 

5. S := T if S and T are both interfaces and the implementation of T requires the implementation 
of S 

6. S := null if S is an object type or an interface 

7. S[] := T[] if S := T and the arrays are either both vectors (zero-based, rank one) or neither 
is a vector and both have the same rank. (This rule deals with array covariance.) 

8. If S and T are method pointers, then S := T if the signatures (return types, parameter types and 
calling convention) are the same. 

9. Otherwise, S !:= T 

1.8 .1.3  Merging stack states  

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any 
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack 
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the 
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail. 

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge 
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows. 
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on 
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the 
compatibility function defined in §1.8.1.2.2): 

1. if S := T then U=S 



 

22  Partition III  

2. Otherwise, if T := S then U=T 

3. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and 
T then U=V. 

4. Otherwise, the merge shall fail. 

Merging a controlled-mutability managed pointer with an ordinary (that is, non-controlled-mutability) managed 
pointer to the same type results in a controlled-mutability managed pointer to that type. 

1.8 .1.4  Class and object init ial izat ion rules  

The VES ensures that all statics are initially zeroed (i.e., built-in types are 0 or false, object references are null), 
hence the verification algorithm does not test for definite assignment to statics. 

An object constructor shall not return unless a constructor for the base class or a different construct for the 
object’s class has been called on the newly constructed object. The verification algorithm shall treat the this 
pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an 
uninitialized this except for storing into and loading from the object’s fields. 

[Note: If the constructor generates an exception the this pointer in the corresponding catch block is still 
uninitialized. end note] 

1.8 .1.5  Delegate constructors  

The verification algorithm shall require that one of the following code sequences is used for constructing 
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type. 
There shall be only one instance constructor method for a delegate (overloading is not allowed) 

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the 
start of the sequence). 

[Note: See Partition II for the signature of delegates and a validity requirement regarding the signature of the 
method used in the constructor and the signature of Invoke and other methods on the delegate class. end note] 

1.8 .1.5.1  Delegat ing via virtual  dispatch 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 
begins with an object on the stack. 

dup 
ldvirtftn mthd ; Method shall be on the class of the object, 
     ; or one of its parent classes, or an interface 
     ; implemented by the object 
newobj delegateclass::.ctor(object, native int) 

[Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used 
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t 
match and could lead to memory violations. end rationale] 

1.8 .1.5.2  Delegat ing via instance dispatch 
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence 
begins with either null or an object on the stack. 

ldftn mthd ; Method shall either be a static method or 
    ; a method on the class of the object on the stack or 
    ; one of the object’s parent classes 
newobj delegateclass::.ctor(object, native int) 

1.9  Metadata tokens 
Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a 
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies 
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User 
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full 
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list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that 
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are 
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata 
token with value 0x02000007 specifies row number 7 in the TypeDef table) 

1.10   Exceptions thrown 
A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception 
called ExecutionEngineException. See Partition I for details. 
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2  Prefixes to instructions 
These special values are reserved to precede specific instructions. They do not constitute full instructions in 
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a 
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the 
instructions it is permitted to precede. 
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2.1  constrained.  –  (prefix)  invoke a member on a value of a variable type 
 

Format Assembly Format Description 

FE 16 <T> constrained. 
thisType 

Call a virtual method on a type constrained to be type T 

 

Stack Transition: 

…, ptr, arg1, … argN  …, ptr, arg1, … argN 

Description: 

The constrained. prefix is permitted only on a callvirt instruction.  The type of ptr must be a managed 
pointer (&) to thisType.   The constrained prefix is designed to allow callvirt instructions to be made in a 
uniform way independent of whether thisType is a value type or a reference type.   

When callvirt method instruction has been prefixed by constrained thisType the instruction is executed as 
follows.  

If thisType is a reference type (as opposed to a value type) then 

 ptr is dereferenced and passed as the ‘this’ pointer to the callvirt of method 

If thisType is a value type and thisType implements method then 

 ptr is passed unmodified as the ‘this’ pointer to a call of method implemented by thisType    

If thisType is a value type and thisType does not implement method then 

 ptr is dereferenced, boxed, and passed as the ‘this’ pointer to the callvirt of method 

This last case can only occur when method was defined on System.Object, System.ValueType, or 
System.Enum and not overridden by thisType.    In this last case, the boxing causes a copy of the original 
object to be made, however since all methods on System.Object, System.ValueType, and 
System.Enum do not modify the state of the object, this fact can not be detected.   

The need for the constrained prefix was motivated by the needs IL generators creating generic code.   Normally 
the callvirt instruction is not valid on value types.   Instead it is required that IL compilers effectively perform 
the `this’ transformation outlined above at IL compile time, depending on the type of ptr and the method being 
called.    It is not possible to do this transformation at IL compile time, however, when ptr is a generic type 
(which is unknown at IL compile time).   This is why the constrained prefix is needed.   The constrained 
opcode allows IL compilers to make a call to a virtual function in a uniform way independent of whether ptr is 
a value type or reference type.   While this was targeted for the case were thisType is a generic type variable, 
constrained works for non-generic types too, and can ease the complexity of generating virtual calls in 
languages that hide the distinction between value and reference types.   

Exceptions: 

None. 

Correctness: 

The constrained prefix will be immediately followed by a callvirt instruction.  thisType  shall be a valid 
typedef, typeref, or typespec metadata token.   

Verifiability: 

The ptr argument will be a managed pointer (&)  to thisType.   In addition all the normal verification rules of 
the callvirt instruction apply after the ptr transformation as described above.    This is equivalent to requiring 
that a boxed thisType must be a subclass of the class which method belongs to.  

[Rationale: The goal of this instruction was to achieve uniformity of calling virtual functions, so such calls 
could be made verifiably in generic routines.     One way of achieving this uniformity was to always box the 
‘this’ pointer before making a callvirt.    This works for both reference type (where box is a no-op), and value 
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types.   The problem with this approach is that a copy is made in the value type case.  Thus if the method being 
called modifies the state of the value type, this will not be reflected after the call completes since this 
modification was made in the boxed copy.    This semantic difference (as well as the performance cost of the 
extra boxing), makes this alternative unacceptable.  ] 
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2.2  no.  – (prefix) possibly skip a fault  check 

Format Assembly Format Description 

FE 19 <unsigned int8> no. { typecheck 
  | rangecheck 
  | nullcheck } 

The specified fault check(s) normally performed 
as part of the execution of the subsequent 
instruction can/shall be skipped. 

 

Description: 

This prefix indicates that the subsequent instruction need not perform the specified fault check when it is 
executed.  The byte that follows the instruction code indicates which checks can optionally be skipped.  This 
instruction is not verifiable.  

The prefix can be used in the following circumstances: 

0x01: typecheck (castclass, unbox, ldelema, stelem, stelem).  The CLI can optionally skip any type 
checks normally performed as part of the execution of the subsequent instruction.  
InvalidCastException can optionally still be thrown if the check would fail.  

0x02: rangecheck (ldelem.*, ldelema, stelem.*).  The CLI can optionally skip any array range checks 
normally performed as part of the execution of the subsequent instruction.  IndexOutOfRangeException 
can optionally still be thrown if the check would fail. 

0x04: nullcheck (ldfld, stfld, callvirt, ldvirtftn, ldelem.*, stelem.*, ldelema). The CLI can optionally skip 
any null-reference checks normally performed as part of the execution of the subsequent instruction.  
NullReferenceException can optionally still be thrown if the check would fail. 

The byte values can be OR-ed; e.g.; a value of 0x05 indicates that both typecheck and nullcheck can 
optionally be omitted. 

Exceptions: 

None. 

Correctness: 

Correct IL permits the prefix only on the instructions specified above. 

Verifiability: 

Verifiable IL does not permit the use of no. 
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2.3  readonly.  (prefix) – following instruction returns a controlled-mutability 
managed pointer 

Format Assembly Format Description 

FE 1E readonly. Specify that the subsequent array address operation performs no 
type check at runtime, and that it returns a controlled-mutability 
managed pointer 

 

Description: 

This prefix can only appear only immediately preceding the ldelema instruction and calls to the special 
Address method on arrays.  Its effect on the subsequent operation is twofold.   

1. At run-time, no type check operation is performed.  (For the value class case there is never a runtime time 
check so this is a noop in that case).  

2. The verifier treats the result of the address-of operation as a controlled-mutability managed pointer 
(§1.8.1.2.2).  

Exceptions: 

None. 

Correctness: 
Verifiability: 

A controlled-mutability managed pointer must obey the verifier rules given in (2) of §1.8.1.2.2. See also 
§1.8.1.3. 

[Rationale: The main goal of the readonly. prefix is to avoid a type check when fetching an element from an 
array in generic code.  For example the expression  

array[i].method()  

where array has type T[] (where T is a generic parameter), and T has been constrained to have an interface with 
method  ‘method’ might compile into the following IL code.  

ldloc array 
ldloc j  // j is array index 
readonly. 
ldelema !0    // loads the pointer to the object 
…    // load the arguments to the call 
constrained. !0 
callvirt method  

Without the readonly. prefix the ldelema would do a type check in the case that !0 was a reference class.  
Not only is this type check inefficient, but it is semantically incorrect.   The type check for ldelema does an 
exact match typecheck, which is too strong in general.  If the array held derived classes of !0 then the code 
above would fail the ldelema typecheck.   The only reason we fetch the address of the array element instead of 
the element itself (which is what the source code says), is because we need a handle for array[i] that works 
both for value types and reference types that can be passed to the constrained callvirt instruction.   

If the array holds elements of a reference type, in general, skipping the runtime check would be unsafe.  To be 
safe we have to insure that no modifications of the array happen through this pointer.  The verifier rules stated 
above insure this.   Since we explicitly allow read-only pointers to be passed as the object of instance method 
calls, these pointers are not strictly read-only for value types, but there is no type safety problem for value 
types. end rationale] 
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2.4  tai l .  (prefix) – call  terminates current method 

Format Assembly Format Description 

FE 14 tail. Subsequent call terminates current method 
 

Description: 

The tail. prefix shall immediately precede a call, calli, or callvirt instruction. It indicates that the current 
method’s stack frame is no longer required and thus can be removed before the call instruction is executed. 
Because the value returned by the call will be the value returned by this method, the call can be converted into 
a cross-method jump. 

The evaluation stack shall be empty except for the arguments being transferred by the following call. The 
instruction following the call instruction shall be a ret. Thus the only valid code sequence is 

tail. call (or calli or callvirt) somewhere 
ret 

Correct CIL shall not branch to the call instruction, but it is permitted to branch to the ret. The only values on 
the stack shall be the arguments for the method being called. 

The tail. call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch, or 
finally block. See Partition I. 

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since 
this would jeopardize code identity security. Security checks can therefore cause the tail. to be ignored, leaving 
a standard call instruction. 

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is 
ignored when used to exit a method that is marked synchronized. 

There can also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in certain 
cases. While an implementation is free to ignore the tail. prefix under these circumstances, they should be 
clearly documented as they can affect the behavior of programs. 

CLI implementations are required to honor tail. call requests where caller and callee methods can be statically 
determined to lie in the same assembly; and where the caller is not in a synchronized region; and where caller 
and callee satisfy all conditions listed in the “Verifiability” rules below. (To “honor” the tail. prefix means to 
remove the caller’s frame, rather than revert to a regular call sequence). Consequently, a CLI implementation 
need not honor tail. calli or tail. callvirt sequences. 

[Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are 
required by some languages. In the presence of ldloca and ldarga instructions it isn’t always possible for a 
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted. end 
rationale] 

Exceptions: 

None. 

Correctness: 

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed 
to the method being called if they point into the stack frame that is about to be removed. The return type of the 
method being called shall be compatible with the return type of the current method.  

Verifiability: 

Verification requires that no managed pointers are passed to the method being called, since it does not track 
pointers into the current frame. 
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2.5  unaligned.  (prefix) – pointer instruction might be unaligned 

Format Assembly Format Description 

FE 12 <unsigned int8> unaligned. alignment Subsequent pointer instruction might be unaligned. 
 
Stack Transition: 

…, addr  …, addr 

Description: 

The unaligned. prefix specifies that addr (an unmanaged pointer (&), or native int) on the stack mignt not 
be aligned to the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or 
cpblk instruction. That is, for a ldind.i4 instruction the alignment of addr might not be to a 4-byte boundary. 
For initblk and cpblk the default alignment is architecture-dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit 
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition II) 
shall use unaligned. if the alignment is not known at compile time to be 8-byte. 

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte, 
double-byte, or quad-byte-aligned, respectively. 

[Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the 
source and one for the destination), there is no noticeable impact on performance if only the lower number is 
specified. end rationale] 

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind, 
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. 

[Note: See Partition I, 12.7 for information about atomicity and data alignment. end note] 

Exceptions: 

None. 

Correctness and Verifiability: 

An unaligned. prefix shall be followed immediately by one of the instructions listed above. 
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2.6  volati le.  (prefix) – pointer reference is volati le 

Format Assembly Format Description 

FE 13 volatile. Subsequent pointer reference is volatile. 
 

Stack Transition: 

…, addr  …, addr 

Description: 

The volatile. prefix specifies that addr is a volatile address (i.e., it can be referenced externally to the current 
thread of execution) and the results of reading that location cannot be cached or that multiple stores to that 
location cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to 
the same location shall be marked separately. Access to volatile locations need not be performed atomically. 
(See Partition I, “Memory Model and Optimizations”) 

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind, 
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed with the ldsfld 
and stsfld instructions. 
Exceptions: 

None. 

Correctness and Verifiability: 

A volatile. prefix should be followed immediately by one of the instructions listed above. 
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3  Base instructions 
These instructions form a “Turing Complete” set of basic operations. They are independent of the object model 
that might be employed. Operations that are specifically related to the CTS’s object model are contained in the 
Object Model Instructions section. 
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3.1  add  – add numeric values 

Format Assembly Format Description 

58 add Add two values, returning a new value. 
 

Stack Transition: 

…, value1, value2  …, result 

Description: 

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for 
integral operations (but see add.ovf); floating-point overflow returns +inf or -inf. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 2: Binary Numeric Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 2: Binary Numeric Operations. 
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3.2  add.ovf.<signed>  – add integer values with overflow check 

Format Assembly Format Description 

D6 add.ovf Add signed integer values with overflow check.  

D7 add.ovf.un Add unsigned integer values with overflow check. 
 

Stack Transition: 

…, value1, value2  …, result 

Description: 

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand 
types and their corresponding result data type are encapsulated in Table 7: Overflow Arithmetic Operations. 

Exceptions: 

System.OverflowException is thrown if the result cannot be represented in the result type. 

Correctness and Verifiability: 

See Table 7: Overflow Arithmetic Operations. 
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3.3  and  – bitwise AND 

Format Instruction Description 

5F and Bitwise AND of two integral values, returns an integral value. 
 

Stack Transition: 

…, value1, value2  …, result 

Description: 

The and instruction computes the bitwise AND of value1 and value2and pushes the result on the stack. The 
acceptable operand types and their corresponding result data type are encapsulated in 
Table 5: Integer Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.4  arglist  – get argument l ist  

Format Assembly Format Description 

FE 00 arglist Return argument list handle for the current method.  
 

Stack Transition: 

…  …, argListHandle 

Description: 

The arglist instruction returns an opaque handle (having type System.RuntimeArgumentHandle) 
representing the argument list of the current method. This handle is valid only during the lifetime of the current 
method. The handle can, however, be passed to other methods as long as the current method is on the thread of 
control. The arglist instruction can only be executed within a method that takes a variable number of 
arguments. 

[Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like 
‘printf’. It is intended for use with the class library implementation of System.ArgIterator. end 
rationale] 

Exceptions: 

None. 

Correctness: 

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates 
it accepts a variable number of arguments. 

Verifiability: 

Its use is verifiable within the body of a method whose signature indicates it accepts a variable number of 
arguments, but verification requires that the result be an instance of the 
System.RuntimeArgumentHandle class. 
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3.5  beq.<length>  –  branch on equal 

Format Assembly Format Description 

3B <int32> beq target Branch to target if equal. 

2E <int8> beq.s target Branch to target if equal, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing 
a ceq instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for beq, 1 byte 
for beq.s) from the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.6  bge.<length>  –  branch on greater than or equal to 

Format Assembly Format Description 

3C <int32> bge target Branch to target if greater than or equal to. 

2F <int8> bge.s target Branch to target if greater than or equal to, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical 
to performing a clt.un instruction followed by a brfalse target. target is represented as a signed offset (4 bytes 
for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction. 

The effect of a “bge target” instruction is identical to: 

• If stack operands are integers, then clt followed by a brfalse target 

• If stack operands are floating-point, then clt.un followed by a brfalse target 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.7  bge.un.<length>  –  branch on greater than or equal to,  unsigned or 
unordered 

Format Assembly Format Description 

41 <int32> bge.un target Branch to target if greater than or equal to (unsigned or unordered). 

34 <int8> bge.un.s target Branch to target if greater than or equal to (unsigned or unordered), 
short form. 

 
Stack Transition: 

…, value1, value2  … 

Description: 

The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared 
unsigned (for integer values) or unordered (for floating-point values). 

target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s) from the beginning of the 
instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.8  bgt.<length>  – branch on greater than 

Format Assembly Format Description 

3D <int32> bgt target Branch to target if greater than. 

30 <int8> bgt.s target Branch to target if greater than, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to 
performing a cgt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for 
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.9  bgt.un.<length>  –  branch on greater than, unsigned or unordered 

Format Assembly Format Description 

42 <int32> bgt.un target Branch to target if greater than (unsigned or unordered). 

35 <int8> bgt.un.s target Branch to target if greater than (unsigned or unordered), short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for 
integer values) or unordered (for floating-point values). The effect is identical to performing a cgt.un 
instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for bgt.un, 1 byte for 
bgt.un.s) from the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.10  ble.<length>  – branch on less than or equal to 

Format Assembly Format Description 

3E <int32> ble target Branch to target if less than or equal to. 

31 <int8> ble.s target Branch to target if less than or equal to, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The ble instruction transfers control to target if value1 is less than or equal to value2. target is represented as a 
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current 
instruction. 

The effect of a “ble target” instruction is identical to: 

• If stack operands are integers, then : cgt followed by a brfalse target 

• If stack operands are floating-point, then : cgt.un followed by a brfalse target 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.11  ble.un.<length>  – branch on less than or equal to,  unsigned or unordered 

Format Assembly Format Description 

43 <int32> ble.un target Branch to target if less than or equal to (unsigned or unordered). 

36 <int8> ble.un.s target Branch to target if less than or equal to (unsigned or unordered), 
short form. 

 
Stack Transition: 

…, value1, value2  … 

Description: 

The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared 
unsigned (for integer values) or unordered (for floating-point values). target is represented as a signed offset 
(4 bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction. 

The effect of a “ble.un target” instruction is identical to: 

• If stack operands are integers, then cgt.un followed by a brfalse target 

• If stack operands are floating-point, then cgt followed by a brfalse target 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 



 

44  Partition III  

 

3.12  blt .<length>  – branch on less than 

Format Assembly Format Description 

3F <int32> blt target Branch to target if less than. 

32 <int8> blt.s target Branch to target if less than, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing 
a clt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for blt, 1 byte for 
blt.s) from the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.13  blt .un.<length>  – branch on less than, unsigned or unordered 

Format Assembly Format Description 

44 <int32> blt.un target Branch to target if less than (unsigned or unordered).  

37 <int8> blt.un.s target Branch to target if less than (unsigned or unordered), short form. 
 

Stack Transition: 

…, value1, value2  … 

Description: 

The blt.un instruction transfers control to target if value1 is less than value2, when compared unsigned (for 
integer values) or unordered (for floating-point values). The effect is identical to performing a clt.un instruction 
followed by a brtrue target. target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from 
the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.14  bne.un<length>  – branch on not equal or unordered 

Format Assembly Format Description 

40 <int32> bne.un target Branch to target if unequal or unordered. 

33 <int8> bne.un.s target Branch to target if unequal or unordered, short form. 
 
Stack Transition: 

…, value1, value2  … 

Description: 

The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned 
(for integer values) or unordered (for floating-point values). The effect is identical to performing a ceq 
instruction followed by a brfalse target. target is represented as a signed offset (4 bytes for bne.un, 1 byte for 
bne.un.s) from the beginning of the instruction following the current instruction. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two 
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.15  br.<length>  – unconditional branch 

Format Assembly Format Description 

38 <int32> br target Branch to target.  

2B <int8> br.s target Branch to target, short form. 
 
Stack Transition: 

…,  … 

Description: 

The br instruction unconditionally transfers control to target. target is represented as a signed offset (4 bytes 
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

[Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is 
empty, doing so might increase the resources required to compile from CIL to native code and/or lead to 
inferior native code. Therefore CIL generators should use a br instruction in preference to a leave instruction 
when both are valid. end rationale] 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.16  break  – breakpoint instruction 

Format Assembly Format Description 

01  break Inform a debugger that a breakpoint has been reached. 
 
Stack Transition: 

…,  … 

Description: 

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has 
been tripped. It has no other effect on the interpreter state. 

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint 
with minimal disturbance to the surrounding code. 

The break instruction might trap to a debugger, do nothing, or raise a security exception: the exact behavior is 
implementation-defined. 

Exceptions: 

None. 

Correctness: 
Verifiability: 

The break instruction is always verifiable. 
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3.17  brfalse.<length>  – branch on false,  null ,  or zero 

Format Assembly Format Description 

39 <int32> brfalse target Branch to target if value is zero (false). 

2C <int8> brfalse.s target Branch to target if value is zero (false), short form. 

39 <int32> brnull target Branch to target if value is null (alias for brfalse). 

2C <int8> brnull.s target Branch to target if value is null (alias for brfalse.s), short form. 

39 <int32> brzero target Branch to target if value is zero (alias for brfalse). 

2C <int8> brzero.s target Branch to target if value is zero (alias for brfalse.s), short form. 
 
Stack Transition: 

…, value  … 

Description: 

The brfalse instruction transfers control to target if value (of type int32, int64, object reference, managed 
pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true), execution continues at 
the next instruction. 

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the 
instruction following the current instruction. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a 
minimum of one item on the stack. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.18  brtrue.<length>  –  branch on non-false or non-null  

Format Assembly Format Description 

3A <int32> brtrue target Branch to target if value is non-zero (true). 

2D <int8> brtrue.s target Branch to target if value is non-zero (true), short form. 

3A <int32> brinst target Branch to target if value is a non-null object reference (alias for 
brtrue). 

2D <int8> brinst.s target Branch to target if value is a non-null object reference, short form 
(alias for brtrue.s). 

 
Stack Transition: 

…, value  … 

Description: 

The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is 
zero (false) execution continues at the next instruction. 

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an 
instance of an object (i.e., isn’t the null object reference, see ldnull). 

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the 
instruction following the current instruction. 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction. 
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details). 

Exceptions: 

None. 

Correctness: 

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a 
minimum of one item on the stack. 

Verifiability: 

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the 
destination instruction. See §1.8 for more details. 
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3.19  cal l  –  call  a method 

Format Assembly Format Description 

28 <T> call method Call method described by method. 
 
Stack Transition: 

…, arg1, arg2 … argN  …, retVal (not always returned) 

Description: 

The call instruction calls the method indicated by the descriptor method. method is a metadata token (a 
methodref, methoddef, or methodspec;See Partition II) that indicates the method to call, and the 
number, type, and order of the arguments that have been placed on the stack to be passed to that method, as 
well as the calling convention to be used. (See Partition I for a detailed description of the CIL calling 
sequence.) The call instruction can be immediately preceded by a tail. prefix to specify that the current method 
state should be released before transferring control (see §2.3). 

The metadata token carries sufficient information to determine whether the call is to a static method, an 
instance method, a virtual method, or a global function. In all of these cases the destination address is 
determined entirely from the metadata token. (Contrast this with the callvirt instruction for calling virtual 
methods, where the destination address also depends upon the exact type of the instance reference pushed 
before the callvirt; see below.) 

 If the method does not exist in the class specified by the metadata token, the base classes are searched to find 
the most derived class which defines the method and that method is called. 

[Rationale: This implements“call base class” behavior. end rationale] 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 
on the stack, then the second argument, and so on. There are three important special cases: 

1. Calls to an instance (or virtual, see below) method shall push that instance reference (the this 
pointer) before any of the user-visible arguments. The signature carried in the metadata does not 
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to 
indicate whether the method requires passing the this pointer (see Partition II) (For calls to 
methods on value types, the this pointer is a managed pointer, not an instance reference.) 

2. It is valid to call a virtual method using call (rather than callvirt); this indicates that the method is 
to be resolved using the class specified by method rather than as specified dynamically from the 
object being invoked. This is used, for example, to compile calls to “methods on super” (i.e., 
the statically known parent class). 

3. Note that a delegate’s Invoke method can be called with either the call or callvirt instruction. 

Exceptions: 

System.SecurityException can be thrown if system security does not grant the caller access to the 
called method. The security check can occur when the CIL is converted to native code rather than at runtime. 

System.MethodAccessException can be thrown when there is an invalid attempt to access a private or 
protected method inside a class. 

System.MissingMethodException can be thrown when there is an attempt to dynamically access a 
method that does not exist. 

Correctness: 

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being 
called. 

Verifiability: 

For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref, 
methoddef, or methodspec token; (b) the types of the objects on the stack are consistent with the types 
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expected by the method call, and (c) the method is accessible from the call site, and (d) the method is not 
abstract (i.e., it has an implementation). 

The call instruction can also be used to call an object’s base class constructor, or to initialize a value type 
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call 
annotated by tail. is also a special case. 

If the target method is global (defined outside of any type), then the method shall be static. 
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3.20  cal l i  – indirect method call  

Format Assembly Format Description 

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by 
callsitedescr. 

 
Stack Transition: 

…, arg1, arg2 … argN, ftn  …, retVal (not always returned) 

Description: 

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argN. The types 
of these arguments are described by the signature callsitedescr. (See Partition I for a description of the CIL 
calling sequence.) The calli instruction can be immediately preceded by a tail. prefix to specify that the current 
method state should be released before transferring control. If the call would transfer control to a method of 
higher trust than the originating method the stack frame will not be released; instead, the execution will 
continue silently as if the tail. prefix had not been supplied. 

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of 
the caller.] 

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately 
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a 
pointer can be created using the ldftn or ldvirtftn instructions, or could have been passed in from native code. 

The standalone signature specifies the number and type of parameters being passed, as well as the calling 
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli 
instruction will not work correctly if the destination does not actually use the specified calling convention. 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 
on the stack, then the second argument, and so on. The argument-building code sequence for an instance or 
virtual method shall push that instance reference (the this pointer, which shall not be null) before any of the 
user-visible arguments. (For calls to methods on value types, the this pointer is a managed pointer, not an 
instance reference.) 

Exceptions: 

System.SecurityException can be thrown if the system security does not grant the caller access to the 
called method. The security check can occur when the CIL is converted to native code rather than at runtime. 

Correctness: 

Correct CIL requires that the function pointer contains the address of a method whose signature matches that 
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’s 
parameters. 

Verifiability: 

Verification checks that ftn is a pointer to a function generated by ldftn or ldvirtfn. 
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3.21  ceq  –  compare equal 

Format Assembly Format Description 

FE 01 Ceq Push 1 (of type int32) if value1 equals value2, else push 0. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type int32) is 
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 

For floating-point numbers, ceq will return 0 if the numbers are unordered (either or both are NaN). The 
infinite values are equal to themselves. 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

Exceptions: 

None. 

Correctness: 

Correct CIL provides two values on the stack whose types match those specified in 
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations. 

Verifiability: 

There are no additional verification requirements. 
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3.22  cgt  – compare greater than 

Format Assembly Format Description 

FE 02  Cgt Push 1 (of type int32) if value1 > value2, else push 0. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type 
int32) is pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments 
are NaN). 

As with IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity). 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

Exceptions: 

None. 

Correctness: 

Correct CIL provides two values on the stack whose types match those specified in 
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations. 

Verifiability: 

There are no additional verification requirements. 
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3.23  cgt.un  – compare greater than, unsigned or unordered 

Format Assembly Format Description 

FE 03  cgt.un Push 1 (of type int32) if value1 > value2, unsigned or unordered, 
else push 0. 

 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The cgt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if 

• for floating-point numbers, either value1 is strictly greater than value2, or value1 is not ordered 
with respect to value2. 

• for integer values, value1 is strictly greater than value2 when considered as unsigned numbers. 

Otherwise, 0 (of type int32) is pushed on the stack. 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity). 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

Exceptions: 

None. 

Correctness: 

Correct CIL provides two values on the stack whose types match those specified in 
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations. 

Verifiability: 

There are no additional verification requirements. 
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3.24  ckfinite  – check for a f inite real number 

Format Assembly Format Description 

C3  Ckfinite Throw ArithmeticException if value is not a finite number. 
 
Stack Transition: 

…, value  …, value 

Description: 

The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a “not 
a number” value (NaN) or +/- infinity value. ckfinite leaves the value on the stack if no exception is thrown. 
Execution behavior is unspecified if value is not a floating-point number. 

Exceptions: 

System.ArithmeticException is thrown if value is not a ‘normal’ number. 

Correctness: 

Correct CIL guarantees that value is a floating-point number. 

Verifiability: 

There are no additional verification requirements. 
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3.25  clt  – compare less than 

Format Assembly Format Description 

FE 04  Clt Push 1 (of type int32) if value1 < value2, else push 0. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type int32) is 
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack. 

For floating-point numbers, clt will return 0 if the numbers are unordered (that is, one or both of the arguments 
are NaN). 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity). 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

Exceptions: 

None. 

Correctness: 

Correct CIL provides two values on the stack whose types match those specified in 
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations. 

Verifiability: 

There are no additional verification requirements. 
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3.26  clt .un  – compare less than, unsigned or unordered 

Format Assembly Format Description 

FE 05  clt.un Push 1 (of type int32) if value1 < value2, unsigned or unordered, 
else push 0. 

 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The clt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if  

• for floating-point numbers, either value1 is strictly less than value2, or value1 is not ordered with 
respect to value2. 

• for integer values, value1 is strictly less than value2 when considered as unsigned numbers. 

Otherwise, 0 (of type int32) is pushed on the stack. 

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity). 

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations. 

Exceptions: 

None. 

Correctness: 

Correct CIL provides two values on the stack whose types match those specified in 
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations. 

Verifiability: 

There are no additional verification requirements. 
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3.27  conv.<to type>  – data conversion 

Format Assembly Format Description 

67 conv.i1 Convert to int8, pushing int32 on stack. 

68 conv.i2 Convert to int16, pushing int32 on stack. 

69 conv.i4 Convert to int32, pushing int32 on stack. 

6A conv.i8 Convert to int64, pushing int64 on stack. 

6B conv.r4 Convert to float32, pushing F on stack. 

6C conv.r8 Convert to float64, pushing F on stack. 

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack. 

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack. 

6D conv.u4 Convert to unsigned int32, pushing int32 on stack. 

6E conv.u8 Convert to unsigned int64, pushing int64 on stack. 

D3 conv.i Convert to native int, pushing native int on stack. 

E0 conv.u Convert to native unsigned int, pushing native int on stack. 

76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack.
 
Stack Transition: 

…, value  …, result 

Description: 

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when 
they are loaded onto the evaluation stack, and floating-point values are converted to the F type. 

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting 
from a float64 to a float32, precision might be lost. If value is too large to fit in a float32, the IEC 
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is 
returned. If overflow occurs when converting one integer type to another, the high-order bits are silently 
truncated. If the result is smaller than an int32, then the value is sign-extended to fill the slot. 

If overflow occurs converting a floating-point type to an integer, or if the floating-point value being converted 
to an integer is a NaN, the value returned is unspecified. The conv.r.un operation takes an integer off the stack, 
interprets it as unsigned, and replaces it with a floating-point number to represent the integer; either a 
float32, if this is wide enough to represent the integer without loss of precision, else a float64. 

The acceptable operand types and their corresponding result data type is encapsulated in 
Table 8: Conversion Operations. 

Exceptions: 

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type 
cannot properly represent the result value. 

Correctness: 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. 

Verifiability: 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 
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3.28  conv.ovf.<to type>  – data conversion with overflow detection 

Format Assembly Format Description 

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an 
exception on overflow.  

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an 
exception on overflow.  

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an 
exception on overflow.  

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an 
exception on overflow.  

B4 conv.ovf.u1 Convert to an unsigned int8 (on the stack as int32) and throw 
an exception on overflow.  

B6 conv.ovf.u2 Convert to an unsigned int16 (on the stack as int32) and 
throw an exception on overflow. 

B8 conv.ovf.u4 Convert to an unsigned int32 (on the stack as int32) and 
throw an exception on overflow  

BA conv.ovf.u8 Convert to an unsigned int64 (on the stack as int64) and 
throw an exception on overflow.  

D4 conv.ovf.i Convert to a native int (on the stack as native int) and throw 
an exception on overflow. 

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int) 
and throw an exception on overflow. 

 
Stack Transition: 

…, value  …, result 

Description: 

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 
top of the stack. If the result cannot be represented in the target type, an exception is thrown. 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 

The acceptable operand types and their corresponding result data type is encapsulated in 
Table 8: Conversion Operations. 

Exceptions: 

System.OverflowException is thrown if the result can not be represented in the result type. 

Correctness: 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. 

Verifiability: 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 
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3.29  conv.ovf.<to type>.un  – unsigned data conversion with overflow detection 

Format Assembly Format Description 

82 conv.ovf.i1.un Convert unsigned to an int8 (on the stack as int32) and throw 
an exception on overflow.  

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and 
throw an exception on overflow.  

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and 
throw an exception on overflow.  

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and 
throw an exception on overflow. 

86 conv.ovf.u1.un Convert unsigned to an unsigned int8 (on the stack as int32) 
and throw an exception on overflow.  

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32) 
and throw an exception on overflow.  

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32) 
and throw an exception on overflow.  

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64) 
and throw an exception on overflow.  

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int) 
and throw an exception on overflow. 

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as 
native int) and throw an exception on overflow. 

 
Stack Transition: 

…, value  …, result 

Description: 

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the 
top of the stack. If the value cannot be represented, an exception is thrown. The item on the top of the stack is 
treated as an unsigned value before the conversion. 

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer 
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 8: Conversion Operations. 

Exceptions: 

System.OverflowException is thrown if the result cannot be represented in the result type. 

Correctness: 

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.  

Verifiability: 

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code. 
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3.30  cpblk  –  copy data from memory to memory 

Format Instruction Description 

FE 17 cpblk Copy data from memory to memory. 
 
Stack Transition: 

…, destaddr, srcaddr, size  … 

Description: 

The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native 
int, or &) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the 
source and destination areas overlap. 

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the 
unaligned. prefix instruction). The operation of the cpblk instruction can be altered by an immediately 
preceding volatile. or unaligned. prefix instruction. 

[Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures, 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler 
that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit 
platform. end rationale] 

Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

Correctness: 

CIL ensures the conditions specified above. 

Verifiability: 

The cpblk instruction is never verifiable. 
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3.31  div  –  divide values 

Format Assembly Format Description 

5B Div Divide two values to return a quotient or floating-point result. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

result = value1 div value2 satisfies the following conditions: 

|result| = |value1| / |value2|, and 

sign(result) = +, if sign(value1) = sign(value2), or 
 –, if sign(value1) ~= sign(value2) 

The div instruction computes result and pushes it on the stack. 

Integer division truncates towards zero. 

Floating-point division is per IEC 60559:1989. In particular, division of a finite number by 0 produces the 
correctly signed infinite value and 

0 / 0 = NaN 

infinity / infinity = NaN. 

X / infinity = 0 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 2: Binary Numeric Operations. 

Exceptions: 

Integral operations throw System.ArithmeticException if the result cannot be represented in the 
result type. (This can happen if value1 is the smallest representable integer value, and value2 is -1.) 

Integral operations throw DivideByZeroException if value2 is zero. 

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I). 

Example: 

+14 div +3  is 4 

+14 div -3  is -4 

-14 div +3  is -4 

-14 div -3  is 4 

Correctness and Verifiability 

See Table 2: Binary Numeric Operations. 
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3.32  div.un  – divide integer values,  unsigned 

Format Assembly Format Description 

5C div.un Divide two values, unsigned, returning a quotient. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The div.un instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the 
result on the stack. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 5: Integer Operations. 

Exceptions: 

System.DivideByZeroException is thrown if value2 is zero. 

Example: 

+5 div.un +3  is 1 

+5 div.un -3  is 0 

-5 div.un +3  is 14316557630 or 0x55555553 

-5 div.un -3  is 0 

Correctness and Verifiability 

See Table 5: Integer Operations. 
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3.33  dup  – duplicate the top value of the stack 

Format Assembly Format Description 

25  Dup Duplicate the value on the top of the stack. 
 
Stack Transition: 

…, value  …, value, value 

Description: 

The dup instruction duplicates the top element of the stack. 

Exceptions: 

None. 

Correctness and Verifiability: 

No additional requirements. 
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3.34  endfi lter  – end exception handling fi lter clause 

Format Assembly Format Description 

FE 11 Endfilter End an exception handling filter clause. 
 
Stack Transition: 

…, value  … 

Description: 

Used to return from the filter clause of an exception (see the Exception Handling subclause of Partition I for a 
discussion of exceptions). value (which shall be of type int32 and one of a specific set of values) is returned 
from the filter clause. It should be one of: 

• exception_continue_search (0) to continue searching for an exception handler 

• exception_execute_handler (1) to start the second phase of exception handling where 
finally blocks are run until the handler associated with this filter clause is located. Then the 
handler is executed. 

The result of using any other integer value is unspecified. 

The entry point of a filter, as shown in the method’s exception table, shall be the (lexically) first instruction in 
the filter’s code block. The endfilter shall be the (lexically) last instruction in the filter’s code block (hence 
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control 
logically flows back to the CLI exception handling mechanism. 

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be 
transferred out of a filter block except through the use of a throw instruction or executing the final endfilter 
instruction. In particular, it is not valid to execute a ret or leave instruction within a filter block. It is not 
valid to embed a try block within a filter block. If an exception is thrown inside the filter block, it is 
intercepted and a value of exception_continue_search is returned. 

Exceptions: 

None. 

Correctness: 

Correct CIL guarantees the control transfer restrictions specified above. 

Verifiability: 

The stack shall contain exactly one item (of type int32). 
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3.35  endfinally  –  end the finally or fault  clause of an exception block 

Format Assembly Format Description 

DC endfault End fault clause of an exception block. 

DC endfinally End finally clause of an exception block. 
 
Stack Transition: 

…  … 

Description: 

Return from the finally or fault clause of an exception block (see the Exception Handling subclause of 
Partition I for details). 

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception 
handler is invoked. The endfinally or endfault instruction transfers control back to the CLI exception 
mechanism. This then searches for the next finally clause in the chain, if the protected block was exited 
with a leave instruction. If the protected block was exited with an exception, the CLI will search for the next 
finally or fault, or enter the exception handler chosen during the first pass of exception handling. 

An endfinally instruction can only appear lexically within a finally block. Unlike the endfilter instruction, 
there is no requirement that the block end with an endfinally instruction, and there can be as many endfinally 
instructions within the block as required. These same restrictions apply to the endfault instruction and the 
fault block, mutatis mutandis. 

Control cannot be transferred into a finally (or fault block) except through the exception mechanism. 
Control cannot be transferred out of a finally (or fault) block except through the use of a throw 
instruction or executing the endfinally (or endfault) instruction. In particular, it is not valid to “fall out” of a 
finally (or fault) block or to execute a ret or leave instruction within a finally (or fault) block. 

Note that the endfault and endfinally instructions are aliases—they correspond to the same opcode. 

endfinally empties the evaluation stack as a side-effect. 

Exceptions: 

None. 

Correctness: 

Correct CIL guarantees the control transfer restrictions specified above. 

Verifiability: 

There are no additional verification requirements. 
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3.36  initblk  –  init ial ize a block of memory to a value 

Format Assembly Format Description 

FE 18 initblk Set all bytes in a block of memory to a given byte value. 
 
Stack Transition: 

…, addr, value, size  … 

Description: 

The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int, 
or &) to value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the 
machine (but see the unaligned. prefix instruction). 

[Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures, 
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler 
that generates initblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit 
platform. end rationale] 

The operation of the initblk instructions can be altered by an immediately preceding volatile. or unaligned. 
prefix instruction. 

Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

Correctness: 

Correct CIL code ensures the restrictions specified above. 

Verifiability: 

The initblk instruction is never verifiable.  
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3.37  jmp  –  jump to method 

Format Assembly Format Description 

27 <T> jmp method Exit current method and jump to the specified method. 
 
Stack Transition: 

…  … 

Description: 

Transfer control to the method specified by method, which is a metadata token (either a methodref or 
methoddef (See Partition II). The current arguments are transferred to the destination method. 

The evaluation stack shall be empty when this instruction is executed. The calling convention, number and type 
of arguments at the destination address shall match that of the current method. 

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or 
finally block; or out of a synchronized region. If this is done, results are undefined. See Partition I. 

Exceptions: 

None. 

Correctness: 

Correct CIL code obeys the control flow restrictions specified above. 

Verifiability: 

The jmp instruction is never verifiable.  
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3.38  ldarg.<length>  – load argument onto the stack 

Format Assembly 
Format 

Description 

FE 09 <unsigned int16> ldarg num Load argument numbered num onto the stack. 

0E <unsigned int8> ldarg.s num Load argument numbered num onto the stack, short form. 

02 ldarg.0 Load argument 0 onto the stack. 

03 ldarg.1 Load argument 1 onto the stack. 

04 ldarg.2 Load argument 2 onto the stack. 

05 ldarg.3 Load argument 3 onto the stack. 
 
Stack Transition: 

…  …, value 

Description: 

The ldarg num instruction pushes onto the evaluation stack, the num’th incoming argument, where arguments 
are numbered 0 onwards (see Partition I). The ldarg instruction can be used to load a value type or a built-in 
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of 
the argument, as specified by the current method’s signature. 

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any one of the first 
4 arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4–255. 

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial 
fixed arguments, not those in the variable part of the signature. (See the arglist instruction.) 

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are 
loaded onto the stack. Floating-point values are expanded to their native size (type F). 

Exceptions: 

None. 

Correctness: 

Correct CIL guarantees that num is a valid argument index. 

Verifiability: 

See §1.8 for details on how verification determines the type of the value loaded onto the stack. 
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3.39  ldarga.<length>  – load an argument address 

Format Assembly Format Description 

FE 0A <unsigned int16> ldarga argNum Fetch the address of argument argNum. 

0F <unsigned int8>  ldarga.s argNum Fetch the address of argument argNum, short form. 
 
Stack Transition: 

…,  …, address of argument number argNum 

Description: 

The ldarga instruction fetches the address (of type &, i.e., managed pointer) of the argNum’th argument, where 
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target 
machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for argument numbers 0–255. 

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial 
fixed arguments, not those in the variable part of the signature. 

[Rationale: ldarga is used for byref parameter passing (see Partition I). In other cases, ldarg and starg should 
be used. end rationale] 

Exceptions: 

None. 

Correctness: 

Correct CIL ensures that argNum is a valid argument index. 

Verifiability: 

See §1.8 for details on how verification determines the type of the value loaded onto the stack. 



 

 Partition III 73 

 

3.40  ldc.<type>  – load numeric constant 

Format Assembly Format Description 

20 <int32> ldc.i4 num Push num of type int32 onto the stack as int32. 

21 <int64> ldc.i8 num Push num of type int64 onto the stack as int64. 

22 <float32> ldc.r4 num Push num of type float32 onto the stack as F. 

23 <float64> ldc.r8 num Push num of type float64 onto the stack as F. 

16 ldc.i4.0 Push 0 onto the stack as int32. 

17 ldc.i4.1 Push 1 onto the stack as int32. 

18 ldc.i4.2 Push 2 onto the stack as int32. 

19 ldc.i4.3 Push 3 onto the stack as int32. 

1A ldc.i4.4 Push 4 onto the stack as int32. 

1B ldc.i4.5 Push 5 onto the stack as int32. 

1C ldc.i4.6 Push 6 onto the stack as int32. 

1D ldc.i4.7 Push 7 onto the stack as int32. 

1E ldc.i4.8 Push 8 onto the stack as int32. 

15 ldc.i4.m1 Push -1 onto the stack as int32. 

15 ldc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for 
ldc.i4.m1). 

1F <int8> ldc.i4.s num Push num onto the stack as int32, short form. 
 
Stack Transition: 

…  …, num 

Description: 

The ldc num instruction pushes number num or some constant onto the stack. There are special short encodings 
for the integers –128 through 127 (with especially short encodings for –1 through 8). All short encodings push 
4-byte integers on the stack. Longer encodings are used for 8-byte integers and 4- and 8-byte floating-point 
numbers, as well as 4-byte values that do not fit in the short forms. 

There are three ways to push an 8-byte integer constant onto the stack 

1. For constants that shall be expressed in more than 32 bits, use the ldc.i8 instruction. 

2. For constants that require 9–32 bits, use the ldc.i4 instruction followed by a conv.i8. 

3. For constants that can be expressed in 8 or fewer bits, use a short form instruction followed by a 
conv.i8. 

There is no way to express a floating-point constant that has a larger range or greater precision than a 64-bit 
IEC 60559:1989 number, since these representations are not portable across architectures. 

Exceptions: 

None. 

Correctness: 
Verifiability: 

The ldc instruction is always verifiable. 
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3.41  ldftn  –  load method pointer 

Format Assembly Format Description 

FE 06 <T> ldftn method Push a pointer to a method referenced by method, on the stack. 
 
Stack Transition: 

…  …, ftn 

Description: 

The ldftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the 
method described by method (a metadata token, either a methoddef or methodref (see Partition II) onto 
the stack). The value pushed can be called using the calli instruction if it references a managed method (or a 
stub that transitions from managed to unmanaged code). 

The value returned points to native code using the calling convention specified by method. Thus a method 
pointer can be passed to unmanaged native code (e.g., as a callback routine). Note that the address computed by 
this instruction can be to a thunk produced specially for this purpose (for example, to re-enter the CIL 
interpreter when a native version of the method isn’t available). 

[Note: There are many options for implementing this instruction.  Conceptually, this instruction places on the 
virtual machine’s evaluation stack a representation of the address of the method specified.  In terms of native 
code this can be an address (as specified), a data structure that contains the address, or any value that can be 
used to  compute the address, depending on the architecture of the underlying machine, the native calling 
conventions, and the implementation technology of the VES (JIT, interpreter, threaded code, etc.). end note] 

Exceptions: 

None. 

Correctness: 

Correct CIL requires that method is a valid methoddef or methodref token. 

Verifiability: 

Verification tracks the type of the value pushed in more detail than the native int type, remembering that 
it is a method pointer. Such a method pointer can then be used with calli or to construct a delegate. 



 

 Partition III 75 

 

3.42  ldind.<type>  – load value indirect onto the stack 

Format Assembly Format Description 

46 ldind.i1  Indirect load value of type int8 as int32 on the stack. 

48 ldind.i2 Indirect load value of type int16 as int32 on the stack. 

4A ldind.i4 Indirect load value of type int32 as int32 on the stack. 

4C ldind.i8 Indirect load value of type int64 as int64 on the stack. 

47  ldind.u1 Indirect load value of type unsigned int8 as int32 on the 
stack. 

49 ldind.u2 Indirect load value of type unsigned int16 as int32 on 
the stack. 

4B ldind.u4 Indirect load value of type unsigned int32 as int32 on 
the stack. 

4E ldind.r4 Indirect load value of type float32 as F on the stack. 

4C ldind.u8 Indirect load value of type unsigned int64 as int64 on 
the stack (alias for ldind.i8). 

4F ldind.r8  Indirect load value of type float64 as F on the stack. 

4D ldind.i Indirect load value of type native int as native int on the 
stack 

50 ldind.ref Indirect load value of type object ref as O on the stack. 
 
Stack Transition: 

…, addr  …, value 

Description: 

The ldind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or 
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. All of the ldind 
instructions are shortcuts for an ldobj instruction that specifies the corresponding built-in value class. 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded 
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 

Correct CIL ensures that the ldind instructions are used in a manner consistent with the type of the pointer. 

The address specified by addr shall be to a location with the natural alignment of <type> or a 
NullReferenceException might occur (but see the unaligned. prefix instruction). (Alignment is 
discussed in Partition I.) The results of all CIL instructions that return addresses (e.g., ldloca and ldarga) are 
safely aligned. For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that 
depends on byte ordering might not run on all platforms. 

The operation of the ldind instructions can be altered by an immediately preceding volatile. or unaligned. 
prefix instruction. 

[Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether 
to sign extend or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; ldind.u8 is an 
alias for ldind.i8; ldind.u4 and ldind.i4 have different opcodes, but their effect is identical. end rationale] 

Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

Correctness: 

Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer. 
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Verifiability: 

For verifiable code, the address on the stack shall be a managed pointer, and the instruction form used shall be 
consistent with the type of the pointer, as specified by the table above. 
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3.43  ldloc  –  load local  variable onto the stack 

Format Assembly 
Format 

Description 

FE 0C<unsigned int16> ldloc indx Load local variable of index indx onto stack. 

11 <unsigned int8> ldloc.s indx Load local variable of index indx onto stack, short form. 

06 ldloc.0 Load local variable 0 onto stack. 

07 ldloc.1 Load local variable 1 onto stack. 

08 ldloc.2 Load local variable 2 onto stack. 

09 ldloc.3 Load local variable 3 onto stack. 
 
Stack Transition: 

…  …, value 

Description: 

The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack, 
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method 
only if the localsinit on the method is true (see Partition I). The ldloc.0, ldloc.1, ldloc.2, and ldloc.3 
instructions provide an efficient encoding for accessing the first 4 local variables. The ldloc.s instruction 
provides an efficient encoding for accessing local variables 4–255. 

The type of the value is the same as the type of the local variable, which is specified in the method header. See 
Partition I. 

Local variables that are smaller than 4 bytes are expanded to type int32 when they are loaded onto the stack. 
Floating-point values are expanded to their native size (type F). 

Exceptions: 

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and 
the assembly containing this method has not been granted 
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL 
does not perform automatic definite-assignment analysis) 

Correctness: 

Correct CIL ensures that indx is a valid local index. 

For the ldloc indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid). 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 

Verifiability: 

For verifiable code, this instruction shall guarantee that it is not loading an uninitialized value – whether that 
initialization is done explicitly by having set thelocalsinit bit for the method, or by previous instructions (where 
the CLI performs definite-assignment analysis). 

See §1.8 for more details on how verification determines the type of a local variable. 
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3.44  ldloca.<length>  – load local variable address 

Format Assembly Format Description 

FE 0D <unsigned int16> ldloca indx Load address of local variable with index indx. 

12 <unsigned int8> ldloca.s indx Load address of local variable with index indx, short form. 
 
Stack Transition: 

…  …, address 

Description: 

The ldloca instruction pushes the address of the local variable number indx onto the stack, where local 
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with 
instructions like ldind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides an 
efficient encoding for use with the local variables 0–255. (Local variables that are the subject of ldloca shall be 
aligned as described in the ldind instruction, since the address obtained by ldloca can be used as an argument 
to ldind.) 

Exceptions: 

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and 
the assembly containing this method has not been granted 
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL 
does not perform automatic definite-assignment analysis) 

Correctness: 

Correct CIL ensures that indx is a valid local index. 

For the ldloca indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid). 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 

Verifiability: 

See §1.8 for details on how verification determines the type of a local variable.  

For verifiable code, this instruction shall guarantee that it is not loading the address of an uninitialized value – 
whether that initialization is done explicitly by having set the localsinit bit for the method, or by previous 
instructions (where the CLI performs definite-assignment analysis) 
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3.45  ldnull  – load a null  pointer 

Format Assembly Format Description 

14 ldnull Push a null reference on the stack. 
 
Stack Transition: 

…  …, null value 

Description: 

The ldnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become 
live or when they become dead. 

[Rationale: It might be thought that ldnull is redundant: why not use ldc.i4.0 or ldc.i8.0 instead? The answer is 
that ldnull provides a size-agnostic null – analogous to an ldc.i instruction, which does not exist. However, 
even if CIL were to include an ldc.i instruction it would still benefit verification algorithms to retain the ldnull 
instruction because it makes type tracking easier. end rationale] 

Exceptions: 

None. 

Correctness: 
 
Verifiability: 

The ldnull instruction is always verifiable, and produces a value that verification considers compatible with any 
other reference type. 



 

80  Partition III  

 

3.46  leave.<length>  – exit  a protected region of code 

Format Assembly Format Description 

DD <int32> leave target Exit a protected region of code. 

DE <int8> leave.s target Exit a protected region of code, short form. 
 
Stack Transition: 

…,  

Description: 

The leave instruction unconditionally transfers control to target. target is represented as a signed offset 
(4 bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction. 

The leave instruction is similar to the br instruction, but the former can be used to exit a try, filter, or 
catch block whereas the ordinary branch instructions can only be used in such a block to transfer control 
within it. The leave instruction empties the evaluation stack and ensures that the appropriate surrounding 
finally blocks are executed. 

It is not valid to use a leave instruction to exit a finally block. To ease code generation for exception 
handlers it is valid from within a catch block to use a leave instruction to transfer control to any instruction 
within the associated try block. 

The leave instruction can be used to exit multiple nested blocks (see Partition I). 

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes. 

Exceptions: 

None. 

Correctness: 

Correct CIL requires the computed destination lie within the current method. 

Verifiability: 

See §1.8 for details. 
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3.47  localloc  – allocate space in the local dynamic memory pool 

Format Assembly Format Description 

FE 0F localloc Allocate space from the local memory pool. 
 
Stack Transition: 

size  address 

Description: 

The localloc instruction allocates size (type native unsigned int or U4) bytes from the local dynamic 
memory pool and returns the address (an unmanaged pointer, type native int) of the first allocated byte. If the 
localsinit flag on the method is true, the block of memory returned is initialized to 0; otherwise, the initial value 
of that block of memory is unspecified. The area of memory is newly allocated. When the current method 
returns, the local memory pool is available for reuse. 

address is aligned so that any built-in data type can be stored there using the stind instructions and loaded 
using the ldind instructions. 

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault. 

[Rationale: localloc is used to create local aggregates whose size shall be computed at runtime. It can be used 
for C’s intrinsic alloca method. end rationale] 

Exceptions: 

System.StackOverflowException is thrown if there is insufficient memory to service the request. 

Correctness: 

Correct CIL requires that the evaluation stack be empty, apart from the size item 

Verifiability: 

This instruction is never verifiable. 
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3.48  mul  – multiply values 

Format Assembly Format Description 

5A mul Multiply values. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently 
truncate the upper bits on overflow (see mul.ovf). 

For floating-point types, 0 × infinity = NaN. 

The acceptable operand types and their corresponding result data types are encapsulated in 
Table 2: Binary Numeric Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 2: Binary Numeric Operations. 
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3.49  mul.ovf.<type>  – multiply integer values with overflow check 

Format Assembly Format Description 

D8 mul.ovf Multiply signed integer values. Signed result shall fit in same 
size. 

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result shall fit in 
same size. 

 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An exception 
is thrown if the result will not fit in the result type. 

The acceptable operand types and their corresponding result data types are encapsulated in 
Table 7: Overflow Arithmetic Operations. 

Exceptions: 

System.OverflowException is thrown if the result can not be represented in the result type. 

Correctness and Verifiability: 

See Table 8: Conversion Operations. 
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3.50  neg  –  negate 

Format Assembly Format Description 

65 Neg Negate value. 
 
Stack Transition: 

…, value  …, result 

Description: 

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the 
operand type. 

Negation of integral values is standard twos-complement negation. In particular, negating the most negative 
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow 
use the sub.ovf instruction instead (i.e., subtract from 0). 

Negating a floating-point number cannot overflow; negating NaN returns NaN. 

The acceptable operand types and their corresponding result data types are encapsulated in 
Table 3: Unary Numeric Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 3: Unary Numeric Operations. 
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3.51  nop  –  no operation 

Format Assembly Format Description 

00 Nop Do nothing. 
 
Stack Transition: 

…,  …, 

Description: 

The nop instruction does nothing. It is intended to fill in space if bytecodes are patched. 

Exceptions: 

None. 

Correctness: 
 
Verifiability: 

The nop instruction is always verifiable. 
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3.52  not  – bitwise complement 

Format Assembly Format Description 

66 Not Bitwise complement. 
 
Stack Transition: 

…, value  …, result 

Description: 

The not instruction computes the bitwise complement of the integer value on top of the stack and leaves the 
result on top of the stack. The return type is the same as the operand type. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 5: Integer Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.53  or  – bitwise OR 

Format Instruction Description 

60 Or Bitwise OR of two integer values, returns an integer. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the stack. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 5: Integer Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.54  pop  – remove the top element of the stack 

Format Assembly Format Description 

26 pop Pop value from the stack. 
 
Stack Transition: 

…, value  … 

Description: 

The pop instruction removes the top element from the stack. 

Exceptions: 

None. 

Correctness: 
 
Verifiability: 

No additional requirements. 
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3.55  rem  – compute remainder 

Format Assembly Format Description 

5D rem Remainder when dividing one value by another. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The rem instruction divides value1 by value2 and pushes the remainder result on the stack. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 2: Binary Numeric Operations. 

For integer operands 

result = value1 rem value2 satisfies the following conditions: 

           result = value1 – value2×(value1 div value2), and 

           0 ≤ |result| < |value2|, and 

           sign(result) = sign(value1), 

where div is the division instruction, which truncates towards zero. 

For floating-point operands 

rem is defined similarly as for integer operands, except that, if value2 is zero or value1 is infinity, result is 
NaN. If value2 is infinity, result is value1. This definition is different from the one for floating-point 
remainder in the IEC 60559:1989 Standard. That Standard specifies that value1 div value2 is the nearest integer 
instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC 
60559:1989 behavior. 

Exceptions: 

Integral operations throw System.DivideByZeroException if value2 is zero. 

Integral operations can throw System.ArithmeticException if value1 is the smallest representable 
integer value and value2 is -1. 

Example: 

+10 rem +6  is 4 (+10 div +6 = 1) 

+10 rem -6  is 4 (+10 div -6 = -1) 

-10 rem +6  is -4 (-10 div +6 = -1) 

-10 rem -6  is -4 (-10 div -6 = 1) 

For the various floating-point values of 10.0 and 6.0, rem gives the same values; 
System.Math.IEEERemainder, however, gives the following values. 

System.Math.IEEERemainder(+10.0,+6.0) is  -2 (+10.0 div +6.0 =  1.666…7) 

System.Math.IEEERemainder(+10.0,-6.0) is  -2 (+10.0 div -6.0 = -1.666…7) 

System.Math.IEEERemainder(-10.0,+6.0) is   2 (-10.0 div +6.0 = -1.666…7) 

System.Math.IEEERemainder(-10.0,-6.0) is   2 (-10.0 div -6.0 =    1.666…7) 

Correctness and Verifiability: 

See Table 2: Binary Numeric Operations. 
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3.56  rem.un  – compute integer remainder, unsigned 

Format Assembly Format Description 

5E rem.un Remainder when dividing one unsigned value by another. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The rem.un instruction divides value1 by value2 and pushes the remainder result on the stack. (rem.un treats 
its arguments as unsigned integers, while rem treats them as signed integers.) 

result = value1 rem.un value2 satisfies the following conditions: 

 result = value1 – value2×(value1 div.un value2), and 

 0 ≤ result < value2, 

where div.un is the unsigned division instruction. rem.un is unspecified for floating-point numbers. 

The acceptable operand types and their corresponding result data type are encapsulated in 
Table 5: Integer Operations. 

Exceptions: 

Integral operations throw System.DivideByZeroException if value2 is zero. 

Example: 

+5 rem.un +3  is 2   (+5 div.un +3 = 1) 

+5 rem.un -3  is 5   (+5 div.un -3 = 0) 

-5 rem.un +3  is 2   ( -5 div.un +3 = 1431655763 or 0x55555553) 

-5 rem.un -3  is -5 or 0xfffffffb ( -5 div.un -3 = 0) 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.57  ret  – return from method 

Format Assembly Format Description 

2A Ret Return from method, possibly with a value. 
 
Stack Transition: 

 retVal on callee evaluation stack (not always present)  

…, retVal on caller evaluation stack (not always present) 

Description: 

Return from the current method. The return type, if any, of the current method determines the type of value to 
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The 
evaluation stack for the current method shall be empty except for the value to be returned. 

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block. 
From within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all 
enclosing exception blocks. Because the filter and finally blocks are logically part of exception 
handling, not the method in which their code is embedded, correctly generated CIL does not perform a method 
return from within a filter or finally. See Partition I. 

Exceptions: 

None. 

Correctness: 

Correct CIL obeys the control constraints describe above. 

Verifiability: 

Verification requires that the type of retVal is compatible with the declared return type of the current method. 
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3.58  shl  – shift integer left  

Format Assembly Format Description 

62 Shl Shift an integer left (shifting in zeros), return an integer. 
 
Stack Transition: 

…, value, shiftAmount  …, result 

Description: 

The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by 
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is 
greater than or equal to the width of value. See Table 6: Shift Operations for details of which operand types are 
allowed, and their corresponding result type. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.59  shr  – shift integer right 

Format Assembly Format Description 

63 Shr Shift an integer right (shift in sign), return an integer. 
 
Stack Transition: 

…, value, shiftAmount  …, result 

Description: 

The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by 
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is 
greater than or equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of 
the original value in result. See Table 6: Shift Operations for details of which operand types are allowed, and 
their corresponding result type. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.60  shr.un  –  shift integer right,  unsigned 

Format Assembly Format Description 

64 shr.un Shift an integer right (shift in zero), return an integer. 
 
Stack Transition: 

…, value, shiftAmount  …, result 

Description: 

The shr.un instruction shifts value (int32, int 64 or native int) right by the number of bits specified 
by shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if 
shiftAmount is greater than or equal to the width of value. shr.un inserts a zero bit on each shift. See Table 6: 
Shift Operations for details of which operand types are allowed, and their corresponding result type. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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3.61  starg.<length>  – store a value in an argument slot 

Format Assembly 
Format 

Description 

FE 0B <unsigned int16> starg num Store value to the argument numbered num. 

10 <unsigned int8> starg.s num Store value to the argument numbered num, short form. 
 
Stack Transition: 

…, value  …, 

Description: 

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The 
type of the value shall match the type of the argument, as specified in the current method’s signature. The 
starg.s instruction provides an efficient encoding for use with the first 256 arguments. 

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed 
arguments, not those in the variable part of the signature. 

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from 
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size 
associated with the argument. 

Exceptions: 

None. 

Correctness: 

Correct CIL requires that num is a valid argument slot. 

Verifiability: 

Verification also checks that the verification type of value matches the type of the argument, as specified in the 
current method’s signature (verification types are less detailed than CLI types). 
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3.62  st ind.<type>  – store value indirect from stack 

Format Assembly Format Description 

52 stind.i1 Store value of type int8 into memory at address 

53 stind.i2 Store value of type int16 into memory at address 

54 stind.i4 Store value of type int32 into memory at address 

55 stind.i8 Store value of type int64 into memory at address 

56 stind.r4 Store value of type float32 into memory at address 

57 stind.r8 Store value of type float64 into memory at address 

DF stind.i Store value of type native int into memory at address 

51 stind.ref Store value of type object ref (type O) into memory at address
 
Stack Transition: 

…, addr, val  … 

Description: 

The stind instruction stores value val at address addr (an unmanaged pointer, type native int, or managed 
pointer, type &). The address specified by addr shall be aligned to the natural size of val or a 
NullReferenceException can occur (but see the unaligned. prefix instruction). The results of all CIL 
instructions that return addresses (e.g., ldloca and ldarga) are safely aligned. For data types larger than 1 byte, 
the byte ordering is dependent on the target CPU. Code that depends on byte ordering might not run on all 
platforms. All of the stind instructions are shortcuts for an stobj instruction that specifies the corresponding 
built-in value class. 

Type-safe operation requires that the stind instruction be used in a manner consistent with the type of the 
pointer. 

The operation of the stind instruction can be altered by an immediately preceding volatile. or unaligned. 
prefix instruction. 

Exceptions: 

System.NullReferenceException is thrown if addr is not naturally aligned for the argument type 
implied by the instruction suffix. 

Correctness: 

Correct CIL ensures that addr is a pointer whose type is assignment-compatible with that of val, subject to 
implicit conversion as specified in §1.6. 

Verifiability: 

For verifiable code, addr shall be a managed pointer, and the type of val shall be assignment compatible with 
addr: if addr has type S& and val has type T, then S := T according to the rules in §1.8.1.2.2. 
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3.63  st loc  –  pop value from stack to local variable 

Format Assembly Format Description 

FE 0E <unsigned int16> stloc indx Pop a value from stack into local variable indx. 

13 <unsigned int8> stloc.s indx Pop a value from stack into local variable indx, short form. 

0A stloc.0 Pop a value from stack into local variable 0. 

0B stloc.1 Pop a value from stack into local variable 1. 

0C stloc.2 Pop a value from stack into local variable 2. 

0D stloc.3 Pop a value from stack into local variable 3. 
 
Stack Transition: 

…, value  … 

Description: 

The stloc indx instruction pops the top value off the evaluation stack and moves it into local variable number 
indx (see Partition I), where local variables are numbered 0 onwards. The type of value shall match the type of 
the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and 
stloc.3 instructions provide an efficient encoding for the first 4 local variables; the stloc.s instruction provides 
an efficient encoding for local variables 4–255. 

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the 
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size 
associated with the argument. 

Exceptions: 

None. 

Correctness: 

Correct CIL requires that indx be a valid local index. For the stloc indx instruction, indx shall lie in the 
range 0–65534 inclusive (specifically, 65535 is not valid) 

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to 
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had 
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale] 

Verifiability: 

Verification also checks that the verification type of value matches the type of the local, as specified in the 
current method’s locals signature. 
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3.64  sub  – subtract numeric values 

Format Assembly Format Description 

59 sub Subtract value2 from value1, returning a new value. 
 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected 
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -
inf on negative overflow, and zero on floating-point underflow. 

The acceptable operand types and their corresponding result data type are encapsulated in Table 2: Binary 
Numeric Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table2: Binary Numeric Operations. 
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3.65  sub.ovf.<type>  – subtract integer values,  checking for overflow 

Format Assembly Format Description 

DA sub.ovf Subtract native int from a native int. Signed result shall fit in 
same size. 

DB sub.ovf.un Subtract native unsigned int from a native unsigned int. 
Unsigned result shall fit in same size. 

 
Stack Transition: 

…, value1, value2  …, result 

Description: 

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values 
and the return type are specified by the instruction. An exception is thrown if the result does not fit in the result 
type. 

The acceptable operand types and their corresponding result data type is encapsulated in 
Table 7: Overflow Arithmetic Operations. 

Exceptions: 

System.OverflowException is thrown if the result can not be represented in the result type. 

Correctness and Verifiability: 

See Table 7: Overflow Arithmetic Operations. 
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3.66  switch  – table switch based on value 

Format Assembly Format Description 

45 <unsigned int32> <int32>… <int32> switch ( t1, t2 … tN ) Jump to one of n values. 
 
Stack Transition: 

…, value  …, 

Description: 

The switch instruction implements a jump table. The format of the instruction is an unsigned int32 
representing the number of targets N, followed by N int32 values specifying jump targets: these targets are 
represented as offsets (positive or negative) from the beginning of the instruction following this switch 
instruction. 

The switch instruction pops value off the stack and compares it, as an unsigned integer, to n. If value is less 
than n, execution is transferred to the value’th target, where targets are numbered from 0 (i.e., a value of 0 takes 
the first target, a value of 1 takes the second target, and so on). If value is not less than n, execution continues at 
the next instruction (fall through). 

If the target instruction has one or more prefix codes, control can only be transferred to the first of these 
prefixes. 

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this 
instruction. (Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for 
details). 

Exceptions: 

None. 

Correctness: 

Correct CIL obeys the control transfer constraints listed above. 

Verifiability: 

Verification requires the type-consistency of the stack, locals and arguments for every possible way of reaching 
all destination instructions. See §1.8 for more details. 
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3.67  xor  – bitwise XOR 

Format Assembly Format Description 

61 xor Bitwise XOR of integer values, returns an integer. 
 
Stack Transition: 

..., value1, value2  ..., result 

Description: 

The xor instruction computes the bitwise XOR of value1 and value2and leaves the result on the stack. 

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer 
Operations. 

Exceptions: 

None. 

Correctness and Verifiability: 

See Table 5: Integer Operations. 
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4  Object model instructions 
The instructions described in the base instruction set are independent of the object model being executed. Those 
instructions correspond closely to what would be found on a real CPU. The object model instructions are less 
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to 
the underlying operating system. 

[Rationale: The object model instructions provide a common, efficient implementation of a set of services used 
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions 
defined by the CTS. This include (among other things):  

• Field layout within an object 

• Layout for late bound method calls (vtables) 

• Memory allocation and reclamation 

• Exception handling 

• Boxing and unboxing to convert between reference-based objects and value types 

For more details, see Partition I. end rationale] 
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4.1  box  – convert a boxable value to its  boxed form 

Format Assembly Format Description 

8C <T> box typeTok  Convert a boxable value to its boxed form 
 
Stack Transition: 

…, val  …, obj 

Description: 

If typeTok is a value type, the box instruction converts val to its boxed form; this is accomplished by creating a 
new object and copying the data from val into the newly allocated object.  If typeTok is a reference type, the 
box instruction does nothing. 

typeTok is a metadata token (a typedef, typeref, or typespec) indicating the type of val.  typeTok can 
represent a value type, a reference type, or a generic parameter.  

Exceptions: 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 

System.TypeLoadException is thrown if typeTok cannot be found. (This is typically detected when CIL 
is converted to native code rather than at runtime.) 

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  The type operand typeTok 
shall represent a boxable type.  

Verifiability: 

The top-of-stack shall be assignment compatible with the type represented by typeTok.  When typeTok 
represents a value type or generic parameter, the resulting type is “boxed” typeTok. When typeTok is a 
reference type, the resulting type is typeTok.  The type operand typeTok shall not be a byref, byref-like or void 
type.  
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4.2  cal lvirt  –  call  a method associated, at  runtime, with an object 

Format Assembly Format Description 

6F <T> callvirt method  Call a method associated with an object. 
 
Stack Transition: 

…, obj, arg1, … argN  …, returnVal (not always returned) 

Description: 

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the exact 
type of obj rather than the compile-time class visible in the method metadata token. callvirt can be used to call 
both virtual and instance methods. See Partition I for a detailed description of the CIL calling sequence. The 
callvirt instruction can be immediately preceded by a tail. prefix to specify that the current stack frame should 
be released before transferring control. If the call would transfer control to a method of higher trust than the 
original method the stack frame will not be released. 

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of 
the caller] 

method is a metadata token (a methoddef, methodref or methodspec see Partition II) that provides the 
name, class and signature of the method to call. In more detail, callvirt can be thought of as follows. Associated 
with obj is the class of which it is an instance. If obj’s class defines a non-static method that matches the 
indicated method name and signature, this method is called. Otherwise all classes in the base class chain of 
obj’s class are checked in order. It is an error if no method is found. 

callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method has 
a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is 
accessed as argument 0, arg1 as argument 1, and so on. 

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed 
on the stack, then the second argument, etc. The this pointer (always required for callvirt) shall be pushed 
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the 
parameter list for the this pointer, but uses a bit (called HASTHIS) to indicate whether the method requires 
passing the this pointer (see Partition II) 

Note that a virtual method can also be called using the call instruction. 

Exceptions: 

System.MissingMethodException is thrown if a non-static method with the indicated name and 
signature could not be found in obj’s class or any of its base classes. This is typically detected when CIL is 
converted to native code, rather than at runtime. 

System.NullReferenceException is thrown if obj is null. 

System.SecurityException is thrown if system security does not grant the caller access to the called 
method. The security check can occur when the CIL is converted to native code rather than at runtime. 

Correctness: 

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of 
the parameters of the method being called. 

Verifiability: 

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is 
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent 
with the types expected by the method call, and (d) the method is accessible from the call site. A callvirt 
annotated by tail. has additional considerations – see §1.8. 
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4.3  castclass  – cast an object to a class 

Format Assembly Format Description 

74 <T> castclass class  Cast obj to class. 
 
Stack Transition: 

…, obj  …, obj2 

Description: 

The castclass instruction attempts to cast obj (of type O) to the class. class is a metadata token (a typeref, 
typedef or typespec), indicating the desired class. If the class of the object on the top of the stack does not 
implement class (if class is an interface), and is not a derived class of class (if class is a regular class), then an 
InvalidCastException is thrown. 

Note that: 

1. Arrays inherit from System.Array. 

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]. 

3. For the purposes of note 2 above, enums are treated as their underlying type: thus E1[] can be cast 
to E2[] if E1 and E2 share an underlying type. 

If obj is null, castclass succeeds and returns null. This behavior differs from isinst. 
Exceptions: 

System.InvalidCastException is thrown if obj cannot be cast to class. 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 
converted to native code rather than at runtime. 

Correctness: 

Correct CIL ensures that class is a valid typeRef, typeDef or typeSpec token, and that obj is always 
either null or an object reference. 

Verifiability: 

There are no additional verification requirements. 
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4.4  cpobj  – copy a value from one address to another 

Format Assembly Format Description 

70 <T> cpobj typeTok Copy a value type from src to dest. 
 
Stack Transition: 

…, dest, src  …, 

Description: 

The cpobj instruction copies the value at the address specified by src (an unmanaged pointer, native int, 
or a managed pointer, &) to the address specified by dest (also a pointer).  typeTok can be a typedef, 
typeref, or typespec.  The behavior is unspecified if the type of the location referenced by src is not 
assignment-compatible with the type of the location referenced by dest.  

If typeTok is a reference type, the cpobj instruction has the same effect as ldind.ref followed by stind.ref.   
Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

System.TypeLoadException is thrown if typeTok cannot be found.  This is typically detected when CIL 
is converted to native code rather than at runtime. 

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  

Verifiability: 

The static types of the destination (dest) and source (src) values shall both be managed pointers (&) to values 
whose types we denote destType and srcType, respectively.  Finally, srcType shall be assignment-compatible 
with typeTok, and typeTok shall be assignment-compatible with destType.  In the case of an Enum, its type is 
that of the underlying, or base, type of the Enum.  
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4.5  initobj  – initialize the value at an address 

Format Assembly Format Description 

FE 15 <T> initobj typeTok Initialize the value at address dest. 
 
Stack Transition: 

…, dest  …, 

Description: 

The initobj instruction initializes an address with a default value.  typeTok is a metadata token (a typedef, 
typeref, or typespec).  dest is an unmanaged pointer (native int), or a managed pointer (&).  If 
typeTok is a value type, the initobj instruction initializes each field of dest to null or a zero of the appropriate 
built-in type.  If typeTok is a value type, then after this instruction is executed, the instance is ready for a 
constructor method to be called.  If typeTok is a reference type, the initobj instruction has the same effect as 
ldnull followed by stind.ref. 

Unlike newobj, the initobj instruction does not call any constructor method.  

Exceptions: 

None. 

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  

Verifiability: 

The type of the destination value on top of the stack shall be a managed pointer to some type destType, and 
typeTok shall be a subtype of destType.  If typeTok is a non-reference type, the definition of subtyping implies 
that destType and typeTok shall be equal.  
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4.6  isinst  –  test  i f  an object is an instance of a class or interface 

Format Assembly Format Description 

75 <T> isinst class  Test if obj is an instance of class, returning null or an instance of 
that class or interface. 

 
Stack Transition: 

…, obj  …, result 

Description: 

The isinst instruction tests whether obj (type O) is an instance of class. class is a metadata token (a typeref, 
typedef or typespecsee Partition II) indicating the desired class. If the class of the object on the top of the 
stack implements class (if class is an interface) or is a derived class of class (if class is a regular class), then it 
is cast to the type class and the result is pushed on the stack, exactly as though castclass had been called. 
Otherwise null is pushed on the stack. If obj is null, isinst returns null. 

Note that: 

1. Arrays inherit from System.Array. 
2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]. 

3. For the purposes of note 2, enums are treated as their underlying type: thus E1[] can cast to E2[] 
if E1 and E2 share an underlying type. 

Exceptions: 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 
converted to native code rather than at runtime. 

Correctness: 

Correct CIL ensures that class is a valid typeref or typedef or typespec token indicating a class, and 
that obj is always either null or an object reference. 

Verifiability: 

There are no additional verification requirements. 
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4.7  ldelem  – load element from array 

Format Assembly Format Description 

A3 <T> ldelem typeTok Load the element at index onto the top of the stack. 
 
Stack Transition: 

…, array, index  …, value 

Description: 

The ldelem instruction loads the value of the element with index index (of type native int or int32) in 
the zero-based one-dimensional array array, and places it on the top of the stack.  The type of the return value 
is indicated by the type token typeTok in the instruction.  

Exceptions: 

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.  

System.NullReferenceException is thrown if array is null.  

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  

array shall be either null or a single dimensional, zero-based array.  

Verifiability: 

The static type of array is either the special reference type Null or a proper zero-based, one-dimensional array 
type elem[], for some type elem.  If the array type is Null, take elem to be the type represented by operand 
typeTok.  The value index shall have type native int.  The type elem shall be a subtype of the type operand 
typeTok.  The type of the value left on the stack is typeTok. 
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4.8  ldelem.<type>  – load an element of an array 

Format Assembly Format Description 

90 ldelem.i1 Load the element with type int8 at index onto the top of the stack as 
an int32. 

92 ldelem.i2 Load the element with type int16 at index onto the top of the stack 
as an int32. 

94 ldelem.i4 Load the element with type int32 at index onto the top of the stack 
as an int32. 

96 ldelem.i8 Load the element with type int64 at index onto the top of the stack 
as an int64. 

91  ldelem.u1 Load the element with type unsigned int8 at index onto the top of 
the stack as an int32. 

93 ldelem.u2 Load the element with type unsigned int16 at index onto the top of 
the stack as an int32. 

95 ldelem.u4 Load the element with type unsigned int32 at index onto the top of 
the stack as an int32. 

96 ldelem.u8 Load the element with type unsigned int64 at index onto the top of 
the stack as an int64 (alias for ldelem.i8). 

98 ldelem.r4 Load the element with type float32 at index onto the top of the stack 
as an F 

99 ldelem.r8 Load the element with type float64 at index onto the top of the stack 
as an F. 

97 ldelem.i Load the element with type native int at index onto the top of the 
stack as a native int. 

9A ldelem.ref Load the element at index onto the top of the stack as an O. The type 
of the O is the same as the element type of the array pushed on the 
CIL stack. 

 
Stack Transition: 

…, array, index  …, value 

Description: 

The ldelem instruction loads the value of the element with index index (of type int32 or native int) in 
the zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence 
represented by a value of type O. The return value is indicated by the instruction. 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a 
Get method. 

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded 
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack. 

Exceptions: 

System.NullReferenceException is thrown if array is null. 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 

Correctness: 
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Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared 
element type matches exactly the type for this particular instruction suffix (e.g., ldelem.r4 can only be applied 
to a zero-based, one dimensional array of float32s) 

Verifiability: 

The type of index shall be int32 or native int. The element type of array shall match the type 
specified by the suffix, as described above.   
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4.9  ldelema  – load address of an element of an array 

Format Assembly Format Description 

8F <T> ldelema class Load the address of element at index onto the top of the stack. 
 
Stack Transition: 

…, array, index  …, address 

Description: 

The ldelema instruction loads the address of the element with index index (of type int32 or native int) 
in the zero-based one-dimensional array array (of element type class) and places it on the top of the stack. 
Arrays are objects and hence represented by a value of type O. The return address is a managed pointer 
(type &). 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides an 
Address method. 

If this instruction is prefixed by the readonly. prefix, it produces a controlled-mutability managed pointer 
(§1.8.1.2.2). 

Exceptions: 

System.NullReferenceException is thrown if array is null. 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type. 

Correctness: 

Correct CIL ensures that class is a typeref or typedef or typespec token to a class, and that array is 
indeed always either null or a zero-based, one-dimensional array whose declared element type matches class 
exactly. 

Verifiability: 

The type of index shall be int32 or native int. The element type of array shall match class exactly. 
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4.10  ldf ld  – load field of an object 

Format Assembly Format Description 

7B <T> ldfld field  Push the value of field of object (or value type) obj, onto the stack. 
 
Stack Transition: 

…, obj  …, value 

Description: 

The ldfld instruction pushes onto the stack the value of a field of obj. obj shall be an object (type O), a managed 
pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of an 
unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef 
see Partition II) that shall refer to a field member. The return type is that associated with field. ldfld pops the 
object reference off the stack and pushes the value for the field in its place. The field can be either an instance 
field (in which case obj shall not be null) or a static field. 

The ldfld instruction can be preceded by either or both of the unaligned. and volatile. prefixes. 

Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

System.NullReferenceException is thrown if obj is null and the field is not static. 

Correctness: 

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type 
compatible with that required for the lookup being performed. 

Verifiability: 

For verifiable code, obj shall not be an unmanaged pointer. 

It is not verifiable to access an overlapped object reference field. 

A field is accessible only if every field that overlaps it is also accessible. 
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4.11  ldflda  – load field address 

Format Assembly Format Description 

7C <T> ldflda field  Push the address of field of object obj on the stack. 
 
Stack Transition: 

…, obj  …, address 

Description: 

The ldflda instruction pushes the address of a field of obj. obj is either an object, type O, a managed pointer, 
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in 
verifiable code. The value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged pointer, 
in which case it is an unmanaged pointer (type native int). 

field is a metadata token (a fieldref or fielddef; see Partition II) that shall refer to a field member. The 
field can be either an instance field (in which case obj shall not be null) or a static field. 

Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.InvalidOperationException is thrown if the obj is not within the application domain from 
which it is being accessed. The address of a field that is not inside the accessing application domain cannot be 
loaded. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

System.NullReferenceException is thrown if obj is null and the field isn’t static. 

Correctness: 

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with 
that required for the lookup being performed. 

Verifiability: 

For verifiable code, field cannot be init-only. 

It is not verifiable to access an overlapped object reference field. 

A field is accessible only if every field that overlaps it is also accessible. 

Remark: 

Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to modify 
that value outside the body of the class initializer might lead to unpredictable behavior. 
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4.12  ldlen  –  load the length of an array 

Format Assembly Format Description 

8E ldlen Push the length (of type native unsigned int) of array on the stack. 
 
Stack Transition: 

…, array  …, length 

Description: 

The ldlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the 
stack. 

Arrays are objects and hence represented by a value of type O. The return value is a native unsigned 
int. 

Exceptions: 

System.NullReferenceException is thrown if array is null. 

Correctness: 

Correct CIL ensures that array is indeed always null or a zero-based, one dimensional array. 

Verifiability: 
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4.13  ldobj  – copy a value from an address to the stack 

Format Assembly Format Description 

71 <T> ldobj typeTok Copy the value stored at address src to the stack. 
 
Stack Transition: 

…, src  …, val 

Description: 

The ldobj instruction copies a value to the evaluation stack.  typeTok is a metadata token (a typedef, 
typeref, or typespec).  src is an unmanaged pointer (native int), or a managed pointer (&).  If 
typeTok is a reference type, the ldobj instruction has the same effect as ldind.ref. 

[Rationale: The ldobj instruction can be used to pass a value type as an argument. end rationale] 

The operation of the ldobj instruction can be altered by an immediately preceding volatile. or 
unaligned. prefix instruction.  

Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL 
is converted to native code rather than at runtime. 

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  

Verifiability: 

The static type of the source value on top of the stack shall be a managed pointer to some type srcType, and 
srcType shall be a subtype of typeTok.  The static type of the value remaining on the stack is typeTok.  
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4.14  ldsfld  – load static f ield of a class 

Format Assembly Format Description 

7E <T> ldsfld field  Push the value of field on the stack. 
 
Stack Transition: 

…,  …, value 

Description: 

The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. field 
is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The 
return type is that associated with field. 

The ldsfld instruction can have a volatile. prefix. 

Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

Correctness: 

Correct CIL ensures that field is a valid metadata token referring to a static field member. 

Verifiability: 

There are no additional verification requirements. 
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4.15  ldsflda  – load static f ield address 

Format Assembly Format Description 

7F <T> ldsflda field  Push the address of the static field, field, on the stack. 
 
Stack Transition: 

…,  …, address 

Description: 

The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory is 
managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a 
metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that 
field can be a static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for 
Relative Virtual Address, the offset of the field from the base address at which its containing PE file is loaded 
into memory) 

Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

Correctness: 

Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type 
whose memory is managed. 

Verifiability: 

For verifiable code, field cannot be init-only. 

Remark: 

Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to modify 
that value outside the body of the class initializer can lead to unpredictable behavior. 
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4.16  ldstr  –  load a literal string 

Format Assembly Format Description 

72 <T> ldstr string Push a string object for the literal string. 
 
Stack Transition: 

…,  …, string 

Description: 

The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (which 
is a string literal). 

The ldstr instruction allocates memory and performs any format conversion required to convert from the form 
used in the file to the string format required at runtime. The CLI guarantees that the result of two ldstr 
instructions referring to two metadata tokens that have the same sequence of characters, return precisely the 
same string object (a process known as “string interning”). 

Exceptions: 

None. 

Correctness: 

Correct CIL requires that string is a valid string literal metadata token. 

Verifiability: 

There are no additional verification requirements. 
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4.17  ldtoken  – load the runtime representation of a metadata token 

Format Assembly Format Description 

D0 <T> ldtoken token Convert metadata token to its runtime representation. 
 
Stack Transition: 

…  …, RuntimeHandle 

Description: 

The ldtoken instruction pushes a RuntimeHandle for the specified metadata token. The token shall be one of: 

A methoddef, methodref or methodspec: pushes a RuntimeMethodHandle 

A typedef, typeref, or typespec : pushes a RuntimeTypeHandle 

A fielddef or fieldref : pushes a RuntimeFieldHandle 

The value pushed on the stack can be used in calls to reflection methods in the system class library 

Exceptions: 

None. 

Correctness: 

Correct CIL requires that token describes a valid metadata token of the kinds listed above 

Verifiability: 

There are no additional verification requirements. 
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4.18  ldvirtftn  –  load a virtual method pointer 

Format Assembly Format Description 

FE 07 <T> ldvirtftn method Push address of virtual method method on the stack. 
 
Stack Transition: 

… object  …, ftn 

Description: 

The ldvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing 
the virtual method associated with object and described by the method reference method (a metadata token, a 
methoddef, methodref or methodspec; see Partition II) onto the stack. The value pushed can be 
called using the calli instruction if it references a managed method (or a stub that transitions from managed to 
unmanaged code). 

The value returned points to native code using the calling convention specified by method. Thus a method 
pointer can be passed to unmanaged native code (e.g., as a callback routine) if that routine expects the 
corresponding calling convention. Note that the address computed by this instruction can be to a thunk 
produced specially for this purpose (for example, to re-enter the CLI when a native version of the method isn’t 
available) 

Exceptions: 

System.NullReferenceException is thrown if object is null. 

Correctness: 

Correct CIL ensures that method is a valid methoddef, methodref or methodspec token. Also that 
method references a non-static method that is defined for object. 

Verifiability: 

Verification tracks the type of the value pushed in more detail than the native int type, remembering that 
it is a method pointer. Such a method pointer can then be used in verified code with calli or to construct a 
delegate. 
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4.19  mkrefany  – push a typed reference on the stack 

Format Assembly Format Description 

C6 <T> mkrefany class  Push a typed reference to ptr of type class onto the stack. 
 
Stack Transition: 

…, ptr  …, typedRef 

Description: 

The mkrefany instruction supports the passing of dynamically typed references. ptr shall be a pointer (type &, 
or native int) that holds the address of a piece of data. class is the class token (a typeref or typedef; 
see Partition II) describing the type of ptr. mkrefany pushes a typed reference on the stack, that is an opaque 
descriptor of ptr and class. The only valid operation on a typed reference on the stack is to pass it to a method 
that requires a typed reference as a parameter. The callee can then use the refanytype and refanyval 
instructions to retrieve the type (class) and address (ptr) respectively. 

Exceptions: 

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is 
converted to native code rather than at runtime. 

Correctness: 

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is a 
pointer to exactly that type. 

Verifiability: 

Verification additionally requires that ptr be a managed pointer. Verification will fail if it cannot deduce that 
ptr is a pointer to an instance of class. 
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4.20  newarr  – create a zero-based, one-dimensional array 

Format Assembly Format Description 

8D <T> newarr etype Create a new array with elements of type etype. 
 
Stack Transition: 

…, numElems  …, array 

Description: 

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of 
type etype, a metadata token (a typeref, typedef or typespec; see Partition II). numElems (of type 
native int or int32) specifies the number of elements in the array. Valid array indexes are 0 ≤ index < 
numElems. The elements of an array can be any type, including value types. 

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate 
value type (System.Int32, etc.). Elements of the array are initialized to 0 of the appropriate type. 

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather 
than newarr. More commonly, they are created using the methods of System.Array class in the Base 
Framework. 

Exceptions: 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 

System.OverflowException is thrown if numElems is < 0 

Correctness: 

Correct CIL ensures that etype is a valid typeref, typedef or typespec  token. 

Verifiability: 

.numElems shall be of type native int or int32. 
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4.21  newobj  – create a new object 

Format Assembly Format Description 

73 <T> newobj ctor Allocate an uninitialized object or value type and call ctor.  
 
Stack Transition: 

…, arg1, … argN  …, obj 

Description: 

The newobj instruction creates a new object or a new instance of a value type. ctor is a metadata token (a 
methodref or methodef that shall be marked as a constructor; see Partition II) that indicates the name, 
class, and signature of the constructor to call. If a constructor exactly matching the indicated name, class and 
signature cannot be found, MissingMethodException is thrown. 

The newobj instruction allocates a new instance of the class associated with ctor and initializes all the fields in 
the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the given 
arguments along with the newly created instance. After the constructor has been called, the now initialized 
object reference is pushed on the stack. 

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to 
newobj follow in order. 

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other 
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj. 

Value types are not usually created using newobj. They are usually allocated either as arguments or local 
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they 
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value 
type on the stack, that can then be passed as an argument, stored in a local, etc. 

Exceptions: 

System.InvalidOperationException is thrown if ctor’s class is abstract. 

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request. 

System.MissingMethodException is thrown if a constructor method with the indicated name, class, 
and signature could not be found. This is typically detected when CIL is converted to native code, rather than at 
runtime. 

Correctness: 

Correct CIL ensures that ctor is a valid methodref or methoddef token, and that the arguments on the 
stack are compatible with those expected by the constructor. 

Verifiability: 

Verification considers a delegate constructor as a special case, checking that the method pointer passed in as 
the second argument, of type native int, does indeed refer to a method of the correct type. 



 

 Partition III 125 

 

4.22  refanytype  – load the type out of a typed reference 

Format Assembly Format Description 

FE 1D Refanytype Push the type token stored in a typed reference. 
 
Stack Transition: 

…, TypedRef  …, type 

Description: 

Retrieves the type token embedded in TypedRef. See the mkrefany instruction. 

Exceptions: 

None. 

Correctness: 

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). 

Verifiability: 

The refanytype instruction is always verifiable. 
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4.23  refanyval  – load the address out of a typed reference 

Format Assembly Format Description 

C2 <T> refanyval type Push the address stored in a typed reference. 
 
Stack Transition: 

…, TypedRef  …, address 

Description: 

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef shall match the 
type specified by type (a metadata token, either a typedef or a typeref; see Partition II). See the mkrefany 
instruction. 

Exceptions: 

System.InvalidCastException is thrown if type is not identical to the type stored in the TypedRef (ie, 
the class supplied to the mkrefany instruction that constructed that TypedRef) 

System.TypeLoadException is thrown if type cannot be found. 

Correctness: 

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). 

Verifiability: 

The refanyval instruction is always verifiable. 
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4.24  rethrow  – rethrow the current exception 

Format Assembly Format Description 

FE 1A rethrow  Rethrow the current exception. 
 
Stack Transition: 

…,  …, 

Description: 

The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the 
same exception that was caught by this handler. A rethrow does not change the stack trace in the object. 

Exceptions: 

The original exception is thrown. 

Correctness: 

Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers 
embedded within that catch handler). If a rethrow occurs elsewhere, an exception will be thrown, but 
precisely which exception, is undefined 

Verifiability: 

There are no additional verification requirements. 
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4.25  sizeof  –  load the size,  in bytes,of  a type  

Format Assembly Format Description 

FE 1C <T> sizeof typeTok Push the size, in bytes, of a type as an unsigned int32. 
 
Stack Transition: 

…,  …, size (4 bytes, unsigned) 

Description: 

Returns the size, in bytes, of a type.  typeTok can be a generic parameter, a reference type or a value type.  

For a reference type, the size returned is the size of a reference value of the corresponding type, not the size of 
the data stored in objects referred to by a reference value.  

[Rationale: The definition of a value type can change between the time the CIL is generated and the time that it 
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof 
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class 
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof 
returns the total size that would be occupied by each element in an array of this type – including any padding 
the implementation chooses to add. Specifically, array elements lie sizeof bytes apart. end rationale] 

Exceptions: 

None. 

Correctness: 

typeTok shall be a typedef, typeref, or typespec metadata token.  

Verifiability: 

It is always verifiable. 
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4.26  stelem  – store element to array 

Format Assembly Format Description 

A4 <T> stelem typeTok Replace array element at index with the value on the stack 
 
Stack Transition: 

…, array, index, value,  … 

Description: 

The stelem instruction replaces the value of the element with zero-based index index (of type native int 
or int32) in the one-dimensional array array, with value.  Arrays are objects and hence are represented by a 
value of type O. The value has the type specified by the token typeTok in the instruction.  

Exceptions: 

System.NullReferenceException is thrown if array is null.  

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.  

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.  

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token.  

array shall be null or a single dimensional array.  

Verifiability: 

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional 
array type elem[], for some type elem.  If the array type is Null, take elem to be the type represented by type 
operand typeTok.  The value index shall have type native int.  The type of elem shall be a supertype of the 
type operand typeTok.  The type of value shall be assignment-compatible with typeTok. 
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4.27  stelem.<type>  – store an element of an array 

Format Assembly Format Description 

9C stelem.i1 Replace array element at index with the int8 value on the stack. 

9D stelem.i2 Replace array element at index with the int16 value on the stack. 

9E stelem.i4 Replace array element at index with the int32 value on the stack. 

9F stelem.i8 Replace array element at index with the int64 value on the stack. 

A0 stelem.r4 Replace array element at index with the float32 value on the stack. 

A1 stelem.r8 Replace array element at index with the float64 value on the stack. 

9B  stelem.i Replace array element at index with the i value on the stack. 

A2 stelem.ref Replace array element at index with the ref value on the stack. 
 
Stack Transition: 

…, array, index, value  …, 

Description: 

The stelem instruction replaces the value of the element with zero-based index index (of type int32 or 
native int) in the one-dimensional array array with value. Arrays are objects and hence represented by a 
value of type O. 

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array 
element. This cast can fail, even for verified code. Thus the stelem.ref instruction can throw the 
ArrayTypeMismatchException. 

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a 
StoreElement method. 

Exceptions: 

System.NullReferenceException is thrown if array is null. 

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array. 

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type. 

Correctness: 

Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches 
exactly the type for this particular instruction suffix (e.g., stelem.r4 can only be applied to a zero-based, one 
dimensional array of float32s). 

Verifiability: 

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional 
array type elem[], for some type elem.  Both the type of array and the type of value shall be consistent with the 
instruction suffix. For the stelem.ref instruction, it is required only that the value and array element type are 
both reference types. 
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4.28  stf ld  – store into a field of an object 

Format Assembly Format Description 

7D <T> stfld field  Replace the value of field of the object obj with value. 
 
Stack Transition: 

…, obj, value  …, 

Description: 

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type native int, or &) 
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field 
member reference. stfld pops the value and the object reference off the stack and updates the object. 

The stfld instruction can have a prefix of either or both of unaligned. and volatile.. 
Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.NullReferenceException is thrown if obj is null and the field isn’t static. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

Correctness: 

Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types 
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6. 

Verifiability: 

For verifiable code, obj shall not be an unmanaged pointer. 

[Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer can lead 
to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not tested by 
verification. end note] 

It is not verifiable to access an overlapped object reference field. 

A field is accessible only if every field that overlaps it is also accessible. 
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4.29  stobj  – store a value at an address 

Format Assembly Format Description 

81 <T> Stobj typeTok Store a value of type typeTok at an address. 
 
Stack Transition: 

…, dest, src  …, 

Description: 

If typeTok is a value type, the stobj instruction copies the value src to the address dest.  If typeTok is a 
reference type, the stobj instruction has the same effect as stind.ref.  

The operation of the stobj instruction can be altered by an immediately preceding volatile. or unaligned. 
prefix instruction. 

Exceptions: 

System.NullReferenceException can be thrown if an invalid address is detected. 

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL 
is converted to native code rather than at runtime. 

Correctness: 

typeTok shall be a valid typedef, typeref, or typespec metadata token. 

Verifiability: 

Let the static type of the value on top of the stack be some type srcType.  The value shall be initialized (when 
srcType is a reference type). The static type of the destination address dest on the preceding stack slot shall be a 
managed pointer (of type destType &) to some type destType. Finally, srcType shall be assignment-
compatible with typeTok, and typeTok shall be a subtype of destType.  When typeTok is a non-reference type, 
the definition of subtyping implies that srcType shall be assignment-compatible with destType (which, itself, 
shall be equal to typeTok).  
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4.30  stsf ld  – store a static f ield of a class 

Format Assembly Format Description 

80 <T> stsfld field  Replace the value of field with val. 
 
Stack Transition: 

…, val  …, 

Description: 

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token (a 
fieldref or fielddef; see Partition II) that shall refer to a static field member. stsfld pops the value off 
the stack and updates the static field with that value. 

The stsfld instruction can have a volatile. prefix. 

Exceptions: 

System.FieldAccessException is thrown if field is not accessible. 

System.MissingFieldException is thrown if field is not found in the metadata. This is typically 
checked when CIL is converted to native code, not at runtime. 

Correctness: 

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type 
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6. 

Verifiability: 

 [Note: Using stsfld to change the value of a static, init-only field outside the body of the class initializer can 
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not 
tested by verification. end note] 
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4.31  throw  – throw an exception 

Format Assembly Format Description 

7A throw  Throw an exception. 
 
Stack Transition: 

…, object  …, 

Description: 

The throw instruction throws the exception object (type O) on the stack and empties the stack. For details of the 
exception mechanism, see Partition I. 

[Note: While the CLI permits any object to be thrown, the CLS describes a specific exception class that shall be 
used for language interoperability. end note] 

Exceptions: 

System.NullReferenceException is thrown if obj is null. 

Correctness: 

Correct CIL ensures that object is always either null or an object reference (i.e., of type O). 

Verifiability: 

There are no additional verification requirements. 
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4.32  unbox  – convert boxed value type to its  raw form 

Format Assembly Format Description 

79 <T> unbox valuetype  Extract a value-type from obj, its boxed representation.  
 
Stack Transition: 

…, obj  …, valueTypePtr 

Description: 

A value type has two separate representations (see Partition I) within the CLI: 

• A ‘raw’ form used when a value type is embedded within another object. 

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object, so it can exist 
as an independent entity. 

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a 
controlled-mutability managed pointer (§1.8.1.2.2), type &), its unboxed form. valuetype is a metadata token (a 
typeref, typedef or typespec) indicating the type of value type contained within obj. 

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to 
copy the value type from the object. Typically it simply computes the address of the value type that is already 
present inside of the boxed object. 

Exceptions: 

System.InvalidCastException is thrown if obj is not a boxed valuetype, or if obj is a boxed enum and 
valuetype is not its underlying type. 

System.NullReferenceException is thrown if obj is null. 

System.TypeLoadException is thrown if the class cannot be found. (This is typically detected when CIL 
is converted to native code rather than at runtime.) 

Correctness: 

Correct CIL ensures that valueType is a typeref, typedef or typespec metadata token for some value 
type, and that obj is always an object reference (i.e., of type O), and represents a boxed instance of a valuetype 
value type. 

Verifiability: 

There are no additional verification requirements. 
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4.33  unbox.any  – convert boxed type to value 

Format Assembly Format Description 

A5 <T> unbox.any typeTok  Extract a value-type from obj, its boxed representation 
 
Stack Transition: 

…, obj  …, value or obj 

Description: 

When applied to the boxed form of a value type, the unbox.any instruction extracts the value contained within 
obj (of type O).  (It is equivalent to unbox followed by ldobj.)  When applied to a reference type, the 
unbox.any instruction has the same effect as castclass typeTok.  

If typeTok is a GenericParam, the runtime behavior is determined by the actual instantiation of that parameter. 

Exceptions: 

System.InvalidCastException is thrown if obj is not a (boxed) type. 

System.NullReferenceException is thrown if obj is null.  

Correctness: 

obj shall be of reference type.  

Verifiability: 

The obj object reference shall be initialized.  The type operand typeTok shall not be a byref, byref-like, or void 
type. The type of the value left on the stack is typeTok. 

Rationale: 

There are two reasons for having both unbox.any and unbox instructions: 

1. Unlike the unbox instruction, for value types, unbox.any leaves a value, not an address of a 
value, on the stack.   

2. The type operand to unbox has a restriction: it can only represent value types and instantiations 
of generic value types. 
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1  Overview 
[Note: While compiler writers are most concerned with issues of file format, instruction set design, and a 
common type system, application programmers are most interested in the programming library that is available 
to them in the language they are using. The Common Language Infrastructure (CLI) specifies a Common 
Language Specification (CLS, see Partition I) that shall be used to define the externally visible aspects (such as 
method signatures) when they are intended to be used from a wide range of programming languages. Since it is 
the goal of the CLI Libraries to be available from as many programming languages as possible, all of the 
library functionality is available through CLS-compliant types and type members. 

The CLI Libraries were designed with the following goals in mind: 

• To support for a wide variety of programming languages. 

• To have consistent design patterns throughout. 

• To have features on parity with the ISO/IEC C Standard library of 1990. 

• To support more recent programming paradigms, notably networking, XML, runtime type inspection, 
instance creation, and dynamic method dispatch. 

• To be factored into self-consistent libraries with minimal interdependence. 

end note] 

This partition provides an overview of the CLI Libraries, and a specification of their factoring into Profiles and 
Libraries. A companion file, considered to be part of this Partition but distributed in XML format, provides 
details of each type in the CLI Libraries. While the normative specification of the CLI Libraries is in XML 
form, it can be processed using an XSL transform to produce easily browsed information about the Class 
Libraries. 

[Note: Partition VI contains an informative annex describing programming conventions used in defining the 
CLI Libraries. These conventions significantly simplify the use of libraries. Implementers are encouraged to 
follow them when creating additional (non-standard) Libraries. end note] 
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2  Libraries and profiles 
Libraries and Profiles, defined below, are constructs created for the purpose of standards conformance. They 
specify a set of features that shall be present in an implementation of the CLI, and a set of types that shall be 
available to programs run by that CLI.  

[Note: There need not be any direct support for Libraries and Profiles in the Virtual Execution System (VES). 
They are not represented in the metadata and they have no impact on the structure or performance of an 
implementation of the CLI. Libraries and Profiles can span assemblies (the deployment unit), and the names of 
types in a single Library or Profile are not required to have a common prefix (“namespace”). end note] 

In general, there is no way to test whether a feature is available at runtime, nor a way to enquire whether a 
particular Profile or Library is available. If present, however, the Reflection Library makes it possible to test, at 
runtime, for the existence of particular types and members. 

2.1  Libraries 
A Library specifies three things: 

1. A set of types that shall be available, including their grouping into assemblies. (The standard 
library types are contained in three assemblies: mscorlib, System, and System.Xml. The 
specification for each type indicates the assembly in which it resides.) 

2. A set of features of the CLI that shall be available. 

[Note: The set of features required for any particular Library is a subset of the complete set of CLI 
features. Each Library described in §5 has text that defines the CLI features that are required for 
implementations that support that Library. end note] 

3. Modifications to types defined in other Libraries. These modifications typically involve the 
addition of methods and interfaces to types belonging to some other Library, and additional 
exception types that can be thrown by methods of that other Library’s types. These modifications 
shall provide only additional functionality or specify behavior where it was previously 
unspecified; they shall not be used to alter previously specified behavior. 

[Example: Consider the Extended Numerics Library.  Since it provides a base data type, Double, it also 
specifies that the method ToDouble be added to the System.Convert class that is part of the Base Class 
Library.  It also defines a new exception type, System.NotFiniteNumberException, and specifies 
existing methods in other Libraries methods that throw it (as it happens, there are no such methods). end 
example] 

In the XML specification of the Libraries, each type specifies the Library to which it belongs. For those 
members (e.g., Console.WriteLine(float)) that are part of one Library (Extended Numerics), but 
whose type is in another Library (BCL), the XML specifies the Library that defines the method. See §7. 

2.2  Profiles 
A Profile is simply a set of Libraries, grouped together to form a consistent whole that provides a fixed level of 
functionality. A conforming implementation of the CLI shall specify the Profile it implements, as well as any 
additional Libraries that it provides. The Kernel Profile (§3.1) shall be included in all conforming 
implementations of the CLI. Thus, all Libraries and CLI features that are part of the Kernel Profile are available 
in all conforming implementations. This minimal feature set is described in §4. 

[Rationale: The rules for combining Libraries together are complex, since each Library can add members to 
types defined in other libraries. By standardizing a small number of Profiles the interaction of the Libraries that 
are part of each Profile are specified completely. A Profile provides a consistent target for vendors of devices, 
compilers, tools, and applications. Each Profile specifies a trade-off of CLI feature and implementation 
complexity against resource constraints. By defining a very small number of Profiles, market for each Profile is 
increased, making each a desirable target for a class of applications across a wide range of implementations and 
tool sets. end rationale] 
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2.3  The relationship between l ibraries and profiles 
This standard specifies two Standard Profiles (§3) and seven Standard Libraries (§5). The following diagram 
shows the relationship between the Libraries and the Profiles: 

The 
Extended Array and Extended Numerics Libraries are not part of either Profile, but can be combined with 
either of them. Doing so adds the appropriate methods, exceptions, and interfaces to the types specified in the 
Profile.  
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3  The standard profiles 
There are two Standard Profiles. The smallest conforming implementation of the CLI is the Kernel Profile,  
while the Compact Profile contains additional features useful for applications targeting a more resource-rich set 
of devices. 

A conforming implementation of the CLI shall throw an appropriate exception (e.g., System.Not-
ImplementedException, System.MissingMethodException, or 
System.ExecutionEngineException) when it encounters a feature specified in this Standard but not 
supported by the particular Profile (see Partition III). 

[Note: Implementers should consider providing tools that statically detect features they do not support so users 
have an option of checking programs for the presence of such features before running them. end note] 

[Note: Vendors of compliant CLI implementations should specify exactly which configurations of Standard 
Libraries and Standard Profiles they support. end note] 

[Note: “Features” can be something like the use of a floating-point CIL instruction in the implementation of a 
method when the CLI upon which it is running does not support the Extended Numerics Library. Or, the 
“feature” might be a call to a method that this Standard specifies exists only when a particular Library is 
implemented and yet the code making the call is running on an implementation of the CLI that does not support 
that particular library. end note] 

3.1  The kernel profile 
This profile is the minimal possible conforming implementation of the CLI. It contains the types commonly 
found in a modern programming language class library, plus the types needed by compilers targeting the CLI. 

Contents: Base Class Library, Runtime Infrastructure Library 

3.2  The compact profile 
This Profile is designed to allow implementation on devices with only modest amounts of physical memory yet 
provides more functionality than the Kernel Profile alone. It also contains everything required to implement the 
proposed ECMAScript compact profile.  

Contents: Kernel Profile, XML Library, Network Library, Reflection Library 
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4  Kernel profile feature requirements 
All conforming implementations of the CLI support at least the Kernel Profile. Consequently, all CLI features 
required by the Kernel Profile shall be implemented by all conforming implementations. This clause defines 
that minimal feature set, by enumerating the set of features that are not required; i.e., a minimal conforming 
implementation shall implement all CLI features except those specified in the remainder of this clause. The 
feature requirements of individual Libraries as specified in §5 are defined by reference to restricted items 
described in this clause. For ease of reference, each feature has a name indicated by the name of the clause or 
subclause heading. Where Libraries do not specify any additional feature requirement, it shall be assumed that 
only the features of the Kernel Profile as described in this clause are required. 

4.1  Features excluded from the kernel profile 
The following internal data types and constructs, specified elsewhere in this Standard, are not required of CLI 
implementations that conform only to the Kernel Profile. All other CLI features are required. 

4.1 .1  Float ing point  

The floating point feature set consists of the user-visible floating-point data types float32 and float64, 
and support for an internal representation of floating-point numbers. 

If omitted: The CIL instructions that deal specifically with these data types throw the 
System.NotImplementedException exception. These instructions are: ckfinite, conv.r.un, conv.r4, 
conv.r8, ldc.r4, ldc.r8, ldelem.r4, ldelem.r8, ldind.r4, ldind.r8, stelem.r4, stelem.r8, stind.r4, stind.r8. 
Any attempt to reference a signature including the floating-point data types shall throw the 
System.NotImplementedException exception. The precise timing of the exception is not specified. 

[Note: These restrictions guarantee that the VES will not encounter any floating-point data. Hence the 
implementation of the arithmetic instructions (such as add) need not handle those types. end note] 

Part of Library: Extended Numerics ( §5.7) 

4.1 .2  Non-vector arrays 

The non-vector arrays feature set includes support for arrays with more than one dimension or with lower 
bounds other than zero. This includes support for signatures referencing such arrays, runtime representations of 
such arrays, and marshalling of such arrays to and from native data types. 

If omitted: Any attempt to reference a signature including a non-vector array shall throw the 
System.NotImplementedException exception. The precise timing of the exception is not specified. 

[Note: The type System.Array is part of the Kernel Profile and is available in all conforming 
implementations of the CLI. An implementation that does not provide the non-vector array feature set can 
correctly assume that all instances of that type are vectors. end note] 

Part of Library: Extended Arrays (see §5.8). 

4.1 .3  Reflect ion 

The reflection feature set supports full reflection on data types. All of its functionality is exposed through 
methods in the Reflection Library. 

If omitted: The Kernel profile specifies an opaque type, System.Type, instances of which uniquely 
represent any type in the system and provide access to the name of the type. 

[Note: With just the Kernel profile there is no requirement, for example, to determine the members of the type, 
dynamically create instances of the type, or invoke methods of the type given an instance of System.Type. 
This can simplify the implementation of the CLI compared to that required when the Reflection Library is 
available. end note] 

Part of Library: Reflection (see §5.5). 
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4.1 .4  Applicat ion domains 

The application domain feature set supports multiple application domains. The Kernel profile requires that a 
single application domain exist. 

If omitted: Methods for creating application domains (part of the Base Class Library, see §5.3) throw the 
System.NotImplementedException exception. 

Part of Library: (none) 

4.1 .5  Remoting 

The remoting feature set supports remote method invocation. It is provided primarily through special 
semantics of the class System.MarshalByRefObject as described in Partition I. 

If omitted: The class System.MarshalByRefObject shall be treated as a simple class with no special 
meaning. 

Part of Library: (none) 

4 .1 .6  Vararg 

The vararg feature set supports variable-length argument lists and runtime-typed pointers. 

If omitted: Any attempt to reference a method with the vararg calling convention or the signature encodings 
associated with vararg methods (see Partition II) shall throw the System.NotImplementedException 
exception. Methods using the CIL instructions arglist, refanytype, mkrefany, and refanyval shall throw the 
System.NotImplementedException exception. The precise timing of the exception is not specified.  
The type System.TypedReference need not be defined. 

Part of Library: Vararg (see §5.9). 

4.1 .7  Frame growth 

The frame growth feature set supports dynamically extending a stack frame. 

If omitted: Methods using the CIL localloc instruction shall throw the 
System.NotImplementedException exception. The precise timing of the exception is not specified. 

Part of Library: (none) 

4.1 .8  Filtered exceptions 

The filtered exceptions feature set supports user-supplied filters for exceptions. 

If omitted: Methods using the CIL endfilter instruction or with an exceptionentry that contains a non-
null filterstart (see Partition I) shall throw the System.NotImplementedException exception. 
The precise timing of the exception is not specified. 

Part of Library: (none) 
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5  The standard libraries 
The detailed content of each Library, in terms of the types it provides and the changes it makes to types in other 
Libraries, is provided in XML form. This clause provides a brief description of each Library’s purpose as well 
as specifying the features of the CLI required by each Library beyond those required by the Kernel Profile. 

5.1  General comments 
Unless stated otherwise in the documentation of a method, all copy operations are shallow, not deep. 

Some methods traffic in “default values”. For a reference type, the default value is null; for a value type, the 
default value is all-bits-zero (which for Boolean represents false, and for all arithmetic types represents zero). 

5.2  Runtime infrastructure library 
The Runtime Infrastructure Library is part of the Kernel Profile. It provides the services needed by a compiler 
to target the CLI and the facilities needed to dynamically load types from a stream in the file format specified 
in Partition II. For example, it provides System.BadImageFormatException, which is thrown when a 
stream that does not have the correct format is loaded. 

Name used in XML: RuntimeInfrastructure 

CLI Feature Requirement: None 

5.3  Base Class Library (BCL)  
The Base Class Library is part of the Kernel Profile. It is a simple runtime library for modern programming 
languages. It serves as the Standard for the runtime library for the language C# as well as one of the CLI 
Standard Libraries. It provides types to represent the built-in data types of the CLI, simple file access, custom 
attributes, security attributes, string manipulation, formatting, streams, collections, among other things. 

Name used in XML: BCL 

CLI Feature Requirement: None 

5.4  Network l ibrary 
The Network Library is part of the Compact Profile. It provides simple networking services including direct 
access to network ports as well as HTTP support. 

Name used in XML: Networking 

CLI Feature Requirement: None 

5.5  Reflection l ibrary 
The Reflection Library is part of the Compact Profile. It provides the ability to examine the structure of types, 
create instances of types, and invoke methods on types, all based on a description of the type. 

Name used in XML: Reflection 

CLI Feature Requirement: Must support Reflection, see §5.1. 

5.6  XML library 
The XML Library is part of the Compact Profile. It provides a simple “pull-style” parser for XML. It is 
designed for resource-constrained devices, yet provides a simple user model. A conforming implementation of 
the CLI that includes the XML Library shall also implement the Network Library (see §5.4). 

Name used in XML: XML 

CLI Feature Requirement: None 



 

8 Partition IV 

5.7  Extended numerics l ibrary 
The Extended Numerics Library is not part of any Profile, but can be supplied as part of any CLI 
implementation. It provides the support for floating-point (System.Single, System.Double) and 
extended-precision (System.Decimal) data types.  Like the Base Class Library, this Library is directly 
referenced by the C# Standard. 

[Note: Programmers who use this library will benefit if implementations specify which arithmetic operations on 
these data types are implemented primarily through hardware support. end note] 
 

[Rationale: The Extended Numerics Library is kept separate because some commonly available processors do 
not provide direct support for the data types. While software emulation can be provided, the performance 
difference is often so large (1,000-fold or more) that it is unreasonable to build software using floating-point 
operations without being aware of whether the underlying implementation is hardware-based. end rationale] 

Name used in XML: ExtendedNumerics 

CLI Feature Requirement: Floating Point, see §4.1.1. 

5.8  Extended array l ibrary 
This Library is not part of any Profile, but can be supplied as part of any CLI implementation. It provides 
support for non-vector arrays. That is, arrays that have more than one dimension, or arrays that have non-zero 
lower bounds. 

CLI Feature Requirement: Non-vector Arrays, see § 4.1.2. 

5.9  Vararg l ibrary 
The Vararg Library is not part of any Profile. It provides support for dealing with variable-length argument 
lists. 

Name used in XML: Vararg 

CLI Feature Requirement: None 

5.10  Parallel  l ibrary 
This Library is not part of any Profile, but can be supplied as part of any CLI implementation. The purpose of the 
extended threading library is twofold: 

1. Provide easy parallelism for non-expert programmers, so that multithreaded CPUs can be exploited.  
The profile stresses simplicity over large scalability.     

2. Not require changing the virtual machine or source languages.  All features of the profile can be 
implemented as a library on top of the existing CLI.  The profile can be used in conjunction with any 
CLI language that supports delegates. 

The loop class hierarchy is summarized below: 

 ParallelLoop 
  ParallelWhile 
  ParallelForEach 
  ParallelFor 

The base class ParallelLoop factors out common functionality for parallel looping over a collection of 
values.  The three derived classes distinguish three common kinds of parallel looping.  If the collection might 
grow while being processed, then use ParallelWhile.  Otherwise, if the collection implements 
IEnumerable, use ParallelForEach.  If the collection or collections are indexible by int32, use 
ParallelFor.   

To choose the kind of loop to use in a specific situation, consider how the loop could be written sequentially.   If 
the loop could be written using “for (int i=0; i<n; ++i )”,  and n is known before the loop executes, use 
ParallelFor.  If the loop could be written with a foreach statement, over collection that does not change 
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while the foreach is running, use ParallelForEach.  If the loop could be written “while (collection is not yet 
empty) {remove item from collection and process it}”, use ParallelWhile.   When there is a choice, use 
ParallelFor if possible, because it is significantly more efficient. 
 

   Name used in XML: Parallel 

CLI Feature Requirement: BCL 
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6  Implementation-specific modifications to the system libraries 
Implementers are encouraged to extend or modify the types specified in this Standard to provide additional 
functionality. Implementers should notice, however, that type names beginning with “System.” and bearing 
the special Standard Public Key are intended for use by the Standard Libraries: such names not currently in use 
might be defined in a future version of this Standard. 

To allow programs compiled against the Standard Libraries to work when run on implementations that have 
extended or modified the Standard Libraries, such extensions or modifications shall obey the following rules: 

• The contract specified by virtual methods shall be maintained in new classes that override them. 

• New exceptions can be thrown, but where possible these should be derived classes of the 
exceptions already specified as thrown rather than entirely new exception types. Exceptions 
initiated by methods of types defined in the Standard Libraries shall be derived from 
System.Exception. 

• Interfaces and virtual methods shall not be added to an existing interface. Nor shall they be added 
to an abstract class unless that class provides an implementation.  

[Rationale: An interface or virtual method can be added only where it carries an implementation. This 
allows programs written when the interface or method was not present to continue to work. end 
rationale] 

• Instance methods shall not be implemented as virtual methods. 

[Rationale: Methods specified as instance (non-static, non-virtual) in this standard are not permitted to be 
implemented as virtual methods in order to reduce the likelihood of creating non-portable files by using 
implementation-supplied libraries at compile time. Even though a compiler need not take a dependence 
on the distinction between virtual and instance methods, it is easy for a user to inadvertently override a 
virtual method and thus create non-portable code. The alternative of providing special files 
corresponding to this Standard for use at compile time is prone to user error. end rationale] 

 

• The accessibility of fields and non-virtual methods can be widened from than specified in this 
Standard. 

[Note: The following common extensions are permitted by these rules. 

• Adding new members to existing types. 

• Concrete (non-abstract) classes can implement interfaces not defined in this standard. 

• Adding fields (values) to enumerations. 

• An implementation can insert a new type into the hierarchy between a type specified in this standard and 
the type specified as its base type. That is, this standard specifies an inheritance relation between types but 
does not specify the immediate base type. 

• Implementations can add overrides to existing virtual methods, provided the new overrides satisfy the 
existing contract.  

end note] 
 

[Rationale: An implementation might wish to split functionality across several types in order to provide non-
standard extension mechanisms, or might wish to provide additional non-standard functionality through the 
new base type. As long as programs do not reference these non-standard types, they will remain portable across 
conforming implementations of the CLI. end rationale] 
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7  The XML specification 

7.1  Semantics 
The XML specification conforms to the Document Type Definition (DTD) in Figure 7-1.   Only types that are 
included in a specified library are included in the XML. 

There are three types of elements/attributes: 

• Normative: An element or attribute is normative such that the XML specification would be 
incomplete without it.  

• Informative: An element or attribute is informative if it specifies information that helps clarify the 
XML specification, but without it the specification still stands alone.  

• Rendering/Formatting: An element or attribute is for rendering or formatting if it specifies 
information to help an XML rendering tool. 

Unless explicitly stated otherwise, the text associated with an element or an attribute (e.g., #PCDATA, 
#CDATA) is normative or informative depending on the element or attribute with which it is associated, as 
described in the figure.  

[Note: Many of the elements and attributes in the DTD are for rendering purposes. end note] 

Figure 7-1: XML DTD 

<?xml version="1.0" encoding="UTF-8"?> 

<!ELEMENT AssemblyCulture (#PCDATA)> 

(Normative) Specifies the culture of the assembly that defines the current type. Currently this value is 
always “none”. It is reserved for future use. 

<!ELEMENT AssemblyInfo (AssemblyName, AssemblyPublicKey, 
AssemblyVersion, AssemblyCulture, Attributes)> 

(Normative) Specifies information about the assembly of a given type. This information corresponds to 
sections of the metadata of an assembly as described in Partition II, and includes information from the 
AssemblyName, AssemblyPublicKey, AssemblyVersion, AssemblyCulture and Attributes elements. 

<!ELEMENT AssemblyName (#PCDATA)> 

(Normative) Specifies the name of the assembly to which a given type belongs. For example, all of the 
types in the BCL are members of the “mscorlib” assembly. 

<!ELEMENT AssemblyPublicKey (#PCDATA)> 

(Normative) Specifies the public key of the assembly. The public key is represented as a 128-bit value. 

<!ELEMENT AssemblyVersion (#PCDATA)> 

(Normative) Specifies the version of the assembly in the form 2.0.x.y, where x is a build number and y 
is a revision number. 

<!ELEMENT Attribute (AttributeName, Excluded, ExcludedTypeName?, 
ExcludedLibraryName?)> 

(Normative) Specifies the text for a custom attribute on a type or a member of a type. This includes the 
attribute name and whether or not the attribute type itself is contained in another library. 

<!ELEMENT AttributeName (#PCDATA)> 

(Normative) Specifies the name of the custom attribute associated with a type or member of a type. 
Also contains the data needed to instantiate the attribute. 

<!ELEMENT Attributes (Attribute*)> 

(Normative) Specifies the list of the attributes on a given type or member of a type. 
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<!ELEMENT Base (BaseTypeName?, ExcludedBaseTypeName?, 
ExcludedLibraryName?)> 

(Normative) Specifies the information related to the base type of the current type. Although the 
ExcludedBaseTypeName and ExcludedLibraryName elements are rarely found within this element, 
they are required when a type inherits from a type not found in the current library. 

<!ELEMENT BaseTypeName (#PCDATA)> 

(Normative) Specifies the fully qualified name of the class from which a type inherits (i.e., the type’s 
base class). 

<!ELEMENT Docs (summary?, altmember?, altcompliant?, param*, returns?, 
value?, exception*, threadsafe?, remarks?, example?, permission?)> 

(Normative) Specifies the textual documentation of a given type or member of a type.  

<!ELEMENT Excluded (#PCDATA)> 

(Normative) Specifies, by a ‘0’ or ‘1’, whether a given member can be  excluded from the current type 
in the absence of a given library. ‘0’ specifies that it cannot be excluded. 

<!ELEMENT ExcludedBaseTypeName (#PCDATA)> 

(Normative) Specifies the fully qualified name of the type that the current type must inherit from if a 
given library were present in an implementation. The library name is specified in the 
ExcludedLibraryName element. An example is the System.Type class that inherits from 
System.Object, but if the Reflection library is present, it must inherit from 
System.Reflection.MemberInfo. 

<!ELEMENT ExcludedLibrary (#PCDATA)> 

(Normative) Specifies the library that must be present in order for a given member of a type to be 
required to be implemented. For example, System.Console.WriteLine(double) need only be 
implemented if the ExtendedNumerics library is available. 

<!ELEMENT ExcludedLibraryName (#PCDATA)> 

(Normative) This element appears only in the description of custom attributes.  It specifies the name of 
the library that defines the described attribute. For example, the member that is invoked when no 
member name is specified for System.Text.StringBuilder (in C#, this is the indexer) is called “Chars”. 
The attribute needed for this is System.Reflection.DefaultMemberAttribute. This is found in the 
RuntimeInfrastructure library. This element is used with the ExcludedTypeName element. 

<!ELEMENT ExcludedTypeName (#PCDATA)> 

(Normative) Specifies the fully qualified name of the attribute that is needed for a member to 
succesfully specify the given attribute. This element is related to the ExcludedLibraryName element 
and is used for attributes. 

<!ELEMENT Interface (InterfaceName, Excluded)> 

(Normative) Specifies information about an interface that a type implements. This element contains 
sub-elements specifying the interface name and whether another library is needed for the interface to be 
required in the current library. 

<!ELEMENT InterfaceName (#PCDATA)> 

(Normative) Represents the fully-qualified interface name that a type implements. 

<!ELEMENT Interfaces (Interface*)> 

(Normative) Specifies information on the interfaces, if any, a type implements. There is one Interface 
element for each interface implemented by the type. 

<!ELEMENT Libraries (Types+)> 

(Normative) This is the root element. Specifies all of the information necessary for all of the class 
libraries of the standard. This includes all of the types and all children elements underneath. 
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<!ELEMENT Member (MemberSignature+, MemberType, Attributes?, 
ReturnValue, Parameters, MemberValue?, Docs, Excluded, 
ExcludedLibrary*)> 

(Normative) Specifies information about a member of a type. This information includes the signatures, 
type of the member, parameters, etc., all of which are elements in the XML specification. 

<!ATTLIST Member  

MemberName NMTOKEN #REQUIRED 

   (Normative) MemberName specifies the name of the current member. 

> 

<!ELEMENT MemberOfLibrary (#PCDATA)> 

(Normative) PCDATA is the name of the library containing the type. 

<!ELEMENT MemberSignature EMPTY> 

(Normative) Specifies the text (in source code format) for the signature of a given member of a type. 

<!ATTLIST MemberSignature 

Language CDATA #REQUIRED 

 (Normative) CDATA is the programming language in which the signature is written. All members 
are described in both  ILAsm and C#. 

 Value CDATA #REQUIRED 

(Normative) CDATA is the text of the member signature in a given language. 

> 

<!ELEMENT MemberType (#PCDATA)> 

(Normative) Specifies the kind of the current member. The member kinds are: method, property, 
constructor, field, and event. 

<!ELEMENT MemberValue (#PCDATA)> 

(Normative) Specifies the value of a static literal field. 

<!ELEMENT Members (Member*)> 

(Normative) Specifies information about all of the members of a given type. 

<!ELEMENT PRE EMPTY> 

(Rendering/Formatting) This element exists for rendering purposes only to specify, for example, that 
future text should be separated from the previous text 

<!ELEMENT Parameter (Attributes?)> 

(Normative) Specifies the information about a specific parameter of a method or property. 

<!ATTLIST Parameter 

     Name NMTOKEN #REQUIRED 

                (Normative) Specifies the name of the parameter. 

      Type CDATA #REQUIRED 

                (Normative) Specifies the fully-qualified name of the type of the parameter. 

> 

<!ELEMENT Parameters (Parameter*)> 
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(Normative) Specifies information for the parameters of a given method or property. The information 
specified is included in each Parameter element of this element. This element will contain one 
Parameter for each parameter of the method or property. 

<!ELEMENT ReturnType (#PCDATA)> 

(Normative) Specifies the fully-qualified name of the type that the current member returns. 

<!ELEMENT ReturnValue (ReturnType?)> 

(Normative) Specifies the return type of a member.  ReturnType shall be present for all kinds of 
members except constructors. 

<!ELEMENT SPAN (#PCDATA | para | paramref | SPAN | see | block)*> 

(Rendering/Formatting) This element specifies that the text should be segmented from other text (e.g., 
with a carriage return). References to parameters, other types, and even blocks of text can be included 
within a SPAN element. 

<!ELEMENT ThreadingSafetyStatement (#PCDATA)> 

(Normative) Specifies a thread safety statement for a given type. 

<!ELEMENT Type (TypeSignature+, MemberOfLibrary, AssemblyInfo, 
ThreadingSafetyStatement?, Docs, Base, Interfaces, Attributes?, 
Members, TypeExcluded)> 

(Normative) Specifies all of the information for a given type. 

<!ATTLIST Type 

 Name CDATA #REQUIRED 

 (Informative) Specifies the simple name (e.g., “String” rather than “System.String”) of a given type. 

 FullName CDATA #REQUIRED 

    (Normative) Specifies the fully-qualified name of a given type. For generic types, this includes the 
spelling of generic parameter names. 

FullNameSP CDATA #REQUIRED 

(Informative) Specifies the fully-qualified name with each ‘.’ of the fully qualified name replaced by 
an ‘_’. 

> 

<!ELEMENT TypeExcluded (#PCDATA)> 

(Normative) PCDATA shall be ‘0’. 

<!ELEMENT TypeSignature EMPTY> 

(Normative) Specifies the text for the signature (in code representation) of a given type. 

<!ATTLIST TypeSignature 

 Language CDATA #REQUIRED 

  (Normative) Specifies the language the specified type signature is written in. All type signatures are 
specified in both ILAsm and C#. 

 Value CDATA #REQUIRED 

  (Normative) CDATA is the type signature in the specified language. 

> 

<!ELEMENT Types (Type+)> 

(Normative) Specifies information about all of the types of a library.  

<!ATTLIST Types 
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 Library NMTOKEN #REQUIRED 

  (Normative) Specifies the library in which all of the types are defined. An example of such a library 
is “BCL”. 

> 

<!ELEMENT altcompliant EMPTY> 

(Informative) Specifies that an alternative, CLS compliant method call exists for the current non-CLS 
compliant method. For example, this element exists in the System.IO.TextWriter.WriteLine(ulong) 
method to show that System.IO.TextWriter.WriteLine(long) is an alternative, CLS compliant method.  

<!ATTLIST altcompliant 

 cref CDATA #REQUIRED 

  (Informative) Specifies the link to the actual documentation for the alternative CLS compliant 
method. [Note: In this specification, CDATA matches the documentation comment format specified in 
Appendix E of the C# language standard.] 

> 

<!ELEMENT altmember EMPTY> 

(Informative) Specifies that an alternative, equivalent member call exists for the current method. 
This element is used for operator overloads.  

<!ATTLIST altmember 

 cref CDATA #REQUIRED 

  (Informative) Specifies the link to the actual documentation for the alternative member call. [Note: 
In this specification, CDATA matches the documentation comment format specified in Appendix E of 
the C# language standard.] 

> 

<!ELEMENT block (#PCDATA | see | para | paramref | list | block | c | 
subscript | code | sup | pi)*> 

(Rendering/Formatting) Specifies that the children should be formatted according to the type 
specified as an attribute. 

<!ATTLIST block 

 subset CDATA #REQUIRED 

  (Rendering/Formatting) This attribute is reserved for future use and currently only has the value of 
‘none’. 

 type NMTOKEN #REQUIRED 

  (Rendering/Formatting) Specifies the type of block that follows, one of: usage, overrides, note, 
example, default, behaviors. 

> 

<!ELEMENT c (#PCDATA | para | paramref | code | see)*> 

(Rendering/Formatting) Specifies that the text is the output of a code sample. 

<!ELEMENT code (#PCDATA)> 

(Informative) Specifies the text is a code sample. 

<!ATTLIST code 

 lang CDATA #IMPLIED 

  (Informative) Specifies the programming language of the code sample. This specification uses C# 
as the language for the samples. 
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> 

<!ELEMENT codelink EMPTY> 

(Informative) Specifies a piece of code to which a link might be made from another sample.  [Note: 
the XML format specified here does not provide a means of creating such a link.] 

<!ATTLIST codelink 

 SampleID CDATA #REQUIRED 

(Informative) SampleID is the unique id assigned to this code sample. 

 SnippetID CDATA #REQUIRED 

     (Informative) SnippetID is the unique id assigned to a section of text within the sample code.  

> 

<!ELEMENT description (#PCDATA | SPAN | paramref | para | see | c | 
permille | block | sub)*> 

(Normative) Specifies the text for a description for a given term element in a list or table. This 
element also specifies the text for a column header in a table. 

<!ELEMENT example (#PCDATA | para | code | c | codelink | see)*> 

(Informative) Specifies that the text will be an example on the usage of a type or a member of a 
given type.  

<!ELEMENT exception (#PCDATA | paramref | see | para | SPAN | block)*> 

(Normative) Specifies text that provides the information for an exception that shall be thrown by a 
member of a type, unless specified otherwise. This element can contain just text or other rendering 
options such as blocks, etc. 

<!ATTLIST exception 

 cref CDATA #REQUIRED 

  (Rendering/Formatting) Specifies a link to the documentation of the exception. [Note: In this 
specification, CDATA matches the documentation comment format specified in Appendix E of the C# 
language standard.] 

> 

<!ELEMENT i (#PCDATA)> 

(Rendering/Formatting) Specifies that the text should be italicized. 

<!ELEMENT item (term, description*)> 

(Rendering/Formatting) Specifies a specific item of a list or a table. 

<!ELEMENT list (listheader?, item*)> 

(Rendering/Formatting) Specifies that the text should be displayed in a list format. 

<!ATTLIST list 

 type NMTOKEN #REQUIRED 

  (Rendering/Formatting) Specifies the type of list in which the following text will be represented. 
Values in the specification are: bullet, number and table. 

> 

<!ELEMENT listheader (term, description+)> 

(Rendering/Formatting) Specifies the header of all columns in a given list or table. 

<!ELEMENT onequarter EMPTY> 
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(Rendering/Formatting) Specifies that text, in the form of ¼, is to be displayed. 

<!ELEMENT para (#PCDATA | see | block | paramref | c | onequarter | 
superscript | sup | permille | SPAN | list | pi | theta | sub)*> 

(Rendering/Formatting) Specifies that the text is part of what can be considered a paragraph of its 
own.  

<!ELEMENT param (#PCDATA | c | paramref | see | block | para | SPAN)*> 

(Normative) Specifies the information on the meaning or purpose of a parameter. The name of the 
parameter and a textual description will be associated with this element. 

<!ATTLIST param 

 name CDATA #REQUIRED 

  (Nomrative) Specifies the name of the parameter being described. 

> 

<!ELEMENT paramref EMPTY> 

(Rendering/Formatting) Specifies a reference to a parameter of a member of a type.  

<!ATTLIST paramref 

 name CDATA #REQUIRED 

  (Rendering/Formatting) Specifies the name of the parameter to which the paramref element is 
referring. 

> 

<!ELEMENT permille EMPTY> 

(Rendering/Formatting) Represents the current text is to be displayed as the ‘‰’ symbol. 

<!ELEMENT permission (#PCDATA | see | paramref | para | block)*> 

(Normative) Specifies the permission, given as a fully-qualified type name and supportive text, 
needed to call a member of a type. 

<!ATTLIST permission 

 cref CDATA #REQUIRED 

  (Rendering/Formatting) Specifies a link to the documentation of the permission. [Note: In this 
specification, CDATA matches the documentation comment format specified in Appendix E of the C# 
language standard.] 

> 

<!ELEMENT pi EMPTY> 

(Rendering/Fomatting) Represents the current text is to be displayed as the ‘π’ symbol 

<!ELEMENT pre EMPTY> 

(Rendering/Formatting) Specifies a break between the preceding and following text. 

<!ELEMENT remarks (#PCDATA | para | block | list | c | paramref | see | 
pre | SPAN | code | PRE)*> 

(Normative) Specifies additional information, beyond that supplied by the summary, on a type or 
member of a type. 

<!ELEMENT returns (#PCDATA | para | list | paramref | see)*> 

(Normative) Specifies text that describes the return value of a given type member. 

<!ELEMENT see EMPTY> 



 

18 Partition IV 

(Informative) Specifies a link to another type or member. 

<!ATTLIST see 

 cref CDATA #IMPLIED 

  (Informative) cref specifies the fully-qualified name of the type or member to link to. [Note: In 
this specification, CDATA matches the documentation comment format specified in Appendix E of the 
C# language standard.]  

 langword CDATA #IMPLIED 

  (Informative) langword specifies that the link is to a language agnostic keyword such as “null”. 

 qualify CDATA #IMPLIED 

  (Informative) Qualify indicates that the type or member specified in the link must be displayed as 
fully-qualified. Value of this attribute is ‘true’ or ‘false’, with a default value of ‘false’ 

> 

<!ELEMENT sub (#PCDATA | paramref)*> 

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation. 

<!ELEMENT subscript EMPTY> 

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation. 

<!ATTLIST subscript 

 term CDATA #REQUIRED 

  (Rendering/Formatting) Specifies the value to be rendered as a subscript. 

> 

<!ELEMENT summary (#PCDATA | para | see | block | list)*> 

(Normative) Specifies a summary description of a given type or member of a type. 

<!ELEMENT sup (#PCDATA | i | paramref)*> 

(Rendering/Formatting) Specifies that the current piece of text is to be displayed in superscript 
notation.  

<!ELEMENT superscript EMPTY> 

(Rendering/Formatting) Specifies that current piece of text is to be displayed in superscript notation. 

<!ATTLIST superscript 

 term CDATA #REQUIRED 

  (Rendering/Formatting) Specifies the value to be rendered as a superscript. 

> 

<!ELEMENT term (#PCDATA | block | see | paramref | para | c | sup | pi 
| theta)*> 

(Rendering/Formatting) Specifies the text is a list item or an item in the primary column of a table. 

<!ELEMENT theta EMPTY> 

(Rendering/Formatting) Specifies that text, in the form of ‘θ’, is to be displayed. 

<!ELEMENT threadsafe (para+)> 

(Normative) Specifies that the text describes additional detail, beyond that specified by 
ThreadingSafetyStatement,  the thread safety implications of the current type. For example, the text 
will describe what an implementation must do in terms of synchronization. 

<!ELEMENT value (#PCDATA | para | list | see)*> 
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(Normative) Specifies description information on the “value” passed into the set method of a 
property. 

7.1 .1  Value types as objects  

Throughout the textual descriptions of methods in the XML, there are places where a parameter of type 
object or an interface type is expected, but the description refers to passing a value type for that parameter. 
In these cases, the caller shall box the value type before making the call. 

7.1 .2  Exceptions 

Many members of types defined in the XML have associated exception conditions. Unless it is stated otherwise 
in a member’s definition, the exceptions listed for any given member shall be thrown when the stated 
conditions occur. 

7.2  XML signature notation issues 
For each type and member described in the XML, there is an ILAsm and C# signature pair. These are intended 
to be equivalent and to provide sufficient information to allow these types and members to be implemented 
correctly. Each signature pair shows both the low-level and one high-level view of these signatures. However, 
as written in the XML, the members of a given pair of signatures are not always written in an equivalent 
manner, even though they are intended to produce identical behavior. The differences in signature notation are 
described in this subclause. 

7.2 .1  Serial izat ion 

As shown in the ILAsm signatures, many of the types in the standard library have the predefined attribute 
serializable attached. A type that is marked with this attribute is to be serialized as part of the persistent 
state of a value of the type. This standard does not require that a conforming implementation provide support 
for serialization (or its counterpart, deserialization), nor does it specify the mechanism by which these 
operations might be accomplished. 

Consider the ILAsm and C# signatures in the XML for System.String: 

[ILAsm] 
.class public sealed serializable String … 

[C#] 
public sealed class String … 

Although the C# standard does not address the issue of serialization, if this library type is written in C#, when 
the C# declaration above is compiled, the intent is that the code generated for the class contains the 
serializable attribute as shown. [Note: Some implementations provide an attribute type, 
System.SerializableAttribute, for this purpose. end note] 

7.2 .2  Delegates  

The standard library contains a number of delegate types. However, as recorded in the XML, their ILAsm 
signatures are incomplete. Consider System.EventHandler as an example; its ILAsm signature is defined 
in the XML as follows: 

.class public sealed serializable EventHandler extends System.Delegate {  

.method public hidebysig newslot virtual instance void Invoke(object 
   sender, class System.EventArgs e) } 

However, this type also has a constructor and two optional asynchronous methods, BeginInvoke and 
EndInvoke, all of which are described in Partition II, “Delegates”. The signatures for these three members 
for System.EventHandler are as follows: 

.method public hidebysig specialname rtspecialname void .ctor(object 
   'object', native int 'method') 
.method public hidebysig newslot virtual class System.IAsyncResult 
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   BeginInvoke(object sender, class System.EventArgs e, class 
   System.AsyncCallback callback, object 'object') 
.method public hidebysig newslot virtual void EndInvoke( 
 class System.IAsyncResult result) 

The other standard delegate types have a corresponding constructor and method pair whose signatures can be 
deduced from the ILAsm in the XML and the information in Partition II, “Delegates”. 

Unless stated otherwise, a standard delegate type provides the two optional asynchronous methods, 
BeginInvoke and EndInvoke. 

7.2 .3  Properties  

The standard library contains many types that have properties. However, as recorded in the XML, their ILAsm 
signatures are incomplete. Consider the read-write instance property 
System.Collections.ArrayList.Capacity. Its ILAsm signature is defined in the XML as follows: 

.property int32 Capacity { 
  public hidebysig virtual specialname int32 get_Capacity() 
  public hidebysig virtual specialname void set_Capacity(int32 value) 
} 

However, this is an abbreviation of the ILAsm syntax. The complete (and correct) signature for this property is 
as follows: 

.property instance int32 Capacity() { 
  .get instance int32 ArrayList::get_Capacity() 
  .set instance void ArrayList::set_Capacity(int32) 
} 
.method public hidebysig newslot specialname virtual instance int32 
 get_Capacity() { … } 
.method public hidebysig newslot specialname virtual instance void 
 set_Capacity(int32 'value') { … } 

As a second example, consider the readonly static property System.DateTime.Now; its ILAsm signature is 
defined in the XML as follows: 

.property valuetype System.DateTime Now { 
  public hidebysig static specialname valuetype System.DateTime 
    get_Now() 
} 

However, the complete (and correct) signature for this property is: 

.property valuetype System.DateTime Now() { 
  .get valuetype System.DateTime DateTime::get_Now() 
} 
.method public hidebysig specialname static valuetype System.DateTime 
   get_Now() { ... } 

All other properties (including those that are indexed) are formatted in the XML in a similar abbreviated 
manner. 

7.2 .4  Nested types  

With one exception, the definitions of all members of any given type are contained in the XML for that type. 
The exception is for nested types. Nested types have their own definition in the XML, where their names are 
qualified by the name of the type in which they are nested. [Example: The type 
System.Collections.Generic.List<T> contains the nested type Enumerator. These types are 
described in the BCL library of the XML under the names List<T> and List<T>.Enumerator, 
respectively. end example] 
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1  Portable CILDB files 
Portable CILDB files provide a standard way to interchange debugging information between CLI producers 
and consumers.   This partition serves to fill in gaps not covered by metadata, notably the names of local 
variables and source line correspondences. 

1.1  Encoding of integers 
All integers are stored in little-endian format, except for those in signatures, which are encoded as described in 
Partition II. 

1.2  CILDB header 
A CILDB file starts with a 72-byte header, whose layout is as follows: 

Offset Size Field Description 

0 16 Signature Magic signature for CILDB “_ildb_signature\0” 

16 16 GUID Version GUID 

32 4 UserEntryPoint MethodDef token of the entry point. 

36 4 CountOfMethods Number of rows in the SymMethod table. 

40 4 CountOfScopes Number of rows in the SymScopes table. 

44 4 CountOfVars Number of rows in the SymVariable table. 

48 4 CountOfUsing Number of rows in the SymUsing table. 

52 4 CountOfConstants Number of rows in the SymConstant table. 

56 4 CountOfDocuments Number of rows in the SymDocument table. 

60 4 CountOfSequencePoints Number of rows in the SymSequencePoint table. 

64 4 CountOfMiscBytes Number of bytes in the SymMisc heap. 

68 4 CountOfStringBytes Number of bytes in the SymString heap. 

 

1.2 .1  Version GUID 

The version GUID is the 16-byte sequence shown below: 

0x7F 0x55 0xE7 0xF1 0x3C 0x42 0x17 0x41 
0x8D 0xA9 0xC7 0xA3 0xCD 0x98 0x8D 0xF1 

1.3  Tables and heaps 
The CILDB header is immediately followed by various tables and heaps, in the following order:  

1. SymConstant 

2. SymMethod 

3. SymScopes 

4. SymVariable 

5. SymUsing 

6. SymSequencePoint 

7. SymDocument 



 

2 Partition V 

8. SymMisc 

9. SymString 

Some of the tables contain CIL offsets.  These offsets are in bytes, and the offset of the first instruction is zero.  
The offsets do not necessarily match the beginning of a CIL instruction.  For example, offsets denoting the end of 
a range of bytes often refer to the last byte of an instruction. Lengths are also in bytes. 

The rows in each of the tables 3–7 above that belong to the same method must be contiguous within their parent 
table. 

1.3 .1  SymConstant table 

Each row of the SymConstant table describes a constant, as follows: 
Offset Size Field Description 

0 4 Scope Index of parent scope 

4 4 Name Index of the name in the SymString heap 

8 4 Signature Index of the signature in the SymMisc heap 

12 4 SignatureSize Length of the signature  

16 4 Value Index of the value in the SymMisc heap 

20 4 ValueSize Length of the value. 

The value of the constant is encoded just like a Blob for the Value column of a Constant metadata table in Partition II, 
except that there is no length prefix. 

1.3 .2  SymDocument table 

Each row of a SymDocument describes a source document, as shown below.  The document can either be 
referred to indirectly (by its URL) or incorporated directly into the CILDB file as part of the SymMisc heap. 
Offset Size Field Description 

0 16 Language GUID for the language. 

16 16 LanguageVendor GUID for the language vendor. 

32 16 DocumentType GUID for the document type. 

48 16 AlgorithmId GUID of the checksum algorithm; or 0 if there is no 
checksum. 

64 4 CheckSumSize Size of the checksum; or 0 if there is no checksum. 

68 4 CheckSumEntry Index of the checksum in the SymMisc heap; or 0 if there 
is no checksum. 

72 4 SourceSize Size of the source in the SymMisc heap; or 0 if the source 
document is not directly incorporated into the file. 

76 4 SourceEntry Index of the source in the SymMisc heap; or 0 if the 
source document is not directly incorporated into the file. 

80 4 UrlEntry Index of the document URL in the SymString heap. 

1.3 .3  SymMethod table 

Each row of a SymMethod table has the following format:  

Offset Size Field Description 

0 4 MethodToken A MethodDef metadata token. 
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4 8 Scopes [Start,Stop) range of SymScope table. 

12 8 Vars [Start,Stop) range of SymVariable table. 

20 8 Using [Start,Stop) range of SymUsing table. 

28 8 Constant [Start,Stop) range of SymConstant table. 

36 8 Documents [Start,Stop) range of SymDocument table. 

44 8 SequencePoints [Start,Stop) range of SymSequencePoint table. 

 
Each [Start,Stop) range is represented as two 4-byte integers.  The first integer is the index of the first related 
table row; the second integer is the index of one past the last related table row.   

The rows of a SymMethod table are sorted in ascending order of the MethodToken field. There is at most one 
row for each method. 

1.3 .4  SymSequencePoint  table 

Each row of a SymSequencePoint table describes a sequence point, as follows: 
Offset Size Field Description 

0 4 Offset CIL offset of the sequence point.  

4 4 StartLine Starting line of the source document. 

8 4 StartColumn Starting column, or 0 if not specified. 

12 4 EndLine Ending line of the source document, or 0 if not specified. 

16 4 EndColumn Ending column, or 0 if not specified. 

20 4 Doc Index of the source document in the SymString heap. 

Together, EndLine and EndColumn specify the column “one past” the last byte position associated with the 
sequence point.   In other words, they specify the end of a half-open interval [start,end). 

Rows of the SymSequencePoint belonging to the same Method must be contiguous and sorted in ascending 
order of Offset. 

1.3 .5  SymScope table  

Each row of a SymScope table describes a scope, as follows: 
Offset Size Field Description 

0 4 Parent Index of parent SymScope row, or –1 if scope has no parent. 

4 4 StartOffset CIL offset of the first byte in the scope. 

8 4 EndOffset CIL offset of the last byte in the scope. 

12 4 HasChildren 1 if scope has child scopes; 0 otherwise 

16 4 HasVars 1 if scope has variables; 0 otherwise 

The scopes belonging to a method must form a tree, with the following constraints: 

• A parent scope must precede its child scopes. 

• The StartOffset and EndOffset of a child scope must be within the (inclusive) range of offsets specified 
by its parent’s scope. 

1.3 .6  SymVariable table 

Each row of a SymVariable table describes a local variable. 
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Offset Size Field Description 

0 4 Scope Index of the parent scope 

4 4 Name Index of the variable’s name in the SymString heap. 

8 4 Attributes Flags describing the variable (see below). 

12 4 Signature Index of the signature in the SymMisc heap. 

16 4 SignatureSize Length of the signature. 

20 4 AddressKind Always 1. 

24 4 Address1 Local variable number. 

28 4 Address2 Always 0. 

32 4 Address3 Always 0. 

36 4 StartOffset CIL offset where the variable is first visible . 

40 4 EndOffset CIL offset where the variable is last visible. 

44 4 Sequence Always 0. 

48 4 IsParam Always 0. 

52 4 IsHidden 1 if variable should be hidden from debugger; 0 otherwise. 

 
The least-significant bit of Attributes indicates whether the variable is user-generated (0) or compiler-
generated (1).  The other bits are reserved and should be set to zero. 
Because parameters are fully described by the Metadata, they do not appear in the SymVariable table. 

1.3 .7  SymUsing table 

Each row of the SymUsing table describes importation of a namespace, as follows: 
Offset Size Field Description 

0 4 Scope Index of the parent scope 

4 4 Namespace Index of the namespace in the SymString heap 

 

1.3 .8  SymMisc heap 

The SymMisc heap holds various byte sequences (e.g., signatures and checksums).   

1.3 .9  SymString heap 

The stream of bytes in the SymString heap has the same form as those for the #Strings heap (see Partition II). 

1.4  Signatures 
Signatures of variables and constants are encoded as an index into the SymMisc heap, and a signature size.  The 
values of the bytes are similar to those for a FieldSig (see Partition II), and include the prefix FIELD (0x6), 
even though the variables are not fields.  Because the length of the signature is encoded in the tables, it is not 
included in the SymMisc heap.  For example, type int32 is encoded as “0x06 0x08”. 
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Annex A Introduction 
Annex A this annex. 

Annex B contains a number of sample programs written in CIL Assembly Language (ILAsm) 

Annex C contains information about a particular implementation of an assembler, which provides a 
superset of the functionality of the syntax described in Partition II. It also provides a machine-
readable description of the CIL instruction set which can be used to derive parts of the grammar used 
by this assembler as well as other tools that manipulate CIL. 

Annex D contains a set of guidelines used in the design of the libraries of Partition IV. The rules are 
provided here since they have proven themselves effective in designing cross-language APIs. They 
also serve as guidelines for those intending to supply additional functionality in a way that meshes 
seamlessly with the standardized libraries. 

Annex E contains information of interest to implementers with respect to the latitude they have in 
implementing the CLI. 

Annex F contains information of interest to implementers with respect to relaxed fault handling. 

Annex G shows several complete examples written using the parallel library. 
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Annex B Sample programs 

This clause contains only informative text 
This Annex shows several complete examples written using ILAsm. 

B.1  Mutually recursive program (with tail  calls)  
The following is an example of a mutually recursive program that uses tail calls. The methods below 
determine whether a number is even or odd. 

[Example:  

.assembly extern mscorlib { } 

.assembly test.exe { } 

.class EvenOdd 
{ .method private static bool IsEven(int32 N) cil managed 
  { .maxstack   2 
    ldarg.0             // N 
    ldc.i4.0 
    bne.un      NonZero 
    ldc.i4.1 
    ret 

NonZero: 
    ldarg.0 
    ldc.i4.1 
    sub 
    tail. 
    call bool EvenOdd::IsOdd(int32) 
    ret 
  } // end of method ‘EvenOdd::IsEven’ 

  .method private static bool IsOdd(int32 N) cil managed 
  { .maxstack   2 
    // Demonstrates use of argument names and labels 
    // Notice that the assembler does not convert these 
    // automatically to their short versions 
    ldarg       N 
    ldc.i4.0 
    bne.un      NonZero 
    ldc.i4.0 
    ret 

NonZero: 
    ldarg       N 
    ldc.i4.1 
    sub 
    tail. 

    call bool EvenOdd::IsEven(int32) 
    ret 
  } // end of method ‘EvenOdd::IsOdd’ 

  .method public static void Test(int32 N) cil managed 
  { .maxstack   1 
    ldarg       N 
    call        void [mscorlib]System.Console::Write(int32) 
    ldstr       " is " 
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    call        void [mscorlib]System.Console::Write(string) 
    ldarg       N 
    call        bool EvenOdd::IsEven(int32) 
    brfalse     LoadOdd 
    ldstr       "even" 

Print: 
    call        void [mscorlib]System.Console::WriteLine(string) 
    ret 

LoadOdd: 
    ldstr       "odd" 
    br          Print 
  } // end of method ‘EvenOdd::Test’  
} // end of class ‘EvenOdd’ 

//Global method 
.method public static void main() cil managed 
{ .entrypoint 
  .maxstack     1 
  ldc.i4.5 
  call          void EvenOdd::Test(int32) 
  ldc.i4.2 
  call          void EvenOdd::Test(int32) 
  ldc.i4        100 
  call          void EvenOdd::Test(int32) 
  ldc.i4        1000001 
  call          void EvenOdd::Test(int32) 
  ret 
} // end of global method ‘main’ 

end example] 

B.2  Using value types 
The following program shows how rational numbers can be implemented using value types. 

[Example:  

.assembly extern mscorlib { } 

.assembly rational.exe { } 

.class private sealed Rational extends [mscorlib]System.ValueType 
         implements mscorlib]System.IComparable 

{ .field public int32 Numerator 
  .field public int32 Denominator 

  .method virtual public int32 CompareTo(object o) 
  // Implements IComparable::CompareTo(Object) 
  { ldarg.0     // ‘this’ as a managed pointer 
    ldfld int32 value class Rational::Numerator 
    ldarg.1     // ‘o’ as an object 
    unbox value class Rational 
    ldfld int32 value class Rational::Numerator 
    beq.s TryDenom 
    ldc.i4.0 
    ret 

TryDenom: 
    ldarg.0     // ‘this’ as a managed pointer 
    ldfld int32 value class Rational::Denominator 
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    ldarg.1     // ‘o’ as an object 
    unbox value class Rational 
    ldfld int32 class Rational::Denominator 
    ceq 
    ret 
  } 

  .method virtual public string ToString() 
  // Implements Object::ToString 
  { .locals init (class [mscorlib]System.Text.StringBuilder SB, 
                  string S, object N, object D) 
    newobj void [mscorlib]System.Text.StringBuilder::.ctor() 
    stloc.s SB 
    ldstr "The value is: {0}/{1}" 
    stloc.s S 
    ldarg.0     // Managed pointer to self 
    dup 

    ldfld int32 value class Rational::Numerator 
    box [mscorlib]System.Int32 
    stloc.s N 
    ldfld int32 value class Rational::Denominator 
    box [mscorlib]System.Int32 
    stloc.s D 
    ldloc.s SB 
    ldloc.s S 
    ldloc.s N 
    ldloc.s D 

    call instance class [mscorlib]System.Text.StringBuilder 
      [mscorlib]System.Text.StringBuilder::AppendFormat(string, 
        object, object) 
    callvirt instance string [mscorlib]System.Object::ToString() 
    ret 
  } 

  .method public value class Rational Mul(value class Rational) 
  { 
    .locals init (value class Rational Result) 
    ldloca.s Result 
    dup 
    ldarg.0     // ‘this’ 
    ldfld int32 value class Rational::Numerator 
    ldarga.s    1     // arg 
    ldfld int32 value class Rational::Numerator 
    mul 
    stfld int32 value class Rational::Numerator 

    ldarg.0     // this 
    ldfld int32 value class Rational::Denominator 
    ldarga.s    1     // arg 
    ldfld int32 value class Rational::Denominator 
    mul 
    stfld int32 value class Rational::Denominator 
    ldloc.s Result 
    ret 
  } 
} 
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.method static void main() 
{ 
  .entrypoint 
  .locals init (value class Rational Half, 
                value class Rational Third, 
                value class Rational Temporary, 
                object H, object T) 

  // Initialize Half, Third, H, and T 
  ldloca.s Half 
  dup 
  ldc.i4.1 
  stfld int32 value class Rational::Numerator 
  ldc.i4.2 
  stfld  int32 value class Rational::Denominator 
  ldloca.s Third 
  dup 

  ldc.i4.1 
  stfld int32 value class Rational::Numerator 
  ldc.i4.3 
  stfld int32 value class Rational::Denominator 
  ldloc.s Half 
  box value class Rational 
  stloc.s H 
  ldloc.s Third 
  box value class Rational 
  stloc.s T 
  // WriteLine(H.IComparable::CompareTo(H)) 
  // Call CompareTo via interface using boxed instance 

  ldloc H 
  dup 
  callvirt int32 [mscorlib]System.IComparable::CompareTo(object) 
  call void [mscorlib]System.Console::WriteLine(bool) 
  // WriteLine(Half.CompareTo(T)) 
  // Call CompareTo via value type directly 
  ldloca.s Half 
  ldloc T 
  call instance int32 
  value class Rational::CompareTo(object) 
  call void [mscorlib]System.Console::WriteLine(bool) 

  // WriteLine(Half.ToString()) 
  // Call virtual method via value type directly 
  ldloca.s Half 
  call instance string class Rational::ToString() 
  call void [mscorlib]System.Console::WriteLine(string) 

  // WriteLine(T.ToString) 
  // Call virtual method inherited from Object, via boxed instance 
  ldloc T 
  callvirt string [mscorlib]System.Object::ToString() 
  call void [mscorlib]System.Console::WriteLine(string) 
  // WriteLine((Half.Mul(T)).ToString()) 
  // Mul is called on two value types, returning a value type 
  // ToString is then called directly on that value type 
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  // Note that we are required to introduce a temporary variable 
  //   since the call to ToString requires 
  //   a managed pointer (address) 
  ldloca.s Half 
  ldloc.s Third 
  call instance value class Rational 
         Rational::Mul(value class Rational) 

  stloc.s Temporary 
  ldloca.s Temporary 
  call instance string Rational::ToString() 
  call void [mscorlib]System.Console::WriteLine(string) 
  ret 
} 

end example] 

B.3  Custom attributes 
 [Example: 

This subclause includes many example uses of custom attributes to help clarify the grammar and 
rules described above.  The examples are written in C#, and each one shows a collection of one or 
more attributes, applied to a class (called “App”).  The hex and ‘translation’ of the custom attribute 
blobs are shown as comments.  The following abbreviations are used: 

• FIELD = ELEMENT_TYPE_FIELD 
• PROPERTY = 0x54 
• STRING = ELEMENT_TYPE_STRING 
• SZARRAY = ELEMENT_TYPE_SZARRAY 
• U1 = ELEMENT_TYPE_U1 
• I4 = ELEMENT_TYPE_I4 
• OBJECT = 0x51 
 

// 
*******************************************************************
************* 
// CustomSimple.cs 
using System; 
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)] 
class B : Attribute { public B(int i, ushort u) {} }  
 
[B(7,9)]    // 01 00          // Prolog 
            // 07 00 00 00    // 0x00000007 
            // 09 00          // 0x0009 
            // 00 00          // NumNamed 
class App { static void Main() {} } 
 
// 
*******************************************************************
************* 
// CustomString.cs 
using System; 
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)] 
class A : Attribute {  
   public  string field;        // field 
   private string back;         // backing field for property 
   public  string prop {        // property 
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      get { return back;  }  
      set { back = value; } 
   } 
   public  A(string x) {}       // ctor 
} 
[A(null)]   // 01 00           // Prolog 
            // FF              // null 
            // 00 00           // NumNamed 
 
[A("")]     // 01 00           // Prolog 
            // 00              // zero-length string 
            // 00 00           // NumNamed 
 
[A("ab",field="cd",prop="123")]  // 01 00             // Prolog 
                                 // 02 61 62          // "ab" 
                                 // 02 00             // NumNamed 
                                 // 53 0e             // FIELD, 
STRING 
                                 // 05 66 69 65 6c 64 // "field" as 
counted-UTF8 
                                 // 02 63 64          // "cd" as 
counted-UTF8 
                                 // 54 0e             // PROPERTY, 
STRING 
                                 // 04 70 72 6f 70    // "prop" as 
counted-UTF8 
                                 // 03 31 32 33       // "123" as 
counted-UTF8 
class App { static void Main() {} } 
 
// 
*******************************************************************
************* 
// CustomType.cs 
using System; 
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)] 
class C : Attribute { 
   public C(Type t) {} 
} 
[C(typeof(C))]  
// 01 00                                              // Prolog 
// 01 43                                              // "C" as 
counted-UTF8 
// 00 00                                              // NumNamed 
 
[C(typeof(string))]   
// 01 00                                              // Prolog 
// 0d 53 79 73 74 65 6d 2e 53 74 72 69 6e 67          // 
"System.String" as counted-UTF8 
// 00 00                                              // NumNamed 
 
[C(typeof(System.Windows.Forms.Button))] 
// 01 00                                              // Prolog 
// 76 53 79 73 74 65 6d 2e 57 69 6e 64 6f 77          // 
"System.Window 
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// 73 2e 46 6f 72 6d 73 2e 42 75 74 74 6f 6e 2c 53    // 
s.Forms.Button,S 
// 79 73 74 65 6d 2e 57 69 6e 64 6f 77 73 2e 46 6f    // 
ystem.Windows.Fo 
// 72 6d 73 2c 20 56 65 72 73 69 6f 6e 3d 32 2e 30    // rms, 
Version=2.0 
// 2e 33 36 30 30 2e 30 2c 20 43 75 6c 74 75 72 65    // .3600.0, 
Culture 
// 3d 6e 65 75 74 72 61 6c 2c 20 50 75 62 6c 69 63    // =neutral, 
Public 
// 4b 65 79 54 6f 6b 65 6e 3d 62 37 37 61 35 63 35    // 
KeyToken=b77a5c5 
// 36 31 39 33 34 65 30 38 39 00 00                   // 61934e089" 
// 00 00                                              // NumNamed 
class App { static void Main() {} } 
 
Notice how various types are ‘stringified’: if the type is defined in the local assembly, or in mscorlib, 
then only its full name is required; if the type is defined in a different assembly, then its fully-
qualified assembly name is required, includeing Version, Culture and PublicKeyToken, if non-
defaulted. 
 
// 
*******************************************************************
************* 
// CustomByteArray.cs 
using System; 
class D : Attribute {  
   public  byte[] field;                             // field 
   private byte[] back;                              // backing 
field for property 
   public  byte[] prop {                             // property 
      get { return back;  }  
      set { back = value; } 
   } 
   public D(params byte[] bs) {}                     // ctor 
} 
[D(1,2, field=new byte[]{3,4},prop=new byte[]{5})] 
// 01 00                                             // Prolog 
// 02 00 00 00                                       // NumElem 
// 01 02                                             // 1,2 
// 02 00                                             // NumNamed 
// 53 1d 05                                          // FIELD, 
SZARRAY, U1 
// 05 66 69 65 6c 64                                 // "field" as 
counted-UTF8 
// 02 00 00 00                                       // NumElem = 
0x00000002 
// 03 04                                             // 3,4 
// 54 1d 05                                          // PROPERTY, 
SZARRAY, U1 
// 04 70 72 6f 70                                    // "prop" as 
counted-UTF8 
// 01 00 00 00                                       // NumElem = 
0x00000001 
// 05                                                // 5 
class App { static void Main() {} } 
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// 
*******************************************************************
************* 
// CustomBoxedValuetype.cs 
using System; 
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)] 
class E : Attribute { 
   public object obj;                           // field called 
"obj" 
   public object o {                            // property called 
"o" 
      get { return o; } 
      set { o = value; } 
   } 
   public E() {}                                // default ctor 
   public E(object x) {} 
} 
 
[E(42)]                                         // boxed 42 
// 01 00                                        // Prolog 
// 08                                           // I4 
// 2a 00 00 00                                  // 0x0000002A 
// 00 00                                        // NumNamed 
 
[E(obj=7)]                                      // named field 
// 01 00                                        // Prolog 
// 01 00                                        // NumNamed 
// 53 51                                        // FIELD, OBJECT 
// 03 6f 62 6a                                  // "obj" as 
counted-UTF8 
// 08                                           // I4 
// 07 00 00 00                                  // 0x00000007 
 
[E(o=0xEE)]                                     // named property 
// 01 00                                        // Prolog 
// 01 00                                        // NumNamed 
// 54 51                                        // PROPERTY, OBJECT 
// 01 6f                                        // "o" as counted-
UTF8 
// 08                                           // I4 
// ee 00 00 00                                  // 0x000000EE 
class App { static void Main() {} } 
 
This example illustrates how to construct blobs for a custom attribute that accepts a 
System.Object in its constructor, as a named field, and as a named property.  In each case, the 
argument given is an int32, which is boxed automatically by the C# compiler.   
 
Notice the OBJECT = 0x51 byte.  This is emitted for “named” fields or properties of type 
System.Object.  The value emitted should have been ELEMENT_TYPE_OBJECT = 0x1C.  
Alas, this tiny mistake has now ‘escaped’ into the wild, and it’s too late to correct. 
 
// 
*******************************************************************
************* 
// CustomShortArray.cs 
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using System; 
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)] 
class F : Attribute {  
   public F(params short[] cs) {}    // ctor 
} 
//[F()] 
// 01 00                            // Prolog 
// 00 00 00 00                      // NumElem 
// 00 00                            // NumNamed 
 
//[F(null)] 
// 01 00                            // Prolog 
// ff ff ff ff                      // NumElem = -1 => null 
// 00 00                            // NumNamed 
 
[F(1,2)] 
// 01 00                            // Prolog 
// 02 00 00 00                      // NumElem 
// 01 00 02 00                      // 0x0001, 0x0002 
// 00 00                            // NumNamed 
class App { static void Main() {} } 
 
end example] 

B.4  Generics code and metadata 
The following informative text, shows a partial implementation for a naive phone-book class.  It 
shows the source first, as written in ILAsm, followed by the equivalent (much shorter) code, written 
in C#.  The section then goes on to examine the metadata generated for this code.   

B.4.1  ILAsm version 

.assembly extern mscorlib {} 

.assembly Phone {} 

.class private Phone`2<([mscorlib]System.Object) K, 
([mscorlib]System.Object) V>  
    extends  [mscorlib]System.Object { 
   .field private int32 hi 
   .field private !0[]  keys 
   .field private !1[]  vals 
   .method public instance void Add(!0 k, !1 v) { 
      .maxstack  4 
      .locals init (int32 temp) 
      ldarg.0 
      ldfld      !0[] class Phone`2<!0,!1>::keys 
      ldarg.0 
      dup 
      ldfld      int32 class Phone`2<!0,!1>::hi 
      ldc.i4.1 
      add 
      dup 
      stloc.0 
      stfld      int32 class Phone`2<!0,!1>::hi 
      ldloc.0 
      ldarg.1 
      stelem     !0 
      ldarg.0 
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      ldfld      !1[] class Phone`2<!0,!1>::vals 
      ldarg.0 
      ldfld      int32 class Phone`2<!0,!1>::hi 
      ldarg.2 
      stelem     !1 
      ret 
   }  // end of Method Add 
}  // end of class Phone 

.class App extends [mscorlib]System.Object { 
   .method static void Main() { 
      .entrypoint 
      .maxstack  3 
      .locals init (class Phone`2<string,int32> temp) 
      newobj     instance void class 
  Phone`2<string,int32>::.ctor() 
      stloc.0 
      ldloc.0 
      ldstr      "Jim" 
      ldc.i4.7 
      callvirt   instance void class 
  Phone`2<string,int32>::Add(!0, !1) 
      ret 
   }  // end of method Main 
}  // end of class App 

B.4.2  C# version 

using System; 

class Phone<K,V> {  
   private int hi = -1; 
   private K[] keys; 
   private V[] vals; 
   public Phone() { keys = new K[10]; vals = new V[10]; } 
   public void Add(K k, V v) { keys[++hi] = k; vals[hi] = v; } 
} 

class App {  
   static void AddOne<KK,VV>(Phone<KK,VV> phone, KK kk, VV vv) { 
      phone.Add(kk, vv); 
   } 
   static void Main() { 
      Phone<string, int> d = new Phone<string, int>(); 
      d.Add("Jim", 7); 
      AddOne(d, "Joe", 8); 
   } 
} 

B.4.3  Metadata 

As detailed in §23.2.12 of Partition II, the Type non-terminal now includes a production for generic 
instantiations, as follows: 

Type ::= . . . 

     | GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type * 

Following this production, the Phone<string,int> instantiation above is encoded as: 
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0x15  ELEMENT_TYPE_GENERICINST 
0x12  ELEMENT_TYPE_CLASS 
0x08  TypeDefOrRef coded index for class “Phone<K,V>” 
0x02  GenArgCount = 2 
0x0E     ELEMENT_TYPE_STRING 
0x08     ELEMENT_TYPE_I4 

Similarly, the signature for the field vals is encoded as: 

0x06  FIELD 
0x1D  ELEMENT_TYPE_SZARRAY 
0x13  ELEMENT_TYPE_VAR 
0x01  1, representing generic argument number 1 (i.e., “V”) 

Similarly, the signature for the (rather contrived) static method AddOne is encoded as: 

0x10  IMAGE_CEE_CS_CALLCONV_GENERIC 
0x02  GenParamCount = 2 (2 generic parameters for this method: KK 
and VV 
0x03  ParamCount = 3 (phone, kk and vv) 
0x01  RetType = ELEMENT_TYPE_VOID 
0x15  Param-0:  ELEMENT_TYPE_GENERICINST 
0x12            ELEMENT_TYPE_CLASS 
0x08            TypeDefOrRef coded index for class “Phone<KK,VV>” 
0x02            GenArgCount = 2  
0x1e               ELEMENT_TYPE_MVAR 
0x00               !!0 (KK in AddOne<KK,VV>) 
0x1e               ELEMENT_TYPE_MVAR 
0x01               !!1 (VV in AddOne<KK,VV>) 
0x1e  Param-1   ELEMENT_TYPE_MVAR 
0x00            !!0 (KK in AddOne<KK,VV>) 
0x1e  Param-2   ELEMENT_TYPE_MVAR 
0x01            !!1 (VV in AddOne<KK,VV>) 

Notice that the above example uses indenting to help denote loops over the three method parameters, 
and the two generic parameters on Phone. 
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Annex C CIL assembler implementation 

This clause contains only informative text 
This clause provides information about a particular assembler for CIL, called ilasm. It supports a 
superset of the syntax defined normatively in Partition II, and provides a concrete syntax for the CIL 
instructions specified in Partition III. 

Even for those who have no interest in this particular assembler, §C.1 and §C.3 might be of interest. 
The former is a machine-readable file (ready for input to a C or C++ preprocessor) that partially 
describes the CIL instructions. It can be used to generate tables for use by a wide variety of tools that 
deal with CIL. The latter contains a concrete syntax for CIL instructions, which is not described 
elsewhere. 

C.1  ILAsm keywords 
This subclause provides a complete list of the keywords used by ilasm. If users wish to use any of 
these as simple identifiers within programs they just make use of the appropriate escape notation 
(single or double quotation marks as specified in the grammar). This assembler is case-sensitive. 

 

#line 

.addon 

.assembly 

.cctor 

.class 

.corflags 

.ctor 

.custom 

.data 

.emitbyte 

.entrypoint 

.event 

.export 

.field 

.file 

.fire 

.get 

.hash 

.imagebase 

.import 

.language 

.line 

.locale 

.localized 

.locals 

.manifestres 

.maxstack 

.method 

.module 

.mresource 

.namespace 

.other 

.override 

.pack 

.param 

.pdirect 

.permission 

.permissionset 

.property 

.publickey 

.publickeytoken 

.removeon 

.set 

.size 

.subsystem 

.try 

.ver 

.vtable 

.vtentry 

.vtfixup 

.zeroinit 

^THE_END^ 

abstract 

add 

add.ovf 

add.ovf.un 

algorithm 

alignment 

and 

ansi 

any 

arglist 

array 

as 

assembly 

assert 

at 

auto 

autochar 

beforefieldinit 

beq 

beq.s 

bge 

bge.s 

bge.un 

bge.un.s 

bgt 

bgt.s 

bgt.un 

bgt.un.s 

ble 

ble.s 

ble.un 

ble.un.s 

blob 

blob_object 

blt 

blt.s 
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blt.un 

blt.un.s 

bne.un 

bne.un.s 

bool 

box 

br 

br.s 

break 

brfalse 

brfalse.s 

brinst 

brinst.s 

brnull 

brnull.s 

brtrue 

brtrue.s 

brzero 

brzero.s 

bstr 

bytearray 

byvalstr 

call 

calli 

callmostderived 

callvirt 

carray 

castclass 

catch 

cdecl 

ceq 

cf 

cgt 

cgt.un 

char 

cil 

ckfinite 

class 

clsid 

clt 

clt.un 

const 

constrained. 

conv.i 

conv.i1 

conv.i2 

conv.i4 

conv.i8 

conv.ovf.i 

conv.ovf.i.un 

conv.ovf.i1 

conv.ovf.i1.un 

conv.ovf.i2 

conv.ovf.i2.un 

conv.ovf.i4 

conv.ovf.i4.un 

conv.ovf.i8 

conv.ovf.i8.un 

conv.ovf.u 

conv.ovf.u.un 

conv.ovf.u1 

conv.ovf.u1.un 

conv.ovf.u2 

conv.ovf.u2.un 

conv.ovf.u4 

conv.ovf.u4.un 

conv.ovf.u8 

conv.ovf.u8.un 

conv.r.un 

conv.r4 

conv.r8 

conv.u 

conv.u1 

conv.u2 

conv.u4 

conv.u8 

cpblk 

cpobj 

currency 

custom 

date 

decimal 

default 

default 

demand 

deny 

div 

div.un 

dup 

endfault 

endfilter 

endfinally 

endmac 

enum 

error 

explicit 

extends 

extern 

false 

famandassem 

family 

famorassem 

fastcall 

fastcall 

fault 

field 

filetime 

filter 

final 

finally 

fixed 

float 

float32 

float64 

forwardref 

fromunmanaged 

handler 

hidebysig 

hresult 

idispatch 

il 

illegal 

implements 

implicitcom 

implicitres 

import 

in 

inheritcheck 

init 

initblk 

initobj 

initonly 

instance 

int 

int16 

int32 

int64 

int8 

interface 

internalcall 
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isinst 

iunknown 

jmp 

lasterr 

lcid 

ldarg 

ldarg.0 

ldarg.1 

ldarg.2 

ldarg.3 

ldarg.s 

ldarga 

ldarga.s 

ldc.i4 

ldc.i4.0 

ldc.i4.1 

ldc.i4.2 

ldc.i4.3 

ldc.i4.4 

ldc.i4.5 

ldc.i4.6 

ldc.i4.7 

ldc.i4.8 

ldc.i4.M1 

ldc.i4.m1 

ldc.i4.s 

ldc.i8 

ldc.r4 

ldc.r8 

ldelem 

ldelem.i 

ldelem.i1 

ldelem.i2 

ldelem.i4 

ldelem.i8 

ldelem.r4 

ldelem.r8 

ldelem.ref 

ldelem.u1 

ldelem.u2 

ldelem.u4 

ldelem.u8 

ldelema 

ldfld 

ldflda 

ldftn 

ldind.i 

ldind.i1 

ldind.i2 

ldind.i4 

ldind.i8 

ldind.r4 

ldind.r8 

ldind.ref 

ldind.u1 

ldind.u2 

ldind.u4 

ldind.u8 

ldlen 

ldloc 

ldloc.0 

ldloc.1 

ldloc.2 

ldloc.3 

ldloc.s 

ldloca 

ldloca.s 

ldnull 

ldobj 

ldsfld 

ldsflda 

ldstr 

ldtoken 

ldvirtftn 

leave 

leave.s 

linkcheck 

literal 

localloc 

lpstr 

lpstruct 

lptstr 

lpvoid 

lpwstr 

managed 

marshal 

method 

mkrefany 

modopt 

modreq 

mul 

mul.ovf 

mul.ovf.un 

native 

neg 

nested 

newarr 

newobj 

newslot 

noappdomain 

no. 

noinlining 

nomachine 

nomangle 

nometadata 

noncasdemand 

noncasinheritance 

noncaslinkdemand 

nop 

noprocess 

not 

not_in_gc_heap 

notremotable 

notserialized 

null 

nullref 

object 

objectref 

opt 

optil 

or 

out 

permitonly 

pinned 

pinvokeimpl 

pop 

prefix1 

prefix2 

prefix3 

prefix4 

prefix5 

prefix6 

prefix7 

prefixref 

prejitdeny 

prejitgrant 

preservesig 

private 

privatescope 

protected 
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public 

readonly. 

record 

refany 

refanytype 

refanyval 

rem 

rem.un 

reqmin 

reqopt 

reqrefuse 

reqsecobj 

request 

ret 

rethrow 

retval 

rtspecialname 

runtime 

safearray 

sealed 

sequential 

serializable 

shl 

shr 

shr.un 

sizeof 

special 

specialname 

starg 

starg.s 

static 

stdcall 

stdcall 

stelem 

stelem.i 

stelem.i1 

stelem.i2 

stelem.i4 

stelem.i8 

stelem.r4 

stelem.r8 

stelem.ref 

stfld 

stind.i 

stind.i1 

stind.i2 

stind.i4 

stind.i8 

stind.r4 

stind.r8 

stind.ref 

stloc 

stloc.0 

stloc.1 

stloc.2 

stloc.3 

stloc.s 

stobj 

storage 

stored_object 

stream 

streamed_object 

string 

struct 

stsfld 

sub 

sub.ovf 

sub.ovf.un 

switch 

synchronized 

syschar 

sysstring 

tail. 

tbstr 

thiscall 

thiscall 

throw 

tls 

to 

true 

typedref 

unaligned. 

unbox 

unbox.any 

unicode 

unmanaged 

unmanagedexp 

unsigned 

unused 

userdefined 

value 

valuetype 

vararg 

variant 

vector 

virtual 

void 

volatile. 

wchar 

winapi 

with 

wrapper 

xor 
 

 

C.2  CIL opcode descriptions 
This subclause contains text, which is intended for use with the C or C++ preprocessor. By 
appropriately defining the macros OPDEF and OPALIAS before including this text, it is possible to 
use this to produce tables or code for handling CIL instructions. 

The OPDEF macro is passed 10 arguments, in the following order: 

1. A symbolic name for the opcode, beginning with CEE_ 

2. A string that constitutes the name of the opcode and corresponds to the names given in 
Partition III. 

3. Data removed from the stack to compute this operations result. The possible values here 
are the following: 
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a. Pop0 – no inputs 

b. Pop1 – one value type specified by data flow 

c. Pop1+Pop1 – two input values, types specified by data flow 

d. PopI – one machine-sized integer 

e. PopI+Pop1 – Top of stack is described by data flow, next item is a native pointer 

f. PopI+PopI – Top two items on stack are integers (size can vary by instruction) 

g. PopI+PopI+PopI – Top three items on stack are machine-sized integers 

h. PopI8+Pop8 – Top of stack is an 8-byte integer, next is a native pointer 

i. PopI+PopR4 – Top of stack is a 4-byte floating point number, next is a native 
pointer 

j. PopI+PopR8 – Top of stack is an 8-byte floating point number, next is a native 
pointer 

k. PopRef – Top of stack is an object reference 

l. PopRef+PopI – Top of stack is an integer (size can vary by instruction), next is an 
object reference 

m. PopRef+PopI+PopI – Top of stack has two integers (size can vary by instruction), 
next is an object reference 

n. PopRef+PopI+PopI8 – Top of stack is an 8-byte integer, then a native-sized 
integer, then an object reference 

o. PopRef+PopI+PopR4 – Top of stack is an 4-byte floating point number, then a 
native-sized integer, then an object reference 

p. PopRef+PopI+PopR8 – Top of stack is an 8-byte floating point number, then a 
native-sized integer, then an object reference 

q. VarPop – variable number of items used, see Partition III for details 

4. Amount and type of data pushed as a result of the instruction. The possible values here 
are the following: 

a. Push0 – no output value 

b. Push1 – one output value, type defined by data flow. 

c. Push1+Push1 – two output values, type defined by data flow 

d. PushI – push one native integer or pointer 

e. PushI8 – push one 8-byte integer 

f. PushR4 – push one 4-byte floating point number 

g. PushR8 – push one 8-byte floating point number 

h. PushRef – push one object reference 

i. VarPush – variable number of items pushed, see Partition III for details 

5. Type of in-line argument to instruction. The in-line argument is stored with least 
significant byte first (“little endian”). The possible values here are the following: 

a. InlineBrTarget – Branch target, represented as a 4-byte signed integer from the 
beginning of the instruction following the current instruction. 
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b. InlineField – Metadata token (4 bytes) representing a FieldRef (i.e., a MemberRef 
to a field) or FieldDef 

c. InlineI – 4-byte integer 

d. InlineI8 – 8-byte integer 

e. InlineMethod – Metadata token (4 bytes) representing a MethodRef (i.e., a 
MemberRef to a method) or MethodDef 

f. InlineNone – No in-line argument 

g. InlineR – 8-byte floating point number 

h. InlineSig – Metadata token (4 bytes) representing a standalone signature 

i. InlineString – Metadata token (4 bytes) representing a UserString 

j. InlineSwitch – Special for the switch instructions, see Partition III for details 

k. InlineTok – Arbitrary metadata token (4 bytes) , used for ldtoken instruction, see 
Partition III for details 

l. InlineType – Metadata token (4 bytes) representing a TypeDef, TypeRef, or 
TypeSpec 

m. InlineVar – 2-byte integer representing an argument or local variable 

n. ShortInlineBrTarget – Short branch target, represented as 1 signed byte from the 
beginning of the instruction following the current instruction. 

o. ShortInlineI – 1-byte integer, signed or unsigned depending on instruction 

p. ShortInlineR – 4-byte floating point number 

q. ShortInlineVar – 1-byte integer representing an argument or local variable 

6. Type of opcode. The current classification is of no current value, but is retained for 
historical reasons. 

7. Number of bytes for the opcode. Currently 1 or 2, can be 4 in future 

8. First byte of 2-byte encoding, or 0xFF if single byte instruction. 

9. One byte encoding, or second byte of 2-byte encoding. 

10. Control flow implications of instruction. The possible values here are the following: 

a. BRANCH – unconditional branch 

b. CALL – method call 

c. COND_BRANCH – conditional branch 

d. META – unused operation or prefix code 

e. NEXT – control flow unaltered (“fall through”) 

f. RETURN – return from method 

g. THROW – throw or rethrow an exception 

The OPALIAS macro takes three arguments: 

1. A symbolic name for a “new instruction” which is simply an alias (renaming for the 
assembler) of an existing instruction. 

2. A string name for the “new instruction.” 
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3. The symbolic name for an instruction introduced using the OPDEF macro. The “new 
instruction” is really just an alternative name for this instruction. 

#ifndef __OPCODE_DEF_ 
#define __OPCODE_DEF_ 
 
#define MOOT    0x00    // Marks unused second byte when encoding single 
#define STP1    0xFE    // Prefix code 1 for Standard Map 
#define REFPRE  0xFF    // Prefix for Reference Code Encoding 
#define RESERVED_PREFIX_START 0xF7 
 
#endif 
 
// If the first byte of the standard encoding is 0xFF, then 
// the second byte can be used as 1 byte encoding.  Otherwise                                                
l   b         b 
// the encoding is two bytes.                                                                                
e   y         y 
//                                                                                                           
n   t         t 
//                                                                                                          
g   e         e 
//                                                                                                           
(unused)       t 
//  Canonical Name                    String Name              Stack Behaviour           
Operand Params    Opcode Kind      h   1         2    Control Flow 
// --------------------------------------------------------------------------------------
----------------------------------------------------------------- 
OPDEF(CEE_NOP,                        "nop",              Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x00,    NEXT) 
OPDEF(CEE_BREAK,                      "break",            Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x01,    BREAK) 
OPDEF(CEE_LDARG_0,                    "ldarg.0",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x02,    NEXT) 
OPDEF(CEE_LDARG_1,                    "ldarg.1",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x03,    NEXT) 
OPDEF(CEE_LDARG_2,                    "ldarg.2",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x04,    NEXT) 
OPDEF(CEE_LDARG_3,                    "ldarg.3",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x05,    NEXT) 
OPDEF(CEE_LDLOC_0,                    "ldloc.0",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x06,    NEXT) 
OPDEF(CEE_LDLOC_1,                    "ldloc.1",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x07,    NEXT) 
OPDEF(CEE_LDLOC_2,                    "ldloc.2",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x08,    NEXT) 
OPDEF(CEE_LDLOC_3,                    "ldloc.3",          Pop0,               Push1,       
InlineNone,         IMacro,      1,  0xFF,    0x09,    NEXT) 
OPDEF(CEE_STLOC_0,                    "stloc.0",          Pop1,               Push0,       
InlineNone,         IMacro,      1,  0xFF,    0x0A,    NEXT) 
OPDEF(CEE_STLOC_1,                    "stloc.1",          Pop1,               Push0,       
InlineNone,         IMacro,      1,  0xFF,    0x0B,    NEXT) 
OPDEF(CEE_STLOC_2,                    "stloc.2",          Pop1,               Push0,       
InlineNone,         IMacro,      1,  0xFF,    0x0C,    NEXT) 
OPDEF(CEE_STLOC_3,                    "stloc.3",          Pop1,               Push0,       
InlineNone,         IMacro,      1,  0xFF,    0x0D,    NEXT) 
OPDEF(CEE_LDARG_S,                    "ldarg.s",          Pop0,               Push1,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x0E,    NEXT) 
OPDEF(CEE_LDARGA_S,                   "ldarga.s",         Pop0,               PushI,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x0F,    NEXT) 
OPDEF(CEE_STARG_S,                    "starg.s",          Pop1,               Push0,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x10,    NEXT) 
OPDEF(CEE_LDLOC_S,                    "ldloc.s",          Pop0,               Push1,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x11,    NEXT) 
OPDEF(CEE_LDLOCA_S,                   "ldloca.s",         Pop0,               PushI,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x12,    NEXT) 
OPDEF(CEE_STLOC_S,                    "stloc.s",          Pop1,               Push0,       
ShortInlineVar,     IMacro,      1,  0xFF,    0x13,    NEXT) 
OPDEF(CEE_LDNULL,                     "ldnull",           Pop0,               PushRef,     
InlineNone,         IPrimitive,  1,  0xFF,    0x14,    NEXT) 
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OPDEF(CEE_LDC_I4_M1,                  "ldc.i4.m1",        Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x15,    NEXT) 
OPDEF(CEE_LDC_I4_0,                   "ldc.i4.0",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x16,    NEXT) 
OPDEF(CEE_LDC_I4_1,                   "ldc.i4.1",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x17,    NEXT) 
OPDEF(CEE_LDC_I4_2,                   "ldc.i4.2",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x18,    NEXT) 
OPDEF(CEE_LDC_I4_3,                   "ldc.i4.3",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x19,    NEXT) 
OPDEF(CEE_LDC_I4_4,                   "ldc.i4.4",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x1A,    NEXT) 
OPDEF(CEE_LDC_I4_5,                   "ldc.i4.5",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x1B,    NEXT) 
OPDEF(CEE_LDC_I4_6,                   "ldc.i4.6",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x1C,    NEXT) 
OPDEF(CEE_LDC_I4_7,                   "ldc.i4.7",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x1D,    NEXT) 
OPDEF(CEE_LDC_I4_8,                   "ldc.i4.8",         Pop0,               PushI,       
InlineNone,         IMacro,      1,  0xFF,    0x1E,    NEXT) 
OPDEF(CEE_LDC_I4_S,                   "ldc.i4.s",         Pop0,               PushI,       
ShortInlineI,       IMacro,      1,  0xFF,    0x1F,    NEXT) 
OPDEF(CEE_LDC_I4,                     "ldc.i4",           Pop0,               PushI,       
InlineI,            IPrimitive,  1,  0xFF,    0x20,    NEXT) 
OPDEF(CEE_LDC_I8,                     "ldc.i8",           Pop0,               PushI8,      
InlineI8,           IPrimitive,  1,  0xFF,    0x21,    NEXT) 
OPDEF(CEE_LDC_R4,                     "ldc.r4",           Pop0,               PushR4,      
ShortInlineR,       IPrimitive,  1,  0xFF,    0x22,    NEXT) 
OPDEF(CEE_LDC_R8,                     "ldc.r8",           Pop0,               PushR8,      
InlineR,            IPrimitive,  1,  0xFF,    0x23,    NEXT) 
OPDEF(CEE_UNUSED49,                   "unused",     Pop0,               
Push0,       InlineNone,         IPrimitive,  1,  0xFF,    0x24,    NEXT) 
OPDEF(CEE_DUP,                        "dup",              Pop1,               
Push1+Push1, InlineNone,         IPrimitive,  1,  0xFF,    0x25,    NEXT) 
OPDEF(CEE_POP,                        "pop",              Pop1,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x26,    NEXT) 
OPDEF(CEE_JMP,                        "jmp",              Pop0,               Push0,       
InlineMethod,       IPrimitive,  1,  0xFF,    0x27,    CALL) 
OPDEF(CEE_CALL,                       "call",             VarPop,             VarPush,     
InlineMethod,       IPrimitive,  1,  0xFF,    0x28,    CALL) 
OPDEF(CEE_CALLI,                      "calli",            VarPop,             VarPush,     
InlineSig,          IPrimitive,  1,  0xFF,    0x29,    CALL) 
OPDEF(CEE_RET,                        "ret",              VarPop,             Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x2A,    RETURN) 
OPDEF(CEE_BR_S,                       "br.s",             Pop0,               Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x2B,    BRANCH) 
OPDEF(CEE_BRFALSE_S,                  "brfalse.s",        PopI,               Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x2C,    COND_BRANCH) 
OPDEF(CEE_BRTRUE_S,                   "brtrue.s",         PopI,               Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x2D,    COND_BRANCH) 
OPDEF(CEE_BEQ_S,                      "beq.s",            Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x2E,    COND_BRANCH) 
OPDEF(CEE_BGE_S,                      "bge.s",            Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x2F,    COND_BRANCH) 
OPDEF(CEE_BGT_S,                      "bgt.s",            Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x30,    COND_BRANCH) 
OPDEF(CEE_BLE_S,                      "ble.s",            Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x31,    COND_BRANCH) 
OPDEF(CEE_BLT_S,                      "blt.s",            Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x32,    COND_BRANCH) 
OPDEF(CEE_BNE_UN_S,                   "bne.un.s",         Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x33,    COND_BRANCH) 
OPDEF(CEE_BGE_UN_S,                   "bge.un.s",         Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x34,    COND_BRANCH) 
OPDEF(CEE_BGT_UN_S,                   "bgt.un.s",         Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x35,    COND_BRANCH) 
OPDEF(CEE_BLE_UN_S,                   "ble.un.s",         Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x36,    COND_BRANCH) 
OPDEF(CEE_BLT_UN_S,                   "blt.un.s",         Pop1+Pop1,          Push0,       
ShortInlineBrTarget,IMacro,      1,  0xFF,    0x37,    COND_BRANCH) 
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OPDEF(CEE_BR,                         "br",               Pop0,               Push0,       
InlineBrTarget,     IPrimitive,  1,  0xFF,    0x38,    BRANCH) 
OPDEF(CEE_BRFALSE,                    "brfalse",          PopI,               Push0,       
InlineBrTarget,     IPrimitive,  1,  0xFF,    0x39,    COND_BRANCH) 
OPDEF(CEE_BRTRUE,                     "brtrue",           PopI,               Push0,       
InlineBrTarget,     IPrimitive,  1,  0xFF,    0x3A,    COND_BRANCH) 
OPDEF(CEE_BEQ,                        "beq",              Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x3B,    COND_BRANCH) 
OPDEF(CEE_BGE,                        "bge",              Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x3C,    COND_BRANCH) 
OPDEF(CEE_BGT,                        "bgt",              Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x3D,    COND_BRANCH) 
OPDEF(CEE_BLE,                        "ble",              Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x3E,    COND_BRANCH) 
OPDEF(CEE_BLT,                        "blt",              Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x3F,    COND_BRANCH) 
OPDEF(CEE_BNE_UN,                     "bne.un",           Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x40,    COND_BRANCH) 
OPDEF(CEE_BGE_UN,                     "bge.un",           Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x41,    COND_BRANCH) 
OPDEF(CEE_BGT_UN,                     "bgt.un",           Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x42,    COND_BRANCH) 
OPDEF(CEE_BLE_UN,                     "ble.un",           Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x43,    COND_BRANCH) 
OPDEF(CEE_BLT_UN,                     "blt.un",           Pop1+Pop1,          Push0,       
InlineBrTarget,     IMacro,      1,  0xFF,    0x44,    COND_BRANCH) 
OPDEF(CEE_SWITCH,                     "switch",           PopI,               Push0,       
InlineSwitch,       IPrimitive,  1,  0xFF,    0x45,    COND_BRANCH) 
OPDEF(CEE_LDIND_I1,                   "ldind.i1",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x46,    NEXT) 
OPDEF(CEE_LDIND_U1,                   "ldind.u1",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x47,    NEXT) 
OPDEF(CEE_LDIND_I2,                   "ldind.i2",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x48,    NEXT) 
OPDEF(CEE_LDIND_U2,                   "ldind.u2",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x49,    NEXT) 
OPDEF(CEE_LDIND_I4,                   "ldind.i4",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x4A,    NEXT) 
OPDEF(CEE_LDIND_U4,                   "ldind.u4",         PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x4B,    NEXT) 
OPDEF(CEE_LDIND_I8,                   "ldind.i8",         PopI,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x4C,    NEXT) 
OPDEF(CEE_LDIND_I,                    "ldind.i",          PopI,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x4D,    NEXT) 
OPDEF(CEE_LDIND_R4,                   "ldind.r4",         PopI,               PushR4,      
InlineNone,         IPrimitive,  1,  0xFF,    0x4E,    NEXT) 
OPDEF(CEE_LDIND_R8,                   "ldind.r8",         PopI,               PushR8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x4F,    NEXT) 
OPDEF(CEE_LDIND_REF,                  "ldind.ref",        PopI,               PushRef,     
InlineNone,         IPrimitive,  1,  0xFF,    0x50,    NEXT) 
OPDEF(CEE_STIND_REF,                  "stind.ref",        PopI+PopI,          Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x51,    NEXT) 
OPDEF(CEE_STIND_I1,                   "stind.i1",         PopI+PopI,          Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x52,    NEXT) 
OPDEF(CEE_STIND_I2,                   "stind.i2",         PopI+PopI,          Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x53,    NEXT) 
OPDEF(CEE_STIND_I4,                   "stind.i4",         PopI+PopI,          Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x54,    NEXT) 
OPDEF(CEE_STIND_I8,                   "stind.i8",         PopI+PopI8,         Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x55,    NEXT) 
OPDEF(CEE_STIND_R4,                   "stind.r4",         PopI+PopR4,         Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x56,    NEXT) 
OPDEF(CEE_STIND_R8,                   "stind.r8",         PopI+PopR8,         Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x57,    NEXT) 
OPDEF(CEE_ADD,                        "add",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x58,    NEXT) 
OPDEF(CEE_SUB,                        "sub",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x59,    NEXT) 
OPDEF(CEE_MUL,                        "mul",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5A,    NEXT) 
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OPDEF(CEE_DIV,                        "div",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5B,    NEXT) 
OPDEF(CEE_DIV_UN,                     "div.un",           Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5C,    NEXT) 
OPDEF(CEE_REM,                        "rem",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5D,    NEXT) 
OPDEF(CEE_REM_UN,                     "rem.un",           Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5E,    NEXT) 
OPDEF(CEE_AND,                        "and",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x5F,    NEXT) 
OPDEF(CEE_OR,                         "or",               Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x60,    NEXT) 
OPDEF(CEE_XOR,                        "xor",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x61,    NEXT) 
OPDEF(CEE_SHL,                        "shl",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x62,    NEXT) 
OPDEF(CEE_SHR,                        "shr",              Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x63,    NEXT) 
OPDEF(CEE_SHR_UN,                     "shr.un",           Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x64,    NEXT) 
OPDEF(CEE_NEG,                        "neg",              Pop1,               Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x65,    NEXT) 
OPDEF(CEE_NOT,                        "not",              Pop1,               Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0x66,    NEXT) 
OPDEF(CEE_CONV_I1,                    "conv.i1",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x67,    NEXT) 
OPDEF(CEE_CONV_I2,                    "conv.i2",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x68,    NEXT) 
OPDEF(CEE_CONV_I4,                    "conv.i4",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x69,    NEXT) 
OPDEF(CEE_CONV_I8,                    "conv.i8",          Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x6A,    NEXT) 
OPDEF(CEE_CONV_R4,                    "conv.r4",          Pop1,               PushR4,      
InlineNone,         IPrimitive,  1,  0xFF,    0x6B,    NEXT) 
OPDEF(CEE_CONV_R8,                    "conv.r8",          Pop1,               PushR8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x6C,    NEXT) 
OPDEF(CEE_CONV_U4,                    "conv.u4",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x6D,    NEXT) 
OPDEF(CEE_CONV_U8,                    "conv.u8",          Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x6E,    NEXT) 
OPDEF(CEE_CALLVIRT,                   "callvirt",         VarPop,             VarPush,     
InlineMethod,       IObjModel,   1,  0xFF,    0x6F,    CALL) 
OPDEF(CEE_CPOBJ,                      "cpobj",            PopI+PopI,          Push0,       
InlineType,         IObjModel,   1,  0xFF,    0x70,    NEXT) 
OPDEF(CEE_LDOBJ,                      "ldobj",            PopI,               Push1,       
InlineType,         IObjModel,   1,  0xFF,    0x71,    NEXT) 
OPDEF(CEE_LDSTR,                      "ldstr",            Pop0,               PushRef,     
InlineString,       IObjModel,   1,  0xFF,    0x72,    NEXT) 
OPDEF(CEE_NEWOBJ,                     "newobj",           VarPop,             PushRef,     
InlineMethod,       IObjModel,   1,  0xFF,    0x73,    CALL) 
OPDEF(CEE_CASTCLASS,                  "castclass",        PopRef,             PushRef,     
InlineType,         IObjModel,   1,  0xFF,    0x74,    NEXT) 
OPDEF(CEE_ISINST,                     "isinst",           PopRef,             PushI,       
InlineType,         IObjModel,   1,  0xFF,    0x75,    NEXT) 
OPDEF(CEE_CONV_R_UN,                  "conv.r.un",        Pop1,               PushR8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x76,    NEXT) 
OPDEF(CEE_UNUSED58,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x77,    NEXT) 
OPDEF(CEE_UNUSED1,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0x78,    NEXT) 
OPDEF(CEE_UNBOX,                      "unbox",            PopRef,             PushI,       
InlineType,         IPrimitive,  1,  0xFF,    0x79,    NEXT) 
OPDEF(CEE_THROW,                      "throw",            PopRef,             Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x7A,    THROW) 
OPDEF(CEE_LDFLD,                      "ldfld",            PopRef,             Push1,       
InlineField,        IObjModel,   1,  0xFF,    0x7B,    NEXT) 
OPDEF(CEE_LDFLDA,                     "ldflda",           PopRef,             PushI,       
InlineField,        IObjModel,   1,  0xFF,    0x7C,    NEXT) 
OPDEF(CEE_STFLD,                      "stfld",            PopRef+Pop1,        Push0,       
InlineField,        IObjModel,   1,  0xFF,    0x7D,    NEXT) 
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OPDEF(CEE_LDSFLD,                     "ldsfld",           Pop0,               Push1,       
InlineField,        IObjModel,   1,  0xFF,    0x7E,    NEXT) 
OPDEF(CEE_LDSFLDA,                    "ldsflda",          Pop0,               PushI,       
InlineField,        IObjModel,   1,  0xFF,    0x7F,    NEXT) 
OPDEF(CEE_STSFLD,                     "stsfld",           Pop1,               Push0,       
InlineField,        IObjModel,   1,  0xFF,    0x80,    NEXT) 
OPDEF(CEE_STOBJ,                      "stobj",            PopI+Pop1,          Push0,       
InlineType,         IPrimitive,  1,  0xFF,    0x81,    NEXT) 
OPDEF(CEE_CONV_OVF_I1_UN,             "conv.ovf.i1.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x82,    NEXT) 
OPDEF(CEE_CONV_OVF_I2_UN,             "conv.ovf.i2.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x83,    NEXT) 
OPDEF(CEE_CONV_OVF_I4_UN,             "conv.ovf.i4.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x84,    NEXT) 
OPDEF(CEE_CONV_OVF_I8_UN,             "conv.ovf.i8.un",   Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x85,    NEXT) 
OPDEF(CEE_CONV_OVF_U1_UN,             "conv.ovf.u1.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x86,    NEXT) 
OPDEF(CEE_CONV_OVF_U2_UN,             "conv.ovf.u2.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x87,    NEXT) 
OPDEF(CEE_CONV_OVF_U4_UN,             "conv.ovf.u4.un",   Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x88,    NEXT) 
OPDEF(CEE_CONV_OVF_U8_UN,             "conv.ovf.u8.un",   Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0x89,    NEXT) 
OPDEF(CEE_CONV_OVF_I_UN,              "conv.ovf.i.un",    Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x8A,    NEXT) 
OPDEF(CEE_CONV_OVF_U_UN,              "conv.ovf.u.un",    Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0x8B,    NEXT) 
OPDEF(CEE_BOX,                        "box",              Pop1,               PushRef,     
InlineType,         IPrimitive,  1,  0xFF,    0x8C,    NEXT) 
OPDEF(CEE_NEWARR,                     "newarr",           PopI,               PushRef,     
InlineType,         IObjModel,   1,  0xFF,    0x8D,    NEXT) 
OPDEF(CEE_LDLEN,                      "ldlen",            PopRef,             PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x8E,    NEXT) 
OPDEF(CEE_LDELEMA,                    "ldelema",          PopRef+PopI,        PushI,       
InlineType,         IObjModel,   1,  0xFF,    0x8F,    NEXT) 
OPDEF(CEE_LDELEM_I1,                  "ldelem.i1",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x90,    NEXT) 
OPDEF(CEE_LDELEM_U1,                  "ldelem.u1",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x91,    NEXT) 
OPDEF(CEE_LDELEM_I2,                  "ldelem.i2",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x92,    NEXT) 
OPDEF(CEE_LDELEM_U2,                  "ldelem.u2",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x93,    NEXT) 
OPDEF(CEE_LDELEM_I4,                  "ldelem.i4",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x94,    NEXT) 
OPDEF(CEE_LDELEM_U4,                  "ldelem.u4",        PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x95,    NEXT) 
OPDEF(CEE_LDELEM_I8,                  "ldelem.i8",        PopRef+PopI,        PushI8,      
InlineNone,         IObjModel,   1,  0xFF,    0x96,    NEXT) 
OPDEF(CEE_LDELEM_I,                   "ldelem.i",         PopRef+PopI,        PushI,       
InlineNone,         IObjModel,   1,  0xFF,    0x97,    NEXT) 
OPDEF(CEE_LDELEM_R4,                  "ldelem.r4",        PopRef+PopI,        PushR4,      
InlineNone,         IObjModel,   1,  0xFF,    0x98,    NEXT) 
OPDEF(CEE_LDELEM_R8,                  "ldelem.r8",        PopRef+PopI,        PushR8,      
InlineNone,         IObjModel,   1,  0xFF,    0x99,    NEXT) 
OPDEF(CEE_LDELEM_REF,                 "ldelem.ref",       PopRef+PopI,        PushRef,     
InlineNone,         IObjModel,   1,  0xFF,    0x9A,    NEXT) 
OPDEF(CEE_STELEM_I,                   "stelem.i",         PopRef+PopI+PopI,   Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x9B,    NEXT) 
OPDEF(CEE_STELEM_I1,                  "stelem.i1",        PopRef+PopI+PopI,   Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x9C,    NEXT) 
OPDEF(CEE_STELEM_I2,                  "stelem.i2",        PopRef+PopI+PopI,   Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x9D,    NEXT) 
OPDEF(CEE_STELEM_I4,                  "stelem.i4",        PopRef+PopI+PopI,   Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x9E,    NEXT) 
OPDEF(CEE_STELEM_I8,                  "stelem.i8",        PopRef+PopI+PopI8,  Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0x9F,    NEXT) 
OPDEF(CEE_STELEM_R4,                  "stelem.r4",        PopRef+PopI+PopR4,  Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0xA0,    NEXT) 
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OPDEF(CEE_STELEM_R8,                  "stelem.r8",        PopRef+PopI+PopR8,  Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0xA1,    NEXT) 
OPDEF(CEE_STELEM_REF,                 "stelem.ref",       PopRef+PopI+PopRef, Push0,       
InlineNone,         IObjModel,   1,  0xFF,    0xA2,    NEXT) 
OPDEF(CEE_UNUSED2,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA3,    NEXT) 
OPDEF(CEE_UNUSED3,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA4,    NEXT) 
OPDEF(CEE_UNUSED4,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA5,    NEXT) 
OPDEF(CEE_UNUSED5,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA6,    NEXT) 
OPDEF(CEE_UNUSED6,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA7,    NEXT) 
OPDEF(CEE_UNUSED7,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA8,    NEXT) 
OPDEF(CEE_UNUSED8,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xA9,    NEXT) 
OPDEF(CEE_UNUSED9,                    "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAA,    NEXT) 
OPDEF(CEE_UNUSED10,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAB,    NEXT) 
OPDEF(CEE_UNUSED11,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAC,    NEXT) 
OPDEF(CEE_UNUSED12,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAD,    NEXT) 
OPDEF(CEE_UNUSED13,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAE,    NEXT) 
OPDEF(CEE_UNUSED14,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xAF,    NEXT) 
OPDEF(CEE_UNUSED15,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB0,    NEXT) 
OPDEF(CEE_UNUSED16,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB1,    NEXT) 
OPDEF(CEE_UNUSED17,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB2,    NEXT) 
OPDEF(CEE_CONV_OVF_I1,                "conv.ovf.i1",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB3,    NEXT) 
OPDEF(CEE_CONV_OVF_U1,                "conv.ovf.u1",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB4,    NEXT) 
OPDEF(CEE_CONV_OVF_I2,                "conv.ovf.i2",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB5,    NEXT) 
OPDEF(CEE_CONV_OVF_U2,                "conv.ovf.u2",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB6,    NEXT) 
OPDEF(CEE_CONV_OVF_I4,                "conv.ovf.i4",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB7,    NEXT) 
OPDEF(CEE_CONV_OVF_U4,                "conv.ovf.u4",      Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xB8,    NEXT) 
OPDEF(CEE_CONV_OVF_I8,                "conv.ovf.i8",      Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0xB9,    NEXT) 
OPDEF(CEE_CONV_OVF_U8,                "conv.ovf.u8",      Pop1,               PushI8,      
InlineNone,         IPrimitive,  1,  0xFF,    0xBA,    NEXT) 
OPDEF(CEE_UNUSED50,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xBB,    NEXT) 
OPDEF(CEE_UNUSED18,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xBC,    NEXT) 
OPDEF(CEE_UNUSED19,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xBD,    NEXT) 
OPDEF(CEE_UNUSED20,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xBE,    NEXT) 
OPDEF(CEE_UNUSED21,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xBF,    NEXT) 
OPDEF(CEE_UNUSED22,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC0,    NEXT) 
OPDEF(CEE_UNUSED23,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC1,    NEXT) 
OPDEF(CEE_REFANYVAL,                  "refanyval",        Pop1,               PushI,       
InlineType,         IPrimitive,  1,  0xFF,    0xC2,    NEXT) 
OPDEF(CEE_CKFINITE,                   "ckfinite",         Pop1,               PushR8,      
InlineNone,         IPrimitive,  1,  0xFF,    0xC3,    NEXT) 
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OPDEF(CEE_UNUSED24,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC4,    NEXT) 
OPDEF(CEE_UNUSED25,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC5,    NEXT) 
OPDEF(CEE_MKREFANY,                   "mkrefany",         PopI,               Push1,       
InlineType,         IPrimitive,  1,  0xFF,    0xC6,    NEXT) 
OPDEF(CEE_UNUSED59,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC7,    NEXT) 
OPDEF(CEE_UNUSED60,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC8,    NEXT) 
OPDEF(CEE_UNUSED61,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xC9,    NEXT) 
OPDEF(CEE_UNUSED62,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCA,    NEXT) 
OPDEF(CEE_UNUSED63,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCB,    NEXT) 
OPDEF(CEE_UNUSED64,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCC,    NEXT) 
OPDEF(CEE_UNUSED65,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCD,    NEXT) 
OPDEF(CEE_UNUSED66,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCE,    NEXT) 
OPDEF(CEE_UNUSED67,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xCF,    NEXT) 
OPDEF(CEE_LDTOKEN,                    "ldtoken",          Pop0,               PushI,       
InlineTok,          IPrimitive,  1,  0xFF,    0xD0,    NEXT) 
OPDEF(CEE_CONV_U2,                    "conv.u2",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD1,    NEXT) 
OPDEF(CEE_CONV_U1,                    "conv.u1",          Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD2,    NEXT) 
OPDEF(CEE_CONV_I,                     "conv.i",           Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD3,    NEXT) 
OPDEF(CEE_CONV_OVF_I,                 "conv.ovf.i",       Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD4,    NEXT) 
OPDEF(CEE_CONV_OVF_U,                 "conv.ovf.u",       Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD5,    NEXT) 
OPDEF(CEE_ADD_OVF,                    "add.ovf",          Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD6,    NEXT) 
OPDEF(CEE_ADD_OVF_UN,                 "add.ovf.un",       Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD7,    NEXT) 
OPDEF(CEE_MUL_OVF,                    "mul.ovf",          Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD8,    NEXT) 
OPDEF(CEE_MUL_OVF_UN,                 "mul.ovf.un",       Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xD9,    NEXT) 
OPDEF(CEE_SUB_OVF,                    "sub.ovf",          Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xDA,    NEXT) 
OPDEF(CEE_SUB_OVF_UN,                 "sub.ovf.un",       Pop1+Pop1,          Push1,       
InlineNone,         IPrimitive,  1,  0xFF,    0xDB,    NEXT) 
OPDEF(CEE_ENDFINALLY,                 "endfinally",       Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xDC,    RETURN) 
OPDEF(CEE_LEAVE,                      "leave",            Pop0,               Push0,       
InlineBrTarget,     IPrimitive,  1,  0xFF,    0xDD,    BRANCH) 
OPDEF(CEE_LEAVE_S,                    "leave.s",          Pop0,               Push0,       
ShortInlineBrTarget,IPrimitive,  1,  0xFF,    0xDE,    BRANCH) 
OPDEF(CEE_STIND_I,                    "stind.i",          PopI+PopI,          Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xDF,    NEXT) 
OPDEF(CEE_CONV_U,                     "conv.u",           Pop1,               PushI,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE0,    NEXT) 
OPDEF(CEE_UNUSED26,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE1,    NEXT) 
OPDEF(CEE_UNUSED27,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE2,    NEXT) 
OPDEF(CEE_UNUSED28,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE3,    NEXT) 
OPDEF(CEE_UNUSED29,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE4,    NEXT) 
OPDEF(CEE_UNUSED30,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE5,    NEXT) 
OPDEF(CEE_UNUSED31,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE6,    NEXT) 



 

26 Partition VI 

OPDEF(CEE_UNUSED32,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE7,    NEXT) 
OPDEF(CEE_UNUSED33,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE8,    NEXT) 
OPDEF(CEE_UNUSED34,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xE9,    NEXT) 
OPDEF(CEE_UNUSED35,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xEA,    NEXT) 
OPDEF(CEE_UNUSED36,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xEB,    NEXT) 
OPDEF(CEE_UNUSED37,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xEC,    NEXT) 
OPDEF(CEE_UNUSED38,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xED,    NEXT) 
OPDEF(CEE_UNUSED39,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xEE,    NEXT) 
OPDEF(CEE_UNUSED40,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xEF,    NEXT) 
OPDEF(CEE_UNUSED41,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF0,    NEXT) 
OPDEF(CEE_UNUSED42,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF1,    NEXT) 
OPDEF(CEE_UNUSED43,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF2,    NEXT) 
OPDEF(CEE_UNUSED44,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF3,    NEXT) 
OPDEF(CEE_UNUSED45,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF4,    NEXT) 
OPDEF(CEE_UNUSED46,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF5,    NEXT) 
OPDEF(CEE_UNUSED47,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF6,    NEXT) 
OPDEF(CEE_UNUSED48,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  1,  0xFF,    0xF7,    NEXT) 
OPDEF(CEE_PREFIX7,                    "prefix7",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xF8,    META) 
OPDEF(CEE_PREFIX6,                    "prefix6",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xF9,    META) 
OPDEF(CEE_PREFIX5,                    "prefix5",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFA,    META) 
OPDEF(CEE_PREFIX4,                    "prefix4",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFB,    META) 
OPDEF(CEE_PREFIX3,                    "prefix3",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFC,    META) 
OPDEF(CEE_PREFIX2,                    "prefix2",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFD,    META) 
OPDEF(CEE_PREFIX1,                    "prefix1",          Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFE,    META) 
OPDEF(CEE_PREFIXREF,                  "prefixref",        Pop0,               Push0,       
InlineNone,         IInternal,   1,  0xFF,    0xFF,    META) 
 
OPDEF(CEE_ARGLIST,                    "arglist",          Pop0,               PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x00,    NEXT) 
OPDEF(CEE_CEQ,                        "ceq",              Pop1+Pop1,          PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x01,    NEXT) 
OPDEF(CEE_CGT,                        "cgt",              Pop1+Pop1,          PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x02,    NEXT) 
OPDEF(CEE_CGT_UN,                     "cgt.un",           Pop1+Pop1,          PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x03,    NEXT) 
OPDEF(CEE_CLT,                        "clt",              Pop1+Pop1,          PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x04,    NEXT) 
OPDEF(CEE_CLT_UN,                     "clt.un",           Pop1+Pop1,          PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x05,    NEXT) 
OPDEF(CEE_LDFTN,                      "ldftn",            Pop0,               PushI,       
InlineMethod,       IPrimitive,  2,  0xFE,    0x06,    NEXT) 
OPDEF(CEE_LDVIRTFTN,                  "ldvirtftn",        PopRef,             PushI,       
InlineMethod,       IPrimitive,  2,  0xFE,    0x07,    NEXT) 
OPDEF(CEE_UNUSED56,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x08,    NEXT) 
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OPDEF(CEE_LDARG,                      "ldarg",            Pop0,               Push1,       
InlineVar,          IPrimitive,  2,  0xFE,    0x09,    NEXT) 
OPDEF(CEE_LDARGA,                     "ldarga",           Pop0,               PushI,       
InlineVar,          IPrimitive,  2,  0xFE,    0x0A,    NEXT) 
OPDEF(CEE_STARG,                      "starg",            Pop1,               Push0,       
InlineVar,          IPrimitive,  2,  0xFE,    0x0B,    NEXT) 
OPDEF(CEE_LDLOC,                      "ldloc",            Pop0,               Push1,       
InlineVar,          IPrimitive,  2,  0xFE,    0x0C,    NEXT) 
OPDEF(CEE_LDLOCA,                     "ldloca",           Pop0,               PushI,       
InlineVar,          IPrimitive,  2,  0xFE,    0x0D,    NEXT) 
OPDEF(CEE_STLOC,                      "stloc",            Pop1,               Push0,       
InlineVar,          IPrimitive,  2,  0xFE,    0x0E,    NEXT) 
OPDEF(CEE_LOCALLOC,                   "localloc",         PopI,               PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x0F,    NEXT) 
OPDEF(CEE_UNUSED57,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x10,    NEXT) 
OPDEF(CEE_ENDFILTER,                  "endfilter",        PopI,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x11,    RETURN) 
OPDEF(CEE_UNALIGNED,                  "unaligned.",       Pop0,               Push0,       
ShortInlineI,       IPrefix,     2,  0xFE,    0x12,    META) 
OPDEF(CEE_VOLATILE,                   "volatile.",        Pop0,               Push0,       
InlineNone,         IPrefix,     2,  0xFE,    0x13,    META) 
OPDEF(CEE_TAILCALL,                   "tail.",            Pop0,               Push0,       
InlineNone,         IPrefix,     2,  0xFE,    0x14,    META) 
OPDEF(CEE_INITOBJ,                    "initobj",          PopI,               Push0,       
InlineType,         IObjModel,   2,  0xFE,    0x15,    NEXT) 
OPDEF(CEE_UNUSED68,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x16,    NEXT) 
OPDEF(CEE_CPBLK,                      "cpblk",            PopI+PopI+PopI,     Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x17,    NEXT) 
OPDEF(CEE_INITBLK,                    "initblk",          PopI+PopI+PopI,     Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x18,    NEXT) 
OPDEF(CEE_UNUSED69,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x19,    NEXT) 
OPDEF(CEE_RETHROW,                    "rethrow",          Pop0,               Push0,       
InlineNone,         IObjModel,   2,  0xFE,    0x1A,    THROW) 
OPDEF(CEE_UNUSED51,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x1B,    NEXT) 
OPDEF(CEE_SIZEOF,                     "sizeof",           Pop0,               PushI,       
InlineType,         IPrimitive,  2,  0xFE,    0x1C,    NEXT) 
OPDEF(CEE_REFANYTYPE,                 "refanytype",       Pop1,               PushI,       
InlineNone,         IPrimitive,  2,  0xFE,    0x1D,    NEXT) 
OPDEF(CEE_UNUSED52,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x1E,    NEXT) 
OPDEF(CEE_UNUSED53,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x1F,    NEXT) 
OPDEF(CEE_UNUSED54,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x20,    NEXT) 
OPDEF(CEE_UNUSED55,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x21,    NEXT) 
OPDEF(CEE_UNUSED70,                   "unused",           Pop0,               Push0,       
InlineNone,         IPrimitive,  2,  0xFE,    0x22,    NEXT) 
 
// These are not real opcodes, but they are handy internally in the EE 
 
OPDEF(CEE_ILLEGAL,                    "illegal",          Pop0,               Push0,       
InlineNone,         IInternal,   0,  MOOT,    MOOT,    META) 
OPDEF(CEE_MACRO_END,                  "endmac",           Pop0,               Push0,       
InlineNone,         IInternal,   0,  MOOT,    MOOT,    META) 
 
 
 
#ifndef OPALIAS 
#define _OPALIAS_DEFINED_ 
#define OPALIAS(canonicalName, stringName, realOpcode) 
#endif 
 
OPALIAS(CEE_BRNULL,        "brnull",            CEE_BRFALSE) 
OPALIAS(CEE_BRNULL_S,      "brnull.s",          CEE_BRFALSE_S) 
OPALIAS(CEE_BRZERO,        "brzero",            CEE_BRFALSE) 
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OPALIAS(CEE_BRZERO_S,      "brzero.s",          CEE_BRFALSE_S) 
OPALIAS(CEE_BRINST,        "brinst",            CEE_BRTRUE) 
OPALIAS(CEE_BRINST_S,      "brinst.s",          CEE_BRTRUE_S) 
OPALIAS(CEE_LDIND_U8,      "ldind.u8",          CEE_LDIND_I8) 
OPALIAS(CEE_LDELEM_U8,     "ldelem.u8",         CEE_LDELEM_I8) 
OPALIAS(CEE_LDC_I4_M1x,    "ldc.i4.M1",         CEE_LDC_I4_M1) 
OPALIAS(CEE_ENDFAULT,      "endfault",          CEE_ENDFINALLY) 
 
#ifdef _OPALIAS_DEFINED_ 
#undef OPALIAS 
#undef _OPALIAS_DEFINED_ 
#endif 
 

C.3  Complete grammar 
This grammar provides a number of ease-of-use features not provided in the grammar of Partition II, 
as well as supporting some features which are not portable across implementations and hence are not 
part of this standard. Unlike the grammar of Partition II, this one is designed for ease of 
programming rather than ease of reading; it can be converted directly into a YACC grammar. 

Lexical tokens 
    ID - C style alphaNumeric identifier (e.g., Hello_There2) 
    QSTRING  - C style quoted string (e.g.,  "hi\n") 
    SQSTRING - C style singlely quoted string(e.g.,  'hi') 
    INT32    - C style 32-bit integer (e.g.,  235,  03423, 0x34FFF) 
    INT64    - C style 64-bit integer (e.g.,  -2353453636235234,  
0x34FFFFFFFFFF) 
    FLOAT64  - C style floating point number (e.g.,  -0.2323, 354.3423, 
3435.34E-5) 
    INSTR_*  - IL instructions of a particular class (see opcode.def). 
-----------------------------------------------------------------------
----------- 
START           : decls 
                ;       
 
decls                   : /* EMPTY */ 
                        | decls decl                                             
                        ; 
 
decl                    : classHead '{' classDecls '}'  
                        | nameSpaceHead '{' decls '}'  
                        | methodHead  methodDecls '}'  
                        | fieldDecl 
                        | dataDecl 
                        | vtableDecl 
                        | vtfixupDecl 
                        | extSourceSpec 
                        | fileDecl 
                        | assemblyHead '{' assemblyDecls '}'  
                        | assemblyRefHead '{' assemblyRefDecls '}'  
                        | comtypeHead '{' comtypeDecls '}'  
                        | manifestResHead '{' manifestResDecls '}'  
                        | moduleHead 
                        | secDecl 
                        | customAttrDecl 
      | '.subsystem' int32  
      | '.corflags' int32  
      | '.file' 'alignment' int32  
      | '.imagebase' int64  
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      | languageDecl 
                        ; 
 
compQstring             : QSTRING  
                        | compQstring '+' QSTRING  
      ; 
 
languageDecl   : '.language' SQSTRING  
                        | '.language' SQSTRING ',' SQSTRING  
                        | '.language' SQSTRING ',' SQSTRING ',' 
SQSTRING  
      ; 
 
customAttrDecl          : '.custom' customType  
                        | '.custom' customType '=' compQstring  
                        | customHead bytes ')'  
                        | '.custom' '(' ownerType ')' customType  
                        | '.custom' '(' ownerType ')' customType '=' 
compQstring  
                        | customHeadWithOwner bytes ')'  
                        ; 
 
moduleHead              : '.module'  
                        | '.module' name1  
      | '.module' 'extern' name1  
                        ; 
 
 
vtfixupDecl             : '.vtfixup' '[' int32 ']' vtfixupAttr 'at' id  
                        ; 
 
vtfixupAttr             : /* EMPTY */  
                        | vtfixupAttr 'int32'  
                        | vtfixupAttr 'int64'  
                        | vtfixupAttr 'fromunmanaged'  
                        | vtfixupAttr 'callmostderived'  
                        ; 
 
vtableDecl              : vtableHead bytes ')'  
                        ; 
 
vtableHead              : '.vtable' '=' '('  
                        ; 
 
nameSpaceHead           : '.namespace' name1  
                        ; 
 
classHead               : '.class' classAttr id extendsClause 
implClause  
                        ; 
 
classAttr               : /* EMPTY */  
                        | classAttr 'public'  
                        | classAttr 'private'  
                        | classAttr 'value'  
                        | classAttr 'enum'  
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                        | classAttr 'interface'  
                        | classAttr 'sealed'  
                        | classAttr 'abstract'  
                        | classAttr 'auto'  
                        | classAttr 'sequential'  
                        | classAttr 'explicit'  
                        | classAttr 'ansi'  
                        | classAttr 'unicode'  
                        | classAttr 'autochar'  
                        | classAttr 'import'  
                        | classAttr 'serializable'  
                        | classAttr 'nested' 'public'  
                        | classAttr 'nested' 'private'  
                        | classAttr 'nested' 'family'  
                        | classAttr 'nested' 'assembly'  
                        | classAttr 'nested' 'famandassem'  
                        | classAttr 'nested' 'famorassem'  
                        | classAttr 'beforefieldinit'  
                        | classAttr 'specialname'  
                        | classAttr 'rtspecialname'  
                        ; 
 
extendsClause           : /* EMPTY */                                            
                        | 'extends' className  
                        ; 
 
implClause              : /* EMPTY */ 
                        | 'implements' classNames 
                                                ; 
 
classNames              : classNames ',' className  
                        | className  
                        ; 
 
classDecls              : /* EMPTY */ 
                        | classDecls classDecl 
                        ; 
 
classDecl               : methodHead  methodDecls '}'  
                        | classHead '{' classDecls '}'  
                        | eventHead '{' eventDecls '}'  
                        | propHead '{' propDecls '}'  
                        | fieldDecl 
                        | dataDecl 
                        | secDecl 
                        | extSourceSpec 
                        | customAttrDecl 
                        | '.size' int32  
                        | '.pack' int32  
                        | exportHead '{' comtypeDecls '}'  
                        | '.override' typeSpec '::' methodName 'with' 
callConv type typeSpec '::' methodName '(' sigArgs0 ')'  
      | languageDecl 
                        ; 
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fieldDecl               : '.field' repeatOpt fieldAttr type id atOpt 
initOpt  
                        ; 
 
 
atOpt                   : /* EMPTY */   
                        | 'at' id  
                        ; 
 
initOpt                 : /* EMPTY */  
                        | '=' fieldInit  
      ; 
 
repeatOpt    : /* EMPTY */  
                        | '[' int32 ']'  
      ; 
 
customHead              : '.custom' customType '=' '('  
                        ; 
 
customHeadWithOwner     : '.custom' '(' ownerType ')' customType '=' 
'('  
                        ; 
 
memberRef    : methodSpec callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | methodSpec callConv type methodName '(' 
sigArgs0 ')'  
                        | 'field' type typeSpec '::' id  
                        | 'field' type id  
                        ; 
 
customType              : callConv type typeSpec '::' '.ctor' '(' 
sigArgs0 ')'  
                        | callConv type '.ctor' '(' sigArgs0 ')'  
                        ; 
 
ownerType               : typeSpec  
                        | memberRef  
                        ; 
 
eventHead               : '.event' eventAttr typeSpec id  
                        | '.event' eventAttr id  
                        ; 
 
 
eventAttr               : /* EMPTY */  
                        | eventAttr 'rtspecialname' /**/ 
                        | eventAttr 'specialname'  
                        ; 
 
eventDecls              : /* EMPTY */ 
                        | eventDecls eventDecl 
                        ; 
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eventDecl               : '.addon' callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | '.addon' callConv type methodName '(' 
sigArgs0 ')'  
                        | '.removeon' callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | '.removeon' callConv type methodName '(' 
sigArgs0 ')'  
                        | '.fire' callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | '.fire' callConv type methodName '(' sigArgs0 
')'  
                        | '.other' callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | '.other' callConv type methodName '(' 
sigArgs0 ')'  
                        | extSourceSpec 
                        | customAttrDecl 
      | languageDecl 
                        ; 
 
propHead                : '.property' propAttr callConv type id '(' 
sigArgs0 ')' initOpt  
                        ; 
 
propAttr                : /* EMPTY */  
                        | propAttr 'rtspecialname' /**/ 
                        | propAttr 'specialname'  
                        ; 
 
propDecls               : /* EMPTY */ 
                        | propDecls propDecl 
                        ; 
 
 
propDecl                : '.set' callConv type typeSpec '::' methodName 
'(' sigArgs0 ')'  
                        | '.set' callConv type methodName '(' sigArgs0 
')'  
                        | '.get' callConv type typeSpec '::' methodName 
'(' sigArgs0 ')'  
                        | '.get' callConv type methodName '(' sigArgs0 
')'  
                        | '.other' callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | '.other' callConv type methodName '(' 
sigArgs0 ')'  
                        | customAttrDecl 
                        | extSourceSpec 
      | languageDecl 
                        ; 
 
 
methodHeadPart1         : '.method'  
                        ; 
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methodHead              : methodHeadPart1 methAttr callConv paramAttr 
type methodName '(' sigArgs0 ')' implAttr '{'  
                        | methodHeadPart1 methAttr callConv paramAttr 
type 'marshal' '(' nativeType ')' methodName '(' sigArgs0 ')' implAttr 
'{'  
                        ; 
 
 
methAttr                : /* EMPTY */  
 
                        | methAttr 'static'  
                        | methAttr 'public'  
                        | methAttr 'private'  
                        | methAttr 'family'  
                        | methAttr 'final'  
                        | methAttr 'specialname'  
                        | methAttr 'virtual'  
                        | methAttr 'abstract'  
                        | methAttr 'assembly'  
                        | methAttr 'famandassem'  
                        | methAttr 'famorassem'  
                        | methAttr 'privatescope'  
                        | methAttr 'hidebysig'  
                        | methAttr 'newslot'  
                        | methAttr 'rtspecialname' /**/ 
                        | methAttr 'unmanagedexp'  
                        | methAttr 'reqsecobj'  
       
                        | methAttr 'pinvokeimpl' '(' compQstring 'as' 
compQstring pinvAttr ')'  
                        | methAttr 'pinvokeimpl' '(' compQstring  
pinvAttr ')'  
                        | methAttr 'pinvokeimpl' '(' pinvAttr ')'  
                        ; 
 
pinvAttr                : /* EMPTY */  
                        | pinvAttr 'nomangle'  
                        | pinvAttr 'ansi'  
                        | pinvAttr 'unicode'  
                        | pinvAttr 'autochar'  
                        | pinvAttr 'lasterr'  
                        | pinvAttr 'winapi'  
                        | pinvAttr 'cdecl'  
                        | pinvAttr 'stdcall'  
                        | pinvAttr 'thiscall'  
                        | pinvAttr 'fastcall'  
                        ; 
 
methodName              : '.ctor'  
                        | '.cctor'  
                        | name1  
                        ; 
 
paramAttr               : /* EMPTY */  
                        | paramAttr '[' 'in' ']'  
                        | paramAttr '[' 'out' ']'  
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                        | paramAttr '[' 'opt' ']'  
                        | paramAttr '[' int32 ']'   
                        ; 
         
fieldAttr               : /* EMPTY */  
                        | fieldAttr 'static'  
                        | fieldAttr 'public'  
                        | fieldAttr 'private'  
                        | fieldAttr 'family'  
                        | fieldAttr 'initonly'  
                        | fieldAttr 'rtspecialname'  /**/ 
                        | fieldAttr 'specialname'  
      /* commented out because PInvoke 
for fields is not supported by EE 
                        | fieldAttr 'pinvokeimpl' '(' compQstring 'as' 
compQstring pinvAttr ')'  
                        | fieldAttr 'pinvokeimpl' '(' compQstring  
pinvAttr ')'  
                        | fieldAttr 'pinvokeimpl' '(' pinvAttr ')'  
      */ 
                        | fieldAttr 'marshal' '(' nativeType ')'  
                        | fieldAttr 'assembly'  
                        | fieldAttr 'famandassem'  
                        | fieldAttr 'famorassem'  
                        | fieldAttr 'privatescope'  
                        | fieldAttr 'literal'  
                        | fieldAttr 'notserialized'  
                        ; 
 
implAttr                : /* EMPTY */  
                        | implAttr 'native'  
                        | implAttr 'cil'  
                        | implAttr 'optil'  
                        | implAttr 'managed'  
                        | implAttr 'unmanaged'  
                        | implAttr 'forwardref'  
                        | implAttr 'preservesig'  
                        | implAttr 'runtime'  
                        | implAttr 'internalcall'  
                        | implAttr 'synchronized'  
                        | implAttr 'noinlining'  
                        ; 
 
localsHead              : '.locals'  
                        ; 
 
 
methodDecl              : '.emitbyte' int32  
                        | sehBlock  
                        | '.maxstack' int32  
                        | localsHead '(' sigArgs0 ')'  
                        | localsHead 'init' '(' sigArgs0 ')'  
                        | '.entrypoint'  
                        | '.zeroinit'  
                        | dataDecl 
                        | instr 
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                        | id ':'  
                        | secDecl 
                        | extSourceSpec 
      | languageDecl 
                        | customAttrDecl 
      | '.export' '[' int32 ']'  
      | '.export' '[' int32 ']' 'as' 
id  
                        | '.vtentry' int32 ':' int32  
                        | '.override' typeSpec '::' methodName  
                        | scopeBlock 
                        | '.param' '[' int32 ']' initOpt  
                        ; 
 
scopeBlock              : scopeOpen methodDecls '}'  
                        ; 
 
scopeOpen               : '{'  
                        ; 
 
sehBlock                : tryBlock sehClauses 
                        ; 
 
sehClauses              : sehClause sehClauses 
                        | sehClause 
                        ; 
 
tryBlock                : tryHead scopeBlock  
                        | tryHead id 'to' id  
                        | tryHead int32 'to' int32  
                        ; 
 
tryHead                 : '.try'  
                        ; 
 
 
sehClause               : catchClause handlerBlock  
                        | filterClause handlerBlock  
                        | finallyClause handlerBlock  
                        | faultClause handlerBlock  
                        ; 
 
                                                                                       
filterClause            : filterHead scopeBlock  
                        | filterHead id  
                        | filterHead int32  
                        ; 
 
filterHead              : 'filter'   
                        ; 
 
catchClause             : 'catch' className  
                        ; 
 
finallyClause           : 'finally'  
                        ; 
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faultClause             : 'fault'  
                        ; 
 
handlerBlock            : scopeBlock                   
                        | 'handler' id 'to' id  
                        | 'handler' int32 'to' int32  
                        ; 
 
 
methodDecls             : /* EMPTY */ 
                        | methodDecls methodDecl 
                        ; 
 
dataDecl                : ddHead ddBody 
                        ; 
 
ddHead                  : '.data' tls id '='  
                        | '.data' tls   
                        ; 
 
tls                     : /* EMPTY */  
                        | 'tls'  
                        ; 
 
ddBody                  : '{' ddItemList '}' 
                        | ddItem 
                        ; 
 
ddItemList              : ddItem ',' ddItemList 
                        | ddItem 
                        ; 
 
ddItemCount             : /* EMPTY */  
                        | '[' int32 ']'  
                        ; 
 
ddItem                  : 'char' '*' '(' compQstring ')'  
                        | '&' '(' id ')'  
                        | bytearrayhead bytes ')'  
                        | 'float32' '(' float64 ')' ddItemCount  
                        | 'float64' '(' float64 ')' ddItemCount  
                        | 'int64' '(' int64 ')' ddItemCount   
                        | 'int32' '(' int32 ')' ddItemCount   
                        | 'int16' '(' int32 ')' ddItemCount  
                        | 'int8' '(' int32 ')' ddItemCount  
                        | 'float32' ddItemCount  
                        | 'float64' ddItemCount  
                        | 'int64' ddItemCount   
                        | 'int32' ddItemCount   
                        | 'int16' ddItemCount  
                        | 'int8' ddItemCount  
                        ; 
 
fieldInit               : 'float32' '(' float64 ')'  
                        | 'float64' '(' float64 ')'  
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                        | 'float32' '(' int64 ')'  
                        | 'float64' '(' int64 ')'  
                        | 'int64' '(' int64 ')'   
                        | 'int32' '(' int64 ')'  
                        | 'int16' '(' int64 ')'  
                        | 'char' '(' int64 ')'  
                        | 'int8' '(' int64 ')'  
                        | 'bool' '(' truefalse ')'  
                        | compQstring  
                        | bytearrayhead bytes ')'  
      | 'nullref'  
                        ; 
 
bytearrayhead           : 'bytearray' '('  
                        ; 
 
bytes     : /* EMPTY */  
      | hexbytes  
      ; 
 
hexbytes                : HEXBYTE  
                        | hexbytes HEXBYTE  
                        ; 
 
instr_r_head            : INSTR_R '('  
                        ; 
 
instr_tok_head          : INSTR_TOK  
                        ; 
 
methodSpec              : 'method'  
                        ; 
 
instr                   : INSTR_NONE  
                        | INSTR_VAR int32  
                        | INSTR_VAR id  
                        | INSTR_I int32  
                        | INSTR_I8 int64  
                        | INSTR_R float64  
                        | INSTR_R int64  
                        | instr_r_head bytes ')'  
                        | INSTR_BRTARGET int32  
                        | INSTR_BRTARGET id  
                        | INSTR_METHOD callConv type typeSpec '::' 
methodName '(' sigArgs0 ')'  
                        | INSTR_METHOD callConv type methodName '(' 
sigArgs0 ')'  
                        | INSTR_FIELD type typeSpec '::' id  
                        | INSTR_FIELD type id  
                        | INSTR_TYPE typeSpec  
                        | INSTR_STRING compQstring  
                        | INSTR_STRING bytearrayhead bytes ')'  
                        | INSTR_SIG callConv type '(' sigArgs0 ')'  
                        | INSTR_RVA id  
                        | INSTR_RVA int32  
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                        | instr_tok_head ownerType /* ownerType ::= 
memberRef | typeSpec */  
                        | INSTR_SWITCH '(' labels ')'  
                        | INSTR_PHI int16s  
                        ; 
 
sigArgs0                : /* EMPTY */  
                        | sigArgs1  
                        ; 
 
sigArgs1                : sigArg  
                        | sigArgs1 ',' sigArg  
                        ; 
 
sigArg                  : '...'  
                        | paramAttr type  
                        | paramAttr type id  
                        | paramAttr type 'marshal' '(' nativeType ')'  
                        | paramAttr type 'marshal' '(' nativeType ')' 
id  
                        ; 
 
name1                   : id  
                        | DOTTEDNAME  
                        | name1 '.' name1  
                        ; 
 
className               : '[' name1 ']' slashedName  
                        | '[' '.module' name1 ']' slashedName  
                        | slashedName  
                        ; 
 
slashedName             : name1  
                        | slashedName '/' name1  
                        ; 
 
typeSpec                : className  
                        | '[' name1 ']'  
                        | '[' '.module' name1 ']'  
                        | type  
                        ; 
 
callConv                : 'instance' callConv  
                        | 'explicit' callConv  
                        | callKind  
                        ; 
 
callKind                : /* EMPTY */  
                        | 'default'  
                        | 'vararg'  
                        | 'unmanaged' 'cdecl'  
                        | 'unmanaged' 'stdcall'  
                        | 'unmanaged' 'thiscall'  
                        | 'unmanaged' 'fastcall'  
                        ; 
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nativeType              : /* EMPTY */   
                        | 'custom' '(' compQstring ',' compQstring ',' 
compQstring ',' compQstring ')'  
                        | 'custom' '(' compQstring ',' compQstring ')'  
                        | 'fixed' 'sysstring' '[' int32 ']'  
                        | 'fixed' 'array' '[' int32 ']'  
                        | 'variant'  
                        | 'currency'  
                        | 'syschar'  
                        | 'void'  
                        | 'bool'  
                        | 'int8'  
                        | 'int16'  
                        | 'int32'  
                        | 'int64'  
                        | 'float32'  
                        | 'float64'  
                        | 'error'  
                        | 'unsigned' 'int8'  
                        | 'unsigned' 'int16'  
                        | 'unsigned' 'int32'  
                        | 'unsigned' 'int64'  
                        | nativeType '*'  
                        | nativeType '[' ']'  
                        | nativeType '[' int32 ']'  
                        | nativeType '[' int32 '+' int32 ']'  
                        | nativeType '[' '+' int32 ']'  
      | 'decimal'  
                        | 'date'  
                        | 'bstr'  
                        | 'lpstr'  
                        | 'lpwstr'  
                        | 'lptstr'  
                        | 'objectref'  
                        | 'iunknown'  
                        | 'idispatch'  
                        | 'struct'  
                        | 'interface'  
                        | 'safearray' variantType  
                        | 'safearray' variantType ',' compQstring  
                                                                 
                        | 'int'  
                        | 'unsigned' 'int'  
                        | 'nested' 'struct'  
                        | 'byvalstr'  
                        | 'ansi' 'bstr'  
                        | 'tbstr'  
                        | 'variant' 'bool'  
                        | methodSpec  
                        | 'as' 'any'  
                        | 'lpstruct'  
                        ; 
 
variantType             : /* EMPTY */  
                        | 'null'  
                        | 'variant'  
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                        | 'currency'  
                        | 'void'  
                        | 'bool'  
                        | 'int8'  
                        | 'int16'  
                        | 'int32'  
                        | 'int64'  
                        | 'float32'  
                        | 'float64'  
                        | 'unsigned' 'int8'  
                        | 'unsigned' 'int16'  
                        | 'unsigned' 'int32'  
                        | 'unsigned' 'int64'  
                        | '*'  
                        | variantType '[' ']'  
                        | variantType 'vector'  
                        | variantType '&'  
                        | 'decimal'  
                        | 'date'  
                        | 'bstr'  
                        | 'lpstr'  
                        | 'lpwstr'  
                        | 'iunknown'  
                        | 'idispatch'  
                        | 'safearray'  
                        | 'int'  
                        | 'unsigned' 'int'  
                        | 'error'  
                        | 'hresult'  
                        | 'carray'  
                        | 'userdefined'  
                        | 'record'  
                        | 'filetime'  
                        | 'blob'  
                        | 'stream'  
                        | 'storage'  
                        | 'streamed_object'  
                        | 'stored_object'  
                        | 'blob_object'  
                        | 'cf'  
                        | 'clsid'  
                        ; 
 
type                    : 'class' className   
      | 'object'   
      | 'string'   
                        | 'value' 'class' className   
                        | 'valuetype' className   
                        | type '[' ']'   
                        | type '[' bounds1 ']'   
      /* uncomment when and if this type 
is supported by the Runtime 
                        | type 'value' '[' int32 ']'  
                        */ 
      | type '&'  
                        | type '*'  
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                        | type 'pinned'  
                        | type 'modreq' '(' className ')'  
                        | type 'modopt' '(' className ')'  
                        | '!' int32  
                        | methodSpec callConv type '*' '(' sigArgs0 ')'  
                        | 'typedref'  
                        | 'char'  
                        | 'void'  
                        | 'bool'  
                        | 'int8'  
                        | 'int16'  
                        | 'int32'  
                        | 'int64'  
                        | 'float32'  
                        | 'float64'  
                        | 'unsigned' 'int8'  
                        | 'unsigned' 'int16'  
                        | 'unsigned' 'int32'  
                        | 'unsigned' 'int64'  
                        | 'native' 'int'  
                        | 'native' 'unsigned' 'int'  
                        | 'native' 'float'  
                        ; 
 
bounds1                 : bound  
                        | bounds1 ',' bound  
                        ; 
 
bound                   : /* EMPTY */  
                        | '...'  
                        | int32   
                        | int32 '...' int32     
                        | int32 '...'   
                        ; 
 
labels                  : /* empty */  
                        | id ',' labels  
                        | int32 ',' labels  
                        | id  
                        | int32  
                        ; 
 
 
id                      : ID  
                        | SQSTRING  
                        ; 
 
int16s                  : /* EMPTY */  
                        | int16s int32  
                        ; 
                                 
int32                   : INT64  
                        ; 
 
int64                   : INT64  
                        ; 
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float64                 : FLOAT64  
                        | 'float32' '(' int32 ')'  
                        | 'float64' '(' int64 ')'  
                        ; 
 
secDecl                 : '.permission' secAction typeSpec '(' 
nameValPairs ')'  
                        | '.permission' secAction typeSpec  
                        | psetHead bytes ')'  
                        ; 
 
psetHead                : '.permissionset' secAction '=' '('  
                        ; 
 
nameValPairs            : nameValPair  
                        | nameValPair ',' nameValPairs  
                        ; 
 
nameValPair             : compQstring '=' caValue  
                        ; 
 
truefalse    : 'true'  
      | 'false'  
      ; 
 
caValue                 : truefalse  
                        | int32  
                        | 'int32' '(' int32 ')'  
                        | compQstring  
                        | className '(' 'int8' ':' int32 ')'  
                        | className '(' 'int16' ':' int32 ')'  
                        | className '(' 'int32' ':' int32 ')'  
                        | className '(' int32 ')'  
                        ; 
 
secAction               : 'request'  
                        | 'demand'  
                        | 'assert'  
                        | 'deny'  
                        | 'permitonly'  
                        | 'linkcheck'  
                        | 'inheritcheck'  
                        | 'reqmin'  
                        | 'reqopt'  
                        | 'reqrefuse'  
                        | 'prejitgrant'  
                        | 'prejitdeny'  
                        | 'noncasdemand'  
                        | 'noncaslinkdemand'  
                        | 'noncasinheritance'  
                        ; 
 
extSourceSpec           : '.line' int32 SQSTRING  
                        | '.line' int32  
                        | '.line' int32 ':' int32 SQSTRING  
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                        | '.line' int32 ':' int32  
                        | P_LINE int32 QSTRING  
                        ; 
 
fileDecl                : '.file' fileAttr name1 fileEntry hashHead 
bytes ')' fileEntry  
                        | '.file' fileAttr name1 fileEntry  
                        ; 
 
fileAttr                : /* EMPTY */  
                        | fileAttr 'nometadata'  
                        ; 
 
fileEntry               : /* EMPTY */  
                        | '.entrypoint'  
                        ; 
 
hashHead                : '.hash' '=' '('  
                        ; 
 
assemblyHead            : '.assembly' asmAttr name1  
                        ; 
 
asmAttr                 : /* EMPTY */  
                        | asmAttr 'noappdomain'  
                        | asmAttr 'noprocess'  
                        | asmAttr 'nomachine'  
                        ; 
 
assemblyDecls           : /* EMPTY */ 
                        | assemblyDecls assemblyDecl 
                        ; 
 
assemblyDecl            : '.hash' 'algorithm' int32  
                        | secDecl 
                        | asmOrRefDecl 
 
                        ; 
 
asmOrRefDecl            : publicKeyHead bytes ')'  
                        | '.ver' int32 ':' int32 ':' int32 ':' int32  
                        | '.locale' compQstring  
                        | localeHead bytes ')'  
                        | customAttrDecl 
                        ; 
 
publicKeyHead           : '.publickey' '=' '('  
                        ; 
 
publicKeyTokenHead      : '.publickeytoken' '=' '('  
                        ; 
 
localeHead              : '.locale' '=' '('  
                        ; 
 
assemblyRefHead         : '.assembly' 'extern' name1  
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                        | '.assembly' 'extern' name1 'as' name1  
                        ; 
 
assemblyRefDecls        : /* EMPTY */ 
                        | assemblyRefDecls assemblyRefDecl 
                        ; 
 
assemblyRefDecl         : hashHead bytes ')'  
                        | asmOrRefDecl 
                        | publicKeyTokenHead bytes ')'  
                        ; 
 
comtypeHead             : '.class' 'extern' comtAttr name1   
                        ; 
 
exportHead              : '.export' comtAttr name1  
                        ; 
 
comtAttr                : /* EMPTY */  
                        | comtAttr 'private'  
                        | comtAttr 'public'  
                        | comtAttr 'nested' 'public'  
                        | comtAttr 'nested' 'private'  
                        | comtAttr 'nested' 'family'  
                        | comtAttr 'nested' 'assembly'  
                        | comtAttr 'nested' 'famandassem'  
                        | comtAttr 'nested' 'famorassem'  
                        ; 
 
comtypeDecls            : /* EMPTY */ 
                        | comtypeDecls comtypeDecl 
                        ; 
 
comtypeDecl             : '.file' name1  
                        | '.class' 'extern' name1  
                        | '.class'  int32  
                        | customAttrDecl 
                        ; 
 
manifestResHead         : '.mresource' manresAttr name1  
                        ; 
 
manresAttr              : /* EMPTY */  
                        | manresAttr 'public'  
                        | manresAttr 'private'  
                        ; 
 
manifestResDecls        : /* EMPTY */ 
                        | manifestResDecls manifestResDecl 
                        ; 
 
manifestResDecl         : '.file' name1 'at' int32  
                        | '.assembly' 'extern' name1  
                        | customAttrDecl 
                        ; 
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C.4  Instruction syntax 
While each subclause specifies the exact list of instructions that are included in a grammar class, this 
information is subject to change over time. The precise format of an instruction can be found by 
combining the information in §C.1 with the information in the following table: 

Table 1: Instruction Syntax classes 

Grammar Class Format(s) Specified in §C.1 

<instr_brtarget> InlineBrTarget, ShortInlineBrTarget 

<instr_field> InlineField 

<instr_i> InlineI, ShortInlineI 

<instr_i8> InlineI8 

<instr_method> InlineMethod 

<instr_none> InlineNone 

<instr_phi> InlinePhi 

<instr_r> InlineR, ShortInlineR 

<instr_rva> InlineRVA 

<instr_sig> InlineSig 

<instr_string> InlineString 

<instr_switch> InlineSwitch 

<instr_tok> InlineTok 

<instr_type> InlineType 

<instr_var> InlineVar, ShortInlineVar 
 

C.4.1  Top-level  instruct ion syntax 

<instr> ::= 

    <instr_brtarget> <int32> 

  | <instr_brtarget> <label> 

  | <instr_field> <type> [ <typeSpec> :: ] <id> 

  | <instr_i> <int32> 

  | <instr_i8> <int64> 

  | <instr_method> 

      <callConv> <type> [ <typeSpec> :: ] 

<methodName> ( <parameters> ) 

  | <instr_none> 

  | <instr_phi> <int16>* 

  | <instr_r> ( <bytes> ) // <bytes> represent the binary image of 

     // float or double (4 or 8 bytes, 
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// respectively) 

  | <instr_r> <float64> 

  | <instr_r> <int64> // integer is converted to float 

// with possible 

     // loss of precision 

  | <instr_sig> <callConv> <type> ( <parameters> )  

  | <instr_string> bytearray ( <bytes> ) 

  | <instr_string> <QSTRING> 

  | <instr_switch> ( <labels> ) 

  | <instr_tok> field <type> [ <typeSpec> :: ] <id> 

  | <instr_tok> b 

      <callConv> <type> [ <typeSpec> :: ] 

<methodName> ( <parameters> ) 

  | <instr_tok> <typeSpec> 

  | <instr_type> <typeSpec> 

  | <instr_var> <int32> 

  | <instr_var> <localname> 

 

C.4.2  Instruct ions with no operand 

These instructions require no operands, so they simply appear by themselves. 

<instr> ::= <instr_none> 

<instr_none> ::= // Derived from opcode.def 

   add            | add.ovf     | add.ovf.un     | and        | 

   arglist        | break       | ceq            | cgt        | 

   cgt.un         | ckfinite    | clt            | clt.un     | 

   conv.i         | conv.i1     | conv.i2        | conv.i4    | 

   conv.i8        | conv.ovf.i  | conv.ovf.i.un  | conv.ovf.i1| 

   conv.ovf.i1.un | conv.ovf.i2 | conv.ovf.i2.un | conv.ovf.i4| 

   conv.ovf.i4.un | conv.ovf.i8 | conv.ovf.i8.un | conv.ovf.u | 

   conv.ovf.u.un  | conv.ovf.u1 | conv.ovf.u1.un | conv.ovf.u2| 

   conv.ovf.u2.un | conv.ovf.u4 | conv.ovf.u4.un | conv.ovf.u8| 

   conv.ovf.u8.un | conv.r.un   | conv.r4        | conv.r8    | 

   conv.u         | conv.u1     | conv.u2        | conv.u4    | 

   conv.u8        | cpblk       | div            | div.un     | 

   dup            | endfault    | endfilter      | endfinally | 

   initblk        |             | ldarg.0        | ldarg.1    |   

   ldarg.2        | ldarg.3     | ldc.i4.0       | ldc.i4.1   |    
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   ldc.i4.2       | ldc.i4.3    | ldc.i4.4       | ldc.i4.5   | 

   ldc.i4.6       | ldc.i4.7    | ldc.i4.8       | ldc.i4.M1  | 

   ldelem.i       | ldelem.i1   | ldelem.i2      | ldelem.i4  | 

   ldelem.i8      | ldelem.r4   | ldelem.r8      | ldelem.ref | 

   ldelem.u1      | ldelem.u2   | ldelem.u4      | ldind.i    | 

   ldind.i1       | ldind.i2    | ldind.i4       | ldind.i8   | 

   ldind.r4       | ldind.r8    | ldind.ref      | ldind.u1   | 

   ldind.u2       | ldind.u4    | ldlen          | ldloc.0    | 

   ldloc.1        | ldloc.2     | ldloc.3        | ldnull     | 

   localloc       | mul         | mul.ovf        | mul.ovf.un | 

   neg            | nop         | not            | or         | 

   pop            | refanytype  | rem            | rem.un     | 

   ret            | rethrow     | shl            | shr        | 

   shr.un         | stelem.i    | stelem.i1      | stelem.i2  | 

   stelem.i4      | stelem.i8   | stelem.r4      | stelem.r8  | 

   stelem.ref     | stind.i     | stind.i1       | stind.i2   | 

   stind.i4       | stind.i8    | stind.r4       | stind.r8   | 

   stind.ref      | stloc.0     | stloc.1        | stloc.2    | 

   stloc.3        | sub         | sub.ovf        | sub.ovf.un | 

   tail.          | throw       | volatile.      | xor 

 

Examples: 
ldlen 

not 

 

C.4.3  Instruct ions that  refer to  parameters or local  variables  

These instructions take one operand, which references a parameter or local variable of the current 
method. The variable can be referenced by its number (starting with variable 0) or by name (if the 
names are supplied as part of a signature using the form that supplies both a type and a name). 

<instr> ::= <instr_var> <int32> | 

            <instr_var> <localname> 

<instr_var> ::= // Derived from opcode.def 

          | ldarg    | ldarg.s  | ldarga 

ldarga.s  | ldloc    | ldloc.s  | ldloca 

ldloca.s  | starg    | starg.s  | stloc 

stloc.s 
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Examples: 
stloc 0          // store into 0th local 

ldarg X3      // load from argument named X3 

 

C.4.4  Instruct ions that  take a s ingle 32-bit  integer argument 

These instructions take one operand, which must be a 32-bit integer. 

<instr> ::= <instr_i> <int32> 

<instr_i> ::= // Derived from opcode.def 

ldc.i4 | ldc.i4.s | unaligned. 

 

Examples: 
ldc.i4 123456  // Load the number 123456 

ldc.i4.s 10    // Load the number 10 

 

C.4.5  Instruct ions that  take a s ingle 64-bit  integer argument 

These instructions take one operand, which must be a 64-bit integer. 

<instr> ::= <instr_i8> <int64> 

<instr_i8> ::= // Derived from opcode.def 

ldc.i8 

Examples: 
ldc.i8 0x123456789AB 

ldc.i8 12 

 

C.4.6  Instruct ions that  take a s ingle f loat ing-point  argument 

These instructions take one operand, which must be a floating point number. 

<instr> ::= <instr_r> <float64> | 

            <instr_r> <int64>   | 

    <instr_r> ( <bytes> )  // <bytes> is 
binary image 

<instr_r> ::= // Derived from opcode.def 

ldc.r4 | ldc.r8 

 

Examples: 
ldc.r4 10.2 

ldc.r4 10 

ldc.r4 0x123456789ABCDEF 

ldc.r8 (00 00 00 00 00 00 F8 FF) 
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C.4.7  Branch instruct ions 

The assembler does not optimize branches. The branch must be specified explicitly as using either 
the short or long form of the instruction. If the displacement is too large for the short form, then the 
assembler will display an error. 

<instr> ::= 

<instr_brtarget> <int32> | 

<instr_brtarget> <label> 

<instr_brtarget> ::= // Derived from opcode.def 

                       | beq    | beq.s    | bge    | bge.s    
| 

bge.un    | bge.un.s   | bgt    | bgt.s    | bgt.un | bgt.un.s 
| 

ble       | ble.s      | ble.un | ble.un.s | blt    | blt.s    
| 

blt.un    | blt.un.s   | bne.un | bne.un.s | br     | br.s     
| 

brfalse   | brfalse.s  | brtrue | brtrue.s | leave  | leave.s 

 

Example: 
br.s 22 

br foo 

 

C.4.8  Instruct ions that  take a method as an argument  

These instructions reference a method, either in another class (first instruction format) or in the 
current class (second instruction format). 

<instr> ::= 

   <instr_method> 

     <callConv> <type> [ <typeSpec> :: ] <methodName> ( 
<parameters> ) 

<instr_method> ::= // Derived from opcode.def 

     call  | callvirt | jmp | ldftn    | ldvirtftn        | newobj 

 

Examples: 
call instance int32 C.D.E::X(class W, native int) 

ldftn vararg char F(...) // Global Function F 

 

C.4.9  Instruct ions that  take a f ie ld of  a  class  as  an argument 

These instructions reference a field of a class. 
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<instr> ::= 

<instr_field> <type> <typeSpec> :: <id> 

<instr_field> ::= // Derived from opcode.def 

ldfld | ldflda | ldsfld | ldsflda | stfld | stsfld 

 

Examples: 
ldfld native int X::IntField 

stsfld int32 Y::AnotherField 

 

C.4.10  Instruct ions that  take a type as an argument 

These instructions reference a type. 

<instr> ::= <instr_type> <typeSpec> 

<instr_type> ::= // Derived from opcode.def 

box     | castclass | cpobj    | initobj | isinst    | 

ldelema | ldobj     | mkrefany | newarr  | refanyval | 

sizeof  | stobj     | unbox 

 

Examples: 
initobj [mscorlib]System.Console 

sizeof class X 

 

C.4.11  Instruct ions that  take a string as an argument 

These instructions take a string as an argument. 

<instr> ::= <instr_string> <QSTRING> 

<instr_string> ::= // Derived from opcode.def 

ldstr 

 

Examples: 
ldstr “This is a string” 

ldstr “This has a\nnewline in it” 

 

C.4.12 Instruct ions that  take a s ignature as an argument  

These instructions take a stand-alone signature as an argument. 

<instr> ::= <instr_sig> <callConv> <type> ( <parameters> ) 

<instr_sig> ::= // Derived from opcode.def 

calli 
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Examples: 
calli class A.B(wchar *) 

calli vararg bool(int32[,] X, ...) 

// Returns a boolean, takes at least one argument. The first 

// argument, named X, must be a two-dimensional array of 

// 32-bit ints 

 

C.4.13  Instruct ions that  take a metadata token as an argument 

This instruction takes a metadata token as an argument. The token can reference a type, a method, or 
a field of a class. 

<instr> ::= <instr_tok> <typeSpec> | 

            <instr_tok> method 

               <callConv> <type> <typeSpec> :: <methodName> 

                          ( <parameters> ) | 

            <instr_tok> method 

               <callConv> <type> <methodName> 

                          ( <parameters> ) | 

            <instr_tok> field <type> <typeSpec> :: <id> 

<instr_tok> ::= // Derived from opcode.def 

ldtoken 

 

Examples: 
ldtoken class [mscorlib]System.Console 

ldtoken method int32 X::Fn() 

ldtoken method bool GlobalFn(int32 &) 

ldtoken field class X.Y Class::Field 

C.4.14  Switch instruct ion 

The switch instruction takes a set of labels or decimal relative values. 

<instr> ::= <instr_switch> ( <labels> ) 

<instr_switch> ::= // Derived from opcode.def 

switch 

Examples: 
switch (0x3, -14, Label1) 

switch (5, Label2) 
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Annex D Class library design guidelines 

This clause contains only informative text 
Information on this topic can be found at the following location: 
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
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Annex E Portability considerations 
This clause gathers together information about areas where this Standard deliberately leaves leeway 
to implementations. This leeway is intended to allow compliant implementations to make choices 
that provide better performance or add value in other ways. But this leeway inherently makes 
programs non-portable. This clause describes the techniques that can be used to ensure that programs 
operate the same way independent of the particular implementation of the CLI. 

Note that code can be portable even though the data is not, both due to size of integer type and 
direction of bytes in words. Read/write invariance holds provided the read method corresponds to the 
write method (i.e., write as int read as int works, but write as string read as int might not). 

E.1  Uncontrollable behavior 
The following aspects of program behavior are implementation dependent. Many of these items will 
be familiar to programmers used to writing code designed for portability (for example, the fact that 
the CLI does not impose a minimum size for heap or stack). 

1. Size of heap and stack aren't required to have minimum sizes 

2. Behavior relative to asynchronous exceptions (see System.Thread.Abort) 

3. Globalization is not supported, so every implementation specifies its culture information 
including such user-visible features as sort order for strings. 

4. Threads cannot be assumed to be either pre-emptively or non-pre-emptively scheduled. 
This decision is implementation specific. 

5. Locating assemblies is an implementation-specific mechanism. 

6. Security policy is an implemenation-specific mechanism. 

7. File names are implementation-specific. 

8. Timer resolution (granularity) is implementation-specific, although the unit is specified. 

E.2  Language- and compiler-controllable behavior 
The following aspects of program behavior can be controlled through language design or careful 
generation of CIL by a language-specific compiler. The CLI provides all the support necessary to 
control the behavior, but the default is to allow implementation-specific optimizations. 

1. Unverifiable code can access arbitrary memory and cannot be guaranteed to be portable 

2. Floating point – compiler can force all intermediate values to known precision 

3. Integer overflow – compiler can force overflow checking 

4. Native integer type need not be exposed, or can be exposed for opaque handles only, or 
can reliably recast with overflow check to known size values before use. Note that "free 
conversion" between native integer and fixed-size integer without overflow checks will 
not be portable. 

5. Deterministic initialization of types is portable, but "before first reference to static 
variable" is not. Language design can either force all initialization to be deterministic 
(cf. Java) or can restrict initialization to deterministic cases (i.e., simple static 
assignments). 

E.3  Programmer-controllable behavior 
The following aspects of program behavior can be controlled directly by the programmer. 
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1. Code that is not thread-safe might operate differently even on a single implementation. 
In particular, the atomicity guarantees around 64-bit must be adhered to and testing on 
64-bit implementations might not be sufficient to find all such problems. The key is 
never to use both normal read/write and interlocked access to the same 64-bit datum. 

2. Calls to unmanaged code or calls to non-standardized extensions to libraries 

3. Do not depend on the relative order of finalization of objects. 

4. Do not use explicit layout of data. 

5. Do not rely on the relative order of exceptions within a single CIL instruction or a given 
library method call. 
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Annex F Imprecise faults 

This clause contains only informative text 
Some CIL instructions perform implicit run-time checks that ensure memory and type safety.  
Originally, the CLI guaranteed that exceptions were precise, meaning that program state was 
preserved when an exception was thrown.   However, enforcing precise exceptions for implicit 
checks makes some important optimizations practically impossible to apply.  Programmers can now 
declare, via a custom attribute, that a method is “relaxed”, which says that exceptions arising from 
implicit run-time checks need not be precise.  

Relaxed checks preserve verifiability (by preserving memory and type safety) while permitting 
optimizations that reorder instructions.  In particular, it enables the following optimizations: 

• Hoisting implicit run-time checks out of loops. 

• Reordering loop iterations (e.g., vectorization and automatic multithreading) 

• Interchanging loops 

• Inlining that makes an inlined method as least as fast as the equivalent macro 

F.1  Instruction reordering 
Programs that always perform explicit checks and explicit throws, instead of relying on implicit run-
time checks, are never visibly affected by relaxation, except for variations already permitted by the 
existing CLI standard (e.g., non-determinism of cross-thread non-volatile reads and writes).   
Furthermore, only control dependences induced by implicit run-time checks are relaxed.  
Nonetheless, data dependences must be respected. 

Authors of strict methods can reason about their behavior without knowing details about whether 
their callers or callees are relaxed, because strict instructions act as a fence.   On the other hand, we 
want calls from E-relaxed methods to E-relaxed methods to be inlinable “as if” they were inlined by 
hand at the source level.   That is why an E-relaxed sequence is allowed to span between methods. 

F.2  Inlining 
Inliners must be careful when dealing with a call to a method of different strictness.  A call from a 
method to a more relaxed method can be inlined, conservatively, by treating the callee as strict as the 
caller; i.e., by ignoring any additional latitude granted the callee.  Otherwise, if the strictness of the 
caller and callee differ, inlining the call  requires either careful tracking of whether each check is 
relaxed or strict, or demoting the entire caller and inlined copy of the callee to a strictness that is at 
least as strict as the strictnesses of the caller and callee. 

F.3  Finally handlers sti l l  guaranteed once a try block is  entered 
Because relaxed sequences cannot span across protected non-trivial region boundaries, this guarantee 
still holds.   This is essential for preserving the usual idiom for acquiring and releasing a resource: 
[Example: 

bool acquired = false; 
try { 
 acquire(ref acquired); 
 S1; 
} finally { 
 if (acquired) release resource; 
} 

end example] 
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Quite often, the programmer knows little about how S1 might fail.  If the “acquire”, S1, and “release” 
were allowed to be part of the same relaxed sequence, and S1 failed, then the acquire and/or release 
portions could be suppressed at whim (by the rest of the rules).  By forcing the three parts to be in 
three separate sequences, we eliminate problems with regard to S1 failing.  Of course, we do not 
eliminate problems that might arise if something else in the sequence for “acquire” fails, but that is a 
problem that can’t be dealt with at the CLI level, and must be left to the programmer.  

Relaxed sequences are allowed to span trivial region boundaries because optimizers were already 
allowed to remove such regions even when strict exception handling is specified. 

F.4  Interleaved calls  
One potential hazard that users should look out for is that when a relaxed method calls another 
relaxed method, checks can appear to migrate from callee to caller and vice versa.  Thus, methods 
that enforce program invariants that must be maintained in spite of faults should be marked as being 
strict for faults whose retiming may break the invariant.   

For example, the method T.M below keeps x+y invariant. 

[Example: 

.class M { 
 .field public int32 x; 
 .field public int32 y;  

 .method public void T() cil managed { 
  .maxstack 2 
  ldarg.0   // Compute x=x-1 

  dup 
  ldfld x 
  ldc.i4.1 
  sub 
  stfld x 

  ldarg.0   // Compute y=y+1 

  dup 
  ldfld y 
  ldc.i4.1 
  add 
  stfld y 
 } 
 ... 
} 

end example] 

If this method is relaxed, and the caller is also relaxed, then the caller would be allowed, in the 
absence of constraining data or control dependences, to interleave the call with other instructions in 
the caller.  If one of those other interleaved instructions faults, then any or all of M’s side effects 
might be suppressed.   Thus, method M should be marked as strict if it is important to prevent a fault 
from destroying the invariant. 

This “interference” from the caller is potentially annoying, but seems to be intrinsic to any definition 
of relaxed exceptions that permits both: 

1. instruction reordering and  

2. inlined method calls are at least as fast as manual inlining. 
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F.4.1  Rejected not ions for fencing 

This subclause explains why some alternative ideas for “check fence” rules that were rejected.    

Volatile operations were a candidate, since they already prevent some kinds of reordering.   Treating 
volatile memory operations as check fences would prevent interference in critical sections.  However, 
there are two arguments against this.  First, not all situations that need check fences have anything to 
do with volatile operations.  Second, it would penalize volatile references, which exist for sake of fast 
cross-thread communication. 

F.5  Examples 
This subclause shows some classic optimizations, and how relaxed exceptions make them much 
easier to apply than strict exceptions. 

F.5.1  Hoist ing checks out  of  a  loop 

In a relaxed method, bounds checks for arithmetically progressing indices can be hoisted out of a 
loop, and only the extremes are checked.  For example, consider: 

for( int i=lower; i<upper; ++i ) { 
 a[i] = b[i]; 
 c[i] = d[i]; 
} 

In a strict method, the bounds checks on a and b are difficult to hoist, because the assignment to 
c[i] is control-dependent on success of all the bounds checks in the loop.  If a fault causes the loop 
to end prematurely, the initial prefixes of a and c must be written up to where the fault occurred.  
The hoisting can be of course done via “two versioning”, but that would double the size of the 
generated code. 

In relaxed methods, the bounds checks can easily be hoisted without resorting to two-versioning, so 
that the code executes as if written: 

if(lower < upper) { 
 // “Landing pad” in compiler parlance. 
 if( lower < 0 || upper < a.Length || upper < b.Length || upper < 
c.Length 
      || upper < d.Length) 
  throw IndexOutOfRangeException; 

 int i=lower;  
 do { 
  a[i] = b[i]; // Unchecked 
  c[i] = d[i]; // Unchecked 
 } while( ++i<upper ); 
} 

Notice that the rewrite implicitly hoists the check for NullReferenceException too.  With 
strict exceptions, that hoisting would not be valid, because perhaps a[0]=b[0] succeeds but then c 
is null.   For similar reasons, relaxed exceptions (specifically, with the exceptions indicated by 
CompilationRelaxations.RelaxedArrayExceptions and 
CompilationRelaxations.RelaxedNullReferenceException relaxed) enables the 
hoisting of the checks for ArrayTypeMismatchException for both assignments. Notice that 
relaxation allows the checks to be hoisted, not removed. 

F.5.2  Vectorizing a  loop 

Vectorizing a loop usually requires knowing two things:  

1. The loop iterations are independent 
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2. The number of loop iterations is known. 

In a method relaxed for the checks that might fault, part 1 is frequently false, because the possibility 
of a fault induces a control dependence from each loop iteration to succeeding loop iterations.  In a 
relaxed method, those control dependences can be ignored. 

In most cases, relaxed methods simplify vectorization by allowing checks to be hoisted out of a loop.  
Nevertheless, even when such hoisting is not possible, ignoring cross-iteration dependences implied 
by faults can be crucial to vectorization for “short vector” SIMD hardware such as IA-32 SSE or 
PowerPC Altivec.  For example, consider this loop: 

for (k = 0; k < n; k++) { 
 x[k] = x[k] + y[k] * s[k].a; 
} 

where s is an array of references.  The checks for null references cannot be hoisted out of the loop, 
even in a relaxed context.   But relaxed does allow “unroll-and-jam” to be applied successfully.  The 
loop can be unrolled by a factor of 4 to create aggregate iterations, and the checks hoisted to the top 
of each aggregate iteration.   

F.5.3  Autothreading a loop 

Below is a C# rendition of the key routine for a sparse matrix multiply from the SciMark 2.0 suite:   

int M = row.Length - 1; 

for (int r=0; r<M; r++) { 
 double sum = 0.0; 
 int rowR = row[r]; 
 int rowRp1 = row[r + 1]; 
 for (int i = rowR; i < rowRp1; i++) 
  sum += x[ col[i] ] * val[i]; 
 y[r] = sum; 
} 

This is an attractive candidate for parallelizing the outer loop.  In a strict method, doing so is quite 
difficult; either we have to know x[col[i]] never faults, or have a way to make the writes to 
y[r] speculative.  

 If the method is relaxed for the possible faults, parallelizing the outer loop is only a matter of solving 
the usual data dependence problem (“Does y[r] ever alias x[col[i]]”).  If any iteration of the 
loop faults, the relaxed exceptions allows the other iterations to quit early or keep going without 
concern for what state they leave y in. 



 

 Partition VI 59 

Annex G Parallel library 

This clause contains only informative text 
This Annex shows several complete examples written using the parallel library 

The classes in System.Threading.Parallel enable you to write parallel loops that take 
advantage of hardware that can execute multiple threads in parallel, without having to get involved in 
the details of dispatching and synchronizing multiple threads.  [Example: The library lets you take an 
ordinary sequential loop like this: 

for( int i=0; i<n; ++i ) { 
    loop body 
} 

and rewrite it as a parallel loop like this: 
new ParallelFor().Run( delegate( int i ) { 
    loop body 
}); 

end example] 

G.1  Considerations 
The programmer is responsible for ensuring that the loop iterations are independent (for sake of 
correctness) and have sufficient grain size (for sake of efficiency.)  Loop iterations are independent if 
they can be carried out in arbitrary order, or concurrently and still produce the right answer.   The 
grain size is the amount of work performed by a loop iteration.   If the grain size is too small, the 
overhead (calling the delegate, synchronizing with other threads, etc.) may overwhelm the intended 
work.  The ideal is to make the grain size large and uniform,  but not so large as to make it difficult to 
distribute work evenly across physical threads. 

For efficiency, ParallelFor is the preferred loop class when there is a choice.   It tends to be the 
most efficient because it has the least general iteration space.  

G.2  ParallelFor 
ParallelFor should be used when parallelizing a loop whose index takes on values from 0 to n-
1.  Below is an example of how ParallelFor might be used in C# to parallelize the iterations in a 
cellular automaton on a grid.  The variables oldState and newState are two-dimensional arrays 
the respectively hold the old and new states of the cells. [Example:  

int n = oldState.GetLength(0); 
new ParallelFor(n-2).Run(delegate(int iteration) { 
    int i = iteration+1; 

     for (int j = 1; j < n-1; j++){ 
         int count =  
                  (oldState[i-1,j-1] + oldState[i-1,j] + oldState[i-1,j+1] + 
                   oldState[  i,j-1] +                   oldState[  i,j+1] + 
                   oldState[i+1,j-1] + oldState[i+1,j] + oldState[i+1,j+1]); 
              byte s = (count | oldState[i, j]) == 3 ? Live : Dead; 
              newState[i, j] = s; 
     } 

}); 
end example] 

There are two key points to notice.   First, the outer loop logically iterates i from 1 to n-1.  
However, the ParallelFor class always iterates starting at 0.  Hence the desired logical value of i is 
computed from the physical loop iteration number iteration.  Second, outer loop is parallel; the 
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inner loop is sequential.  In general, if the loop iterations are independent for both inner and outer 
loops, it is better to parallelize the outer loop because doing so yields the largest grain size. 

G.3  ParallelForEach 
ParallelForEach should be used to parallelize a loop that iterates over a collection that supports the 
usual enumerator pattern.   Below is an example that iterates over a list of file names. [Example:  

List<string> files = ...; 
new ParallelForEach(files).Run( delegate(filename) {  
    FileStream f = new FileStream( filename, FileMode.Open ); 
    ...read file f and process it... 
    f.Close(); 
}); 

end example] 

G.4  ParallelWhile 
Use ParallelWhile to parallelize a loop over a collection that grows while it is being processed.   
Below is an excerpt showing how ParallelWhile might be used for parallel update of cells in a 
spreadsheet.  Each cell is presumed to have a set Successors of cells that depend upon it, and a field  
PredecessorCount that is initially zero.  Each cell must be updated before any of its successors is 
updated.  

[Example:  
void UpdateAll() { 
    // Phase 1: Count predecessors 
    foreach (Cell c in SetOfAllCells) 
        foreach (Cell dependent in currentCell.Sucessors) 

                   ++dependent.PredecessorCount 
 
    // Phase 2: Find cells with no predecessors 
    ParallelWhile<Cell> parallelWhile = new ParallelWhile<Cell>(); 
    foreach (Cell c in SetOfAllCells) 
        if (c.PredecessorCount]==0) 
      parallelWhile.Add(c); 
 
    // Phase 3: Do the updating  
    parallelWhile.Run( delegate(Cell c) { 
        ....update value of cell c... 
       foreach (Cell dependent in c.Sucessors) 
     if (Interlocked.Decrement(ref dependent.PredecessorCount)==0) 
         parallelWhile.Add(dependent); 
    }); 
} 
end example] 

The example is structured as a classic topological sort.  Phases 1 and 2 are sequential code.   Because 
they are sequential, they do not have to update PredecessorCount in a thread-safe manner.  Phase 3 
is parallel: it starts processing all cells that phase 2 found were ready to update, and any cells found 
by phase 3 itself that were found ready to run.   Because phase 3 is parallel, it updates 
PredecessorCount in a thread-safe manner. 

G.5  Debugging 
During initial debugging, set System.Threading.Parallel.ParallelEnvironment.MaxThreads 
to 1, which causes sequential execution of the parallel loop classes.  Once your code runs correctly 
sequentially, experiment with setting 
System.Threading.Parallel.ParallelEnvironment.MaxThreads to higher values.  In final 
production code, it is preferable to not set it at all, because it affects parallel loops everywhere in the 
application domain.  
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