

ECMA-335

3rd Edition / June 2005

Common Language
Infrastructure (CLI)

Partitions I to VI

Common L
Infrastruc

Partitions

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F:

Standard
ECMA-335

anguage
ture (CLI)

 I to VI

 +41 22 849 6000/01 www.ecma-international.org

.

 i

Common Language Infrastructure (CLI)
Partition I:
Concepts and Architecture

 iii

Table of Contents

Foreword vi i

1 Scope 1

2 Conformance 2

3 Normative references 3

4 Conventions 5
4 .1 Organizat ion 5
4.2 Informative text 5

5 Terms and def init ions 6

6 Overview of the Common Language Infrastructure 9
6 .1 Relat ionship to type safety 9
6.2 Relat ionship to managed metadata-dr iven execut ion 10
6.2 .1 Managed code 10
6.2 .2 Managed data 11
6.2 .3 Summary 11

7 Common Language Specif icat ion 12
7 .1 Introduct ion 12
7.2 Views of CLS compliance 12
7.2 .1 CLS framework 12
7.2 .2 CLS consumer 13
7.2 .3 CLS extender 13

7.3 CLS compliance 14
7.3 .1 Marking i tems as CLS-compliant 14

8 Common Type System 16
8 .1 Relat ionship to object-or iented programming 18
8.2 Values and types 18
8.2 .1 Value types and reference types 18
8.2 .2 Buil t- in value and reference types 19
8.2 .3 Classes , in terfaces, and objects 19
8.2 .4 Boxing and unboxing of values 20

iv Partition I

8 .2 .5 Ident i ty and equal i ty of values 21
8.3 Locat ions 22
8.3 .1 Assignment-compatible locat ions 22
8.3 .2 Coercion 22
8.3 .3 Cast ing 22

8.4 Type members 22
8.4 .1 Fields , array elements, and values 22
8.4 .2 Methods 23
8.4 .3 Stat ic f ie lds and s tat ic methods 23
8.4 .4 Vir tual methods 23

8.5 Naming 24
8.5 .1 Val id names 24
8.5 .2 Assemblies and scoping 24
8.5 .3 Visib i l i ty , accessib i l i ty, and securi ty 26

8.6 Contracts 28
8.6 .1 Signatures 29

8.7 Assignment compatibi l i ty 32
8.8 Type safety and ver if icat ion 33
8.9 Type def iners 33
8.9 .1 Array types 34
8.9 .2 Unmanaged pointer types 35
8.9 .3 Delegates 35
8.9 .4 Interface type defin i t ion 36
8.9 .5 Class type def in i t ion 37
8.9 .6 Object type def in i t ions 38
8.9 .7 Value type def in i t ion 41
8.9 .8 Type inher i tance 41
8.9 .9 Object type inheri tance 41
8.9 .10 Value type inher i tance 41
8.9 .11 Interface type der ivat ion 42

8.10 Member inher i tance 42
8.10.1 Field inher i tance 42
8.10.2 Method inher i tance 42
8.10.3 Proper ty and event inher i tance 43
8.10.4 Hiding, overr id ing, and layout 43

8.11 Member defin i t ions 44
8.11.1 Method def in i t ions 44
8.11.2 Field def in it ions 45

 Partition I v

8.11.3 Proper ty def in i t ions 45
8.11.4 Event def in it ions 46
8.11.5 Nested type def ini t ions 46

9 Metadata 47
9 .1 Components and assemblies 47
9.2 Accessing metadata 47
9.2 .1 Metadata tokens 47
9.2 .2 Member s ignatures in metadata 48

9.3 Unmanaged code 48
9.4 Method implementat ion metadata 48
9.5 Class layout 48
9.6 Assemblies: name scopes for types 49
9.7 Metadata extensibi l i ty 50
9.8 Globals , imports , and expor ts 51
9.9 Scoped s ta t ics 51

10 Name and type rules for the Common Language Specif icat ion 52
10.1 Identif iers 52
10.2 Over loading 52
10.3 Operator over loading 53
10.3 .1 Unary operators 53
10.3 .2 Binary operators 54
10.3 .3 Conversion operators 55

10.4 Naming pat terns 56
10.5 Except ions 56
10.6 Custom at t r ibutes 56
10.7 Gener ic types and methods 57
10.7 .1 Nested type parameter re-declarat ion 57
10.7 .2 Type names and ar i ty encoding 58
10.7 .3 Type constra int re-declarat ion 59
10.7 .4 Constrain t type res tr ic t ions 60
10.7 .5 Frameworks and accessibi l i ty of nested types 60
10.7 .6 Frameworks and abstract or v ir tual methods 61

11 Collected Common Language Specif icat ion rules 62

12 Virtual Execution System 65
12.1 Supported data types 65

vi Partition I

12.1 .1 Native s ize: nat ive in t , nat ive unsigned in t , O and & 66
12.1 .2 Handling of shor t in teger data types 67
12.1 .3 Handling of f loat ing-point data types 67
12.1 .4 CIL instructions and numeric types 69
12.1 .5 CIL instructions and pointer types 70
12.1 .6 Aggregate data 71

12.2 Module information 74
12.3 Machine s tate 74
12.3 .1 The global s ta te 74
12.3 .2 Method s ta te 75

12.4 Control f low 78
12.4 .1 Method cal ls 79
12.4 .2 Except ion handling 82

12.5 Proxies and remoting 92
12.6 Memory model and opt imizat ions 93
12.6 .1 The memory s tore 93
12.6 .2 Alignment 93
12.6 .3 Byte order ing 93
12.6 .4 Optimizat ion 93
12.6 .5 Locks and threads 94
12.6 .6 Atomic reads and wri tes 95
12.6 .7 Volat i le reads and wri tes 95
12.6 .8 Other memory model issues 96

13 Index 97

 Partition I vii

Foreword

This third edition cancels and replaces the second edition, ECMA 335:2002. Major changes from the previous
edition include:

• Added support for generic types and methods.

• Added the constrained., no., and readonly. instruction prefixes.

• Added the ldelem, stelem, and unbox.any instructions.

• Created a new Partition V, “Debug Interchange Format”.

• Renamed Partition V as Partition VI, and added “Extensions to metadata” and “Imprecise faults”.

• Added the following members and types to the type library:

1. System:

a. Action<T> – added this type.

b. Array – added the following members (or overloads to existing members): AsReadOnly<T>,
BinarySearch<T>, ConstrainedCopy, ConvertAll<T,U>, Copy, CopyTo, CreateInstance,
Exists, Find, FindAll, FindIndex, FindLastIndex, ForEach, GetLongLength, GetValue,
IndexOf<T>, LastIndexOf<T>, Resize<T>, SetValue, Sort<K,V>, Sort<T>, and TrueForAll.

c. Comparison<T> – added this type.

d. Converter<T> – added this type.

e. IComparable<T> – added this type.

f. IEquatable<T> – added this type.

g. Nullable<T> – added this type.

h. Predicate<T> – added this type.

i. System.RuntimeArgumentHandle – added this type and placed it in the new library, Vararg.

j. ThreadStaticAttribute – added this type.

k. Type –

Added the following methods: MakeArrayType, MakeByRefType, and MakePointerType.

Added the following properties: IsAnsiClass, IsAutoClass, and IsUnicodeClass.

Added the following new members to support generics reflection: BindGenericParameters,
ContainsGenericParameters, DeclaringMethodProperty, GenericParameterAttributes,
GenericParameterPosition, GetGenericArguments, GetGenericParameterConstraints,
GetGenericTypeDefinition, HasGenericArguments, IsGenericParameter, and
IsGenericTypeDefinition.

Augmented the following members to support generics reflection: Methods:
GetConstructor, GetConstructors, GetDefaultMembers, GetElementType, GetEvent,
GetEvents, GetField, GetFields, GetInterface, GetInterfaces, GetMember, GetMembers,
GetMethod, GetMethods, GetNestedType, GetNestedTypes, GetProperties, GetProperty,
GetType, InvokeMember, IsAssignableFrom, IsInstanceOfType, IsSubclassOf, and
ToString. Properties: Assembly, AssemblyQualifiedName, Attributes, BaseType,
DeclaringTypeProperty, Fullname, HasElementType, IsAbstract, IsArray, IsAutoLayout,
IsClass, IsEnum, IsExplicitLayout, IsImport, IsInterface, IsLayoutSequential,
IsNestedAssembly, IsNestedFamANDAssem, IsNestedFamily, IsNestedFamORAssem,
IsNestedPrivate, IsNestedPublic, IsNotPublic, IsPointer, IsPrimitive, IsPublic,
IsSealed, IsSpecialName, Module, Namepsace, ReflectedType, and TypeInitializer.

viii Partition I

l. TypedReference – added this type.

2. System.Collections.Generics:

a. Created this namespace and added the following types to it: Dictionary<TKey,TValue>,
Dictionary<TKey,TValue>.Enumerator, Dictionary<TKey,TValue>.KeyCollection,
Dictionary<TKey,TValue>.KeyCollection.Enumerator,
Dictionary<TKey,TValue>.ValueCollection,
Dictionary<TKey,TValue>.ValueCollection.Enumerator, ICollection<T>,
IComparer<T>, IDictionary<TKey,TValue>, IEnumerable<T>, IEnumerator<T>,
IEqualityComparer<T>, IList<T>, KeyNotFoundException, KeyValuePair<K,V>, List<T>,
and List<T>.Enumerator.

3. System.Reflection:

a. MethodBase – added the following new members to support generics reflection:
BindGenericParameters, ContainsGenericParameters, GetGenericArguments,
GetGenericMethodDefinition, HasGenericArguments, and IsGenericMethodDefinition.

b. MethodInfo – added the following new members to support generics reflection:
BindGenericParameters, ContainsGenericParameters, GetGenericArguments,
GetGenericMethodDefinition, HasGenericArguments, and IsGenericMethodDefinition.

c. TypeAttributes – added the following new enumeration values to support a non-standard
encoding for String Formatting attributes: CustomFormatClass and
CustomStringFormatMask.

d. GenericParameterAttributes – added this type.

4. System.Runtime.CompilerServices:

a. CompilationRelaxations – added this type and placed it in the library
RuntimeInfrastructure.

b. CompilationRelaxationsAttribute – added this type and placed it in the library
RuntimeInfrastructure.

5. System.Threading.Parallel: This namespace contains a new family of types that allow
multithreaded CPUs to be exploited.

The following companies and organizations have participated in the development of this standard, and their
contributions are gratefully acknowledged: Borland, Fujitsu Software Corporation, Hewlett-Packard, Intel
Corporation, IBM Corporation, ISE, IT University of Copenhagen, Jagger Software Ltd., Microsoft
Corporation, Monash University, Netscape, Novell/Ximian, Phone.Com, Plum Hall, Sun Microsystems, and
University of Canterbury (NZ)

 Partition I 1

1 Scope
This International Standard defines the Common Language Infrastructure (CLI) in which applications written
in multiple high-level languages can be executed in different system environments without the need to rewrite
those applications to take into consideration the unique characteristics of those environments. This International
Standard consists of the following parts:

• Partition I: Concepts and Architecture – Describes the overall architecture of the CLI, and provides the
normative description of the Common Type System (CTS), the Virtual Execution System (VES), and
the Common Language Specification (CLS). It also provides an informative description of the
metadata.

• Partition II: Metadata Definition and Semantics – Provides the normative description of the metadata: its
physical layout (as a file format), its logical contents (as a set of tables and their relationships), and its
semantics (as seen from a hypothetical assembler, ilasm).

• Partition III: CIL Instruction Set – Describes the Common Intermediate Language (CIL) instruction set.

• Partition IV: Profiles and Libraries – Provides an overview of the CLI Libraries, and a specification of
their factoring into Profiles and Libraries. A companion file, CLILibraryTypes.xml, considered to be
part of this Partition, but distributed in XML format, provides details of each class, value type, and
interface in the CLI Libraries.

• Partition V: Debug Interchange Format –

• Partition VI: Annexes – Contains some sample programs written in CIL Assembly Language (ILAsm),
information about a particular implementation of an assembler, a machine-readable description of the
CIL instruction set which can be used to derive parts of the grammar used by this assembler as well as
other tools that manipulate CIL, a set of guidelines used in the design of the libraries of Partition IV, and
portability considerations.

2 Partition I

2 Conformance
A system claiming conformance to this International Standard shall implement all the mandatory requirements
of this standard, and shall specify the profile (see Partition IV) that it implements. The minimal implementation
is the Kernel Profile. A conforming implementation can also include additional functionality provided that
functionality does not prevent running code written to rely solely on the profile as specified in this standard.
For example, a conforming implementation can provide additional classes, new methods on existing classes, or
a new interface on a standardized class, but it shall not add methods or properties to interfaces specified in this
standard.

A compiler that generates Common Intermediate Language (CIL, see Partition III) and claims conformance to
this International Standard shall produce output files in the format specified in this standard, and the CIL it
generates shall be correct CIL as specified in this standard. Such a compiler can also claim that it generates
verifiable code, in which case, the CIL it generates shall be verifiable as specified in this standard.

 Partition I 3

3 Normative references
[Note that many of these references are cited in the XML description of the class libraries.]

Extensible Markup Language (XML) 1.0 (Second Edition), 2000 October 6, http://www.w3.org/TR/2000/REC-
xml-20001006

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995, April.

IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously designated IEC
559:1989).

ISO 639:1988, Codes for the representation of names of languages.

ISO 3166:1988, Codes for the representation of names of countries.

ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC 10646 (all parts), Universal Multiple-Octet Coded Character Set (UCS).

ISO/IEC 11578:1996 (E) Open Systems Interconnection - Remote Procedure Call (RPC), Annex A: Universal
Unique Identifier.

ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC 23270:2003, Programming languages — C#.

RFC-768, User Datagram Protocol. J. Postel. 1980, August.

RFC-791, Darpa Internet Program Protocol Specification. 1981, September.

RFC-792, Internet Control Message Protocol. Network Working Group. J. Postel. 1981, September.

RFC-793, Transmission Control Protocol. J. Postel. 1981, September.

RFC-919, Broadcasting Internet Datagrams. Network Working Group. J. Mogul. 1984, October.

RFC-922, Broadcasting Internet Datagrams in the presence of Subnets. Network Working Group. J. Mogul.
1984, October.

RFC-1035, Domain Names - Implementation and Specification. Network Working Group. P. Mockapetris.
1987, November.

RFC-1036, Standard for Interchange of USENET Messages, Network Working Group. M. Horton and R.
Adams. 1987, December.

RFC-1112. Host Extensions for IP Multicasting. Network Working Group. S. Deering 1989, August.

RFC-1222. Advancing the NSFNET Routing Architecture. Network Working Group. H-W Braun, Y. Rekhter.
1991 May. ftp://ftp.isi.edu/in-notes/rfc1222.txt

RFC-1510, The Kerberos Network Authentication Service (V5). Network Working Group. J. Kohl and C.
Neuman. 1993, September.

RFC-1741, MIME Content Type for BinHex Encoded Files: Format. Network Working Group. P. Faltstrom, D.
Crocker, and E. Fair. 1994, December.

RFC-1764. The PPP XNS IDP Control Protocol (XNSCP). Network Working Group. S. Senum. 1995, March.

RFC-1766, Tags for the Identification of Languages. Network Working Group. H. Alvestrand. 1995, March.

RFC-1792. TCP/IPX Connection Mib Specification. Network Working Group. T. Sung. 1995, April.

RFC-2236. Internet Group Management Protocol, Version 2. Network Working Group. W. Fenner. 1997,
November.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
ftp://ftp.isi.edu/in-notes/rfc1222.txt

4 Partition I

RFC-2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies.
Network Working Group. N. Freed. 1996, November.

RFC-2068, Hypertext Transfer Protocol -- HTTP/1.1, Network Working Group. R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, and T. Berners-Lee. 1997, January.

RFC-2396. Uniform Resource Identifiers (URI): Generic Syntax. Internet Engineering Task Force. T. Berners-
Lee, R. Fielding, and L. Masinter. 1998 August. http://www.ietf.org/rfc/rfc2396.txt.

RFC-2616, Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group. R. Fielding, J. Gettys, J.
Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. 1999 June. ftp://ftp.isi.edu/in-notes/rfc2616.txt

RFC-2617, HTTP Authentication: Basic and Digest Access Authentication. Network Working Group.
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart. 1999 June,
ftp://ftp.isi.edu/in-notes/rfc2617.txt

The Unicode Consortium. The Unicode Standard, Version 3.0, defined by: The Unicode Standard, Version 3.0
(Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), and Unicode Technical Report #15: Unicode
Normalization Forms.

http://www.ietf.org/rfc/rfc2396.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt

 Partition I 5

4 Conventions

4.1 Organization
The divisions of this International Standard are organized using a hierarchy. At the top level is the Partition.
The next level is the clause, followed by subclause. Divisions within a subclause are also referred to as
subclauses. Partitions are numbered using Roman numerals. All other divisions are numbered using Arabic
digits with their place in the hierarchy indicated by nested numbers. For example, Partition II, 14.4.3.2 refers to
subclause 2 in subclause 3 in subclause 4 in clause 14 in Partition II.

4.2 Informative text
This International Standard is intended to be used by implementers, academics, and application programmers.
As such, it contains explanatory material that, strictly speaking, is not necessary in a formal specification.

Examples are provided to illustrate possible forms of the constructions described. References are used to refer
to related clauses or subclauses. Notes are provided to give advice or guidance to implementers or
programmers. Annexes provide additional information.
Except for whole clauses or subclauses that are identified as being informative, informative text that is
contained within normative clauses and subclauses is identified as follows:

• The beginning and end of a block of informative text is marked using rectangular boxes.

• As some informative passages span pages, informative text also contains a bold set of vertical black
stripes in the right margin.

• By the use of the following pairs of markers: [Example: … end example], [Note: … end note], and
[Rationale: … end rationale].

Unless text is identified as being informative, it is normative.

6 Partition I

5 Terms and definitions

For the purposes of this International Standard, the following definitions apply. Other terms are defined where
they appear in italic type.

ANSI character: A character from an implementation-defined 8-bit character set whose first 128 code points
correspond exactly to those of ISO/IEC 10646.

ANSI string: A string of ANSI characters, of which the final character has the value all-bits-zero.

assembly: A configured set of loadable code modules and other resources that together implement a unit of
functionality.

attribute: A characteristic of a type and/or its members that contains descriptive information. While the most
common attributes are predefined, and have a specific encoding in the metadata associated with them, user-
defined attributes can also be added to the metadata.

behavior, implementation-specific: Unspecified behavior, for which each implementation is required to
document the choice it makes.

behavior, unspecified: Behavior, for a well-formed program construct and correct data, that depends on the
implementation. The implementation is not required to document which behavior occurs.

behavior, undefined: Behavior, such as might arise upon use of an erroneous program construct or erroneous
data, for which this International Standard imposes no requirements. Undefined behavior can also be expected
in cases when this International Standard omits the description of any explicit definition of behavior.

boxing: The conversion of a value having some value type, to a newly allocated instance of the reference type
System.Object.

Common Intermediate Language (CIL): The instruction set understood by the VES.

Common Language Infrastructure (CLI): A specification for the format of executable code, and the run-
time environment that can execute that code.

Common Language Specification (CLS): An agreement between language designers and framework (class
library) designers. It specifies a subset of the CTS and a set of usage conventions.

Common Type System (CTS): A unified type system that is shared by compilers, tools, and the CLI itself. It
is the model that defines the rules the CLI follows when declaring, using, and managing types. The CTS
establishes a framework that enables cross-language integration, type safety, and high performance code
execution.

delegate: A reference type such that an instance of it can encapsulate one or more methods in an invocation
list. Given a delegate instance and an appropriate set of arguments, one can invoke all of the methods in a
delegate’s invocation list with that set of arguments.

event: A member that enables an object or class to provide notifications.

Execution Engine: See Virtual Execution System.

field: A member that designates a typed memory location that stores some data in a program.

garbage collection : The process by which memory for managed data is allocated and released.

generic argument: The actual type used to instantiate a particular generic type or generic method. For
example, in List<string>, string is the generic argument corresponding to the generic parameter T in the
generic type definition List<T>.

generic parameter: A parameter within the definition of a generic type or generic method that acts as a place
holder for a generic argument. For example, in the generic type definition List<T>, T is a generic parameter.

 Partition I 7

generics : The feature that allows types and methods to be defined such that they are parameterized with one or
more generic parameters.

library: A repository for a set of types, which are grouped into one or more assemblies. A library can also
contain modifications to types defined in other libraries. For example, a library can include additional methods,
interfaces, and exceptions for types defined in other libraries.

managed code: Code that contains enough information to allow the CLI to provide a set of core services. For
example, given an address for a method inside the code, the CLI must be able to locate the metadata describing
that method. It must also be able to walk the stack, handle exceptions, and store and retrieve security
information.

managed data: Data that is allocated and released automatically by the CLI, through a process called garbage
collection.

manifest: That part of an assembly that specifies the following information about that assembly: its version,
name, culture, and security requirements; which other files, if any, belong to that assembly, along with a
cryptographic hash of each file; which of the types defined in other files of that assembly are to be exported
from that assembly; and, optionally, a digital signature for the manifest itself, and the public key used to
compute it.

member: Any of the fields, array elements, methods, properties, and events of a type.

metadata: Data that describes and references the types defined by the CTS. Metadata is stored in a way that is
independent of any particular programming language. Thus, metadata provides a common interchange
mechanism for use between tools that manipulate programs (such as compilers and debuggers) as well as
between these tools and the VES.

method: A member that describes an operation that can be performed on values of an exact type.

method, generic: A method (be it static, instance, or virtual), defined within a type, whose signature includes
one or more generic parameters, not present in the type definition itself. The enclosing type itself might, or
might not, be generic. For example, within the generic type List<T>, the generic method S ConvertTo<S>() is
generic.

method, non-generic: A method that is not generic.

module: A single file containing content that can be executed by the VES.

object: An instance of a reference type. An object has more to it than a value. An object is self-typing; its type
is explicitly stored in its representation. It has an identity that distinguishes it from all other objects, and it has
slots that store other entities (which can be either objects or values). While the contents of its slots can be
changed, the identity of an object never changes.

profile: A set of libraries, grouped together to form a consistent whole that provides a fixed level of
functionality.

property: A member that defines a named value and the methods that access that value. A property definition
defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods
exist and their respective method contracts.

signature: The part of a contract that can be checked and automatically enforced. Signatures are formed by
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations
on a value or location.

type, generic: A type whose definition is parameterized by one or more other types; for example, List<T>,
where T is a generic parameter. The CLI supports the creation and use of instances of generic types. For
example, List<int32> or List<string>.

type, reference: A type such that an instance of it contains a reference to its data.

type, value: A type such that an instance of it directly contains all its data.

unboxing: The conversion of a value having type System.Object, whose run-time type is a value type, to a
value type instance.

8 Partition I

unmanaged code: Code that is not managed.

unmanaged data: Data that is not managed.

value: A simple bit pattern for something like an integer or a float. Each value has a type that describes both
the storage that it occupies and the meanings of the bits in its representation, and also the operations that can be
performed on that representation. Values are intended for representing the simple types and non-objects in
programming languages.

verification: The checking of both CIL and its related metadata to ensure that the CIL code sequences do not
permit any access to memory outside the program’s logical address space. In conjunction with the validation
tests, verification ensures that the program cannot access memory or other resources to which it is not granted
access.

Virtual Execution System (VES): This system implements and enforces the CTS model. The VES is
responsible for loading and running programs written for the CLI. It provides the services needed to execute
managed code and data using the metadata to connect separately generated modules together at runtime. The
VES is also known as the Execution Engine.

 Partition I 9

6 Overview of the Common Language Infrastructure
The Common Language Infrastructure (CLI) provides a specification for executable code and the execution
environment (the Virtual Execution System) in which it runs. Executable code is presented to the VES as
modules. A module is a single file containing executable content in the format specified in Partition II.

The remainder of this clause and its subclauses contain only informative text
At the center of the CLI is a unified type system, the Common Type System that is shared by compilers, tools,
and the CLI itself. It is the model that defines the rules the CLI follows when declaring, using, and managing
types. The CTS establishes a framework that enables cross-language integration, type safety, and high
performance code execution. This clause describes the architecture of the CLI by describing the CTS.

The following four areas are covered in this clause:

• The Common Type System (CTS)—The CTS provides a rich type system that supports the types
and operations found in many programming languages. The CTS is intended to support the
complete implementation of a wide range of programming languages. See §8

• Metadata—The CLI uses metadata to describe and reference the types defined by the CTS.
Metadata is stored (that is, persisted) in a way that is independent of any particular programming
language. Thus, metadata provides a common interchange mechanism for use between tools (such
as compilers and debuggers) that manipulate programs, as well as between these tools and the
VES. See §9.

• The Common Language Specification (CLS)—The CLS is an agreement between language
designers and framework (that is, class library) designers. It specifies a subset of the CTS and a
set of usage conventions. Languages provide their users the greatest ability to access frameworks
by implementing at least those parts of the CTS that are part of the CLS. Similarly, frameworks
will be most widely used if their publicly exposed aspects (e.g., classes, interfaces, methods, and
fields) use only types that are part of the CLS and that adhere to the CLS conventions. See §10.

• The Virtual Execution System (VES)—The VES implements and enforces the CTS model. The
VES is responsible for loading and running programs written for the CLI. It provides the services
needed to execute managed code and data, using the metadata to connect separately generated
modules together at runtime (late binding). See §12.

Together, these aspects of the CLI form a unifying infrastructure for designing, developing, deploying, and
executing distributed components and applications. The appropriate subset of the CTS is available from each
programming language that targets the CLI. Language-based tools communicate with each other and with the
VES using metadata to define and reference the types used to construct the application. The VES uses the
metadata to create instances of the types as needed and to provide data type information to other parts of the
infrastructure (such as remoting services, assembly downloading, and security).

6.1 Relationship to type safety
Type safety is usually discussed in terms of what it does (e.g., guaranteeing encapsulation between different
objects) or in terms of what it prevents (e.g., memory corruption by writing where one shouldn’t). However,
from the point of view of the CTS, type safety guarantees that:

• References are what they say they are – Every reference is typed, the object or value referenced
also has a type, and these types are assignment compatible (see §8.7).

• Identities are who they say they are – There is no way to corrupt or spoof an object, and, by
implication, a user or security domain. Access to an object is through accessible functions and
fields. An object can still be designed in such a way that security is compromised. However, a
local analysis of the class, its methods, and the things it uses, as opposed to a global analysis of
all uses of a class, is sufficient to assess the vulnerabilities.

10 Partition I

• Only appropriate operations can be invoked – The reference type defines the accessible
functions and fields. This includes limiting visibility based on where the reference is (e.g.,
protected fields only visible in derived classes).

The CTS promotes type safety (e.g., everything is typed). Type safety can optionally be enforced. The hard
problem is determining if an implementation conforms to a type-safe declaration. Since the declarations are
carried along as metadata with the compiled form of the program, a compiler from the Common Intermediate
Language (CIL) to native code (see §8.8) can type-check the implementations.

6.2 Relationship to managed metadata-driven execution
Metadata describes code by describing the types that the code defines and the types that it references externally.
The compiler produces the metadata when the code is produced. Enough information is stored in the metadata
to:

• Manage code execution – not just load and execute, but also memory management and execution
state inspection.

• Administer the code – Installation, resolution, and other services.

• Reference types in the code – Importing into other languages and tools as well as scripting and
automation support.

The CTS assumes that the execution environment is metadata-driven. Using metadata allows the CLI to
support:

• Multiple execution models – The metadata allows the execution environment to deal with a
mixture of interpreted, JITted, native, and legacy code, and still present uniform services to tools
like debuggers and profilers, consistent exception handling and unwinding, reliable code access
security, and efficient memory management.

• Auto support for services – Since the metadata is available at execution time, the execution
environment and the base libraries can automatically supply support for reflection, automation,
serialization, remote objects, and inter-operability with existing unmanaged native code with little
or no effort on the part of the programmer.

• Better optimization – Using metadata references instead of physical offsets, layouts, and sizes
allows the CLI to optimize the physical layouts of members and dispatch tables. In addition, this
allows the generated code to be optimized to match the particular CPU or environment.

• Reduced binding brittleness – Using metadata references reduces version-to-version brittleness
by replacing compile-time object layout with load-time layout and binding by name.

• Flexible deployment resolution – Since we can have metadata for both the reference and the
definition of a type, more robust and flexible deployment and resolution mechanisms are possible.
Resolution means that by looking in the appropriate set of places it is possible to find the
implementation that best satisfies these requirements for use in this context. There are five
elements of information in the foregoing: requirements and context are made available via
metadata; where to look, how to find an implementation, and how to decide the best match all
come from application packaging and deployment.

6.2 .1 Managed code

Managed code is code that provides enough information to allow the CLI to provide a set of core services,
including

• Given an address inside the code for a method, locate the metadata describing the method

• Walk the stack

• Handle exceptions

• Store and retrieve security information

 Partition I 11

This standard specifies a particular instruction set, the CIL (see Partition III), and a file format (see Partition II)
for storing and transmitting managed code.

6.2 .2 Managed data

Managed data is data that is allocated and released automatically by the CLI, through a process called
garbage collection.

6.2 .3 Summary

The CTS is about integration between languages: using another language’s objects as if they were one’s own.

The objective of the CLI is to make it easier to write components and applications in any language. It does this
by defining a standard set of types, by making all components fully self-describing, and by providing a high
performance common execution environment. This ensures that all CLI-compliant system services and
components will be accessible to all CLI-aware languages and tools. In addition, this simplifies deployment of
components and applications that use them, all in a way that allows compilers and other tools to leverage the
high performance execution environment. The CTS covers, at a high level, the concepts and interactions that
make all of this possible.

The discussion is broken down into four areas:

• Type System – What types are and how to define them.
• Metadata – How types are described and how those descriptions are stored.
• Common Language Specification – Restrictions required for language interoperability.
• Virtual Execution System – How code is executed and how types are instantiated, interact, and

die.

End informative text

12 Partition I

7 Common Language Specification

7.1 Introduction
The CLS is a set of rules intended to promote language interoperability. These rules shall be followed in order
to conform to the CLS. They are described in greater detail in subsequent clauses and are summarized in §11.
CLS conformance is a characteristic of types that are generated for execution on a CLI implementation. Such
types must conform to the CLI standard, in addition to the CLS rules. These additional rules apply only to
types that are visible in assemblies other than those in which they are defined, and to the members that are
accessible outside the assembly; that is, those that have an accessibility of public, family (but not on sealed
types), or family-or-assembly (but not on sealed types).

[Note: A library consisting of CLS-compliant code is herein referred to as a framework. Compilers that
generate code for the CLI can be designed to make use of such libraries, but not to be able to produce or extend
such library code. These compilers are referred to as consumers. Compilers that are designed to both produce
and extend frameworks are referred to as extenders. In the description of each CLS rule, additional informative
text is provided to assist the reader in understanding the rule’s implication for each of these situations. end
note]

7.2 Views of CLS compliance

This subclause and its subclauses contain only informative text
The CLS is a set of rules that apply to generated assemblies. Because the CLS is designed to support
interoperability for libraries and the high-level programming languages used to write them, it is often useful to
think of the CLS rules from the perspective of the high-level source code and tools, such as compilers, that are
used in the process of generating assemblies. For this reason, informative notes are added to the description of
CLS rules to assist the reader in understanding the rule’s implications for several different classes of tools and
users. The different viewpoints used in the description are called framework, consumer, and extender, and
are described here.

7.2 .1 CLS framework

A library consisting of CLS-compliant code is herein referred to as a framework. Frameworks are designed for
use by a wide range of programming languages and tools, including both CLS consumer and extender
languages. By adhering to the rules of the CLS, authors of libraries ensure that the libraries will be usable by a
larger class of tools than if they chose not to adhere to the CLS rules. The following are some additional
guidelines that CLS-compliant frameworks should follow:

• Avoid the use of names commonly used as keywords in programming languages.

• Not expect users of the framework to be able to author nested types.

• Assume that implementations of methods of the same name and signature on different interfaces
are independent.

• Not rely on initialization of value types to be performed automatically based on specified
initializer values.

• Assume users can instantiate and use generic types and methods, but do not require them to define
new generic types or methods, or deal with partially constructed generic types.

Frameworks shall not:

• Require users to define new generic types/methods, override existing generic methods, or deal
with partially constructed generics in any way.

CLS Rule 48: If two or more CLS-compliant methods declared in a type have the same name and, for a
specific set of type instantiations, they have the same parameter and return types, then all these methods shall
be semantically equivalent at those type instantiations.

 Partition I 13

[Note:

CLS (consumer): May select any one of the methods.

CLS (extender): Same as consumer.

CLS (framework): Shall not expose methods that violate this rule. end note]

7 .2 .2 CLS consumer

A CLS consumer is a language or tool that is designed to allow access to all of the features supplied by CLS-
compliant frameworks, but not necessarily be able to produce them. The following is a partial list of things
CLS consumer tools are expected to be able to do:

• Support calling any CLS-compliant method or delegate.

• Have a mechanism for calling methods whose names are keywords in the language.

• Support calling distinct methods supported by a type that have the same name and signature, but
implement different interfaces.

• Create an instance of any CLS-compliant type.

• Read and modify any CLS-compliant field.

• Access nested types.

• Access any CLS-compliant property. This does not require any special support other than the
ability to call the getter and setter methods of the property.

• Access any CLS-compliant event. This does not require any special support other than the ability
to call methods defined for the event.

• Have a mechanism to import, instantiate, and use generic types and methods.

[Note: Extenders should consider supporting:

• Type inferencing over generic methods with language-defined rules for matching.

• Casting syntax to clarify ambiguous casts to a common supertype.

end note]

The following is a list of things CLS consumer tools need not support:

• Creation of new types or interfaces.

• Initialization metadata (see Partition II) on fields and parameters other than static literal fields.
Note that consumers can choose to use initialization metadata, but can also safely ignore such
metadata on anything other than static literal fields.

7.2 .3 CLS extender

A CLS extender is a language or tool that is designed to allow programmers to both use and extend CLS-
compliant frameworks. CLS extenders support a superset of the behavior supported by a CLS consumer (i.e.,
everything that applies to a CLS consumer also applies to CLS extenders). In addition to the requirements of a
consumer, extenders are expected to be able to:

• Define new CLS-compliant types that extend any (non-sealed) CLS-compliant base class.

• Have some mechanism for defining types whose names are keywords in the language.

• Provide independent implementations for all methods of all interfaces supported by a type. That
is, it is not sufficient for an extender to require a single code body to implement all interface
methods of the same name and signature.

• Implement any CLS-compliant interface.

14 Partition I

• Place any CLS-compliant custom attribute on all appropriate elements of metadata.

• Define new CLS-compliant (non-generic) types that extend any (non-sealed) CLS-compliant base
type. Valid base types include normal (non-generic) types and also fully constructed generic
types.

[Note: Extenders should consider supporting:

• Type inferencing over generic methods with language-defined rules for matching.

• Casting syntax to clarify ambiguous casts to a common supertype.

end note]

Extenders need not support the following:

• Definition of new CLS-compliant interfaces.

• Definition of nested types.

• Definition of generic types and methods.

• Overriding existing virtual generic methods.

The CLS is designed to be large enough that it is properly expressive yet small enough that all languages can
reasonably accommodate it.

End informative text

7.3 CLS compliance
As these rules are introduced in detail, they are described in a common format. For an example, see the first
rule below. The first paragraph specifies the rule itself. This is then followed by an informative description of
the implications of the rule from the three different viewpoints as described above.

The CLS defines language interoperability rules, which apply only to “externally visible” items. The CLS unit
of that language interoperability is the assembly—that is, within a single assembly there are no restrictions as to
the programming techniques that can be used. Thus, the CLS rules apply only to items that are visible
(see §8.5.3) outside of their defining assembly and have public, family, or family-or-assembly accessibility
(see §8.5.3.2).

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the defining
assembly.

[Note:

CLS (consumer): no impact.

CLS (extender): when checking CLS compliance at compile time, be sure to apply the rules only to
information that will be exposed outside the assembly.

CLS (framework): CLS rules do not apply to internal implementation within an assembly. A type is CLS-
compliant if all its publicly accessible parts (those classes, interfaces, methods, fields, properties, and events
that are available to code executing in another assembly) either
• have signatures composed only of CLS-compliant types, or
• are specifically marked as not CLS-compliant. end note]

Any construct that would make it impossible to rapidly verify code is excluded from the CLS. This allows all
CLS-compliant language translators to produce verifiable code if they so choose.

7.3 .1 Marking items as CLS-compliant

The CLS specifies how to mark externally visible parts of an assembly to indicate whether or not they comply
with the CLS requirements. (Implementers are discouraged from marking extensions to this standard as CLS-
compliant.) This is done using the custom attribute mechanism (see §9.7 and Partition II). The class

 Partition I 15

System.CLSCompliantAttribute (see Partition IV) indicates which types and type members are CLS-
compliant. It also can be attached to an assembly, to specify the default level of compliance for all top-level
types that assembly contains.

The constructor for System.CLSCompliantAttribute takes a Boolean argument indicating whether the item
with which it is associated is CLS-compliant. This allows any item (assembly, type, or type member) to be
explicitly marked as CLS-compliant or not.

The rules for determining CLS compliance are:

• When an assembly does not carry an explicit System.CLSCompliantAttribute, it shall be
assumed to carry System.CLSCompliantAttribute(false).

• By default, a type inherits the CLS-compliance attribute of its enclosing type (for nested types) or
acquires the level of compliance attached to its assembly (for top-level types). A type can be
marked as either CLS-compliant or not CLS-compliant by attaching the
System.CLSCompliantAttribute attribute.

• By default, other members (methods, fields, properties, and events) inherit the CLS-compliance of
their type. They can be marked as not CLS-compliant by attaching the attribute
System.CLSCompliantAttribute(false).

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant.

[Note:

CLS (consumer): Can ignore any member that is not CLS-compliant using the above rules.

CLS (extender): Should encourage correct labeling of newly authored assemblies and publicly exposed types
and members. Compile-time enforcement of the CLS rules is strongly encouraged.

CLS (framework): Shall correctly label all publicly exposed members as to their CLS compliance. The rules
specified here can be used to minimize the number of markers required (for example, label the entire assembly
if all types and members are compliant or if there are only a few exceptions that need to be marked). end note]

16 Partition I

8 Common Type System
Types describe values and specify a contract (see §8.6) that all values of that type shall support. Because the
CTS supports Object-Oriented Programming (OOP) as well as functional and procedural programming
languages, it deals with two kinds of entities: objects and values. Values are simple bit patterns for things like
integers and floats; each value has a type that describes both the storage that it occupies and the meanings of
the bits in its representation, and also the operations that can be performed on that representation. Values are
intended for representing the corresponding simple types in programming languages like C, and also for
representing non-objects in languages like C++ and Java™.

Objects have rather more to them than do values. Each object is self-typing, that is, its type is explicitly stored
in its representation. It has an identity that distinguishes it from all other objects, and it has slots that store other
entities (which can be either objects or values). While the contents of its slots can be changed, the identity of an
object never changes.

There are several kinds of objects and values, as shown in the (informative) diagram below.

The generics feature allows a whole family of types and methods to be defined using a pattern, which includes
placeholders called generic parameters. These generic parameters are replaced, as required, by specific types,
to instantiate whichever member of the family is actually required. The design of generics meets the following
goals:

• Orthogonality: Where possible, generic types can occur in any context where existing CLI types can
occur.

• Language independence: No assumptions about the source language are made. But CLI-generics
attempts to support existing generics-like features of as many languages as possible. Furthermore, the
design permits clean extensions of languages currently lacking generics.

• Implementation independence: An implementation of the CLI is allowed to specialize representations
and code on a case-by-case basis, or to share all representations and code, perhaps boxing and
unboxing values to achieve this.

• Implementation efficiency: Performance of generics is no worse than the use of Object to simulate
generics; a good implementation can do much better, avoiding casts on reference type instantiations,
and producing specialized code for value type instantiations.

• Statically checkable at point of definition: A generic type definition can be validated and verified
independently of its instantiations. Thus, a generic type is statically verifiable, and its methods are
guaranteed to JIT-compile for all valid instantiations.

• Uniform behavior with respect to generic parameters: In general, the behavior of parameterized types
and generic methods is “the same” at all type instantiations.

In addition, CLI supports covariant and contravariant generic parameters, with the following characteristics:

• It is type-safe (based on purely static checking)

• Simplicity: in particular, variance is only permitted on generic interfaces and generic delegates (not
classes or value-types)

• Languages not wishing to support variance can ignore the feature, and treat all generic types as non-
variant.

• Enable implementation of more complex covariance scheme as used in some languages, e.g. Eiffel.

 Partition I 17

This figure is informative

Figure 1: Type System

Integer Types

Floating Point Types

Typed References

Built-in Value Types
(special encoding in signature)

Enums

User Defined

Value Types

Delegates

Boxed Enums

Boxed Value Types

Name Equivalent

Arrays

Structural Equivalent

Self-Describing Interface

Function

Managed
(might be in heap)

Unmanaged

Pointer

String

Object

Built-In Reference Types

Reference Types
(identity within app. domain)

Type

Note: A managed pointer might point into the heap.

End informative figure

18 Partition I

8.1 Relationship to object-oriented programming

This subclause contains only informative text
The term type is often used in the world of value-oriented programming to mean data representation. In the
object-oriented world it usually refers to behavior rather than to representation. In the CTS, type is used to
mean both of these things: two entities have compatible types if and only if they have compatible
representations and compatible behaviors. Thus, in the CTS, if one type is derived from a base type, then
instances of the derived type can be substituted for instances of the base type because both the representation
and the behavior are compatible.

Unlike in some OOP languages, in the CTS, two objects that have fundamentally different representations have
different types. Some OOP languages use a different notion of type. They consider two objects to have the
same type if they respond in the same way to the same set of messages. This notion is captured in the CTS by
saying that the objects implement the same interface.

Similarly, some OOP languages (e.g., Smalltalk) consider message passing to be the fundamental model of
computation. In the CTS, this corresponds to calling virtual methods (see §8.4.4), where the signature of the
virtual method plays the role of the message.

The CTS itself does not directly capture the notion of “typeless programming.” That is, there is no way to call
a non-static method without knowing the type of the object. Nevertheless, typeless programming can be
implemented based on the facilities provided by the reflection package (see Partition IV) if it is implemented.

End informative text

8.2 Values and types
Types describe values. Any value described by a type is called an instance of that type. Any use of a value—
storing it, passing it as an argument, operating on it—requires a type. This applies in particular to all variables,
arguments, evaluation stack locations, and method results. The type defines the allowable values and the
allowable operations supported by the values of the type. All operators and functions have expected types for
each of the values accessed or used.

Every value has an exact type that fully describes its type properties.

Every value is an instance of its exact type, and can be an instance of other types as well. In particular, if a
value is an instance of a type that inherits from another type, it is also an instance of that other type.

8.2 .1 Value types and reference types

There are two kinds of types: value types and reference types.

• Value types – The values described by a value type are self-contained (each can be understood
without reference to other values).

• Reference types –A value described by a reference type denotes the location of another value.
There are four kinds of reference type:

o An object type is a reference type of a self-describing value (see §8.2.3). Some object
types (e.g., abstract classes) are only a partial description of a value.

o An interface type is always a partial description of a value, potentially supported by many
object types.

o A pointer type is a compile-time description of a value whose representation is a machine
address of a location.

o Built-in reference types.

 Partition I 19

8.2 .2 Built- in value and reference types

The following data types are an integral part of the CTS and are supported directly by the VES. They have
special encoding in the persisted metadata:

Table 1: Special Encoding

Name in CIL assembler
(see Partition II)

CLS Type? Name in class library
(see Partition IV)

Description

bool1 Yes System.Boolean True/false value
char1 Yes System.Char Unicode 16-bit char.
object Yes System.Object Object or boxed value type
string Yes System.String Unicode string
float32 Yes System.Single IEC 60559:1989 32-bit float
float64 Yes System.Double IEC 60559:1989 64-bit float
int8 No System.SByte Signed 8-bit integer
int16 Yes System.Int16 Signed 16-bit integer
int32 Yes System.Int32 Signed 32-bit integer
int64 Yes System.Int64 Signed 64-bit integer
native int Yes System.IntPtr Signed integer, native size
native unsigned int No System.UIntPtr Unsigned integer, native size
typedref No System.TypedReference Pointer plus exact type
unsigned int8 Yes System.Byte Unsigned 8-bit integer
unsigned int16 No System.UInt16 Unsigned 16-bit integer
unsigned int32 No System.UInt32 Unsigned 32-bit integer
unsigned int64 No System.UInt64 Unsigned 64-bit integer

1 bool and char are integer types.

8.2 .3 Classes , interfaces , and objects

A type fully describes a value if it unambiguously defines the value’s representation and the operations defined
on that value.

For a value type, defining the representation entails describing the sequence of bits that make up the value’s
representation. For a reference type, defining the representation entails describing the location and the sequence
of bits that make up the value’s representation.

A method describes an operation that can be performed on values of an exact type. Defining the set of
operations allowed on values of an exact type entails specifying named methods for each operation.

Some types are only a partial description; for example, interface types. These types describe a subset of the
operations and none of the representation, and hence, cannot be an exact type of any value. Hence, while a
value has only one exact type, it can also be a value of many other types as well. Furthermore, since the exact
type fully describes the value, it also fully specifies all of the other types that a value of the exact type can have.

While it is true that every value has an exact type, it is not always possible to determine the exact type by
inspecting the representation of the value. In particular, it is never possible to determine the exact type of a
value of a value type. Consider two of the built-in value types, 32-bit signed and unsigned integers. While each
type is a full specification of their respective values (i.e., an exact type) there is no way to derive that exact type
from a value’s particular 32-bit sequence.

20 Partition I

For some values, called objects, it is always possible to determine the exact type from the value. Exact types of
objects are also called object types. Objects are values of reference types, but not all reference types describe
objects. Consider a value that is a pointer to a 32-bit integer, a kind of reference type. There is no way to
discover the type of the value by examining the pointer bits; hence it is not an object. Now consider the built-in
CTS reference type System.String (see Partition IV). The exact type of a value of this type is always
determinable by examining the value, hence values of type System.String are objects, and System.String is
an object type.

8.2 .4 Boxing and unboxing of values

For every value type, the CTS defines a corresponding reference type called the boxed type. The reverse is not
true: In general, reference types do not have a corresponding value type. The representation of a value of a
boxed type (a boxed value) is a location where a value of the value type can be stored. A boxed type is an
object type and a boxed value is an object.

A boxed type cannot be directly referred to by name, therefore no field or local variable can be given a boxed
type. The closest named base class to a boxed enumerated value type is System.Enum; for all other value types
it is System.ValueType. Fields and locals typed System.ValueType or System.Enum can only contain either the
null value or an instance of a boxed value (enumeration) type, respectively.

All value types have an operation called box. Boxing a value of any value type produces its boxed value; i.e., a
value of the corresponding boxed type containing a bitwise copy of the original value. All boxed types have an
operation called unbox, which results in a managed pointer to the bit representation of the value.

The box instruction can be applied to more than just value types; such types are called boxable types. A type is
boxable if it is one of the following:

• A value type (including instantiations of generic value types) that does not contain fields that can point into
the CIL evaluation stack

[Rationale: A value type that does contain such fields cannot be boxed, else those embedded pointers
could outlive the entries in the CIL evaluation stack to which they point; e.g.,
System.RuntimeArgumentHandle, System.TypedReference. Value types that contain such pointers are
informally described as “byref-like” value types. end rationale]

• A reference type (including classes, arrays, delegates, and instantiations of generic classes)

• An unmanaged pointer type

• A generic parameter (to a generic type definition, or a generic method definition) [Note: Boxing and
unboxing of generic arguments adds performance overhead to a CLI implementation. The constrained.
prefix can improve performance during virtual dispatch to a method defined by a value type, by avoiding
boxing the value type. end note]

The type System.Void is never boxable.

Interfaces and inheritance are defined only on reference types. Thus, while a value type definition (see §8.9.7)
can specify both interfaces that shall be implemented by the value type and the class (System.ValueType or
System.Enum) from which it inherits, these apply only to boxed values.

CLS Rule 3: Boxed value types are not CLS-compliant.

[Note:

In lieu of boxed types, use System.Object, System.ValueType, or System.Enum, as appropriate.

CLS (consumer): Need not import boxed value types.

CLS (extender): Need not provide syntax for defining or using boxed value types.

CLS (framework): Shall not use boxed value types in its publicly exposed aspects. end note]

 Partition I 21

8.2 .5 Identity and equality of values

There are two binary operators defined on all pairs of values: identity and equality. They return a Boolean
result, and are mathematical equivalence operators; that is, they are:

• Reflexive – a op a is true.

• Symmetric – a op b is true if and only if b op a is true.

• Transitive – if a op b is true and b op c is true, then a op c is true.

In addition, while identity always implies equality, the reverse is not true. To understand the difference between
these operations, consider three variables, A, B, and C, whose type is System.String, where the arrow is
intended to mean “is a reference to”:

The values of the variables are identical if the locations of the sequences of characters are the same (i.e., there
is, in fact, only one string in memory). The values stored in the variables are equal if the sequences of
characters are the same. Thus, the values of variables A and B are identical, the values of variables A and C as
well as B and C are not identical, and the values of all three of A, B, and C are equal.

8.2 .5.1 Identity

 The identity operator is defined by the CTS as follows.

• If the values have different exact types, then they are not identical.

• Otherwise, if their exact type is a value type, then they are identical if and only if the bit
sequences of the values are the same, bit by bit.

• Otherwise, if their exact type is a reference type, then they are identical if and only if the
locations of the values are the same.

Identity is implemented on System.Object via the ReferenceEquals method.

8.2 .5.2 Equality

For value types, the equality operator is part of the definition of the exact type. Definitions of equality should
obey the following rules:

• Equality should be an equivalence operator, as defined above.

• Identity should imply equality, as stated earlier.

• If either (or both) operand is a boxed value, equality should be computed by

o first unboxing any boxed operand(s), and then

o applying the usual rules for equality on the resulting values.

Equality is implemented on System.Object via the Equals method.

[Note: Although two floating point NaNs are defined by IEC 60559:1989 to always compare as unequal, the
contract for System.Object.Equals requires that overrides must satisfy the requirements for an equivalence
operator. Therefore, System.Double.Equals and System.Single.Equals return True when comparing two
NaNs, while the equality operator returns False in that case, as required by the IEC standard. end note]

22 Partition I

8.3 Locations
Values are stored in locations. A location can hold only one value at a time. All locations are typed. The type
of the location embodies the requirements that shall be met by values that are stored in the location. Examples
of locations are local variables and parameters.

More importantly, the type of the location specifies the restrictions on usage of any value that is loaded from
that location. For example, a location can hold values of potentially many exact types as long as all of the
values are assignment-compatible with the type of the location (see below). All values loaded from a location
are treated as if they are of the type of the location. Only operations valid for the type of the location can be
invoked even if the exact type of the value stored in the location is capable of additional operations.

8.3 .1 Assignment-compatible locat ions

A value can be stored in a location only if one of the types of the value is assignment compatible with the type
of the location. A type is always assignment-compatible with itself. Assignment compatibility can often be
determined at compile time, in which case, there is no need for testing at run time. Assignment compatibility is
described in detail in §8.7.

8.3 .2 Coercion

Sometimes it is desirable to take a value of a type that is not assignment-compatible with a location, and
convert the value to a type that is assignment-compatible. This is accomplished through coercion of the value.
Coercion takes a value of a particular type and a desired type and attempts to create a value of the desired type
that has equivalent meaning to the original value. Coercion can result in representation changes as well as type
changes; hence coercion does not necessarily preserve the identity of two objects.

There are two kinds of coercion: widening, which never loses information, and narrowing, in which
information might be lost. An example of a widening coercion would be coercing a value that is a 32-bit signed
integer to a value that is a 64-bit signed integer. An example of a narrowing coercion is the reverse: coercing a
64-bit signed integer to a 32-bit signed integer. Programming languages often implement widening coercions as
implicit conversions, whereas narrowing coercions usually require an explicit conversion.

Some widening coercion is built directly into the VES operations on the built-in types (see §12.1). All other
coercion shall be explicitly requested. For the built-in types, the CTS provides operations to perform widening
coercions with no runtime checks and narrowing coercions with runtime checks.

8.3 .3 Cast ing

Since a value can be of more than one type, a use of the value needs to clearly identify which of its types is
being used. Since values are read from locations that are typed, the type of the value which is used is the type
of the location from which the value was read. If a different type is to be used, the value is cast to one of its
other types. Casting is usually a compile time operation, but if the compiler cannot statically know that the
value is of the target type, a runtime cast check is done. Unlike coercion, a cast never changes the actual type of
an object nor does it change the representation. Casting preserves the identity of objects.

For example, a runtime check might be needed when casting a value read from a location that is typed as
holding a value of a particular interface. Since an interface is an incomplete description of the value, casting
that value to be of a different interface type will usually result in a runtime cast check.

8.4 Type members

As stated above, the type defines the allowable values and the allowable operations supported by the values of
the type. If the allowable values of the type have a substructure, that substructure is described via fields or array
elements of the type. If there are operations that are part of the type, those operations are described via methods
on the type. Fields, array elements, and methods are called members of the type. Properties and events are also
members of the type.

8.4 .1 Fields, array elements, and values

The representation of a value (except for those of built-in types) can be subdivided into sub-values. These sub-
values are either named, in which case, they are called fields, or they are accessed by an indexing expression, in

 Partition I 23

which case, they are called array elements. Types that describe values composed of array elements are array
types. Types that describe values composed of fields are compound types. A value cannot contain both fields
and array elements, although a field of a compound type can be an array type and an array element can be a
compound type.

Array elements and fields are typed, and these types never change. All of the elements in an array shall have
the same type. Each field of a compound type can have a different type.

8.4 .2 Methods

A type can associate operations with that type or with each instance of that type. Such operations are called
methods. A method is named, and has a signature (see §8.6.1) that specifies the allowable types for all of its
arguments and for its return value, if any.

A method that is associated only with the type itself (as opposed to a particular instance of the type) is called a
static method (see §8.4.3).

A method that is associated with an instance of the type is either an instance method or a virtual method
(see §8.4.4). When they are invoked, instance and virtual methods are passed the instance on which this
invocation is to operate (known as this or a this pointer).

The fundamental difference between an instance method and a virtual method is in how the implementation is
located. An instance method is invoked by specifying a class and the instance method within that class. The
object passed as this can be null (a special value indicating that no instance is being specified) or an instance of
any type that inherits (see §8.9.8) from the class that defines the method. A virtual method can also be called in
this manner. This occurs, for example, when an implementation of a virtual method wishes to call the
implementation supplied by its base class. The CTS allows this to be null inside the body of a virtual method.

[Rationale: Allowing a virtual method to be called with a non-virtual call eliminates the need for a “call super”
instruction and allows version changes between virtual and non-virtual methods. It requires CIL generators to
insert explicit tests for a null pointer if they don’t want the null this pointer to propagate to called methods. end
rationale]

A virtual or instance method can also be called by a different mechanism, a virtual call. Any type that inherits
from a type that defines a virtual method can provide its own implementation of that method (this is known as
overriding, see §8.10.4). It is the exact type of the object (determined at runtime) that is used to decide which
of the implementations to invoke.

8.4 .3 Stat ic f ie lds and stat ic methods

Types can declare locations that are associated with the type rather than any particular value of the type. Such
locations are static fields of the type. As such, static fields declare a location that is shared by all values of the
type. Just like non-static (instance) fields, a static field is typed and that type never changes. Static fields are
always restricted to a single application domain basis (see §12.5), but they can also be allocated on a per-thread
basis.

Similarly, types can also declare methods that are associated with the type rather than with values of the type.
Such methods are static methods of the type. Since an invocation of a static method does not have an
associated value on which the static method operates, there is no this pointer available within a static method.

8.4 .4 Virtual methods

An object type can declare any of its methods as virtual. Unlike other methods, each exact type that
implements the type can provide its own implementation of a virtual method. A virtual method can be invoked
through the ordinary method call mechanism that uses the static type, method name, and types of parameters to
choose an implementation, in which case, the this pointer can be null. In addition, however, a virtual method
can be invoked by a special mechanism (a virtual call) that chooses the implementation based on the
dynamically detected type of the instance used to make the virtual call rather than the type statically known at
compile time. Virtual methods can be marked final (see §8.10.2).

24 Partition I

8.5 Naming

Names are given to entities of the type system so that they can be referred to by other parts of the type system
or by the implementations of the types. Types, fields, methods, properties, and events have names. With respect
to the type system, values, locals, and parameters do not have names. An entity of the type system is given a
single name (e.g., there is only one name for a type).

8.5 .1 Valid names

All name comparisons are done on a byte-by-byte (i.e., case sensitive, locale-independent, also known as code-
point comparison) basis. Where names are used to access built-in VES-supplied functionality (e.g., the class
initialization method) there is always an accompanying indication on the definition so as not to build in any set
of reserved names.

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 governing
the set of characters permitted to start and be included in identifiers, available on-line at
http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format defined
by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their lowercase mappings
(as specified by the Unicode locale-insensitive, one-to-one lowercase mappings) are the same. That is, for two
identifiers to be considered different under the CLS they shall differ in more than simply their case. However,
in order to override an inherited definition the CLI requires the precise encoding of the original declaration be
used.

[Note:

CLS (consumer): Need not consume types that violate CLS Rule 4, but shall have a mechanism to allow
access to named items that use one of its own keywords as the name.

CLS (extender): Need not create types that violate CLS Rule 4. Shall provide a mechanism for defining new
names that obey these rules, but are the same as a keyword in the language.

CLS (framework): Shall not export types that violate CLS Rule 4. Should avoid the use of names that are
commonly used as keywords in programming languages (see Partition VI Annex D) end note]

8.5 .2 Assemblies and scoping

Generally, names are not unique. Names are collected into groupings called scopes. Within a scope, a name can
refer to multiple entities as long as they are of different kinds (methods, fields, nested types, properties, and
events) or have different signatures.

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind, except
where the names are identical and resolved via overloading. That is, while the CTS allows a single type to use
the same name for a method and a field, the CLS does not.

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the CTS
allows distinct signatures to be distinguished. Methods, properties, and events that have the same name (by
identifier comparison) shall differ by more than just the return type, except as specified in CLS Rule 39.

[Note:

CLS (consumer): Need not consume types that violate these rules after ignoring any members that are marked
as not CLS-compliant.

CLS (extender): Need not provide syntax for defining types that violate these rules.

CLS (framework): Shall not mark types as CLS-compliant if they violate these rules unless they mark
sufficient offending items within the type as not CLS-compliant so that the remaining members do not conflict
with one another. end note]

A named entity has its name in exactly one scope. Hence, to identify a named entity, both a scope and a name
need to be supplied. The scope is said to qualify the name. Types provide a scope for the names in the type;
hence types qualify the names in the type. For example, consider a compound type Point that has a field

http://www.unicode.org/unicode/reports/tr15/tr15-18.html

 Partition I 25

named x. The name “field x” by itself does not uniquely identify the named field, but the qualified name
“field x in type Point” does.

Since types are named, the names of types are also grouped into scopes. To fully identify a type, the type name
shall be qualified by the scope that includes the type name. A type name is scoped by the assembly that
contains the implementation of the type. An assembly is a configured set of loadable code modules and other
resources that together implement a unit of functionality. The type name is said to be in the assembly scope of
the assembly that implements the type. Assemblies themselves have names that form the basis of the
CTS naming hierarchy.

The type definition:

• Defines a name for the type being defined (i.e., the type name) and specifies a scope in which
that name will be found.

• Defines a member scope in which the names of the different kinds of members (fields, methods,
events, and properties) are bound. The tuple of (member name, member kind, and member
signature) is unique within a member scope of a type.

• Implicitly assigns the type to the assembly scope of the assembly that contains the type definition.

The CTS supports an enum (also known as an enumeration type), an alternate name for an existing type. For
the purposes of matching signatures, an enum shall not be the same as the underlying type. Instances of an
enum, however, shall be assignment-compatible with the underlying type, and vice versa. That is, no cast
(see §8.3.3) or coercion (see §8.3.2) is required to convert from the enum to the underlying type, nor are they
required from the underlying type to the enum. An enum is considerably more restricted than a true type, as
follows:

• It shall have exactly one instance field, and the type of that field defines the underlying type of
the enumeration.

• It shall not have any methods of its own.

• It shall derive from System.Enum (see Partition IV).

• It shall not implement any interfaces of its own.

• It shall not have any properties or events of its own.

• It shall not have any static fields unless they are literal. (see §8.6.1.2)

The underlying type shall be a built-in integer type. Enums shall derive from System.Enum, hence they are
value types. Like all value types, they shall be sealed (see §8.9.9).

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field shall be
"value__", and that field shall be marked RTSpecialName.

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the
System.FlagsAttribute (see Partition IV) custom attribute. One represents named integer values; the other
represents named bit flags that can be combined to generate an unnamed value. The value of an enum is not
limited to the specified values.

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself.

[Note:

CLS (consumer): Shall accept the definition of enums that follow these rules, but need not distinguish flags
from named values.

CLS (extender): Same as consumer. Extender languages are encouraged to allow the authoring of enums, but
need not do so.

CLS (framework): Shall not expose enums that violate these rules, and shall not assume that enums have only
the specified values (even for enums that are named values). end note]

26 Partition I

8.5 .3 Visibi l ity , accessibi l ity , and security

To refer to a named entity in a scope, both the scope and the name in the scope shall be visible (see §8.5.3.1).
Visibility is determined by the relationship between the entity that contains the reference (the referent) and the
entity that contains the name being referenced. Consider the following pseudo-code:

class A
{ int32 IntInsideA;
}
class B inherits from A
{ method X(int32, int32)
 { IntInsideA := 15;
 }
}

If we consider the reference to the field IntInsideA in class A:

• We call class B the referent because it has a method that refers to that field,

• We call IntInsideA in class A the referenced entity.

There are two fundamental questions that need to be answered in order to decide whether the referent is
allowed to access the referenced entity. The first is whether the name of the referenced entity is visible to the
referent. If it is visible, then there is a separate question of whether the referent is accessible (see §8.5.3.2) .

Access to a member of a type is permitted only if all three of the following conditions are met:

1. The type is visible and, in the case of a nested type, accessible.

2. The member is accessible.

3. All relevant security demands (see §8.5.3.3) have been granted.

An instantiated generic type is visible from some assembly if and only if the generic type itself and each of its
component parts (generic type definition and generic arguments) are visible. For example, if List is exported
from assembly A (i.e., declared “public”) and MyClass is defined in assembly B but not exported, then
List<MyClass> is visible only from within assembly B.

Accessibility of members of instantiated generic types is independent of instantiation.

Access to a member C<T1, … Tn>.m is therefore permitted if the following conditions are met:

• C<T1, … Tn> is visible.

• Method m within generic type C (i.e., C.m) is accessible.

• Security permissions have been granted.

8.5 .3.1 Visibi l i ty of types

Only type names, not member names, have controlled visibility. Type names fall into one of the following three
categories

• Exported from the assembly in which they are defined. While a type can be marked to allow it to
be exported from the assembly, it is the configuration of the assembly that decides whether the
type name is made available.

• Not exported outside the assembly in which they are defined.

• Nested within another type. In this case, the type itself has the visibility of the type inside of
which it is nested (its enclosing type). See §8.5.3.4.

A top-level named type is exposed if and only if it has public visibility. A type definer is exposed if and only if
it is made from exposed types.

A type definer is visible if all types from which it was generated are visible.

 Partition I 27

8.5 .3.2 Accessibi l ity of members and nested types

A type scopes all of its members, and it also specifies the accessibility rules for its members. Except where
noted, accessibility is decided based only on the statically visible type of the member being referenced and the
type and assembly that is making the reference. The CTS supports seven different rules for accessibility:

• compiler-controlled – accessible only through the use of a definition, not a reference, hence only
accessible from within a single compilation unit and under the control of the compiler.

• private: – accessible only to referents in the implementation of the exact type that defines the
member.

• family – accessible to referents that support the same type (i.e., an exact type and all of the types
that inherit from it). For verifiable code (see §8.8), there is an additional requirement that can
require a runtime check: the reference shall be made through an item whose exact type supports
the exact type of the referent. That is, the item whose member is being accessed shall inherit
from the type performing the access.

• assembly – accessible only to referents in the same assembly that contains the implementation of
the type.

• family-and-assembly – accessible only to referents that qualify for both family and assembly
access.

• family-or-assembly – accessible only to referents that qualify for either family or assembly
access.

• public – accessible to all referents.

A member or nested type is exposed if and only if it has public, family-or-assembly, or family accessibility, and
its defining type (in the case of members) or its enclosing type (in the case of nested types) is exposed.

The accessibility of a type definer is the same as that for the type from which it was generated.

In general, a member of a type can have any one of the accessibility rules assigned to it. There are three
exceptions, however:

1. Members (other than nested types) defined by an interface shall be public.

2. When a type defines a virtual method that overrides an inherited definition, the accessibility shall
either be identical in the two definitions or the overriding definition shall permit more access than
the original definition. For example, it is possible to override an assembly virtual method with a
new implementation that is public virtual, but not with one that is family virtual. In the case of
overriding a definition derived from another assembly, it is not considered restricting access if the
base definition has family-or-assembly access and the override has only family access.

3. A member defined by a nested type, or a nested type enclosed by a nested type, shall not have
greater accessibility than the nested type that defines it (in the case of a member) or the nested
type that encloses it (in the case of a nested type).

[Rationale: Languages including C++ allow this “widening” of access. Restricting access would provide an
incorrect illusion of security since simply casting an object to the base class (which occurs implicitly on method
call) would allow the method to be called despite the restricted accessibility. To prevent overriding a virtual
method use final (see §8.10.2) rather than relying on limited accessibility. end rationale]

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when overriding a
method inherited from a different assembly with accessibility family-or-assembly. In this case, the override
shall have accessibility family.

[Note:

CLS (consumer): Need not accept types that widen access to inherited virtual methods.

CLS (extender): Need not provide syntax to widen access to inherited virtual methods.

28 Partition I

CLS (frameworks): Shall not rely on the ability to widen access to a virtual method, either in the exposed
portion of the framework or by users of the framework. end note]

8.5 .3.3 Security permissions

Access to members is also controlled by security demands that can be attached to an assembly, type, method,
property, or event. Security demands are not part of a type contract (see §8.6), and hence are not inherited.
There are two kinds of demands:

• An inheritance demand. When attached to a type, it requires that any type that wishes to inherit
from this type shall have the specified security permission. When attached to a non-final virtual
method, it requires that any type that wishes to override this method shall have the specified
permission. It shall not be attached to any other member.

• A reference demand. Any attempt to resolve a reference to the marked item shall have specified
security permission.

Only one demand of each kind can be attached to any item. Attaching a security demand to an assembly
implies that it is attached to all types in the assembly unless another demand of the same kind is attached to the
type. Similarly, a demand attached to a type implies the same demand for all members of the type unless
another demand of the same kind is attached to the member. For additional information, see Declarative
Security in Partition II, and the classes in the System.Security namespace in Partition IV.

8.5 .3.4 Nested types

A type can be a member of an enclosing type, in which case, it is a nested type. A nested type has the same
visibility as the enclosing type and has an accessibility as would any other member of the enclosing type. This
accessibility determines which other types can make references to the nested type. That is, for a class to define
a field or array element of a nested type, have a method that takes a nested type as a parameter or returns one as
value, etc., the nested type shall be both visible and accessible to the referencing type. A nested type is part of
the enclosing type so its methods have access to all members of its enclosing type, as well as family access to
members of the type from which it inherits (see §8.9.8). The names of nested types are scoped by their
enclosing type, not their assembly (only top-level types are scoped by their assembly). There is no requirement
that the names of nested types be unique within an assembly.

8.6 Contracts
Contracts are named. They are the shared assumptions on a set of signatures (see §8.6.1) between all
implementers and all users of the contract. The signatures are the part of the contract that can be checked and
enforced.

Contracts are not types; rather they specify requirements on the implementation of types. Types state which
contracts they abide by (i.e., which contracts all implementations of the type shall support). An implementation
of a type can be verified to check that the enforceable parts of a contract—the named signatures—have been
implemented. The kinds of contracts are:

• Class contract– A class contract is specified with a class definition. Hence, a class definition
defines both the class contract and the class type. The name of the class contract and the name of
the class type are the same. A class contract specifies the representation of the values of the class
type. Additionally, a class contract specifies the other contracts that the class type supports (e.g.,
which interfaces, methods, properties, and events shall be implemented). A class contract, and
hence the class type, can be supported by other class types as well. A class type that supports the
class contract of another class type is said to inherit from that class type.

• Interface contract – An interface contract is specified with an interface definition. Hence, an
interface definition defines both the interface contract and the interface type. The name of the
interface contract and the name of the interface type are the same. Many types can support the
same interface contract. Like class contracts, interface contracts specify which other contracts the
interface supports (e.g., which interfaces, methods, properties, and events shall be implemented).

 Partition I 29

[Note: An interface type can never fully describe the representation of a value. Therefore an interface
type can never support a class contract, and hence can never be a class type or an exact type. end note]

• Method contract – A method contract is specified with a method definition. A method contract
is a named operation that specifies the contract between the implementation(s) of the method and
the callers of the method. A method contract is always part of a type contract (class, value type,
or interface), and describes how a particular named operation is implemented. The method
contract specifies the contracts that each parameter to the method shall support and the contracts
that the return value shall support, if there is a return value.

• Property contract – A property contract is specified with a property definition. There is an
extensible set of operations for handling a named value, which includes a standard pair for
reading the value and changing the value. A property contract specifies method contracts for the
subset of these operations that shall be implemented by any type that supports the property
contract. A type can support many property contracts, but any given property contract can be
supported by exactly one type. Hence, property definitions are a part of the type definition of the
type that supports the property.

• Event contract – An event contract is specified with an event definition. There is an extensible
set of operations for managing a named event, which includes three standard methods (register
interest in an event, revoke interest in an event, fire the event). An event contract specifies
method contracts for all of the operations that shall be implemented by any type that supports the
event contract. A type can support many event contracts, but any given event contract can be
supported by exactly one type. Hence, event definitions are a part of the type definition of the
type that supports the event.

8.6 .1 Signatures

Signatures are the part of a contract that can be checked and automatically enforced. Signatures are formed by
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations
on a value or location. Example constraints would be whether a location can be overwritten with a different
value or whether a value can ever be changed.

All locations have signatures, as do all values. Assignment compatibility requires that the signature of the
value, including constraints, be compatible with the signature of the location, including constraints. There are
four fundamental kinds of signatures: type signatures (see §8.6.1.1), location signatures (see §8.6.1.2),
parameter signatures (see §8.6.1.4), and method signatures (see §8.6.1.5). (A fifth kind, a local signature (see
§8.6.1.3) is really a version of a location signature.)

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an instantiated
generic type shall be CLS-compliant.

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the signature of
any member shall be visible and accessible whenever the member itself is visible and accessible. For example,
a public method that is visible outside its assembly shall not have an argument whose type is visible only
within the assembly. The visibility and accessibility of types composing an instantiated generic type used in the
signature of any member shall be visible and accessible whenever the member itself is visible and accessible.
For example, an instantiated generic type present in the signature of a member that is visible outside its
assembly shall not have a generic argument whose type is visible only within the assembly.

[Note:

CLS (consumer): Need not accept types whose members violate these rules.

CLS (extender): Need not provide syntax to violate these rules.

CLS (framework): Shall not violate this rule in its exposed types and their members. end note]

The following subclauses describe the various kinds of signatures. These descriptions are cumulative: the
simplest signature is a type signature; a location signature is a type signature plus (optionally) some additional
attributes; and so forth.

30 Partition I

8.6 .1.1 Type s ignatures

Type signatures define the constraints on a value and its usage. A type, by itself, is a valid type signature. The
type signature of a value cannot be determined by examining the value or even by knowing the class type of the
value. The type signature of a value is derived from the location signature (see below) of the location from
which the value is loaded or from the operation that computes it. Normally the type signature of a value is the
type in the location signature from which the value is loaded.

[Rationale: The distinction between a Type Signature and a Location Signature (below) is made because
certain constraints, such as “constant,” are constraints on values not locations. Future versions of this standard,
or non-standard extensions, can introduce type constraints, thus making the distinction meaningful. end
rationale]

8.6 .1.2 Location s ignatures

All locations are typed. This means that all locations have a location signature, which defines constraints on
the location, its usage, and on the usage of the values stored in the location. Any valid type signature is a valid
location signature. Hence, a location signature contains a type and can additionally contain the constant
constraint. The location signature can also contain location constraints that give further restrictions on the uses
of the location. The location constraints are:

• The init-only constraint promises (hence, requires) that once the location has been initialized,
its contents never change. Namely, the contents are initialized before any access, and after
initialization, no value can be stored in the location. The contents are always identical to the
initialized value (see §8.2.3). This constraint, while logically applicable to any location, shall
only be placed on fields (static or instance) of compound types.

• The literal constraint promises that the value of the location is actually a fixed value of a built-
in type. The value is specified as part of the constraint. Compilers are required to replace all
references to the location with its value, and the VES therefore need not allocate space for the
location. This constraint, while logically applicable to any location, shall only be placed on static
fields of compound types. Fields that are so marked are not permitted to be referenced from CIL
(they shall be in-lined to their constant value at compile time), but are available using reflection
and tools that directly deal with the metadata.

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata (see
Partition II). A CLS-compliant literal must have a value specified in field initialization metadata that is of
exactly the same type as the literal (or of the underlying type, if that literal is an enum).

[Note:

CLS (consumer): Must be able to read field initialization metadata for static literal fields and inline the value
specified when referenced. Consumers can assume that the type of the field initialization metadata is exactly
the same as the type of the literal field (i.e., a consumer tool need not implement conversions of the values).

CLS (extender): Must avoid producing field initialization metadata for static literal fields in which the type of
the field initialization metadata does not exactly match the type of the field.

CLS (framework): Should avoid the use of syntax specifying a value of a literal that requires conversion of the
value. Note that compilers can do the conversion themselves before persisting the field initialization metadata
resulting in a CLS-compliant framework, but frameworks are encouraged not to rely on such implicit
conversions. end note]

[Note: It might seem reasonable to provide a volatile constraint on a location that would require that the value
stored in the location not be cached between accesses. Instead, CIL includes a volatile. prefix to certain
instructions to specify that the value neither be cached nor computed using an existing cache. Such a constraint
can be encoded using a custom attribute (see §9.7), although this standard does not specify such an attribute.
end note]

 Partition I 31

8.6 .1.3 Local s ignatures

A local signature specifies the contract on a local variable allocated during the running of a method. A local
signature contains a full location signature, plus it can specify one additional constraint:

The byref constraint states that the content of the corresponding location is a managed pointer. A managed
pointer can point to a local variable, parameter, field of a compound type, or element of an array. However,
when a call crosses a remoting boundary (see §12.5) a conforming implementation can use a copy-in/copy-out
mechanism instead of a managed pointer. Thus programs shall not rely on the aliasing behavior of true pointers.

In addition, there is one special local signature. The typed reference local variable signature states that the
local will contain both a managed pointer to a location and a runtime representation of the type that can be
stored at that location. A typed reference signature is similar to a byref constraint, but while the byref specifies
the type as part of the byref constraint (and hence statically as part of the type description), a typed reference
provides the type information dynamically. A typed reference is a full signature in itself and cannot be
combined with other constraints. In particular, it is not possible to specify a byref whose type is typed
reference.

The typed reference signature is actually represented as a built-in value type, like the integer and floating-point
types. In the Base Class Library (see Partition IV) the type is known as System.TypedReference and in the
assembly language used in Partition II it is designated by the keyword typedref. This type shall only be used
for parameters and local variables. It shall not be boxed, nor shall it be used as the type of a field, element of an
array, or return value.

CLS Rule 14: Typed references are not CLS-compliant.

[Note:

CLS (consumer): There is no need to accept this type.

CLS (extender): There is no need to provide syntax to define this type or to extend interfaces or classes that
use this type.

CLS (framework): This type shall not appear in exposed members. end note]

8.6 .1.4 Parameter s ignatures

A parameter signature, defines constraints on how an individual value is passed as part of a method
invocation. Parameter signatures are declared by method definitions. Any valid local signature is a valid
parameter signature.

8.6 .1.5 Method signatures

A method signatures is composed of

• a calling convention,

• the number of generic parameters, if the method is generic,

• a list of zero or more parameter signatures—one for each parameter of the method—and,

• a type signature for the result value, if one is produced.

Method signatures are declared by method definitions. Only one constraint can be added to a method signature
in addition to those of parameter signatures:

• The vararg constraint can be included to indicate that all arguments past this point are optional.
When it appears, the calling convention shall be one that supports variable argument lists.

Method signatures are used in two different ways: as part of a method definition and as a description of a
calling site when calling through a function pointer. In the latter case, the method signature indicates

• the calling convention (which can include platform-specific calling conventions),

• the types of all the argument values that are being passed, and

32 Partition I

• if needed, a vararg marker indicating where the fixed parameter list ends and the variable
parameter list begins.

When used as part of a method definition, the vararg constraint is represented by the choice of calling
convention.

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported by the
CLS is the standard managed calling convention.

[Note:

CLS (consumer): There is no need to accept methods with variable argument lists or unmanaged calling
convention.

CLS (extender): There is no need to provide syntax to declare vararg methods or unmanaged calling
conventions.

CLS (framework): Neither vararg methods nor methods with unmanaged calling conventions shall be exposed
externally. end note]

8.7 Assignment compatibil ity
Assignment compatibility refers to the ability to store a value V (statically described by a type signature) into
a location L (described by a location signature), and is abbreviated L := V. Because the type signature for V is
described statically, V might not actually be a value of the type described by the signature, but rather something
compatible with that type. No location or value shall have type System.Void.

The formal description of assignment compatibility is captured in Partition III, where it is referred to as
verification type compatibility. In essence, a value V is assignment compatible with a location L if it meets one
of the following conditions:

• The exact static type referred to by the type signature of V matches the exact type of the location.

• V, described by the generic type signature G<U1,...,Un>, is assignment compatible with L,
described by the generic type signature H<T1,…,Tn>, if and only if G=H, and for each generic
parameter of G with a variance annotation of var_i we have:

o var_i = none or Ti is a value type or Ti is a generic parameter: Ui is the same exact
type as Ti

o var_i = + (Covariant): Ti := Ui (i.e., an instance of Ui can be stored in a location of
type Ti)

o var_i = - (Contravariant): Ui := Ti (i.e., an instance of Ti can be stored in a location of
type Ui).

• V, described by type signature U[] is assignment compatible with L, described by location
signature T[], if and only if T and U are either reference types or interfaces, T := U, and the
array types are either both vectors (zero-based, rank one) or neither is a vector and both have
the same rank. [Note: This means that array types are covariant. end note]

• Vector V, described by type signature U[], is assignment compatible with
System.Collections.Generic.IList<U>, and also System.Collections.Generic.IList where B
is the set of types supported by U.

• V’s type signature is an enumeration type and L’s location signature is the underlying type of
that enumeration.

• The type signature of V is a byref to a signed integer and the location signature of L is a byref
to an unsigned integer of the same size, and vice versa; e.g., int32& := uint32&.

• The type signature of V is an int32 and the location signature of L is a bool. [Note: The CLI
stack only traces int32s even if a short integer is pushed. See Partition III. end note]

 Partition I 33

• One of the types supported by the exact type of V is assignment compatible to the type of L.
This allows, for example, an instance of a class that inherits from a base class (hence supports
the base class’s type contract) to be stored into a location whose type is that of the base class.
[Note: Recall that a location constraint is just a type constraint plus two additional possible
constraints (literal and constant), and thus a location constraint can be converted into a type
constraint in a natural way. end note] Under this set of rules, transitivity of assignment
compatibility holds: if L := V and M := L, then M := V.

• Signed and unsigned integral primitive types can be assigned to each other; e.g., int8 := uint8 is valid.
For this purpose, bool shall be considered compatible with uint8 and vice versa, which makes bool :=
uint8 valid, and vice versa. This is also true for arrays of signed and unsigned integral primitive types
of the same size; e.g., int32[] := uint32[] is valid.

8.8 Type safety and verification
Since types specify contracts, it is important to know whether a given implementation lives up to these
contracts. An implementation that lives up to the enforceable part of the contract (the named signatures) is said
to be type-safe. An important part of the contract deals with restrictions on the visibility and accessibility of
named items as well as the mapping of names to implementations and locations in memory.

Type-safe implementations only store values described by a type signature in a location that is assignment-
compatible (§8.7) with the location signature of the location (see §8.6.1). Type-safe implementations never
apply an operation to a value that is not defined by the exact type of the value. Type-safe implementations only
access locations that are both visible and accessible to them. In a type-safe implementation, the exact type of a
value cannot change.

Verification is a mechanical process of examining an implementation and asserting that it is type-safe.
Verification is said to succeed if the process proves that an implementation is type-safe. Verification is said to
fail if that process does not prove the type safety of an implementation. Verification is necessarily conservative:
it can report failure for a type-safe implementation, but it never reports success for an implementation that is
not type-safe. For example, most verification processes report implementations that do pointer-based arithmetic
as failing verification, even if the implementation is, in fact, type-safe.

There are many different processes that can be the basis of verification. The simplest possible process simply
says that all implementations are not type-safe. While correct and efficient this is clearly not particularly useful.
By spending more resources (time and space) a process can correctly identify more type-safe implementations.
It has been proven, however, that no mechanical process can, in finite time and with no errors, correctly
identify all implementations as either type-safe or not type-safe. The choice of a particular verification process
is thus a matter of engineering, based on the resources available to make the decision and the importance of
detecting the type safety of different programming constructs.

8.9 Type definers
Type definers construct a new type from existing types. Implicit types (e.g., built-in types, arrays, and pointers
including function pointers) are defined when they are used. The mention of an implicit type in a signature is in
and of itself a complete definition of the type. Implicit types allow the VES to manufacture instances with a
standard set of members, interfaces, etc. Implicit types need not have user-supplied names.

All other types shall be explicitly defined using an explicit type definition. The explicit type definers are:

• interface definitions – used to define interface types

• class definitions – used to define class types, which can be either of the following:

o object types (including delegates)

o value types and their associated boxed types

[Note: While class definitions always define class types, not all class types require a class definition. Array
types and pointer types, which are implicitly defined, are also class types. See §8.2.3.

34 Partition I

Similarly, not all types defined by a class definition are object types. Array types, explicitly defined object
types, and boxed types are object types. Pointer types, function pointer types, and value types are not object
types. See §8.2.3. end note]

Class, interface, and value type definitions can be parameterized, a feature known as generic type definitions.
That is, the definition of a class, interface, or value type can include generic parameters. When used, a specific
instantiation of the generic class, interface, or value type is made, at which point the generic parameters are
bound to specific generic arguments. The generic parameters can be constrained, so that only generic
arguments that match these constraints can be used for instantiations.

8.9 .1 Array types

An array type shall be defined by specifying the element type of the array, the rank (number of dimensions)
of the array, and the upper and lower bounds of each dimension of the array. Hence, no separate definition of
the array type is needed. The bounds (as well as indices into the array) shall be signed integers. While the
actual bounds for each dimension are known only at runtime, the signature can specify the information that is
known at compile time (e.g., no bounds, a lower bound, or both an upper and a lower bound).

Array elements shall be laid out within the array object in row-major order (i.e., the elements associated with
the rightmost array dimension shall be laid out contiguously from lowest to highest index). The actual storage
allocated for each array element can include platform-specific padding. (The size of this storage, in bytes, is
returned by the sizeof instruction when it is applied to the type of that array’s elements.)

Values of an array type are objects; hence an array type is a kind of object type (see §8.2.3). Array objects are
defined by the CTS to be a repetition of locations where values of the array element type are stored. The
number of repeated values is determined by the rank and bounds of the array.

Only type signatures, not location signatures, are allowed as array element types.

Exact array types are created automatically by the VES when they are required. Hence, the operations on an
array type are defined by the CTS. These generally are: allocating the array based on size and lower-bound
information, indexing the array to read and write a value, computing the address of an element of the array (a
managed pointer), and querying for the rank, bounds, and the total number of values stored in the array.

Additionally, a created vector with element type T, implements the interface
System.Collections.Generic.IList<U>, where U := T.

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array shall
have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be
required to distinguish between overloads. When overloading is based on two or more array types the element
types shall be named types.

[Note: So-called “jagged arrays” are CLS-compliant, but when overloading multiple array types they are one-
dimensional, zero-based arrays of type System.Array.

CLS (consumer): There is no need to support arrays of non-CLS types, even when dealing with instances of
System.Array. Overload resolution need not be aware of the full complexity of array types. Programmers
should have access to the Get, Set, and Address methods on instances of System.Array if there is no language
syntax for the full range of array types.

CLS (extender): There is no need to provide syntax to define non-CLS types of arrays or to extend interfaces
or classes that use non-CLS array types. Shall provide access to the type System.Array, but can assume that all
instances will have a CLS-compliant type. While the full array signature must be used to override an inherited
method that has an array parameter, the full complexity of array types need not be made visible to
programmers. Programmers should have access to the Get, Set, and Address methods on instances of
System.Array if there is no language syntax for the full range of array types.

CLS (framework): Non-CLS array types shall not appear in exposed members. Where possible, use only one-
dimensional, zero-based arrays (vectors) of simple named types, since these are supported in the widest range
of programming languages. Overloading on array types should be avoided, and when used shall obey the
restrictions. end note]

 Partition I 35

Array types form a hierarchy, with all array types inheriting from the type System.Array. This is an abstract
class (see §8.9.6.2) that represents all arrays regardless of the type of their elements, their rank, or their upper
and lower bounds. The VES creates one array type for each distinguishable array type. In general, array types
are only distinguished by the type of their elements and their rank. However, the VES treats single
dimensional, zero-based arrays (also known as vectors) specially. Vectors are also distinguished by the type of
their elements, but a vector is distinct from a single-dimensional array of the same element type that has a non-
zero lower bound. Zero-dimensional arrays are not supported.

Consider the following examples, using the syntax of CIL as described in Partition II:

Table 2: Array Examples

Static specification of type Actual type constructed Allowed in CLS?
int32[] vector of int32 Yes
int32[0...5] vector of int32 Yes
int32[1...5] array, rank 1, of int32 No
int32[,] array, rank 2, of int32 Yes
int32[0...3, 0...5] array, rank 2, of int32 Yes
int32[0..., 0...] array, rank 2, of int32 Yes
int32[1..., 0...] array, rank 2, of int32 No

8.9 .2 Unmanaged pointer types

An unmanaged pointer type (also known simply as a “pointer type”) is defined by specifying a location
signature for the location the pointer references. Any signature of a pointer type includes this location
signature. Hence, no separate definition of the pointer type is needed.

While pointer types are reference types, values of a pointer type are not objects (see §8.2.3), and hence it is not
possible, given a value of a pointer type, to determine its exact type. The CTS provides two type-safe
operations on pointer types: one to load the value from the location referenced by the pointer and the other to
store an assignment compatible value into that location. The CTS also provides three operations on pointer
types (byte-based address arithmetic): adding to and subtracting integers from pointers, and subtracting one
pointer from another. The results of the first two operations are pointers to the same type signature as the
original pointer. See Partition III for details.

CLS Rule 17: Unmanaged pointer types are not CLS-compliant.

[Note:

CLS (consumer): There is no need to support unmanaged pointer types.

CLS (extender): There is no need to provide syntax to define or access unmanaged pointer types.

CLS (framework): Unmanaged pointer types shall not be externally exposed. end note]

8.9 .3 Delegates

Delegates are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are
object-oriented, type-safe, and secure. Delegates are created by defining a class that derives from the base type
System.Delegate (see Partition IV). Each delegate type shall provide a method named Invoke with appropriate
parameters, and each instance of a delegate forwards calls to its Invoke method to one or more compatible
static or instance methods on particular objects. The objects and methods to which it delegates are chosen when
the delegate instance is created.

In addition to an instance constructor and an Invoke method, delegates can optionally have two additional
methods: BeginInvoke and EndInvoke. These are used for asynchronous calls.

36 Partition I

While, for the most part, delegates appear to be simply another kind of user-defined class, they are tightly
controlled. The implementations of the methods are provided by the VES, not user code. The only additional
members that can be defined on delegate types are static or instance methods.

8.9 .4 Interface type def init ion

An interface definition defines an interface type. An interface type is a named group of methods, locations,
and other contracts that shall be implemented by any object type that supports the interface contract of the same
name. An interface definition is always an incomplete description of a value, and, as such, can never define a
class type or an exact type, nor can it be an object type.

Zero or more object types can support an interface type, and only object types can support an interface type. An
interface type can require that objects that support it shall also support other (specified) interface types. An
object type that supports the named interface contract shall provide a complete implementation of the methods,
locations, and other contracts specified (but not implemented by) the interface type. Hence, a value of an object
type is also a value of all of the interface types the object type supports. Support for an interface contract is
declared, never inferred; i.e., the existence of implementations of the methods, locations, and other contracts
required by the interface type does not imply support of the interface contract.

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods in
order to implement them.

[Note:

CLS (consumer): There is no need to deal with such interfaces.

CLS (extender): Need not provide a mechanism for defining such interfaces.

CLS (framework): Shall not expose any non-CLS compliant methods on interfaces it defines for external use.
end note]

Interface types are necessarily incomplete since they say nothing about the representation of the values of the
interface type. For this reason, an interface type definition shall not provide field definitions for values of the
interface type (i.e., instance fields), although it can declare static fields (see §8.4.3).

Similarly, an interface type definition shall not provide implementations for any methods on the values of its
type. However, an interface type definition can—and usually does—define method contracts (method name and
method signature) that shall be implemented by supporting types. An interface type definition can define and
implement static methods (see §8.4.3) since static methods are associated with the interface type itself rather
than with any value of the type.

Interfaces can have static or virtual methods, but shall not have instance methods.

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.

[Note:

CLS-compliant interfaces can define properties, events, and virtual methods.

CLS (consumer): Need not accept interfaces that violate these rules.

CLS (extender): Need not provide syntax to author interfaces that violate these rules.

CLS (framework): Shall not externally expose interfaces that violate these rules. Where static methods,
instance methods, or fields are required, a separate class can be defined that provides them. end note]

Interface types can also define event and property contracts that shall be implemented by object types that
support the interface. Since event and property contracts reduce to sets of method contracts (§8.6), the above
rules for method definitions apply. For more information, see §8.11.4 and §8.11.3.

Interface type definitions can specify other interface contracts that implementations of the interface type are
required to support. See §8.9.11 for specifics.

An interface type is given a visibility attribute, as described in §8.5.3, that controls from where the interface
type can be referenced. An interface type definition is separate from any object type definition that supports the
interface type. Hence, it is possible, and often desirable, to have a different visibility for the interface type and

 Partition I 37

the implementing object type. However, since accessibility attributes are relative to the implementing type
rather than the interface itself, all members of an interface shall have public accessibility, and no security
permissions can be attached to members or to the interface itself.

8.9 .5 Class type def init ion

All types other than interfaces and those types for which a definition is automatically supplied by the CTS, are
defined by class definitions. A class type is a complete specification of the representation of the values of the
class type and all of the contracts (class, interface, method, property, and event) that are supported by the class
type. Hence, a class type is an exact type. Unless it specifies that the class is an abstract object type, a class
definition not only defines the class type, it also provides implementations for all of the contracts supported by
the class type.

A class definition, and hence the implementation of the class type, always resides in some assembly. (An
assembly is a configured set of loadable code modules and other resources that together implement a unit of
functionality.)

[Note: While class definitions always define class types, not all class types require a class definition. Array
types and pointer types, which are implicitly defined, are also class types. See §8.2.3. end note]

An explicit class definition is used to define:

• An object type (see §8.2.3).

• A value type and its associated boxed type (see §8.2.4).

An explicit class definition:

• Names the class type.

• Implicitly assigns the class type name to a scope, i.e., the assembly that contains the class
definition, (see §8.5.2).

• Defines the class contract of the same name (see §8.6).

• Defines the representations and valid operations of all values of the class type using member
definitions for the fields, methods, properties, and events (see §8.11).

• Defines the static members of the class type (see §8.11).

• Specifies any other interface and class contracts also supported by the class type.

• Supplies implementations for member and interface contracts supported by the class type.

• Explicitly declares a visibility for the type, either public or assembly (see §8.5.3).

• Can optionally specify a method (called .cctor) to be called to initialize the type.

The semantics of when and what triggers execution of such type initialization methods, is as follows:

1. A type can have a type-initializer method, or not.

2. A type can be specified as having a relaxed semantic for its type-initializer method (for
convenience below, we call this relaxed semantic BeforeFieldInit).

3. If marked BeforeFieldInit then the type’s initializer method is executed at, or sometime before,
first access to any static field defined for that type.

4. If not marked BeforeFieldInit then that type’s initializer method is executed at (i.e., is triggered
by):

• first access to any static field of that type, or

• first invocation of any static method of that type or

• first invocation of any constructor for that type.

38 Partition I

5. Execution of any type's initializer method will not trigger automatic execution of any initializer
methods defined by its base type, nor of any interfaces that the type implements

For reference types, a constructor has to be called to create a non-null instance. Thus, for reference types, the
.cctor will be called before instance fields can be accessed and methods can be called on non-null instances. For
value types, an “all-zero” instance can be created without a constructor (but only this value can be created
without a constructor). Thus for value types, the .cctor is only guaranteed to be called for instances of the value
type that are not “all-zero”. [Note: This changes the semantics slightly in the reference class case from the first
edition of this standard, in that the .cctor might not be called before an instance method is invoked if the 'this'
argument is null. The added performance of avoiding class constructors warrants this change. end note]

[Note: BeforeFieldInit behavior is intended for initialization code with no interesting side-effects, where exact
timing does not matter. Also, under BeforeFieldInit semantics, type initializers are allowed to be executed at
or before first access to any static field of that type, at the discretion of the CLI.

If a language wishes to provide more rigid behavior—e.g., type initialization automatically triggers execution
of base class’s initializers, in a top-to-bottom order—then it can do so by either:

• defining hidden static fields and code in each class constructor that touches the hidden static field of its
base class and/or interfaces it implements, or

• by making explicit calls to System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor
(see Partition IV).

end note]

8.9 .6 Object type def init ions

All objects are instances of an object type. The object type of an object is set when the object is created and it
is immutable. The object type describes the physical structure of the instance and the operations that are
allowed on it. All instances of the same object type have the same structure and the same allowable operations.
Object types are explicitly declared by a class type definition, with the exception of array types, which are
intrinsically provided by the VES.

8.9 .6.1 Scope and vis ibi l i ty

Since object type definitions are class type definitions, object type definitions implicitly specify the scope of
the name of object type to be the assembly that contains the object type definition, see §8.5.2. Similarly, object
type definitions shall also explicitly state the visibility attribute of the object type (either publicor assembly);
see §8.5.3.

8.9 .6.2 Concreteness

An object type can be marked as abstract by the object type definition. An object type that is not marked
abstract is, by definition, concrete. Only object types can be declared as abstract. Only an abstract object type
is allowed to define method contracts for which the type or the VES does not also provide the implementation.
Such method contracts are called abstract methods (see §8.11). Methods on an abstract class need not be
abstract.

It is an error to attempt to create an instance of an abstract object type, whether or not the type has abstract
methods. An object type that derives from an abstract object type can be concrete if it provides
implementations for all abstract methods in the base object type and is not itself marked as abstract. Instances
can be made of such a concrete derived class. Locations can have an abstract type, and instances of a concrete
type that derives from the abstract type can be stored in them.

8.9 .6.3 Type members

Object type definitions include member definitions for all of the members of the type. Briefly, members of a
type include fields into which values are stored, methods that can be invoked, properties that are available, and
events that can be raised. Each member of a type can have attributes as described in §8.4.

 Partition I 39

• Fields of an object type specify the representation of values of the object type by specifying the
component pieces from which it is composed (see 8.4.1). Static fields specify fields associated
with the object type itself (see §8.4.3). The fields of an object type are named and they are typed
via location signatures. The names of the members of the type are scoped to the type (see §8.5.2).
Fields are declared using a field definition (see §8.11.2).

• Methods of an object type specify operations on values of the type (see §8.4.2). Static methods
specify operations on the type itself (see §8.4.3). Methods are named and they have a method
signature. The names of methods are scoped to the type (see §8.5.2). Methods are declared using
a method definition (see §8.11.1).

• Properties of an object type specify named values that are accessible via methods that read and
write the value. The name of the property is the grouping of the methods; the methods themselves
are also named and typed via method signatures. The names of properties are scoped to the type
(see §8.5.2). Properties are declared using a property definition (see §8.11.3).

• Events of an object type specify named state transitions in which subscribers can
register/unregister interest via accessor methods. When the state changes, the subscribers are
notified of the state transition. The name of the event is the grouping of the accessor methods;
the methods themselves are also named and typed via method signatures. The names of events
are scoped to the type (see §8.5.2). Events are declared using an event definition (see §8.11.4).

8.9 .6.4 Support ing interface contracts

Object type definitions can declare that they support zero or more interface contracts. Declaring support for an
interface contract places a requirement on the implementation of the object type to fully implement that
interface contract. Implementing an interface contract always reduces to implementing the required set of
methods, i.e., the methods required by the interface type.

The different types that the object type implements (i.e., the object type and any implemented interface types),
are each a separate logical grouping of named members. If a class Foo implements an interface IFoo, and IFoo
declares a member method int a(), and Foo also declares a member method int a(), there are two members,
one in the IFoo interface type and one in the Foo class type. An implementation of Foo will provide an
implementation for both, potentially shared.

Similarly, if a class implements two interfaces IFoo and IBar, each of which defines a method int a(), the
class will supply two method implementations, one for each interface, although they can share the actual code
of the implementation.

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation of non-
CLS-compliant members.

[Note:

CLS (consumer): Need not accept classes, value types or interfaces that violate this rule.

CLS (extender): Need not provide syntax to author classes, value types, or interfaces that violate this rule.

CLS (framework): Shall not externally expose classes, value types, or interfaces that violate this rule. If a
CLS-compliant framework exposes a class implementing a non-CLS-compliant interface, the framework shall
provide concrete implementations of all non-CLS-compliant members. This ensures that CLS extenders do not
need syntax for implementing non-CLS-compliant members. end note]

8.9 .6.5 Support ing class contracts

Object type definitions can declare support for one other class contract. Declaring support for another class
contract is synonymous with object type inheritance (see §8.9.9).

8.9 .6.6 Constructors

New values of an object type are created via constructors. Constructors shall be instance methods, defined via
a special form of method contract, which defines the method contract as a constructor for a particular object
type. The constructors for an object type are part of the object type definition. While the CTS and VES ensure

40 Partition I

that only a properly defined constructor is used to make new values of an object type, the ultimate correctness
of a newly constructed object is dependent on the implementation of the constructor itself.

Object types shall define at least one constructor method, but that method need not be public. Creating a new
value of an object type by invoking a constructor involves the following steps, in order:

1. Space for the new value is allocated in managed memory.

2. VES data structures of the new value are initialized and user-visible memory is zeroed.

3. The specified constructor for the object type is invoked.

Inside the constructor, the object type can do any initialization it chooses (possibly none).

CLS Rule 21: An object constructor shall call some class constructor of its base class before any access occurs
to inherited instance data. (This does not apply to value types, which need not have constructors.)

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and an object
shall not be initialized twice.

[Note:

CLS (consumer): Shall provide syntax for choosing the constructor to be called when an object is created.

CLS (extender): Shall provide syntax for defining constructor methods with different signatures. It can issue a
compiler error if the constructor does not obey these rules.

CLS (framework): Can assume that object creation includes a call to one of the constructors, and that no
object is initialized twice. System.Object.MemberwiseClone (see Partition IV) and deserialization (including
object remoting) shall not run constructors. end note]

8.9 .6.7 Finalizers

A class definition that creates an object type can supply an instance method (called a finalizer) to be called
when an instance of the class is no longer reachable. The class System.GC (see Partition IV) provides limited
control over the behavior of finalizers through the methods SuppressFinalize and ReRegisterForFinalize.
Conforming implementations of the CLI can specify and provide additional mechanisms that affect the
behavior of finalizers.

A conforming implementation of the CLI shall not automatically call a finalizer twice for the same object
unless

• there has been an intervening call to ReRegisterForFinalize (not followed by a call to
SuppressFinalize), or

• the program has invoked an implementation-specific mechanism that is clearly specified to
produce an alteration to this behavior.

[Rationale: Programmers expect that finalizers are run precisely once on any given object unless they take an
explicit action to cause the finalizer to be run multiple times. end rationale]

It is valid to define a finalizer for a value type. However, that finalizer will only be run for boxed instances of
that value type.

[Note: Since programmers might depend on finalizers to be called, the CLI should make every effort, before it
shuts down, to ensure that finalizers are called for all objects that have not been exempted from finalization by
a call to SuppressFinalize. The implementation should specify any conditions under which this behavior
cannot be guaranteed. end note]

[Note: Since resources might become exhausted if finalizers are not called expeditiously, the CLI should ensure
that finalizers are called soon after the instance becomes inaccessible. While relying on memory pressure to
trigger finalization is acceptable, implementers should consider the use of additional metrics. end note]

 Partition I 41

8.9 .7 Value type def init ion

Not all types defined by a class definition are object types (see §8.2.3); in particular, value types are not object
types, but they are defined using a class definition. A class definition for a value type defines both the
(unboxed) value type and the associated boxed type (see §8.2.4). The members of the class definition define the
representation of both:

1. When a non-static method (i.e., an instance or virtual method) is called on the value type, its this
pointer is a managed reference to the instance, whereas when the method is called on the
associated boxed type, the this pointer is an object reference.

Instance methods on value types receive a this pointer that is a managed pointer to the unboxed
type whereas virtual methods (including those on interfaces implemented by the value type)
receive an instance of the boxed type.

2. Value types do not support interface contracts, but their associated boxed types do.

3. A value type does not inherit; rather the base type specified in the class definition defines the
base type of the boxed type.

4. The base type of a boxed type shall not have any fields.

5. Unlike object types, instances of value types do not require a constructor to be called when an
instance is created. Instead, the verification rules require that verifiable code initialize instances
to zero (null for object fields).

8.9 .8 Type inheritance

Inheritance of types is another way of saying that the derived type guarantees support for all of the type
contracts of the base type. In addition, the derived type usually provides additional functionality or specialized
behavior. A type inherits from a base type by implementing the type contract of the base type. An interface type
implements zero or more other interfaces. Value types do not inherit, although the associated boxed type is an
object type and hence inherits from other types.

The derived class type shall support all of the supported interfaces contracts, class contracts, event contracts,
method contracts, and property contracts of its base type. In addition, all of the locations defined by the base
type are also defined in the derived type. The inheritance rules guarantee that code that was compiled to work
with a value of a base type will still work when passed a value of the derived type. Because of this, a derived
type also inherits the implementations of the base type. The derived type can extend, override, and/or hide these
implementations.

8.9 .9 Object type inheritance

With the sole exception of System.Object, which does not inherit from any other object type, all object types
shall either explicitly or implicitly declare support for (i.e., inherit from) exactly one other object type. The
graph of the inherits-relation shall form a singly rooted tree with System.Object at the base; i.e., all object
types eventually inherit from the type System.Object. The introduction of generic types makes it more difficult
to give a precise definition; see §Partition II.

An object type declares that it shall not be used as a base type (be inherited from) by declaring that it is a sealed
type.

CLS Rule 23: System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-
compliant class.

Arrays are object types and, as such, inherit from other object types. Since array object types are manufactured
by the VES, the inheritance of arrays is fixed. See §8.9.1.

8.9 .10 Value type inheritance

In their unboxed form value types do not inherit from any type. Boxed value types shall inherit directly from
System.ValueType unless they are enumerations, in which case, they shall inherit from System.Enum. Boxed
value types shall be sealed.

42 Partition I

Logically, the boxed type corresponding to a value type

• Is an object type.

• Will specify which object type is its base type (i.e., the object type from which it inherits).

• Will have a base type that has no fields defined.

• Will be sealed to avoid dealing with the complications of value slicing.

The more restrictive rules specified here allow for more efficient implementation without severely
compromising functionality.

8.9 .11 Interface type derivation

Interface types can require the implementation of one or more other interfaces. Any type that implements
support for an interface type shall also implement support for any required interfaces specified by that interface.
This is different from object type inheritance in two ways:

• Object types form a single inheritance tree; interface types do not.

• Object type inheritance specifies how implementations are inherited; required interfaces do not,
since interfaces do not define implementation. Required interfaces specify additional contracts
that an implementing object type shall support.

To highlight the last difference, consider an interface, IFoo, that has a single method. An interface, IBar, which
derives from it, is requiring that any object type that supports IBar also support IFoo. It does not say anything
about which methods IBar itself will have.

8.10 Member inheritance
Only object types can inherit implementations, hence only object types can inherit members (see §8.9.8). While
interface types can be derived from other interface types, they only “inherit” the requirement to implement
method contracts, never fields or method implementations.

8.10.1 Field inheritance

A derived object type inherits all of the non-static fields of its base object type. This allows instances of the
derived type to be used wherever instances of the base type are expected (the shapes, or layouts, of the
instances will be the same). Static fields are not inherited. Just because a field exists does not mean that it can
be read or written. The type visibility, field accessibility, and security attributes of the field definition
(see §8.5.3) determine if a field is accessible to the derived object type.

8.10.2 Method inheritance

A derived object type inherits all of the instance and virtual methods of its base object type. It does not inherit
constructors or static methods. Just because a method exists does not mean that it can be invoked. It shall be
accessible via the typed reference that is being used by the referencing code. The type visibility, method
accessibility, and security attributes of the method definition (see §8.5.3) determine if a method is accessible to
the derived object type.

A derived object type can hide a non-virtual (i.e., static or instance) method of its base type by providing a new
method definition with the same name or same name and signature. Either method can still be invoked, subject
to method accessibility rules, since the type that contains the method always qualifies a method reference.

Virtual methods can be marked as final, in which case, they shall not be overridden in a derived object type.
This ensures that the implementation of the method is available, by a virtual call, on any object that supports
the contract of the base class that supplied the final implementation. If a virtual method is not final it is possible
to demand a security permission in order to override the virtual method, so that the ability to provide an
implementation can be limited to classes that have particular permissions. When a derived type overrides a
virtual method, it can specify a new accessibility for the virtual method, but the accessibility in the derived
class shall permit at least as much access as the access granted to the method it is overriding. See §8.5.3.

 Partition I 43

8.10.3 Property and event inheritance

Fundamentally, properties and events are constructs of the metadata intended for use by tools that target the
CLI and are not directly supported by the VES itself. Therefore, it is the job of the source language compiler
and the reflection library (see Partition IV) to determine rules for name hiding, inheritance, and so forth. The
source compiler shall generate CIL that directly accesses the methods named by the events and properties, not
the events or properties themselves.

8.10.4 Hiding, overriding, and layout

There are two separate issues involved in inheritance. The first is which contracts a type shall implement and
hence which member names and signatures it shall provide. The second is the layout of the instance so that an
instance of a derived type can be substituted for an instance of any of its base types. Only the non-static fields
and the virtual methods that are part of the derived type affect the layout of an object.

The CTS provides independent control over both the names that are visible from a base type (hiding) and the
sharing of layout slots in the derived class (overriding). Hiding is controlled by marking a member in the
derived class as either hide by name or hide by name-and-signature. Hiding is always performed based on
the kind of member, that is, derived field names can hide base field names, but not method names, property
names, or event names. If a derived member is marked hide by name, then members of the same kind in the
base class with the same name are not visible in the derived class; if the member is marked hide by name-and-
signature then only a member of the same kind with exactly the same name and type (for fields) or method
signature (for methods) is hidden from the derived class. Implementation of the distinction between these two
forms of hiding is provided entirely by source language compilers and the reflection library; it has no direct
impact on the VES itself.

For example:
class Base
{ field int32 A;
 field System.String A;
 method int32 A();
 method int32 A(int32);
}
class Derived inherits from Base
{ field int32 A;
 hidebysig method int32 A();
}

The member names available in type Derived are:

Table 3: Member names

Kind of member Type / Signature of member Name of member
Field int32 A

Method () -> int32 A

Method (int32) -> int32 A

While hiding applies to all members of a type, overriding deals with object layout and is applicable only to
instance fields and virtual methods. The CTS provides two forms of member overriding, new slot and expect
existing slot. A member of a derived type that is marked as a new slot will always get a new slot in the object’s
layout, guaranteeing that the base field or method is available in the object by using a qualified reference that
combines the name of the base type with the name of the member and its type or signature. A member of a
derived type that is marked as expect existing slot will re-use (i.e., share or override) a slot that corresponds to a
member of the same kind (field or method), name, and type if one already exists from the base type; if no such
slot exists, a new slot is allocated and used.

The general algorithm that is used for determining the names in a type and the layout of objects of the type is
roughly as follows:

44 Partition I

• Flatten the inherited names (using the hide by name or hide by name-and-signature rule)
ignoring accessibility rules.

• For each new member that is marked “expect existing slot”, look to see if an exact match on kind
(i.e., field or method), name, and signature exists and use that slot if it is found, otherwise
allocate a new slot.

• After doing this for all new members, add these new member-kind/name/signatures to the list of
members of this type

• Finally, remove any inherited names that match the new members based on the hide by name or
hide by name-and-signature rules.

8.11 Member definitions
Object type definitions, interface type definitions, and value type definitions can include member definitions.
Field definitions define the representation of values of the type by specifying the substructure of the value.
Method definitions define operations on values of the type and operations on the type itself (static methods).
Property and event definitions shall only be defined on object types. Properties and events define named groups
of accessor method definitions that implement the named event or property behavior. Nested type declarations
define types whose names are scoped by the enclosing type and whose instances have full access to all
members of the enclosing class.

Depending on the kind of type definition, there are restrictions on the member definitions allowed.

8.11.1 Method definit ions

Method definitions are composed of a name, a method signature, and optionally an implementation of the
method. The method signature defines the calling convention, type of the parameters to the method, and the
return type of the method (see §8.6.1). The implementation is the code to execute when the method is invoked.
A value type or object type shall define only one method of a given name and signature. However, a derived
object type can have methods that are of the same name and signature as its base object type. See §8.10.2
and §8.10.4.

The name of the method is scoped to the type (see §8.5.2). Methods can be given accessibility attributes
(see §8.5.3). Methods shall only be invoked with arguments that are assignment compatible with the parameter
types of the method signature. The return value of the method shall also be assignment compatible with the
location in which it is stored.

Methods can be marked as static, indicating that the method is not an operation on values of the type but rather
an operation associated with the type as a whole. Methods not marked as static define the valid operations on a
value of a type. When a non-static method is invoked, a particular value of the type, referred to as this or the
this pointer, is passed as an implicit parameter.

A method definition that does not include a method implementation shall be marked as abstract. All non-static
methods of an interface definition are abstract. Abstract method definitions are only allowed in object types that
are marked as abstract.

A non-static method definition in an object type can be marked as virtual, indicating that an alternate
implementation can be provided in derived types. All non-static method definitions in interface definitions shall
be virtual methods. Virtual method can be marked as final, indicating that derived object types are not allowed
to override the method implementation.

Method definitions can be parameterized, a feature known as generic method definitions. When used, a
specific instantiation of the generic method is made, at which point the generic parameters are bound to specific
generic arguments. Generic methods can be defined as members of a non-generic type; or can be defined as
members of a generic type, but parameterized by different generic parameter (or parameters) than its owner
type. For example, the Stack<T> class might include a generic method S ConvertTo<S> (), where the S
generic parameter is distinct from the T generic parameter in Stack<T>.

 Partition I 45

8.11.2 Field def init ions

Field definitions are composed of a name and a location signature. The location signature defines the type of
the field and the accessing constraints, see §8.6.1. A value type or object type shall define only one field of a
given name and type. However, a derived object type can have fields that are of the same name and type as its
base object type. See §8.10.1 and §8.10.4.

The name of the field is scoped to the type (see §8.5.2). Fields can be given accessibility attributes, see §8.5.3.
Fields shall only store values that are assignment compatible with the type of the field (see §8.3.1).

Fields can be marked as static, indicating that the field is not part of values of the type but rather a location
associated with the type as a whole. Locations for the static fields are created when the type is loaded and
initialized when the type is initialized.

Fields not marked as static define the representation of a value of a type by defining the substructure of the
value (see §8.4.1). Locations for such fields are created within every value of the type whenever a new value is
constructed. They are initialized during construction of the new value. A non-static field of a given name is
always located at the same place within every value of the type.

A field that is marked serializable is to be serialized as part of the persistent state of a value of the type. This
standard does not require that a conforming implementation provide support for serialization (or its counterpart,
deserialization), not does it specify the mechanism by which these operations might be accomplished.

8.11.3 Property def init ions

A property definition defines a named value and the methods that access the value. A property definition
defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods
exist and their respective method contracts. An implementation of a type that declares support for a property
contract shall implement the accessing methods required by the property contract. The implementation of the
accessing methods defines how the value is retrieved and stored.

A property definition is always part of either an interface definition or a class definition. The name and value of
a property definition is scoped to the type that includes the property definition. The CTS requires that the
method contracts that comprise the property shall match the method implementations, as with any other method
contract. There are no CIL instructions associated with properties, just metadata.

By convention, properties define a getter method (for accessing the current value of the property) and
optionally a setter method (for modifying the current value of the property). The CTS places no restrictions on
the set of methods associated with a property, their names, or their usage.

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be marked
SpecialName in the metadata.

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated “The accessibility of
a property’s accessors shall be identical.” However, that rule was removed. end note]

CLS Rule 26: A property’s accessors shall all be static, all be virtual, or all be instance.

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last argument of
the setter. The types of the parameters of the property shall be the types of the parameters to the getter and the
types of all but the final parameter of the setter. All of these types shall be CLS-compliant, and shall not be
managed pointers (i.e., shall not be passed by reference).

CLS Rule 28: Properties shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute
referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.
A property shall have a getter method, a setter method, or both.

[Note:

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the
property.

46 Partition I

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the
property. In particular, an extender need not be able to define properties.

CLS (framework): Shall design understanding that not all CLS languages will access the property using
special syntax. end note]

8.11.4 Event def init ions

The CTS supports events in precisely the same way that it supports properties (see §8.11.3). The conventional
methods, however, are different and include means for subscribing and unsubscribing to events as well as for
firing the event.

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata.

CLS Rule 30: The accessibility of an event and of its accessors shall be identical.

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.

CLS Rule 32: The add and remove methods for an event shall each take one parameter whose type defines the
type of the event and that shall be derived from System.Delegate.

CLS Rule 33: Events shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute referred
to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.

[Note:

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.
In particular, an extender need not be able to define events.

CLS (framework): Shall design based on the understanding that not all CLS languages will access the event
using special syntax. end note]

8.11.5 Nested type def init ions

A nested type definition is identical to a top-level type definition, with one exception: a top-level type has a
visibility attribute, while the visibility of a nested type is the same as the visibility of the enclosing type.
See §8.5.3.

 Partition I 47

9 Metadata

This clause and its subclauses contain only informative text, with the exception
of the CLS rules introduced here and repeated in §11. The metadata format is
specified in Partition II

New types—value types and reference types—are introduced into the CTS via type declarations expressed in
metadata. In addition, metadata is a structured way to represent all information that the CLI uses to locate and
load classes, lay out instances in memory, resolve method invocations, translate CIL to native code, enforce
security, and set up runtime context boundaries. Every CLI PE/COFF module (see Partition II) carries a
compact metadata binary that is emitted into the module by the CLI-enabled development tool or compiler.

Each CLI-enabled language will expose a language-appropriate syntax for declaring types and members and for
annotating them with attributes that express which services they require of the infrastructure. Type imports are
also handled in a language-appropriate way, and it is the development tool or compiler that consumes the
metadata to expose the types that the developer sees.

Note that the typical component or application developer will not need to be aware of the rules for emitting and
consuming CLI metadata. While it can help a developer to understand the structure of metadata, the rules
outlined in this clause are primarily of interest to tool builders and compiler writers.

9.1 Components and assemblies
Each CLI component carries the metadata for declarations, implementations, and references specific to that
component. Therefore, the component-specific metadata is referred to as component metadata, and the
resulting component is said to be self-describing. In object models such as COM or CORBA, this information
is represented by a combination of typelibs, IDL files, DLLRegisterServer, and a myriad of custom files in
disparate formats and separate from the actual executable file. In contrast, the metadata is a fundamental part of
a CLI component.

Collections of CLI components and other files are packaged together for deployment into assemblies,
discussed in more detail in a later subclause. An assembly is a logical unit of functionality that serves as the
primary unit of reuse in the CLI. Assemblies establish a name scope for types.

Types declared and implemented in individual components are exported for use by other implementations via
the assembly in which the component participates. All references to a type are scoped by the identity of the
assembly in whose context the type is being used. The CLI provides services to locate a referenced assembly
and request resolution of the type reference. It is this mechanism that provides an isolation scope for
applications: the assembly alone controls its composition.

9.2 Accessing metadata
Metadata is emitted into and read from a CLI module using either direct access to the file format as described
in Partition II or through the Reflection library. It is possible to create a tool that verifies a CLI module,
including the metadata, during development, based on the specifications supplied in Partition II and
Partition III.

When a class is loaded at runtime, the CLI loader imports the metadata into its own in-memory data structures,
which can be browsed via the CLI Reflection services. The Reflection services should be considered as similar
to a compiler; they automatically walk the inheritance hierarchy to obtain information about inherited methods
and fields, they have rules about hiding by name or name-and-signature, rules about inheritance of methods and
properties, and so forth.

9.2 .1 Metadata tokens

A metadata token is an implementation-dependent encoding mechanism. Partition II describes the manner in
which metadata tokens are embedded in various sections of a CLI PE/COFF module. Metadata tokens are
embedded in CIL and native code to encode method invocations and field accesses at call sites; the token is

48 Partition I

used by various infrastructure services to retrieve information from metadata about the reference and the type
on which it was scoped in order to resolve the reference.

A metadata token is a typed identifier of a metadata object (such as type declaration and member declaration).
Given a token, its type can be determined and it is possible to retrieve the specific metadata attributes for that
metadata object. However, a metadata token is not a persistent identifier. Rather it is scoped to a specific
metadata binary. A metadata token is represented as an index into a metadata data structure, so access is fast
and direct.

9.2 .2 Member s ignatures in metadata

Every location—including fields, parameters, method return values, and properties—has a type, and a
specification for its type is carried in metadata.

A value type describes values that are represented as a sequence of bits. A reference type describes values that
are represented as the location of a sequence of bits. The CLI provides an explicit set of built-in types, each of
which has a default runtime form as either a value type or a reference type. The metadata APIs can be used to
declare additional types, and part of the type specification of a variable encodes the identity of the type as well
as which form (value or reference) the type is to take at runtime.

Metadata tokens representing encoded types are passed to CIL instructions that accept a type (newobj,
newarray, ldtoken). (See the CIL instruction set specification in Partition III.)

These encoded type metadata tokens are also embedded in member signatures. To optimize runtime binding of
field accesses and method invocations, the type and location signatures associated with fields and methods are
encoded into member signatures in metadata. A member signature embodies all of the contract information that
is used to decide whether a reference to a member succeeds or fails.

9.3 Unmanaged code
It is possible to pass data from CLI managed code to unmanaged code. This always involves a transition from
managed to unmanaged code, which has some runtime cost, but data can often be transferred without copying.
When data must be reformatted the VES provides a reasonable specification of default behavior, but it is
possible to use metadata to explicitly require other forms of marshalling (i.e., reformatted copying). The
metadata also allows access to unmanaged methods through implementation-specific pre-existing mechanisms.

9.4 Method implementation metadata
For each method for which an implementation is supplied in the current CLI module, the tool or compiler will
emit information used by the CIL-to-native code compilers, the CLI loader, and other infrastructure services.
This information includes:

• Whether the code is managed or unmanaged.

• Whether the implementation is in native code or CIL (note that all CIL code is managed).

• The location of the method body in the current module, as an address relative to the start of the
module file in which it is located (a Relative Virtual Address, or RVA). Or, alternatively, the
RVA is encoded as 0 and other metadata is used to tell the infrastructure where the method
implementation will be found, including:

o An implementation to be located via the CLI Interoperability Services. See related
specifications for details.

o Forwarding calls through an imported global static method.

9.5 Class layout
In the general case, the CLI loader is free to lay out the instances of a class in any way it chooses, consistent
with the rules of the CTS. However, there are times when a tool or compiler needs more control over the
layout. In the metadata, a class is marked with an attribute indicating whether its layout rule is:

 Partition I 49

• autolayout:: A class marked “autolayout” indicates that the loader is free to lay out the class in
any way it sees fit; any layout information that might have been specified is ignored. This is the
default.

• sequentiallayout: A class marked “sequentiallayout” guides the loader to preserve field order as
emitted, but otherwise the specific offsets are calculated based on the CLI type of the field; these
can be shifted by explicit offset, padding, and/or alignment information.

• explicitlayout: A class marked “explicitlayout” causes the loader to ignore field sequence and to
use the explicit layout rules provided, in the form of field offsets and/or overall class size or
alignment. There are restrictions on valid layouts, specified in Partition II.

It is also possible to specify an overall size for a class. This enables a tool or compiler to emit a value type
specification where only the size of the type is supplied. This is useful in declaring CLI built-in types (such as
32-bit integer). It is also useful in situations where the data type of a member of a structured value type does
not have a representation in CLI metadata (e.g., C++ bit fields). In the latter case, as long as the tool or
compiler controls the layout, and CLI doesn’t need to know the details or play a role in the layout, this is
sufficient. Note that this means that the VES can move bits around but can’t marshal across machines – the
emitting tool or compiler will need to handle the marshaling.

Optionally, a developer can specify a packing size for a class. This is layout information that is not often used,
but it allows a developer to control the alignment of the fields. It is not an alignment specification, per se, but
rather serves as a modifier that places a ceiling on all alignments. Typical values are 1, 2, 4, 8, or 16. Generic
types shall not be specified to have ExplicitLayout.

For the full specification of class layout attributes, see the classes in System.Runtime.InteropServices in
Partition IV.

9.6 Assemblies: name scopes for types
An assembly is a collection of resources that are built to work together to deliver a cohesive set of
functionality. An assembly carries all of the rules necessary to ensure that cohesion. It is the unit of access to
resources in the CLI.

Externally, an assembly is a collection of exported resources, including types. Resources are exported by name.
Internally, an assembly is a collection of public (exported) and private (internal to the assembly) resources. It is
the assembly that determines which resources are to be exposed outside of the assembly and which resources
are accessible only within the current assembly scope. It is the assembly that controls how a reference to a
resource, public or private, is mapped onto the bits that implement the resource. For types in particular, the
assembly can also supply runtime configuration information. A CLI module can be thought of as a packaging
of type declarations and implementations, where the packaging decisions can change under the covers without
affecting clients of the assembly.

The identity of a type is its assembly scope and its declared name. A type defined identically in two different
assemblies is considered two different types.

Assembly Dependencies: An assembly can depend on other assemblies. This happens when implementations
in the scope of one assembly reference resources that are scoped in or owned by another assembly.

• All references to other assemblies are resolved under the control of the current assembly scope.
This gives an assembly an opportunity to control how a reference to another assembly is mapped
onto a particular version (or other characteristic) of that referenced assembly (although that target
assembly has sole control over how the referenced resource is resolved to an implementation).

• It is always possible to determine which assembly scope a particular implementation is running
in. All requests originating from that assembly scope are resolved relative to that scope.

From a deployment perspective, an assembly can be deployed by itself, with the assumption that any other
referenced assemblies will be available in the deployed environment. Or, it can be deployed with its dependent
assemblies.

Manifests: Every assembly has a manifest that declares which files make up the assembly, what types are
exported, and what other assemblies are required to resolve type references within the assembly. Just as CLI

50 Partition I

components are self-describing via metadata in the CLI component, so are assemblies self-describing via their
manifests. When a single file makes up an assembly it contains both the metadata describing the types defined
in the assembly and the metadata describing the assembly itself. When an assembly contains more than one file
with metadata, each of the files describes the types defined in the file, if any, and one of these files also
contains the metadata describing the assembly (including the names of the other files, their cryptographic
hashes, and the types they export outside of the assembly).
Applications: Assemblies introduce isolation semantics for applications. An application is simply an assembly
that has an external entry point that triggers (or causes a hosting environment such as a browser to trigger) the
creation of a new application domain. This entry point is effectively the root of a tree of request invocations
and resolutions. Some applications are a single, self-contained assembly. Others require the availability of other
assemblies to provide needed resources. In either case, when a request is resolved to a module to load, the
module is loaded into the same application domain from which the request originated. It is possible to monitor
or stop an application via the application domain.

References: A reference to a type always qualifies a type name with the assembly scope within which the
reference is to be resolved; that is, an assembly establishes the name scope of available resources. However,
rather than establishing relationships between individual modules and referenced assemblies, every reference is
resolved through the current assembly. This allows each assembly to have absolute control over how references
are resolved. See Partition II.

9.7 Metadata extensibil ity
CLI metadata is extensible. There are three reasons this is important:

• The CLS is a specification for conventions that languages and tools agree to support in a uniform
way for better language integration. The CLS constrains parts of the CTS model, and the CLS
introduces higher-level abstractions that are layered over the CTS. It is important that the
metadata be able to capture these sorts of development-time abstractions that are used by tools
even though they are not recognized or supported explicitly by the CLI.

• It should be possible to represent language-specific abstractions in metadata that are neither CLI
nor CLS language abstractions. For example, it should be possible, over time, to enable languages
like C++ to not require separate headers or IDL files in order to use types, methods, and data
members exported by compiled modules.

• It should be possible, in member signatures, to encode types and type modifiers that are used in
language-specific overloading. For example, to allow C++ to distinguish int from long even on
32-bit machines where both map to the underlying type int32.

This extensibility comes in the following forms:

• Every metadata object can carry custom attributes, and the metadata APIs provide a way to
declare, enumerate, and retrieve custom attributes. Custom attributes can be identified by a simple
name, where the value encoding is opaque and known only to the specific tool, language, or
service that defined it. Or, custom attributes can be identified by a type reference, where the
structure of the attribute is self-describing (via data members declared on the type) and any tool
including the CLI reflection services can browse the value encoding.

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes. The only types that
shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char,
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single,

System.Double, and any enumeration type based on a CLS-compliant base integer type.

[Note:

CLS (consumer): Shall be able to read attributes encoded using the restricted scheme.

CLS (extender): Must meet all requirements for CLS consumer and be able to author new classes and
new attributes. Shall be able to attach attributes based on existing attribute classes to any metadata that is
emitted. Shall implement the rules for the System.AttributeUsageAttribute (see Partition IV).

 Partition I 51

CLS (framework): Shall externally expose only attributes that are encoded within the CLS rules and
following the conventions specified for System.AttributeUsageAttribute end note]

• In addition to CTS type extensibility, it is possible to emit custom modifiers into member
signatures (see Types in Partition II). The CLI will honor these modifiers for purposes of method
overloading and hiding, as well as for binding, but will not enforce any of the language-specific
semantics. These modifiers can reference the return type or any parameter of a method, or the
type of a field. They come in two kinds: required modifiers that anyone using the member must
understand in order to correctly use it, and optional modifiers that can be ignored if the modifier
is not understood.

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II),
but does allow optional modifiers (modopt, see Partition II) it does not understand.

[Note:

CLS (consumer): Shall be able to read metadata containing optional modifiers and correctly copy
signatures that include them. Can ignore these modifiers in type matching and overload resolution. Can
ignore types that become ambiguous when the optional modifiers are ignored, or that use required
modifiers.

CLS (extender): Shall be able to author overrides for inherited methods with signatures that include
optional modifiers. Consequently, an extender must be able to copy such modifiers from metadata that it
imports. There is no requirement to support required modifiers, nor to author new methods that have any
kind of modifier in their signature.

CLS (framework): Shall not use required modifiers in externally visible signatures unless they are
marked as not CLS-compliant. Shall not expose two members on a class that differ only by the use of
optional modifiers in their signature, unless only one is marked CLS-compliant. end note]

9.8 Globals, imports, and exports
The CTS does not have the notion of global statics: all statics are associated with a particular class.
Nonetheless, the metadata is designed to support languages that rely on static data that is stored directly in a
PE/COFF file and accessed by its relative virtual address. In addition, while access to managed data and
managed functions is mediated entirely through the metadata itself, the metadata provides a mechanism for
accessing unmanaged data and unmanaged code.

CLS Rule 36: Global static fields and methods are not CLS-compliant.

[Note:

CLS (consumer): Need not support global static fields or methods.

CLS (extender): Need not author global static fields or methods.

CLS (framework): Shall not define global static fields or methods. end note]

9.9 Scoped statics
The CTS does not include a model for file- or function-scoped static functions or data members. However,
there are times when a compiler needs a metadata token to emit into CIL for a scoped function or data member.
The metadata allows members to be marked so that they are never visible or accessible outside of the PE/COFF
file in which they are declared and for which the compiler guarantees to enforce all access rules.

End informative text

52 Partition I

10 Name and type rules for the Common Language Specification

10.1 Identifiers
Languages that are either case-sensitive or case-insensitive can support the CLS. Since its rules apply only to
items exposed to other languages, private members or types that aren’t exported from an assembly can use any
names they choose. For interoperation, however, there are some restrictions.

In order to make tools work well with a case-sensitive language it is important that the exact case of identifiers
be maintained. At the same time, when dealing with non-English languages encoded in Unicode, there might be
more than one way to represent precisely the same identifier that includes combining characters. The CLS
requires that identifiers obey the restrictions of the appropriate Unicode standard and they are persisted in
Canonical form C, which preserves case but forces combining characters into a standard representation. See
CLS Rule 4, in §8.5.1.

At the same time, it is important that externally visible names not conflict with one another when used from a
case-insensitive programming language. As a result, all identifier comparisons shall be done internally to CLS-
compliant tools using the Canonical form KC, which first transforms characters to their case-canonical
representation. See CLS Rule 4, in §8.5.1.

When a compiler for a CLS-compliant language supports interoperability with a non-CLS-compliant language
it must be aware that the CTS and VES perform all comparisons using code-point (i.e., byte-by-byte)
comparison. Thus, even though the CLS requires that persisted identifiers be in Canonical form C, references to
non-CLS identifiers will have to be persisted using whatever encoding the non-CLS language chose to use. It is
a language design issue, not covered by the CTS or the CLS, precisely how this should be handled.

10.2 Overloading
[Note: Although the CTS describes inheritance, object layout, name hiding, and overriding of virtual methods,
it does not discuss overloading at all. While this is surprising, it arises from the fact that overloading is entirely
handled by compilers that target the CTS and not the type system itself. In the metadata, all references to types
and type members are fully resolved and include the precise signature that is intended. This choice was made
since every programming language has its own set of rules for coercing types and the VES does not provide a
means for expressing those rules. end note]

Following the rules of the CTS, it is possible for duplicate names to be defined in the same scope as long as
they differ in either kind (field, method, etc.) or signature. The CLS imposes a stronger restriction for
overloading methods. Within a single scope, a given name can refer to any number of methods provided they
differ in any of the following:

• Number of parameters

• Type of any parameter

Notice that the signature includes more information, but CLS-compliant languages need not produce or
consume classes that differ only by that additional information (see Partition II for the complete list of
information carried in a signature):

• Calling convention

• Custom modifiers

• Return type

• Whether a parameter is passed by value or by reference

There is one exception to this rule. For the special names op_Implicit and op_Explicit, described
in §10.3.3, methods can be provided that differ only by their return type. These are marked specially and can
be ignored by compilers that don’t support operator overloading.

 Partition I 53

Properties shall not be overloaded by type (that is, by the return type of their getter method), but they can be
overloaded with different number or types of indices (that is, by the number and types of the parameters of their
getter methods). The overloading rules for properties are identical to the method overloading rules.

CLS Rule 37: Only properties and methods can be overloaded.

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their
parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be
overloaded based on their return type.

[Note:

CLS (consumer): Can assume that only properties and methods are overloaded, and need not support
overloading based on return type unless providing special syntax for operator overloading. If return type
overloading isn’t supported, then the op_Implicit and op_Explicit can be ignored since the functionality
shall be provided in some other way by a CLS-compliant framework. Consumers must first apply the hide-by-
name and hide-by-signature-and-name rules (§8.10.4) to avoid any ambiguity.

CLS (extender): Should not permit the authoring of overloads other than those specified here. It is not
necessary to support operator overloading at all, hence it is possible to entirely avoid support for overloading
on return type.

CLS (framework): Shall not publicly expose overloading except as specified here. Frameworks authors
should bear in mind that many programming languages, including object-oriented languages, do not support
overloading and will expose overloaded methods or properties through mangled names. Most languages
support neither operator overloading nor overloading based on return type, so op_Implicit and op_Explicit
shall always be augmented with some alternative way to gain the same functionality. end note]

[Note: The names visible on any class C, are the names visible in that class and its base classes. As a consequence, the
names of methods on interfaces implemented by C that are only implemented via MethodImpls (see Partition II) are
not visible on class C. The names visible on an interface I, consist only of the names directly defined on this interface.
As a consequence, the names of methods from other interfaces (which I requires be implemented) are not visible on I
itself. end note]

10.3 Operator overloading
CLS-compliant consumer and extender tools are under no obligation to allow defining of operator overloading.
CLS-compliant consumer and extender tools do not have to provide a special mechanism to call these methods.

[Note: This topic is addressed by the CLS so that

• languages that do provide operator overloading can describe their rules in a way that other languages can
understand, and

• languages that do not provide operator overloading can still access the underlying functionality without the
addition of special syntax.

end note]

Operator overloading is described by using the names specified below, and by setting a special bit in the
metadata (SpecialName) so that they do not collide with the user’s name space. A CLS-compliant producer
tool shall provide some means for setting this bit. If these names are used, they shall have precisely the
semantics described here.

10.3 .1 Unary operators

Unary operators take one operand, perform some operation on it, and return the result. They are represented as
static methods on the class that defines the type of their one operand. Table 4: Unary Operator Names shows
the names that are defined.

Table 4: Unary Operator Names

Name ISO/IEC 14882:2003 C++ Operator Symbol

54 Partition I

op_Decrement Similar to --1

op_Increment Similar to ++1

op_UnaryNegation - (unary)

op_UnaryPlus + (unary)

op_LogicalNot !

op_True2 Not defined

op_False2 Not defined

op_AddressOf & (unary)

op_OnesComplement ~

op_PointerDereference * (unary)

1 From a pure C++ point of view, the way one must write these functions for the CLI differs in one very
important aspect. In C++, these methods must increment or decrement their operand directly, whereas, in CLI,
they must not; instead, they simply return the value of their operand +/- 1, as appropriate, without modifying
their operand. The operand must be incremented or decremented by the compiler that generates the code for the
++/-- operator, separate from the call to these methods.
2 The op_True and op_False operators do not exist in C++. They are provided to support tri-state Boolean
types, such as those used in database languages.

10.3 .2 Binary operators

Binary operators take two operands, perform some operation on them, and return a value. They are represented
as static methods on the class that defines the type of one of their two operands. Table 5: Binary Operator
Names shows the names that are defined.

Table 5: Binary Operator Names

Name ISO/IEC 14882:2003 C++ Operator Symbol
op_Addition + (binary)

op_Subtraction - (binary)

op_Multiply * (binary)

op_Division /

op_Modulus %

op_ExclusiveOr ^

op_BitwiseAnd & (binary)

op_BitwiseOr |

op_LogicalAnd &&

op_LogicalOr ||

op_Assign Not defined (= is not the same)

op_LeftShift <<

op_RightShift >>

op_SignedRightShift Not defined

op_UnsignedRightShift Not defined

op_Equality ==

op_GreaterThan >

op_LessThan <

op_Inequality !=

 Partition I 55

op_GreaterThanOrEqual >=

op_LessThanOrEqual <=

op_UnsignedRightShiftAssignment Not defined

op_MemberSelection ->

op_RightShiftAssignment >>=

op_MultiplicationAssignment *=

op_PointerToMemberSelection ->*

op_SubtractionAssignment -=

op_ExclusiveOrAssignment ^=

op_LeftShiftAssignment <<=

op_ModulusAssignment %=

op_AdditionAssignment +=

op_BitwiseAndAssignment &=

op_BitwiseOrAssignment |=

op_Comma ,

op_DivisionAssignment /=

10.3 .3 Conversion operators

Conversion operators are unary operations that allow conversion from one type to another. The operator
method shall be defined as a static method on either the operand or return type. There are two types of
conversions:

• An implicit (widening) coercion shall not lose any magnitude or precision. These should be
provided using a method named op_Implicit.

• An explicit (narrowing) coercion can lose magnitude or precision. These should be provided
using a method named op_Explicit.

[Note: Conversions provide functionality that can’t be generated in other ways, and many languages do not
support the use of the conversion operators through special syntax. Therefore, CLS rules require that the same
functionality be made available through an alternate mechanism. It is recommended that the more common
ToXxx (where Xxx is the target type) and FromYyy (where Yyy is the name of the source type) naming pattern
be used. end note]

Because these operations can exist on the class of their operand type (so-called “from” conversions) and would
therefore differ on their return type only, the CLS specifically allows that these two operators be overloaded
based on their return type. The CLS, however, also requires that if this form of overloading is used then the
language shall provide an alternate means for providing the same functionality since not all CLS languages will
implement operators with special syntax.

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the coercion
shall be provided.

[Note:

CLS (consumer): Where appropriate to the language design, use the existence of op_Implicit and/or
op_Explicit in choosing method overloads and generating automatic coercions.

CLS (extender): Where appropriate to the language design, implement user-defined implicit or explicit
coercion operators using the corresponding op_Implicit, op_Explicit, ToXxx, and/or FromXxx methods.

CLS (framework): If coercion operations are supported, they shall be provided as FromXxx and ToXxx, and
optionally op_Implicit and op_Explicit as well. CLS frameworks are encouraged to provide such coercion
operations. end note]

56 Partition I

10.4 Naming patterns
See also Partition VI.

While the CTS does not dictate the naming of properties or events, the CLS does specify a pattern to be
observed.

For Events:

An individual event is created by choosing or defining a delegate type that is used to indicate the event. Then,
three methods are created with names based on the name of the event and with a fixed signature. For the
examples below we define an event named Click that uses a delegate type named EventHandler.

EventAdd, used to add a handler for an event
 Pattern: void add_<EventName> (<DelegateType> handler)
 Example: void add_Click (EventHandler handler);

EventRemove, used to remove a handler for an event
 Pattern: void remove_<EventName> (<DelegateType> handler)
 Example: void remove_Click (EventHandler handler);

EventRaise, used to indicate that an event has occurred
 Pattern: void family raise_<EventName> (Event e)

For Properties:

An individual property is created by deciding on the type returned by its getter method and the types of the
getter’s parameters (if any). Then, two methods are created with names based on the name of the property and
these types. For the examples below we define two properties: Name takes no parameters and returns a
System.String, while Item takes a System.Object parameter and returns a System.Object. Item is referred to
as an indexed property, meaning that it takes parameters and thus can appear to the user as through it were an
array with indices.

PropertyGet, used to read the value of the property
 Pattern: <PropType> get_<PropName> (<Indices>)
 Example: System.String get_Name ();
 Example: System.Object get_Item (System.Object key);

PropertySet, used to modify the value of the property
 Pattern: void set_<PropName> (<Indices>, <PropType>)
 Example: void set_Name (System.String name);
 Example: void set_Item (System.Object key, System.Object value);

10.5 Exceptions
The CLI supports an exception handling model, which is introduced in §12.4.2. CLS-compliant frameworks
can define and throw externally visible exceptions, but there are restrictions on the type of objects thrown:

CLS Rule 40: Objects that are thrown shall be of type System.Exception or a type inheriting from it.
Nonetheless, CLS-compliant methods are not required to block the propagation of other types of exceptions.

[Note:

CLS (consumer): Need not support throwing or catching of objects that are not of the specified type.

CLS (extender): Must support throwing of objects of type System.Exception or a type inheriting from it.
Need not support the throwing of objects having other types.

CLS (framework): Shall not publicly expose thrown objects that are not of type System.Exception or a type
inheriting from it. end note]

10.6 Custom attributes
In order to allow languages to provide a consistent view of custom attributes across language boundaries, the
Base Class Library provides support for the following rule defined by the CLS:

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it.

 Partition I 57

[Note:

CLS (consumer): Need not support attributes that are not of the specified type.

CLS (extender): Must support the authoring of custom attributes.

CLS (framework): Shall not publicly expose attributes that are not of type System.Attribute or a type
inheriting from it. end note]

The use of a particular attribute class can be restricted in various ways by placing an attribute on the attribute
class. The System.AttributeUsageAttribute is used to specify these restrictions. The restrictions supported
by the System.AttributeUsageAttribute are:

• What kinds of constructs (types, methods, assemblies, etc.) can have the attribute applied to them.
By default, instances of an attribute class can be applied to any construct. This is specified by
setting the value of the ValidOn property of System.AttributeUsageAttribute. Several
constructs can be combined.

• Multiple instances of the attribute class can be applied to a given piece of metadata. By default,
only one instance of any given attribute class can be applied to a single metadata item. The
AllowMultiple property of the attribute is used to specify the desired value.

• Do not inherit the attribute when applied to a type. By default, any attribute attached to a type
should be inherited to types that derive from it. If multiple instances of the attribute class are
allowed, the inheritance performs a union of the attributes inherited from the base class and those
explicitly applied to the derived class type. If multiple instances are not allowed, then an attribute
of that type applied directly to the derived class overrides the attribute supplied by the base class.
This is specified by setting the Inherited property of System.AttributeUsageAttribute to the
desired value.

[Note: Since these are CLS rules and not part of the CTS itself, tools are required to specify explicitly the
custom attributes they intend to apply to any given metadata item. That is, compilers or other tools that
generate metadata must implement the AllowMultiple and Inherit rules. The CLI does not supply attributes
automatically. The usage of attributes in the CLI is further described in Partition II. end note]

10.7 Generic types and methods
The following subclauses describe the CLS rules for generic types and methods.

10.7 .1 Nested type parameter re-declaration

Any type exposed by a CLS-compliant framework, that is nested in a generic type, itself declares, by position,
all the generic parameters of that enclosing type. (The nested type can also introduce new generic parameters.)
As such, any CLS-compliant type nested inside a generic type is itself generic. Such redeclared generic
parameters shall precede any newly introduced generic parameters. [Example: Consider the following C#
source code:

public class A<T> {
 public class B {}
 public class C<U,V> {
 public class D<W> {}
 }
}
public class X {
 public class Y<T> {}
}

The relevant corresponding ILAsm code is:
.class … A`1<T> … { // T is introduced
 .class … nested … B<T> … { } // T is redeclared
 .class … nested … C`2<T,U,V> … { // T is redeclared; U and V are introduced
 .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced
 }
}

58 Partition I

.class … X … {
 .class … nested Y`1<T> … { } // Nothing is redeclared; T is introduced
}

As generic parameter re-declaration is based on parameter position matching, not on parameter name matching,
the name of a redeclared generic parameter need not be the same as the one it re-declares. For example:
.class … A`1<T> … { // T is introduced
 .class … nested … B<Q> … { } // T is redeclared (as Q)
 .class … nested … C`2<T1,U,V> … { // T is redeclared (as T1); U and V
 // are introduced
 .class … nested … D`1<R1,R2,R3,W> … { } // T1, U, and V are redeclared (as R1, R2,
 // and R3); W is introduced
 }
}

A CLS-compliant Framework should therefore expose the following types:

Lexical Name Total Generic
Parameters

Redeclared Generic
Parameters

Introduced Generic
Parameters

A<T> 1 (T) 0 1 T

A<T>.B 1 (T) 1 T 0

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W

X 0 0 0

A.Y<T> 1 (T) 0 1 T

end example]

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type. Generic
parameters in a nested type correspond by position to the generic parameters in its enclosing type.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of types nested in generic types
shall follow this rule for externally visible types.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7 .2 Type names and arity encoding

CLS-compliant generic type names are encoded using the format “name[`arity]” , where […] indicates that the
grave accent character “`” and arity together are optional. The encoded name shall follow these rules:

1. name shall be an ID (see Partition II) that does not contain the “`” character.

2. arity is specified as an unsigned decimal number without leading zeros or spaces.

3. For a normal generic type, arity is the number of type parameters declared on the type.

4. For a nested generic type, arity is the number of newly introduced type parameters.

[Example: Consider the following C# source code:
public class A<T> {
 public class B {}
 public class C<U,V> {
 public class D<W> {}
 }
}

public class X {
 public class Y<T> {}
}

The relevant corresponding ILAsm code is:

 Partition I 59

.class … A`1<T> … { // T is introduced
 .class … nested … B<T> … { } // T is redeclared
 .class … nested … C`2<T,U,V> … { // T is redeclared; U and V are introduced
 .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced
 }
}

.class … X … {
 .class … nested Y`1<T> … { } // Nothing is redeclared; T is introduced
}

A CLS-compliant Framework should expose the following types:

Lexical Name Total Generic
Parameters

Redeclared Generic
Parameters

Introduced
Generic
Parameters

Metadata
Encoding

A<T> 1 (T) 0 1 T A`1

A<T>.B 1 (T) 1 T 0 B

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V C`2

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W D`1

X 0 0 0 X

A.Y<T> 1 (T) 0 1 T Y`1

While a type name encoded in metadata does not explicitly mention its enclosing type, the CIL and Reflection
type name grammars do include this detail:

Lexical Name Metadata
Encoding

CIL Reflection

A<T> A`1 A`1 A`1[T]

A<T>.B B A`1/B A`1+B[T]

A<T>.C<U,V> C`2 A`1/C`2 A`1+C`2[T,U,V]

A<T>.C<U,V>.D<W> D`1 A`1/C`2/D`1 A`1+C`2+D`1[T,U,V,W]

X X X X

A.Y<T> Y`1 X/Y`1 X+Y`1[T]

end example]

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the non-
nested type, or newly introduced to the type if nested, according to the rules defined above.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow
this rule for externally visible types.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7 .3 Type constraint re-declarat ion

CLS Frameworks shall ensure that a generic type explicitly re-declares any constraints present on generic
parameters in its base class and all implemented interfaces. Put another way, CLS Extenders and Consumers
should be able to examine just the specific type in question, to determine the set of constraints that need to be
satisfied.

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on the base
type, or interfaces would be satisfied by the generic type constraints.

60 Partition I

[Note:

CLS (consumer): Need not consume types that violate this rule. Consumers who check constraints need only
look at the type being instantiated to determine the applicable constraints.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow
this rule.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7 .4 Constraint type restrict ions

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow
this rule when checking for CLS compliance, and need not provide syntax to violate this rule.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7 .5 Frameworks and accessibi l ity of nested types

CLI generics treat the generic type declaration and all instantiations of that generic type as having the same
accessibility scope. However, language accessibility rules may differ in this regard, with some choosing to
follow the CLI accessibility model, while others use a more restrictive, per-instantiation model. To enable
consumption by all CLR languages, CLS frameworks shall be designed with a conservative per-instantiation
model of accessibility in mind, and not expose nested types or require access to protected members based on
specific, alternate instantiations of a generic type.

This has implications for signatures containing nested types with family accessibility. Open generic types shall
not expose fields or members with signatures containing a specific instantiation of a nested generic type with
family accessibility. Non-generic types extending a specific instantiation of a generic base class or interface,
shall not expose fields or members with signatures containing a different instantiation of a nested generic type
with family accessibility. [Example: Consider the following C# source code:

public class C<T> {
 protected class N {…}
 protected void M1(C<int>.N n) {…} // Not CLS-compliant - C<int>.N not
 // accessible from within C<T> in all languages
 protected void M2(C<T>.N n) {…} // CLS-compliant – C<T>.N accessible inside C<T>
}

public class D : C<long> {
 protected void M3(C<int>.N n) {…} // Not CLS-compliant – C<int>.N is not
 // accessible in D (extends C<long>)
 protected void M4(C<long>.N n) {…} // CLS-compliant, C<long>.N is
 // accessible in D (extends C<long>)
}

The relevant corresponding ILASM code is:
.class public … C`1<T> … {
 .class … nested … N<T> … {}
 .method family hidebysig instance void M1(class C`1/N<int32> n) … {}
 // Not CLS-compliant - C<int>.N is not accessible from within C<T> in all languages

 .method family hidebysig instance void M2(class C`1/N<!0> n) … {}
 // CLS-compliant – C<T>.N is accessible inside C<T>
}

.class public … D extends class C`1<int64> {
 .method family hidebysig instance void M3(class C`1/N<int32> n) … {}
 // Not CLS-compliant – C<int>.N is not accessible in D (extends C<long>)

 .method family hidebysig instance void M4(class C`1/N<int64> n) … {}
 // CLS-compliant, C<long>.N is accessible in D (extends C<long>)
}

 Partition I 61

end example]

CLS Rule 46: The visibility and accessibility of members (including nested types) in an instantiated generic
type shall be considered to be scoped to the specific instantiation rather than the generic type declaration as a
whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Shall use this more restrictive notion of accessibility when determining CLS compliance.

CLS (framework): Shall not expose members that violate this rule. end note]

10.7 .6 Frameworks and abstract or virtual methods

CLS Frameworks shall not expose libraries that require CLS Extenders to override or implement generic
methods to use the framework. This does not imply that virtual or abstract generic methods are non-compliant;
rather, the framework shall also provide concrete implementations with appropriate default behavior.

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non-abstract)
implementation.

[Note:

CLS (consumer): No impact.

CLS (extender): Need not provide syntax for overriding generic methods.

CLS (framework): Shall not expose generic methods that violate this rule without also providing appropriate
concrete implementations. end note]

62 Partition I

11 Collected Common Language Specification rules
The complete set of CLS rules are collected here for reference. Recall that these rules apply only to “externally
visible” items—types that are visible outside of their own assembly and members of those types that have
public, family, or family-or-assembly accessibility. Furthermore, items can be explicitly marked as CLS-
compliant or not using the System.CLSCompliantAttribute. The CLS rules apply only to items that are
marked as CLS-compliant.

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the
defining assembly. (§7.3)

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant. (§7.3.1)

CLS Rule 3: Boxed value types are not CLS-compliant. (§8.2.4.)

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0
governing the set of characters permitted to start and be included in identifiers, available on-line at
http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format
defined by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their
lowercase mappings (as specified by the Unicode locale-insensitive, one-to-one lowercase mappings)
are the same. That is, for two identifiers to be considered different under the CLS they shall differ in
more than simply their case. However, in order to override an inherited definition the CLI requires the
precise encoding of the original declaration be used. (§8.5.1)

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind,
except where the names are identical and resolved via overloading. That is, while the CTS allows a
single type to use the same name for a method and a field, the CLS does not. (§8.5.2)

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the
CTS allows distinct signatures to be distinguished. Methods, properties, and events that have the same
name (by identifier comparison) shall differ by more than just the return type, except as specified in
CLS Rule 39. (§8.5.2)

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field
shall be "value__", and that field shall be marked RTSpecialName. (§8.5.2)

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the
System.FlagsAttribute (see Partition IV) custom attribute. One represents named integer values; the
other represents named bit flags that can be combined to generate an unnamed value. The value of an
enum is not limited to the specified values. (§8.5.2)

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself. (§8.5.2)

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when
overriding a method inherited from a different assembly with accessibility family-or-assembly. In this
case, the override shall have accessibility family. (§8.5.3.2)

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an
instantiated generic type shall be CLS-compliant. (§8.6.1)

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the
signature of any member shall be visible and accessible whenever the member itself is visible and
accessible. For example, a public method that is visible outside its assembly shall not have an
argument whose type is visible only within the assembly. The visibility and accessibility of types
composing an instantiated generic type used in the signature of any member shall be visible and
accessible whenever the member itself is visible and accessible. For example, an instantiated generic
type present in the signature of a member that is visible outside its assembly shall not have a generic
argument whose type is visible only within the assembly. (§8.6.1)

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata
(see Partition II). A CLS-compliant literal must have a value specified in field initialization metadata

 Partition I 63

that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum).
(§8.6.1.2)

CLS Rule 14: Typed references are not CLS-compliant. (§8.6.1.3)

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported
by the CLS is the standard managed calling convention. (§8.6.1.5)

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array
shall have lower bounds of zero. Only the fact that an item is an array and the element type of the array
shall be required to distinguish between overloads. When overloading is based on two or more array
types the element types shall be named types. (§8.9.1)

CLS Rule 17: Unmanaged pointer types are not CLS-compliant. (§8.9.2)

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods
in order to implement them. (§8.9.4)

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.
(§8.9.4)

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation
of non-CLS-compliant members. (§8.9.6.4)

CLS Rule 21: An object constructor shall call some class constructor of its base class before any access
occurs to inherited instance data. (This does not apply to value types, which need not have
constructors.) (§8.9.6.6)

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and
an object shall not be initialized twice. (§8.9.6.6)

CLS Rule 23: System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a
CLS-compliant class. (§8.9.9)

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be
marked SpecialName in the metadata. (§8.11.3)

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated “The
accessibility of a property’s accessors shall be identical.” However, that rule was removed. end note]
(§8.11.3)

CLS Rule 26: A property’s accessors shall all be static, all be virtual, or all be instance. (§8.11.3)

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last
argument of the setter. The types of the parameters of the property shall be the types of the parameters
to the getter and the types of all but the final parameter of the setter. All of these types shall be CLS-
compliant, and shall not be managed pointers (i.e., shall not be passed by reference). (§8.11.3)

CLS Rule 28: Properties shall adhere to a specific naming pattern. See §10.4. The SpecialName
attribute referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere
to identifier rules. A property shall have a getter method, a setter method, or both. (§8.11.3)

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata.
(§8.11.4)

CLS Rule 30: The accessibility of an event and of its accessors shall be identical. (§8.11.4)

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.
(§8.11.4)

CLS Rule 32: The add and remove methods for an event shall each take one parameter whose type
defines the type of the event and that shall be derived from System.Delegate. (§8.11.4)

CLS Rule 33: Events shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute
referred to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to
identifier rules. (§8.11.4)

64 Partition I

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes. The only types that
shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char,
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single,

System.Double, and any enumeration type based on a CLS-compliant base integer type. (§9.7)

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II),
but does allow optional modifiers (modopt, see Partition II) it does not understand. (§9.7)

CLS Rule 36: Global static fields and methods are not CLS-compliant. (§9.8)

CLS Rule 37: Only properties and methods can be overloaded. (§10.2)

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their
parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be
overloaded based on their return type. (§10.2)

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the
coercion shall be provided. (§10.3.3)

CLS Rule 40: Objects that are thrown shall be of type System.Exception or a type inheriting from it.
Nonetheless, CLS-compliant methods are not required to block the propagation of other types of
exceptions. (§10.5)

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it. (§10.6)

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type.
Generic parameters in a nested type correspond by position to the generic parameters in its enclosing
type. (§10.7.1)

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the
non-nested type, or newly introduced to the type if nested, according to the rules defined above.
(§10.7.2)

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on
the base type, or interfaces would be satisfied by the generic type constraints. (§10.7.3)

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant.
(§10.7.4)

CLS Rule 46: The visibility and accessibility of members (including nested types) in an instantiated
generic type shall be considered to be scoped to the specific instantiation rather than the generic type
declaration as a whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply.
(§10.7.5)

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non-
abstract) implementation. (§10.7.6)

CLS Rule 48: If two or more CLS-compliant methods declared in a type have the same name and, for a
specific set of type instantiations, they have the same parameter and return types, then all these methods
shall be semantically equivalent at those type instantiations. (§7.2.1)

 Partition I 65

12 Virtual Execution System
The Virtual Execution System (VES) provides an environment for executing managed code. It provides direct
support for a set of built-in data types, defines a hypothetical machine with an associated machine model and
state, a set of control flow constructs, and an exception handling model. To a large extent, the purpose of the
VES is to provide the support required to execute the CIL instruction set (see Partition III).

12.1 Supported data types
The CLI directly supports the data types shown in Table 6: Data Types Directly Supported by the CLI. That is,
these data types can be manipulated using the CIL instruction set (see Partition III).

Table 6: Data Types Directly Supported by the CLI

Data Type Description
int8 8-bit two’s-complement signed value
unsigned int8 8-bit unsigned binary value
int16 16-bit two’s-complement signed value
unsigned int16 16-bit unsigned binary value
int32 32-bit two’s-complement signed value
unsigned int32 32-bit unsigned binary value
int64 64-bit two’s-complement signed value
unsigned int64 64-bit unsigned binary value
float32 32-bit IEC 60559:1989 floating-point value
float64 64-bit IEC 60559:1989 floating-point value
native int native size two’s-complement signed value
native unsigned int native size unsigned binary value, also unmanaged pointer
F native size floating-point number (internal to VES, not user visible)
O native size object reference to managed memory
& native size managed pointer (can point into managed memory)

The CLI model uses an evaluation stack. Instructions that copy values from memory to the evaluation stack are
“loads”; instructions that copy values from the stack back to memory are “stores”. The full set of data types in
Table 6: Data Types Directly Supported by the CLI can be represented in memory. However, the CLI supports
only a subset of these types in its operations upon values stored on its evaluation stack—int32, int64, and
native int. In addition, the CLI supports an internal data type to represent floating-point values on the internal
evaluation stack. The size of the internal data type is implementation-dependent. For further information on the
treatment of floating-point values on the evaluation stack, see §12.1.3 and Partition III. Short numeric values
(int8, int16, unsigned int8, and unsigned int16) are widened when loaded and narrowed when stored. This
reflects a computer model that assumes, for numeric and object references, memory cells are 1, 2, 4, or 8 bytes
wide, but stack locations are either 4 or 8 bytes wide. User-defined value types can appear in memory locations
or on the stack and have no size limitation; the only built-in operations on them are those that compute their
address and copy them between the stack and memory.

The only CIL instructions with special support for short numeric values (rather than support for simply the 4-
or 8-byte integral values) are:

• Load and store instructions to/from memory: ldelem, ldind, stelem, stind

• Data conversion: conv, conv.ovf

66 Partition I

• Array creation: newarr

The signed integer types (int8, int16, int32, int64, and native int) and their corresponding unsigned
integer types (unsigned int8, unsigned int16, unsigned int32, unsigned int64, and native unsigned
int) differ only in how the bits of the integer are interpreted. For those operations in which an unsigned integer
is treated differently from a signed integer (e.g., in comparisons or arithmetic with overflow) there are separate
instructions for treating an integer as unsigned (e.g., cgt.un and add.ovf.un).

This instruction set design simplifies CIL-to-native code (e.g., JIT) compilers and interpreters of CIL by
allowing them to internally track a smaller number of data types. See §12.3.2.1.

As described below, CIL instructions do not specify their operand types. Instead, the CLI keeps track of
operand types based on data flow and aided by a stack consistency requirement described below. For example,
the single add instruction will add two integers or two floats from the stack.

12.1 .1 Native s ize: nat ive int , native unsigned int , O and &

The native-size types (native int, native unsigned int, O, and &) are a mechanism in the CLI for deferring
the choice of a value’s size. These data types exist as CIL types; however, the CLI maps each to the native size
for a specific processor. (For example, data type I would map to int32 on a Pentium processor, but to int64 on
an IA64 processor.) So, the choice of size is deferred until JIT compilation or runtime, when the CLI has been
initialized and the architecture is known. This implies that field and stack frame offsets are also not known at
compile time. For languages like Visual Basic, where field offsets are not computed early anyway, this is not a
hardship. In languages like C or C++, where sizes must be known when source code is compiled, a
conservative assumption that they occupy 8 bytes is sometimes acceptable (for example, when laying out
compile-time storage).

12.1 .1.1 Unmanaged pointers as type nat ive unsigned int

[Rationale: For languages like C, when compiling all the way to native code, where the size of a pointer is
known at compile time and there are no managed objects, the fixed-size unsigned integer types (unsigned
int32 or unsigned int64) can serve as pointers. However choosing pointer size at compile time has its
disadvantages. If pointers were chosen to be 32- bit quantities at compile time, the code would be restricted to
4 gigabytes of address space, even if it were run on a 64-bit machine. Moreover, a 64-bit CLI would need to
take special care so those pointers passed back to 32-bit code would always fit in 32 bits. If pointers were
chosen at compile time to be 64 bits, the code would run on a 32-bit machine, but pointers in every data
structure would be twice as large as necessary on that CLI.

For other languages, where the size of a data type need not be known at compile time, it is desirable to defer the
choice of pointer size from compile time to CLI initialization time. In that way, the same CIL code can handle
large address spaces for those applications that need them, while also being able to reap the size benefit of 32-
bit pointers for those applications that do not need a large address space. end rationale]

The native unsigned int type is used to represent unmanaged pointers with the VES. The metadata allows
unmanaged pointers to be represented in a strongly typed manner, but these types are translated into type
native unsigned int for use by the VES.

12.1 .1.2 Managed pointer types: O and &

The O data type represents an object reference that is managed by the CLI. As such, the number of specified
operations is severely limited. In particular, references shall only be used on operations that indicate that they
operate on reference types (e.g., ceq and ldind.ref), or on operations whose metadata indicates that references
are allowed (e.g., call, ldsfld, and stfld).

The & data type (managed pointer) is similar to the O type, but points to the interior of an object. That is, a
managed pointer is allowed to point to a field within an object or an element within an array, rather than to
point to the ‘start’ of object or array.

Object references (O) and managed pointers (&) can be changed during garbage collection, since the data to
which they refer might be moved.

 Partition I 67

[Note: In summary, object references, or O types, refer to the ‘outside’ of an object, or to an object as-a-whole.
But managed pointers, or & types, refer to the interior of an object. The & types are sometimes called “byref
types” in source languages, since passing a field of an object by reference is represented in the VES by using an
& type to represent the type of the parameter. end note]

In order to allow managed pointers to be used more flexibly, they are also permitted to point to areas that aren’t
under the control of the CLI garbage collector, such as the evaluation stack, static variables, and unmanaged
memory. This allows them to be used in many of the same ways that unmanaged pointers (U) are used.
Verification restrictions guarantee that, if all code is verifiable, a managed pointer to a value on the evaluation
stack doesn’t outlast the life of the location to which it points.

12.1 .1.3 Portabil i ty: storing pointers in memory

Several instructions, including calli, cpblk, initblk, ldind.*, and stind.*, expect an address on the top of the
stack. If this address is derived from a pointer stored in memory, there is an important portability consideration.

1. Code that stores pointers in a native-sized integer or pointer location (types native int, O,
native unsigned int, or &) is always fully portable.

2. Code that stores pointers in an 8-byte integer (type int64 or unsigned int64) can be portable.
But this requires that a conv.ovf.un instruction be used to convert the pointer from its memory
format before its use as a pointer. This might cause a runtime exception if run on a 32-bit
machine.

3. Code that uses any smaller integer type to store a pointer in memory (int8, unsigned int8,
int16, unsigned int16, int32, unsigned int32) is never portable, even though the use of an
unsigned int32 or int32 will work correctly on a 32-bit machine.

12.1 .2 Handling of short integer data types

The CLI defines an evaluation stack that contains either 4-byte or 8-byte integers; however, it also has a
memory model that encompasses 1- and 2-byte integers. To be more precise, the following rules are part of the
CLI model:

• Loading from 1- or 2-byte locations (arguments, locals, fields, statics, pointers) expands to 4-byte
values. For locations with a known type (e.g., local variables) the type being accessed determines
whether the load sign-extends (signed locations) or zero-extends (unsigned locations). For
pointer dereference (ldind.*), the instruction itself identifies the type of the location (e.g.,
ldind.u1 indicates an unsigned location, while ldind.i1 indicates a signed location).

• Storing into a 1- or 2-byte location truncates to fit and will not generate an overflow error.
Specific instructions (conv.ovf.*) can be used to test for overflow before storing.

• Calling a method assigns values from the evaluation stack to the arguments for the method, hence
it truncates just as any other store would when the argument is larger than the parameter.

• Returning from a method assigns a value to an invisible return variable, so it also truncates as a
store would when the type of the value returned is larger than the return type of the method.
Since the value of this return variable is then placed on the evaluation stack, it is then sign-
extended or zero-extended as would any other load. Note that this truncation followed by
extending is not identical to simply leaving the computed value unchanged.

It is the responsibility of any translator from CIL to native machine instructions to make sure that these rules
are faithfully modeled through the native conventions of the target machine. The CLI does not specify, for
example, whether truncation of short integer arguments occurs at the call site or in the target method.

12.1 .3 Handling of f loat ing-point data types

Floating-point calculations shall be handled as described in IEC 60559:1989. This standard describes encoding
of floating-point numbers, definitions of the basic operations and conversion, rounding control, and exception
handling.

68 Partition I

The standard defines special values, NaN, (not a number), +infinity, and –infinity. These values are returned
on overflow conditions. A general principle is that operations that have a value in the limit return an
appropriate infinity while those that have no limiting value return NaN (see the standard for details).

[Note: The following examples show the most commonly encountered cases.
X rem 0 = NaN
0 * +infinity = 0 * -infinity = NaN
(X / 0) = +infinity, if X > 0
 NaN, if X = 0
 infinity, if X < 0
NaN op X = X op NaN = NaN for all operations
(+infinity) + (+infinity) = (+infinity)
X / (+infinity) = 0
X mod (-infinity) = -X
(+infinity) - (+infinity) = NaN

This standard does not specify the behavior of arithmetic operations on denormalized floating-point numbers,
nor does it specify when or whether such representations should be created. This is in keeping with IEC
60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that are
created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this behavior
is deliberately left implementation-specific. end note]

For purposes of comparison, infinite values act like a number of the correct sign, but with a very large
magnitude when compared with finite values. For comparison purposes, NaN is ‘unordered’ (see clt, clt.un).

While the IEC 60559:1989 standard also allows for exceptions to be thrown under unusual conditions (such as
overflow and invalid operand), the CLI does not generate these exceptions. Instead, the CLI uses the NaN,
+infinity, and –infinity return values and provides the instruction ckfinite to allow users to generate an
exception if a result is NaN, +infinity, or –infinity.

The rounding mode defined in IEC 60559:1989 shall be set by the CLI to “round to the nearest number,” and
neither the CIL nor the class library provide a mechanism for modifying this setting. Conforming
implementations of the CLI need not be resilient to external interference with this setting. That is, they need not
restore the mode prior to performing floating-point operations, but rather, can rely on it having been set as part
of their initialization.

For conversion to integers, the default operation supplied by the CIL is “truncate towards zero”. Class libraries
are supplied to allow floating-point numbers to be converted to integers using any of the other three traditional
operations (round to nearest integer, floor (truncate towards –infinity), ceiling (truncate towards +infinity)).

Storage locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. The
supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, as arguments, as
return types, and as local variables) floating-point numbers are represented using an internal floating-point
type. In each such instance, the nominal type of the variable or expression is either R4 or R8, but its value can
be represented internally with additional range and/or precision. The size of the internal floating-point
representation is implementation-dependent, can vary, and shall have precision at least as great as that of the
variable or expression being represented. An implicit widening conversion to the internal representation from
float32 or float64 is performed when those types are loaded from storage. The internal representation is
typically the native size for the hardware, or as required for efficient implementation of an operation. The
internal representation shall have the following characteristics:

• The internal representation shall have precision and range greater than or equal to the nominal
type.

• Conversions to and from the internal representation shall preserve value.

[Note: This implies that an implicit widening conversion from float32 (or float64) to the internal
representation, followed by an explicit conversion from the internal representation to float32 (or float64),
will result in a value that is identical to the original float32 (or float64) value. end note]

[Rationale: This design allows the CLI to choose a platform-specific high-performance representation for
floating-point numbers until they are placed in storage locations. For example, it might be able to leave
floating-point variables in hardware registers that provide more precision than a user has requested. At the

 Partition I 69

same time, CIL generators can force operations to respect language-specific rules for representations through
the use of conversion instructions. end rationale]

When a floating-point value whose internal representation has greater range and/or precision than its nominal
type is put in a storage location, it is automatically coerced to the type of the storage location. This can involve
a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value
might be retained in the internal representation for future use, if it is reloaded from the storage location without
having been modified. It is the responsibility of the compiler to ensure that the retained value is still valid at
the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see
memory model section). This freedom to carry extra precision is not permitted, however, following the
execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be
exactly representable in the associated type.

[Note: To detect values that cannot be converted to a particular storage type, a conversion instruction (conv.r4,
or conv.r8) can be used, followed by a check for a non-finite value using ckfinite. Underflow can be detected
by converting to a particular storage type, comparing to zero before and after the conversion. end note]

[Note: The use of an internal representation that is wider than float32 or float64 can cause differences in
computational results when a developer makes seemingly unrelated modifications to their code, the result of
which can be that a value is spilled from the internal representation (e.g., in a register) to a location on the
stack. end note]

12.1 .4 CIL instruct ions and numeric types

This subclause contains only informative text
Most CIL instructions that deal with numbers take their operands from the evaluation stack (see §12.3.2.1), and
these inputs have an associated type that is known to the VES. As a result, a single operation like add can have
inputs of any numeric data type, although not all instructions can deal with all combinations of operand types.
Binary operations other than addition and subtraction require that both operands be of the same type. Addition
and subtraction allow an integer to be added to or subtracted from a managed pointer (types & and O). Details
are specified in Partition II.

Instructions fall into the following categories:

Numeric: These instructions deal with both integers and floating point numbers, and consider integers to be
signed. Simple arithmetic, conditional branch, and comparison instructions fit in this category.

Integer: These instructions deal only with integers. Bit operations and unsigned integer division/remainder fit
in this category.

Floating-point: These instructions deal only with floating-point numbers.

Specific: These instructions deal with integer and/or floating-point numbers, but have variants that deal
specially with different sizes and unsigned integers. Integer operations with overflow detection, data conversion
instructions, and operations that transfer data between the evaluation stack and other parts of memory
(see §12.3.2) fit into this category.

Unsigned/unordered: There are special comparison and branch instructions that treat integers as unsigned and
consider unordered floating-point numbers specially (as in “branch if greater than or unordered”):

Load constant: The load constant (ldc.*) instructions are used to load constants of type int32, int64,
float32, or float64. Native size constants (type native int) shall be created by conversion from int32
(conversion from int64 would not be portable) using conv.i or conv.u.

Table 7: CIL Instructions by Numeric Category shows the CIL instructions that deal with numeric values,
along with the category to which they belong. Instructions that end in “.*” indicate all variants of the
instruction (based on size of data and whether the data is treated as signed or unsigned).

Table 7: CIL Instructions by Numeric Category

add Numeric div Numeric

70 Partition I

add.ovf.* Specific div.un Integer

and Integer ldc.* Load constant

beq[.s] Numeric ldelem. * Specific

bge[.s] Numeric ldind.* Specific

bge.un[.s] Unsigned/unordered mul Numeric

bgt[.s] Numeric mul.ovf.* Specific

bgt.un[.s] Unsigned/unordered neg Integer

ble[.s] Numeric newarr.* Specific

ble.un[.s] Unsigned/unordered not Integer

blt[.s] Numeric or Integer

blt.un[.s] Unsigned/unordered rem Numeric

bne.un[.s] Unsigned/unordered rem.un Integer

ceq Numeric shl Integer

cgt Numeric shr Integer

cgt.un Unsigned/unordered shr.un Specific

ckfinite Floating point stelem.* Specific

clt Numeric stind.* Specific

clt.un Unsigned/unordered sub Numeric

conv.* Specific sub.ovf.* Specific

conv.ovf.* Specific xor Integer

End informative text

12.1 .5 CIL instruct ions and pointer types

This subclause contains only informative text
[Rationale: Some implementations of the CLI will require the ability to track pointers to objects and to collect
objects that are no longer reachable (thus providing memory management by “garbage collection”). This
process moves objects in order to reduce the working set and thus will modify all pointers to those objects as
they move. For this to work correctly, pointers to objects can only be used in certain ways. The O (object
reference) and & (managed pointer) data types are the formalization of these restrictions. end rationale]

The use of object references is tightly restricted in the CIL. They are used almost exclusively with the “virtual
object system” instructions, which are specifically designed to deal with objects. In addition, a few of the base
instructions of the CIL handle object references. In particular, object references can be:

1. Loaded onto the evaluation stack to be passed as arguments to methods (ldloc, ldarg), and stored
from the stack to their home locations (stloc, starg)

2. Duplicated or popped off the evaluation stack (dup, pop)

3. Tested for equality with one another, but not other data types (beq, beq.s, bne, bne.s, ceq)

4. Loaded-from / stored-into unmanaged memory, in type unmanaged code only (ldind.ref,
stind.ref)

5. Created as a null reference (ldnull)

 Partition I 71

6. Returned as a value (ret)

Managed pointers have several additional base operations.

1. Addition and subtraction of integers, in units of bytes, returning a managed pointer (add,
add.ovf.u, sub, sub.ovf.u)

2. Subtraction of two managed pointers to elements of the same array, returning the number of bytes
between them (sub, sub.ovf.u)

3. Unsigned comparison and conditional branches based on two managed pointers (bge.un,
bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s, cgt.un, clt.un)

Arithmetic operations upon managed pointers are intended only for use on pointers to elements of the same
array. If other uses of arithmetic on managed pointers are made, the behavior is unspecified.

[Rationale: Since the memory manager runs asynchronously with respect to programs and updates managed
pointers, both the distance between distinct objects and their relative position can change. end rationale]

End informative text

12.1 .6 Aggregate data

This subclause contains only informative text
The CLI supports aggregate data, that is, data items that have sub-components (arrays, structures, or object
instances) but are passed by copying the value. The sub-components can include references to managed
memory. Aggregate data is represented using a value type, which can be instantiated in two different ways:

• Boxed: as an object, carrying full type information at runtime, and typically allocated on the heap
by the CLI memory manager.

• Unboxed: as a “value type instance” that does not carry type information at runtime and that is
never allocated directly on the heap. It can be part of a larger structure on the heap – a field of a
class, a field of a boxed value type, or an element of an array. Or it can be in the local variables
or incoming arguments array (see §12.3.2). Or it can be allocated as a static variable or static
member of a class or a static member of another value type.

Because value type instances, specified as method arguments, are copied on method call, they do not have
“identity” in the sense that objects (boxed instances of classes) have.

12.1 .6.1 Homes for values

The home of a data value is where it is stored for possible reuse. The CLI directly supports the following home
locations:

• An incoming argument

• A local variable of a method

• An instance field of an object or value type

• A static field of a class, interface, or module

• An array element

For each home location, there is a means to compute (at runtime) the address of the home location and a means
to determine (at JIT compile time) the type of a home location. These are summarized in Table 8: Address and
Type of Home Locations.

Table 8: Address and Type of Home Locations

Type of Home Runtime Address Computation JIT-time Type Determination

72 Partition I

Argument ldarga for by-value arguments or ldarg for
byref arguments

Method signature

Local Variable ldloca for by-value locals or ldloc for byref
locals

Locals signature in method
header

Field ldflda Type of field in the class,
interface, or module

Static ldsflda Type of field in the class,
interface, or module

Array Element ldelema for single-dimensional zero-based
arrays or call the instance method Address

Element type of array

In addition to homes, built-in values can exist in two additional ways (i.e., without homes):

1. as constant values (typically embedded in the CIL instruction stream using ldc.* instructions)

2. as an intermediate value on the evaluation stack, when returned by a method or CIL instruction.

12.1 .6.2 Operations on value type instances

Value type instances can be created, passed as arguments, returned as values, and stored into and extracted
from locals, fields, and elements of arrays (i.e., copied). Like classes, value types can have both static and non-
static members (methods and fields). But, because they carry no type information at runtime, value type
instances are not substitutable for items of type System.Object; in this respect, they act like the built-in types
int32, int64, and so forth. There are two operations, box and unbox, that convert between value type instances
and objects.

12.1 .6.2.1 Init ia l iz ing instances of value types
There are three options for initializing the home of a value type instance. You can zero it by loading the address
of the home (see Table 8: Address and Type of Home Locations) and using the initobj instruction (for local
variables this is also accomplished by setting the localsinit bit in the method’s header). You can call a user-
defined constructor by loading the address of the home (see Table 8: Address and Type of Home Locations)
and then calling the constructor directly. Or you can copy an existing instance into the home, as described
in §12.1.6.2.2.

12.1 .6.2.2 Loading and storing instances of value types
There are two ways to load a value type onto the evaluation stack:

• Directly load the value from a home that has the appropriate type, using an ldarg, ldloc, ldfld, or
ldsfld instruction.

• Compute the address of the value type, then use an ldobj instruction.

Similarly, there are two ways to store a value type from the evaluation stack:

• Directly store the value into a home of the appropriate type, using a starg, stloc, stfld, or stsfld
instruction.

• Compute the address of the value type, then use a stobj instruction.

12.1 .6.2.3 Passing and returning value types
Value types are treated just as any other value would be treated:

• To pass a value type by value, simply load it onto the stack as you would any other argument:
use ldloc, ldarg, etc., or call a method that returns a value type. To access a value generic
parameter that has been passed by value use the ldarga instruction to compute its address or the
ldarg instruction to load the value onto the evaluation stack.

• To pass a value type by reference, load the address of the value type as you normally would (see
Table 8: Address and Type of Home Locations). To access a value generic parameter that has

 Partition I 73

been passed by reference use the ldarg instruction to load the address of the value type and then
the ldobj instruction to load the value type onto the evaluation stack.

• To return a value type, just load the value onto an otherwise empty evaluation stack and then
issue a ret instruction.

12.1 .6.2.4 Call ing methods
Static methods on value types are handled no differently from static methods on an ordinary class: use a call
instruction with a metadata token specifying the value type as the class of the method. Non-static methods (i.e.,
instance and virtual methods) are supported on value types, but they are given special treatment. A non-static
method on a reference type (rather than a value type) expects a this pointer that is an instance of that class. This
makes sense for reference types, since they have identity and the this pointer represents that identity. Value
types, however, have identity only when boxed. To address this issue, the this pointer on a non-static method of
a value type is a byref parameter of the value type rather than an ordinary by-value parameter.

A non-static method on a value type can be called in the following ways:

• For unboxed instances of a value type, the exact type is known statically. The call instruction can
be used to invoke the function, passing as the first parameter (the this pointer) the address of the
instance. The metadata token used with the call instruction shall specify the value type itself as
the class of the method.

• Given a boxed instance of a value type, there are three cases to consider:

o Instance or virtual methods introduced on the value type itself: unbox the instance and call
the method directly using the value type as the class of the method.

o Virtual methods inherited from a base class: use the callvirt instruction and specify the
method on the System.Object, System.ValueType or System.Enum class as appropriate.

o Virtual methods on interfaces implemented by the value type: use the callvirt instruction
and specify the method on the interface type.

12.1 .6.2.5 Boxing and unboxing
Box and unbox are conceptually equivalent to (and can be seen in higher-level languages as) casting between a
value type instance and System.Object. Because they change data representations, however, boxing and
unboxing are like the widening and narrowing of various sizes of integers (the conv and conv.ovf instructions)
rather than the casting of reference types (the isinst and castclass instructions). The box instruction is a
widening (always type-safe) operation that converts a value type instance to System.Object by making a copy
of the instance and embedding it in a newly allocated object. unbox is a narrowing (runtime exception can be
generated) operation that converts a System.Object (whose exact type is a value type) to a value type instance.
This is done by computing the address of the embedded value type instance without making a copy of the
instance.

12.1 .6.2.6 castclass and is inst on value types
Casting to and from value type instances isn’t permitted (the equivalent operations are box and unbox). When
boxed, however, it is possible to use the isinst instruction to see whether a value of type System.Object is the
boxed representation of a particular class.

12.1 .6.3 Opaque classes

Some languages provide multi-byte data structures whose contents are manipulated directly by address
arithmetic and indirection operations. To support this feature, the CLI allows value types to be created with a
specified size but no information about their data members. Instances of these “opaque classes” are handled in
precisely the same way as instances of any other class, but the ldfld, stfld, ldflda, ldsfld, and stsfld instructions
shall not be used to access their contents.

End informative text

74 Partition I

12.2 Module information
Partition II provides details of the CLI PE file format. The CLI relies on the following information about each
method defined in a PE file:

• The instructions composing the method body, including all exception handlers.

• The signature of the method, which specifies the return type and the number, order, parameter
passing convention, and built-in data type of each of the arguments. It also specifies the native
calling convention (this does not affect the CIL virtual calling convention, just the native code).

• The exception handling array. This array holds information delineating the ranges over which
exceptions are filtered and caught. See Partition II and §12.4.2.

• The size of the evaluation stack that the method will require.

• The size of the locals array that the method will require.

• A “localsinit flag” that indicates whether the local variables and memory pool should be
initialized by the CLI (see also localloc).

• Type of each local variable in the form of a signature of the local variable array (called the
“locals signature”).

In addition, the file format is capable of indicating the degree of portability of the file. There is one kind of
restriction that can be described:

• Restriction to a specific (32-bit) native size for integers.

By stating which restrictions are placed on executing the code, the CLI class loader can prevent non-portable
code from running on an architecture that it cannot support.

12.3 Machine state
One of the design goals of the CLI is to hide the details of a method call frame from the CIL code generator.
This allows the CLI (and not the CIL code generator) to choose the most efficient calling convention and stack
layout. To achieve this abstraction, the call frame is integrated into the CLI. The machine state definitions
below reflect these design choices, where machine state consists primarily of global state and method state.

12.3 .1 The global s tate

The CLI manages multiple concurrent threads of control (not necessarily the same as the threads provided by a
host operating system), multiple managed heaps, and a shared memory address space.

[Note: A thread of control can be thought of, somewhat simplistically, as a singly linked list of method states,
where a new state is created and linked back to the current state by a method call instruction – the traditional
model of a stack-based calling sequence. Notice that this model of the thread of control doesn’t correctly
explain the operation of tail., jmp, or throw instructions. end note]

Figure 2: Machine State Model illustrates the machine state model, which includes threads of control, method
states, and multiple heaps in a shared address space. Method state, shown separately in Figure 3: Method State,
is an abstraction of the stack frame. Arguments and local variables are part of the method state, but they can
contain Object References that refer to data stored in any of the managed heaps. In general, arguments and
local variables are only visible to the executing thread, while instance and static fields and array elements can
be visible to multiple threads, and modification of such values is considered a side-effect.

 Partition I 75

Figure 2: Machine State Model

Figure 3: Method State

12.3 .2 Method state

Method state describes the environment within which a method executes. (In conventional compiler
terminology, it corresponds to a superset of the information captured in the “invocation stack frame”). The CLI
method state consists of the following items:

• An instruction pointer (IP) – This points to the next CIL instruction to be executed by the CLI in
the present method.

76 Partition I

• An evaluation stack – The stack is empty upon method entry. Its contents are entirely local to the
method and are preserved across call instructions (that’s to say, if this method calls another, once
that other method returns, our evaluation stack contents are “still there”). The evaluation stack is
not addressable. At all times it is possible to deduce which one of a reduced set of types is stored
in any stack location at a specific point in the CIL instruction stream (see §12.3.2.1).

• A local variable array (starting at index 0) – Values of local variables are preserved across calls
(in the same sense as for the evaluation stack). A local variable can hold any data type.
However, a particular slot shall be used in a type consistent way (where the type system is the one
described in §12.3.2.1). Local variables are initialized to 0 before entry if the localsinit flag for
the method is set (see §12.2). The address of an individual local variable can be taken using the
ldloca instruction.

• An argument array – The values of the current method’s incoming arguments (starting at
index 0). These can be read and written by logical index. The address of an argument can be
taken using the ldarga instruction. The address of an argument is also implicitly taken by the
arglist instruction for use in conjunction with type-safe iteration through variable-length
argument lists.

• A methodInfo handle – This contains read-only information about the method. In particular it
holds the signature of the method, the types of its local variables, and data about its exception
handlers.

• A local memory pool – The CLI includes instructions for dynamic allocation of objects from the
local memory pool (localloc). Memory allocated in the local memory pool is addressable. The
memory allocated in the local memory pool is reclaimed upon method context termination.

• A return state handle – This handle is used to restore the method state on return from the current
method. Typically, this would be the state of the method’s caller. This corresponds to what in
conventional compiler terminology would be the dynamic link.

• A security descriptor – This descriptor is not directly accessible to managed code but is used by
the CLI security system to record security overrides (assert, permit-only, and deny).

The four areas of the method state—incoming arguments array, local variables array, local memory pool and
evaluation stack—are specified as if logically distinct areas. A conforming implementation of the CLI can map
these areas into one contiguous array of memory, held as a conventional stack frame on the underlying target
architecture, or use any other equivalent representation technique.

12.3 .2.1 The evaluation stack

Associated with each method state is an evaluation stack. Most CLI instructions retrieve their arguments from
the evaluation stack and place their return values on the stack. Arguments to other methods and their return
values are also placed on the evaluation stack. When a procedure call is made the arguments to the called
methods become the incoming arguments array (see §12.3.2.2) to the method. This can require a memory copy,
or simply a sharing of these two areas by the two methods.

The evaluation stack is made up of slots that can hold any data type, including an unboxed instance of a value
type. The type state of the stack (the stack depth and types of each element on the stack) at any given point in a
program shall be identical for all possible control flow paths. For example, a program that loops an unknown
number of times and pushes a new element on the stack at each iteration would be prohibited.

While the CLI, in general, supports the full set of types described in §12.1, the CLI treats the evaluation stack
in a special way. While some JIT compilers might track the types on the stack in more detail, the CLI only
requires that values be one of:

• int64, an 8-byte signed integer

• int32, a 4-byte signed integer

• native int, a signed integer of either 4 or 8 bytes, whichever is more convenient for the target
architecture

 Partition I 77

• F, a floating point value (float32, float64, or other representation supported by the underlying
hardware)

• &, a managed pointer

• O, an object reference

• *, a “transient pointer,” which can be used only within the body of a single method, that points to
a value known to be in unmanaged memory (see the CIL Instruction Set specification for more
details. * types are generated internally within the CLI; they are not created by the user).

• A user-defined value type

The other types are synthesized through a combination of techniques:

• Shorter integer types in other memory locations are zero-extended or sign-extended when loaded
onto the evaluation stack; these values are truncated when stored back to their home location.

• Special instructions perform numeric conversions, with or without overflow detection, between
different sizes and between signed and unsigned integers.

• Special instructions treat an integer on the stack as though it were unsigned.

• Instructions that create pointers which are guaranteed not to point into the memory manager’s
heaps (e.g., ldloca, ldarga, and ldsflda) produce transient pointers (type *) that can be used
wherever a managed pointer (type &) or unmanaged pointer (type native unsigned int) is
expected.

• When a method is called, an unmanaged pointer (type native unsigned int or *) is permitted to
match a parameter that requires a managed pointer (type &). The reverse, however, is not
permitted since it would allow a managed pointer to be “lost” by the memory manager.

• A managed pointer (type &) can be explicitly converted to an unmanaged pointer (type native
unsigned int), although this is not verifiable and might produce a runtime exception.

12.3 .2.2 Local variables and arguments

Part of each method state is an array that holds local variables and an array that holds arguments. Like the
evaluation stack, each element of these arrays can hold any single data type or an instance of a value type. Both
arrays start at 0 (that is, the first argument or local variable is numbered 0). The address of a local variable can
be computed using the ldloca instruction, and the address of an argument using the ldarga instruction.

Associated with each method is metadata that specifies:

• whether the local variables and memory pool memory will be initialized when the method is
entered.

• the type of each argument and the length of the argument array (but see below for variable
argument lists).

• the type of each local variable and the length of the local variable array.

The CLI inserts padding as appropriate for the target architecture. That is, on some 64-bit architectures all local
variables can be 64-bit aligned, while on others they can be 8-, 16-, or 32-bit aligned. The CIL generator shall
make no assumptions about the offsets of local variables within the array. In fact, the CLI is free to reorder the
elements in the local variable array, and different JITters might choose to order them in different ways.

12.3 .2.3 Variable argument l ists

The CLI works in conjunction with the class library to implement methods that accept argument lists of
unknown length and type (“vararg methods”). Access to these arguments is through a type-safe iterator in the
library, called System.ArgIterator (see Partition IV).

The CIL includes one instruction provided specifically to support the argument iterator, arglist. This instruction
shall only be used within a method that is declared to take a variable number of arguments. It returns a value

78 Partition I

that is needed by the constructor for a System.ArgIterator object. Basically, the value created by arglist
provides access both to the address of the argument list that was passed to the method and a runtime data
structure that specifies the number and type of the arguments that were provided. This is sufficient for the class
library to implement the user visible iteration mechanism.

From the CLI point of view, vararg methods have an array of arguments like other methods. But only the initial
portion of the array has a fixed set of types and only these can be accessed directly using the ldarg, starg, and
ldarga instructions. The argument iterator allows access to both this initial segment and the remaining entries
in the array.

12.3 .2.4 Local memory pool

Part of each method state is a local memory pool. Memory can be explicitly allocated from the local memory
pool using the localloc instruction. All memory in the local memory pool is reclaimed on method exit, and that
is the only way local memory pool memory is reclaimed (there is no instruction provided to free local memory
that was allocated during this method invocation). The local memory pool is used to allocate objects whose
type or size is not known at compile time and which the programmer does not wish to allocate in the managed
heap.

Because the local memory pool cannot be shrunk during the lifetime of the method, a language implementation
cannot use the local memory pool for general-purpose memory allocation.

12.4 Control f low
The CIL instruction set provides a rich set of instructions to alter the normal flow of control from one CIL
instruction to the next.

• Conditional and Unconditional Branch instructions for use within a method, provided the
transfer doesn’t cross a protected region boundary (see §12.4.2).

• Method call instructions to compute new arguments, transfer them and control to a known or
computed destination method (see §12.4.1).

• Tail call prefix to indicate that a method should relinquish its stack frame before executing a
method call (see §12.4.1).

• Return from a method, returning a value if necessary.

• Method jump instructions to transfer the current method’s arguments to a known or computed
destination method (see §12.4.1).

• Exception-related instructions (see §12.4.2). These include instructions to initiate an exception,
transfer control out of a protected region, and end a filter, catch clause, or finally clause.

While the CLI supports control transfers within a method, there are several restrictions that shall be observed:

1. Control transfer is never permitted to enter a catch handler or finally clause (see §12.4.2) except
through the exception handling mechanism.

2. Control transfer out of a protected region is covered in §12.4.2.

3. The evaluation stack shall be empty after the return value is popped by a ret instruction.

4. Regardless of the control flow that allows execution to arrive there, each slot on the stack shall
have the same data type at any given point within the method body.

5. In order for the JIT compilers to efficiently track the data types stored on the stack, the stack shall
normally be empty at the instruction following an unconditional control transfer instruction (br,
br.s, ret, jmp, throw, endfilter, endfault, or endfinally). The stack shall be non-empty at such
an instruction only if at some earlier location within the method there has been a forward branch
to that instruction.

6. Control is not permitted to simply “fall through” the end of a method. All paths shall terminate
with one of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt).

 Partition I 79

12.4 .1 Method calls

Instructions emitted by the CIL code generator contain sufficient information for different implementations of
the CLI to use different native calling conventions. All method calls initialize the method state areas
(see §12.3.2) as follows:

1. The incoming arguments array is set by the caller to the desired values.

2. The local variables array always has null for object types and for fields within value types that
hold objects. In addition, if the localsinit flag is set in the method header, then the local
variables array is initialized to 0 for all integer types and to 0.0 for all floating-point types. Value
types are not initialized by the CLI, but verified code will supply a call to an initializer as part of
the method’s entry point code.

3. The evaluation stack is empty.

12.4 .1.1 Call s ite descriptors

Call sites specify additional information that enables an interpreter or JIT compiler to synthesize any native
calling convention. All CIL calling instructions (call, calli, and callvirt) include a description of the call site.
This description can take one of two forms. The simpler form, used with the calli instruction, is a “call site
description” (represented as a metadata token for a stand-alone call signature) that provides:

• The number of arguments being passed.

• The data type of each argument.

• The order in which they have been placed on the call stack.

• The native calling convention to be used

The more complicated form, used for the call and callvirt instructions, is a “method reference” (a metadata
methodref token) that augments the call site description with an identifier for the target of the call instruction.

12.4 .1.2 Call ing instruct ions

The CIL has three call instructions that are used to transfer argument values to a destination method. Under
normal circumstances, the called method will terminate and return control to the calling method.

• call is designed to be used when the destination address is fixed at the time the CIL is linked. In
this case, a method reference is placed directly in the instruction. This is comparable to a direct
call to a static function in C. It can be used to call static or instance methods or the (statically
known) base class method within an instance method body.

• calli is designed for use when the destination address is calculated at run time. A method pointer
is passed on the stack and the instruction contains only the call site description.

• callvirt, part of the CIL common type system instruction set, uses the class of an object (known
only at runtime) to determine the method to be called. The instruction includes a method
reference, but the particular method isn’t computed until the call actually occurs. This allows an
instance of a derived class to be supplied and the method appropriate for that derived class to be
invoked. The callvirt instruction is used both for instance methods and methods on interfaces.
For further details, see the CTS specification and the CIL instruction set specification.

In addition, each of these instructions can be immediately preceded by a tail. instruction prefix. This specifies
that the calling method terminates with this method call (and returns whatever value is returned by the called
method). The tail. prefix instructs the JIT compiler to discard the caller’s method state prior to making the
call (if the call is from untrusted code to trusted code the frame cannot be fully discarded for security reasons).
When the called method executes a ret instruction, control returns not to the calling method but rather to
wherever that method would itself have returned (typically, return to caller’s caller). Notice that the tail.
instruction shortens the lifetime of the caller’s frame so it is unsafe to pass managed pointers (type &) as
arguments.

Finally, there are two instructions that indicate an optimization of the tail. case:

80 Partition I

• jmp is followed by a methodref or methoddef token and indicates that the current method’s state
should be discarded, its arguments should be transferred intact to the destination method, and
control should be transferred to the destination. The signature of the calling method shall exactly
match the signature of the destination method.

12.4 .1.3 Computed dest inat ions

The destination of a method call can be either encoded directly in the CIL instruction stream (the call and jmp
instructions) or computed (the callvirt, and calli instructions). The destination address for a callvirt instruction
is automatically computed by the CLI based on the method token and the value of the first argument (the this
pointer). The method token shall refer to a virtual method on a class that is a direct ancestor of the class of the
first argument. The CLI computes the correct destination by locating the nearest ancestor of the first argument’s
class that supplies an implementation of the desired method.

[Note: The implementation can be assumed to be more efficient than the linear search implied here. end note]

For the calli instruction the CIL code is responsible for computing a destination address and pushing it on the
stack. This is typically done through the use of an ldftn or ldvirtfn instruction at some earlier time. The ldftn
instruction includes a metadata token in the CIL stream that specifies a method, and the instruction pushes the
address of that method. The ldvirtfn instruction takes a metadata token for a virtual method in the CIL stream
and an object on the stack. It performs the same computation described above for the callvirt instruction but
pushes the resulting destination on the stack rather than calling the method.

The calli instruction includes a call site description that includes information about the native calling
convention that should be used to invoke the method. Correct CIL code shall specify a calling convention in the
calli instruction that matches the calling convention for the method that is being called.

12.4 .1.4 Virtual cal l ing convention

The CIL provides a “virtual calling convention” that is converted by the JIT into a native calling convention.
The JIT determines the optimal native calling convention for the target architecture. This allows the native
calling convention to differ from machine to machine, including details of register usage, local variable homes,
copying conventions for large call-by-value objects (as well as deciding, based on the target machine, what is
considered “large”). This also allows the JIT to reorder the values placed on the CIL virtual stack to match the
location and order of arguments passed in the native calling convention.

The CLI uses a single uniform calling convention for all method calls. It is the responsibility of the JITters to
convert this into the appropriate native calling convention. The contents of the stack at the time of a call
instruction (call, calli, or callvirt any of which can be preceded by tail.) are as follows:

1. If the method being called is an instance method (class or interface) or a virtual method, the this
pointer is the first object on the stack at the time of the call instruction. For methods on objects
(including boxed value types), the this pointer is of type O (object reference). For methods on
value types, the this pointer is provided as a byref parameter; that is, the value is a pointer
(managed, &, or unmanaged, * or native int) to the instance.

2. The remaining arguments appear on the stack in left-to-right order (that is, the lexically leftmost
argument is the lowest on the stack, immediately following the this pointer, if any). §12.4.1.5
describes how each of the three parameter passing conventions (by-value, byref, and typed
reference) should be implemented.

12.4 .1.5 Parameter passing

The CLI supports three kinds of parameter passing, all indicated in metadata as part of the signature of the
method. Each parameter to a method has its own passing convention (e.g., the first parameter can be passed by-
value while all others are passed byref). Parameters shall be passed in one of the following ways (see detailed
descriptions below):

• By-value – where the value of an object is passed from the caller to the callee.

• By-ref – where the address of the data is passed from the caller to the callee, and the type of the
parameter is therefore a managed or unmanaged pointer.

 Partition I 81

• Typed reference – where a runtime representation of the data type is passed along with the
address of the data, and the type of the parameter is therefore one specially supplied for this
purpose.

It is the responsibility of the CIL generator to follow these conventions. Verification checks that the types of
parameters match the types of values passed, but is otherwise unaware of the details of the calling convention.

12.4 .1.5.1 By-value parameters
For built-in types (integers, floats, etc.) the caller copies the value onto the stack before the call. For objects the
object reference (type O) is pushed on the stack. For managed pointers (type &) or unmanaged pointers (type
native unsigned int), the address is passed from the caller to the callee. For value types, see the protocol
in §12.1.6.2.

12.4 .1.5.2 By-ref parameters
By-ref parameters are the equivalent of C++ reference parameters or PASCAL var parameters: instead of
passing as an argument the value of a variable, field, or array element, its address is passed instead; and any
assignment to the corresponding parameter actually modifies the corresponding caller’s variable, field, or array
element. Much of this work is done by the higher-level language, which hides from the user the need to
compute addresses to pass a value and the use of indirection to reference or update values.

Passing a value by reference requires that the value have a home (see §12.1.6.1) and it is the address of this
home that is passed. Constants, and intermediate values on the evaluation stack, cannot be passed as byref
parameters because they have no home.

The CLI provides instructions to support byref parameters:

• calculate addresses of home locations (see Table 8: Address and Type of Home Locations)

• load and store built-in data types through these address pointers (ldind.*, stind.*, ldfld, etc.)

• copy value types (ldobj and cpobj).

Some addresses (e.g., local variables and arguments) have lifetimes tied to that method invocation. These shall
not be referenced outside their lifetimes, and so they should not be stored in locations that last beyond their
lifetime. The CIL does not (and cannot) enforce this restriction, so the CIL generator shall enforce this
restriction or the resulting CIL will not work correctly. For code to be verifiable (see §8.8) byref parameters
shall only be passed to other methods or referenced via the appropriate stind or ldind instructions.

12.4 .1.5.3 Typed reference parameters
By-ref parameters and value types are sufficient to support statically typed languages (C++, Pascal, etc.). They
also support dynamically typed languages that pay a performance penalty to box value types before passing
them to polymorphic methods (Lisp, Scheme, Smalltalk, etc.). Unfortunately, they are not sufficient to support
languages like Visual Basic that require byref passing of unboxed data to methods that are not statically
restricted as to the type of data they accept. These languages require a way of passing both the address of the
home of the data and the static type of the home. This is exactly the information that would be provided if the
data were boxed, but without the heap allocation required of a box operation.

Typed reference parameters address this requirement. A typed reference parameter is very similar to a standard
byref parameter but the static data type is passed as well as the address of the data. Like byref parameters, the
argument corresponding to a typed reference parameter will have a home.

[Note: If it were not for the fact that verification and the memory manager need to be aware of the data type
and the corresponding address, a byref parameter could be implemented as a standard value type with two
fields: the address of the data and the type of the data. end note]

Like a regular byref parameter, a typed reference parameter can refer to a home that is on the stack, and that
home will have a lifetime limited by the call stack. Thus, the CIL generator shall apply appropriate checks on
the lifetime of byref parameters; and verification imposes the same restrictions on the use of typed reference
parameters as it does on byref parameters (see §12.4.1.5.2).

A typed reference is passed by either creating a new typed reference (using the mkrefany instruction) or by
copying an existing typed reference. Given a typed reference argument, the address to which it refers can be

82 Partition I

extracted using the refanyval instruction; the type to which it refers can be extracted using the refanytype
instruction.

12.4 .1.5.4 Parameter interact ions
A given parameter can be passed using any one of the parameter passing conventions: by-value, byref, or typed
reference. No combination of these is allowed for a single parameter, although a method can have different
parameters with different calling mechanisms.

A parameter that has been passed in as typed reference shall not be passed on as byref or by-value without a
runtime type check and (in the case of by-value) a copy.

A byref parameter can be passed on as a typed reference by attaching the static type.

Table 9: Parameter Passing Conventions illustrates the parameter passing convention used for each data type.

Table 9: Parameter Passing Conventions

Type of data Pass By How data is sent

Value Copied to called method, type statically known at both sides

Reference Address sent to called method, type statically known at both sides

Built-in value type
(int, float, etc.)

Typed
reference

Address sent along with type information to called method

Value Called method receives a copy; type statically known at both sides

Reference Address sent to called method, type statically known at both sides

User-defined value
type

Typed
reference

Address sent along with type information to called method

Value Reference to data sent to called method, type statically known and class
available from reference

Reference Address of reference sent to called method, type statically known and
class available from reference

Object

Typed
reference

Address of reference sent to called method along with static type
information, class (i.e., dynamic type) available from reference

12.4 .2 Exception handling

Exception handling is supported in the CLI through exception objects and protected blocks of code. When an
exception occurs, an object is created to represent the exception. All exception objects are instances of some
class (i.e., they can be boxed value types, but not pointers, unboxed value types, etc.). Users can create their
own exception classes, typically by deriving from System.Exception (see Partition IV).

There are four kinds of handlers for protected blocks. A single protected block shall have exactly one handler
associated with it:

• A finally handler that shall be executed whenever the block exits, regardless of whether that
occurs by normal control flow or by an unhandled exception.

• A fault handler that shall be executed if an exception occurs, but not on completion of normal
control flow.

• A catch handler that handles any exception of a specified class or any of its sub-classes.

• A filter handler that runs a user-specified set of CIL instructions to determine if the exception
should be handled by the associated handler, or passed on to the next protected block.

Protected regions, the type of the associated handler, and the location of the associated handler and (if needed)
user-supplied filter code are described through an Exception Handler Table associated with each method. The

 Partition I 83

exact format of the Exception Handler Table is specified in detail in Partition II. Details of the exception
handling mechanism are also specified in Partition II.

12.4 .2.1 Exceptions thrown by the CLI

CLI instructions can throw the following exceptions as part of executing individual instructions. The
documentation for each instruction lists all the exceptions the instruction can throw (except for the general
purpose System.ExecutionEngineException described below that can be generated by all instructions).

Base Instructions (see Partition III)

• System.ArithmeticException

• System.DivideByZeroException

• System.ExecutionEngineException

• System.InvalidAddressException

• System.OverflowException

• System.SecurityException

• System.StackOverflowException

Object Model Instructions (see Partition III)

• System.TypeLoadException

• System.IndexOutOfRangeException

• System.InvalidAddressException

• System.InvalidCastException

• System.MissingFieldException

• System.MissingMethodException

• System.NullReferenceException

• System.OutOfMemoryException

• System.SecurityException

• System.StackOverflowException

The System.ExecutionEngineException is special. It can be thrown by any instruction and indicates an
unexpected inconsistency in the CLI. Running exclusively verified code can never cause this exception to be
thrown by a conforming implementation of the CLI. However, unverified code (even though that code is
conforming CIL) can cause this exception to be thrown if it might corrupt memory. Any attempt to execute
non-conforming CIL or non-conforming file formats can result in unspecified behavior: a conforming
implementation of the CLI need not make any provision for these cases.

There are no exceptions for things like ‘MetaDataTokenNotFound.’ CIL verification (see Partition III) will
detect this inconsistency before the instruction is executed, leading to a verification violation. If the CIL is not
verified this type of inconsistency shall raise System.ExecutionEngineException.

Exceptions can also be thrown by the CLI, as well as by user code, using the throw instruction. The handling of
an exception is identical, regardless of the source.

12.4 .2.2 Deriving from exception classes

Certain types of exceptions thrown by the CLI can be derived from to provide more information to the user.
The specification of CIL instructions in Partition III describes what types of exceptions should be thrown by
the runtime environment when an abnormal situation occurs. Each of these descriptions allows a conforming
implementation to throw an object of the type described or an object of a derived class of that type.

84 Partition I

[Note: For instance, the specification of the ckfinite instruction requires that an exception of type
System.ArithmeticException or a derived class of ArithmeticException be thrown by the CLI. A
conforming implementation might simply throw an exception of type ArithmeticException, but it might also
choose to provide more information to the programmer by throwing an exception of type
NotFiniteNumberException with the offending number. end note]

12.4 .2.3 Resolution exceptions

CIL allows types to reference, among other things, interfaces, classes, methods, and fields. Resolution errors
occur when references are not found or are mismatched. Resolution exceptions can be generated by references
from CIL instructions, references to base classes, to implemented interfaces, and by references from signatures
of fields, methods and other class members.

To allow scalability with respect to optimization, detection of resolution exceptions is given latitude such that it
might occur as early as install time and as late as execution time.

The latest opportunity to check for resolution exceptions from all references except CIL instructions is as part
of initialization of the type that is doing the referencing (see Partition II). If such a resolution exception is
detected the static initializer for that type, if present, shall not be executed.

The latest opportunity to check for resolution exceptions in CIL instructions is as part of the first execution of
the associated CIL instruction. When an implementation chooses to perform resolution exception checking in
CIL instructions as late as possible, these exceptions, if they occur, shall be thrown prior to any other non-
resolution exception that the VES might throw for that CIL instruction. Once a CIL instruction has passed the
point of throwing resolution errors (it has completed without exception, or has completed by throwing a non-
resolution exception), subsequent executions of that instruction shall no longer throw resolution exceptions.

If an implementation chooses to detect some resolution errors, from any references, earlier than the latest
opportunity for that kind of reference, it is not required to detect all resolution exceptions early.

An implementation that detects resolution errors early is allowed to prevent a class from being installed, loaded
or initialized as a result of resolution exceptions detected in the class itself or in the transitive closure of types
from following references of any kind.

For example, each of the following represents a permitted scenario. An installation program can throw
resolution exceptions (thus failing the installation) as a result of checking CIL instructions for resolution errors
in the set of items being installed. An implementation is allowed to fail to load a class as a result of checking
CIL instructions in a referenced class for resolution errors. An implementation is permitted to load and
initialize a class that has resolution errors in its CIL instructions.

The following exceptions are among those considered resolution exceptions:

• BadImageFormatException
• EntryPointNotFoundException
• MissingFieldException
• MissingMemberException
• MissingMethodException
• NotSupportedException
• TypeLoadException
• TypeUnloadedException

For example, when a referenced class cannot be found, a TypeLoadException is thrown. When a referenced
method (whose class is found) cannot be found, a MissingMethodException is thrown. If a matching method
being used consistently is accessible, but violates declared security policy, a SecurityException is thrown.

12.4 .2.4 Timing and choice of exceptions

Certain types of exceptions thrown by CIL instructions might be detected before the instruction is executed. In
these cases, the specific time of the throw is not precisely defined, but the exception should be thrown no later
than the instruction is executed. Relaxation of the timing of exceptions is provided so that an implementation

 Partition I 85

can choose to detect and throw an exception before any code is run (e.g., at the time of CIL to native code
conversion).

There is a distinction between the time of detecting the error condition and throwing the associated exception.
An error condition can be detected early (e.g., at JIT time), but the condition can be signaled later (e.g., at the
execution time of the offending instruction) by throwing an exception.

The following exceptions are among those that can be thrown early by the runtime:

• MissingFieldException
• MissingMethodException
• SecurityException
• TypeLoadException

In addition, as to when class initialization (see Partition II) occurs is not fully specified. In particular, there is
no guarantee when System.TypeInitializationException might be thrown.

If more than one exception's conditions are met by a method invocation, as to which exception is thrown is
unspecified.

12.4 .2.5 Overview of exception handling

See the exception handling specification in Partition II for details.

Each method in an executable has associated with it a (possibly empty) array of exception handling
information. Each entry in the array describes a protected block, its filter, and its handler (which shall be a
catch handler, a filter handler, a finally handler, or a fault handler). When an exception occurs, the CLI
searches the array for the first protected block that

• Protects a region including the current instruction pointer and

• Is a catch handler block and

• Whose filter wishes to handle the exception

If a match is not found in the current method, the calling method is searched, and so on. If no match is found
the CLI will dump a stack trace and abort the program.

[Note: A debugger can intervene and treat this situation like a breakpoint, before performing any stack
unwinding, so that the stack is still available for inspection through the debugger. end note]

If a match is found, the CLI walks the stack back to the point just located, but this time calling the finally and
fault handlers. It then starts the corresponding exception handler. Stack frames are discarded either as this
second walk occurs or after the handler completes, depending on information in the exception handler array
entry associated with the handling block.

Some things to notice are:

• The ordering of the exception clauses in the Exception Handler Table is important. If handlers
are nested, the most deeply nested try blocks shall come before the try blocks that enclose them.

• Exception handlers can access the local variables and the local memory pool of the routine that
catches the exception, but any intermediate results on the evaluation stack at the time the
exception was thrown are lost.

• An exception object describing the exception is automatically created by the CLI and pushed onto
the evaluation stack as the first item upon entry of a filter or catch clause.

• Execution cannot be resumed at the location of the exception, except with a filter handler.

12.4 .2.6 CIL support for exceptions

The CIL has special instructions to:

• Throw and rethrow a user-defined exception.

86 Partition I

• Leave a protected block and execute the appropriate finally clauses within a method, without
throwing an exception. This is also used to exit a catch clause. Notice that leaving a protected
block does not cause the fault clauses to be called.

• End a user-supplied filter clause (endfilter) and return a value indicating whether to handle the
exception.

• End a finally clause (endfinally) and continue unwinding the stack.

12.4 .2.7 Lexical nest ing of protected blocks

A protected region (also called a try block) is described by an address and a length: the trystart is the address
of the first instruction to be protected, and the trylength is the length of the protected region. (The tryend, the
address immediately following the last instruction to be protected, can be trivially computed from these two).
 A handler region is described by an address and a length: the handlerstart is the address of the first
instruction of the handler and the handlerlength is the length of the handler region. (The handlerend, the
address immediately following the last instruction of the handler, can be trivially computed from these two.)

Every method can have associated with it a set of exception entries, called the exception set. Each exception
entry consists of

• Optional: a type token (the type of exception to be handled) or filterstart (the address of the first
instruction of the user-supplied filter code)

• Required: protected block

• Required: handler region. There are four kinds of handler regions: catch handlers, filtered
handlers, finally handlers, and fault handlers. (A filtered handler is the code that runs if the filter
evaluates to true.)

If an exception entry contains a filterstart, then filterstart strictly precedes handlerstart. The filter starts at
the instruction specified by filterstart and contains all instructions up to (but not including) that specified by
handlerstart. The lexically last instruction in the filter must be endfilter. If there is no filterstart then the filter
is empty (hence it does not overlap with any region).

No two regions (protected block, filter, handler region) of a single exception entry may overlap with one
another.

Each region must begin and end on an instruction boundary.

For every pair of exception entries in an exception set, one of the following must be true:

• They nest: all three regions of one entry shall be within a single region of the other entry, with
the further restriction that the enclosing region shall not be a filter. [Note: Functions called from
within a filter can contain exception handling. end note]

• They are disjoint: all six regions of the two entries are pairwise-disjoint (no addresses overlap).

• They mutually protect: the protected blocks are the same and the other regions are pairwise-
disjoint. In this case, all handlers shall be either catch handlers or filtered handlers. The
precedence of the handler regions is determined by their ordering in the Exception Handler Table
(Partition II).

The encoding of an exception entry in the file format (see Partition II) guarantees that only a filtered handler
(not a catch handler, fault handler or finally handler) can have a filter.

An exception-handling block is either a protected region, a filter, a catch handler, a filter handler, a fault
handler, or a finally handler.

12.4 .2.8 Control f low restrict ions on protected blocks

12.4 .2.8.1 Fall Through
An instruction I1 is capable of fall through if one of the following is true:

 Partition I 87

• I1 is not a control-flow instruction (i.e., the only way control flow could be altered by I1 would
be if it threw an exception).

• I1 is a switch or conditional branch. [Note: Fall through would be the not-taken case. end note]

• I1 is a method call instruction.

[Note: For the purposes of this section, the ability of an instruction to fall through can be determined purely by
the type of the instruction. end note]

[Note: Most instructions can allow control to fall through after their execution—only unconditional branches,
ret, jmp, leave(.s), endfinally, endfault, endfilter, throw, and rethrow do not. Call instructions do allow
control to fall through, since the next instruction to be executed in the current method is the one lexically
following the call instruction, which executes after the call returns. end note]

[Note: The determination of validity with respect to fall through can be done lexically; no control-flow or data-
flow analysis is required. end note]

Entry to filters or handlers can only be accomplished through the CLI exception system; that is, it is not valid
for control to fall through into such blocks. This means filters and handlers cannot appear at the beginning of a
method, or immediately following any instruction that can cause control flow to fall through.

[Note: Conditional branches can have multiple effects on control flow. Since one of the possible effects is to
allow control flow to fall through, a filter or handler cannot appear immediately following a conditional branch.
end note]

Entry to protected blocks can be accomplished by fall-through, at which time the evaluation stack shall be
empty.

Exit from protected blocks, filters, or handlers cannot be accomplished via fall through.

12.4 .2.8.2 Control-f low Instruct ions
Instructions that affect control flow have restrictions on how they are used in protected blocks, filters, and
handlers. The particular rules depend on the type of instruction. This subclause describes restrictions based on
the following:

• The source of the instruction; i.e., the address of the start of the instruction.

• The target(s) of the instruction; i.e., the address(es) of all instructions within the same method
that might be executed following it, excluding fall through (which has been addressed above). If
an instruction has a target rule, the exact definition of the target precedes that rule.

For the source and each target of an instruction, consider each protected block, filter, or handler that encloses
that address. If all rules are satisfied for all enclosing protected blocks, filters, or handlers, for the source of an
instruction and all targets, then the instruction is valid with respect to exception-handling. (Obviously, the
instruction shall still follow all other validity rules.) An instruction is considered to be within a block even if
the source of the instruction is at the very start of that block.

12.4.2.8.2.1 throw (and all CIL instructions not listed below)
source

1. There are no source restrictions.

target

1. There are no target restrictions.

12.4.2.8.2.2 rethrow:
source

1. Shall be enclosed in a catch handler

88 Partition I

[Note: The catch handler need not be the innermost enclosing exception-handling block. For example, the
rethrow may be within a finally that is within a catch. In such a case, the exception to be rethrown is the one
caught by the innermost enclosing catch handler. end note]

target

1. There are no target restrictions.

12.4.2.8.2.3 ret:
source

1. Shall not be enclosed in any protected block, filter, or handler.

[Note: To return from a protected block, filtered handler, or catch handler, a leave(.s) instruction is needed to
transfer control to an address outside all exception-handling blocks, then a ret instruction is needed at that
address. end note]

[Note: Since the tail. prefix on an instruction requires that that instruction be followed by ret, tail calls are not
allowed from within protected blocks, filters, or handlers. end note]

target

1. There are no target restrictions.

12.4.2.8.2.4 jmp:
source

1. Shall not be enclosed in any protected block, filter, or handler

target

1. There are no target restrictions.

12.4.2.8.2.5 endfilter:
source

1. Shall appear as the lexically last instruction in the filter.

[Note: The endfilter is required even if no control-flow path reaches it. This can happen if, for example, the
filter does a throw. end note]

[Note: The lexical nesting rules prohibit nesting other exception-handling entries inside a filter. Thus the
innermost exception-handling block enclosing an endfilter instruction shall be a filter. end note]

target

1. There are no target restrictions.

12.4.2.8.2.6 endfinally/endfault:
source

1. The innermost enclosing protected block, filter, or handler shall be a finally or fault handler

[Note: endfinally and endfault are aliases for the same CIL opcode. Conventionally, CIL assemblers require
that endfinally be used within a finally handler, and endfault be used within a fault handler, but the instruction
emitted is exactly the same by either name. end note]

[Note: A finally or fault handler can contain more than one endfinally/endfault. The lexically last instruction
in the finally or fault handler need not be endfinally/endfault. In fact, a finally or fault handler might not
require an endfinally/endfault at all if all control-flow paths terminate through other means. This can happen
if, for example, the finally or fault handler throws. end note]

 Partition I 89

target

1. There are no target restrictions.

12.4.2.8.2.7 Branches (br, br.s, conditional branches, switch):
source

1. If the source of the branch is within a protected block, filter, or handler, the target(s) shall be
within the same protected block, filter, or handler

target

The target of br, br.s, and the conditional branches, is the address specified. The targets of switch are all of the
addresses specified in the jump table.

1. If any target of the branch is within a protected block, except the first instruction of that protected
block, the source shall be within the same protected block.

2. If any target of the branch is within a filter or handler, the source shall be within the same filter or
handler.

[Note: Code can branch to the first instruction of a protected block, but not into the middle of one. end note]

[Note: Since the conditional branches and switch have a fall-through case, they shall also obey the rules for fall
through. end note]

12.4.2.8.2.8 leave and leave.s:
source

1. If the source is within a filter, fault handler, or finally handler, the target shall be within the same
filter, fault handler, or finally handler.

[Note: This means control cannot be transferred out of a filter, fault handler, or finally handler via
the leave(.s) instruction. end note]

2. If the source is within a protected block, the target shall be within the same protected block,
within an enclosing protected block, the first instruction of a disjoint protected block, or not
within any protected block.

3. If the source is within a catch handler or filtered handler, the target shall be within the same catch
handler or filtered handler, within the associated protected block, within a protected block that
encloses the catch handler or filtered handler, the first instruction of a disjoint protected block, or
not within any protected block.

[Note: If the source is outside any exception-handling block, that fact implies no additional restrictions on the
target. In effect, a leave from outside of exception handling acts like a branch, with the side-effect of emptying
the evaluation stack. end note]

target

The target of leave(.s) is the address specified by leave(.s).

1. If the target is within a filter or handler, the source shall be within the same filter or handler.

2. If the target is within a protected block, except the first instruction of that protected block, the
source shall be within the same protected block, or within the associated catch handler or filtered
handler.

[Note: To be clear, if the target is the first instruction of a protected block, the source can be outside of the
protected block. end note]

[Note: This means that it is possible to transfer control from a catch handler or a filtered handler to the
associated protected block. end note]

90 Partition I

12.4.2.8.2.9 Examples
 [Example: Example 1

{
EX1:
 br TryStart2
 .try
 {
TryStart1:
 .try
 {
TryStart2:
 leave End
 }

 finally
 {
 endfinally
 }
 }

 finally
 {
 endfinally
 }
End:
 ret
}

Consider the br TryStart2 instruction at EX1. It is not contained within any exception-handling block, so the
source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the
target rules are applied once for each region.

Considering the outermost protected region, branch target rule 1 is satisfied since the target is the first
instruction of the outermost protected region. Branch target rule 2 does not apply to protected regions and is
thus satisfied.

Considering the innermost protected region, branch target rule 1 is satisfied since the target is the first
instruction of the innermost protected region. Branch target rule 2 does not apply to protected regions and is
thus satisfied.

Thus, the branch instruction at EX1 is valid from the exception-handling perspective. end example]

[Example: Example 2
{
 ldc.i4.0
EX2:
 brtrue TryStart2
 .try
 {

TryStart1:
EX3:
 br TryStart2
 .try
 {
TryStart2:
 leave End
 }

 finally
 {
 endfinally
 }
 }

 finally
 {
 endfinally
 }
End:

 Partition I 91

 ret
}

Consider the brtrue TryStart2 instruction at EX2. It is not contained within any exception-handling block, so
the source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the
target rules are applied once for each region.

Branch target rule 1 is satisfied for the inner protected block since the target is the first instruction of the block.
However, branch target rule 1 is not satisfied for the outer protected block since the source is not within the
outer protected block and the target is not the first instruction of that block.

Thus the conditional branch instruction at EX2 is invalid from an exception-handling perspective.

Now consider the br TryStart2 instruction at EX3. It is within one protected block, so the source rules are
applied considering that protected block. Branch source rule 1 is satisfied since the target is within that
protected block. The target is contained within two protected regions, so the target rules are applied once for
each region.

Considering the outer protected block, branch target rule 1 is satisfied since the source is also within the outer
protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied.

Considering the inner protected block, branch target rule 1 is satisfied since the target is the first instruction of
the inner protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied.

Thus, the branch instruction at EX3 is valid from an exception-handling perspective. end example]

[Example: Example 3
 {
 .try
 {
 newobj instance void [mscorlib]System.Exception::.ctor()
 throw
AfterThrow:
 leave End
 }

 catch [mscorlib]System.Exception
 {
 .try
 {
 newobj instance void [mscorlib]System.Exception::.ctor()
 throw
 }

 catch [mscorlib]System.Exception
 {
EX4:
 leave AfterThrow
 }
 leave End
 }
End:
 ret
 }

Consider the leave instruction at EX4. It is contained within two catch handlers, so the source rules are applied
once for each region.

Considering the outer catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus
satisfied. Leave source rule #3 is satisfied since the target is within the associated protected region.

Considering the inner catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus
satisfied. Leave source rule 3 is not satisfied since the target is in the middle of a disjoint protected region.

Thus, the leave instruction at EX4 is invalid from an exception-handling perspective. However, for illustration
purposes, consider the target rules as well.

92 Partition I

The target is within one protected region, so the target rules are applied considering that protected region.
Leave target rule 1 does not apply to protected regions, and is thus satisfied. Leave target rule 2 is satisfied
because the source is within a catch block associated with the protected region. end example]

[Example: Example 4
{

 .try
 {
 .try
 {
 newobj instance void [mscorlib]System.Exception::.ctor()
 throw
 }

 catch [mscorlib] System.Exception
 {
EX5:
 leave EndOfOuterTry
 }
EndOfOuterTry:
 // …
 leave End
 }

 catch [mscorlib]System.Exception
 {
 leave End
 }
End:
 ret
}

Consider the leave instruction at EX5. It is contained within a protected region and within a catch handler, so
the source rules are applied once for each.

Considering the protected region, leave source rules 1 and 3 do not apply to protected regions and are thus
satisfied. Leave source rule 2 is satisfied because the target is within the same protected region.

Considering the catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus satisfied.
Leave source rule 3 is satisfied because the target is within a protected block that encloses the catch handler.

The target is within one protected region, so the target rules are applied considering that protected region.
Target rule 1 does not apply to protected regions and is thus satisfied. Target rule 2 is satisfied because the
source is within the same protected block.

Thus the leave instruction at EX5 is valid from an exception-handling perspective. end example]

12.5 Proxies and remoting
A remoting boundary exists if it is not possible to share the identity of an object directly across the boundary.
For example, if two objects exist on physically separate machines that do not share a common address space,
then a remoting boundary will exist between them. There are other administrative mechanisms for creating
remoting boundaries.

The VES provides a mechanism, called the application domain, to isolate applications running in the same
operating system process from one another. Types loaded into one application domain are distinct from the
same type loaded into another application domain, and instances of objects shall not be directly shared from
one application domain to another. Hence, the application domain itself forms a remoting boundary.

The VES implements remoting boundaries based on the concept of a proxy. A proxy is an object that exists on
one side of the boundary and represents an object on the other side. The proxy forwards references to instance
fields and methods to the actual object for interpretation. Proxies do not forward references to static fields or
calls to static methods.

The implementation of proxies is provided automatically for instances of types that derive from
System.MarshalByRefObject (see Partition IV).

 Partition I 93

12.6 Memory model and optimizations

12.6 .1 The memory store

By “memory store” we mean the regular process memory that the CLI operates within. Conceptually, this store
is simply an array of bytes. The index into this array is the address of a data object. The CLI accesses data
objects in the memory store via the ldind.* and stind.* instructions.

12.6 .2 Alignment

Built-in data types shall be properly aligned, which is defined as follows:

• 1-byte, 2-byte, and 4-byte data is properly aligned when it is stored at a 1-byte, 2-byte, or 4-byte
boundary, respectively.

• 8-byte data is properly aligned when it is stored on the same boundary required by the underlying
hardware for atomic access to a native int.

Thus, int16 and unsigned int16 start on even address; int32, unsigned int32, and float32 start on an
address divisible by 4; and int64, unsigned int64, and float64 start on an address divisible by 4 or 8,
depending upon the target architecture. The native size types (native int, native unsigned int, and &) are
always naturally aligned (4 bytes or 8 bytes, depending on the architecture). When generated externally, these
should also be aligned to their natural size, although portable code can use 8-byte alignment to guarantee
architecture independence. It is strongly recommended that float64 be aligned on an 8-byte boundary, even
when the size of native int is 32 bits.

There is a special prefix instruction, unaligned., that can immediately precede an ldind, stind, initblk, or cpblk
instruction. This prefix indicates that the data can have arbitrary alignment; the JIT is required to generate code
that correctly performs the effect of the instructions regardless of the actual alignment. Otherwise, if the data is
not properly aligned, and no unaligned. prefix has been specified, executing the instruction can generate
unaligned memory faults or incorrect data.

12.6 .3 Byte ordering

For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that depends on byte
ordering might not run on all platforms. The PE file format (see §12.2) allows the file to be marked to indicate
that it depends on a particular type ordering.

12.6 .4 Optimizat ion

Conforming implementations of the CLI are free to execute programs using any technology that guarantees,
within a single thread of execution, that side-effects and exceptions generated by a thread are visible in the
order specified by the CIL. For this purpose only volatile operations (including volatile reads) constitute
visible side-effects. (Note that while only volatile operations constitute visible side-effects, volatile operations
also affect the visibility of non-volatile references.) Volatile operations are specified in §12.6.7. There are no
ordering guarantees relative to exceptions injected into a thread by another thread (such exceptions are
sometimes called “asynchronous exceptions” (e.g., System.Threading.ThreadAbortException).

[Rationale: An optimizing compiler is free to reorder side-effects and synchronous exceptions to the extent that
this reordering does not change any observable program behavior. end rationale]

[Note: An implementation of the CLI is permitted to use an optimizing compiler, for example, to convert CIL
to native machine code provided the compiler maintains (within each single thread of execution) the same order
of side-effects and synchronous exceptions.

This is a stronger condition than ISO C++ (which permits reordering between a pair of sequence points) or ISO
Scheme (which permits reordering of arguments to functions). end note]

Optimizers are granted additional latitude for relaxed exceptions in methods. A method is E-relaxed for a kind
of exception if the innermost custom attribute System.Runtime.CompilerServices.
CompilationRelaxationsAttribute pertaining to exceptions of kind E is present and specifies to relax

94 Partition I

exceptions of kind E. (Here, “innermost” means inspecting the method, its class, and its assembly, in that
order.)

A E-relaxed sequence is a sequence of instructions executed by a thread, where

• Each instruction causing visible side effects or exceptions is in an E-relaxed method.

• The sequence does not cross the boundary of a non-trivial protected or handler region. A region
is trivial if it can be optimized away under the rules for non-relaxed methods.

Below, an E-check is defined as a test performed by a CIL instruction that upon failure causes an exception of
kind E to be thrown. Furthermore, the type and range tests performed by the methods that set or get an array
element’s value, or that get an array element’s address are considered checks here.

A conforming implementation of the CLI is free to change the timing of relaxed E-checks in an E-relaxed
sequence, with respect to other checks and instructions as long as the observable behavior of the program is
changed only in the case that a relaxed E-check fails. If an E-check fails in an E-relaxed sequence:

• The rest of the associated instruction must be suppressed, in order to preserve verifiability. If the
instruction was expected to push a value on the VES stack, no subsequent instruction that uses
that value should visibly execute.

• It is unspecified whether or not any or all of the side effects in the E-relaxed sequence are made
visible by the VES.

• The check’s exception is thrown some time in the sequence, unless the sequence throws another
exception. When multiple relaxed checks fail, it is unspecified as to which exception is thrown
by the VES.

[Note: Relaxed checks preserve verifiability, but not necessarily security. Because a relaxed check’s exception
might be deferred and subsequent code allowed to execute, programmers should never rely on implicit checks
to preserve security, but instead use explicit checks and throws when security is an issue. end note]

[Rationale: Different programmers have different goals. For some, trading away precise exception behavior is
unacceptable. For others, optimization is more important. The programmer must specify their preference.
Different kinds of exceptions may be relaxed or not relaxed separately because different programmers have
different notions of which kinds of exceptions must be timed precisely. end rationale]

[Note: For background and implementation information for relaxed exception handling , plus examples, see
Annex F of Partition VI. end note]

12.6 .5 Locks and threads

The logical abstraction of a thread of control is captured by an instance of the System.Threading.Thread
object in the class library. Classes beginning with the prefix “System.Threading” (see Partition IV) provide
much of the user visible support for this abstraction.

To create consistency across threads of execution, the CLI provides the following mechanisms:

1. Synchronized methods. A lock that is visible across threads controls entry to the body of a
synchronized method. For instance and virtual methods the lock is associated with the this pointer.
For static methods the lock is associated with the type to which the method belongs. The lock is
taken by the logical thread (see System.Threading.Thread in Partition IV) and can be entered any
number of times by the same thread; entry by other threads is prohibited while the first thread is
still holding the lock. The CLI shall release the lock when control exits (by any means) the method
invocation that first acquired the lock.

2. Explicit locks and monitors. These are provided in the class library, see
System.Threading.Monitor. Many of the methods in the System.Threading.Monitor class accept
an Object as argument, allowing direct access to the same lock that is used by synchronized
methods. While the CLI is responsible for ensuring correct protocol when this lock is only used by
synchronized methods, the user must accept this responsibility when using explicit monitors on
these same objects.

 Partition I 95

3. Volatile reads and writes. The CIL includes a prefix, volatile., that specifies that the
subsequent operation is to be performed with the cross-thread visibility constraints described
in §12.6.7. In addition, the class library provides methods to perform explicit volatile reads
(System.Thread.VolatileRead) and writes (System.Thread.VolatileWrite), as well as barrier
synchronization (System.Thread.MemoryBarrier).

4. Built-in atomic reads and writes. All reads and writes of certain properly aligned data types are
guaranteed to occur atomically. See §12.6.6.

5. Explicit atomic operations. The class library provides a variety of atomic operations in the
System.Threading.Interlocked class. These operations (e.g., Increment, Decrement, Exchange,
and CompareExchange) perform implicit acquire/release operations.

Acquiring a lock (System.Threading.Monitor.Enter or entering a synchronized method) shall implicitly
perform a volatile read operation, and releasing a lock (System.Threading.Monitor.Exit or leaving a
synchronized method) shall implicitly perform a volatile write operation. See §12.6.7.

12.6 .6 Atomic reads and writes

A conforming CLI shall guarantee that read and write access to properly aligned memory locations no larger
than the native word size (the size of type native int) is atomic (see §12.6.2) when all the write accesses to a
location are the same size. Atomic writes shall alter no bits other than those written. Unless explicit layout
control (see Partition II (Controlling Instance Layout)) is used to alter the default behavior, data elements no
larger than the natural word size (the size of a native int) shall be properly aligned. Object references shall
be treated as though they are stored in the native word size.

[Note: There is no guarantee about atomic update (read-modify-write) of memory, except for methods provided
for that purpose as part of the class library (see Partition IV). An atomic write of a “small data item” (an item
no larger than the native word size) is required to do an atomic read/modify/write on hardware that does not
support direct writes to small data items. end note]

[Note: There is no guaranteed atomic access to 8-byte data when the size of a native int is 32 bits even
though some implementations might perform atomic operations when the data is aligned on an 8-byte
boundary. end note]

12.6 .7 Volat i le reads and writes

The volatile. prefix on certain instructions shall guarantee cross-thread memory ordering rules. They do not
provide atomicity, other than that guaranteed by the specification of §12.6.6.

A volatile read has “acquire semantics” meaning that the read is guaranteed to occur prior to any references to
memory that occur after the read instruction in the CIL instruction sequence. A volatile write has “release
semantics” meaning that the write is guaranteed to happen after any memory references prior to the write
instruction in the CIL instruction sequence.

A conforming implementation of the CLI shall guarantee this semantics of volatile operations. This ensures
that all threads will observe volatile writes performed by any other thread in the order they were performed. But
a conforming implementation is not required to provide a single total ordering of volatile writes as seen from
all threads of execution.

An optimizing compiler that converts CIL to native code shall not remove any volatile operation, nor shall it
coalesce multiple volatile operations into a single operation.

[Rationale: One traditional use of volatile operations is to model hardware registers that are visible through
direct memory access. In these cases, removing or coalescing the operations might change the behavior of the
program. end rationale]

[Note: An optimizing compiler from CIL to native code is permitted to reorder code, provided that it guarantees
both the single-thread semantics described in §12.6 and the cross-thread semantics of volatile operations. end
note]

96 Partition I

12.6 .8 Other memory model issues

All memory allocated for static variables (other than those assigned RVAs within a PE file, see Partition II) and
objects shall be zeroed before they are made visible to any user code.

A conforming implementation of the CLI shall ensure that, even in a multi-threaded environment and without
proper user synchronization, objects are allocated in a manner that prevents unauthorized memory access and
prevents invalid operations from occurring. In particular, on multiprocessor memory systems where explicit
synchronization is required to ensure that all relevant data structures are visible (for example, vtable pointers)
the Execution Engine shall be responsible for either enforcing this synchronization automatically or for
converting errors due to lack of synchronization into non-fatal, non-corrupting, user-visible exceptions.

It is explicitly not a requirement that a conforming implementation of the CLI guarantee that all state updates
performed within a constructor be uniformly visible before the constructor completes. CIL generators can
ensure this requirement themselves by inserting appropriate calls to the memory barrier or volatile write
instructions.

 Partition I 97

13 Index
& 65

accessibility ..26

assembly ...27

compiler-controlled ..27

family..27

family-and-assembly ..27

family-or-assembly...27

private ...27

public ..27

alignment ..93

application ..50

application domain ...50, 92

ArgIterator ..77

argument array..76

ArithmeticException...83

array..23, 34

jagged ...34

storage layout..34

zero-dimensional ..35

Array...34

array element ..23

assembly ...6, 25, 47, 49

assembly dependency ...49

assignment compatibility22, 25, 29, 32

atomicity ...95

attribute...6, 56

Attribute..56

AttributeUsageAttribute50, 57

BadImageFormatException84

behavior ..18

implementation-specific ...6

undefined ..6

unspecified..6

bool...19

Boolean...19, 50

boxing...6, 20, 73

byref..67

Byte ..19, 50

byte ordering...93

cast..22

explicit ..55

implicit..55

narrowing..55

widening ...55

char ...19

Char ..19, 50

character

ANSI...6

combining ...52

CIL..6, 10, 65

class contract ..28

class definition..28, 37

class layout ...48

autolayout ...49

explicitlayout ..49

layoutsequential ..49

class, abstract ..18

CLI..6, 9

CLS...6, 9, 12

CLS compliance ...14

identifying...14

rules for...15

CLS consumer ..13

CLS extender ..13

CLS framework ..12

CLSCompliantAttribute..15

code

managed..7, 10

unmanaged..8

coercion ..22

COFF moduleSee PE module

Common Intermediate Language.....................See CIL

98 Partition I

Common Language Infrastructure................... See CLI

Common Language Specification See CLS

Common Type System................................... See CTS

CompilationRelaxationsAttribute............................. 93

component.. 47

self-describing .. 47

component metadata...47

conformance...2

constraint..29

byref ... 31

location................................. See location constraint

init-only.. 30

literal .. 30

vararg .. See vararg

volatile.. 30

constructor..39

consumer ..12

contract... 16, 28, 48

class.. See class contract

event .. See event contract

interface..................................See interface contract

method......................................See method contract

property See property contract

contravariance .. 16

conversion

explicit.. 22

implicit ... 22

covariance .. 16

CTS .. 6, 9

data

aggregate .. 71

managed ... 7, 10, 11

unmanaged ...8

delegate .. 6, 35

Delegate ... 35, 46

DivideByZeroException .. 83

Double.. 19, 50

Equals... 21

EntryPointNotFoundException 84

enum...25

Enum .. 20, 25

equality... 21

evaluation stack..76

event ... 6, 39

naming pattern for ..56

event contract ...29

event definition...29, 46

examples... 5

exception .. 56

relaxed..93

timing of...84

Exception ... 56, 82

exception handling ... 82

execution engine...6

execution model ... 10

ExecutionEngineException 83

exposure

member...27

nested type..27

type...26

extender..12

extensions... 2

F 65

field .. 6, 22, 39

instance... 23

serializable ... 45

static ... 23, 45

field definition.. 45

finalizer .. 40

FlagsAttribute... 25

float32 ..19, 65

float64 .. 19, 65

framework .. 9, 12

garbage collection .. 6, 11

GC.. 40

ReRegisterForFinalize.. 40

 Partition I 99

SuppressFinalize...40

generic argument ..6

generic parameter ...6

generics...7

global static...51

handle

methodInfo ...76

return state ..76

handler

catch..82

fault...82

filter ..82

finally..82

handler region...86

hiding..42, 43, 44, 45

by name ..43

by name and signature ..43

home ...71

identical ..21

identifier ...52

case folding of ..52

case-insensitive...52

case-sensitive ..52

identity..21

casting and ..22

coercion and..22

indexed property See property, indexed

IndexOutOfRangeException.....................................83

infinity ..68

inheritance ..28, 41

instance...18

instruction pointer...75

int

native ..19, 65

native unsigned ...19, 65

int16..19, 65

unsigned..19, 65

Int16..19, 50

int32..19, 65

unsigned..19, 65

Int32..19, 50

int64..19, 65

unsigned..19, 65

Int64..19, 50

int8..19, 65

unsigned..19, 65

interface contract ..28

interface definition..28, 36

Intermediate LanguageSee CIL

IntPtr ...19

InvalidAddressException..83

InvalidCastException..83

JIT...66

kind...24

layout ..43

library ...7

literal...25

local signature...31

local variable array ...76

localsinit flag ..72, 74, 76, 79

location ...22

location signature..30

lock ...94

manifest ..7, 49

MarshalByRefObject ..92

marshalling ...48

member ...7, 22, 38

member signatures..48

message...18

metadata..7, 9, 47

component See component metadata

metadata extensibility ...50

metadata token..47

method ..7, 19, 23, 39

abstract..44

add ..46

100 Partition I

final .. 23, 42, 44

generic..7

getter... 45

instance...23

non-generic...7

remove.. 46

setter ... 45

static ... 23, 44

virtual ... 23, 44

method contract..29

method definition ... 29, 31, 44

method signature ..31

method state ...75

MissingFieldException 83, 84, 85

MissingMemberException 84

MissingMethodException 83, 84, 85

modifier

optional... 51

required .. 51

module.. 7, 9

Monitor... 94

name... 24

overloading of ..52

qualified ... 25

scope of .. See scope

special... 53

uniqueness of.. 24

NaN.. 68

narrowing ... 22, 55

notes ... 5

NotFiniteNumberException 84

NotSupportedException ... 84

null ...23

NullReferenceException .. 83

O 65

object.. 7, 16, 19, 20

Object ... 20, 41

Equals... 21

MemberwiseClone ... 40

ReferenceEquals... 21

OOP......................See Programming, Object-Oriented

op_Addition ... 54

op_AdditionAssignment... 55

op_AddressOf .. 54

op_Assign... 54

op_BitwiseAnd... 54

op_BitwiseAndAssignment...................................... 55

op_BitwiseOr ... 54

op_BitwiseOrAssignment .. 55

op_Comma ... 55

op_Decrement .. 54, 58, 59

op_Division.. 54

op_DivisionAssignment ... 55

op_Equality .. 54

op_ExclusiveOr.. 54

op_ExclusiveOrAssignment..................................... 55

op_Explicit ... 52, 55

op_False ... 54

op_GreaterThan.. 54

op_GreaterThanOrEqual .. 55

op_Implicit ... 52, 55

op_Increment ... 54, 58, 59

op_Inequality ... 54

op_LeftShift ... 54

op_LeftShiftAssignment .. 55

op_LessThan .. 54

op_LessThanOrEqual... 55

op_LogicalAnd... 54

op_LogicalNot.. 54, 58, 59

op_LogicalOr ... 54

op_MemberSelection ... 55

op_Modulus ... 54

op_ModulusAssignment... 55

op_MultiplicationAssignment 55

op_Multiply.. 54

op_OnesComplement ... 54

 Partition I 101

op_PointerDereference ...54

op_PointerToMemberSelection................................55

op_RightShift ...54

op_RightShiftAssignment ..55

op_SignedRightShift ..54

op_Subtraction..54

op_SubtractionAssignment.......................................55

op_True ..54

op_UnaryNegation..54, 58, 59

op_UnaryPlus ...54, 58, 59

op_UnsignedRightShift ..54

op_UnsignedRightShiftAssignment55

operator

addition ..See op_Addition

address-ofSee op_AddressOf

assignment, compound, addition See
op_AdditionAssignment

assignment, compound, bitwise AND See
op_BitwiseAndAssignment

assignment, compound, bitwise OR See
op_BitwiseOrAssignment

assignment, compound, division......................... See
op_DivisionAssignment

assignment, compound, exclusive OR................ See
op_ExclusiveOrAssignment

assignment, compound, left-shift........................ See
op_LeftShiftAssignment

assignment, compound, multiplication See
op_MultiplicationAssignment

assignment, compound, remainder See
op_ModulusAssignment

assignment, compound, right-shift...................... See
op_RightShiftAssignment

assignment, compound, right-shift, unsigned See
op_UnsignedRightShiftAssignment

assignment, compound, subtraction.................... See
op_SubtractionAssignment

assignment, simple............................ See op_Assign

bitwise AND............................. See op_BitwiseAnd

bitwise OR...................................See op_BitwiseOr

comma ...See op_Comma

conversion, explicit..........................See op_Explicit

conversion, implicitSee op_Implicit

decrementSee op_Decrement

division .. See op_Division

equality ...See op_Equality

exclusive OR See op_ExclusiveOr

false ...See op_False

greater-than.............................. See op_GreaterThan

greater-than-or-equal ..See op_GreaterThanOrEqual

incrementSee op_Increment

inequality See op_Inequality

left-shift ...See op_LeftShift

less-than..See op_LessThan

less-than-or-equal See op_LessThanOrEqual

logical AND.............................. See op_LogicalAnd

logical NOTSee op_LogicalNot

logical OR....................................See op_LogicalOr

member selection.............See op_MemberSelection

multiplication................................. See op_Multiply

negationSee op_UnaryNegation

ones-complement............ See op_OnesComplement

pointer dereference See op_PointerDereference

pointer-to-member, compound,See
op_PointerToMemberSelection

remainderSee op_Modulus

right-shiftSee op_RightShift

right-shift, signed..............See op_SignedRightShift

right-shift, unsigned..... See op_UnsignedRightShift

subtractionSee op_Subtraction

true..See op_True

unary plus See op_UnaryPlus

operator overloading...53

optimization..10, 93

OutOfMemoryException ..83

OverflowException...83

overriding ...23, 43

parameter passing ...80

parameter signature...31

102 Partition I

PE module .. 47

pointer

function .. 35

managed ... 31

pool

local memory...76

prefix

constrained. .. 20

tail. ... 78, 79

unaligned.. 93

volatile.. 30, 95

profile ... 7

programming

functional ... 16

object-oriented.. 16

procedural... 16

typeless... 18

property .. 7, 39

indexed ... 56

naming pattern for ..56

property contract ..29

property definition.. 29, 45

protected region..86

proxy .. 92

publicly accessible parts... 14

rank ..34

reference... 50

referenced entity... 26

referent ... 26

Relative Virtual Address See RVA

remoting boundary ... 92

representation ... 18

rounding mode ... 68

Runtime.CompilerServices 38

RVA ... 48

SByte.. 19

scope .. 24, 38

assembly... 25

member... 25

sealed.. 42

security ... 28

Security .. 28

security demand

inheritance.. 28

reference... 28

security descriptor ..76

SecurityException .. 83, 85

serialization .. 45

signature ... 7, 28, 29

local.. See local signature

location.................................. See location signature

method.................................... See method signature

parameter............................ See parameter signature

type.. See type signature

Single ... 19, 50

Equals... 21

slot

expect existing.. 43

new... 43

SpecialName .. 45, 46

StackOverflowException ... 83

string ..19

ANSI ..6

String.. 19, 50

System.ArgIteratorSee ArgIterator

System.Array.. See Array

System.Attribute...................................... See Attribute

System.AttributeUsageAttribute See
AttributeUsageAttribute

System.Boolean.. See Boolean

System.Byte ...See Byte

System.Char ... See Boolean

System.CLSCompliantAttribute See
CLSCompliantAttribute

System.Delegate...................................... See Delegate

System.Double ...See Double

 Partition I 103

System.Enum..41, See Enum

System.ExceptionSee Exception

System.FlagsAttribute See FlagsAttribute

System.GC..See GC

System.Int16..See Int16

System.Int32..See Int32

System.Int64..See Int64

System.IntPtr ..See IntPtr

System.MarshalByRefObject See
MarshalByRefObject

System.Object... See Object

System.SByte... See SByte

System.Security ..See Security

System.Single ..See Single

System.String... See String

System.ThreadingSee Threading

System.Type ..See Type

System.TypedReferenceSee TypedReference

System.TypeInitializationException....................... See
TypeInitializationException

System.UInt16 ..See UInt16

System.UInt32 ..See UInt32

System.UInt64 ..See UInt64

System.UIntPtr .. See UIntPtr

System.ValueType............................... See ValueType

this ..23, 44

thread ..94

Thread...94

ThreadAbortException ...93

try block....................................... See protected region

type ...18

& See &

abstract..37, 38

array...See array

boxed ..20

built-in ..19

class ..28, 37

compound ...23

concrete...38

enclosing...26, 28

enumeration .. See enum

exact..18, 23

exact array ..34

explicit ..33

F See F

float32...See float32

float64...See float64

generic ..7

implicit..33

int, native ... See int, native

int, native unsigned.............See int, native unsigned

int16...See int16

int16, unsigned...........................See int16, unsigned

int32...See int32

int32, unsigned...........................See int32, unsigned

int64...See int64

int64, unsigned...........................See int64, unsigned

int8...See int8

int8, unsigned...............................See int8, unsigned

interface ..18, 19, 28

nested..26, 28

O See O

object ..18, 20, 38

pointer...18, 35

reference ...7, 18

sealed ..41

value ...7, 18

Type..50

type definer...33

type definition...25

type member ... See member

type name..25

exportable ...26

nested..26

non-exportable ..26

type safety...9, 33

104 Partition I

type signature ...30

typed reference ... 31

typedref19, See typed reference

TypedReference ... 19, 31

TypeInitializationException 85

TypeLoadException 83, 84, 85

TypeUnloadedException.. 84

UInt16 .. 19

UInt32 .. 19

UInt64 .. 19

UIntPtr.. 19

unboxing... 7, 20, 73

validation

metadata ... 47

value... 8, 16, 18

boxed.. 20

coersion of a ...See coersion

null .. See null

partial description... 18

ValueType.. 20, 41

vararg ... 31

vector.. 35

verification ... 8, 10, 33

versioning... 10

VES .. 8, 9, 65

virtual call .. 23

Virtual Execution System...............................See VES

visibility ... 26, 38

assembly... 38

public.. 38

widening...22, 55

 Partition II 1

Common Language Infrastructure (CLI)
Partition II:
Metadata Definition and Semantics

 Partition II i

Table of contents

1 Introduction 1

2 Overview 2

3 Validat ion and verif icat ion 3

4 Introductory examples 4
4 .1 “Hel lo world!” 4
4.2 Other examples 4

5 General syntax 5
5 .1 General syntax notat ion 5
5.2 Basic syntax categor ies 5
5.3 Identif iers 6
5.4 Labels and l is ts of labels 7
5.5 Lis ts of hex bytes 7
5.6 Float ing-point numbers 7
5.7 Source l ine information 8
5.8 Fi le names 8
5.9 Attr ibutes and metadata 8
5.10 i lasm source f i les 9

6 Assemblies, manifests and modules 10
6 .1 Overview of modules , assemblies , and f i les 10
6.2 Def ining an assembly 11
6.2 .1 Information about the assembly (AsmDecl) 12
6.2 .2 Manifest resources 14
6.2 .3 Associat ing f i les with an assembly 14

6.3 Referencing assemblies 14
6.4 Declar ing modules 15
6.5 Referencing modules 16
6.6 Declarat ions inside a module or assembly 16
6.7 Expor ted type def in i t ions 16

7 Types and s ignatures 18
7 .1 Types 18

ii Partition II

7 .1 .1 modreq and modopt 19
7.1 .2 pinned 20

7.2 Buil t- in types 20
7.3 References to user-def ined types (TypeReference) 20
7.4 Native data types 21

8 Visibi l ity , accessibi l ity and hiding 23
8 .1 Visib i l i ty of top- level types and accessib i l i ty of nested types 23
8.2 Accessibi l i ty 23
8.3 Hiding 23

9 Generics 24
9 .1 Gener ic type def in i t ions 26
9.2 Gener ics and recursive inher i tance graphs 27
9.3 Gener ic method def in i t ions 28
9.4 Instant ia t ing generic types 28
9.5 Gener ics var iance 29
9.6 Assignment compatibi l i ty of instant ia ted types 30
9.7 Valid i ty of member s ignatures 31
9.8 Signatures and binding 32
9.9 Inher i tance and overr id ing 32
9.10 Explici t method overr ides 34
9.11 Constra ints on gener ic parameters 34
9.12 References to members of gener ic types 35

10 Defining types 36
10.1 Type header (ClassHeader) 36
10.1 .1 Visib i l i ty and accessib il i ty a t tr ibutes 37
10.1 .2 Type layout a t tr ibutes 38
10.1 .3 Type semantics a t tr ibutes 38
10.1 .4 Inheri tance at t r ibutes 39
10.1 .5 Interoperat ion at t r ibutes 39
10.1 .6 Special handl ing at tr ibutes 39
10.1 .7 Gener ic parameters (GenPars) 40

10.2 Body of a type def ini t ion 44
10.3 Introducing and overr id ing vir tual methods 45
10.3 .1 In troducing a v ir tual method 45
10.3 .2 The .overr ide d irect ive 45
10.3 .3 Accessibi l i ty and overr id ing 46

 Partition II iii

10.4 Method implementat ion requirements 47
10.5 Special members 47
10.5 .1 Instance constructor 47
10.5 .2 Instance f inal izer 48
10.5 .3 Type in i t ia l izer 48

10.6 Nested types 50
10.7 Control l ing instance layout 50
10.8 Global f ie lds and methods 51

11 Semantics of c lasses 53

12 Semantics of interfaces 54
12.1 Implementing in terfaces 54
12.2 Implementing vir tual methods on interfaces 54

13 Semantics of value types 56
13.1 Referencing value types 57
13.2 Ini t ia l iz ing value types 57
13.3 Methods of value types 58

14 Semantics of special types 60
14.1 Vectors 60
14.2 Arrays 60
14.3 Enums 62
14.4 Pointer types 63
14.4 .1 Unmanaged pointers 64
14.4 .2 Managed pointers 65

14.5 Method pointers 65
14.6 Delegates 66
14.6 .1 Delegate s ignature compatib i l i ty 67
14.6 .2 Synchronous cal ls to delegates 68
14.6 .3 Asynchronous cal ls to delegates 69

15 Defining, referencing, and cal l ing methods 71
15.1 Method descr ip tors 71
15.1 .1 Method declarat ions 71
15.1 .2 Method def in i t ions 71
15.1 .3 Method references 71
15.1 .4 Method implementat ions 71

15.2 Stat ic , instance, and vir tual methods 71

iv Partition II

15.3 Cal l ing convention 72
15.4 Defining methods 73
15.4 .1 Method body 74
15.4 .2 Predef ined at t r ibutes on methods 77
15.4 .3 Implementat ion at tr ibutes of methods 79
15.4 .4 Scope blocks 80
15.4 .5 vararg methods 80

15.5 Unmanaged methods 81
15.5 .1 Method transi t ion thunks 81
15.5 .2 Platform invoke 82
15.5 .3 Method cal ls v ia funct ion pointers 83
15.5 .4 Data type marshal ing 83

16 Defining and referencing f ie lds 85
16.1 Attr ibutes of f ie lds 85
16.1 .1 Accessibi l i ty information 86
16.1 .2 Field contract a t tr ibutes 86
16.1 .3 Interoperat ion at t r ibutes 86
16.1 .4 Other a t tr ibutes 87

16.2 Field in i t metadata 87
16.3 Embedding data in a PE f i le 88
16.3 .1 Data declarat ion 88
16.3 .2 Accessing data from the PE f i le 89

16.4 Ini t ia l izat ion of non-l i teral s ta t ic data 89
16.4 .1 Data known at l ink t ime 89

16.5 Data known at load t ime 90
16.5 .1 Data known at run t ime 90

17 Defining propert ies 91

18 Defining events 93

19 Exception handling 96
19.1 Protected blocks 96
19.2 Handler b locks 97
19.3 Catch blocks 97
19.4 Fi l ter b locks 97
19.5 Final ly b locks 98
19.6 Faul t handlers 98

 Partition II v

20 Declarat ive security 99

21 Custom attributes 100
21.1 CLS conventions: custom at t r ibute usage 100
21.2 Attr ibutes used by the CLI 100
21.2 .1 Pseudo custom at tr ibutes 101
21.2 .2 Custom at t r ibutes def ined by the CLS 102
21.2 .3 Custom at t r ibutes for securi ty 102
21.2 .4 Custom at t r ibutes for TLS 103
21.2 .5 Custom at t r ibutes , var ious 103

22 Metadata logical format: tables 104
22.1 Metadata val idat ion rules 105
22.2 Assembly : 0x20 106
22.3 AssemblyOS : 0x22 107
22.4 AssemblyProcessor : 0x21 107
22.5 AssemblyRef : 0x23 107
22.6 AssemblyRefOS : 0x25 108
22.7 AssemblyRefProcessor : 0x24 108
22.8 ClassLayout : 0x0F 109
22.9 Constant : 0x0B 111
22.10 CustomAttr ibute : 0x0C 111
22.11 DeclSecur i ty : 0x0E 113
22.12 EventMap : 0x12 115
22.13 Event : 0x14 115
22.14 ExportedType : 0x27 117
22.15 Field : 0x04 118
22.16 FieldLayout : 0x10 120
22.17 FieldMarshal : 0x0D 121
22.18 FieldRVA : 0x1D 122
22.19 Fi le : 0x26 122
22.20 Gener icParam : 0x2A 123
22.21 Gener icParamConstraint : 0x2C 124
22.22 ImplMap : 0x1C 125
22.23 InterfaceImpl : 0x09 126
22.24 ManifestResource : 0x28 126
22.25 MemberRef : 0x0A 127
22.26 MethodDef : 0x06 128
22.27 MethodImpl : 0x19 131

vi Partition II

22.28 MethodSemantics : 0x18 132
22.29 MethodSpec : 0x2B 133
22.30 Module : 0x00 134
22.31 ModuleRef : 0x1A 134
22.32 NestedClass : 0x29 135
22.33 Param : 0x08 135
22.34 Proper ty : 0x17 136
22.35 Proper tyMap : 0x15 137
22.36 StandAloneSig : 0x11 138
22.37 TypeDef : 0x02 139
22.38 TypeRef : 0x01 142
22.39 TypeSpec : 0x1B 143

23 Metadata logical format: other structures 144
23.1 Bitmasks and f lags 144
23.1 .1 Values for AssemblyHashAlgor i thm 144
23.1 .2 Values for AssemblyFlags 144
23.1 .3 Values for Culture 144
23.1 .4 Flags for events [EventAttr ibutes] 145
23.1 .5 Flags for f ie lds [FieldAttr ibutes] 145
23.1 .6 Flags for f i les [Fi leAttr ibutes] 146
23.1 .7 Flags for Gener ic Parameters [Gener icParamAttr ibutes] 146
23.1 .8 Flags for ImplMap [PInvokeAttr ibutes] 147
23.1 .9 Flags for Manifes tResource [Manifes tResourceAttr ibutes] 147
23.1 .10 Flags for methods [MethodAttr ibutes] 147
23.1 .11 Flags for methods [MethodImplAttr ibutes] 148
23.1 .12 Flags for MethodSemantics [MethodSemanticsAttr ibutes] 149
23.1 .13 Flags for params [ParamAttr ibutes] 149
23.1 .14 Flags for proper t ies [Proper tyAttr ibutes] 149
23.1 .15 Flags for types [TypeAttr ibutes] 149
23.1 .16 Element types used in s ignatures 151

23.2 Blobs and s ignatures 153
23.2 .1 MethodDefSig 154
23.2 .2 MethodRefSig 155
23.2 .3 StandAloneMethodSig 156
23.2 .4 FieldSig 158
23.2 .5 Proper tySig 158
23.2 .6 LocalVarSig 158

 Partition II vii

23.2 .7 CustomMod 159
23.2 .8 TypeDefOrRefEncoded 159
23.2 .9 Constrain t 160
23.2 .10 Param 160
23.2 .11 RetType 160
23.2 .12 Type 161
23.2 .13 ArrayShape 161
23.2 .14 TypeSpec 162
23.2 .15 MethodSpec 162
23.2 .16 Short form signatures 163

23.3 Custom at t r ibutes 163
23.4 Marshal l ing descr ip tors 165

24 Metadata physical layout 168
24.1 Fixed f ie lds 168
24.2 File headers 168
24.2 .1 Metadata root 168
24.2 .2 Stream header 169
24.2 .3 #Str ings heap 169
24.2 .4 #US and #Blob heaps 169
24.2 .5 #GUID heap 170
24.2 .6 #~ s tream 170

25 File format extensions to PE 174
25.1 Structure of the runt ime f i le format 174
25.2 PE headers 174
25.2 .1 MS-DOS header 175
25.2 .2 PE f i le header 175
25.2 .3 PE opt ional header 176

25.3 Sect ion headers 178
25.3 .1 Import Table and Import Address Table (IAT) 179
25.3 .2 Relocat ions 179
25.3 .3 CLI header 180

25.4 Common Intermediate Language physical layout 181
25.4 .1 Method header type values 182
25.4 .2 Tiny format 182
25.4 .3 Fat format 182
25.4 .4 Flags for method headers 183
25.4 .5 Method data sect ion 183

viii Partition II

25.4 .6 Except ion handling clauses 184

26 Index 185

 Partition II 1

1 Introduction
This specification provides the normative description of the metadata: its physical layout (as a file format), its
logical contents (as a set of tables and their relationships), and its semantics (as seen from a hypothetical
assembler, ilasm).

2 Partition II

2 Overview
This partition focuses on the semantics and the structure of metadata. The semantics of metadata, which dictate
much of the operation of the VES, are described using the syntax of ILAsm, an assembly language for CIL.
The ILAsm syntax itself (contained in clauses 5 through 21) is considered a normative part of this International
Standard. (An implementation of an assembler for ILAsm is described in Partition VI.) The structure (both
logical and physical) is covered in clauses 22 through 25.

[Rationale: An assembly language is really just syntax for specifying the metadata in a file, and the CIL
instructions in that file. Specifying ILAsm provides a means of interchanging programs written directly for the
CLI without the use of a higher-level language; it also provides a convenient way to express examples.

The semantics of the metadata can also be described independently of the actual format in which the metadata
is stored. This point is important because the storage format as specified in clauses 22 through 25 is engineered
to be efficient for both storage space and access time, but this comes at the cost of the simplicity desirable for
describing its semantics. end rationale]

 Partition II 3

3 Validation and verification
Validation refers to the application of a set of tests on any file to check that the file’s format, metadata, and CIL
are self-consistent. These tests are intended to ensure that the file conforms to the mandatory requirements of
this specification. When a conforming implementation of the CLI is presented with a non-conforming file, the
behavior is unspecified.

Verification refers to the checking of both CIL and its related metadata to ensure that the CIL code sequences
do not permit any access to memory outside the program’s logical address space. In conjunction with the
validation tests, verification ensures that the program cannot access memory or other resources to which it is
not granted access.

Partition III specifies the rules for both correct and verifiable use of CIL instructions. Partition III also provides
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit
indirectly, from the specification in this Partition); it also contains a normative description of the verification
algorithm. A mathematical proof of soundness of the underlying type system is possible, and provides the
basis for the verification requirements. Aside from these rules, this standard leaves as unspecified:

• The time at which (if ever) such an algorithm should be performed.

• What a conforming implementation should do in the event of a verification failure.

The following graph makes this relationship clearer (see next paragraph for a description):

Figure 1: Relationship between correct and verifiable CIL

In the above figure, the outer circle contains all code permitted by the ILAsm syntax. The next inner circle
represents all code that is correct CIL. The striped inner circle represents all type-safe code. Finally, the black
innermost circle contains all code that is verifiable. (The difference between type-safe code and verifiable code
is one of provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that
simple algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely type-safe).
Note that even if a program follows the syntax described in Partition VI, the code might still not be valid,
because valid code shall adhere to restrictions presented in this Partition and in Partition III.

The verification process is very stringent. There are many programs that will pass validation, but will fail
verification. The VES cannot guarantee that these programs do not access memory or resources to which they
are not granted access. Nonetheless, they might have been correctly constructed so that they do not access these
resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs.
Ordinarily, a conforming implementation of the CLI can allow unverifiable code (valid code that does not pass
verification) to be executed, although this can be subject to administrative trust controls that are not part of this
standard. A conforming implementation of the CLI shall allow the execution of verifiable code, although this
can be subject to additional implementation-specified trust controls.

4 Partition II

4 Introductory examples

This clause and its subclauses contain only informative text.

4.1 “Hello world!”
To get the general feel of ILAsm, consider the following simple example, which prints the well known “Hello
world!” salutation. The salutation is written by calling WriteLine, a static method found in the class
System.Console that is part of the standard assembly mscorlib (see Partition IV). [Example:

.assembly extern mscorlib {}

.assembly hello {}

.method static public void main() cil managed

{ .entrypoint
 .maxstack 1
 ldstr "Hello world!"
 call void [mscorlib]System.Console::WriteLine(class System.String)
 ret
}

end example]

The .assembly extern declaration references an external assembly, mscorlib, which contains the
definition of System.Console. The .assembly declaration in the second line declares the name of the
assembly for this program. (Assemblies are the deployment unit for executable content for the CLI.) The
.method declaration defines the global method main, the body of which follows, enclosed in braces. The first
line in the body indicates that this method is the entry point for the assembly (.entrypoint), and the second
line in the body specifies that it requires at most one stack slot (.maxstack).

Method main contains only three instructions: ldstr, call, and ret. The ldstr instruction pushes the string
constant "Hello world!" onto the stack and the call instruction invokes System.Console::WriteLine, passing
the string as its only argument. (Note that string literals in CIL are instances of the standard class
System.String.) As shown, call instructions shall include the full signature of the called method. Finally, the
last instruction, ret, returns from main.

4.2 Other examples
This Partition contains integrated examples for most features of the CLI metadata. Many subclauses conclude
with an example showing a typical use of some feature. All these examples are written using the ILAsm
assembly language. In addition, Partition VI contains a longer example of a program written in the ILAsm
assembly language. All examples are, of course, informative only.

End informative text

 Partition II 5

5 General syntax
This clause describes aspects of the ILAsm syntax that are common to many parts of the grammar.

5.1 General syntax notation
This partition uses a modified form of the BNF syntax notation. The following is a brief summary of this
notation.

Terminals are written in a constant-width font (e.g., .assembly, extern, and float64); however,
terminals consisting solely of punctuation characters are enclosed in single quotes (e.g., ‘:’, ‘[’, and ‘(’).
The names of syntax categories are capitalized and italicized (e.g. ClassDecl) and shall be replaced by actual
instances of the category. Items placed in [] brackets (e.g., [Filename] and [Float], are optional, and any item
followed by * (e.g., HexByte* and [‘.’ Id]*) can appear zero or more times. The character “|” means that the
items on either side of it are acceptable (e.g., true | false). The options are sorted in alphabetical order (to
be more specific: in ASCII order, and case-insensitive). If a rule starts with an optional term, the optional term
is not considered for sorting purposes.

ILAsm is a case-sensitive language. All terminals shall be used with the same case as specified in this clause.

[Example: A grammar such as

Top ::= Int32 | float Float | floats [Float [‘,’ Float]*] | else QSTRING

would consider all of the following to be valid:
12
float 3
float –4.3e7
floats
floats 2.4
floats 2.4, 3.7
else "Something \t weird"

but all of the following to be invalid:
else 3
3, 4
float 4.3, 2.4
float else
stuff

end example]

5.2 Basic syntax categories
These categories are used to describe syntactic constraints on the input intended to convey logical restrictions
on the information encoded in the metadata.

Int32 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in
32 bits. [Note: ILAsm has no concept of 8- or 16-bit integer constants. Instead, situations requiring such a
constant (such as int8(...) and int16(...) in §16.2) accept an Int32 instead, and use only the least-significant
bytes. end note]

Int64 is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in
64 bits.

HexByte is a hexadecimal number that is a pair of characters from the set 0–9, a–f, and A–F.

RealNumber is any syntactic representation for a floating-point number that is distinct from that for all other
syntax categories. In this partition, a period (.) is used to separate the integer and fractional parts, and “e”
or “E” separates the mantissa from the exponent. Either of the period or the mantissa separator (but not both)
can be omitted.

[Note: A complete assembler might also provide syntax for infinities and NaNs. end note]

6 Partition II

QSTRING is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can be
used as an escape character, with “\t” representing a tab character, “\n” representing a newline character, or “\”
followed by three octal digits representing a byte with that value. The “+” operator can be used to concatenate
string literals. This way, a long string can be broken across multiple lines by using “+” and a new string on
each line. An alternative is to use “\” as the last character in a line, in which case, that character and the line
break following it are not entered into the generated string. Any white space characters (space, line-feed,
carriage-return, and tab) between the “\” and the first non-white space character on the next line are ignored.

[Example: The following result in strings that are equivalent to "Hello World from CIL!":
ldstr "Hello " + "World " +
"from CIL!"

and
ldstr "Hello World\
 \040from CIL!"

end example]

[Note: A complete assembler will need to deal with the full set of issues required to support Unicode
encodings, see Partition I (especially CLS Rule 4). end note]

SQSTRING is just like QSTRING except that the former uses single quote (′) marks instead of double.

ID is a contiguous string of characters which starts with either an alphabetic character (A–Z, a–z) or one of “_”,
“$”, “@”, “`” (grave accent), or “?”, and is followed by any number of alphanumeric characters (A–Z, a–z, 0–
9) or the characters “_”, “$”, “@”, “`” (grave accent), and “?”. An ID is used in only two ways:

• As a label of a CIL instruction (§5.4).

• As an Id (§5.3).

5.3 Identifiers
Identifiers are used to name entities. Simple identifiers are equivalent to an ID. However, the ILAsm syntax
allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To achieve
this, an identifier shall be placed within single quotation marks. This is summarized in the following grammar.

Id ::=

 ID

| SQSTRING

A keyword shall only be used as an identifier if that keyword appears in single quotes (see Partition VI for a
list of all keywords).

Several Ids can be combined to form a larger Id, by separating adjacent pairs with a dot (.). An Id formed in
this way is called a DottedName.

DottedName ::= Id [‘.’ Id]*

[Rationale: DottedName is provided for convenience, since “.” can be included in an Id using the SQSTRING
syntax. DottedName is used in the grammar where “.” is considered a common character (e.g., in fully
qualified type names) end rationale]

[Example: The following are simple identifiers:
A Test $Test @Foo? ?_X_ MyType`1

The following are identifiers in single quotes:
′Weird Identifier′ ′Odd\102Char′ ′Embedded\nReturn′

The following are dotted names:

 Partition II 7

System.Console ′My Project′.′My Component′.′My Name′ System.IComparable`1

end example]

5.4 Labels and lists of labels
Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.
The value represented by a label is typically an offset in bytes from the beginning of the current method,
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the
label occurs. For details of how labels are encoded in the metadata, see clauses 22 through 25; for their
encoding in CIL instructions see Partition III.

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an Id. Thus,
labels can be single quoted and can contain Unicode characters.

A list of labels is comma separated, and can be any combination of simple labels.

LabelOrOffset ::= Id

Labels ::= LabelOrOffset [‘,’ LabelOrOffset]*

[Note: In a real assembler the syntax for LabelOrOffset might allow the direct specification of a number rather
than requiring symbolic labels. end note]

ILAsm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a
colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction
and they represent the address of the instruction that immediately follows the label. A particular code label
name shall not be declared more than once in a method.

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon
character. A data label shall not be used as a code label, and a code label shall not be used as a data label. A
particular data label name shall not be declared more than once in a module.

CodeLabel ::= Id ‘:’

DataLabel ::= Id

[Example: The following defines a code label, ldstr_label, that represents the address of the ldstr
instruction:

ldstr_label: ldstr "A label"

end example]

5.5 Lists of hex bytes
A list of bytes consists simply of one or more hexbytes.

Bytes ::= HexByte [HexByte*]

5.6 Floating-point numbers
There are two different ways to specify a floating-point number:

1. As a RealNumber.

2. By using the keyword float32 or float64, followed by an integer in parentheses, where the
integer value is the binary representation of the desired floating-point number. For example,
float32(1) results in the 4-byte value 1.401298E-45, while float64(1) results in the 8-byte
value 4.94065645841247E-324.

Float32 ::=

 RealNumber

8 Partition II

| float32 ‘(’ Int32 ‘)’

Float64 ::=

 RealNumber

| float64 ‘(’ Int64 ‘)’

[Example:
5.5
1.1e10
float64(128) // note: this results in an 8-byte value whose bits are the same
 // as those for the integer value 128.

end example]

5.7 Source l ine information
The metadata does not encode information about the lexical scope of variables or the mapping from source line
numbers to CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this
information for use in creating alternate encodings of the information.

.line takes a line number, optionally followed by a column number (preceded by a colon), optionally
followed by a single-quoted string that specifies the name of the file to which the line number is referring:

ExternSourceDecl ::= .line Int32 [‘:’ Int32] [SQSTRING]

5.8 File names
Some grammar elements require that a file name be supplied. A file name is like any other name where “.” is
considered a normal constituent character. The specific syntax for file names follows the specifications of the
underlying operating system.

Filename ::= Clause

 DottedName 5.3

5.9 Attributes and metadata
Attributes of types and their members attach descriptive information to their definition. The most common
attributes are predefined and have a specific encoding in the metadata associated with them (§23). In addition,
the metadata provides a way of attaching user-defined attributes to metadata, using several different encodings.

From a syntactic point of view, there are several ways for specifying attributes in ILAsm:

• Using special syntax built into ILAsm. For example, the keyword private in a ClassAttr
specifies that the visibility attribute on a type shall be set to allow access only within the defining
assembly.

• Using a general-purpose syntax in ILAsm. The non-terminal CustomDecl describes this grammar
(§21). For some attributes, called pseudo-custom attributes, this grammar actually results in
setting special encodings within the metadata (§21.2.1).

• Security attributes are treated specially. There is special syntax in ILAsm that allows the XML
representing security attributes to be described directly (§20). While all other attributes defined
either in the standard library or by user-provided extension are encoded in the metadata using one
common mechanism described in §22.10, security attributes (distinguished by the fact that they
inherit, directly or indirectly from System.Security.Permissions.SecurityAttribute, see
Partition IV) shall be encoded as described in §22.11.

 Partition II 9

5.10 i lasm source fi les
An input to ilasm is a sequence of top-level declarations, defined as follows:

ILFile ::= Reference

 Decl* 5.10

The complete grammar for a top-level declaration is shown below. The reference subclauses contain details of
the corresponding productions of this grammar. These productions begin with a name having a ‘.’ prefix. Such
a name is referred to as a directive.

Decl ::= Reference

 .assembly DottedName ‘{’ AsmDecl* ‘}’ 6.2

| .assembly extern DottedName ‘{’ AsmRefDecl* ‘}’ 6.3

| .class ClassHeader ‘{’ ClassMember* ‘}’ 10

| .class extern ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’ 6.7

| .corflags Int32 6.2

| .custom CustomDecl 21

| .data DataDecl 16.3.1

| .field FieldDecl 16

| .file [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint] 6.2.3

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 15

| .module [Filename] 6.4

| .module extern Filename 6.5

| .mresource [public | private] DottedName ‘{’ ManResDecl* ‘}’ 6.2.2

| .subsystem Int32 6.2

| .vtfixup VTFixupDecl 15.5.1

| ExternSourceDecl 5.7

| SecurityDecl 20

10 Partition II

6 Assemblies, manifests and modules
Assemblies and modules are grouping constructs, each playing a different role in the CLI.

An assembly is a set of one or more files deployed as a unit. An assembly always contains a manifest that
specifies (§6.1):

• Version, name, culture, and security requirements for the assembly.

• Which other files, if any, belong to the assembly, along with a cryptographic hash of each file.
The manifest itself resides in the metadata part of a file, and that file is always part of the
assembly.

• The types defined in other files of the assembly that are to be exported from the assembly. Types
defined in the same file as the manifest are exported based on attributes of the type itself.

• Optionally, a digital signature for the manifest itself, and the public key used to compute it.

A module is a single file containing executable content in the format specified here. If the module contains a
manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall
contain only one manifest amongst all its constituent files. For an assembly that is to be executed (rather than
simply being dynamically loaded) the manifest shall reside in the module that contains the entry point.

While some programming languages introduce the concept of a namespace, the only support in the CLI for this
concept is as a metadata encoding technique. Type names are always specified by their full name relative to
the assembly in which they are defined.

6.1 Overview of modules, assemblies, and fi les

This subclause contains informative text only.
Consider the following figure:

Figure 2: References to Modules and Files

Eight files are shown, each with its name written below it. The six files that each declare a module have an
additional border around them, and their names begin with M. The other two files have a name beginning
with F. These files can be resource files (such as bitmaps) or other files that do not contain CIL code.

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B,
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines. For
example, assembly A references M2 and M3, and assembly B references M3 and M5. Thus, both assemblies
reference M3.

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When
assembly A is loaded at runtime, an instance of M3 will be loaded for it. When assembly B is loaded into the
same application domain, possibly simultaneously with assembly A, M3 will be shared for both assemblies.
Both assemblies also reference F2, for which similar rules apply.

 Partition II 11

The module M2 references F1, shown by dotted lines. As a consequence, F1 will be loaded as part of
assembly A, when A is executed. Thus, the file reference shall also appear with the assembly declaration.
Similarly, M5 references another module, M6, which becomes part of B when B is executed. It follows that
assembly B shall also have a module reference to M6.

End informative text

6.2 Defining an assembly
An assembly is specified as a module that contains a manifest in the metadata; see §22.2. The information for
the manifest is created from the following portions of the grammar:

Decl ::= Clause

 .assembly DottedName ‘{’ AsmDecl* ‘}’ 6.2

| .assembly extern DottedName ‘{’ AsmRefDecl* ‘}’ 6.3

| .corflags Int32 6.2

| .file [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint] 6.2.3

| .module extern Filename 6.5

| .mresource [public | private] DottedName ‘{’ ManResDecl* ‘}’ 6.2.2

| .subsystem Int32 6.2

| …

The .assembly directive declares the manifest and specifies to which assembly the current module belongs.
A module shall contain at most one .assembly directive. The DottedName specifies the name of the
assembly. [Note: The standard library assemblies are described in Partition IV. end note])

[Note: Since some platforms treat names in a case-insensitive manner, two assemblies that have names that
differ only in case should not be declared. end note]

The .corflags directive sets a field in the CLI header of the output PE file (see §25.3.3.1). A conforming
implementation of the CLI shall expect this field’s value to be 1. For backwards compatibility, the three least-
significant bits are reserved. Future versions of this standard might provide definitions for values between 8
and 65,535. Experimental and non-standard uses should thus use values greater than 65,535.

The .subsystem directive is used only when the assembly is executed directly (as opposed to its being used
as a library for another program). This directive specifies the kind of application environment required for the
program, by storing the specified value in the PE file header (see §25.2.2). While any 32-bit integer value can
be supplied, a conforming implementation of the CLI need only respect the following two values:

• If the value is 2, the program should be run using whatever conventions are appropriate for an application
that has a graphical user interface.

• If the value is 3, the program should be run using whatever conventions are appropriate for an application
that has a direct console attached.

[Example:
.assembly CountDown
{ .hash algorithm 32772
 .ver 1:0:0:0
}
.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7
02 BE E7 52 3A CB 17 AF)

end example]

12 Partition II

6.2 .1 Information about the assembly (AsmDecl)

The following grammar shows the information that can be specified about an assembly:

AsmDecl ::= Description Claus
e

 .custom CustomDecl Custom attributes 21

 .hash algorithm Int32 Hash algorithm used in the .file directive 6.2.1.1

| .culture QSTRING Culture for which this assembly is built 6.2.1.2

| .publickey ‘=’ ‘(’ Bytes ‘)’ The originator's public key. 6.2.1.3

| .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and
revision

6.2.1.4

| SecurityDecl Permissions needed, desired, or prohibited 20

6.2 .1.1 Hash algorithm

AsmDecl ::= .hash algorithm Int32 | …

When an assembly consists of more than one file (see §6.2.3), the manifest for the assembly specifies both the
name and cryptographic hash of the contents of each file other than its own. The algorithm used to compute the
hash can be specified, and shall be the same for all files included in the assembly. All values are reserved for
future use, and conforming implementations of the CLI shall use the SHA1 (see Partition I) hash function and
shall specify this algorithm by using a value of 32772 (0x8004).

[Rationale: SHA1 was chosen as the best widely available technology at the time of standardization (see
Partition I). A single algorithm was chosen since all conforming implementations of the CLI would be
required to implement all algorithms to ensure portability of executable images.end rationale]

6.2 .1.2 Culture

AsmDecl ::= .culture QSTRING | …

When present, this indicates that the assembly has been customized for a specific culture. The strings that shall
be used here are those specified in Partition IV as acceptable with the class
System.Globalization.CultureInfo. When used for comparison between an assembly reference and an
assembly definition these strings shall be compared in a case-insensitive manner. (See §23.1.3.)

[Note: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>”,
where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter
code in ISO 3166. end note]

6.2 .1.3 Originator’s public key

AsmDecl ::= .publickey ‘=’ ‘(’ Bytes ‘)’ | …

The CLI metadata allows the producer of an assembly to compute a cryptographic hash of that assembly (using
the SHA1 hash function) and then to encrypt it using the RSA algorithm (see Partition I) and a public/private
key pair of the producer’s choosing. The results of this (an “SHA1/RSA digital signature”) can then be stored
in the metadata along with the public part of the key pair required by the RSA algorithm. The .publickey
directive is used to specify the public key that was used to compute the signature. To calculate the hash, the
signature is zeroed, the hash calculated, and then the result is stored into the signature.

All of the assemblies in the Standard Library (see Partition IV) use the public key 00 00 00 00 00 00 00 00 04
00 00 00 00 00 00 00. This key is known as the Standard Public Key.

 Partition II 13

A reference to an assembly (§6.3) captures some of this information at compile time. At runtime, the
information contained in the assembly reference can be combined with the information from the manifest of the
assembly located at runtime to ensure that the same private key was used to create both the assembly seen when
the reference was created (compile time) and when it is resolved (runtime).

The Strong Name (SN) signing process uses standard hash and cipher algorithms for Strong name signing. An
SHA1 hash over most of the PE file is generated. That hash value is RSA-signed with the SN private key. For
verification purposes the public key is stored into the PE file as well as the signed hash value.

Except for the following, all portions of the PE File are hashed:

• The Authenticode Signature entry: PE files can be authenticode signed. The authenticode
signature is contained in the 8-byte entry at offset 128 of the PE Header Data Directory
(“Certificate Table” in §25.2.3.3) and the contents of the PE File in the range specified by this
directory entry. [Note: In a conforming PE File, this entry shall be zero. end note]

• The Strong Name Blob: The 8-byte entry at offset 32 of the CLI Header (“StrongNameSignature”
in §25.3.3) and the contents of the hash data contained at this RVA in the PE File. If the 8-byte
entry is 0, there is no associated strong name signature.

• The PE Header Checksum: The 4-byte entry at offset 64 of the PE Header Windows NT-Specific
Fields (“File Checksum” in §25.2.3.2). [Note: In a conforming PE File, this entry shall be zero.
end note]

6.2 .1.4 Version numbers

AsmDecl ::= .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 | …

The version number of an assembly is specified as four 32-bit integers. This version number shall be captured
at compile time and used as part of all references to the assembly within the compiled module.

All standardized assemblies shall have the last two 32-bit integers set to 0. This standard places no other
requirement on the use of the version numbers, although individual implementers are urged to avoid setting
both of the last two 32-bit integers to 0 to avoid a possible collision with future versions of this standard.

Future versions of this standard shall change one or both of the first two 32-bit integers specified for a
standardized assembly if any additional functionality is added or any additional features of the VES are
required to implement it. Furthermore, future versions of this standard shall change one or both of the first two
32-bit integers specified for the mscorlib assembly so that its version number can be used (if desired) to
distinguish between different versions of the Execution Engine required to run programs.

[Note: A conforming implementation can ignore version numbers entirely, or it can require that they match
precisely when binding a reference, or it can exhibit any other behavior deemed appropriate. By convention:

1. The first of these 32-bit integers is considered to be the major version number, and assemblies with the
same name, but different major versions, are not interchangeable. This would be appropriate, for example,
for a major rewrite of a product where backwards compatibility cannot be assumed.

2. The second of these 32-bit integers is considered to be the minor version number, and assemblies with the
same name and major version, but different minor versions, indicate significant enhancements, but with the
intention of being backwards compatible. This would be appropriate, for example, on a “point release” of
a product or a fully backward compatible new version of a product.

3. The third of these 32-bit integers is considered to be the build number, and assemblies that differ only by
build number are intended to represent a recompilation from the same source. This would be appropriate,
for example, because of processor, platform, or compiler changes.

4. The fourth of these 32-bit integers is considered to be the revision number, and assemblies with the same
name, major and minor version number, but different revisions, are intended to be fully interchangeable.
This would be appropriate, for example, to fix a security hole in a previously released assembly.

end note]

14 Partition II

6.2 .2 Manifest resources

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is
introduced using the .mresource directive, which adds the manifest resource to the assembly manifest
begun by a preceding .assembly declaration.

Decl ::= Clause

 .mresource [public | private] DottedName ‘{’ ManResDecl* ‘}’

| … 5.10

If the manifest resource is declared public, it is exported from the assembly. If it is declared private, it is
not exported, in which case, it is only available from within the assembly. The DottedName is the name of the
resource.

ManResDecl ::= Description Clause

 .assembly extern DottedName Manifest resource is in external
assembly with name DottedName.

6.3

| .custom CustomDecl Custom attribute. 21

| .file DottedName at Int32 Manifest resource is in file DottedName
at byte offset Int32.

For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared
in the manifest using a separate (top-level) .file declaration (see §6.2.3) and the byte offset shall be zero. A
resource that is defined in another assembly is referenced using .assembly extern, which requires that
the assembly has been defined in a separate (top-level) .assembly extern directive (§6.3).

6.2 .3 Associat ing f i les with an assembly

Assemblies can be associated with other files (such as documentation and other files that are used during
execution). The declaration .file is used to add a reference to such a file to the manifest of the assembly:
(See §22.19)

Decl ::= Clause

 .file [nometadata] Filename .hash ‘=’ ‘(’ Bytes ‘)’ [.entrypoint]

| … 5.10

The attribute nometadata is specified if the file is not a module according to this specification. Files that are
marked as nometadata can have any format; they are considered pure data files.

The Bytes after the .hash specify a hash value computed for the file. The VES shall recompute this hash value
prior to accessing this file and if the two do not match, the behavior is unspecified. The algorithm used to
calculate this hash value is specified with .hash algorithm (§6.2.1.1).

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained
in this file.

6.3 Referencing assemblies

AsmRefDecl ::= .assembly extern DottedName [as DottedName] ‘{’ AsmRefDecl* ‘}’

An assembly mediates all accesses to other assemblies from the files that it contains. This is done through the
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly
referenced by the executing code. A top-level .assembly extern declaration is used for this purpose.
The optional as clause provides an alias, which allows ILAsm to address external assemblies that have the
same name, but differing in version, culture, etc.

 Partition II 15

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared
with an .assembly directive, in a case-sensitive manner. (So, even though an assembly might be stored
within a file, within a file system that is case-insensitive, the names stored internally within metadata are case-
sensitive, and shall match exactly.)

AsmRefDecl ::= Description Clause

 .hash ‘=’ ‘(’ Bytes ‘)’ Hash of referenced assembly 6.2.3

| .custom CustomDecl Custom attributes 21

| .culture QSTRING Culture of the referenced assembly 6.2.1.2

| .publickeytoken ‘=’ ‘(’ Bytes ‘)’ The low 8 bytes of the SHA1 hash of the
originator's public key.

6.3

| .publickey ‘=’ ‘(’ Bytes ‘)’ The originator’s full public key 6.2.1.3

| .ver Int32 ‘:’ Int32 ‘:’ Int32 ‘:’ Int32 Major version, minor version, build, and
revision

6.2.1.4

These declarations are the same as those for .assembly declarations (§6.2.1), except for the addition of
.publickeytoken. This declaration is used to store the low 8 bytes of the SHA1 hash of the originator’s
public key in the assembly reference, rather than the full public key.

An assembly reference can store either a full public key or an 8-byte “public key token.” Either can be used to
validate that the same private key used to sign the assembly at compile time also signed the assembly used at
runtime. Neither is required to be present, and while both can be stored, this is not useful.

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it
can refuse to load an assembly for which the validation fails. A conforming implementation of the CLI can
also refuse to permit access to an assembly unless the assembly reference contains either the public key or the
public key token. A conforming implementation of the CLI shall make the same access decision independent
of whether a public key or a token is used.

[Rationale: The full public key is cryptographically safer, but requires more storage space in the assembly
reference. end rationale]

[Example:

.assembly extern MyComponents
{ .publickey = (BB AA BB EE 11 22 33 00)
 .hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)
 .ver 2:10:2002:0
}

end example]

6.4 Declaring modules
All CIL files are modules and are referenced by a logical name carried in the metadata rather than by their file
name. See §22.30.

Decl ::= Clause

| .module Filename

| … 5.10

[Example:
.module CountDown.exe

end example]

16 Partition II

6.5 Referencing modules
When an item is in the current assembly, but is part of a module other than the one containing the manifest, the
defining module shall be declared in the manifest of the assembly using the .module extern directive.
The name used in the .module extern directive of the referencing assembly shall exactly match the name
used in the .module directive (§6.4) of the defining module. See §22.31.

Decl ::= Clause

| .module extern Filename

| … 5.10

[Example:
.module extern Counter.dll

end example]

6.6 Declarations inside a module or assembly
Declarations inside a module or assembly are specified by the following grammar. More information on each
option can be found in the corresponding clause or subclause.

Decl ::= Clause

| .class ClassHeader ‘{’ ClassMember* ‘}’ 10

| .custom CustomDecl 21

| .data DataDecl 16.3.1

| .field FieldDecl 16

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ 15

| ExternSourceDecl 5.7

| SecurityDecl 20

| …

6.7 Exported type definitions
The manifest module, of which there can only be one per assembly, includes the .assembly directive. To
export a type defined in any other module of an assembly requires an entry in the assembly’s manifest. The
following grammar is used to construct such an entry in the manifest:

Decl ::= Clause

 .class extern ExportAttr DottedName ‘{’ ExternClassDecl* ‘}’

ExternClassDecl ::= Clause

.file DottedName 21

| .class extern DottedName 21

| .custom CustomDecl 21

The ExportAttr value shall be either public or nested public and shall match the visibility of the type.

For example, suppose an assembly consists of two modules, A.EXE and B.DLL. A.EXE contains the manifest.
A public class Foo is defined in B.DLL. In order to export it—that is, to make it visible by, and usable from,

 Partition II 17

other assemblies—a .class extern directive shall be included in A.EXE. Conversely, a public class Bar
defined in A.EXE does not need any .class extern directive.

[Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete
set of types defined by the assembly. Therefore, information from other modules within the assembly is
replicated in the manifest module. By convention, the manifest module is also known as the assembly. end
rationale]

18 Partition II

7 Types and signatures
The metadata provides mechanisms to both define and reference types. §10 describes the metadata associated
with a type definition, regardless of whether the type is an interface, class, or value type. The mechanism used
to reference types is divided into two parts:

• A logical description of user-defined types that are referenced, but (typically) not defined in the current
module. This is stored in a table in the metadata (§22.38).

• A signature that encodes one or more type references, along with a variety of modifiers. The grammar
non-terminal Type describes an individual entry in a signature. The encoding of a signature is specified
in §23.1.16.

7.1 Types
The following grammar completely specifies all built-in types (including pointer types) of the CLI system. It
also shows the syntax for user defined types that can be defined in the CLI system:

Type ::= Description Clause

 ‘!’ Int32 Generic parameter in a type definition,
accessed by index from 0

9.1

| ‘!!’ Int32 Generic parameter in a method
definition, accessed by index from 0

9.2

| bool Boolean 7.2

| char 16-bit Unicode code point 7.2

| class TypeReference User defined reference type 7.3

| float32 32-bit floating-point number 7.2

| float64 64-bit floating-point number 7.2

| int8 Signed 8-bit integer 7.2

| int16 Signed 16-bit integer 7.2

| int32 Signed 32-bit integer 7.2

| int64 Signed 64-bit integer 7.2

| method CallConv Type ‘*’

 ‘(’ Parameters ‘)’

Method pointer 14.5

| native int 32- or 64-bit signed integer whose size
is platform-specific

7.2

| native unsigned int 32- or 64-bit unsigned integer whose
size is platform-specific

7.2

| object See System.Object in Partition IV

| string See System.String in Partition IV

| Type ‘&’ Managed pointer to Type. Type shall
not be a managed pointer type or
typedref

14.4

| Type ‘*’ Unmanaged pointer to Type 14.4

| Type ‘<’ GenArgs ‘>’ Instantiation of generic type 9.4

 Partition II 19

Type ::= Description Clause

| Type ‘[’ [Bound [‘,’ Bound]*] ‘]’ Array of Type with optional rank
(number of dimensions) and bounds.

14.1and 14.2

| Type modopt ‘(’ TypeReference ‘)’ Custom modifier that can be ignored
by the caller.

7.1.1

| Type modreq ‘(’ TypeReference ‘)’ Custom modifier that the caller shall
understand.

7.1.1

| Type pinned For local variables only. The garbage
collector shall not move the referenced
value.

7.1.2

| typedref Typed reference (i.e., a value of type
System.TypedReference), created by
mkrefany and used by
refanytype or refanyval.

7.2

| valuetype TypeReference (Unboxed) user defined value type 13

| unsigned int8 Unsigned 8-bit integer 7.2

| unsigned int16 Unsigned 16-bit integer 7.2

| unsigned int32 Unsigned 32-bit integer 7.2

| unsigned int64 Unsigned 64-bit integer 7.2

| void No type. Only allowed as a return
type or as part of void *

7.2

In several situations the grammar permits the use of a slightly simpler representation for specifying types; e.g.,
“System.GC” can be used instead of “class System.GC”. Such representations are called type specifications:

TypeSpec ::= Clause

 ‘[’ [.module] DottedName ‘]’ 7.3

| TypeReference 7.2

| Type 7.1

7.1 .1 modreq and modopt

Custom modifiers, defined using modreq (“required modifier”) and modopt (“optional modifier”), are
similar to custom attributes (§21) except that modifiers are part of a signature rather than being attached to a
declaration. Each modifer associates a type reference with an item in the signature.

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only
by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers
have no other effect on the operation of the VES.

[Rationale: The distinction between required and optional modifiers is important to tools other than the CLI
that deal with the metadata, typically compilers and program analysers. A required modifier indicates that
there is a special semantics to the modified item that should not be ignored, while an optional modifier can
simply be ignored.

For example, the const qualifier in the C programming language can be modelled with an optional modifier
since the caller of a method that has a const-qualified parameter need not treat it in any special way. On the
other hand, a parameter that shall be copy-constructed in C++ shall be marked with a required custom attribute
since it is the caller who makes the copy. end rationale]

20 Partition II

7.1 .2 pinned

The signature encoding for pinned shall appear only in signatures that describe local variables (§15.4.1.3).
While a method with a pinned local variable is executing, the VES shall not relocate the object to which the
local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects, the collector
shall not move objects that are referenced by an active pinned local variable.

[Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned. This
happens, for example, when a managed object is passed to a method designed to operate with unmanaged data.
end rationale]

7.2 Built-in types
The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be
referenced in signatures only using their special encodings (i.e., not using the general purpose valuetype
TypeReference syntax). Partition I specifies the built-in types.

7.3 References to user-defined types (TypeReference)
User-defined types are referenced either using their full name and a resolution scope or, if one is available in
the same module, a type definition (§10).

A TypeReference is used to capture the full name and resolution scope:

TypeReference ::=

 [ResolutionScope] DottedName [‘/’ DottedName]*

ResolutionScope ::=

‘[’ .module Filename ‘]’

| ‘[’ AssemblyRefName ‘]’

AssemblyRefName ::= Clause

 DottedName 5.1

The following resolution scopes are specified for un-nested types:

• Current module (and, hence, assembly). This is the most common case and is the default if no
resolution scope is specified. The type shall be resolved to a definition only if the definition
occurs in the same module as the reference.

[Note: A type reference that refers to a type in the same module and assembly is better represented using a type
definition. Where this is not possible (e.g., when referencing a nested type that has compilercontrolled
accessibility) or convenient (e.g., in some one-pass compilers) a type reference is equivalent and can be used.
end note]

• Different module, current assembly. The resolution scope shall be a module reference
syntactically represented using the notation [.module Filename]. The type shall be resolved to
a definition only if the referenced module (§6.4) and type (§6.7) have been declared by the
current assembly and hence have entries in the assembly’s manifest. Note that in this case the
manifest is not physically stored with the referencing module.

• Different assembly. The resolution scope shall be an assembly reference syntactically
represented using the notation [AssemblyRefName]. The referenced assembly shall be declared in
the manifest for the current assembly (§6.3), the type shall be declared in the referenced
assembly’s manifest, and the type shall be marked as exported from that assembly (§6.7
and §10.1.1).

 Partition II 21

• For nested types, the resolution scope is always the enclosing type. (See §10.6). This is indicated
syntactically by using a slash (“/”) to separate the enclosing type name from the nested type’s
name.

[Example: The type System.Console defined in the base class library (found in the assembly named mscorlib):
.assembly extern mscorlib { }
.class [mscorlib]System.Console

A reference to the type named C.D in the module named x in the current assembly:
.module extern x
.class [.module x]C.D

A reference to the type named C nested inside of the type named Foo.Bar in another assembly, named
MyAssembly:

.assembly extern MyAssembly { }

.class [MyAssembly]Foo.Bar/C

end example]

7.4 Native data types
Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that
specify data types required to perform certain functions. The metadata allows interaction with these native data
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native
data types. This marshalling information can be specified (using the keyword marshal) for

• the return type of a method, indicating that a native data type is actually returned and shall be
marshalled back into the specified CLI data type

• a parameter to a method, indicating that the CLI data type provided by the caller shall be
marshalled into the specified native data type. (If the parameter is passed by reference, the
updated value shall be marshalled back from the native data type into the CLI data type when the
call is completed.)

• a field of a user-defined type, indicating that any attempt to pass the object in which it occurs, to
platform methods shall make a copy of the object, replacing the field by the specified native data
type. (If the object is passed by reference, then the updated value shall be marshalled back when
the call is completed.)

The following table lists all native types supported by the CLI, and provides a description for each of them. (A
more complete description can be found in Partition IV in the definition of the enum
System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode these
types.) All encoding values in the range 0–63, inclusive, are reserved for backward compatibility with existing
implementations of the CLI. Values in the range 64–127 are reserved for future use in this and related
Standards.

NativeType ::= Description Name in the class
library enum type
UnmanagedType

‘[’ ‘]’ Native array. Type and size are determined at
runtime from the actual marshaled array.

LPArray

| bool Boolean. 4-byte integer value where any non-
zero value represents TRUE, and 0 represents
FALSE.

Bool

| float32 32-bit floating-point number. R4

| float64 64-bit floating-point number. R8

22 Partition II

NativeType ::= Description Name in the class
library enum type
UnmanagedType

| [unsigned] int Signed or unsigned integer, sized to hold a
pointer on the platform

SysUInt or SysInt

| [unsigned] int8 Signed or unsigned 8-bit integer U1 or I1

| [unsigned] int16 Signed or unsigned 16-bit integer U2 or I2

| [unsigned] int32 Signed or unsigned 32-bit integer U4 or I4

| [unsigned] int64 Signed or unsigned 64-bit integer U8 or I8

| lpstr A pointer to a null-terminated array of ANSI
characters. The code page is implementation-
specific.

LPStr

| lpwstr A pointer to a null-terminated array of Unicode
characters. The character encoding is
implementation-specific.

LPWStr

| method A function pointer. FunctionPtr

| NativeType ‘[’ ‘]’ Array of NativeType. The length is determined
at runtime by the size of the actual marshaled
array.

LPArray

| NativeType ‘[’ Int32 ‘]’ Array of NativeType of length Int32. LPArray

| NativeType
‘[’ ‘+’ Int32 ‘]’

Array of NativeType with runtime supplied
element size. The Int32 specifies a parameter to
the current method (counting from parameter
number 0) that, at runtime, will contain the size
of an element of the array in bytes. Can only be
applied to methods, not fields.

LPArray

| NativeType
‘[’ Int32 ‘+’ Int32 ‘]’

Array of NativeType with runtime supplied
element size. The first Int32 specifies the
number of elements in the array. The second
Int32 specifies which parameter to the current
method (counting from parameter number 0)
will specify the additional number of elements
in the array. Can only be applied to methods,
not fields

LPArray

[Example:

.method int32 M1(int32 marshal(int32), bool[] marshal(bool[5]))

Method M1 takes two arguments: an int32, and an array of 5 bools.
.method int32 M2(int32 marshal(int32), bool[] marshal(bool[+1]))

Method M2 takes two arguments: an int32, and an array of bools: the number of elements in that array is
given by the value of the first parameter.

.method int32 M3(int32 marshal(int32), bool[] marshal(bool[7+1]))

Method M3 takes two arguments: an int32, and an array of bools: the number of elements in that array is
given as 7 plus the value of the first parameter. end example]

 Partition II 23

8 Visibility, accessibility and hiding
Partition I specifies visibility and accessibility. In addition to these attributes, the metadata stores information
about method name hiding. Hiding controls which method names inherited from a base type are available for
compile-time name binding.

8.1 Visibil ity of top-level types and accessibil ity of nested types
Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the
same assembly, or visible to types regardless of assembly. For nested types (i.e., types that are members of
another type) the nested type has an accessibility that further refines the set of methods that can reference the
type. A nested type can have any of the seven accessibility modes (see Partition I), but has no direct visibility
attribute of its own, using the visibility of its enclosing type instead.

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type
cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an
assembly then a nested type with public accessibility is still only available within that assembly. By contrast,
a nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing
type is visible outside the assembly.

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility
of a nested type are encoded using the same mechanism in the logical model of §23.1.15.

8.2 Accessibil ity
Accessibility is encoded directly in the metadata (see §22.26 for an example).

8.3 Hiding
Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two
mechanisms for hiding, specified by a single bit:

• hide-by-name, meaning that the introduction of a name in a given type hides all inherited
members of the same kind with the same name.

• hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited
member of the same kind, but with precisely the same type (in the case of nested types and fields)
or signature (in the case of methods, properties, and events).

There is no runtime support for hiding. A conforming implementation of the CLI treats all references as though
the names were marked hide-by-name-and-sig. Compilers that desire the effect of hide-by-name can do so by
marking method definitions with the newslot attribute (§15.4.2.3) and correctly choosing the type used to
resolve a method reference (§15.1.3).

24 Partition II

9 Generics
As mentioned in Partition I, generics allows a whole family of types and methods to be defined using a pattern,
which includes placeholders called generic parameters. These generic parameters are replaced, as required, by
specific types, to instantiate whichever member of the family is actually required. For example, class
List<T>{}, represents a whole family of possible Lists; List<string>, List<int> and List<Button> are three
possible instantiations; however, as we’ll see below, the CLS-compliant names of these types are really class
List`1<T>{}, List`1<string>, List`1<int>, and List`1<Button>.

A generic type consists of a name followed by a <…>-delimited list of generic parameters, as in C<T>. Two or
more generic types shall not be defined with the same name, but different numbers of generic parameters, in the
same scope. However, to allow such overloading on generic arity at the source language level, CLS Rule 43 is
defined to map generic type names to unique CIL names. That Rule states that the CLS-compliant name of a
type C having one or more generic parameters, shall have a suffix of the form `n, where n is a decimal integer
constant (without leading zeros) representing the number of generic parameters that C has. For example: the
types C, C<T>, and C<K,V> have CLS-compliant names of C, C`1<T>, and C`2<K,V>, respectively. [Note: The
names of all standard library types are CLS-compliant; e.g.,
System.Collections.Generic.IEnumerable`1<T>. end note]

Before generics is discussed in detail, here are the definitions of some new terms:

• public class List`1<T> {} is a generic type definition.

• <T> is a generic parameter list, and T is a generic parameter.

• List`1<T> is a generic type; it is sometimes termed a generic type, or open generic type because
it has at least one generic parameter. This partition will use the term open type.

• List`1<int> is a closed generic type because it has no unbound generic parameters. (It is
sometimes called an instantiated generic type or a generic type instantiation). This partition will
use the term closed type.

• Note that generics includes generic types which are neither strictly open nor strictly closed; e.g.,
the base class B, in: .public class D`1<V> extends B`2<!0,int32> {}, given .public class
B`2<T,U> {}.

• If a distinction need be made between generic types and ordinary types, the latter are referred to
as non-generic types.

• <int> is a generic argument list, and int is a generic argument.

• This standard maintains the distinction between generic parameters and generic arguments. If at
all possible, use the phrase “int is the type used for generic parameter T” when speaking of
List`1<int>. (In Reflection, this is sometimes referred to as “T is bound to int”)

• “(C1, …, Cn) T” is a generic parameter constraint on the generic parameter T.

[Note: Conside the following definition:
class C`2<(I1,I2) S, (Base,I3) T> { … }

This denotes a class called C, with two generic parameters, S and T. S is constrained to implement two
interfaces, I1 and I2. T is constrained to derive from the class Base, and also to implement the interface I3.
end note]

Within a generic type definition, its generic parameters are referred to by their index. Generic parameter zero
is referred to as !0, generic parameter one as !1, and so on. Similarly, within the body of a generic method
definition, its generic parameters are referred to by their index; generic parameter zero is referred to as !!0,
generic parameter one as !!1, and so on.

This block contains only informative text

 Partition II 25

A class definition for a stack might be denoted Stack<T>, where T is a generic parameter. In general, fields and
methods of the Stack class will use the generic parameter T in their definition. For example, Stack might be
defined as follows:

.assembly extern mscorlib {}

.assembly Stack {}

.class public Stack`1<([mscorlib]System.Object) T> extends [mscorlib]System.Object {
 .field private !0[] data
 .field private int32 top

 .method public specialname rtspecialname instance void .ctor() {
 .maxstack 8
 ldarg.0
 call instance void [mscorlib]System.Object::.ctor()
 ldarg.0
 ldc.i4.s 100
 newarr !0
 stfld !0[] class Stack`1<!0>::data
 ldarg.0
 ldc.i4.m1
 stfld int32 class Stack`1<!0>::top
 ret
 }

 .method public hidebysig instance void Push(!0 t) {
 .maxstack 4
 .locals init ([0] int32)
 ldarg.0
 ldfld !0[] class Stack`1<!0>::data
 ldarg.0
 dup
 ldfld int32 class Stack`1<!0>::top
 ldc.i4.1
 add
 dup
 stloc.0
 stfld int32 class Stack`1<!0>::top
 ldloc.0
 ldarg.1
 stelem !0
 ret
 }

 .method public hidebysig instance !0 Pop() {
 .maxstack 4
 .locals init ([0] !0, [1] int32)
 ldarg.0
 ldfld !0[] class Stack`1<!0>::data
 ldarg.0
 dup
 ldfld int32 class Stack`1<!0>::top
 dup
 stloc.1
 ldc.i4.1
 sub
 stfld int32 class Stack`1<!0>::top
 ldloc.1
 ldelem !0
 stloc.0
 ldloc.0
 ret
 }
}

For simplicity, this example omits overflow and underflow checking.

An example of using the Stack class, is as follows:

26 Partition II

.class App extends [mscorlib]System.Object {
 .method private static void Main() {
 .entrypoint
 .maxstack 2
 .locals init ([0] class Stack`1<int32>)
 newobj instance void class Stack`1<int32>::.ctor()
 stloc.0
 ldloc.0
 ldc.i4.1
 callvirt instance void class Stack`1<int32>::Push(!0)
 ldloc.0
 ldc.i4.2
 callvirt instance void class Stack`1<int32>::Push(!0)
 ldloc.0
 callvirt instance !0 class Stack`1<int32>::Pop()
 call void [mscorlib]System.Console::WriteLine(int32)
 ldloc.0
 callvirt instance !0 class Stack`1<int32>::Pop()
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
 }
 .method public specialname rtspecialname instance void .ctor() {
 .maxstack 8
 ldarg.0
 call instance void [mscorlib]System.Object::.ctor()
 ret
 }

End informative text

9.1 Generic type definitions
A generic type definition is one that includes generic parameters. Each such generic parameter can have a
name and an optional set of constraints—types with which generic arguments shall be assignment-compatible.
Optional variance notation is also permitted (§10.1.7). (For an explanation of the ! and !! notation used below,
see §9.4.) The generic parameter is in scope in the declarations of:

• its constraints (e.g., .class … C`1<(class IComparable`1<!0>) T>)

• any base class from which the type-under-definition derives (e.g., .class … MultiSet`1<T>
extends class Set`1<!0[]>)

• any interfaces that the type-under-definition implements (e.g., .class … Hashtable`2<K,D>
implements class IDictionary`2<!0,!1>)

• all members (instance and static fields, methods, constructors, properties and events) except
nested classes. [Note: C# allows generic parameters from an enclosing class to be used in a
nested class, but adds any required extra generic parameters to the nested class definition in
metadata. end note]

A generic type definition can include static, instance, and virtual methods.

Generic type definitions are subject to the following restrictions:

• A generic parameter, on its own, cannot be used to specify the base class, or any implemented
interfaces. So, for example, .class … G`1<T> extends !0 is invalid. However, it is valid for
the base class, or interfaces, to use that generic parameter when nested within another generic
type. For example, .class … G`1<T> extends class H`1<!0> and .class … G`1<T> extends
class B`2<!0,int32> are valid.

[Rationale: This permits checking that generic types are valid at definition time rather than at
instantiation time. e.g., in .class … G`1<T> extends !0, we do not know what methods would override
what others because no information is available about the base class; indeed, we do not even know
whether T is a class: it might be an array or an interface. Similarly, for .class … C`2<(!1)T,U> where
we are in the same situation of knowing nothing about the base class/interface definition. end rationale]

 Partition II 27

• Varargs methods cannot be members of generic types

[Rationale: Implementing this feature would take considerable effort. Since varargs has very limited use
among languages targetting the CLI, it was decided to exclude varargs methods from generic types. end
rationale]

• When generic parameters are ignored, there shall be no cycles in the inheritance/interface
hierarchy. To be precise, define a graph whose nodes are possibly-generic (but open) classes and
interfaces, and whose edges are the following:

o If a (possibly-generic) class or interface D extends or implements a class or
interface B, then add an edge from D to B.

o If a (possibly-generic) class or interface D extends or implements an instantiated class
or interface B<type-1, …, type-n>, then add an edge from D to B.

o The graph is valid if it contains no cycles.

[Note: This algorithm is a natural generalization of the rules for non-generic types. See Partition I, §8.9.9
end note]

9.2 Generics and recursive inheritance graphs
[Rationale: Although inheritance graphs cannot be directly cyclic, instantiations given in parent classes or
interfaces may introduce either direct or indirect cyclic dependencies, some of which are allowed (e.g.,
C : IComparable<C>), and some of which are disallowed (e.g., class A<T> : B<A<A<T>>> given class B<U>).
end rationale]
Each type definition shall generate a finite instantiation closure. An instantiation closure is defined as follows:

1. Create a set containing a single generic type definition.

2. Form the closure of this set by adding all generic types referenced in the type signatures of
base classes and implemented interfaces of all types in the set. Include nested instantiations in
this set, so a referenced type Stack<List<T>> actually counts as both List<T> and
Stack<List<T>>.

3. Construct a graph:

• Whose nodes are the formal type parameters of types in the set. Use alpha-renaming as
needed to avoid name clashes.

• If T appears as the actual type argument to be substituted for U in some referenced
type D<…, U, …> add a non-expanding (->) edge from T to U.

• If T appears somewhere inside (but not as) the actual type argument to be substituted
for U in referenced type D<…, U, …> add an expanding (=>) edge from T to U.

An expanding-cycle is a cycle in the instantiation closure that contains at least one expanding-edge
(=>). The instantiation-closure of the system is finite if and only if the graph as constructed above
contains no expanding-cycles.

[Example:
class B<U>
class A<T> : B<A<A<T>>>

generates the edges (using => for expanding-edges and -> for non-expanding-edges)

T -> T (generated by referenced type A<T>)
T => T (generated by referenced type A<A<T>>)
T => U (generated by referenced type B<A<A<T>>>)

This graph does contain an expanding-cycle, so the instantiation closure is infinite. end example]

[Example:
class B<U>
class A<T> : B<A<T>>

28 Partition II

generates the edges

T -> T (generated by referenced type A<T>)
T => U (generated by referenced type B<A<T>>)

This graph does not contain an expanding-cycle, so the instantiation closure is finite. end example]

[Example:
class P<T>
class C<U,V> : P<D<V,U>>
class D<W,X> : P<C<W,X>>

generates the edges

U -> X V -> W U => T V => T (generated by referenced type D<V,U> and P<D<V,U>>)
W -> U X -> V W => T W => T (generated by referenced type C<W,X> and P<C<W,X>>)

This graph contains non-expanding-cycles (e.g. U -> X -> V -> W -> U), but no expanding-cycle, so
the instantiation closure is finite. end example]

9.3 Generic method definitions
A generic method definition is one that includes a generic parameter list. A generic method can be defined
within a non-generic type; or within a generic type, in which case the method’s generic parameter(s) shall be
additional to the generic parameter(s) of the owner. As with generic type definitions, each generic parameter
on a generic method definition has a name and an optional set of constraints.

Generic methods can be static, instance, or virtual. Class or instance constructors (.cctor, or .ctor,
respectively) shall not be generic.

The method generic parameters are in scope in the signature and body of the method, and in the generic
parameter constraints. [Note: The signature includes the method return type. So, in the example:

.method … !!0 M`1<T>() { … }

the !!0 is in scope—it’s the generic parameter of M`1<T> even though it preceeds that parameter in the
declaration.. end note]

Generic instance (virtual and non-virtual) methods can be defined as members of generic types, in which case
the generic parameters of both the generic type and the generic method are in scope in the method signature and
body, and in constraints on method generic parameters.

9.4 Instantiating generic types
GenArgs is used to represent a generic argument list:

GenArgs ::=

 Type [‘,’ Type]* [‘,’]*

We say that a type is closed if it contains no generic parameters; otherwise, it is open.

A given generic type definition can be instantiated with generic arguments to produce an instantiated type.

[Example: Given suitable definitions for the generic class MyList and value type Pair, we could instantiate
them as follows:

newobj instance void class MyList`1<int32>::.ctor()
initobj valuetype Pair`2<int32, valuetype Pair<string,int32>>

end example]

[Example:
ldtoken !0 // !0 = generic parameter 0 in generic type definition
castclass class List`1<!1> // !1 = generic parameter 1 in generic type definition
box !!1 // !!1 = generic parameter 1 in generic method definition

 Partition II 29

end example]

The number of generic arguments in an instantiation shall match the number of generic parameters specified in
the type or method definition.

The CLI does not support partial instantiation of generic types. And generic types shall not appear
uninstantiated anywhere in metadata signature blobs.

The following kinds of type cannot be used as arguments in instantiations (of generic types or methods):

• Byref types (e.g., System.Generic.Collection.List`1<string&> is invalid)

• Value types that contain fields that can point into the CIL evaluation stack (e.g.,
List<System.RuntimeArgumentHandle>)

• void (e.g., List<System.Void> is invalid)

Unmanaged pointer types (e.g., int32*) can be used as generic arguments to generic types and methods.

[Rationale: Byrefs types cannot be used as generic arguments because some, indeed most, instantiations would
be invalid. For example, since byrefs are not allowed as field types or as method return types, in the definition
of List`1<string&>, one could not declare a field of type !0, nor a method that returned a type of !0. end
rationale]

Objects of instantiated types shall carry sufficient information to recover at runtime their exact type (including
the types and number of their generic arguments). [Rationale: This is required to correctly implement casting
and instance-of testing, as well as in reflection capabilities (System.Object::GetType). end rationale]

9.5 Generics variance
The CLI supports covariance and contravariance of generic parameters, but only in the signatures of interfaces
and delegate classes.

The symbol “+” is used in the syntax of §10.1.7 to denote a covariant generic parameter, while “-” is used to
denote a contravariant generic parameter

This block contains only informative text
Suppose we have a generic interface, which is covariant in its one generic parameter; e.g., IA`1<+T>. Then all
instantiations satisfy IA`1<GenArgB> := IA`1<GenArgA>, so long as GenArgB := GenArgA using the notion from
assignment compatibility. So, for example, an instance of type IA`1<string> can be assigned to a local of type
type IA`1<object>.

Generic contravariance operates in the opposite sense: supposing that we have a contravariant interface IB`1<-
T>, then IB`1<GenArgB> := IB`1<GenArgA>, so long as GenArgA := GenArgB.

[Example: (The syntax used is illustrative of a high-level language.)
// Covariant parameters can be used as result types
interface IEnumerator<+T> {
 T Current { get; }
 bool MoveNext();
}

// Covariant parameters can be used in covariant result types
interface IEnumerable<+T> {
 IEnumerator<T> GetEnumerator();
}

// Contravariant parameters can be used as argument types
interface IComparer<-T> {
 bool Compare(T x, T y);
}

// Contravariant parameters can be used in contravariant interface types
interface IKeyComparer<-T> : IComparer<T> {
 bool Equals(T x, T y);
 int GetHashCode(T obj);
}

30 Partition II

// A contravariant delegate type
delegate void EventHandler<-T>(T arg);

// No annotation indicates non-variance. Non-variant parameters can be used anywhere.
// The following type shall be non-variant because T appears in as a method argument as
// well as in a covariant interface type
interface ICollection<T> : IEnumerable<T> {
 void CopyTo(T[] array, int index);
 int Count { get; }
}

end example]

End informative text

9.6 Assignment compatibil ity of instantiated types

• Assignment compatibility is defined in Partition I.

[Example:

Assuming Employee := Manager,
IEnumerable<Manager> eManager = ...
IEnumerable<Employee> eEmployee = eManager; // Covariance
IComparer<object> objComp = ...
IComparer<string> strComp = objComp; // Contravariance
EventHandler<Employee> employeeHandler = ...
EventHandler<Manager> managerHandler = employeeHandler; // Contravariance

end example]

 [Example: Given the following:
interface IConverter<-T,+U> {
 U Convert(T x);
}

IConverter<string, object> := IConverter<object, string>

Given the following:
delegate U Function<-T,+U>(T arg);

Function<string, object> := Function<object, string>. end example]

[Example:
IComparer<object> objComp = ...
// Contravariance and interface inheritance
IKeyComparer<string> strKeyComp = objComp;

IEnumerable<string[]> strArrEnum = …
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object[]> objArrEnum = strArrEnum;

IEnumerable<string>[] strEnumArr = ...
// Covariance on IEnumerable and covariance on arrays
IEnumerable<object>[] objEnumArr = strEnumArr;

IComparer<object[]> objArrComp = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string[]> strArrComp = objArrComp;

IComparer<object>[] objCompArr = ...
// Contravariance on IComparer and covariance on arrays
IComparer<string>[] strCompArr = objCompArr;

end example]

 Partition II 31

9.7 Validity of member signatures
To achieve type safety, it is necessary to impose additional requirements on the well-formedness of signatures
of members of covariant and contravariant generic types.

This block contains only informative text
• Covariant parameters can only appear in “producer,” “reader,” or “getter” positions in the type

definition; i.e., in

o result types of methods

o inherited interfaces

• Contravariant parameters can only appear in “consumer,” “writer,” or “setter” positions in the
type definition; i.e., in

o argument types of methods

• NonVariant parameters can appear anywhere.

End informative text
We now define formally what it means for a co/contravariant generic type definition to be valid.

Generic type definition: A generic type definition G<var_1 T_1, …, var_n T_n> is valid if G is an interface or
delegate type, and each of the following holds, given S = <var_1 T_1, …, var_n T_n>, where var_n is +, -, or
nothing:

• Every instance method and virtual method declaration is valid with respect to S

• Every inherited interface declaration is valid with respect to S

• There are no restrictions on static members, instance constructors, or on the type’s own generic
parameter constraints.

Given the annotated generic parameters S = <var_1 T_1, …, var_n T_n>, we define what it means for various
components of the type definition to be valid with respect to S. We define a negation operation on annotations,
written –S, to mean “flip negatives to positives, and positives to negatives”.

Think of

• “valid with respect to S” as “behaves covariantly”

• “valid with respect to –S” as “behaves contravariantly”

• “valid with respect to S and to –S” as “behaves non-variantly”.

Note that the last of these has the effect of prohibiting covariant and contravariant parameters from a type; i.e.,
all generic parameters appearing shall be non-variant.

Methods. A method signature t meth(t_1,…,t_n) is valid with respect to S if

• its result type signature t is valid with respect to S; and

• each argument type signature t_i is valid with respect to –S.

• each method generic parameter constraint type t_j is valid with respect to –S.

[Note: In other words, the result behaves covariantly and the arguments behave contravariantly. Constraints on
generic parameters also behave contravariantly. end note]

Type signatures. A type signature t is valid with respect to S if it is

• a non-generic type (e.g., an ordinary class or value type)

• a generic parameter T_i for which var_i is + or none (i.e., it is a generic parameter that is marked
covariant or non-variant)

32 Partition II

• an array type u[] and u is valid with respect to S; i.e., array types behave covariantly

• a closed generic type G<t_1,…,t_n> for which each

o t_i is valid with respect to S, if the i’th parameter of G is declared covariant

o t_i is valid with respect to –S, if the i’th parameter of G is declared contravariant

o t_i is valid with respect to S and with respect to –S, if the i’th parameter of G is
declared non-variant.

9.8 Signatures and binding
Members (fields and methods) of a generic type are referenced in CIL instructions using a metadata token,
which specifies an entry in the MemberRef table (§22.25). Abstractly, the reference consists of two parts:

1. The type in which the member is declared, in this case, an instantiation of the generic type
definition. For example: IComparer`1<String>.

2. The name and generic (uninstantiated) signature of the member. For example: int32
Compare(!0,!0).

It is possible for distinct members to have identical types when instantiated, but which can be distinguished by
MemberRef.

[Example:
.class public C`2<S,T> {
 .field string f
 .field !0 f
 .method instance void m(!0 x) {...}
 .method instance void m(!1 x) {...}
 .method instance void m(string x) {...}
}

The closed type C`2<string,string> is valid: it has three methods called m, all with the same parameter type;
and two fields called f with the same type. They are all distinguished through the MemberRef encoding
described above:

string C`2<string, string>::f
!0 C<string, string>::f
void C`2<string, string>::m(!0)
void C`2<string, string>::m(!1)
void C`2<string, string>::m(string)

The way in which a source language might resolve this kind of overloading is left to each individual language.
For example, many might disallow such overloads.

end example]

9.9 Inheritance and overriding
Member inheritance is defined in Partition I, in “Member Inheritance”. (Overriding and hiding are also defined
in that partition, in “Hiding, overriding, and layout”.) This definition is extended, in an obvious manner, in the
presence of generics. Specifically, in order to determine whether a member hides (for static or instance
members) or overrides (for virtual methods) a member from a base class or interface, simply substitute each
generic parameter with its generic argument, and compare the resulting member signatures. [Example: The
following illustrates this point:

Suppose the following definitions of a base class B, and a derived class D.
.class B
{ .method public virtual void V(int32 i) { … } }

.class D extends B
{ .method public virtual void V(int32 i) { … } }

In class D, D.V overrides the inherited method B.V, because their names and signatures match.

 Partition II 33

How does this simple example extend in the presence of generics, where class D derives from a generic
instantiation? Consider this example:
.class B`1<T>
{ .method public virtual void V(!0) { … } }

.class D extends B`1<int32>
{ .method public virtual void V(int32) { … } }

.class E extends B`1<string>
{ .method public virtual void V(int32) { … } }

Class D derives from B<int32>. And class B<int32> defines the method:
 public virtual void V(int32 t) { … }

where we have simply substituted B’s generic parameter T, with the specific generic argument int32. This
matches the method D.V (same name and signature). Thus, for the same reasons as in the non-generic example
above, it’s clear that D.V overrides the inherited method B.V.

Contrast this with class E, which derives from B<string>. In this case, substituting B’s T with string, we see
that B.V has this signature:

 public virtual void V(string t) { … }

This signature differs from method E.V, which therefore does not override the base class’s B.V method.

end example]

Type definitions are invalid if, after substituting base class generic arguments, two methods result in the same
name and signature (including return type). The following illustrates this point:

[Example:
.class B`1<T>
{ .method public virtual void V(!0 t) { … }
 .method public virtual void V(string x) { … }
}

.class D extends B`1<string> { } // Invalid

Class D is invalid, because it will inherit from B<string> two methods with identical signatures:
void V(string)

However, the following version of D is valid:
.class D extends B`1<string>
{ .method public virtual void V(string t) { … }
 .method public virtual void W(string t)
 { …
 .override method instance void class B`1<string>::V(!0)
 …
 }
}

end example]

When overriding generic methods (that is, methods with their own generic parameters) the number of generic
parameters shall match exactly those of the overridden method. If an overridden generic method has one or
more constraints on its generic arguments then:

• The overriding method can have constraints only on the same generic arguments;

• Any such constraint on a generic argument specified by the overriding method shall be no more
restrictive than the constraint specified by the overridden method for the same generic argument;

 [Note: Within the body of an overriding method, only constraints directly specified in its signature apply.
When a method is invoked, it’s the constraints associated with the metadata token in the call or callvirt
instruction that are enforced. end note]

34 Partition II

9.10 Explicit method overrides
A type, be it generic or non-generic, can implement particular virtual methods (whether the method was
introduced in an interface or base class) using an explicit override. (See §10.3.2 and §15.1.4.)

The rules governing overrides are extended, in the presence of generics, as follows:

• If the implementing method is part of a non-generic type or a closed generic type, then the
declaring method shall be part of a base class of that type or an interface implemented by that
type. [Example:
.class interface I`1<T>
{ .method public abstract virtual void M(!0) {}
}

.class C implements class I`1<string>
{ .override method instance void class I`1<string>::M(!0) with
 method instance void class C::MInC(string)
 .method virtual void MInC(string s)
 { ldstr "I.M"
 call void [mscorlib]System.Console::WriteLine(string)
 ret
 }
}

end example]

• If the implementing method is generic, then the declared method shall also be generic and shall
have the same number of method generic parameters.

Neither the implementing method nor the declared method shall be an instantiated generic method. This
means that an instantiated generic method cannot be used to implement an interface method, and that it is
not possible to provide a special method for instantiating a generic method with specific generic
parameters.
[Example: Given the following
 .class interface I
{ .method public abstract virtual void M<T>(!!0) {}
 .method public abstract virtual void N() {}
}

neither of the following .override statements is allowed

.class C implements class I`1<string>
{ .override class I::M<string> with instance void class C::MInC(string)
 .override class I::N with instance void class C::MyFn<string>
 .method virtual void MInC(string s) { … }
 .method virtual void MyFn<T>() { … }
}
end example]

9.11 Constraints on generic parameters
A generic parameter declared on a generic class or generic method can be constrained by one or more types
(for encoding, see GenericParamConstraint table in §22.21) and by one or more special constraints (§10.1.7).
Generic parameters can be instantiated only with generic arguments that are assignment compatible (when
boxed) with each of the declared constraints and that satisfy all specified special constraints.

Generic parameter constraints shall have at least the same visibility as the generic type definition or generic
method definition itself.

[Note: There are no other restrictions on generic parameter constraints. In particular, the following uses are
valid: Constraints on generic parameters of generic classes can make recursive reference to the generic
parameters, and even to the class itself.

.class public Set`1<(class IComparable<!0>) T> { … }

// can only be instantiated by a derived class!
.class public C`1<(class C<!0>) T> {}

 Partition II 35

.class public D extends C`1<class D> { … }

Constraints on generic parameters of generic methods can make recursive reference to the generic
parameters of both the generic method and its enclosing class (if generic). The constraints can also
reference the enclosing class itself.

.class public A`1<T> {
 .method public void M<(class IDictionary<!0,!!0>) U>() {}
}

Generic parameter constraints can be generic parameters or non-generic types such as arrays.
.class public List`1<T> {
 // The constraint on U is T itself
 .method public void AddRange<(!0) U>(class IEnumerable`1<!!0> items) { … }
}

 end note]

Generic parameters can have multiple constraints: to inherit from at most one base class (if none is specified,
the CLI defaults to inheriting from System.Object); and to implement zero or more interfaces. (The syntax for
using constraints with a class or method is defined in §10.1.7.) [Example:

The following declaration shows a generic class OrderedSet<T>, in which the generic parameter T is
constrained to inherit both from the class Employee, and to implement the interface IComparable<T>:

.class OrderedSet`1<(Employee, class [mscorlib]System.IComparable`1<!0>) T> { … }

end example]

[Note: Constraints on a generic parameter only restrict the types that the generic parameter may be instantiated
with. Verification (see Partition III) requires that a field, property or method that a generic parameter is known
to provide through meeting a constraint, cannot be directly accessed/called via the generic parameter unless it is
first boxed (see Partition III) or the callvirt instruction is prefixed with the constrained. prefix instruction (see
Partition III). end note]

This block contains only informative text

9.12 References to members of generic types
CIL instructions that reference type members are generalized to permit reference to members of instantiated
types.

The number of generic arguments specified in the reference shall match the number specified in the
definition of the type.

CIL instructions that reference methods are generalized to permit reference to instantiated generic methods.

End informative text

36 Partition II

10 Defining types
Types (i.e., classes, value types, and interfaces) can be defined at the top-level of a module:

Decl ::=

 .class ClassHeader ‘{’ ClassMember* ‘}’

| …

The logical metadata table created by this declaration is specified in §22.37.

[Rationale: For historical reasons, many of the syntactic categories used for defining types incorrectly use
“class” instead of “type” in their name. All classes are types, but “types” is a broader term encompassing value
types, and interfaces as well. end rationale]

10.1 Type header (ClassHeader)
A type header consists of

• any number of type attributes,

• optional generic parameters

• a name (an Id),

• a base type (or base class type), which defaults to [mscorlib]System.Object, and

• an optional list of interfaces whose contract this type and all its descendent types shall satisfy.

ClassHeader ::=

 ClassAttr* Id [‘<’ GenPars ‘>’] [extends TypeSpec [implements TypeSpec] [‘,’
TypeSpec]*]

The optional generic parameters are used when defining a generic type (§10.1.7).

The extends keyword specifies the base type of a type. A type shall extend from exactly one other type. If no
type is specified, ilasm will add an extends clause to make the type inherit from System.Object.

The implements keyword specifies the interfaces of a type. By listing an interface here, a type declares that
all of its concrete implementations will support the contract of that interface, including providing
implementations of any virtual methods the interface declares. See also §11 and §12.

[Example: This code declares the class CounterTextBox, which extends the class
System.Windows.Forms.TextBox in the assembly System.Windows.Forms, and implements the interface
CountDisplay in the module Counter of the current assembly. The attributes private, auto and autochar
are described in the following subclauses.

.class private auto autochar CounterTextBox
 extends [System.Windows.Forms]System.Windows.Forms.TextBox
 implements [.module Counter]CountDisplay
{ // body of the class
}

end example]

A type can have any number of custom attributes attached. Custom attributes are attached as described in §21.
The other (predefined) attributes of a type can be grouped into attributes that specify visibility, type layout
information, type semantics information, inheritance rules, interoperation information, and information on
special handling. The following subclauses provide additional information on each group of predefined
attributes.

ClassAttr ::= Description Clause

 Partition II 37

ClassAttr ::= Description Clause

 abstract Type is abstract. 10.1.4

| ansi Marshal strings to platform as ANSI. 10.1.5

| auto Layout of fields is provided automatically. 10.1.2

| autochar Marshal strings to platform as ANSI or Unicode
(platform-specific).

10.1.5

| beforefieldinit Need not initialize the type before a static method is
called.

10.1.6

| explicit Layout of fields is provided explicitly. 10.1.2

| interface Declares an interface. 10.1.3

| nested assembly Assembly accessibility for nested type. 10.1.1

| nested famandassem Family and assembly accessibility for nested type. 10.1.1

| nested family Family accessibility for nested type. 10.1.1

| nested famorassem Family or assembly accessibility for nested type. 10.1.1

| nested private Private accessibility for nested type. 10.1.1

| nested public Public accessibility for nested type. 10.1.1

| private Private visibility of top-level type. 10.1.1

| public Public visibility of top-level type. 10.1.1

| rtspecialname Special treatment by runtime. 10.1.6

| sealed The type cannot be derived from. 10.1.4

| sequential Layout of fields is sequential. 10.1.2

| serializable Reserved (to indicate this type can be serialized). 10.1.6

| specialname Might get special treatment by tools. 10.1.6

| unicode Marshal strings to platform as Unicode. 10.1.5

10.1 .1 Visibi l ity and accessibi l i ty attributes

ClassAttr ::= …

| nested assembly

| nested famandassem

| nested family

| nested famorassem

| nested private

| nested public

| private

| public

See Partition I. A type that is not nested inside another type shall have exactly one visibility (private or
public) and shall not have an accessiblity. Nested types shall have no visibility, but instead shall have
exactly one of the accessibility attributes nested assembly, nested famandassem, nested

38 Partition II

family, nested famorassem, nested private, or nested public. The default visibility for top-
level types is private. The default accessibility for nested types is nested private.

10.1 .2 Type layout attributes

ClassAttr ::= …

| auto

| explicit

| sequential

The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one
layout attribute specified. By convention, ilasm supplies auto if no layout attribute is specified. The layout
attributes are:

auto: The layout shall be done by the CLI, with no user-supplied constraints.

explicit: The layout of the fields is explicitly provided (§10.7). However, a generic type shall not have
explicit layout.

sequential: The CLI shall lay out the fields in sequential order, based on the order of the fields in the
logical metadata table (§22.15).

[Rationale: The default auto layout should provide the best layout for the platform on which the code is
executing. sequential layout is intended to instruct the CLI to match layout rules commonly followed by
languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable
layout. explicit layout allows the CIL generator to specify the precise layout semantics. end rationale]

10.1 .3 Type semantics attributes

ClassAttr ::= …

| interface

The type semantic attributes specify whether an interface, class, or value type shall be defined. The
interface attribute specifies an interface. If this attribute is not present and the definition extends (directly
or indirectly) System.ValueType, and the definition is not for System.Enum, a value type shall be defined (§13).
Otherwise, a class shall be defined (§11).

[Example:
.class interface public abstract auto ansi ’System.IComparable’ { … }

System.IComparable is an interface because the interface attribute is present.
.class public sequential ansi serializable sealed beforefieldinit
 ’System.Double’ extends System.ValueType implements System.IComparable,
 … { … }

System.Double directly extends System.ValueType; System.Double is not the type System.Enum; so
System.Double is a value type.

.class public abstract auto ansi serializable beforefieldinit ’System.Enum’
 extends System.ValueType implements System.IComparable, … { … }

Although System.Enum directly extends System.ValueType, System.Enum is not a value type, so it is a class.
.class public auto ansi serializable beforefieldinit ’System.Random’
 extends System.Object { … }

System.Random is a class because it is not an interface or a value type.

end example]

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)

 Partition II 39

10.1 .4 Inheritance attributes

ClassAttr ::= …

| abstract

| sealed

Attributes that specify special semantics are abstract and sealed. These attributes can be used together.

abstract specifies that this type shall not be instantiated. If a type contains abstract methods, that type
shall be declared as an abstract type.

sealed specifies that a type shall not have derived classes. All value types shall be sealed.

[Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden.
Framework authors should use sealed classes sparingly since they do not provide a convenient building block
for user extensibility. Sealed classes can be necessary when the implementation of a set of virtual methods for
a single class (typically multiple interfaces) becomes interdependent or depends critically on implementation
details not visible to potential derived classes.

A type that is both abstract and sealed should have only static members, and serves as what some
languages call a “namespace” or “static class”. end rationale]

10.1 .5 Interoperation attributes

ClassAttr ::= …

| ansi

| autochar

| unicode

These attributes are for interoperation with unmanaged code. They specify the default behavior to be used
when calling a method (static, instance, or virtual) on the class, that has an argument or return type of
System.String and does not itself specify marshalling behavior. Only one value shall be specified for any
type, and the default value is ansi. The interoperation attributes are:

ansi specifies that marshalling shall be to and from ANSI strings.

autochar specifies marshalling behavior (either ANSI or Unicode), depending on the platform on which the
CLI is running.

unicode specifies that marshalling shall be to and from Unicode strings.

In addition to these three attributes, §23.1.15 specifies an additional set of bit patterns (CustomFormatClass and
CustomStringFormatMask), which have no standardized meaning. If these bits are set, but an implementation
has no support for them, a System.NotSupportedException is thrown.

10.1 .6 Special handling attributes

ClassAttr ::= …

| beforefieldinit

| rtspecialname

| serializable

| specialname

These attributes can be combined in any way.

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called. See
§10.5.3.

40 Partition II

rtspecialname indicates that the name of this item has special significance to the CLI. There are no
currently defined special type names; this is for future use. Any item marked rtspecialname shall also be
marked specialname.

serializable Reserved for future use, to indicate that the fields of the type are to be serialized into a data
stream (should such support be provided by the implementation).

specialname indicates that the name of this item can have special significance to tools other than the CLI.
See, for example, Partition I .

[Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that. The
converse is not true. end rationale]

10.1 .7 Generic parameters (GenPars)

Generic parameters are included when defining a generic type.

GenPars ::=

 GenPar [‘,’ GenPars]

The GenPar non-terminal has the following production:

GenPar::=

 [[GenParAttribs]* [‘(’ [GenConstraints] ‘)’] Id

GenParAttribs::=

 ‘+’

| ‘-’

| class

| valuetype

| .ctor

+ denotes a covariant generic parameter (§9.5).

- denotes a contravariant generic parameter (§9.5).

class is a special-purpose constraint that constrains Id to being a reference type. [Note: This includes type
parameters which are themselves constrained to be reference types through a class or base type constraint. end
note]

valuetype is a special-purpose constraint that constrains Id to being a value type, except that that type shall
not be System.Nullable<T> or any concrete closed type of System.Nullable<T>. [Note: This includes type
parameters which are themselves constrained to be value types. end note]

.ctor is a special-purpose constraint that constrains Id to being a concrete reference type (i.e., not abstract)
that has a public constructor taking no arguments (the default constructor), or to being a value type. [Note: This
includes type parameters which are, themselves, constrained either to be concrete reference types, or to being a
value type. end note]

class and valuetype shall not both be specified for the same Id.

[Example:
.class C< + class .ctor (class System.IComparable<!0>) T > { … }

This declares a generic class C<T>, which has a covariant generic parameter named T. T is constrained such that

 Partition II 41

it must implement System.IComparable<T>, and must be a concrete class with a public default constructor. end
example]

Finally, the GenConstraints non-terminal has the following production:

GenConstraints ::=

 Type [‘,’ GenConstraints]

There shall be no duplicates of Id in the GenPars production.

[Example: Given appropriate definitions for interfaces I1 and I2, and for class Base, the following code defines
a class Dict that has two generic parameters, K and V, where K is constrained to implement both interfaces I1
and I2, and V is constrained to derive from class Base:

.class Dict`2<(I1,I2)K, (Base)V> { … }

end example]

The following table shows the valid combinations of type and special constraints for a representative set of
types. The first set of rows (Type Constraint System.Object) applies either when no base class constraint is
specified or when the base class constraint is System.Object. The symbol 9 means “set”, the symbol 8 means
“not set”, and the symbol * means “either set or not set” or “don’t care”.

Special Constraint Type Constraint

class valuetype .ctor

Meaning

8 8 8 Any type

9 8 8 Any reference type

9 8 9 Any reference type having a default
constructor

8 9 * Any value type except
System.Nullable<T>

8 8 9 Any type with a public default
constructor

(System.Object)

9 9 * Invalid

8 8 9 Any value type including
System.Nullable<T>

8 9 * Any value type except
System.Nullable<T>

8 8 8 Any value type and System.ValueType,
and System.Enum

9 8 8 System.ValueType and System.Enum
only

9 8 9 Not meaningful: Cannot be
instantiated (no instantiable reference
type can derived from
System.ValueType)

System.ValueType

9 9 * Invalid

System.Enum 8 8 9 Any enum type

42 Partition II

8 9 *

8 8 8 Any enum type and System.Enum

9 8 8 System.Enum only

9 8 9 Not meaningful: Cannot be
instantiated (no instantiable reference
type can be derived from System.Enum)

9 9 * Invalid

8 8 8 Any System.Nullable<T> or other type
implementing interface

8 8 9 Any System.Nullable<T> or other type
implementing interface with default
constructor

9 8 8 Any reference type implementing
System.INullableValue (note: this
excludes System.Nullable<T>)

9 8 9 Any reference type implementing
System.INullableValue with a default
constructor (note: this excludes
System.Nullable<T>)

8 9 * Any valuetype implementing
System.INullableValue (note: this
includes System.Nullable<T>)

System.INullableValue

9 9 * Invalid

8 8 8 System.Exception, or any class derived
from System.Exception

8 8 9 Any System.Exception with a public
default constructor

9 8 8 System.Exception, or any class derived
from System.Exception. This is exactly
the same result as if the class
constraint was not specified

9 8 9 Any Exception with a public default
constructor. This is exactly the same
result as if the class constraint was not
specified

8 9 * Not meaningful: Cannot be
instantiated (a value type cannot be
derived from a reference type)

System.Exception (an
example of any non-special

reference Type)

9 9 * Invalid

8 8 8 System.Delegate, or any class derived
from System.Delegate

System.Delegate

8 8 9 Not meaningful: Cannot be
instantiated (there is no default
constructor)

 Partition II 43

9 8 8 System.Delegate, or any class derived
from System.Delegate

9 8 9 Any Delegate with a public .ctor.
Invalid for known delegates
(System.Delegate)

8 9 * Not meaningful: Cannot be
instantiated (a value type cannot be
derived from a reference type)

9 9 * Invalid

8 8 8 Any array

* 8 9 Not meaningful: Cannot be
instantiated (no default constructor)

9 8 8 Any array

8 9 * Not meaningful: Cannot be
instantiated (a value type cannot be
derived from a reference type)

System.Array

9 9 * Invalid

[Example: The following instantiations are allowed or disallowed, based on the constraint. In all of these
instances, the declaration itself is allowed. Items marked Invalid indicate where the attempt to instantiate the
specified type fails verification, while those marked Valid do not.

.class public auto ansi beforefieldinit Bar`1<valuetype T>

Valid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit 'Bar`1'<class T>

Invalid ldtoken class Bar`1<int32>

Valid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Valid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit Bar`1<(class
 [mscorlib]System.ValueType) T>

Valid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Valid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Valid ldtoken class Bar`1<class [mscorlib]System.ValueType>

.class public auto ansi beforefieldinit Bar`1<class (int32)> T>

Invalid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

44 Partition II

Note: This type cannot be instantiated as no reference type can extend int32

.class public auto ansi beforefieldinit Bar`1<valuetype
 (class [mscorlib]System.Exception)> T>

Invalid ldtoken class Bar`1<int32>

Invalid ldtoken class Bar`1<class [mscorlib]System.Exception>

Invalid ldtoken class Bar`1<valuetype [mscorlib]System.Nullable`1<int32>>

Invalid ldtoken class Bar`1<class [mscorlib]System.ValueType>

Note: This type cannot be instantiated as no value type can extend System.Exception

.class public auto ansi beforefieldinit Bar`1<.ctor (class Foo) T>

where Foo has no public .ctor, but FooBar, which derives from Foo, has a public .ctor:
Invalid ldtoken class Bar`1<class Foo>

Valid ldtoken class Bar`1<class FooBar>

end example]

10.2 Body of a type definition
A type can contain any number of further declarations. The directives .event, .field, .method, and
.property are used to declare members of a type. The directive .class inside a type declaration is used to
create a nested type, which is discussed in further detail in §10.6.

ClassMember ::= Description Clause

 .class ClassHeader ‘{’ ClassMember* ‘}’ Defines a nested type. 10.6

| .custom CustomDecl Custom attribute. 21

| .data DataDecl Defines static data
associated with the type.

16.3

| .event EventHeader ‘{’ EventMember* ‘}’ Declares an event. 18

| .field FieldDecl Declares a field belonging
to the type.

16

| .method MethodHeader ‘{’ MethodBodyItem* ‘}’ Declares a method of the
type.

15

| .override TypeSpec ‘::’ MethodName with
CallConv Type TypeSpec ‘::’ MethodName ‘(’
Parameters ‘)’

Specifies that the first
method is overridden by
the definition of the
second method.

10.3.2

| .pack Int32 Used for explicit layout of
fields.

10.7

| .param type ‘[’ Int32 ‘]’ Specifies a type parameter
for a generic type; for use
in associating a custom
attribute with that type
parameter.

15.4.1.5

| .property PropHeader ‘{’ PropMember* ‘}’ Declares a property of the
type.

17

| .size Int32 Used for explicit layout of
fields.

10.7

| ExternSourceDecl Source line information. 5.7

 Partition II 45

ClassMember ::= Description Clause

| SecurityDecl Declarative security
permissions.

20

10.3 Introducing and overriding virtual methods
A virtual method of a base type is overridden by providing a direct implementation of the method (using a
method definition, see §15.4) and not specifying it to be newslot (§15.4.2.3). An existing method body can
also be used to implement a given virtual declaration using the .override directive (§10.3.2).

10.3 .1 Introducing a virtual method

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (§15.4). The definition
can be marked newslot to always create a new virtual method for the defining class and any classes derived
from it:

• If the definition is marked newslot, the definition always creates a new virtual method, even if
a base class provides a matching virtual method. A reference to the virtual method via the class
containing the method definition, or via a class derived from that class, refers to the new
definition (unless hidden by a newslot definition in a derived class). Any reference to the
virtual method not via the class containing the method definition, nor via its derived classes,
refers to the original definition.

• If the definition is not marked newslot, the definition creates a new virtual method only if there
is not virtual method of the same name and signature inherited from a base class.

It follows that when a virtual method is marked newslot, its introduction will not affect any existing
references to matching virtual methods in its base classes.

10.3 .2 The .override direct ive

The .override directive specifies that a virtual method shall be implemented (overridden), in this type, by a
virtual method with a different name, but with the same signature. This directive can be used to provide an
implementation for a virtual method inherited from a base class, or a virtual method specified in an interface
implemented by this type. The .override directive specifies a Method Implementation (MethodImpl) in the
metadata (§15.1.4).

ClassMember ::= Clause

 .override TypeSpec ‘::’ MethodName with CallConv Type TypeSpec ‘::’
MethodName ‘(’ Parameters ‘)’

 .override method CallConv Type TypeSpec ‘::’ MethodName GenArity ‘(’
Parameters ‘)’ with method CallConv Type TypeSpec ‘::’ MethodName GenArity
‘(’ Parameters ‘)’

| … 10.2

GenArity ::= [‘<’ ‘[’ Int32 ‘]’ ‘>’]

Int32 is the number of generic parameters.

The first TypeSpec::MethodName pair specifies the virtual method that is being overridden, and shall be either
an inherited virtual method or a virtual method on an interface that the current type implements. The remaining
information specifies the virtual method that provides the implementation.

46 Partition II

While the syntax specified here (as well as the actual metadata format (§22.27)) allows any virtual method to
be used to provide an implementation, a conforming program shall provide a virtual method actually
implemented directly on the type containing the .override directive.

[Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the
VES. end rationale]

[Example: The following shows a typical use of the .override directive. A method implementation is
provided for a method declared in an interface (see §12).

.class interface I
{ .method public virtual abstract void M() cil managed {}
}

.class C implements I
{ .method virtual public void M2()
 { // body of M2
 }
 .override I::M with instance void C::M2()
}

The .override directive specifies that the C::M2 body shall provide the implementation of be used to
implement I::M on objects of class C.

end example]

10.3 .3 Accessibi l i ty and overriding

If the strict flag (§23.1.10) is specified then only accessible virtual methods can be overridden.

If a type overrides an inherited method through means other than a MethodImpl, it can widen, but it shall not
narrow, the accessibility of that method. As a principle, if a client of a type is allowed to access a method of
that type, then it should also be able to access that method (identified by name and signature) in any derived
type. Table 7.1 specifies narrow and widen in this context—a “Yes” denotes that the derived class can apply
that accessibility, a “No” denotes it is invalid.

If a type overrides an inherited method via a MethodImpl, it can widen or narrow the accessibility of that
method.

Table 7.1: Valid Widening of Access to a Virtual Method

Derived
class\Base type
Accessibility

Compiler-
controlled

private family assembly famandassem famorassem public

Compiler-
controlled

See note 3 No No No No No No

private See note 3 Yes No No No No No

family See note 3 Yes Yes No Yes See note 1 No

assembly See note 3 Yes No See note 2 See note 2 No No

famandassem See note 3 Yes No No See note 2 No No

famorassem See note 3 Yes Yes See note 2 Yes Yes No

public See note 3 Yes Yes Yes Yes Yes Yes

1 Yes, provided both are in different assemblies; otherwise, No.
2 Yes, provided both are in the same assembly; otherwise, No.
3 Yes, provided both are in the same module; otherwise, No.

[Note: A method can be overridden even if it might not be accessed by the derived class.

 Partition II 47

If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a
method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed
outside the assembly. In both cases assembly or famandassem, respectively, can be used inside the same
assembly. end note]

A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is
apparently narrowed by the derived class. A famorassem method can be overridden with family
accessibility by a type in another assembly.

[Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify
that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an
accessibility of public, which would force widening of access even when it is not desired. As a compromise,
the minor narrowing of “family” alone is permitted. end rationale]

10.4 Method implementation requirements
A type (concrete or abstract) can provide

• implementations for instance, static, and virtual methods that it introduces

• implementations for methods declared in interfaces that it has specified it will implement, or that
its base type has specified it will implement

• alternative implementations for virtual methods inherited from its base class

• implementations for virtual methods inherited from an abstract base type that did not provide an
implementation

A concrete (i.e., non-abstract) type shall provide, either directly or by inheritance, an implementation for

• all methods declared by the type itself

• all virtual methods of interfaces implemented by the type

• all virtual methods that the type inherits from its base type

10.5 Special members
There are three special members, all of which are methods that can be defined as part of a type: instance
constructors, instance finalizers, and type initializers.

10.5 .1 Instance constructor

An instance constructor initializes an instance of a type, and is called when an instance of a type is created by
the newobj instruction (see Partition III). An instance constructor shall be an instance (not static or virtual)
method, it shall be named .ctor, and marked instance, rtspecialname, and specialname
(§15.4.2.6). An instance constructor can have parameters, but shall not return a value. An instance constructor
cannot take generic type parameters. An instance constructor can be overloaded (i.e., a type can have several
instance constructors). Each instance constructor for a type shall have a unique signature. Unlike other
methods, instance constructors can write into fields of the type that are marked with the initonly attribute
(§16.1.2).

[Example: The following shows the definition of an instance constructor that does not take any parameters:
.class X {
 .method public rtspecialname specialname instance void .ctor() cil managed
 { .maxstack 1
 // call super constructor
 ldarg.0 // load this pointer
 call instance void [mscorlib]System.Object::.ctor()
 // do other initialization work
 ret
 }
}

48 Partition II

end example]

10.5 .2 Instance f inal izer

The behavior of finalizers is specified in Partition I. The finalize method for a particular type is specified by
overriding the virtual method Finalize in System.Object.

10.5 .3 Type init ia l izer

A type (class, interface, or value type) can contain a special method called a type initializer, which is used to
initialize the type itself. This method shall be static, take no parameters, return no value, be marked with
rtspecialname and specialname (§15.4.2.6), and be named .cctor.

Like instance constructors, type initializers can write into static fields of their type that are marked with the
initonly attribute (§16.1.2).

[Example: The following shows the definition of a type initializer:
.class public EngineeringData extends [mscorlib]System.Object
{
.field private static initonly float64[] coefficient
.method private specialname rtspecialname static void .cctor() cil managed
 {
 .maxstack 1

 // allocate array of 4 Double
 ldc.i4.4
 newarr [mscorlib]System.Double
 // point initonly field to new array
 stsfld float64[] EngineeringData::coefficient
 // code to initialize array elements goes here
 ret
 }
}

end example]

[Note: Type initializers are often simple methods that initialize the type’s static fields from stored constants or
via simple computations. There are, however, no limitations on what code is permitted in a type initializer. end
note]

10.5 .3.1 Type init ia l izat ion guarantees

The CLI shall provide the following guarantees regarding type initialization (but see also §10.5.3.2 and
§10.5.3.3):

1. As to when type initializers are executed is specified in Partition I.

2. A type initializer shall be executed exactly once for any given type, unless explicitly called by
user code.

3. No methods other than those called directly or indirectly from the type initializer are able to
access members of a type before its initializer completes execution.

10.5 .3.2 Relaxed guarantees

A type can be marked with the attribute beforefieldinit (§10.1.6) to indicate that the guarantees
specified in §10.5.3.1 are not necessarily required. In particular, the final requirement above need not be
provided: the type initializer need not be executed before a static method is called or referenced.

[Rationale: When code can be executed in multiple application domains it becomes particularly expensive to
ensure this final guarantee. At the same time, examination of large bodies of managed code have shown that
this final guarantee is rarely required, since type initializers are almost always simple methods for initializing
static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether

 Partition II 49

this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees.
end rationale]

10.5 .3.3 Races and deadlocks

In addition to the type initialization guarantees specified in §10.5.3.1, the CLI shall ensure two further
guarantees for code that is called from a type initializer:

1. Static variables of a type are in a known state prior to any access whatsoever.

2. Type initialization alone shall not create a deadlock unless some code called from a type
initializer (directly or indirectly) explicitly invokes blocking operations.

[Rationale: Consider the following two class definitions:
.class public A extends [mscorlib]System.Object
{ .field static public class A a
 .field static public class B b
 .method public static rtspecialname specialname void .cctor ()
 { ldnull // b=null
 stsfld class B A::b
 ldsfld class A B::a // a=B.a
 stsfld class A A::a
 ret
 }
}

.class public B extends [mscorlib]System.Object
{ .field static public class A a
 .field static public class B b
 .method public static rtspecialname specialname void .cctor ()
 { ldnull // a=null
 stsfld class A B::a
 ldsfld class B A::b // b=A.b
 stsfld class B B::b
 ret
 }
}

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type
initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no
access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to
guarantee repeatable results.

There are similar, but more complex, problems when type initialization takes place in a multi-threaded system.
In these cases, for example, two separate threads might start attempting to access static variables of separate
types (A and B) and then each would have to wait for the other to complete initialization.

A rough outline of an algorithm to ensure points 1 and 2 above is as follows:

1. At class load-time (hence prior to initialization time) store zero or null into all static fields of the type.

2. If the type is initialized, you are done.

2.1. If the type is not yet initialized, try to take an initialization lock.

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3.

2.2.1. If not successful, see whether this thread or any thread waiting for this thread to complete already holds
the lock.

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized
state for the type, but no deadlock will arise.

2.2.3 If not, block until the type is initialized then return.

50 Partition II

2.3 Initialize the base class type and then all interfaces implemented by this type.

2.4 Execute the type initialization code for this type.

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be
initialized, and return.

end rationale]

10.6 Nested types
Nested types are specified in Partition I. For information about the logical tables associated with nested types,
see §22.32.

[Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base
type, and can be instantiated independently of its enclosing type. This means that the instance members of the
enclosing type are not accessible using the this pointer of the nested type.

A nested type can access any members of its enclosing type, including private members, as long as those
members are static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested
types, a type can give access to its private members to another type.

On the other hand, the enclosing type cannot access any private or family members of the nested type. Only
members with assembly, famorassem, or public accessibility can be accessed by the enclosing type.
end note]

[Example: The following shows a class declared inside another class. Each class declares a field. The nested
class can access both fields, while the enclosing class does not have access to the enclosed class’s field b.

.class public auto ansi X
{ .field static private int32 a
 .class auto ansi nested public Y
 { .field static private int32 b
 // ...
 }
}

end example]

10.7 Controll ing instance layout
The CLI supports both sequential and explicit layout control, see § 10.1.2. For explicit layout it is also
necessary to specify the precise layout of an instance; see also §22.18 and §22.16.

FieldDecl ::=

 [‘[’ Int32 ‘]’] FieldAttr* Type Id

The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the
beginning of the instance of the type. (For a given type t, this beginning refers to the start of the set of members
explicitly defined in type t, excluding all members defined in any types from which type t directly or indirectly
inherits.) This form of explicit layout control shall not be used with global fields specified using the at
notation §16.3.2).

Offset values shall be non-negative. It is possible to overlap fields in this way, though offsets occupied by an
object reference shall not overlap with offsets occupied by a built-in value type or a part of another object
reference. While one object reference can completely overlap another, this is unverifiable.

Fields can be accessed using pointer arithmetic and ldind to load the field indirectly or stind to store the field
indirectly (see Partition III). See §22.16 and §22.18 for encoding of this information. For explicit layout, every
field shall be assigned an offset.

The .pack directive specifies that fields should be placed within the runtime object at byte addresses which
are a multiple of the specified number, or at natural alignment for that field type, whichever is smaller. For
example, .pack 2 would allow 32-bit-wide fields to be started on even addresses, whereas without any

 Partition II 51

.pack directive, they would be naturally aligned; that is, placed on addresses that are a multiple of 4. The
integer following .pack shall be one of the following: 0, 1, 2, 4, 8, 16, 32, 64, or 128. (A value of zero
indicates that the pack size used should match the default for the current platform.) The .pack directive shall
not be supplied for any type with explicit layout control.

The .size directive indicates a minimum size, and is intended to allow for padding. Therefore, the amount of
memory allocated is the maximum of the size calculated from the layout and the .size directive. Note that if
this directive applies to a value type, then the size shall be less than 1 MByte.

[Note: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be
supported by all conforming implementations of the CLI. end note]

[Example: The following class uses sequential layout of its fields:
.class sequential public SequentialClass
{ .field public int32 a // store at offset 0 bytes
 .field public int32 b // store at offset 4 bytes
}

The following class uses explicit layout of its fields:
.class explicit public ExplicitClass
{ .field [0] public int32 a // store at offset 0 bytes
 .field [6] public int32 b // store at offset 6 bytes
}

The following value type uses .pack to pack its fields together:
.class value sealed public MyClass extends [mscorlib]System.ValueType
{ .pack 2
 .field public int8 a // store at offset 0 bytes
 .field public int32 b // store at offset 2 bytes (not 4)
}

The following class specifies a contiguous block of 16 bytes:
.class public BlobClass
{ .size 16
}

end example]

10.8 Global f ields and methods
In addition to types with static members, many languages have the notion of data and methods that are not part
of a type at all. These are referred to as global fields and methods.

The simplest way to understand global fields and methods in the CLI is to imagine that they are simply
members of an invisible abstract public class. In fact, the CLI defines such a special class, named
<Module>, that does not have a base type and does not implement any interfaces. (This class is a top-level class;
i.e., it is not nested.)The only noticeable difference is in how definitions of this special class are treated when
multiple modules are combined together, as is done by a class loader. This process is known as metadata
merging.

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition
on the assumption they are equivalent, and that any anomaly will be discovered when the type is used. For the
special class that holds global members, however, members are unioned across all modules at merge time. If
the same name appears to be defined for cross-module use in multiple modules then there is an error. In detail:

• If no member of the same kind (field or method), name, and signature exists, then add this
member to the output class.

• If there are duplicates and no more than one has an accessibility other than
compilercontrolled, then add them all to the output class.

• If there are duplicates and two or more have an accessibility other than
compilercontrolled, an error has occurred.

52 Partition II

[Note: Strictly speaking, the CLI does not support global statics, even though global fields and methods might
be thought of as such. All global fields and methods in a module are owned by the manufactured class
"<Module>". However, each module has its own "<Module>" class. There's no way to even refer, early-bound,
to such a global field or method in another module. (You can, however, "reach" them, late-bound, via
Reflection.) end note]

 Partition II 53

11 Semantics of classes
Classes, as specified in Partition I, define types in an inheritance hierarchy. A class (except for the built-in
class System.Object and the special class <Module>) shall declare exactly one base class. A class shall declare
zero or more interfaces that it implements (§12). A concrete class can be instantiated to create an object, but an
abstract class (§10.1.4) shall not be instantiated. A class can define fields (static or instance), methods
(static, instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).

Instances of a class (i.e., objects) are created only by explicitly using the newobj instruction (see Partition III).
When a variable or field that has a class as its type is created (for example, by calling a method that has a local
variable of a class type), the value shall initially be null, a special value that := with all class types even though
it is not an instance of any particular class.

54 Partition II

12 Semantics of interfaces
Interfaces, as specified in Partition I, each define a contract that other types can implement. Interfaces can have
static fields and methods, but they shall not have instance fields or methods. Interfaces can define virtual
methods, but only if those methods are abstract (see Partition I and §15.4.2.4).

[Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation
technique that is both efficient when used and has no cost when not used. By contrast, providing static fields
and methods need not affect the layout of instances and therefore does not raise these issues. end rationale]

Interfaces can be nested inside any type (interface, class, or value type).

12.1 Implementing interfaces
Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all
concrete instances of the class or value type shall provide an implementation for each abstract virtual
method declared in the interface. In order to implement an interface, a class or value type shall either
explicitly declare that it does so (using the implements attribute in its type definition, see §10.1) or shall be
derived from a base class that implements the interface.

[Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a
type implement that interface. Conceptually, this represents the fact that an interface represents a contract that
can have more requirements than are captured in the set of abstract methods. From an implementation
point of view, this allows the layout of types to be constrained only by those interfaces that are explicitly
declared. end note]

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface,
A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires
the implementation of all interfaces required by B. If a class or value type declares that it implements A, then
all concrete instances shall provide implementations of the virtual methods declared in A and all of the
interfaces A requires. [Note: The class need not explicitly declare that it implements the interfaces required
by A. end note]

[Example: The following class implements the interface IStartStopEventSource defined in the module
Counter.

.class private auto autochar StartStopButton
 extends [System.Windows.Forms]System.Windows.Forms.Button
 implements [.module Counter]IstartStopEventSource
{ // body of class
}

end example]

12.2 Implementing virtual methods on interfaces
Classes that implement an interface (§12.1) are required to provide implementations for the abstract virtual
methods defined by that interface. There are three mechanisms for providing this implementation:

• Directly specifying an implementation, using the same name and signature as appears in the
interface.

• Inheritance of an existing implementation from the base type.

• Use of an explicit MethodImpl (§15.1.4).

The VES shall use the following algorithm to determine the appropriate implementation of an interface's virtual
abstract methods:

 Partition II 55

• If the base class implements the interface, start with the same virtual methods that it provides;
otherwise, create an interface that has empty slots for all virtual functions.

• If this class explicitly specifies that it implements the interface (i.e., the interfaces that appear in
this class’s InterfaceImpl table, §22.23)

o If the class defines any public virtual newslot methods whose name and
signature match a virtual method on the interface, then use these new virtual methods
to implement the corresponding interface method.

• If there are any virtual methods in the interface that still have empty slots, see if there are any
public virtual methods, but not public virtual newslot methods, available on this
class (directly or inherited) having the same name and signature, then use these to implement the
corresponding methods on the interface.

• Apply all MethodImpls that are specified for this class, thereby placing explicitly specified virtual
methods into the interface in preference to those inherited or chosen by name matching.

• If the current class is not abstract and there are any interface methods that still have empty
slots, then the program is invalid.

[Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be
implemented by any class that implements the interface. The class specifies a mapping from its own virtual
methods to those of the interface. Thus it is virtual methods, not specific implementations of those methods
that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will
thus affect not only the virtual method named in the class but also any interface virtual methods to which that
same virtual method has been mapped. end rationale]

56 Partition II

13 Semantics of value types
In contrast to reference types, value types (see Partition I) are not accessed by using a reference, but are stored
directly in the location of that type.

[Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as
opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since
there is no additional indirection involved. As elements of arrays they do not require allocating memory for the
pointers as well as for the data itself. Typical value types are complex numbers, geometric points, and dates.
end rationale]

Like other types, value types can have fields (static or instance), methods (static, instance, or virtual),
properties, events, and nested types. A value of some value type can be converted into an instance of a
corresponding reference type (its boxed form, a class automatically created for this purpose by the VES when a
value type is defined) by a process called boxing. A boxed value type can be converted back into its value type
representation, the unboxed form, by a process called unboxing. Value types shall be sealed, and they shall
have a base type of either System.ValueType or System.Enum (see Partition IV). Value types shall implement
zero or more interfaces, but this has meaning only in their boxed form (§13.3).

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction
(see Partition III) on unboxed value types. The isinst instruction can be used for boxed value types, however.
Unboxed value types shall not be assigned the value null and they shall not be compared to null.

Value types support layout control in the same way as do reference types (§10.7). This is especially important
when values are imported from native code.

Since ValueTypes represent direct layout of data, recursive struct definitions such as (in C#) struct S {S x;
S y;} are not permitted. A struct shall have an acyclic finite flattening graph:

For a value type S, define the flattening graph G of S to be the smallest directed graph such that:

• S is in G.
• Whenever T is in G and T has an instance field of value type X then X is in G and there is an edge from T

to X.
• Whenever T is in G and T has a static field of value type Y then Y is in G.

[Example:
class C<U> { }

struct S1<V> {
 S1<V> x;
}

struct S2<V> {
 static S2<V> x;
}

struct S3<V> {
 static S3<C<V>> x;
}

struct S4<V> {
 S4<C<V>>[] x;
}

Struct type S1 has a finite but cyclic flattening graph and is invalid; S2 has a finite acyclic flattening graph and
is valid; S3 has an infinite acyclic flattening graph and is invalid; S4 has a finite acyclic flattening graph and is
valid because field S4<C<V>>.x has reference type, not value type.

The C<U> type is not strictly necessary for the examples, but if it were not used, it might be unclear whether
something like the following

 Partition II 57

 struct S3<V> {
 static S3<S3<V>> x;
 }

is problematic due to the inner or the outer occurrence of S3<...> in the field type. end example]

13.1 Referencing value types
The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type
reference. The boxed form of a value type shall be referred to by using the boxed keyword followed by a
type reference.

ValueTypeReference ::=

 boxed TypeReference

| valuetype TypeReference

13.2 Initial izing value types
Like classes, value types can have both instance constructors (§10.5.1) and type initializers (§10.5.3). Unlike
classes, whose fields are automatically initialized to null, the following rules constitute the only guarantee
about the initilization of (unboxed) value types:

• Static variables shall be initialized to zero when a type is loaded (§10.5.3.3), hence statics whose
type is a value type are zero-initialized when the type is loaded.

• Local variables shall be initialized to zero if the localsinit bit in the method header
(§25.4.4) is set.

• Arrays shall be zero-initialized.

• Instances of classes (i.e., objects) shall be zero-initialized prior to calling their instance
constructor.

[Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive,
especially on platforms that support thread-local storage and that allow threads to be created outside of the CLI
and then passed to the CLI for management. end rationale]

[Note: Boxed value types are classes and follow the rules for classes. end note]

The instruction initobj (see Partition III) performs zero-initialization under program control. If a value type has
a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction
(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The
instance of the value type will be allocated on the stack. The Base Class Library provides the method
System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types.

[Example: The following code declares and initializes three value type variables. The first variable is zero-
initialized, the second is initialized by calling an instance constructor, and the third by creating the object on the
stack and storing it into the local.

.assembly Test { }

.assembly extern System.Drawing {
 .ver 1:0:3102:0
 .publickeytoken = (b03f5f7f11d50a3a)
}

.method public static void Start()
{ .maxstack 3
 .entrypoint
 .locals init (valuetype [System.Drawing]System.Drawing.Size Zero,
 valuetype [System.Drawing]System.Drawing.Size Init,
 valuetype [System.Drawing]System.Drawing.Size Store)

58 Partition II

 // Zero initialize the local named Zero
 ldloca Zero // load address of local variable
 initobj valuetype [System.Drawing]System.Drawing.Size

 // Call the initializer on the local named Init
 ldloca Init // load address of local variable
 ldc.i4 425 // load argument 1 (width)
 ldc.i4 300 // load argument 2 (height)
 call instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)

 // Create a new instance on the stack and store into Store. Note that
 // stobj is used here – but one could equally well use stloc, stfld, etc.
 ldloca Store
 ldc.i4 425 // load argument 1 (width)
 ldc.i4 300 // load argument 2 (height)
 newobj instance void [System.Drawing]System.Drawing.Size::.ctor(int32, int32)
 stobj valuetype [System.Drawing]System.Drawing.Size
 ret
}

end example]

13.3 Methods of value types
Value types can have static, instance and virtual methods. Static methods of value types are defined and called
the same way as static methods of class types. As with classes, both instance and virtual methods of a boxed or
unboxed value type can be called using the call instruction. The callvirt instruction shall not be used with
unboxed value types (see Partition I), but it can be used on boxed value types.

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the
this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed
pointer (see Partition I) to an unboxed instance of the value type. The CLI shall convert a boxed value type
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a
virtual method whose implementation is provided by the unboxed value type.

[Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is
defined to return a managed pointer to the value type that shares memory with the original boxed instance.

The following diagrams are intended to help the reader understand the relationship between the boxed and
unboxed representations of a value type.

 Partition II 59

end note]

[Rationale: An important use of instance methods on value types is to change internal state of the instance.
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed
as arguments.

Virtual methods are used to allow multiple types to share implementation code, and this requires that all classes
that implement the virtual method share a common representation defined by the class that first introduces the
method. Since value types can (and in the Base Class Library do) implement interfaces and virtual methods
defined on System.Object, it is important that the virtual method be callable using a boxed value type so it
can be manipulated as would any other type that implements the interface. This leads to the requirement that
the EE automatically unbox value types on virtual calls. end rationale]

Table 1: Type of this given the CIL instruction and the declaring type of instance method.

 Value Type (Boxed or Unboxed) Interface Object Type

call managed pointer to value type invalid object reference

callvirt managed pointer to value type object reference object reference

[Example: The following converts an integer of the value type int32 into a string. Recall that int32
corresponds to the unboxed value type System.Int32 defined in the Base Class Library. Suppose the integer is
declared as:

.locals init (int32 x)

Then the call is made as shown below:
ldloca x // load managed pointer to local variable
call instance string valuetype [mscorlib]System.Int32::ToString()

However, if System.Object (a class) is used as the type reference rather than System.Int32 (a value type), the
value of x shall be boxed before the call is made and the code becomes:

ldloc x
box valuetype [mscorlib]System.Int32
callvirt instance string [mscorlib]System.Object::ToString()

end example]

60 Partition II

14 Semantics of special types
Special types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies
the definitions automatically based on information available from the reference.

14.1 Vectors

Type ::= …

 | Type ‘[’ ‘]’

Vectors are single-dimension arrays with a zero lower bound. They have direct support in CIL instructions
(newarr, ldelem, stelem, and ldelema, see Partition III). The CIL Framework also provides methods that
deal with multidimensional arrays and single-dimension arrays with a non-zero lower bound (§14.2). Two
vectors have the same type if their element types are the same, regardless of their actual upper bounds.

Vectors have a fixed size and element type, determined when they are created. All CIL instructions shall
respect these values. That is, they shall reliably detect attempts to do the following: index beyond the end of
the vector, store the incorrect type of data into an element of a vector, and take the address of elements of a
vector with an incorrect data type. See Partition III.

[Example: Declare a vector of Strings:
.field string[] errorStrings

Declare a vector of function pointers:
.field method instance void*(int32) [] myVec

Create a vector of 4 strings, and store it into the field errorStrings. The 4 strings lie at errorStrings[0]
through errorStrings[3]:

ldc.i4.4
newarr string
stfld string[] CountDownForm::errorStrings

Store the string "First" into errorStrings[0]:
ldfld string[] CountDownForm::errorStrings
ldc.i4.0
ldstr "First"
stelem

end example]

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI. It provides several methods
that can be applied to all vectors. See Partition IV.

14.2 Arrays
While vectors (§14.1) have direct support through CIL instructions, all other arrays are supported by the VES
by creating subtypes of the abstract class System.Array (see Partition IV)

Type ::= …

 | Type ‘[’ [Bound [‘,’ Bound]*] ‘]’

The rank of an array is the number of dimensions. The CLI does not support arrays with rank 0. The type of
an array (other than a vector) shall be determined by the type of its elements and the number of dimensions.

Bound ::= Description

 ‘...’ Lower and upper bounds unspecified. In the case of
multi-dimensional arrays, the ellipsis can be omitted

 Partition II 61

| Int32 Zero lower bound, Int32 upper bound

| Int32 ‘...’ Lower bound only specified

| Int32 ‘...’ Int32 Both bounds specified

The class that the VES creates for arrays contains several methods whose implementation is supplied by the
VES:

• A constructor that takes a sequence of int32 arguments, one for each dimension of the array, that specify
the number of elements in each dimension beginning with the first dimension. A lower bound of zero is
assumed.

• A constructor that takes twice as many int32 arguments as there are dimensions of the array. These
arguments occur in pairs—one pair per dimension—with the first argument of each pair specifying the
lower bound for that dimension, and the second argument specifying the total number of elements in that
dimension. Note that vectors are not created with this constructor, since a zero lower bound is assumed for
vectors.

• A Get method that takes a sequence of int32 arguments, one for each dimension of the array, and returns
a value whose type is the element type of the array. This method is used to access a specific element of the
array where the arguments specify the index into each dimension, beginning with the first, of the element
to be returned.

• A Set method that takes a sequence of int32 arguments, one for each dimension of the array, followed by
a value whose type is the element type of the array. The return type of Set is void. This method is used to
set a specific element of the array where the arguments specify the index into each dimension, beginning
with the first, of the element to be set and the final argument specifies the value to be stored into the target
element.

• An Address method that takes a sequence of int32 arguments, one for each dimension of the array, and
has a return type that is a managed pointer to the array’s element type. This method is used to return a
managed pointer to a specific element of the array where the arguments specify the index into each
dimension, beginning with the first, of the element whose address is to be returned.

[Example: The following creates an array, MyArray, of strings with two dimensions, with indexes 5…10 and
3…7. It then stores the string "One" into MyArray[5, 3], retrieves it and prints it out. Then it computes the
address of MyArray[5, 4], stores "Test" into it, retrieves it, and prints it out.

.assembly Test { }

.assembly extern mscorlib { }

.method public static void Start()
{ .maxstack 5
 .entrypoint
 .locals (class [mscorlib]System.String[,] myArray)

 ldc.i4.5 // load lower bound for dim 1
 ldc.i4.6 // load (upper bound - lower bound + 1) for dim 1
 ldc.i4.3 // load lower bound for dim 2
 ldc.i4.5 // load (upper bound - lower bound + 1) for dim 2
 newobj instance void string[,]::.ctor(int32, int32, int32, int32)
 stloc myArray

 ldloc myArray
 ldc.i4.5
 ldc.i4.3
 ldstr "One"
 call instance void string[,]::Set(int32, int32, string)

 ldloc myArray
 ldc.i4.5
 ldc.i4.3
 call instance string string[,]::Get(int32, int32)
 call void [mscorlib]System.Console::WriteLine(string)

62 Partition II

 ldloc myArray
 ldc.i4.5
 ldc.i4.4
 call instance string & string[,]::Address(int32, int32)
 ldstr "Test"
 stind.ref

 ldloc myArray
 ldc.i4.5
 ldc.i4.4
 call instance string string[,]::Get(int32, int32)
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}

end example]

The following text is informative
Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of
arrays are different – each dimension (except the last) holds an array reference. The following picture
illustrates the difference:

On the left is a [6, 10] rectangular array. On the right is not one, but a total of five arrays. The vertical array is
an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the
vertical array both reference the same horizontal array.

Note that all dimensions of a multi-dimensional array shall have the same size. But in an array of arrays, it is
possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array
referencing arrays of lengths 8, 8, 3, null (i.e., no array), 6 and 1, respectively.

There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES. They
are simply vectors whose elements reference other (recursively) jagged arrays.

End of informative text

14.3 Enums
An enum (short for enumeration) defines a set of symbols that all have the same type. A type shall be an enum
if and only if it has an immediate base type of System.Enum. Since System.Enum itself has an immediate base
type of System.ValueType, (see Partition IV) enums are value types (§13) The symbols of an enum are
represented by an underlying integer type: one of { bool, char, int8, unsigned int8, int16, unsigned int16,
int32, unsigned int32, int64, unsigned int64, native int, unsigned native int }

[Note: Unlike Pascal, the CLI does not provide a guarantee that values of the enum type are integers
corresponding to one of the symbols. In fact, the CLS (see Partition I, CLS) defines a convention for using
enums to represent bit flags which can be combined to form integral value that are not named by the enum type
itself. end note]

Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as
members (they shall not even define type initializers or instance constructors); they shall not implement any

 Partition II 63

interfaces; they shall have auto field layout (§10.1.2); they shall have exactly one instance field and it shall be
of the underlying type of the enum; all other fields shall be static and literal (§16.1); and they shall not be
initialized with the initobj instruction.

[Rationale: These restrictions allow a very efficient implementation of enums. end rationale]

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an
enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have
the type of the enum and shall have field init metadata that assigns them a value (§16.2).

For binding purposes (e.g., for locating a method definition from the method reference used to call it) enums
shall be distinct from their underlying type. For all other purposes, including verification and execution of
code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (§13) to a
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so
boxing does not lose the original type of the enum.

[Example: Declare an enum type and then create a local variable of that type. Store a constant of the
underlying type into the enum (showing automatic coersion from the underlying type to the enum type). Load
the enum back and print it as the underlying type (showing automatic coersion back). Finally, load the address
of the enum and extract the contents of the instance field and print that out as well.

.assembly Test { }

.assembly extern mscorlib { }

.class sealed public ErrorCodes extends [mscorlib]System.Enum
{ .field public unsigned int8 MyValue
 .field public static literal valuetype ErrorCodes no_error = int8(0)
 .field public static literal valuetype ErrorCodes format_error = int8(1)
 .field public static literal valuetype ErrorCodes overflow_error = int8(2)
 .field public static literal valuetype ErrorCodes nonpositive_error = int8(3)
}

.method public static void Start()
{ .maxstack 5
 .entrypoint
 .locals init (valuetype ErrorCodes errorCode)

 ldc.i4.1 // load 1 (= format_error)
 stloc errorCode // store in local, note conversion to enum
 ldloc errorCode
 call void [mscorlib]System.Console::WriteLine(int32)
 ldloca errorCode // address of enum
 ldfld unsigned int8 valuetype ErrorCodes::MyValue
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
}

end example]

14.4 Pointer types

Type ::= … Clause

 | Type ‘&’ 14.4.2

 | Type ‘*’ 14.4.1

A pointer type shall be defined by specifying a signature that includes the type of the location at which it
points. A pointer can be managed (reported to the CLI garbage collector, denoted by &, see §14.4.2) or
unmanaged (not reported, denoted by *, see §14.4.1)

Pointers can contain the address of a field (of an object or value type) or of an element of an array. Pointers
differ from object references in that they do not point to an entire type instance, but, rather, to the interior of an
instance. The CLI provides two type-safe operations on pointers:

• Loading the value from the location referenced by the pointer.

64 Partition II

• Storing an assignment-compatible value into the location referenced by the pointer.

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported:

• Adding an integer value to a pointer (where that value is interpreted as a number of bytes), which
results in a pointer of the same kind

• Subtracting an integer value from a pointer (where that value is interpreted as a number of bytes),
which results in a pointer of the same kind. Note that subtracting a pointer from an integer value
is not permitted.

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer value
that specifies the number of bytes between the addresses they reference.

The following is informative text
Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on
64-bit architectures. They are best considered as unsigned int, whose size varies depending upon the
runtime machine architecture.

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables,
arguments, and elements of vectors:

Instruction Description

ldarga Load address of argument

ldelema Load address of vector element

ldflda Load address of field

ldloca Load address of local variable

ldsflda Load address of static field

Once a pointer is loaded onto the stack, the ldind class of instructions can be used to load the data item to
which it points. Similarly, the stind family of instructions can be used to store data into the location.

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not
within the current application domain. This situation arises typically only from the use of objects with a base
type of System.MarshalByRefObject (see Partition IV).

14.4 .1 Unmanaged pointers

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions
on their use, although, for the most part, they result in code that cannot be verified. While it is perfectly valid to
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data.
This is done by using *in a signature for a return value, local variable, or an argument, or by using a pointer
type for a field or array element.

• Unmanaged pointers are not reported to the garbage collector and can be used in any way that an
integer can be used.

• Verifiable code cannot dereference unmanaged pointers.

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This
is safe only if one of the following is true:

a. The unmanaged pointer refers to memory that is not in memory used by the CLI for
storing instances of objects (“garbage-collected memory” or “managed memory”).

b. The unmanaged pointer contains the address of a field within an object.

c. The unmanaged pointer contains the address of an element within an array.

 Partition II 65

d. The unmanaged pointer contains the address where the element following the last
element in an array would be located.

14.4 .2 Managed pointers

Managed pointers (&) can point to an instance of a value type, a field of an object, a field of a value type, an
element of an array, or the address where an element just past the end of an array would be stored (for pointer
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage
collector even if they do not point to managed memory.

Managed pointers are specified by using & in a signature for a return value, local variable or an argument, or by
using a byref type for a field or array element.

• Managed pointers can be passed as arguments, stored in local variables, and returned as values.

• If a parameter is passed by reference, the corresponding argument is a managed pointer.

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

• Managed pointers are not interchangeable with object references.

• A managed pointer cannot point to another managed pointer, but it can point to an object
reference or a value type.

• A managed pointer can point to a local variable, or a method argument

• Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but this is not verifiable.

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can
seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for more
details.

End informative text

14.5 Method pointers

Type ::= …

 | method CallConv Type ‘*’ ‘(’ Parameters ‘)’

Variables of type method pointer shall store the address of the entry point to a method with compatible
signature. A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a
virtual method is obtained with the ldvirtftn instruction. A method can be called by using a method pointer
with the calli instruction. See Partition III for the specification of these instructions.

[Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures,
and with unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned
native int, which works on both 32- and 64-bit architectures. end note]

[Example: Call a method using a pointer. The method MakeDecision::Decide returns a method pointer to
either AddOne or Negate, alternating on each call. The main program calls MakeDecision::Decide three times,
and after each call uses a calli instruction to call the method specified. The output printed is "-1 2 –1"
indicating successful alternating calls.

.assembly Test { }

.assembly extern mscorlib { }

66 Partition II

.method public static int32 AddOne(int32 Input)
{ .maxstack 5
 ldarg Input
 ldc.i4.1
 add
 ret
}

.method public static int32 Negate(int32 Input)
{ .maxstack 5
 ldarg Input
 neg
 ret
}

.class value sealed public MakeDecision extends
 [mscorlib]System.ValueType
{ .field static bool Oscillate
 .method public static method int32 *(int32) Decide()
 { ldsfld bool valuetype MakeDecision::Oscillate
 dup
 not
 stsfld bool valuetype MakeDecision::Oscillate
 brfalse NegateIt
 ldftn int32 AddOne(int32)
 ret

NegateIt:
 ldftn int32 Negate(int32)
 ret
 }
}

.method public static void Start()
{ .maxstack 2
 .entrypoint

 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)

 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)

 ldc.i4.1
 call method int32 *(int32) valuetype MakeDecision::Decide()
 calli int32(int32)
 call void [mscorlib]System.Console::WriteLine(int32)
 ret
}

end example]

14.6 Delegates
Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers,
delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form
of classes. Delegates shall have a base type of System.Delegate (see Partition IV).

Delegates shall be declared sealed, and the only members a delegate shall have are either the first two or all
four methods as specified here. These methods shall be declared runtime and managed (§15.4.3). They
shall not have a body, since that body shall be created automatically by the VES. Other methods available on
delegates are inherited from the class System.Delegate in the Base Class Library (see Partition IV). The
delegate methods are:

 Partition II 67

• The instance constructor (named .ctor and marked specialname and rtspecialname,
see §10.5.1) shall take exactly two parameters, the first having type System.Object, and the second having
type System.IntPtr. When actually called (via a newobj instruction, see Partition III), the first argument
shall be an instance of the class (or one of its derived classes) that defines the target method, and the
second argument shall be a method pointer to the method to be called.

• The Invoke method shall be virtual and its signature constrains the target method to which it can be
bound; see §14.6.1. The verifier treats calls to the Invoke method on a delegate just like it treats calls to
any other method.

• The BeginInvoke method (§14.6.3.1), if present, shall be virtual and have a signature related to, but
not the same as, that of the Invoke method. There are two differences in the signature. First, the return
type shall be System.IAsyncResult (see Partition IV). Second, there shall be two additional parameters
that follow those of Invoke: the first of type System.AsyncCallback and the second of type
System.Object.

• The EndInvoke method (§14.6.3) shall be virtual and have the same return type as the Invoke method.
It shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order
they occur in the signature for Invoke. In addition, there shall be an additional parameter of type
System.IAsyncResult.

Unless stated otherwise, a standard delegate type shall provide the two optional asynchronous methods,
BeginInvoke and EndInvoke.

[Example: The following declares a Delegate used to call functions that take a single integer and return
nothing. It provides all four methods so it can be called either synchronously or asynchronously. Because no
parameters are passed by reference (i.e., as managed pointers) there are no additional arguments to EndInvoke.

.assembly Test { }

.assembly extern mscorlib { }

.class private sealed StartStopEventHandler extends [mscorlib]System.Delegate
 { .method public specialname rtspecialname instance void .ctor(object Instance,
 native int Method) runtime managed {}
 .method public virtual void Invoke(int32 action) runtime managed {}
 .method public virtual class [mscorlib]System.IAsyncResult
 BeginInvoke(int32 action, class [mscorlib]System.AsyncCallback callback,
 object Instance) runtime managed {}
 .method public virtual void EndInvoke(class
 [mscorlib]System.IAsyncResult result) runtime managed {}
}

end example]

As with any class, an instance is created using the newobj instruction in conjunction with the instance
constructor. The first argument to the constructor shall be the object on which the method is to be called, or it
shall be null if the method is a static method. The second argument shall be a method pointer to a method on
the corresponding class and with a signature that matches that of the delegate class being instantiated.

14.6 .1 Delegate s ignature compatibil i ty

Delegates can only be bound to target methods where the signatures of the delegate and the target method are
compatible. Compatibility is determined by examining the parameter types, return type and calling convention.
(Custom modifiers are not considered significant and do not impact compatibility.)

For a delegate and target method to be compatible, the calling conventions shall match exactly.

For a delegate and target method to be compatible, the parameter types shall be compatible per the following
rules:

Use D and T to denote the types of parameters to a delegate and a target method (respectively), use D := T to
indicate that the types of the parameters are compatible, use D != T to indicate the types of the parameters are
incompatible, use D[] to indicate an array of type D, and for instantiation D of generic type G<V> use VD to
indicate the type parameter used for V.

68 Partition II

1. [:= is reflexive] For all parameter types D, D := D.
2. [:= is transitive] For all parameter types D, T and U, if D := U and U := T then D := T.
3. D := T if T is the base class of D or an interface implemented by D and D is not a value type

(includes primitives, pointers, function pointers)
4. D := T if D and T are both interfaces and the implementation of D requires the implementation

of T.
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a

vector and both have the same rank.
6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling

convention, custom modifiers) are compatible per these rules.
7. D := T if D and T are instantiations of the generic type G<+V> and VD is a subtype of VT.
8. D := T if D and T are instantiations of the generic type G<-V> and VT is a subtype of VD.
9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.
10. Otherwise, D != T.

For a delegate and target method to be compatible, the return type shall be compatible per the following rules:
Use D and T to denote the return type of a delegate and a target method (respectively), use D := T to indicate
that the return types are compatible, use D !:= T to indicate that the return types are incompatible, use D[] to
indicate an array of type D, and for instantiation D of generic type G<V> use VD to indicate the type parameter
used for V.

1. [:= is reflexive] For all return types D, D := D.
2. [:= is transitive] For all return types D, T and U, if D := U and U := T then D := U.
3. D := T if D is the base class of T or an interface implemented by T and T is not a value type

(includes primitives, pointers, function pointers)
4. D := T if D and T are both interfaces and the implementation of T requires the implementation

of D.
5. D[] := T[] if D := T and the arrays are either both vectors (zero-based, rank one) or neither is a

vector and both have the same rank.
6. If D and T are method pointers, then D := T if the signatures (parameter types, return types, calling

convention, custom modifiers) are compatible per these rules.
7. D := T if D and T are instantiations of the generic type G<+V> and VT is a subtype of VD.
8. D := T if D and T are instantiations of the generic type G<-V> and VD is a subtype of VT.
9. D := T if D and T are instantiations of the generic type G<V> and VD == VT.
10. Otherwise D != T.

14.6 .2 Synchronous cal ls to delegates

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the
virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as
the this pointer), followed by the other arguments as specified in the signature. When this call is made, the
caller shall block until the called method returns. The called method shall be executed on the same thread as the
caller.

[Example: Continuing the previous example, define a class Test that declares a method, onStartStop,
appropriate for use as the target for the delegate.

.class public Test
{ .field public int32 MyData
 .method public void onStartStop(int32 action)
 { ret // put your code here
 }
 .method public specialname rtspecialname
 instance void .ctor(int32 Data)
 { ret // call base class constructor, store state, etc.
 }
}

Then define a main program. This one constructs an instance of Test and then a delegate that targets the
onStartStop method of that instance. Finally, call the delegate.

 Partition II 69

.method public static void Start()
{ .maxstack 3
 .entrypoint
 .locals (class StartStopEventHandler DelegateOne,
 class Test InstanceOne)
 // Create instance of Test class
 ldc.i4.1
 newobj instance void Test::.ctor(int32)
 stloc InstanceOne

 // Create delegate to onStartStop method of that class
 ldloc InstanceOne
 ldftn instance void Test::onStartStop(int32)
 newobj void StartStopEventHandler::.ctor(object, native int)
 stloc DelegateOne

 // Invoke the delegate, passing 100 as an argument
 ldloc DelegateOne
 ldc.i4 100
 callvirt instance void StartStopEventHandler::Invoke(int32)
 ret
}

Note that the example above creates a delegate to a non-virtual function. If onStartStop had been a virtual
function, use the following code sequence instead:

ldloc InstanceOne
dup
ldvirtftn instance void Test::onStartStop(int32)
newobj void StartStopEventHandler::.ctor(object, native int)
stloc DelegateOne
// Invoke the delegate, passing 100 as an argument
ldloc DelegateOne

end example]

[Note: The code sequence above shall use dup – not ldloc InstanceOne twice. The dup code sequence is
easily recognized as type-safe, whereas alternatives would require more complex analysis. Verifiability of
code is discussed in Partition III end note]

14.6 .3 Asynchronous cal ls to delegates

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the
method to return. The called method shall be executed on a separate thread.

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee
thread continues execution and terminates silently

Note: the callee can throw exceptions. Any unhandled exception propagates to the caller via the EndInvoke
method.

14.6 .3.1 The BeginInvoke method

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.
BeginInvoke is similar to the Invoke method (§14.6.1), but has two differences:

• It has two additional parameters, appended to the list, of type System.AsyncCallback, and
System.Object.

• The return type of the method is System.IAsyncResult.

Although the BeginInvoke method therefore includes parameters that represent return values, these values are
not updated by this method. The results instead are obtained from the EndInvoke method (see below).

70 Partition II

Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call
has been completed. The CLI provides two such mechanisms. The first is through the result returned from the
call. This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be
computed, it can be queried for the current status of the method call, and it contains the System.Object value
that was passed to the call to BeginInvoke. See Partition IV.

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke. The VES
shall call this delegate when the value is computed or an exception has been raised indicating that the result will
not be available. The value passed to this callback is the same value passed to the call to BeginInvoke. A
value of null can be passed for System.AsyncCallback to indicate that the VES need not provide the callback.

[Rationale: This model supports both a polling approach (by checking the status of the returned
System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to
asynchronous calls. end rationale]

A synchronous call returns information both through its return value and through output parameters. Output
parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and
the values of the output parameters are not available until the VES signals that the asynchronous call has
completed successfully. They are retrieved by calling the EndInvoke method on the delegate that began the
asynchronous call.

14.6 .3.2 The EndInvoke method

The EndInvoke method can be called at any time after BeginInvoke. It shall suspend the thread that calls it
until the asynchronous call completes. If the call completes successfully, EndInvoke will return the value that
would have been returned had the call been made synchronously, and its managed pointer arguments will point
to values that would have been returned to the out parameters of the synchronous call.

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different
calls to the same delegate can be distinguished, since they can execute concurrently) as well as any managed
pointers that were passed as arguments (so their return values can be provided).

 Partition II 71

15 Defining, referencing, and calling methods
Methods can be defined at the global level (outside of any type):

Decl ::= …

 | .method MethodHeader ‘{’ MethodBodyItem* ‘}’

as well as inside a type:

ClassMember ::= …

 | .method MethodHeader ‘{’ MethodBodyItem* ‘}’

15.1 Method descriptors
There are four constructs in ILAsm connected with methods. These correspond with different metadata
constructs, as described in §23.

15.1 .1 Method declarat ions

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types),
but not its body. That is, a method declaration provides a MethodHeader but no MethodBodyItems. These are
used at call sites to specify the call target (call or callvirt instructions, see Partition III) or to declare an abstract
method. A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a
MethodRef.

15.1 .2 Method definit ions

A Method, or method definition, supplies the method name, attributes, signature, and body. That is, a method
definition provides a MethodHeader as well as one or more MethodBodyItems. The body includes the method's
CIL instructions, exception handlers, local variable information, and additional runtime or custom metadata
about the method. See §10.

15.1 .3 Method references

A MethodRef, or method reference, is a reference to a method. It is used when a method is called and that
method’s definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a
Method before the method is called at runtime. If a matching Method cannot be found, the VES shall throw a
System.MissingMethodException. See §22.25.

15.1 .4 Method implementat ions

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method. It
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A
MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an
interface when the default mechanism (matching by name and signature) would not provide the correct result.
See §22.27.

15.2 Static, instance, and virtual methods
Static methods are methods that are associated with a type, not with its instances.

Instance methods are associated with an instance of a type: within the body of an instance method it is possible
to reference the particular instance on which the method is operating (via the this pointer). It follows that
instance methods shall only be defined in classes or value types, but not in interfaces or outside of a type (i.e.,
globally). However, notice

1. Instance methods on classes (including boxed value types), have a this pointer that is by default
an object reference to the class on which the method is defined.

72 Partition II

2. Instance methods on (unboxed) value types, have a this pointer that is by default a managed
pointer to an instance of the type on which the method is defined.

3. There is a special encoding (denoted by the syntactic item explicit in the calling convention,
see §15.3) to specify the type of the this pointer, overriding the default values specified here.

4. The this pointer can be null.

Virtual methods are associated with an instance of a type in much the same way as for instance methods.
However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation
of the method shall be chosen at runtime by the VES depending upon the type of object used for the this
pointer. The particular Method that implements a virtual method is determined dynamically at runtime (a
virtual call) when invoked via the callvirt instruction; whilst the binding is decided at compile time when
invoked via the call instruction (see Partition III).

With virtual calls (only), the notion of inheritance becomes important. A derived class can override a virtual
method inherited from its base classes, providing a new implementation of the method. The method attribute
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat
the new definition as an independent virtual method definition.

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with
a callvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn
instruction, and the ldftn instruction shall not be used.

[Rationale: With a concrete virtual method there is always an implementation available from the class that
contains the definition, thus there is no need at runtime to have an instance of a class available. Abstract virtual
methods, however, receive their implementation only from a subtype or a class that implements the appropriate
interface, hence an instance of a class that actually implements the method is required. end rationale]

15.3 Calling convention

CallConv ::= [instance [explicit]] [CallKind]

A calling convention specifies how a method expects its arguments to be passed from the caller to the called
method. It consists of two parts: the first deals with the existence and type of the this pointer, while the second
relates to the mechanism for transporting the arguments.

If the attribute instance is present, it indicates that a this pointer shall be passed to the method. This
attribute shall be used for both instance and virtual methods.

Normally, a parameter list (which always follows the calling convention) does not provide information about
the type of the this pointer, since this can be deduced from other information. When the combination
instance explicit is specified, however, the first type in the subsequent parameter list specifies the type
of the this pointer and subsequent entries specify the types of the parameters themselves.

CallKind ::=

 default

| unmanaged cdecl

| unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

Managed code shall have only the default or vararg calling kind. default shall be used in all cases
except when a method accepts an arbitrary number of arguments, in which case vararg shall be used.

 Partition II 73

When dealing with methods implemented outside the CLI it is important to be able to specify the calling
convention required. For this reason there are 16 possible encodings of the calling kind. Two are used for the
managed calling kinds. Four are reserved with defined meaning across many platforms, as follows:

• unmanaged cdecl is the calling convention used by Standard C

• unmanaged stdcall specifies a standard C++ call

• unmanaged fastcall is a special optimized C++ calling convention

• unmanaged thiscall is a C++ call that passes a this pointer to the method

Four more are reserved for existing calling conventions, but their use is not maximally portable. Four more are
reserved for future standardization, and two are available for non-standard experimental use.

(In this context, "portable" means a feature that is available on all conforming implementations of the CLI.)

15.4 Defining methods

MethodHeader ::=

 MethAttr* [CallConv] Type

 [marshal ‘(’ [NativeType] ‘)’]

 MethodName [‘<’ GenPars‘>’] ‘(’ Parameters ‘)’ ImplAttr*

The method head (see also §10) consists of

• the calling convention (CallConv, see §15.3)

• any number of predefined method attributes (MethAttr, see §15.4.1.5)

• a return type with optional attributes

• optional marshalling information (§7.4)

• a method name

• optional generic parameters (when defining generic methods, see §10.1.7)

• a signature

• and any number of implementation attributes (ImplAttr, see §15.4.3)

Methods that do not have a return value shall use void as the return type.

MethodName ::=

 .cctor

| .ctor

| DottedName

Method names are either simple names or the special names used for instance constructors and type initializers.

Parameters ::= [Param [‘,’ Param]*]

Param ::=

 ...

| [ParamAttr*] Type [marshal ‘(’ [NativeType] ‘)’] [Id]

The Id, if present, is the name of the parameter. A parameter can be referenced either by using its name or the
zero-based index of the parameter. In CIL instructions it is always encoded using the zero-based index (the
name is for ease of use in ILAsm).

74 Partition II

Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any
ellipsis (“…”)

ParamAttr ::=

 ‘[’ in ‘]’

| ‘[’ opt ‘]’

| ‘[’ out ‘]’

The parameter attributes shall be attached to the parameters (§22.33) and hence are not part of a method
signature.

[Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature. Thus,
modifiers form part of the method’s contract while parameter attributes do not. end note]

in and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify
whether the parameter is intended to supply input to the method, return a value from the method, or both. If
neither is specified in is assumed. The CLI itself does not enforce the semantics of these bits, although they
can be used to optimize performance, especially in scenarios where the call site and the method are in different
application domains, processes, or computers.

opt specifies that this parameter is intended to be optional from an end-user point of view. The value to be
supplied is stored using the .param syntax (§15.4.1.4).

15.4 .1 Method body

The method body shall contain the instructions of a program. However, it can also contain labels, additional
syntactic forms and many directives that provide additional information to ilasm and are helpful in the
compilation of methods of some languages.

MethodBodyItem ::= Description Clause

 .custom CustomDecl Definition of custom attributes. 21

| .data DataDecl Emits data to the data section 16.3

| .emitbyte Int32 Emits an unsigned byte to the code section
of the method.

15.4.1.1

| .entrypoint Specifies that this method is the entry point
to the application (only one such method is
allowed).

15.4.1.2

| .locals [init]

 ‘(’ LocalsSignature ‘)’

Defines a set of local variables for this
method.

15.4.1.3

| .maxstack Int32 The int32 specifies the maximum number
of elements on the evaluation stack during
the execution of the method.

15.4.1

| .override TypeSpec ‘::’ MethodName Use current method as the implementation
for the method specified.

10.3.2

| .override method CallConv Type
TypeSpec ‘::’ MethodName GenArity ‘(’
Parameters ‘)’

Use current method as the implementation
for the method specified.

10.3.2

| .param ‘[’ Int32 ‘]’ [‘=’ FieldInit] Store a constant FieldInit value for
parameter Int32

15.4.1.4

| .param type ‘[’ Int32 ‘]’ Specifies a type parameter for a generic
method

15.4.1.5

 Partition II 75

MethodBodyItem ::= Description Clause

| ExternSourceDecl .line or #line 5.7

| Instr An instruction Partition VI

| Id ‘:’ A label 5.4

| ScopeBlock Lexical scope of local variables 15.4.4

| SecurityDecl .permission or .permissionset 20

| SEHBlock An exception block 19

15.4 .1.1 The .emitbyte direct ive

MethodBodyItem ::= …

 | .emitbyte Int32

This directive causes an unsigned 8-bit value to be emitted directly into the CIL stream of the method, at the
point at which the directive appears.

[Note: The .emitbyte directive is used for generating tests. It is not required in generating regular
programs. end note]

15.4 .1.2 The .entrypoint direct ive

MethodBodyItem ::= …

 | .entrypoint

The .entrypoint directive marks the current method, which shall be static, as the entry point to an
application. The VES shall call this method to start the application. An executable shall have exactly one entry
point method. This entry point method can be a global method or it can appear inside a type. (The effect of the
directive is to place the metadata token for this method into the CLI header of the PE file)

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings,
the strings shall represent the arguments to the executable, with index 0 containing the first argument. The
mechanism for specifying these arguments is platform-specific and is not specified here.

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or
unsigned int32 is returned, the executable can return an exit code to the host environment. A value of 0
shall indicate that the application terminated ordinarily.

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES
shall treat the entry point as it would any other method.

The entry point method cannot be defined in a generic class.

 [Example: The following prints the first argument and returns successfully to the operating system:
.method public static int32 MyEntry(string[] s) cil managed
{ .entrypoint
 .maxstack 2
 ldarg.0 // load and print the first argument
 ldc.i4.0
 ldelem.ref
 call void [mscorlib]System.Console::WriteLine(string)
 ldc.i4.0 // return success
 ret
}

end example]

76 Partition II

15.4 .1.3 The . locals direct ive

The .locals statement declares one or more local variables (see Partition I) for the current method.

MethodBodyItem ::= …

 | .locals [init] ‘(’ LocalsSignature ‘)’

LocalsSignature ::= Local [‘,’ Local]*

Local ::= Type [Id]

If present, the Id is the name of the corresponding local variable.

If init is specified, the variables are initialized to their default values according to their type: reference types
are initialized to null and value types are zeroed out.

[Note: Verifiable methods shall include the init keyword. See Partition III. end note]

[Example: The following declares 4 local variables, each of which is to be initialized to its default value:
.locals init (int32 i, int32 j, float32 f, int64[] vect)

end example]

15.4 .1.4 The .param direct ive

MethodBodyItem ::= …

 | .param ‘[’ Int32 ‘]’ [‘=’ FieldInit]

This directive stores in the metadata a constant value associated with method parameter number Int32,
see §22.9. While the CLI requires that a value be supplied for the parameter, some tools can use the presence
of this attribute to indicate that the tool rather than the user is intended to supply the value of the parameter.
Unlike CIL instructions, .param uses index 0 to specify the return value of the method, index 1 to specify the
first parameter of the method, index 2 to specify the second parameter of the method, and so on.

[Note: The CLI attaches no semantic whatsoever to these values—it is entirely up to compilers to implement
any semantic they wish (e.g., so-called default argument values). end note]

15.4 .1.5 The .param type directive

MethodBodyItem ::= …

 | .param type ‘[’ Int32 ‘]’

This directive allows type parameters for a generic type or method to be specified. Int32 is the 1-based ordinal
of the type or method parameter to which the directive applies. [Note: This directive is used in conjunction with
a .custom directive to associate a custom attribute with a type parameter. end note]
When a .param type directive is used within class scope, it refers to a type parameter of that class. When the
directive is used within method scope inside a class definition, it refers to a type parameter of that method.
Otherwise, the program is ill-formed.

[Example:
.class public G<T,U> {
 .param type [1] // refers to T
 .custom instance void TypeParamAttribute::.ctor() = (01 00 ...)
 .method public void Foo<M>(!!0 m) {
 .param type [1] // refers to M
 .custom instance void AnotherTypeParamAttribute::.ctor() = (01 00 ...)
 …
 }
 …
}

 Partition II 77

end example]

15.4 .2 Predef ined attributes on methods

MethAttr ::= Description Clause

 abstract The method is abstract (shall also be
virtual).

15.4.2.4

| assembly Assembly accessibility 15.4.2.1

| compilercontrolled Compiler-controlled accessibility. 15.4.2.1

| famandassem Family and Assembly accessibility 15.4.2.1

| family Family accessibility 15.4.2.1

| famorassem Family or Assembly accessibility 15.4.2.1

| final This virtual method cannot be overridden by
derived classes.

15.4.2.2

| hidebysig Hide by signature. Ignored by the runtime. 15.4.2.2

| newslot Specifies that this method shall get a new slot
in the virtual method table.

15.4.2.3

| pinvokeimpl ‘(’
 QSTRING [as QSTRING]
 PinvAttr* ‘)’

Method is actually implemented in native
code on the underlying platform

15.4.2.5

| private Private accessibility 15.4.2.1

| public Public accessibility. 15.4.2.1

| rtspecialname The method name needs to be treated in a
special way by the runtime.

15.4.2.6

| specialname The method name needs to be treated in a
special way by some tool.

15.4.2.6

| static Method is static. 15.4.2.2

| virtual Method is virtual. 15.4.2.2

| strict Check accessibility on override 15.4.2.2

The following combinations of predefined attributes are invalid:

• static combined with any of final, newslot, or virtual

• abstract combined with any of final or pinvokeimpl

• compilercontrolled combined with any of final, rtspecialname, specialname, or
virtual

15.4 .2.1 Accessibi l ity information

MethAttr ::= …

| assembly

| compilercontrolled

| famandassem

| family

78 Partition II

| famorassem

| private

| public

Only one of these attributes shall be applied to a given method. See Partition I.

15.4 .2.2 Method contract attributes

MethAttr ::= …

| final

| hidebysig

| static

| virtual

| strict

These attributes can be combined, except a method shall not be both static and virtual; only virtual
methods shall be final or strict; and abstract methods shall not be final.

final methods shall not be overridden by derived classes of this type.

hidebysig is supplied for the use of tools and is ignored by the VES. It specifies that the declared method
hides all methods of the base class types that have a matching method signature; when omitted, the method
should hide all methods of the same name, regardless of the signature.

[Rationale: Some languages (such as C++) use a hide-by-name semantics while others (such as C#, Java™) use
a hide-by-name-and-signature semantics. end rationale]

static and virtual are described in §15.2.

strict virtual methods can only be overridden if they are also accessible. See §23.1.10.

15.4 .2.3 Overriding behavior

MethAttr ::= …

 | newslot

newslot shall only be used with virtual methods. See 10.3.

15.4 .2.4 Method attributes

MethAttr ::= …

 | abstract

abstract shall only be used with virtual methods that are not final. It specifies that an implementation
of the method is not provided but shall be provided by a derived class. abstract methods shall only appear
in abstract types (§10.1.4).

15.4 .2.5 Interoperation attributes

MethAttr ::= …

 | pinvokeimpl ‘(’ QSTRING [as QSTRING] PinvAttr* ‘)’

See §15.5.2and §22.20.

 Partition II 79

15.4 .2.6 Special handling attributes

MethAttr ::= …

 | rtspecialname

 | specialname

The attribute rtspecialname specifies that the method name shall be treated in a special way by the
runtime. Examples of special names are .ctor (object constructor) and .cctor (type initializer).

specialname indicates that the name of this method has special meaning to some tools.

15.4 .3 Implementat ion attributes of methods

ImplAttr ::= Description Clause

 cil The method contains standard CIL code. 15.4.3.1

| forwardref The body of this method is not specified
with this declaration.

15.4.3.3

| internalcall Denotes the method body is provided by
the CLI itself

15.4.3.3

| managed The method is a managed method. 15.4.3.2

| native The method contains native code. 15.4.3.1

| noinlining The runtime shall not expand the method
inline.

15.4.3.3

| runtime The body of the method is not defined, but
is produced by the runtime.

15.4.3.1

| synchronized The method shall be executed in a single
threaded fashion.

15.4.3.3

| unmanaged Specifies that the method is unmanaged. 15.4.3.2

15.4 .3.1 Code implementation attributes

ImplAttr ::= …

 | cil

 | native

 | runtime

These attributes are mutually exclusive; they specify the type of code the method contains.

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of
the method shall be provided if cil is used.

native specifies that a method was implemented using native code, tied to a specific processor for which it
was generated. native methods shall not have a body but instead refer to a native method that declares the
body. Typically, the PInvoke functionality (§15.5.2) of the CLI is used to refer to a native method.

runtime specifies that the implementation of the method is automatically provided by the runtime and is
primarily used for the methods of delegates (§14.6).

15.4 .3.2 Managed or unmanaged

ImplAttr ::= …

80 Partition II

 | managed

 | unmanaged

These shall not be combined. Methods implemented using CIL are managed. unmanaged is used primarily
with PInvoke (§15.5.2).

15.4 .3.3 Implementat ion information

ImplAttr ::= …

 | forwardref

 | internalcall

 | noinlining

 | synchronized

These attributes can be combined.

forwardref specifies that the body of the method is provided elsewhere. This attribute shall not be present
when an assembly is loaded by the VES. It is used for tools (like a static linker) that will combine separately
compiled modules and resolve the forward reference.

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level
methods in a system library). It shall not be applied to methods that are intended for use across
implementations of the CLI.

noinlining specifies that the body of this method should not be included into the code of any caller
methods, by a CIL-to-native-code compiler; it shall be kept as a separate routine.

[Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (e.g.,
displaying stack traces) and profiling. It also provides a mechanism for the programmer to override the default
heuristics a CIL-to-native-code compiler uses for inlining. end rationale]

synchronized specifies that the whole body of the method shall be single-threaded. If this method is an
instance or virtual method, a lock on the object shall be obtained before the method is entered. If this method is
a static method, a lock on the closed type shall be obtained before the method is entered. If a lock cannot be
obtained, the requesting thread shall not proceed until it is granted the lock. This can cause deadlocks. The lock
is released when the method exits, either through a normal return or an exception. Exiting a synchronized
method using a tail. call shall be implemented as though the tail. had not been specified. noinlining
specifies that the runtime shall not inline this method. Inlining refers to the process of replacing the call
instruction with the body of the called method. This can be done by the runtime for optimization purposes.

15.4 .4 Scope blocks

 ScopeBlock ::= ‘{’ MethodBodyItem* ‘}’

A ScopeBlock is used to group elements of a method body together. For example, it is used to designate the
code sequence that constitutes the body of an exception handler.

15.4 .5 vararg methods

vararg methods accept a variable number of arguments. They shall use the vararg calling convention
(§15.3).

At each call site, a method reference shall be used to describe the types of the fixed and variable arguments that
are passed. The fixed part of the argument list shall be separated from the additional arguments with an ellipsis
(see Partition I). [Note: The method reference is represented by either a MethodRef (§22.25) or MethodDef
(§22.26). A MethodRef might be needed even if the method is defined in the same assembly, because the
MethodDef only describes the fixed part of the argument list. If the call site does not pass any additional
arguments, then it can use the MethodDef for vararg methods defined in the same assembly. end note]

 Partition II 81

The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction
arglist (see Partition III). The handle can be used to create an instance of the value type System.ArgIterator
which provides a type-safe mechanism for accessing the arguments (see Partition IV).

[Example: The following example shows how a vararg method is declared and how the first vararg
argument is accessed, assuming that at least one additional argument was passed to the method:

.method public static vararg void MyMethod(int32 required) {
 .maxstack 3
 .locals init (valuetype [mscorlib]System.ArgIterator it, int32 x)

 ldloca it // initialize the iterator
 initobj valuetype [mscorlib]System.ArgIterator
 ldloca it
 arglist // obtain the argument handle
 call instance void [mscorlib]System.ArgIterator::.ctor(valuetype
 [mscorlib]System.RuntimeArgumentHandle) // call constructor of iterator

 /* argument value will be stored in x when retrieved, so load
 address of x */
 ldloca x
 ldloca it
 // retrieve the argument, the argument for required does not matter
 call instance typedref [mscorlib]System.ArgIterator::GetNextArg()

 call object [mscorlib]System.TypedReference::ToObject(typedref) /* retrieve
the
 object */
 castclass [mscorlib]System.Int32 // cast and unbox
 unbox int32
 cpobj int32 // copy the value into x
 // first vararg argument is stored in x
 ret
}

end example]

15.5 Unmanaged methods
In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-
existing native code from the underlying platform, known as unmanaged code. These facilities are, by
necessity, platform-specific and hence are only partially specified here.

This Standard specifies:

• A mechanism in the file format for providing function pointers to managed code that can be called
from unmanaged code (§15.5.1).

• A mechanism for marking certain method definitions as being implemented in unmanaged code
(called platform invoke, see §15.5.2).

• A mechanism for marking call sites used with method pointers to indicate that the call is to an
unmanaged method (§15.5.3).

• A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on
all implementations of the CLI (§15.5.4). The set of types is extensible through the use of custom
attributes and modifiers, but these extensions are platform-specific.

15.5 .1 Method transit ion thunks

[Note: As this mechanism is not part of the Kernel Profile, it might not be present in all conforming
implementations of the CLI. See Partition IV. end note]

In order to call managed code from unmanaged code, some platforms require a specific transition sequence to
be performed. In addition, some platforms require that the representation of data types be converted (data

82 Partition II

marshaling). Both of these problems are solved by the .vtfixup directive. This directive can appear several
times, but only at the top level of a CIL assembly file, as shown by the following grammar:

Decl ::= Clause

 .vtfixup VTFixupDecl

| … 5.10

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata
tokens referring to methods that shall be converted into method pointers. The CLI will do this conversion
automatically when the file containing the .vtfixup directive is loaded into memory for execution. The
declaration specifies the number of entries in the table, the kind of method pointer that is required, the width of
an entry in the table, and the location of the table:

VTFixupDecl ::=

 [Int32] VTFixupAttr* at DataLabel

VTFixupAttr ::=

 fromunmanaged

| int32

| int64

The attributes int32 and int64 are mutually exclusive, with int32 being the default. These attributes
specify the width of each slot in the table. Each slot contains a 32-bit metadata token (zero-padded if the table
has 64-bit slots), and the CLI converts it into a method pointer of the same width as the slot.

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call
to a managed call, call the method, and return the result to the unmanaged environment. The thunk will also
perform data marshalling in the platform-specific manner described for platform invoke.

The ILAsm syntax does not specify a mechanism for creating the table of tokens, but a compiler can simply
emit the tokens as byte literals into a block specified using the .data directive.

15.5 .2 Platform invoke

Methods defined in native code can be invoked using the platform invoke (also know as PInvoke or p/invoke)
functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back, and also
handle necessary data marshalling. Methods that need to be called using PInvoke are marked as
pinvokeimpl. In addition, the methods shall have the implementation attributes native and unmanaged
(§15.4.2.4).

MethAttr ::= Description Clause

 pinvokeimpl ‘(’ QSTRING [as QSTRING]
PinvAttr* ‘)’

Implemented in native code

| … 15.4.1.5

The first quoted string is a platform-specific description indicating where the implementation of the method is
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the
method). The second (optional) string is the name of the method as it exists on that platform, since the
platform can use name-mangling rules that force the name as it appears to a managed program to differ from
the name as seen in the native implementation (this is common, for example, when the native code is generated
by a C++ compiler).

Only static methods, defined at global scope (i.e., outside of any type), can be marked pinvokeimpl. A
method declared with pinvokeimpl shall not have a body specified as part of the definition.

 Partition II 83

PinvAttr ::= Description (platform-specific, suggestion only)

 ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call

| fastcall C style fastcall.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| platformapi Use call convention appropriate to target platform.

The attributes ansi, autochar, and unicode are mutually exclusive. They govern how strings will be
marshaled for calls to this method: ansi indicates that the native code will receive (and possibly return) a
platform-specific representation that corresponds to a string encoded in the ANSI character set (typically this
would match the representation of a C or C++ string constant); autochar indicates a platform-specific
representation that is “natural” for the underlying platform; and unicode indicates a platform-specific
representation that corresponds to a string encoded for use with Unicode methods on that platform.

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive.
They are platform-specific and specify the calling conventions for native code.

[Example: The following shows the declaration of the method MessageBeep located in the Microsoft
Windows™ DLL user32.dll:

.method public static pinvokeimpl("user32.dll" stdcall) int8
 MessageBeep(unsigned int32) native unmanaged {}

end example]

15.5 .3 Method calls v ia function pointers

Unmanaged methods can also be called via function pointers. There is no difference between calling managed
or unmanaged methods with pointers. However, the unmanaged method needs to be declared with
pinvokeimpl as described in §15.5.2. Calling managed methods with function pointers is described
in §14.5.

15.5 .4 Data type marshaling

While data type marshaling is necessarily platform-specific, this Standard specifies a minimum set of data
types that shall be supported by all conforming implementations of the CLI. Additional data types can be
supported in a platform-specific manner, using custom attributes and/or custom modifiers to specify any special
handling required on the particular implementation.

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type
to which they conform is implementation-specific:

• All integer data types (int8, int16, unsigned int8, bool, char, etc.) including the
native integer types.

• Enumerations, as their underlying data type.

• All floating-point data types (float32 and float64), if they are supported by the CLI
implementation for managed code.

• The type string.

• Unmanaged pointers to any of the above types.

84 Partition II

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but
need not be supported in the reverse direction (i.e., as return types when calling unmanaged methods or as
parameters when calling from unmanaged methods into managed methods):

• One-dimensional zero-based arrays of any of the above

• Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it
should not be assumed that marshaling a delegate will produce a function pointer that can be used
directly from unmanaged code).

Finally, the type System.Runtime.InteropServices.GCHandle can be used to marshal an object to unmanaged
code. The unmanaged code receives a platform-specific data type that can be used as an “opaque handle” to a
specific object. See Partition IV.

 Partition II 85

16 Defining and referencing fields
Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both
instance and static fields. While static fields are associated with a type, and are shared across all instances of
that type, instance fields are associated with a particular instance of that type. Once instantiated, an instance
has its own copy of each instance field.

The CLI also supports global fields, which are fields declared outside of any type definition. Global fields shall
be static.

A field is defined by the .field directive: (§22.15)

Field ::= .field FieldDecl

FieldDecl ::=

 [‘[’ Int32 ‘]’] FieldAttr* Type Id [‘=’ FieldInit | at DataLabel]

The FieldDecl has the following parts:

• An optional integer specifying the byte offset of the field within an instance (§10.7). If present,
the type containing this field shall have the explicit layout attribute. An offset shall not be
supplied for global or static fields.

• Any number of field attributes (§16.2).

• Type.

• Name.

• Optionally, either a FieldInit clause (§16.2) or a DataLabel (§5.4) clause.

Global fields shall have a data label associated with them. This specifies where, in the PE file, the data for that
field is located. Static fields of a type can, but need not, be assigned a data label.

[Example:
.field private class [.module Counter.dll]Counter counter
.field public static initonly int32 pointCount
.field private int32 xOrigin
.field public static int32 count at D_0001B040

end example]

16.1 Attributes of f ields
Attributes of a field specify information about accessibility, contract information, interoperation attributes, as
well as information on special handling.

The following subclauses contain additional information on each group of predefined attributes of a field.

FieldAttr ::= Description Clause

 assembly Assembly accessibility. 16.1.1

| famandassem Family and Assembly accessibility. 16.1.1

| family Family accessibility. 16.1.1

| famorassem Family or Assembly accessibility. 16.1.1

| initonly Marks a constant field. 16.1.2

| literal Specifies metadata field. No memory is allocated
at runtime for this field.

16.1.2

86 Partition II

FieldAttr ::= Description Clause

| marshal ‘(’ NativeType ‘)’ Marshaling information. 16.1.3

| notserialized Reserved (indicates this field is not to be
serialized).

16.1.2

| private Private accessibility. 16.1.1

| compilercontrolled Compiler controlled accessibility. 16.1.1

| public Public accessibility. 16.1.1

| rtspecialname Special treatment by runtime. 16.1.4

| specialname Special name for other tools. 16.1.4

| static Static field. 16.1.2

16.1 .1 Accessibi l ity information

The accessibility attributes are assembly, famandassem, family, famorassem, private,
compilercontrolled, and public. These attributes are mutually exclusive.

Accessibility attributes are described in §8.2.

16.1 .2 Field contract attributes

Field contract attributes are initonly, literal, static and notserialized. These attributes can be
combined; however, only static fields shall be literal. The default is an instance field that can be
serialized.

static specifies that the field is associated with the type itself rather than with an instance of the type. Static
fields can be accessed without having an instance of a type, e.g., by static methods. As a consequence, within
an application domain, a static field is shared between all instances of a type, and any modification of this field
will affect all instances. If static is not specified, an instance field is created.

initonly marks fields which are constant after they are initialized. These fields shall only be mutated inside
a constructor. If the field is a static field, then it shall be mutated only inside the type initializer of the type in
which it was declared. If it is an instance field, then it shall be mutated only in one of the instance constructors
of the type in which it was defined. It shall not be mutated in any other method or in any other constructor,
including constructors of derived classes.

[Note: The use of ldflda or ldsflda on an initonly field makes code unverifiable. In unverifiable code, the
VES need not check whether initonly fields are mutated outside the constructors. The VES need not report
any errors if a method changes the value of a constant. However, such code is not valid. end note]

literal specifies that this field represents a constant value; such fields shall be assigned a value. In contrast
to initonly fields, literal fields do not exist at runtime. There is no memory allocated for them.
literal fields become part of the metadata, but cannot be accessed by the code. literal fields are
assigned a value by using the FieldInit syntax (§16.2).

[Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its
actual value. Hence changing the value of a literal requires recompilation of any code that references the
literal. Literal values are, thus, not version-resilient. end note]

16.1 .3 Interoperation attributes

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall
not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and
specifies that the field’s contents should be converted to and from a specified native data type when passed to
unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as
restrictions on what automatic conversions can be specified using the marshal attribute. See also §15.5.4.

 Partition II 87

[Note: Marshaling of user-defined types is not required of all implementations of the CLI. It is specified in this
standard so that implementations which choose to provide it will allow control over its behavior in a consistent
manner. While this is not sufficient to guarantee portability of code that uses this feature, it does increase the
likelihood that such code will be portable. end note]

16.1 .4 Other attributes

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.

[Rationale: There are currently no field names that are required to be marked with rtspecialname. It is
provided for extensions, future standardization, and to increase consistency between the declaration of fields
and methods (instance and type initializer methods shall be marked with this attribute). end rationale]

The attribute specialname indicates that the field name has special meaning to tools other than the runtime,
typically because it marks a name that has meaning for the CLS (see Partition I).

16.2 Field init metadata
The FieldInit metadata can optionally be added to a field declaration. The use of this feature shall not be
combined with a data label.

The FieldInit information is stored in metadata and this information can be queried from metadata. But the CLI
does not use this information to automatically initialize the corresponding fields. The field initializer is
typically used with literal fields (§16.1.2) or parameters with default values. See §22.9.

The following table lists the options for a field initializer. Note that while both the type and the field initializer
are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for
coercing the stored value to the target field type). The description column in the table below provides
additional information.

FieldInit ::= Description

 bool ‘(’ true | false ‘)’ Boolean value, encoded as true or false

| bytearray ‘(’ Bytes ‘)’ String of bytes, stored without conversion. Can be
padded with one zero byte to make the total byte-count
an even number

| char ‘(’ Int32 ‘)’ 16-bit unsigned integer (Unicode character)

| float32 ‘(’ Float64 ‘)’ 32-bit floating-point number, with the floating-point
number specified in parentheses.

| float32 ‘(’ Int32 ‘)’ Int32 is binary representation of float

| float64 ‘(’ Float64 ‘)’ 64-bit floating-point number, with the floating-point
number specified in parentheses.

| float64 ‘(’ Int64 ‘)’ Int64 is binary representation of double

| [unsigned] int8 ‘(’ Int32 ‘)’ 8-bit integer with the value specified in parentheses.

| [unsigned] int16 ‘(’ Int32 ‘)’ 16-bit integer with the value specified in parentheses.

| [unsigned] int32 ‘(’ Int32 ‘)’ 32-bit integer with the value specified in parentheses.

| [unsigned] int64 ‘(’ Int64 ‘)’ 64-bit integer with the value specified in parentheses.

| QSTRING String. QSTRING is stored as Unicode

| nullref Null object reference

[Example: The following shows a typical use of this:
.field public static literal valuetype ErrorCodes no_error = int8(0)

88 Partition II

The field named no_error is a literal of type ErrorCodes (a value type) for which no memory is
allocated. Tools and compilers can look up the value and detect that it is intended to be an 8-bit signed integer
whose value is 0. end example]

16.3 Embedding data in a PE fi le
There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is
used.

Data can be embedded in a PE file by using the .data directive at the top-level.

Decl ::= Clause

 .data DataDecl

| … 6.6

Data can also be declared as part of a type:

ClassMember ::= Clause

 .data DataDecl

| … 10.2

Yet another alternative is to declare data inside a method:

MethodBodyItem ::= Clause

 .data DataDecl

| … 15.4.1

16.3 .1 Data declaration

A .data directive contains an optional data label and the body which defines the actual data. A data label
shall be used if the data is to be accessed by the code.

DataDecl ::= [DataLabel ‘=’] DdBody

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an
array.

DdBody ::=

 DdItem

| ‘{’ DdItemList ‘}’

A list of items consists of any number of items:

DdItemList ::= DdItem [‘,’ DdItemList]

The list can be used to declare multiple data items associated with one label. The items will be laid out in the
order declared. The first data item is accessible directly through the label. To access the other items, pointer
arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer
arithmetic will make the application non-verifiable. (Each data item shall have a DataLabel if it is to be
referenced afterwards; missing a DataLabel is useful in order to insert alignment padding between data items)

A data item declares the type of the data and provides the data in parentheses. If a list of data items contains
items of the same type and initial value, the grammar below can be used as a short cut for some of the types:
the number of times the item shall be replicated is put in brackets after the declaration.

DdItem ::= Description

 Partition II 89

 ‘&’ ‘(’ Id ‘)’ Address of label

| bytearray ‘(’ Bytes ‘)’ Array of bytes

| char ‘*’ ‘(’ QSTRING ‘)’ Array of (Unicode) characters

| float32 [‘(’ Float64 ‘)’] [‘[’ Int32 ‘]’] 32-bit floating-point number, can be
replicated

| float64 [‘(’ Float64 ‘)’] [‘[’ Int32 ‘]’] 64-bit floating-point number, can be
replicated

| int8 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’] 8-bit integer, can be replicated

| int16 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’] 16-bit integer, can be replicated

| int32 [‘(’ Int32 ‘)’] [‘[’ Int32 ‘]’] 32-bit integer, can be replicated

| int64 [‘(’ Int64 ‘)’] [‘[’ Int32 ‘]’] 64-bit integer, can be replicated

[Example:

The following declares a 32-bit signed integer with value 123:
.data theInt = int32(123)

The following declares 10 replications of an 8-bit unsigned integer with value 3:
.data theBytes = int8 (3) [10]

end example]

16.3 .2 Accessing data from the PE f i le

The data stored in a PE File using the .data directive can be accessed through a static variable, either
global or a member of a type, declared at a particular position of the data:

FieldDecl ::= FieldAttr* Type Id at DataLabel

The data is then accessed by a program as it would access any other static variable, using instructions such as
ldsfld, ldsflda, and so on (see Partition III).

The ability to access data from within the PE File can be subject to platform-specific rules, typically related to
section access permissions within the PE File format itself.

[Example: The following accesses the data declared in the example of §16.3.1. First a static variable needs to
be declared for the data, e.g., a global static variable:

.field public static int32 myInt at theInt

Then the static variable can be used to load the data:
ldsfld int32 myInt
// data on stack

end example]

16.4 Initial ization of non-literal static data

This subclause and its subclauses contain only informative text.
Many languages that support static data provide for a means to initialize that data before the program begins
execution. There are three common mechanisms for doing this, and each is supported in the CLI.

16.4 .1 Data known at l ink t ime

When the correct value to be stored into the static data is known at the time the program is linked (or compiled
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into

90 Partition II

the data area (§16.3). References to the variable are made directly to the location where this data has been
placed in memory, using the OS-supplied fix-up mechanism to adjust any references to this area if the file loads
at an address other than the one assumed by the linker.

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is
a value type with explicit type layout and no embedded references to managed objects. In this case the data is
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e., offset from the start
of the PE file) by using a data label with the field declaration (using the at syntax).

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I).
An application domain is intended to isolate two applications running in the same OS process from one another
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data
accessed via this mechanism is visible to all application domains in the process, thus violating the application
domain isolation boundary.

16.5 Data known at load time
When the correct value is not known until the PE file is loaded (for example, if it contains values computed
based on the load addresses of several PE files) it can be possible to supply arbitrary code to run as the PE file
is loaded, but this mechanism is platform-specific and might not be available in all conforming
implementations of the CLI.

16.5 .1 Data known at run t ime

When the correct value cannot be determined until type layout is computed, the user shall supply code as part
of a type initializer to initialize the static data. The guarantees about type initialization are covered in §10.5.3.1.
As will be explained below, global statics are modeled in the CLI as though they belonged to a type, so the
same guarantees apply to both global and type statics.

Because the layout of managed types need not occur until a type is first referenced, it is not possible to
statically initialize managed types by simply laying out the data in the PE file. Instead, there is a type
initialization process that proceeds in the following steps:

1. All static variables are zeroed.

2. The user-supplied type initialization procedure, if any, is invoked as described in §10.5.3.

Within a type initialization procedure there are several techniques:

• Generate explicit code that stores constants into the appropriate fields of the static variables. For
small data structures this can be efficient, but it requires that the initializer be converted to native
code, which can prove to be both a code space and an execution time problem.

• Box value types. When the static variable is simply a boxed version of a primitive numeric type or
a value type with explicit layout, introduce an additional static variable with known RVA that
holds the unboxed instance and then simply use the box instruction to create the boxed copy.

• Create a managed array from a static native array of data. This can be done by marshaling the
native array to a managed array. The specific marshaler to be used depends on the native array.
e.g., it can be a safearray.

• Default initialize a managed array of a value type. The Base Class Library provides a method that
zeroes the storage for every element of an array of unboxed value types
(System.Runtime.CompilerServices.InitializeArray)

End informative text

 Partition II 91

17 Defining properties
A Property is declared by the using the .property directive. Properties shall only be declared inside of
types (i.e., global properties are not supported).

ClassMember ::=

 .property PropHeader ‘{’ PropMember* ‘}’

See §22.34 and §22.35 for how property information is stored in metadata.

PropHeader ::=

 [specialname][rtspecialname] CallConv Type Id ‘(’ Parameters ‘)’

The .property directive specifies a calling convention (§15.3), type, name, and parameters in parentheses.
specialname marks the property as special to other tools, while rtspecialname marks the property as
special to the CLI. The signature for the property (i.e., the PropHeader production) shall match the signature
of the property's .get method (see below)

[Rationale: There are currently no property names that are required to be marked with rtspecialname. It is
provided for extensions, future standardization, and to increase consistency between the declaration of
properties and methods (instance and type initializer methods shall be marked with this attribute). end
rationale]

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies
a set of consistency constraints.

A property can contain any number of methods in its body. The following table shows how these methods are
identified, and provides short descriptions of each kind of item:

PropMember ::= Description Clause

| .custom CustomDecl Custom attribute. 21

| .get CallConv Type [TypeSpec ‘::’] MethodName
‘(’ Parameters ‘)’

Specifies the getter for the
property.

| .other CallConv Type [TypeSpec ‘::’]
MethodName ‘(’ Parameters ‘)’

Specifies a method for the
property other than the getter or
setter.

| .set CallConv Type [TypeSpec ‘::’] MethodName
‘(’ Parameters ‘)’

Specifies the setter for the
property.

| ExternSourceDecl .line or #line 5.7

.get specifies the getter for this property. The TypeSpec defaults to the current type. Only one getter can be
specified for a property. To be CLS-compliant, the definition of getter shall be marked specialname.

.set specifies the setter for this property. The TypeSpec defaults to the current type. Only one setter can be
specified for a property. To be CLS-compliant, the definition of setter shall be marked specialname.

.other is used to specify any other methods that this property comprises.

In addition, custom attributes (§21) or source line declarations can be specified.

[Example: This shows the declaration of the property called count.
.class public auto autochar MyCount extends [mscorlib]System.Object {
 .method virtual hidebysig public specialname instance int32 get_Count() {
 // body of getter
 }

92 Partition II

 .method virtual hidebysig public specialname instance void set_Count(
 int32 newCount) {
 // body of setter
 }

 .method virtual hidebysig public instance void reset_Count() {
 // body of refresh method
 }

 // the declaration of the property
 .property int32 Count() {
 .get instance int32 MyCount::get_Count()
 .set instance void MyCount::set_Count(int32)
 .other instance void MyCount::reset_Count()
 }
}

end example]

 Partition II 93

18 Defining events
Events are declared inside types, using the .event directive; there are no global events.

ClassMember ::= Clause

 .event EventHeader ‘{’ EventMember* ‘}’

| … 9

See §22.13 and §22.11

EventHeader ::=

 [specialname] [rtspecialname] [TypeSpec] Id

In typical usage, the TypeSpec (if present) identifies a delegate whose signature matches the arguments passed
to the event’s fire method.

The event head can contain the keywords specialname or rtspecialname. specialname marks the
name of the property for other tools, while rtspecialname marks the name of the event as special for the
runtime.

[Rationale: There are currently no event names that are required to be marked with rtspecialname. It is
provided for extensions, future standardization, and to increase consistency between the declaration of events
and methods (instance and type initializer methods shall be marked with this attribute). end rationale]

EventMember ::= Description Clause

 .addon CallConv Type [TypeSpec ‘::’] MethodName
‘(’ Parameters ‘)’

Add method for event.

| .custom CustomDecl Custom attribute. 21

| .fire CallConv Type [TypeSpec ‘::’] MethodName ‘(’
Parameters ‘)’

Fire method for event.

| .other CallConv Type [TypeSpec ‘::’] MethodName
‘(’ Parameters ‘)’

Other method.

| .removeon CallConv Type [TypeSpec ‘::’] MethodName
‘(’ Parameters ‘)’

Remove method for event.

| ExternSourceDecl .line or #line 5.7

The .addon directive specifies the add method, and the TypeSpec defaults to the same type as the event. The
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the
add method be marked with specialname.

The .removeon directive specifies the remove method, and the TypeSpec defaults to the same type as the
event. The CLS specifies naming conventions and consistency constraints for events, and requires that the
definition of the remove method be marked with specialname.

The .fire directive specifies the fire method, and the TypeSpec defaults to the same type as the event. The
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the
fire method be marked with specialname.

An event can contain any number of other methods specified with the .other directive. From the point of
view of the CLI, these methods are only associated with each other through the event. If they have special
semantics, this needs to be documented by the implementer.

Events can also have custom attributes (§21) associated with them and they can declare source line information.

94 Partition II

[Example: This shows the declaration of an event, its corresponding delegate, and typical implementations of
the add, remove, and fire method of the event. The event and the methods are declared in a class called
Counter.

// the delegate
.class private sealed auto autochar TimeUpEventHandler extends
 [mscorlib]System.Delegate {
 .method public hidebysig specialname rtspecialname instance void .ctor(object
 'object', native int 'method') runtime managed {}

 .method public hidebysig virtual instance void Invoke() runtime managed {}

 .method public hidebysig newslot virtual instance class
 [mscorlib]System.IAsyncResult BeginInvoke(class
 mscorlib]System.AsyncCallback callback, object 'object') runtime managed {}

 .method public hidebysig newslot virtual instance void EndInvoke(class
 [mscorlib]System.IAsyncResult result) runtime managed {}
}

// the class that declares the event
.class public auto autochar Counter extends [mscorlib]System.Object {
 // field to store the handlers, initialized to null
 .field private class TimeUpEventHandler timeUpEventHandler
 // the event declaration
 .event TimeUpEventHandler startStopEvent {
 .addon instance void Counter::add_TimeUp(class TimeUpEventHandler 'handler')
 .removeon instance void Counter::remove_TimeUp(class TimeUpEventHandler
'handler')
 .fire instance void Counter::fire_TimeUpEvent()
 }
 // the add method, combines the handler with existing delegates
 .method public hidebysig virtual specialname instance void add_TimeUp(class
 TimeUpEventHandler 'handler') {
 .maxstack 4
 ldarg.0
 dup

 ldfld class TimeUpEventHandler Counter::TimeUpEventHandler
 ldarg 'handler'
 call class[mscorlib]System.Delegate
 [mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate, class
 [mscorlib]System.Delegate)
 castclass TimeUpEventHandler
 stfld class TimeUpEventHandler Counter::timeUpEventHandler
 ret
 }

 // the remove method, removes the handler from the delegate
 .method virtual public specialname void remove_TimeUp(class TimeUpEventHandler
 'handler') {
 .maxstack 4
 ldarg.0
 dup
 ldfld class TimeUpEventHandler Counter::timeUpEventHandler

 ldarg 'handler'
 call class[mscorlib]System.Delegate
 [mscorlib]System.Delegate::Remove(class
 [mscorlib]System.Delegate, class [mscorlib]System.Delegate)
 castclass TimeUpEventHandler
 stfld class TimeUpEventHandler Counter::timeUpEventHandler
 ret
 }

 Partition II 95

 // the fire method
 .method virtual family specialname void fire_TimeUpEvent() {
 .maxstack 3
 ldarg.0
 ldfld class TimeUpEventHandler Counter::timeUpEventHandler
 callvirt instance void TimeUpEventHandler::Invoke()
 ret
 }
} // end of class Counter

end example]

96 Partition II

19 Exception handling
In the CLI, a method can define a range of CIL instructions that are said to be protected. This is called a try
block. It can then associate one or more handlers with that try block. If an exception occurs during execution
anywhere within the try block, an exception object is created that describes the problem. The CLI then takes
over, transferring control from the point at which the exception was thrown, to the block of code that is willing
to handle that exception. See Partition I.

No two handlers (fault, filter, catch, or finally) can have the same starting address. When an exception occurs it
is necessary to convert the execution address to the correct most lexically nested try block in which the
exception occurred.

SEHBlock ::=

 TryBlock SEHClause [SEHClause*]

The next few subclauses expand upon this simple description, by describing the five kinds of code block that
take part in exception processing: try, catch, filter, finally, and fault. (Note that there are
restrictions upon how many, and what kinds of SEHClause a given TryBlock can have; see Partition I for
details.)

The remaining syntax items are described in detail below; they are collected here for reference.

TryBlock ::= Description

.try Label to Label Protect region from first label to prior to second

| .try ScopeBlock ScopeBlock is protected

SEHClause ::= Description

 catch TypeReference HandlerBlock Catch all objects of the specified type

| fault HandlerBlock Handle all exceptions but not normal exit

| filter Label HandlerBlock Enter handler only if filter succeeds

| finally HandlerBlock Handle all exceptions and normal exit

HandlerBlock::= Description

handler Label to Label Handler range is from first label to prior to second

| ScopeBlock ScopeBlock is the handler block

19.1 Protected blocks
A try, or protected, or guarded, block is declared with the .try directive.

TryBlock ::= Descriptions

.try Label to Label Protect region from first label to prior to second.

| .try ScopeBlock ScopeBlock is protected

In the first case, the protected block is delimited by two labels. The first label is the first instruction to be
protected, while the second label is the instruction just beyond the last one to be protected. Both labels shall be
defined prior to this point.

The second case uses a scope block (§15.4.4) after the .try directive—the instructions within that scope are
the ones to be protected.

 Partition II 97

19.2 Handler blocks

HandlerBlock ::= Description

| handler Label to Label Handler range is from first label to prior to second

| ScopeBlock ScopeBlock is the handler block

In the first case, the labels enclose the instructions of the handler block, the first label being the first instruction
of the handler while the second is the instruction immediately after the handler. In the second case, the handler
block is just a scope block.

19.3 Catch blocks
A catch block is declared using the catch keyword. This specifies the type of exception object the clause is
designed to handle, and the handler code itself.

SEHClause ::=

 catch TypeReference HandlerBlock

[Example:
.try {
 … // protected instructions
 leave exitSEH // normal exit
} catch [mscorlib]System.FormatException {
 … // handle the exception
 pop // pop the exception object
 leave exitSEH // leave catch handler
}
exitSEH: // continue here

end example]

19.4 Filter blocks
A filter block is declared using the filter keyword.

SEHClause ::= …

| filter Label HandlerBlock

| filter Scope HandlerBlock

The filter code begins at the specified label and ends at the first instruction of the handler block. (Note that the
CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler
block.)

[Example:
.method public static void m () {
 .try {
 … // protected instructions
 leave exitSEH // normal exit
 }

 filter {
 … // decide whether to handle
 pop // pop exception object
 ldc.i4.1 // EXCEPTION_EXECUTE_HANDLER
 endfilter // return answer to CLI
 }

98 Partition II

 {
 … // handle the exception
 pop // pop the exception object
 leave exitSEH // leave filter handler
 }
exitSEH:
 …
}

end example]

19.5 Finally blocks
A finally block is declared using the finally keyword. This specifies the handler code, with this grammar:

SEHClause ::= …

| finally HandlerBlock

The last possible CIL instruction that can be executed in a finally handler shall be endfinally.

[Example:
.try {
 … // protected instructions
 leave exitTry // shall use leave
} finally {
 … // finally handler
 endfinally
}
exitTry: // back to normal

19.6 Fault handlers
end example]

A fault block is declared using the fault keyword. This specifies the handler code, with this grammar:

SEHClause ::= …

| fault HandlerBlock

The last possible CIL instruction that can be executed in a fault handler shall be endfault.

[Example:
.method public static void m() {
 startTry:
 … // protected instructions
 leave exitSEH // shall use leave
 endTry:

startFault:
 … // fault handler instructions
 endfault

endFault:
 .try startTry to endTry fault handler startFault to endFault

exitSEH: // back to normal
}

end example]

 Partition II 99

20 Declarative security
Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the
metadata. This information is actually converted by the compiler into an XML-based representation that is
stored in the metadata, see §22.11. By contrast, ilasm requires the conversion information to be represented in
its input.

SecurityDecl ::=

 .permissionset SecAction = ‘(’ Bytes ‘)’

| .permission SecAction TypeReference ‘(’ NameValPairs ‘)’

NameValPairs ::= NameValPair [‘,’ NameValPair]*

NameValPair ::= SQSTRING ‘=’ SQSTRING

In .permission, TypeReference specifies the permission class and NameValPairs specifies the settings.
See §22.11

In .permissionset the bytes specify the encoded version of the security settings:

SecAction ::= Description

 assert Assert permission so that callers do not need it.

| demand Demand permission of all callers.

| deny Deny permission so checks will fail.

| inheritcheck Demand permission of a derived class.

| linkcheck Demand permission of caller.

| permitonly Reduce permissions so check will fail.

| reqopt Request optional additional permissions.

| reqrefuse Refuse to be granted these permissions.

| request Hint that permission might be required.

100 Partition II

21 Custom attributes
Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of a type
to be stored with any element of the metadata. This mechanism can be used to store application-specific
information at compile time, and to access it either at runtime or when another tool reads the metadata. While
any user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of
types whose base class is System.Attribute. The CLI predefines some attribute types and uses them to control
runtime behavior. Some languages predefine attribute types to represent language features not directly
represented in the CTS. Users or other tools are welcome to define and use additional attribute types.

Custom attributes are declared using the directive .custom, followed by the method declaration for a type
constructor, optionally followed by a Bytes in parentheses:

CustomDecl ::=

 Ctor [‘=’ ‘(’ Bytes ‘)’]

The Ctor item represents a method declaration (§15.4), specific for the case where the method's name is
.ctor. [Example:
.custom instance void myAttribute::.ctor(bool, bool) = (01 00 00 01 00
00)

end example]

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties,
generic parameters, and events (the custom attribute is attached to the immediately preceding declaration)

The Bytes item is not required if the constructor takes no arguments. In such cases, all that matters is the
presence of the custom attribute.

If the constructor takes parameters, their values shall be specified in the Bytes item. The format for this ‘blob’
is defined in §23.3.

[Example: The following shows a class that is marked with the attribute called
System.CLSCompliantAttribute and a method that is marked with the attribute called
System.ObsoleteAttribute.

.class public MyClass extends [mscorlib]System.Object
{ .custom instance void [mscorlib]System.CLSCompliantAttribute::.ctor(bool) =
 (01 00 01 00 00)
 .method public static void CalculateTotals() cil managed
{ .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor() =
 (01 00 00 00)
 ret
}

end example]

21.1 CLS conventions: custom attribute usage
CLS imposes certain conventions upon the use of custom attributes in order to improve cross-language
operation. See Partition I for details.

21.2 Attributes used by the CLI
There are two kinds of custom attributes, called genuine custom attributes, and pseudo custom attributes.
Custom attributes and pseudo custom attributes are treated differently, at the time they are defined, as follows:

• A custom attribute is stored directly into the metadata; the‘blob’ which holds its defining data is
stored as-is. That ‘blob’ can be retrieved later.

 Partition II 101

• A pseudo custom attribute is recognized because its name is one of a short list. Rather than store
its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used to set
bits and/or fields within metadata tables. The ‘blob’ is then discarded; it cannot be retrieved
later.

Pseudo custom attributes therefore serve to capture user directives, using the same familiar syntax the compiler
provides for genuine custom attributes, but these user directives are then stored into the more space-efficient
form of metadata tables. Tables are also faster to check at runtime than are genuine custom attributes.

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI,
without its knowing or caring what they ‘mean’. But all pseudo custom attributes, plus a collection of genuine
custom attributes, are of special interest to compilers and to the CLI. An example of such custom attributes is
System.Reflection.DefaultMemberAttribute. This is stored in metadata as a genuine custom attribute
‘blob’, but reflection uses this custom attribute when called to invoke the default member (property) for a type.

The following subclauses list all of the pseudo custom attributes and distinguished custom attributes, where
distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in
some way.

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved
for standardization.

21.2 .1 Pseudo custom attributes

The following table lists the CLI pseudo custom attributes. (Not all of these attributes are specified in this
Standard, but all of their names are reserved and shall not be used for other purposes. For details on these
attributes, see the documentation for the corresponding class in Partition IV.) They are defined in the
namespaces System.Reflection, System.Runtime.CompilerServices, and
System.Runtime.InteropServices namespaces.

Attribute Description
AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only)
AssemblyFlagsAttribute Records the flags for this assembly (reserved only)
DllImportAttribute Provides information about code implemented within an unmanaged

library
FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type
InAttribute Indicates that a method parameter is an [in] argument
MarshalAsAttribute Specifies how a data item should be marshalled between managed and

unmanaged code (see §23.4).
MethodImplAttribute Specifies details of how a method is implemented
OutAttribute Indicates that a method parameter is an [out] argument
StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid

out in managed memory

These attributes affect bits and fields in metadata, as follows:

AssemblyAlgorithmIDAttribute: sets the Assembly.HashAlgId field.

AssemblyFlagsAttribute: sets the Assembly.Flags field.

DllImportAttribute: sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row
into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns).

FieldOffsetAttribute: sets the FieldLayout.OffSet value for the attributed field.

InAttribute: sets the Param.Flags.In bit for the attributed parameter.

102 Partition II

MarshalAsAttribute: sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal
table for both Parent and NativeType columns.

MethodImplAttribute: sets the Method.ImplFlags field of the attributed method.

OutAttribute: sets the Param.Flags.Out bit for the attributed parameter.

StructLayoutAttribute: sets the TypeDef.Flags.LayoutMask sub-field for the attributed type, and, optionally,
the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSize,and ClassLayout.ClassSize fields
for that type.

21.2 .2 Custom attributes def ined by the CLS

 The CLS specifies certain Custom Attributes and requires that conformant languages support them. These
attributes are located under System.

Attribute Description
AttributeUsageAttribute Used to specify how an attribute is intended to be used.
ObsoleteAttribute Indicates that an element is not to be used.
CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant

through an instance field on the attribute object.

21.2 .3 Custom attributes for security

The following custom attributes are defined in the System.Net and System.Security.Permissions
namespaces. Note that these are all base classes; the actual instances of security attributes found in assemblies
will be sub-classes of these.

Attribute Description
CodeAccessSecurityAttribute This is the base attribute class for declarative security using

custom attributes.
DnsPermissionAttribute Custom attribute class for declarative security with

DnsPermission
EnvironmentPermissionAttribute Custom attribute class for declarative security with

EnvironmentPermission.
FileIOPermissionAttribute Custom attribute class for declarative security with

FileIOPermission.
ReflectionPermissionAttribute Custom attribute class for declarative security with

ReflectionPermission.
SecurityAttribute This is the base attribute class for declarative security from

which CodeAccessSecurityAttribute is derived.
SecurityPermissionAttribute Indicates whether the attributed method can affect security

settings
SocketPermissionAttribute Custom attribute class for declarative security with

SocketPermission.
WebPermissionAttribute Custom attribute class for declarative security with

WebPermission.

Note that any other security-related custom attributes (i.e., any custom attributes that derive from
System.Security.Permissions.SecurityAttribute) included into an assembly, can cause a conforming
implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any

 Partition II 103

attempt is made to access those security-related custom attributes. (This statement holds true for any custom
attributes that cannot be resolved; security-related custom attributes are just one particular case)

21.2 .4 Custom attributes for TLS

A custom attribute that denotes a TLS (thread-local storage, see §Error! Reference source not found.) field is
defined in the System namespace.

Attribute Description
ThreadStaticAttribute Provides for type member fields that are relative for the thread.

21.2 .5 Custom attributes, various

The following custom attributes control various aspects of the CLI:

Attribute Namespace Description
ConditionalAttribute System.Diagnostics Used to mark methods as callable,

based on some compile-time condition.
If the condition is false, the method will
not be called

DecimalConstantAttribute System.Runtime.CompilerServices Stores the value of a decimal constant
in metadata

DefaultMemberAttribute System.Reflection Defines the member of a type that is the
default member used by reflection’s
InvokeMember.

FaultModeAttribute System.Runtime.CompilerServices Indicates whether exceptions from
instruction checks are precise or
imprecise.

FlagsAttribute System Custom attribute indicating an
enumeration should be treated as a
bitfield; that is, a set of flags

IndexerNameAttribute System.Runtime.CompilerServices Indicates the name by which a property
having one or more parameters will be
known in programming languages that
do not support such a facility directly

ParamArrayAttribute System Indicates that the method will allow a
variable number of arguments in its
invocation

104 Partition II

22 Metadata logical format: tables
This clause defines the structures that describe metadata, and how they are cross-indexed. This corresponds to
how metadata is laid out, after being read into memory from a PE file. (For a description of metadata layout
inside the PE file itself, see §24)

Metadata is stored in two kinds of structure: tables (arrays of records) and heaps. There are four heaps in any
module: String, Blob, Userstring, and Guid. The first three are byte arrays (so valid indexes into these heaps
might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, each 16 bytes wide. Its first element is
numbered 1, its second 2, and so on.

Each entry in each column of each table is either a constant or an index.

Constants are either literal values (e.g., ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly
table), or, more commonly, bitmasks. Most bitmasks (they are almost all called Flags) are 2 bytes wide (e.g.,
the Flags column in the Field table), but there are a few that are 4 bytes (e.g., the Flags column in the TypeDef
table).

Each index is either 2 or 4 bytes wide. The index points into the same or another table, or into one of the four
heaps. The size of each index column in a table is only made 4 bytes if it needs to be for that particular
module. So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-byte value,
the indexer column need only be 2 bytes wide. Conversely, for tables containing 64K or more rows, an indexer
of that table will be 4 bytes wide.

Indexes to tables begin at 1, so index 1 means the first row in any given metadata table. (An index value of
zero denotes that it does not index a row at all; that is, it behaves like a null reference.)

There are two kinds of columns that index a metadata table. (For details of the physical representation of these
tables, see §24.2.6):

• Simple – such a column indexes one, and only one, table. For example, the FieldList column in
the TypeDef table always indexes the Field table. So all values in that column are simple
integers, giving the row number in the target table

• Coded – such a column indexes any of several tables. For example, the Extends column in the
TypeDef table can index into the TypeDef or TypeRef table. A few bits of that index value are
reserved to define which table it targets. For the most part, this specification talks of index
values after being decoded into row numbers within the target table. However, the specification
includes a description of these coded indexes in the section that describes the physical layout of
Metadata (§24).

Metadata preserves name strings, as created by a compiler or code generator, unchanged. Essentially, it treats
each string as an opaque blob. In particular, it preserves case. The CLI imposes no limit on the length of
names stored in metadata and subsequently processed by the CLI

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed
case-blind (see Partition I). However, all other name matches (type, field, method, property, event) shall be
exact – so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not.

Tables are given both a name (e.g., "Assembly") and a number (e.g., 0x20). The number for each table is listed
immediately with its title in the following subclauses. The table numbers indicate the order in which their
corresponding table shall appear in the PE file, and there is a set of bits (§24.2.6) saying whether a given table
exists or not. The number of a table is the position within that set of bits.

A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which occur
in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios, whilst
debugging. Both table types are reserved for future use.

References to the methods or fields of a type are stored together in a metadata table called the MemberRef
table. However, sometimes, for clearer explanation, this standard distinguishes between these two kinds of
reference, calling them “MethodRef” and “FieldRef”.

Certain tables are required to be sorted by a primary key, as follows:

 Partition II 105

Table Primary Key Column

ClassLayout Parent

Constant Parent

CustomAttribute Parent

DeclSecurity Parent

FieldLayout Field

FieldMarshal Parent

FieldRVA Field

GenericParam Owner

GenericParamConstraint Owner

ImplMap MemberForwarded

InterfaceImpl Class

MethodImpl Class

MethodSemantics Association

NestedClass NestedClass

Furthermore, the InterfaceImpl table is sorted using the Interface column as a secondary key, and the
GenericParam table is sorted using the Number column as a secondary key.

Finally, the TypeDef table has a special ordering constraint: the definition of an enclosing class shall precede
the definition of all classes it encloses.

Metadata items (records in the metadata tables) are addressed by metadata tokens. Uncoded metadata tokens
are 4-byte unsigned integers, which contain the metadata table index in the most significant byte and a 1-based
record index in the three least-significant bytes. Metadata tables and their respective indexes are described in
§22.2 and later subclauses.

Coded metadata tokens also contain table and record indexes, but in a different format. For details on the
encoding, see §24.2.6.

22.1 Metadata validation rules

This contains informative text only
The subclauses that follow describe the schema for each kind of metadata table, and explain the detailed rules
that guarantee metadata emitted into any PE file is valid. Checking that metadata is valid ensures that later
processing (such as checking the CIL instruction stream for type safety, building method tables, CIL-to-native-
code compilation, and data marshalling) will not cause the CLI to crash or behave in an insecure fashion.

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even
though these are not related to valid Metadata. These are marked with a trailing [CLS] tag.

The rules for valid metadata refer to an individual module. A module is any collection of metadata that could
typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script
compilers (where the metadata is often held only in memory, but never actually saved to a file on disk).

The rules address intra-module validation only. As such, software that checks conformance with this standard
need not resolve references or walk type hierarchies defined in other modules. However, even if two modules,
A and B, analyzed separately, contain only valid metadata, they can still be in error when viewed together (e.g.,

106 Partition II

a call from Module A, to a method defined in module B, might specify a call site signature that does not match
the signatures defined for that method in B).

All checks are categorized as ERROR, WARNING, or CLS.

• An ERROR check reports something that might cause a CLI to crash or hang, it might run but
produce wrong answers; or it might be entirely benign. Conforming implementations of the CLI
can exist that will not accept metadata that violates an ERROR rule, and therefore such metadata
is invalid and is not portable.

• A WARNING check reports something, not actually wrong, but possibly a slip on the part of the
compiler. Normally, it indicates a case where a compiler could have encoded the same
information in a more compact fashion or where the metadata represents a construct that can have
no actual use at runtime. All conforming implementations shall support metadata that violate
only WARNING rules; hence such metadata is both valid and portable.

• A CLS check reports lack of compliance with the Common Language Specification (see
Partition I). Such metadata is both valid and portable, but programming languages might exist
that cannot process it, even though all conforming implementations of the CLI support the
constructs.

Validation rules fall into the following broad categories:

• Number of Rows: A few tables are allowed only one row (e.g., Module table). Most have no
such restriction.

• Unique Rows: No table shall contain duplicate rows, where “duplicate” is defined in terms of its
key column, or combination of columns.

• Valid Indexes: Columns which are indexes shall point somewhere sensible, as follows:

o Every index into the String, Blob, or Userstring heaps shall point into that heap,
neither before its start (offset 0), nor after its end.

o Every index into the Guid heap shall lie between 1 and the maximum element number
in this module, inclusive.

o Every index (row number) into another metadata table shall lie between 0 and that
table’s row count + 1 (for some tables, the index can point just past the end of any
target table, meaning it indexes nothing).

• Valid Bitmasks: Columns which are bitmasks shall have only valid permutations of bits set.

• Valid RVAs: There are restrictions upon fields and methods that are assigned RVAs (Relative
Virtual Addresses, which are byte offsets, expressed from the address at which the corresponding
PE file is loaded into memory).

Note that some of the rules listed below really don’t say anything—for example, some rules state that a
particular table is allowed zero or more rows—in which case, there is no way that the check can fail. This is
done simply for completeness, to record that such details have indeed been addressed, rather than overlooked.

End informative text
The CLI imposes no limit on the length of names stored in metadata, and subsequently processed by a CLI
implementation.

22.2 Assembly : 0x20
The Assembly table has the following columns:

• HashAlgId (a 4-byte constant of type AssemblyHashAlgorithm, §23.1.1)

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)

 Partition II 107

• PublicKey (an index into the Blob heap)

• Name (an index into the String heap)

• Culture (an index into the String heap)

The Assembly table is defined using the .assembly directive (§6.2); its columns are obtained from the
respective .hash algorithm, .ver, .publickey, and .culture (§6.2.1). (For an example, see §6.2.)

This contains informative text only
1. The Assembly table shall contain zero or one row [ERROR]

2. HashAlgId shall be one of the specified values [ERROR]

3. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

4. Flags shall have only those values set that are specified [ERROR]

5. PublicKey can be null or non-null

6. Name shall index a non-empty string in the String heap [ERROR]

7. The string indexed by Name can be of unlimited length

8. Culture can be null or non-null

9. If Culture is non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems, Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.3 AssemblyOS : 0x22
The AssemblyOS table has the following columns:

• OSPlatformID (a 4-byte constant)

• OSMajorVersion (a 4-byte constant)

• OSMinorVersion (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it shall be treated as if all
its fields were zero. It shall be ignored by the CLI.

22.4 AssemblyProcessor : 0x21
The AssemblyProcessor table has the following column:

• Processor (a 4-byte constant)

This record should not be emitted into any PE file. However, if present in a PE file, it should be treated as if its
field were zero. It should be ignored by the CLI.

22.5 AssemblyRef : 0x23
The AssemblyRef table has the following columns:

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (each being 2-byte constants)

• Flags (a 4-byte bitmask of type AssemblyFlags, §23.1.2)

• PublicKeyOrToken (an index into the Blob heap, indicating the public key or token that identifies
the author of this Assembly)

• Name (an index into the String heap)

108 Partition II

• Culture (an index into the String heap)

• HashValue (an index into the Blob heap)

The table is defined by the .assembly extern directive (§6.3). Its columns are filled using directives
similar to those of the Assembly table except for the PublicKeyOrToken column, which is defined using the
.publickeytoken directive. (For an example, see §6.3.)

This contains informative text only
1. MajorVersion, MinorVersion, BuildNumber, and RevisionNumber can each have any value

2. Flags shall have only one bit set, the PublicKey bit (§23.1.2). All other bits shall be zero.
[ERROR]

3. PublicKeyOrToken can be null, or non-null (note that the Flags.PublicKey bit specifies
whether the 'blob' is a full public key, or the short hashed token)

4. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR]

5. Name shall index a non-empty string, in the String heap (there is no limit to its length) [ERROR]

6. Culture can be null or non-null.

7. If non-null, it shall index a single string from the list specified (§23.1.3) [ERROR]

8. HashValue can be null or non-null

9. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

10. The AssemblyRef table shall contain no duplicates (where duplicate rows are deemd to be those
having the same MajorVersion, MinorVersion, BuildNumber, RevisionNumber,
PublicKeyOrToken, Name, and Culture) [WARNING]

[Note: Name is a simple name (e.g., “Foo”, with no drive letter, no path, and no file extension); on POSIX-
compliant systems Name contains no colon, no forward-slash, no backslash, and no period. end note]

End informative text

22.6 AssemblyRefOS : 0x25
The AssemblyRefOS table has the following columns:

• OSPlatformId (a 4-byte constant)

• OSMajorVersion (a 4-byte constant)

• OSMinorVersion (a 4-byte constant)

• AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated
as-if their fields were zero. They should be ignored by the CLI.

22.7 AssemblyRefProcessor : 0x24
The AssemblyRefProcessor table has the following columns:

• Processor (a 4-byte constant)

• AssemblyRef (an index into the AssemblyRef table)

These records should not be emitted into any PE file. However, if present in a PE file, they should be treated
as-if their fields were zero. They should be ignored by the CLI.

 Partition II 109

22.8 ClassLayout : 0x0F
The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI.
(Normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type.)

[Rationale: This feature is used to lay out a managed value type in exactly the same way as an unmanaged
C struct, allowing a managed value type to be handed to unmanaged code, which then accesses the fields
exactly as if that block of memory had been laid out by unmanaged code. end rationale]

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout,
SequentialLayout, ExplicitLayout} in the owner class or value type.

A type has layout if it is marked SequentialLayout or ExplicitLayout. If any type within an inheritance chain
has layout, then so shall all its base classes, up to the one that descends immediately from System.ValueType
(if it exists in the type’s hierarchy); otherwise, from System.Object.

This contains informative text only
Layout cannot begin part way down the chain. But it is valid to stop “having layout” at any point down the
chain.

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C
derives from B. System.Object has no layout. But A, B and C are all defined with layout, and that is valid.

The situation with classes E, F, and G is similar. G has no layout, and this too is valid. The following picture
shows two invalid setups:

On the left, the “chain with layout” does not start at the ‘highest’ class. And on the right, there is a ‘hole’ in the
“chain with layout”

110 Partition II

Layout information for a class or value type is held in two tables (ClassLayout and FieldLayout), as shown in
the following diagram:

In this example, row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for a Class,
called “MyClass”). Rows 4–6 of the FieldLayout table point to corresponding rows in the Field table. This
illustrates how the CLI stores the explicit offsets for the three fields that are defined in “MyClass” (there is
always one row in the FieldLayout table for each field in the owning class or value type) So, the ClassLayout
table acts as an extension to those rows of the TypeDef table that have layout info; since many classes do not
have layout info, overall, this design saves space.

End informative text
The ClassLayout table has the following columns:

• PackingSize (a 2-byte constant)

• ClassSize (a 4-byte constant)

• Parent (an index into the TypeDef table)

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of the type
declaration in which this type is declared (§10.2). When either of these directives is omitted, its corresponding
value is zero. (See §10.7.)

ClassSize of zero does not mean the class has zero size. It means that no .size directive was specified at
definition time, in which case, the actual size is calculated from the field types, taking account of packing size
(default or specified) and natural alignment on the target, runtime platform.

This contains informative text only
1. A ClassLayout table can contain zero or more rows

2. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (but
not to an Interface) [ERROR]

3. The Class or ValueType indexed by Parent shall be SequentialLayout or ExplicitLayout
(§23.1.15). (That is, AutoLayout types shall not own any rows in the ClassLayout table.)
[ERROR]

4. If Parent indexes a SequentialLayout type, then:

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128}. (0 means use the default
pack size for the platform on which the application is running.) [ERROR]

o If Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000
bytes). [ERROR]

5. If Parent indexes an ExplicitLayout type, then

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000
bytes) [ERROR]

o PackingSize shall be 0. (It makes no sense to provide explicit offsets for each field, as
well as a packing size.) [ERROR]

 Partition II 111

6. Note that an ExplicitLayout type might result in a verifiable type, provided the layout does not
create a type whose fields overlap.

7. Layout along the length of an inheritance chain shall follow the rules specified above (starting at
‘highest’ Type, with no ‘holes’, etc.) [ERROR]

End informative text

22.9 Constant : 0x0B
The Constant table is used to store compile-time, constant values for fields, parameters, and properties.

The Constant table has the following columns:

• Type (a 1-byte constant, followed by a 1-byte padding zero); see §23.1.16 . The encoding of Type
for the nullref value for FieldInit in ilasm (§16.2) is ELEMENT_TYPE_CLASS with a Value of a 4-
byte zero. Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed by a type
token.

• Parent (an index into the Param, Field, or Property table; more precisely, a HasConstant
(§24.2.6) coded index)

• Value (an index into the Blob heap)

Note that Constant information does not directly influence runtime behavior, although it is visible via
Reflection (and hence can be used to implement functionality such as that provided by
System.Enum.ToString). Compilers inspect this information, at compile time, when importing metadata, but
the value of the constant itself, if used, becomes embedded into the CIL stream the compiler emits. There are
no CIL instructions to access the Constant table at runtime.

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent.
(For an example, see §16.2.)

This contains informative text only
1. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1,

ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4,
ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, or
ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero (§23.1.16) [ERROR]

2. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4, or
ELEMENT_TYPE_U8 (§23.1.16) [CLS]

3. Parent shall index a valid row in the Field, Property, or Param table. [ERROR]

4. There shall be no duplicate rows, based upon Parent [ERROR]

5. Type shall match exactly the declared type of the Param, Field, or Property identified by Parent
(in the case where the parent is an enum, it shall match exactly the underlying type of that enum).
[CLS]

End informative text

22.10 CustomAttribute : 0x0C
The CustomAttribute table has the following columns:

• Parent (an index into any metadata table, except the CustomAttribute table itself; more precisely,
a HasCustomAttribute (§24.2.6) coded index)

• Type (an index into the MethodDef or MemberRef table; more precisely, a CustomAttributeType
(§24.2.6) coded index)

• Value (an index into the Blob heap)

112 Partition II

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an
object of the specified Custom Attribute class) at runtime. The column called Type is slightly misleading—it
actually indexes a constructor method—the owner of that constructor method is the Type of the Custom
Attribute.

A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of
the Type column and optionally that of the Value column (§21).

This contains informative text only
All binary values are stored in little-endian format (except for PackedLen items, which are used only as a count
for the number of bytes to follow in a UTF8 string).

1. No CustomAttribute is required; that is, Value is permitted to be null.

2. Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]

3. Type shall index a valid row in the Method or MethodRef table. That row shall be a constructor
method (for the class of which this information forms an instance) [ERROR]

4. Value can be null or non-null.

5. If Value is non-null, it shall index a 'blob' in the Blob heap [ERROR]

6. The following rules apply to the overall structure of the Value 'blob' (§23.3):

o Prolog shall be 0x0001 [ERROR]

o There shall be as many occurrences of FixedArg as are declared in the Constructor
method [ERROR]

o NumNamed can be zero or more

o There shall be exactly NumNamed occurrences of NamedArg [ERROR]

o Each NamedArg shall be accessible by the caller [ERROR]

o If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]

7. The following rules apply to the structure of FixedArg (§23.3):

o If this item is not for a vector (a single-dimension array with lower bound of 0), then
there shall be exactly one Elem [ERROR]

o If this item is for a vector, then:

o NumElem shall be 1 or more [ERROR]

o This shall be followed by NumElem occurrences of Elem [ERROR]

8. The following rules apply to the structure of Elem (§23.3):

o If this is a simple type or an enum (see §23.3 for how this is defined), then Elem
consists simply of its value [ERROR]

o If this is a string or a Type, then Elem consists of a SerString – PackedLen count of
bytes, followed by the UTF8 characters [ERROR]

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16,
int32, int64, unsigned int8, unsigned int16, unsigned int32, or unsigned
int64), then Elem consists of the corresponding type denoter (ELEMENT_TYPE_BOOLEAN,
ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2,
ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8,
ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, or ELEMENT_TYPE_R8), followed by its value.
[ERROR]

9. The following rules apply to the structure of NamedArg (§23.3):

o The single byte FIELD (0x53) or PROPERTY (0x54) [ERROR]

 Partition II 113

o The type of the Field or Property is one of ELEMENT_TYPE_BOOLEAN,
ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2,
ELEMENT_TYPE_U2, ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8,
ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING, or the
constant 0x50 (for an argument of type System.Type) [ERROR]

o The name of the Field or Property, respectively with the previous item, as a SerString
– PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]

o A FixedArg (see above) [ERROR]

End informative text

22.11 DeclSecurity : 0x0E
Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV),
can be attached to a TypeDef, a Method, or an Assembly. All constructors of this class shall take a
System.Security.Permissions.SecurityAction value as their first parameter, describing what should be
done with the permission on the type, method or assembly to which it is attached. Code access security
attributes, which derive from System.Security.Permissions. CodeAccessSecurityAttribute, can have any
of the security actions.

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below). All
security custom attributes for a given security action on a method, type, or assembly shall be gathered together,
and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced
from the DeclSecurity table.

[Note: The general flow from a compiler’s point of view is as follows. The user specifies a custom attribute
through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is
derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply
recording the constructor in the metadata as described in §22.10). The attribute object is constructed, and
provides a method (CreatePermission) to convert it into a security permission object (an object derived from
System.Security.Permission). All the permission objects attached to a given metadata item with the same
security action are combined together into a System.Security.PermissionSet. This permission set is
converted into a form that is ready to be stored in XML using its ToXML method to create a
System.Security.SecurityElement. Finally, the XML that is required for the metadata is created using the
ToString method on the security element. end note]

The DeclSecurity table has the following columns:

• Action (a 2-byte value)

• Parent (an index into the TypeDef, MethodDef, or Assembly table; more precisely, a
HasDeclSecurity (§24.2.6) coded index)

• PermissionSet (an index into the Blob heap)

Action is a 2-byte representation of Security Actions (see System.Security.SecurityAction in Partition IV).
The values 0–0xFF are reserved for future standards use. Values 0x20–0x7F and 0x100–0x07FF are for uses
where the action can be ignored if it is not understood or supported. Values 0x80–0xFF and 0x0800–0xFFFF
are for uses where the action shall be implemented for secure operation; in implementations where the action is
not available, no access to the assembly, type, or method shall be permitted.

Security Action Note Explanation of behavior Valid Scope

Assert 1 Without further checks, satisfy Demand for the
specified permission.

Method, Type

Demand 1 Check that all callers in the call chain have been
granted specified permission, throw
SecurityException (see Partition IV) on failure.

Method, Type

114 Partition II

Deny 1 Without further checks refuse Demand for the
specified permission.

Method, Type

InheritanceDemand 1 The specified permission shall be granted in order
to inherit from class or override virtual method.

Method, Type

LinkDemand 1 Check that the immediate caller has been granted
the specified permission; throw
SecurityException (see Partition IV) on failure.

Method, Type

NonCasDemand 2 Check that the current assembly has been granted
the specified permission; throw
SecurityException (see Partition IV) otherwise.

Method, Type

NonCasLinkDemand 2 Check that the immediate caller has been granted
the specified permission; throw
SecurityException (see Partition IV) otherwise.

Method, Type

PrejitGrant Reserved for implementation-specific use. Assembly

PermitOnly 1 Without further checks, refuse Demand for all
permissions other than those specified.

Method, Type

RequestMinimum Specify the minimum permissions required to run. Assembly

RequestOptional Specify the optional permissions to grant. Assembly

RequestRefuse Specify the permissions not to be granted. Assembly

Note 1: The specified attribute shall derive from System.Security.Permissions.CodeAccess-
SecurityAttribute

Note 2: The attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not
derive from System.Security.Permissions.CodeAccessSecurityAttribute

Parent is a metadata token that identifies the Method, Type, or Assembly on which security custom attributes
encoded in PermissionSet was defined.

PermissionSet is a 'blob' having the following format:

• A byte containing a period (.).

• A compressed int32 containing the number of attributes encoded in the blob.

• An array of attributes each containing the following:

o A String, which is the fully-qualified type name of the attribute. (Strings are encoded
as a compressed int to indicate the size followed by an array of UTF8 characters.)

o A set of properties, encoded as the named arguments to a custom attribute would be (as
in §23.3, beginning with NumNamed).

The permission set contains the permissions that were requested with an Action on a specific Method, Type, or
Assembly (see Parent). In other words, the blob will contain an encoding of all the attributes on the Parent with
that particular Action.

[Note: The first edition of this standard specified an XML encoding of a permission set. Implementations
should continue supporting this encoding for backward compatibility. end note]

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive
that specifies the Action and PermissionSet on a parent assembly (§6.6) or parent type or method (§10.2).

This contains informative text only
1. Action shall have only those values set that are specified [ERROR]

 Partition II 115

2. Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index a valid row in
the TypeDef table, the MethodDef table, or the Assembly table. [ERROR]

3. If Parent indexes a row in the TypeDef table, that row should not define an Interface. The
security system ignores any such parent; compilers should not emit such permissions sets.
[WARNING]

4. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit shall be set [ERROR]

5. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit shall be set [ERROR]

6. PermissionSet shall index a 'blob' in the Blob heap [ERROR]

7. The format of the 'blob' indexed by PermissionSet shall represent a valid, encoded CLI object
graph. (The encoded form of all standardized permissions is specified in Partition IV.) [ERROR]

End informative text

22.12 EventMap : 0x12
The EventMap table has the following columns:

• Parent (an index into the TypeDef table)

• EventList (an index into the Event table). It marks the first of a contiguous run of Events owned
by this Type. That run continues to the smaller of:

o the last row of the Event table

o the next run of Events, found by inspecting the EventList of the next row in the
EventMap table

Note that EventMap info does not directly influence runtime behavior; what counts is the information stored for
each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only
1. EventMap table can contain zero or more rows

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its event list) [ERROR]

3. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the
Event table) [ERROR]

End informative text

22.13 Event : 0x14
Events are treated within metadata much like Properties; that is, as a way to associate a collection of methods
defined on a given class. There are two required methods (add_ and remove_) plus an optional one (raise_);
others are permitted. All of the methods gathered together as an Event shall be defined on the class.

The association between a row in the TypeDef table and the collection of methods that make up a given Event
is held in three separate tables (exactly analogous to the approach used for Properties), as follows:

116 Partition II

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 4
of the Event table on the right (the row for an Event called DocChanged). This setup establishes that MyClass
has an Event called DocChanged. But what methods in the MethodDef table are gathered together as
‘belonging’ to event DocChanged? That association is contained in the MethodSemantics table – its row 2
indexes event DocChanged to the right, and row 2 in the MethodDef table to the left (a method called
add_DocChanged). Also, row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in
the MethodDef table to the left (a method called remove_DocChanged). As the shading suggests, MyClass has
another event, called TimedOut, with two methods, add_TimedOut and remove_TimedOut.

Event tables do a little more than group together existing rows from other tables. The Event table has columns
for EventFlags, Name (e.g., DocChanged and TimedOut in the example here), and EventType. In addition, the
MethodSemantics table has a column to record whether the method it indexes is an add_, a remove_, a raise_,
or other function.

The Event table has the following columns:

• EventFlags (a 2-byte bitmask of type EventAttributes, §23.1.4)

• Name (an index into the String heap)

• EventType (an index into a TypeDef, a TypeRef, or TypeSpec table; more precisely, a
TypeDefOrRef (§24.2.6) coded index) (This corresponds to the Type of the Event; it is not the
Type that owns this event.)

Note that Event information does not directly influence runtime behavior; what counts is the information stored
for each method that the event comprises.

The EventMap and Event tables result from putting the .event directive on a class (§18).

This contains informative text only
1. The Event table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the EventMap table [ERROR]

3. EventFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Name shall index a non-empty string in the String heap [ERROR]

5. The Name string shall be a valid CLS identifier [CLS]

6. EventType can be null or non-null

7. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table
[ERROR]

 Partition II 117

8. If EventType is non-null, then the row in the TypeDef, TypeRef, or TypeSpec table that it indexes
shall be a Class (not an Interface or a ValueType) [ERROR]

9. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table
[ERROR]

10. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the
MethodSemantics table [ERROR]

11. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based
upon Name [ERROR]

12. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules [CLS]

End informative text

22.14 ExportedType : 0x27
The ExportedType table holds a row for each type, defined within other modules of this Assembly; that is
exported out of this Assembly. In essence, it stores TypeDef row numbers of all types that are marked public in
other modules that this Assembly comprises.

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row number) and
Implementation (in effect, the module that holds the target TypeDef table). Note that this is the only occurrence
in metadata of foreign tokens; that is, token values that have a meaning in another module. (A regular token
value is an index into a table in the current module)

The full name of the type need not be stored directly. Instead, it can be split into two parts at any included “.”
(although typically this is done at the last “.” in the full name). The part preceding the “.” is stored as the
TypeNamespace and that following the “.” is stored as the TypeName. If there is no “.” in the full name, then
the TypeNamespace shall be the index of the empty string.

The ExportedType table has the following columns:

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15)

• TypeDefId (a 4-byte index into a TypeDef table of another module in this Assembly). This
column is used as a hint only. If the entry in the target TypeDef table matches the TypeName and
TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the
CLI shall fall back to a search of the target TypeDef table

• TypeName (an index into the String heap)

• TypeNamespace (an index into the String heap)

• Implementation. This is an index (more precisely, an Implementation (§24.2.6) coded index) into
either of the following tables:

o File table, where that entry says which module in the current assembly holds the
TypeDef

o ExportedType table, where that entry is the enclosing Type of the current nested Type

The rows in the ExportedType table are the result of the .class extern directive (§6.7).

This contains informative text only
 The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the
TypeName, otherwise use the concatenation of Typenamespace, “.”, and TypeName.

1. The ExportedType table can contain zero or more rows

2. There shall be no entries in the ExportedType table for Types that are defined in the current
module—just for Types defined in other modules within the Assembly [ERROR]

118 Partition II

3. Flags shall have only those values set that are specified [ERROR]

4. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (§23.1.15)
[ERROR]

5. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be
NestedPublic (§23.1.15) [ERROR]

6. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within
this Assembly (but not this module), and the row so indexed should have its Flags.Public = 1
(§23.1.15) [WARNING]

7. TypeName shall index a non-empty string in the String heap [ERROR]

8. TypeNamespace can be null, or non-null

9. If TypeNamespace is non-null, then it shall index a non-empty string in the String heap [ERROR]

10. FullName shall be a valid CLS identifier [CLS]

11. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the
unmangled, simple name of the nested Type [ERROR]

12. Implementation shall be a valid index into either of the following: [ERROR]

o the File table; that file shall hold a definition of the target Type in its TypeDef table

o a different row in the current ExportedType table—this identifies the enclosing Type of
the current, nested Type

13. FullName shall match exactly the corresponding FullName for the row in the TypeDef table
indexed by TypeDefId [ERROR]

14. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]

15. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type
[ERROR]

16. The complete list of Types exported from the current Assembly is given as the catenation of the
ExportedType table with all public Types in the current TypeDef table, where “public” means a
Flags.VisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this
concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is
a nested Type) [ERROR]

End informative text

22.15 Field : 0x04
The Field table has the following columns:

• Flags (a 2-byte bitmask of type FieldAttributes, §23.1.5)

• Name (an index into the String heap)

• Signature (an index into the Blob heap)

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However,
the owner of any row in the Field table is not stored anywhere in the Field table itself. There is merely a
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following
illustration.

 Partition II 119

The TypeDef table has rows 1–4. The first row in the TypeDef table corresponds to a pseudo type, inserted
automatically by the CLI. It is used to denote those rows in the Field table corresponding to global variables.
The Field table has rows 1–6. Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the Field table. Type 2
owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table. Type 3 owns
rows 3–5 in the Field table. Type 4 owns row 6 in the Field table. So, in the Field table, rows 1 and 2 belong
to Type 1 (global variables); rows 3–5 belong to Type 3; row 6 belongs to Type 4.

Each row in the Field table results from a top-level .field directive (§5.10), or a .field directive inside a
Type (§10.2). (For an example, see §14.5.)

This contains informative text only
1. The Field table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

3. The owner row in the TypeDef table shall not be an Interface [CLS]

4. Flags shall have only those values set that are specified [ERROR]

5. The FieldAccessMask subfield of Flags shall contain precisely one of CompilerControlled,
Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (§23.1.5) [ERROR]

6. Flags can set either or neither of Literal or InitOnly, but not both (§23.1.5) [ERROR]

7. If Flags.Literal = 1 then Flags.Static shall also be 1 (§23.1.5) [ERROR]

8. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (§23.1.5) [ERROR]

9. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal
table (§23.1.5) [ERROR]

10. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table
(§23.1.5) [ERROR]

11. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table
(§23.1.5) [ERROR]

12. Name shall index a non-empty string in the String heap [ERROR]

13. The Name string shall be a valid CLS identifier [CLS]

14. Signature shall index a valid field signature in the Blob heap [ERROR]

15. If Flags.CompilerControlled = 1 (§23.1.5), then this row is ignored completely in duplicate
checking.

16. If the owner of this field is the internally-generated type called <Module>, it denotes that this field
is defined at module scope (commonly called a global variable). In this case:

o Flags.Static shall be 1 [ERROR]

o Flags.MemberAccessMask subfield shall be one of Public, CompilerControlled, or
Private (§23.1.5) [ERROR]

o module-scope fields are not allowed [CLS]

120 Partition II

17. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where
owner is the owning row in the TypeDef table, as described above) (Note however that if
Flags.CompilerControlled = 1, then this row is completely excluded from duplicate checking)
[ERROR]

18. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields
are compared using CLS conflicting-identifier-rules. So, for example,"int i" and "float i"
would be considered CLS duplicates. (Note however that if Flags.CompilerControlled = 1, then
this row is completely excluded from duplicate checking, as noted above) [CLS]

19. If this is a field of an Enum, and Name string = "value__" then:

a. RTSpecialName shall be 1 [ERROR]

b. owner row in TypeDef table shall derive directly from System.Enum [ERROR]

c. the owner row in TypeDef table shall have no other instance fields [CLS]

d. its Signature shall be one of ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_I4, or
ELEMENT_TYPE_I8 (§23.1.16): [CLS]

20. its Signature shall be an integral type. [ERROR]

End informative text

22.16 FieldLayout : 0x10
The FieldLayout table has the following columns:

• Offset (a 4-byte constant)

• Field (an index into the Field table)

Note that each Field in any Type is defined by its Signature. When a Type instance (i.e., an object) is laid out
by the CLI, each Field is one of four kinds:

• Scalar: for any member of built-in type, such as int32. The size of the field is given by the size
of that intrinsic, which varies between 1 and 8 bytes

• ObjectRef: for ELEMENT_TYPE_CLASS, ELEMENT_TYPE_STRING, ELEMENT_TYPE_OBJECT,
ELEMENT_TYPE_ARRAY, ELEMENT_TYPE_SZARRAY

• Pointer: for ELEMENT_TYPE_PTR, ELEMENT_TYPE_FNPTR

• ValueType: for ELEMENT_TYPE_VALUETYPE. The instance of that ValueType is actually laid out in
this object, so the size of the field is the size of that ValueType

Note that metadata specifying explicit structure layout can be valid for use on one platform but not on another,
since some of the rules specified here are dependent on platform-specific alignment rules.

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field
offset (§16).

This contains informative text only
1. A FieldLayout table can contain zero or more or rows

2. The Type whose Fields are described by each row of the FieldLayout table shall have
Flags.ExplicitLayout (§23.1.15) set [ERROR]

3. Offset shall be zero or more [ERROR]

4. Field shall index a valid row in the Field table [ERROR]

5. Flags.Static for the row in the Field table indexed by Field shall be non-static (i.e., zero 0)
[ERROR]

 Partition II 121

6. Among the rows owned by a given Type there shall be no duplicates, based upon Field. That is, a
given Field of a Type cannot be given two offsets. [ERROR]

7. Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]

8. Among the rows owned by a given Type it is perfectly valid for several rows to have the same
value of Offset. ObjectRef and a valuetype cannot have the same offset [ERROR]

9. Every Field of an ExplicitLayout Type shall be given an offset; that is, it shall have a row in the
FieldLayout table [ERROR]

End informative text

22.17 FieldMarshal : 0x0D
The FieldMarshal table has two columns. It ‘links’ an existing row in the Field or Param table, to information
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as
parameter number 0) shall be marshalled when calling to or from unmanaged code via PInvoke dispatch.

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.
In order to execute such paths, the caller, on most platforms, would be installed with elevated security
permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check—it is simply
trusted not to violate the type system.

The FieldMarshal table has the following columns:

• Parent (an index into Field or Param table; more precisely, a HasFieldMarshal (§24.2.6) coded
index)

• NativeType (an index into the Blob heap)

For the detailed format of the 'blob', see §23.4

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a
marshal attribute (§16.1).

This contains informative text only
1. A FieldMarshal table can contain zero or more rows

2. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say
which of these two tables each refers to) [ERROR]

3. NativeType shall index a non-null 'blob' in the Blob heap [ERROR]

4. No two rows shall point to the same parent. In other words, after the Parent values have been
decoded to determine whether they refer to the Field or the Param table, no two rows can point to
the same row in the Field table or in the Param table [ERROR]

5. The following checks apply to the MarshalSpec 'blob' (§23.4):

a. NativeIntrinsic shall be exactly one of the constant values in its production (§23.4)
[ERROR]

b. If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production
[ERROR]

c. If ARRAY, then ParamNum can be zero

d. If ARRAY, then ParamNum cannot be < 0 [ERROR]

e. If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the
Field table [ERROR]

122 Partition II

f. If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters
supplied to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a
member [ERROR]

g. If ARRAY, then ElemMult shall be >= 1 [ERROR]

h. If ARRAY and ElemMult != 1 issue a warning, because it is probably a mistake [WARNING]

i. If ARRAY and ParamNum = 0, then NumElem shall be >= 1 [ERROR]

j. If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because it is
probably a mistake [WARNING]

End informative text

22.18 FieldRVA : 0x1D
The FieldRVA table has the following columns:

• RVA (a 4-byte constant)

• Field (an index into Field table)

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records
the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored.

A row in the FieldRVA table is created for each static parent field that has specified the optional data
label §16). The RVA column is the relative virtual address of the data in the PE file (§16.3).

This contains informative text only
1. RVA shall be non-zero [ERROR]

2. RVA shall point into the current module’s data area (not its metadata area) [ERROR]

3. Field shall index a valid row in the Field table [ERROR]

4. Any field with an RVA shall be a ValueType (not a Class or an Interface). Moreover, it shall not
have any private fields (and likewise for any of its fields that are themselves ValueTypes). (If
any of these conditions were breached, code could overlay that global static and access its private
fields.) Moreover, no fields of that ValueType can be Object References (into the GC heap)
[ERROR]

5. So long as two RVA-based fields comply with the previous conditions, the ranges of memory
spanned by the two ValueTypes can overlap, with no further constraints. This is not actually an
additional rule; it simply clarifies the position with regard to overlapped RVA-based fields

End informative text

22.19 File : 0x26
The File table has the following columns:

• Flags (a 4-byte bitmask of type FileAttributes, §23.1.6)

• Name (an index into the String heap)

• HashValue (an index into the Blob heap)

The rows of the File table result from .file directives in an Assembly (§6.2.3)

This contains informative text only
1. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

 Partition II 123

2. Name shall index a non-empty string in the String heap. It shall be in the format
<filename>.<extension> (e.g., “foo.dll”, but not “c:\utils\foo.dll”) [ERROR]

3. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]

4. There shall be no duplicate rows; that is, rows with the same Name value [ERROR]

5. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”)
then there shall not be any row in the File table for this module; i.e., no self-reference [ERROR]

6. If the File table is empty, then this, by definition, is a single-file assembly. In this case, the
ExportedType table should be empty [WARNING]

End informative text

22.20 GenericParam : 0x2A
The GenericParam table has the following columns:

• Number (the 2-byte index of the generic parameter, numbered left-to-right, from zero)

• Flags (a 2-byte bitmask of type GenericParamAttributes, §23.1.7)

• Owner (an index into the TypeDef or MethodDef table, specifying the Type or Method to which
this generic parameter applies; more precisely, a TypeOrMethodDef (§24.2.6) coded index)

• Name (a non-null index into the String heap, giving the name for the generic parameter. This is
purely descriptive and is used only by source language compilers and by Reflection)

The GenericParam table stores the generic parameters used in generic type definitions and generic method
definitions. These generic parameters can be constrained (i.e., generic arguments shall extend some class
and/or implement certain interfaces) or unconstrained. (Such constraints are stored in the
GenericParamConstraint table.)

Conceptually, each row in the GenericParam table is owned by one, and only one, row in either the TypeDef or
MethodDef tables.

[Example:
.class Dict`2<([mscorlib]System.IComparable) K, V>

The generic parameter K of class Dict is constrained to implement System.IComparable.
.method static void ReverseArray<T>(!!0[] 'array')

There is no constraint on the generic parameter T of the generic method ReverseArray.

end example]

This contains informative text only
1. GenericParam table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef or MethodDef table (i.e., no
row sharing) [ERROR]

3. Every generic type shall own one row in the GenericParam table for each of its generic
parameters [ERROR]

4. Every generic method shall own one row in the GenericParam table for each of its generic
parameters [ERROR]

Flags:

• Can hold the value Covariant or Contravariant, but only if the owner row corresponds to a
generic interface, or a generic delegate class. [ERROR]

124 Partition II

• Otherwise, shall hold the value NonVariant (i.e., where the owner is a non delegate class, a value-
type, or a generic method) [ERROR]

If Flags == Covariant then the corresponding generic parameter can appear in a type definition only as
[ERROR]:

• The result type of a method

• A generic parameter to an inherited interface

If Flags == Contravariant then the corresponding generic parameter can appear in a type definition only
as the argument to a method [ERROR]

Number shall have a value >= 0 and < the number of generic parameters in owner type or method.
[ERROR]

Successive rows of the GenericParam table that are owned by the same method shall be ordered by
increasing Number value; there shall be no gaps in the Number sequence [ERROR]

Name shall be non-null and index a string in the String heap [ERROR]

[Rationale: Otherwise, Reflection output is not fully usable. end rationale]

There shall be no duplicate rows based upon Owner+Name [ERROR] [Rationale: Otherwise, code
using Reflection cannot disambiguate the different generic parameters. end rationale]

There shall be no duplicate rows based upon Owner+Number [ERROR]

End informative text

22.21 GenericParamConstraint : 0x2C
The GenericParamConstraint table has the following columns:

• Owner (an index into the GenericParam table, specifying to which generic parameter this row
refers)

• Constraint (an index into the TypeDef, TypeRef, or TypeSpec tables, specifying from which class
this generic parameter is constrained to derive; or which interface this generic parameter is
constrained to implement; more precisely, a TypeDefOrRef (§24.2.6) coded index)

The GenericParamConstraint table records the constraints for each generic parameter. Each generic parameter
can be constrained to derive from zero or one class. Each generic parameter can be constrained to implement
zero or more interfaces.

Conceptually, each row in the GenericParamConstraint table is ‘owned’ by a row in the GenericParam table.

All rows in the GenericParamConstraint table for a given Owner shall refer to distinct constraints.

Note that if Constraint is a TypeRef to System.ValueType, then it means the constraint type shall be
System.ValueType, or one of its sub types. However, since System.ValueType itself is a reference type, this
particular mechanism does not guarantee that the type is a non-reference type.

This contains informative text only
1. The GenericParamConstraint table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the GenericParam table (i.e., no row sharing)
[ERROR]

3. Each row in the GenericParam table shall ‘own’ a separate row in the GenericParamConstraint
table for each constraint that generic parameter has [ERROR]

4. All of the rows in the GenericParamConstraint table that are owned by a given row in the
GenericParam table shall form a contiguous range (of rows) [ERROR]

 Partition II 125

5. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or one
row in the GenericParamConstraint table corresponding to a class constraint. [ERROR]

6. Any generic parameter (corresponding to a row in the GenericParam table) shall own zero or more
rows in the GenericParamConstraint table corresponding to an interface constraint. [ERROR]

7. There shall be no duplicate rows based upon Owner+Constraint [ERROR]

8. Constraint shall not reference System.Void. [ERROR]

End informative text

22.22 ImplMap : 0x1C
The ImplMap table holds information about unmanaged methods that can be reached from managed code,
using PInvoke dispatch.

Each row of the ImplMap table associates a row in the MethodDef table (MemberForwarded) with the name of
a routine (ImportName) in some unmanaged DLL (ImportScope).

[Note: A typical example would be: associate the managed Method stored in row N of the Method table (so
MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string
indexed by ImportName) in the DLL called “kernel32” (the string in the ModuleRef table indexed by
ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to
the unmanaged routine called “GetEnvironmentVariable” in “kernel32.dll” (including marshalling any
arguments, as required)

The CLI does not support this mechanism to access fields that are exported from a DLL, only methods. end
note]

The ImplMap table has the following columns:

• MappingFlags (a 2-byte bitmask of type PInvokeAttributes, §23.1.7)

• MemberForwarded (an index into the Field or MethodDef table; more precisely, a
MemberForwarded (§24.2.6) coded index). However, it only ever indexes the MethodDef table,
since Field export is not supported.

• ImportName (an index into the String heap)

• ImportScope (an index into the ModuleRef table)

A row is entered in the ImplMap table for each parent Method (§15.5) that is defined with a .pinvokeimpl
interoperation attribute specifying the MappingFlags, ImportName, and ImportScope.

This contains informative text only
1. ImplMap can contain zero or more rows

2. MappingFlags shall have only those values set that are specified [ERROR]

3. MemberForwarded shall index a valid row in the MethodDef table [ERROR]

4. The MappingFlags.CharSetMask (§23.1.7) in the row of the MethodDef table indexed by
MemberForwarded shall have at most one of the following bits set: CharSetAnsi,
CharSetUnicode, or CharSetAuto (if none is set, the default is CharSetNotSpec) [ERROR]

5. ImportName shall index a non-empty string in the String heap [ERROR]

6. ImportScope shall index a valid row in the ModuleRef table [ERROR]

7. The row indexed in the MethodDef table by MemberForwarded shall have its Flags.PinvokeImpl
= 1, and Flags.Static = 1 [ERROR]

126 Partition II

End informative text

22.23 InterfaceImpl : 0x09
The InterfaceImpl table has the following columns:

• Class (an index into the TypeDef table)

• Interface (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

The InterfaceImpl table records the interfaces a type implements explicitly. Conceptually, each row in the
InterfaceImpl table indicates that Class implements Interface.

This contains informative text only
1. The InterfaceImpl table can contain zero or more rows

2. Class shall be non-null [ERROR]

3. If Class is non-null, then:

a. Class shall index a valid row in the TypeDef table [ERROR]

b. Interface shall index a valid row in the TypeDef or TypeRef table [ERROR]

c. The row in the TypeDef, TypeRef, or TypeSpec table indexed by Interface shall be an
interface (Flags.Interface = 1), not a Class or ValueType [ERROR]

4. There should be no duplicates in the InterfaceImpl table, based upon non-null Class and Interface
values [WARNING]

5. There can be many rows with the same value for Class (since a class can implement many
interfaces)

6. There can be many rows with the same value for Interface (since many classes can implement the
same interface)

End informative text

22.24 ManifestResource : 0x28
The ManifestResource table has the following columns:

• Offset (a 4-byte constant)

• Flags (a 4-byte bitmask of type ManifestResourceAttributes, §23.1.9)

• Name (an index into the String heap)

• Implementation (an index into a File table, a AssemblyRef table, or null; more precisely, an
Implementation (§24.2.6) coded index)

The Offset specifies the byte offset within the referenced file at which this resource record begins. The
Implementation specifies which file holds this resource. The rows in the table result from .mresource
directives on the Assembly (§6.2.2).

This contains informative text only
1. The ManifestResource table can contain zero or more rows

2. Offset shall be a valid offset into the target file, starting from the Resource entry in the CLI
header [ERROR]

3. Flags shall have only those values set that are specified [ERROR]

 Partition II 127

4. The VisibilityMask (§23.1.9) subfield of Flags shall be one of Public or Private [ERROR]

5. Name shall index a non-empty string in the String heap [ERROR]

6. Implementation can be null or non-null (if null, it means the resource is stored in the current file)

7. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the
Resource entry in the CLI header [ERROR]

8. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table
[ERROR]

9. There shall be no duplicate rows, based upon Name [ERROR]

10. If the resource is an index into the File table, Offset shall be zero [ERROR]

End informative text

22.25 MemberRef : 0x0A
The MemberRef table combines two sorts of references, to Methods and to Fields of a class, known as
‘MethodRef’ and ‘FieldRef’, respectively. The MemberRef table has the following columns:

• Class (an index into the MethodDef, ModuleRef,TypeDef, TypeRef, or TypeSpec tables; more
precisely, a MemberRefParent (§24.2.6) coded index)

• Name (an index into the String heap)

• Signature (an index into the Blob heap)

An entry is made into the MemberRef table whenever a reference is made in the CIL code to a method or field
which is defined in another module or assembly. (Also, an entry is made for a call to a method with a VARARG
signature, even when it is defined in the same module as the call site.)

This contains informative text only
1. Class shall be one of the following: [ERROR]

a. a TypeRef token, if the class that defines the member is defined in another module. (Note
that it is unusual, but valid, to use a TypeRef token when the member is defined in this same
module, in which case, its TypeDef token can be used instead.)

b. a ModuleRef token, if the member is defined, in another module of the same assembly, as a
global function or variable.

c. a MethodDef token, when used to supply a call-site signature for a vararg method that is
defined in this module. The Name shall match the Name in the corresponding MethodDef
row. The Signature shall match the Signature in the target method definition [ERROR]

d. a TypeSpec token, if the member is a member of a generic type

2. Class shall not be null (as this would indicate an unresolved reference to a global function or
variable) [ERROR]

3. Name shall index a non-empty string in the String heap [ERROR]

4. The Name string shall be a valid CLS identifier [CLS]

5. Signature shall index a valid field or method signature in the Blob heap. In particular, it shall
embed exactly one of the following ‘calling conventions’: [ERROR]

a. DEFAULT (0x0)

b. VARARG (0x5)

c. FIELD (0x6)

d. GENERIC (0x10)

128 Partition II

6. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class,
Name, and Signature [WARNING]

7. Signature shall not have the VARARG (0x5) calling convention [CLS]

8. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-
identifier-rules. (In particular, note that the return type and whether parameters are marked
ELEMENT_TYPE_BYREF (§23.1.16) are ignored in the CLS. For example, .method int32 M()and
.method float64 M() result in duplicate rows by CLS rules. Similarly, .method void
N(int32 i)and .method void N(int32& i)also result in duplicate rows by CLS rules.) [CLS]

9. If Class and Name resolve to a field, then that field shall not have a value of CompilerControlled
(§23.1.5) in its Flags.FieldAccessMask subfield [ERROR]

10. If Class and Name resolve to a method, then that method shall not have a value of
CompilerControlled in its Flags.MemberAccessMask (§23.1.10) subfield [ERROR]

11. The type containing the definition of a MemberRef shall be a TypeSpec representing an
instantiated type.

End informative text

22.26 MethodDef : 0x06
The MethodDef table has the following columns:

• RVA (a 4-byte constant)

• ImplFlags (a 2-byte bitmask of type MethodImplAttributes, §23.1.10)

• Flags (a 2-byte bitmask of type MethodAttributes, §23.1.10)

• Name (an index into the String heap)

• Signature (an index into the Blob heap)

• ParamList (an index into the Param table). It marks the first of a contiguous run of Parameters
owned by this method. The run continues to the smaller of:

o the last row of the Param table

o the next run of Parameters, found by inspecting the ParamList of the next row in the
MethodDef table

Conceptually, every row in the MethodDef table is owned by one, and only one, row in the TypeDef table.

The rows in the MethodDef table result from .method directives (§15). The RVA column is computed when
the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method
(§25.4)

[Note: If Signature is GENERIC (0x10), the generic arguments are described in the GenericParam table (§22.20).
end note]

This contains informative text only
1. The MethodDef table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]

3. ImplFlags shall have only those values set that are specified [ERROR]

4. Flags shall have only those values set that are specified [ERROR]

5. If Name is .ctor and the method is marked SpecialName, there shall not be a row in the
GenericParam table which has this MethodDef as its owner. [ERROR]

 Partition II 129

6. The MemberAccessMask (§23.1.10) subfield of Flags shall contain precisely one of
CompilerControlled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR]

7. The following combined bit settings in Flags are invalid [ERROR]

a. Static | Final

b. Static | Virtual

c. Static | NewSlot

d. Final | Abstract

e. Abstract | PinvokeImpl

f. CompilerControlled | SpecialName

g. CompilerControlled | RTSpecialName

8. An abstract method shall be virtual. So, if Flags.Abstract = 1 then Flags.Virtual shall also be 1
[ERROR]

9. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]

10. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]

o this Method owns at least row in the DeclSecurity table

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

11. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall
be 1 [ERROR]

12. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then
Flags.HasSecurity shall be 1 [ERROR]

13. A Method can have a custom attribute called DynamicSecurityMethodAttribute, but this has no
effect whatsoever upon the value of its Flags.HasSecurity

14. Name shall index a non-empty string in the String heap [ERROR]

15. Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its
Name cannot be .ctor [ERROR]

16. Interfaces can only own virtual methods (not static or instance methods). So, if this Method is
owned by an Interface, Flags.Static shall be clear [ERROR]

17. The Name string shall be a valid CLS identifier (unless Flags.RTSpecialName is set - for
example, .cctor is valid) [CLS]

18. Signature shall index a valid method signature in the Blob heap [ERROR]

19. If Flags.CompilerControlled = 1, then this row is ignored completely in duplicate checking

20. If the owner of this method is the internally-generated type called <Module>, it denotes that this
method is defined at module scope. [Note: In C++, the method is called global and can be
referenced only within its compiland, from its point of declaration forwards. end note] In this
case:

a. Flags.Static shall be 1 [ERROR]

b. Flags.Abstract shall be 0 [ERROR]

c. Flags.Virtual shall be 0 [ERROR]

d. Flags.MemberAccessMask subfield shall be one of CompilerControlled, Public, or
Private [ERROR]

e. module-scope methods are not allowed [CLS]

130 Partition II

21. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless
they are boxed). So, if the owner of this method is a ValueType then the method cannot be
synchronized. That is, ImplFlags.Synchronized shall be 0 [ERROR]

22. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature
(where owner is the owning row in the TypeDef table). (Note that the Signature encodes whether
or not the method is generic, and for generic methods, it encodes the number of generic
parameters.) (Note, however, that if Flags.CompilerControlled = 1, then this row is excluded
from duplicate checking) [ERROR]

23. There shall be no duplicate rows in the MethodDef table, based upon owner + Name + Signature,
where Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in
the signatures shall be different. So, for example, "int i" and "float i" would be considered
CLS duplicates; also, the return type of the method is ignored (Note, however, that if
Flags.CompilerControlled = 1, this row is excluded from duplicate checking as explained above.)
[CLS]

24. If Final, NewSlot, or Strict are set in Flags, then Flags.Virtual shall also be set [ERROR]

25. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0 [ERROR]

26. If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]

o RVA != 0

o Flags.PInvokeImpl = 1

o ImplFlags.Runtime = 1

27. If the method is CompilerControlled, then the RVA shall be non-zero or marked with
PinvokeImpl = 1 [ERROR]

28. Signature shall have exactly one of the following managed calling conventions [ERROR]

a. DEFAULT (0x0)

b. VARARG (0x5)

c. GENERIC (0x10)

29. Signature shall have the calling convention DEFAULT (0x0) or GENERIC (0x10). [CLS]

30. Signature: If and only if the method is not Static then the calling convention byte in Signature
has its HASTHIS (0x20) bit set [ERROR]

31. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention shall
be 0 [ERROR]

32. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set (note that if
EXPLICITTHIS is set, then the code is not verifiable) [ERROR]

33. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose
MethodDefSig is preceded by FNPTR (0x1B) [ERROR]

34. If RVA = 0, then either: [ERROR]

o Flags.Abstract = 1, or

o ImplFlags.Runtime = 1, or

o Flags.PinvokeImpl = 1, or

35. If RVA != 0, then: [ERROR]

a. Flags.Abstract shall be 0, and

b. ImplFlags.CodeTypeMask shall have exactly one of the following values: Native, CIL, or
Runtime, and

 Partition II 131

c. RVA shall point into the CIL code stream in this file

36. If Flags.PinvokeImpl = 1 then [ERROR]

o RVA = 0 and the method owns a row in the ImplMap table

37. If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]

a. .ctor (an object constructor method)

b. .cctor (a class constructor method)

38. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set
[ERROR]

39. If Name = .ctor (an object constructor method) then:

a. return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16) [ERROR]

b. Flags.Static shall be 0 [ERROR]

c. Flags.Abstract shall be 0 [ERROR]

d. Flags.Virtual shall be 0 [ERROR]

e. ‘Owner’ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the
TypeDef table [ERROR]

f. there can be zero or more .ctors for any given ‘owner’

40. If Name = .cctor (a class constructor method) then:

a. the return type in Signature shall be ELEMENT_TYPE_VOID (§23.1.16) [ERROR]

b. Signature shall have DEFAULT (0x0) for its calling convention [ERROR]

c. there shall be no parameters supplied in Signature [ERROR]

d. Flags.Static shall be set [ERROR]

e. Flags.Virtual shall be clear [ERROR]

f. Flags.Abstract shall be clear [ERROR]

41. Among the set of methods owned by any given row in the TypeDef table there can only be 0 or 1
methods named .cctor [ERROR]

End informative text

22.27 MethodImpl : 0x19
MethodImpl tables let a compiler override the default inheritance rules provided by the CLI. Their original use
was to allow a class C, that inherited method M from both interfaces I and J, to provide implementations for
both methods (rather than have only one slot for M in its vtable). However, MethodImpls can be used for other
reasons too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation
rules below.

In the example above, Class specifies C, MethodDeclaration specifies I::M, MethodBody specifies the method
which provides the implementation for I::M (either a method body within C, or a method body implemented by
a base class of C).

The MethodImpl table has the following columns:

• Class (an index into the TypeDef table)

• MethodBody (an index into the MethodDef or MemberRef table; more precisely, a
MethodDefOrRef (§24.2.6) coded index)

132 Partition II

• MethodDeclaration (an index into the MethodDef or MemberRef table; more precisely, a
MethodDefOrRef (§24.2.6) coded index)

ILAsm uses the .override directive to specify the rows of the MethodImpl table (§10.3.2 and §15.4.1).

This contains informative text only
1. The MethodImpl table can contain zero or more rows

2. Class shall index a valid row in the TypeDef table [ERROR]

3. MethodBody shall index a valid row in the MethodDef or MethodRef table [ERROR]

4. The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]

5. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 0
[ERROR]

6. The method indexed by MethodBody shall be a member of Class or some base class of Class
(MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies) [ERROR]

7. The method indexed by MethodBody shall be virtual [ERROR]

8. The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged
method reached via PInvoke, for example) [ERROR]

9. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends
chain) or in the interface tree of Class (reached via its InterfaceImpl entries) [ERROR]

10. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)
[ERROR]

11. If MethodDeclaration has the Strict flag set, the method indexed by MethodDeclaration shall be
accessible to Class. [ERROR]

12. The method signature defined by MethodBody shall match those defined by MethodDeclaration
[ERROR]

13. There shall be no duplicate rows, based upon Class+MethodDeclaration [ERROR]

End informative text

22.28 MethodSemantics : 0x18
The MethodSemantics table has the following columns:

• Semantics (a 2-byte bitmask of type MethodSemanticsAttributes, §23.1.12)

• Method (an index into the MethodDef table)

• Association (an index into the Event or Property table; more precisely, a HasSemantics (§24.2.6)
coded index)

The rows of the MethodSemantics table are filled by .property (§17) and .event directives (§18).
(See §22.13 for more information.)

This contains informative text only
1. MethodSemantics table can contain zero or more rows

2. Semantics shall have only those values set that are specified [ERROR]

3. Method shall index a valid row in the MethodDef table, and that row shall be for a method defined
on the same class as the Property or Event this row describes [ERROR]

4. All methods for a given Property or Event shall have the same accessibility (ie the
MemberAccessMask subfield of their Flags row) and cannot be CompilerControlled [CLS]

 Partition II 133

5. Semantics: constrained as follows:

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set
[ERROR]

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall
be set [ERROR]

6. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the MethodDef
table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]

7. If this row is for an Event, and its Semantics is Fire, then the row indexed in the MethodDef table
by Method can return any type

8. For each property, there shall be a setter, or a getter, or both [CLS]

9. Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]

10. Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]

11. If a property provides both getter and setter methods, then these methods shall have the same
value in the Flags.MemberAccessMask subfield [CLS]

12. If a property provides both getter and setter methods, then these methods shall have the same
value for their Method.Flags.Virtual [CLS]

13. Any getter and setter methods shall have Method.Flags.SpecialName = 1 [CLS]

14. Any getter method shall have a return type which matches the signature indexed by the
Property.Type field [CLS]

15. The last parameter for any setter method shall have a type which matches the signature indexed
by the Property.Type field [CLS]

16. Any setter method shall have return type ELEMENT_TYPE_VOID (§23.1.16) in Method.Signature
[CLS]

17. If the property is indexed, the indexes for getter and setter shall agree in number and type [CLS]

18. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx
(<DelegateType> handler) [CLS]

19. Any RemoveOn method for an event whose Name is xxx shall have the signature: void
remove_xxx(<DelegateType> handler) [CLS]

20. Any Fire method for an event whose Name is xxx shall have the signature: void
raise_xxx(Event e) [CLS]

End informative text

22.29 MethodSpec : 0x2B
The MethodSpec table has the following columns:

• Method (an index into the MethodDef or MethodRef table, specifying to which generic method
this row refers; that is, which generic method this row is an instantiation of; more precisely, a
MethodDefOrRef (§24.2.6) coded index)

• Instantiation (an index into the Blob heap (§23.2.15), holding the signature of this instantiation)

The MethodSpec table records the signature of an instantiated generic method.

Each unique instantiation of a generic method (i.e., a combination of Method and Instantiation) shall be
represented by a single row in the table.

This contains informative text only

134 Partition II

1. The MethodSpec table can contain zero or more rows

2. One or more rows can refer to the same row in the MethodDef or MethodRef table. (There can be
multiple instantiations of the same generic method.)

3. The signature stored at Instantiation shall be a valid instantiation of the signature of the generic
method stored at Method [ERROR]

4. There shall be no duplicate rows based upon Method+Instantiation [ERROR]

End informative text

22.30 Module : 0x00
The Module table has the following columns:

• Generation (a 2-byte value, reserved, shall be zero)

• Name (an index into the String heap)

• Mvid (an index into the Guid heap; simply a Guid used to distinguish between two versions of the
same module)

• EncId (an index into the Guid heap; reserved, shall be zero)

• EncBaseId (an index into the Guid heap; reserved, shall be zero)

The Mvid column shall index a unique GUID in the GUID heap (§24.2.5) that identifies this instance of the
module. The Mvid can be ignored on read by conforming implementations of the CLI. The Mvid should be
newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or another
compatible algorithm.

[Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using
its hexadecimal encoding. A GUID can be generated by several well-known algorithms including those used
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in
COM. end note]

[Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another. end
rationale]

The Generation, EncId, and EncBaseId columns can be written as zero, and can be ignored by conforming
implementations of the CLI. The rows in the Module table result from .module directives in the Assembly
(§6.4).

This contains informative text only
1. The Module table shall contain one and only one row [ERROR]

2. Name shall index a non-empty string. This string should match exactly any corresponding
ModuleRef.Name string that resolves to this module. [ERROR]

3. Mvid shall index a non-null GUID in the Guid heap [ERROR]

End informative text

22.31 ModuleRef : 0x1A
The ModuleRef table has the following column:

• Name (an index into the String heap)

The rows in the ModuleRef table result from .module extern directives in the Assembly (§6.5).

 Partition II 135

This contains informative text only
1. Name shall index a non-empty string in the String heap. This string shall enable the CLI to locate

the target module (typically, it might name the file used to hold the module) [ERROR]

2. There should be no duplicate rows [WARNING]

3. Name should match an entry in the Name column of the File table. Moreover, that entry shall
enable the CLI to locate the target module (typically it might name the file used to hold the
module) [ERROR]

End informative text

22.32 NestedClass : 0x29
The NestedClass table has the following columns:

• NestedClass (an index into the TypeDef table)

• EnclosingClass (an index into the TypeDef table)

NestedClass is defined as lexically ‘inside’ the text of its enclosing Type.

This contains informative text only
The NestedClass table records which Type definitions are nested within which other Type definition. In a
typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type

1. The NestedClass table can contain zero or more rows

2. NestedClass shall index a valid row in the TypeDef table [ERROR]

3. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to
index the TypeRef table) [ERROR]

4. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)
[WARNING]

5. A given Type can only be nested by one encloser. So, there cannot be two rows with the same
value for NestedClass, but different value for EnclosingClass [ERROR]

6. A given Type can ‘own’ several different nested Types, so it is perfectly valid to have two or
more rows with the same value for EnclosingClass but different values for NestedClass

End informative text

22.33 Param : 0x08
The Param table has the following columns:

• Flags (a 2-byte bitmask of type ParamAttributes, §23.1.13)

• Sequence (a 2-byte constant)

• Name (an index into the String heap)

Conceptually, every row in the Param table is owned by one, and only one, row in the MethodDef table

The rows in the Param table result from the parameters in a method declaration (§15.4), or from a .param
attribute attached to a method (§15.4.1).

This contains informative text only
1. Param table can contain zero or more rows

136 Partition II

2. Each row shall have one, and only one, owner row in the MethodDef table [ERROR]

3. Flags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Sequence shall have a value >= 0 and <= number of parameters in owner method. A Sequence
value of 0 refers to the owner method’s return type; its parameters are then numbered from 1
onwards [ERROR]

5. Successive rows of the Param table that are owned by the same method shall be ordered by
increasing Sequence value - although gaps in the sequence are allowed [WARNING]

6. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]

7. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row
[ERROR]

8. parameters cannot be given default values, so Flags.HasDefault shall be 0 [CLS]

9. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table
[ERROR]

10. Name can be null or non-null

11. If Name is non-null, then it shall index a non-empty string in the String heap [WARNING]

End informative text

22.34 Property : 0x17
Properties within metadata are best viewed as a means to gather together collections of methods defined on a
class, give them a name, and not much else. The methods are typically get_ and set_ methods, already defined
on the class, and inserted like any other methods into the MethodDef table. The association is held together by
three separate tables, as shown below:

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing
row 4 of the Property table on the right – the row for a property called Foo. This setup establishes that
MyClass has a property called Foo. But what methods in the MethodDef table are gathered together as
‘belonging’ to property Foo? That association is contained in the MethodSemantics table – its row 2 indexes
property Foo to the right, and row 2 in the MethodDef table to the left (a method called get_Foo). Also, row 3
of the MethodSemantics table indexes Foo to the right, and row 3 in the MethodDef table to the left (a method
called set_Foo). As the shading suggests, MyClass has another property, called Bar, with two methods,
get_Bar and set_Bar.

Property tables do a little more than group together existing rows from other tables. The Property table has
columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics
table has a column to record whether the method it points at is a set_, a get_ or other.

 Partition II 137

[Note: The CLS (see Partition I) refers to instance, virtual, and static properties. The signature of a property
(from the Type column) can be used to distinguish a static property, since instance and virtual properties will
have the “HASTHIS” bit set in the signature (§23.2.1) while a static property will not. The distinction between
an instance and a virtual property depends on the signature of the getter and setter methods, which the CLS
requires to be either both virtual or both instance. end note]

The Property (0x17) table has the following columns:

• Flags (a 2-byte bitmask of type PropertyAttributes, §23.1.14)

• Name (an index into the String heap)

• Type (an index into the Blob heap) (The name of this column is misleading. It does not index a
TypeDef or TypeRef table—instead it indexes the signature in the Blob heap of the Property)

This contains informative text only

1. Property table can contain zero or more rows

2. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)
[ERROR]

3. PropFlags shall have only those values set that are specified (all combinations valid) [ERROR]

4. Name shall index a non-empty string in the String heap [ERROR]

5. The Name string shall be a valid CLS identifier [CLS]

6. Type shall index a non-null signature in the Blob heap [ERROR]

7. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading
byte is 0x8). Apart from this leading byte, the signature is the same as the property’s get_ method
[ERROR]

8. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based
upon Name+Type [ERROR]

9. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class
cannot have two properties, "int Foo" and "String Foo", for example) [CLS]

End informative text

22.35 PropertyMap : 0x15
The PropertyMap table has the following columns:

• Parent (an index into the TypeDef table)

• PropertyList (an index into the Property table). It marks the first of a contiguous run of
Properties owned by Parent. The run continues to the smaller of:

o the last row of the Property table

o the next run of Properties, found by inspecting the PropertyList of the next row in this
PropertyMap table

The PropertyMap and Property tables result from putting the .property directive on a class (§17).

This contains informative text only
1. PropertyMap table can contain zero or more rows

2. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the
start of its property list) [ERROR]

138 Partition II

3. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in
the Property table) [ERROR]

End informative text

22.36 StandAloneSig : 0x11
Signatures are stored in the metadata Blob heap. In most cases, they are indexed by a column in some table—
Field.Signature, Method.Signature, MemberRef.Signature, etc. However, there are two cases that require a
metadata token for a signature that is not indexed by any metadata table. The StandAloneSig table fulfils this
need. It has just one column, which points to a Signature in the Blob heap.

The signature shall describe either:

• a method – code generators create a row in the StandAloneSig table for each occurrence of a calli
CIL instruction. That row indexes the call-site signature for the function pointer operand of the
calli instruction

• local variables – code generators create one row in the StandAloneSig table for each method, to
describe all of its local variables. The .locals directive (§15.4.1) in ILAsm generates a row in
the StandAloneSig table.

TheStandAloneSig table has the following column:

• Signature (an index into the Blob heap)

[Example:
// On encountering the calli instruction, ilasm generates a signature
// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 = int32),
// indexed by the StandAloneSig table:
.assembly Test {}
.method static int32 AddTen(int32)
{ ldarg.0
 ldc.i4 10
 add
 ret
}

.class Test
{ .method static void main()
 { .entrypoint
 ldc.i4.1
 ldftn int32 AddTen(int32)
 calli int32(int32)
 pop
 ret
 }
}

end example]

This contains informative text only
1. The StandAloneSig table can contain zero or more rows

2. Signature shall index a valid signature in the Blob heap [ERROR]

3. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature [ERROR]

4. Duplicate rows are allowed

End informative text

 Partition II 139

22.37 TypeDef : 0x02
The TypeDef table has the following columns:

• Flags (a 4-byte bitmask of type TypeAttributes, §23.1.15)

• TypeName (an index into the String heap)

• TypeNamespace (an index into the String heap)

• Extends (an index into the TypeDef, TypeRef, or TypeSpec table; more precisely, a TypeDefOrRef
(§24.2.6) coded index)

• FieldList (an index into the Field table; it marks the first of a contiguous run of Fields owned by
this Type). The run continues to the smaller of:

o the last row of the Field table

o the next run of Fields, found by inspecting the FieldList of the next row in this
TypeDef table

• MethodList (an index into the MethodDef table; it marks the first of a continguous run of Methods
owned by this Type). The run continues to the smaller of:

o the last row of the MethodDef table

o the next run of Methods, found by inspecting the MethodList of the next row in this
TypeDef table

The first row of the TypeDef table represents the pseudo class that acts as parent for functions and variables
defined at module scope.

Note that any type shall be one, and only one, of

• Class (Flags.Interface = 0, and derives ultimately from System.Object)

• Interface (Flags.Interface = 1)

• Value type, derived ultimately from System.ValueType

For any given type, there are two separate and distinct chains of pointers to other types (the pointers are
actually implemented as indexes into metadata tables). The two chains are:

• Extension chain – defined via the Extends column of the TypeDef table. Typically, a derived
Class extends a base Class (always one, and only one, base Class)

• Interface chains – defined via the InterfaceImpl table. Typically, a Class implements zero, one or
more Interfaces

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents
one-to-one relations—that is, one Class extends (or ‘derives from’) exactly one other Class (called its
immediate base class). The Interface chains can represent one-to-many relations—that is, one Class might well
implement two or more Interfaces.

An interface can also implement one or more other interfaces—metadata stores those links via the
InterfaceImpl table (the nomenclature is a little inappropriate here—there is no “implementation” involved;
perhaps a clearer name might have been Interface table, or InterfaceInherit table)

Another slightly specialized type is a nested type which is declared in ILAsm as lexically nested within an
enclosing type declaration. Whether a type is nested can be determined by the value of its Flags.Visibility sub-
field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly,
NestedFamANDAssem, NestedFamORAssem}.

If a type is generic, its parameters are defined in the GenericParam table (§22.20). Entries in the
GenericParam table reference entries in the TypeDef table; there is no reference from the TypeDef table to the
GenericParam table.

140 Partition II

This contains informative text only
The roots of the inheritance hierarchies look like this:

There is one system-defined root, System.Object. All Classes and ValueTypes shall derive, ultimately, from
System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth
required. This Extends inheritance chain is shown with heavy arrows.

(See below for details of the System.Delegate Class)

Interfaces do not inherit from one another; however, they can have zero or more required interfaces, which
shall be implemented. The Interface requirement chain is shown as light, dashed arrows. This includes links
between Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces.

Regular ValueTypes (i.e., excluding Enums – see later) are defined as deriving directly from
System.ValueType. Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state
this is that user-defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from
System.Enum. Enums cannot be derived to a depth of more than one below System.Enum. (Another way to
state this is that user-defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.

User-defined delegates derive from System.Delegate. Delegates cannot be derived to a depth of more than
one.

For the directives to declare types see §9.

1. A TypeDef table can contain one or more rows.

2. Flags:

a. Flags shall have only those values set that are specified [ERROR]

b. can set 0 or 1 of SequentialLayout and ExplicitLayout (if none set, then defaults to
AutoLayout) [ERROR]

c. can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)
[ERROR]

d. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true:
[ERROR]

• this Type owns at least one row in the DeclSecurity table

• this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute

e. If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall
be 1 [ERROR]

 Partition II 141

f. If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then
Flags.HasSecurity shall be 1 [ERROR]

g. Note that it is valid for an Interface to have HasSecurity set. However, the security system
ignores any permission requests attached to that Interface

3. Name shall index a non-empty string in the String heap [ERROR]

4. The TypeName string shall be a valid CLS identifier [CLS]

5. TypeNamespace can be null or non-null

6. If non-null, then TypeNamespace shall index a non-empty string in the String heap [ERROR]

7. If non-null, TypeNamespace’s string shall be a valid CLS Identifier [CLS]

8. Every Class (with the exception of System.Object and the special class <Module>) shall extend
one, and only one, other Class - so Extends for a Class shall be non-null [ERROR]

9. System.Object shall have an Extends value of null [ERROR]

10. System.ValueType shall have an Extends value of System.Object [ERROR]

11. With the exception of System.Object and the special class <Module>, for any Class, Extends shall
index a valid row in the TypeDef, TypeRef, or TypeSpec table, where valid means 1 <= row <=
rowcount. In addition, that row itself shall be a Class (not an Interface or ValueType) In
addition, that base Class shall not be sealed (its Flags.Sealed shall be 0) [ERROR]

12. A Class cannot extend itself, or any of its children (i.e., its derived Classes), since this would
introduce loops in the hierarchy tree [ERROR] (For generic types, see §9.1 and §9.2.)

13. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other
Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the
Extends column) [ERROR]

14. FieldList can be null or non-null

15. A Class or Interface can ‘own’ zero or more fields

16. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a
non-zero ClassSize [ERROR]

17. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row
<= rowcount+1 [ERROR]

18. MethodList can be null or non-null

19. A Type can ‘own’ zero or more methods

20. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]

21. If MethodList is non-null, it shall index a valid row in the MethodDef table, where valid means 1
<= row <= rowcount+1 [ERROR]

22. A Class which has one or more abstract methods cannot be instantiated, and shall have
Flags.Abstract = 1. Note that the methods owned by the class include all of those inherited from
its base class and interfaces it implements, plus those defined via its MethodList. (The CLI shall
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but
has Flags.Abstract = 0, it will throw an exception) [ERROR]

23. An Interface shall have Flags.Abstract = 1 [ERROR]

24. It is valid for an abstract Type to have a constructor method (ie, a method named .ctor)

25. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every
method its contract requires. Its methods can be inherited from its base class, from the interfaces
it implements, or defined by itself. The implementations can be inherited from its base class, or
defined by itself [ERROR]

142 Partition II

26. An Interface (Flags.Interface = 1) can own static fields (Field.Static = 1) but cannot own instance
fields (Field.Static = 0) [ERROR]

27. An Interface cannot be sealed (if Flags.Interface = 1, then Flags.Sealed shall be 0) [ERROR]

28. All of the methods owned by an Interface (Flags.Interface = 1) shall be abstract (Flags.Abstract
= 1) [ERROR]

29. There shall be no duplicate rows in the TypeDef table, based on TypeNamespace+TypeName
(unless this is a nested type - see below) [ERROR]

30. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon
TypeNamespace+TypeName+OwnerRowInNestedClassTable [ERROR]

31. There shall be no duplicate rows, where TypeNamespace+TypeName fields are compared using
CLS conflicting-identifier-rules (unless this is a nested type - see below) [CLS]

32. If this is a nested type, there shall be no duplicate rows, based upon
TypeNamespace+TypeName+OwnerRowInNestedClassTable and where
TypeNamespace+TypeName fields are compared using CLS conflicting-identifier-rules [CLS]

33. If Extends = System.Enum (i.e., type is a user-defined Enum) then:

a. shall be sealed (Sealed = 1) [ERROR]

b. shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]

c. shall not implement any interfaces (no entries in InterfaceImpl table for this type)
[ERROR]

d. shall not have any properties [ERROR]

e. shall not have any events [ERROR]

f. any static fields shall be literal (have Flags.Literal = 1) [ERROR]

g. shall have one or more static, literal fields, each of which has the type of the Enum [CLS]

h. shall be exactly one instance field, of built-in integer type [ERROR]

i. the Name string of the instance field shall be "value__", the field shall be marked
RTSpecialName, and that field shall have one of the CLS integer types [CLS]

j. shall not have any static fields unless they are literal [ERROR]

34. A Nested type (defined above) shall own exactly one row in the NestedClass table, where ‘owns’
means a row in that NestedClass table whose NestedClass column holds the TypeDef token for
this type definition [ERROR]

35. A ValueType shall be sealed [ERROR]

End informative text

22.38 TypeRef : 0x01
The TypeRef table has the following columns:

• ResolutionScope (an index into a Module, ModuleRef, AssemblyRef or TypeRef table, or null;
more precisely, a ResolutionScope (§24.2.6) coded index)

• TypeName (an index into the String heap)

• TypeNamespace (an index into the String heap)

This contains informative text only
1. ResolutionScope shall be exactly one of:

 Partition II 143

a. null - in this case, there shall be a row in the ExportedType table for this Type - its
Implementation field shall contain a File token or an AssemblyRef token that says where the
type is defined [ERROR]

b. a TypeRef token, if this is a nested type (which can be determined by, for example,
inspecting the Flags column in its TypeDef table - the accessibility subfield is one of the
tdNestedXXX set) [ERROR]

c. a ModuleRef token, if the target type is defined in another module within the same
Assembly as this one [ERROR]

d. a Module token, if the target type is defined in the current module - this should not occur in
a CLI (“compressed metadata”) module [WARNING]

e. an AssemblyRef token, if the target type is defined in a different Assembly from the current
module [ERROR]

2. TypeName shall index a non-empty string in the String heap [ERROR]

3. TypeNamespace can be null, or non-null

4. If non-null, TypeNamespace shall index a non-empty string in the String heap [ERROR]

5. The TypeName string shall be a valid CLS identifier [CLS]

6. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, TypeName and
TypeNamespace [ERROR]

7. There shall be no duplicate rows, where TypeName and TypeNamespace fields are compared
using CLS conflicting-identifier-rules [CLS]

End informative text

22.39 TypeSpec : 0x1B
The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.
This provides a metadata token for that Type (rather than simply an index into the Blob heap). This is required,
typically, for array operations, such as creating, or calling methods on the array class.

The TypeSpec table has the following column:

• Signature (index into the Blob heap, where the blob is formatted as specified in §23.2.14)

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token;
specifically, castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj,
box, and unbox.

This contains informative text only
1. The TypeSpec table can contain zero or more rows

2. Signature shall index a valid Type specification in the Blob heap [ERROR]

3. There shall be no duplicate rows, based upon Signature [ERROR]

End informative text

144 Partition II

23 Metadata logical format: other structures

23.1 Bitmasks and flags
This subclause explains the flags and bitmasks used in the metadata tables. When a conforming implementation
encounters a metadata structure (such as a flag) that is not specified in this standard, the behavior of the
implementation is unspecified.

23.1 .1 Values for AssemblyHashAlgorithm

Algorithm Value
None 0x0000
Reserved (MD5) 0x8003
SHA1 0x8004

23.1 .2 Values for AssemblyFlags

Flag Value Description
PublicKey 0x0001 The assembly reference holds the full (unhashed)

public key.
SideBySideCompatible 0x0000 The assembly is side-by-side compatible
<reserved> 0x0030 Reserved: both bits shall be zero
Retargetable 0x0100 The implementation of this assembly used at runtime is

not expected to match the version seen at compile time.
(See the text following this table.)

EnableJITcompileTracking 0x8000 Reserved (a conforming implementation of the CLI
can ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code
compiler should generate CIL-to-native code map)

DisableJITcompileOptimizer 0x4000 Reserved (a conforming implementation of the CLI
can ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code
compiler should not generate optimized code)

In portable programs, the Retargetable (0x100) bit shall be set on all references to assemblies specified in this
Standard.

23.1 .3 Values for Culture
ar-SA ar-IQ ar-EG ar-LY

ar-DZ ar-MA ar-TN ar-OM

ar-YE ar-SY ar-JO ar-LB

ar-KW ar-AE ar-BH ar-QA

bg-BG ca-ES zh-TW zh-CN

zh-HK zh-SG zh-MO cs-CZ

da-DK de-DE de-CH de-AT

de-LU de-LI el-GR en-US

en-GB en-AU en-CA en-NZ

 Partition II 145

en-IE en-ZA en-JM en-CB

en-BZ en-TT en-ZW en-PH

es-ES-Ts es-MX es-ES-Is es-GT

es-CR es-PA es-DO es-VE

es-CO es-PE es-AR es-EC

es-CL es-UY es-PY es-BO

es-SV es-HN es-NI es-PR

Fi-FI fr-FR fr-BE fr-CA

Fr-CH fr-LU fr-MC he-IL

hu-HU is-IS it-IT it-CH

Ja-JP ko-KR nl-NL nl-BE

nb-NO nn-NO pl-PL pt-BR

pt-PT ro-RO ru-RU hr-HR

Lt-sr-SP Cy-sr-SP sk-SK sq-AL

sv-SE sv-FI th-TH tr-TR

ur-PK id-ID uk-UA be-BY

sl-SI et-EE lv-LV lt-LT

fa-IR vi-VN hy-AM Lt-az-AZ

Cy-az-AZ eu-ES mk-MK af-ZA

ka-GE fo-FO hi-IN ms-MY

ms-BN kk-KZ ky-KZ sw-KE

Lt-uz-UZ Cy-uz-UZ tt-TA pa-IN

gu-IN ta-IN te-IN kn-IN

mr-IN sa-IN mn-MN gl-ES

kok-IN syr-SY div-MV

Note on RFC 1766, Locale names: a typical string would be “en-US”. The first part (“en” in the example) uses
ISO 639 characters (“Latin-alphabet characters in lowercase. No diacritical marks of modified characters are
used”). The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase);
that is, the familiar ASCII characters a–z and A–Z, respectively. However, whilst RFC 1766 recommends the
first part be lowercase and the second part be uppercase, it allows mixed case. Therefore, the validation rule
checks only that Culture is one of the strings in the list above—but the check is totally case-blind—where case-
blind is the familiar fold on values less than U+0080

23.1 .4 Flags for events [EventAttributes]

Flag Value Description
SpecialName 0x0200 Event is special.
RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the

event

23.1 .5 Flags for f ields [FieldAttributes]

Flag Value Description
FieldAccessMask 0x0007 These 3 bits contain one of the following values:
CompilerControlled 0x0000 Member not referenceable

146 Partition II

Private 0x0001 Accessible only by the parent type
FamANDAssem 0x0002 Accessible by sub-types only in this Assembly
Assembly 0x0003 Accessibly by anyone in the Assembly
Family 0x0004 Accessible only by type and sub-types
FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly
Public 0x0006 Accessibly by anyone who has visibility to this scope field

contract attributes
Static 0x0010 Defined on type, else per instance
InitOnly 0x0020 Field can only be initialized, not written to after init
Literal 0x0040 Value is compile time constant
NotSerialized 0x0080 Reserved (to indicate this field should not be serialized when

type is remoted)
SpecialName 0x0200 Field is special

Interop Attributes
PInvokeImpl 0x2000 Implementation is forwarded through PInvoke.

Additional flags
RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the

field
HasFieldMarshal 0x1000 Field has marshalling information
HasDefault 0x8000 Field has default
HasFieldRVA 0x0100 Field has RVA

23.1 .6 Flags for f i les [Fi leAttributes]

Flag Value Description
ContainsMetaData 0x0000 This is not a resource file
ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file

23.1 .7 Flags for Generic Parameters [GenericParamAttributes]

Flag Value Description
VarianceMask 0x0003 These 2 bits contain one of the following values:
None 0x0000 The generic parameter is non-variant and has no special

constraints
Covariant 0x0001 The generic parameter is covariant
Contravariant 0x0002 The generic parameter is contravariant
SpecialConstraintMask 0x001C These 3 bits contain one of the following values:
ReferenceTypeConstraint 0x0004 The generic parameter has the class special constraint
NotNullableValueTypeConstraint 0x0008 The generic parameter has the valuetype special

constraint
DefaultConstructorConstraint 0x0010 The generic parameter has the .ctor special constraint

 Partition II 147

23.1 .8 Flags for ImplMap [PInvokeAttributes]

Flag Value Description
NoMangle 0x0001 PInvoke is to use the member name as specified

Character set
CharSetMask 0x0006 This is a resource file or other non-metadata-containing file.

These 2 bits contain one of the following values:
CharSetNotSpec 0x0000
CharSetAnsi 0x0002
CharSetUnicode 0x0004
CharSetAuto 0x0006
SupportsLastError 0x0040 Information about target function. Not relevant for fields

Calling convention
CallConvMask 0x0700 These 3 bits contain one of the following values:
CallConvWinapi 0x0100
CallConvCdecl 0x0200
CallConvStdcall 0x0300
CallConvThiscall 0x0400
CallConvFastcall 0x0500

23.1 .9 Flags for ManifestResource [ManifestResourceAttributes]

Flag Value Description
VisibilityMask 0x0007 These 3 bits contain one of the following values:
Public 0x0001 The Resource is exported from the Assembly
Private 0x0002 The Resource is private to the Assembly

23.1 .10 Flags for methods [MethodAttributes]

Flag Value Description
MemberAccessMask 0x0007 These 3 bits contain one of the following values:
CompilerControlled 0x0000 Member not referenceable
Private 0x0001 Accessible only by the parent type
FamANDAssem 0x0002 Accessible by sub-types only in this Assembly
Assem 0x0003 Accessibly by anyone in the Assembly
Family 0x0004 Accessible only by type and sub-types
FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly
Public 0x0006 Accessibly by anyone who has visibility to this scope
Static 0x0010 Defined on type, else per instance
Final 0x0020 Method cannot be overridden

148 Partition II

Virtual 0x0040 Method is virtual
HideBySig 0x0080 Method hides by name+sig, else just by name
VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes. This bit contains

one of the following values:
ReuseSlot 0x0000 Method reuses existing slot in vtable
NewSlot 0x0100 Method always gets a new slot in the vtable
Strict 0x0200 Method can only be overriden if also accessible
Abstract 0x0400 Method does not provide an implementation
SpecialName 0x0800 Method is special
Interop attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke
UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations
Additional flags

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of
the method

HasSecurity 0x4000 Method has security associate with it
RequireSecObject 0x8000 Method calls another method containing security code.

23.1 .11 Flags for methods [MethodImplAttributes]

Flag Value Description
CodeTypeMask 0x0003 These 2 bits contain one of the following values:
IL 0x0000 Method impl is CIL
Native 0x0001 Method impl is native
OPTIL 0x0002 Reserved: shall be zero in conforming implementations
Runtime 0x0003 Method impl is provided by the runtime
ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged.

This bit contains one of the following values:
Unmanaged 0x0004 Method impl is unmanaged, otherwise managed
Managed 0x0000 Method impl is managed

Implementation info and interop
ForwardRef 0x0010 Indicates method is defined; used primarily in merge

scenarios
PreserveSig 0x0080 Reserved: conforming implementations can ignore
InternalCall 0x1000 Reserved: shall be zero in conforming implementations
Synchronized 0x0020 Method is single threaded through the body
NoInlining 0x0008 Method cannot be inlined
MaxMethodImplVal 0xffff Range check value

 Partition II 149

23.1 .12 Flags for MethodSemantics [MethodSemanticsAttributes]

Flag Value Description
Setter 0x0001 Setter for property
Getter 0x0002 Getter for property
Other 0x0004 Other method for property or event
AddOn 0x0008 AddOn method for event
RemoveOn 0x0010 RemoveOn method for event
Fire 0x0020 Fire method for event

23.1 .13 Flags for params [ParamAttributes]

Flag Value Description
In 0x0001 Param is [In]
Out 0x0002 Param is [out]
Optional 0x0010 Param is optional
HasDefault 0x1000 Param has default value
HasFieldMarshal 0x2000 Param has FieldMarshal
Unused 0xcfe0 Reserved: shall be zero in a conforming implementation

23.1 .14 Flags for propert ies [PropertyAttributes]

Flag Value Description
SpecialName 0x0200 Property is special
RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name

encoding
HasDefault 0x1000 Property has default
Unused 0xe9ff Reserved: shall be zero in a conforming implementation

23.1 .15 Flags for types [TypeAttributes]

Flag Value Description

Visibility attributes
VisibilityMask 0x00000007 Use this mask to retrieve visibility information.

These 3 bits contain one of the following
values:

NotPublic 0x00000000 Class has no public scope
Public 0x00000001 Class has public scope
NestedPublic 0x00000002 Class is nested with public visibility
NestedPrivate 0x00000003 Class is nested with private visibility
NestedFamily 0x00000004 Class is nested with family visibility
NestedAssembly 0x00000005 Class is nested with assembly visibility

150 Partition II

NestedFamANDAssem 0x00000006 Class is nested with family and assembly
visibility

NestedFamORAssem 0x00000007 Class is nested with family or assembly
visibility

Class layout attributes
LayoutMask 0x00000018 Use this mask to retrieve class layout

information. These 2 bits contain one of the
following values:

AutoLayout 0x00000000 Class fields are auto-laid out
SequentialLayout 0x00000008 Class fields are laid out sequentially
ExplicitLayout 0x00000010 Layout is supplied explicitly

Class semantics attributes
ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics

information. This bit contains one of the
following values:

Class 0x00000000 Type is a class
Interface 0x00000020 Type is an interface

Special semantics in addition to class semantics
Abstract 0x00000080 Class is abstract
Sealed 0x00000100 Class cannot be extended
SpecialName 0x00000400 Class name is special

Implementation Attributes
Import 0x00001000 Class/Interface is imported
Serializable 0x00002000 Reserved (Class is serializable)

String formatting Attributes
StringFormatMask 0x00030000 Use this mask to retrieve string information for

native interop. These 2 bits contain one of the
following values:

AnsiClass 0x00000000 LPSTR is interpreted as ANSI
UnicodeClass 0x00010000 LPSTR is interpreted as Unicode
AutoClass 0x00020000 LPSTR is interpreted automatically
CustomFormatClass 0x00030000 A non-standard encoding specified by

CustomStringFormatMask
CustomStringFormatMask 0x00C00000 Use this mask to retrieve non-standard

encoding information for native interop. The
meaning of the values of these 2 bits is
unspecified.

Class Initialization Attributes
BeforeFieldInit 0x00100000 Initialize the class before first static field

access

Additional Flags

 Partition II 151

RTSpecialName 0x00000800 CLI provides 'special' behavior, depending
upon the name of the Type

HasSecurity 0x00040000 Type has security associate with it

23.1 .16 Element types used in s ignatures

The following table lists the values for ELEMENT_TYPE constants. These are used extensively in metadata
signature blobs – see §23.2

Name Value Remarks
ELEMENT_TYPE_END 0x00 Marks end of a list
ELEMENT_TYPE_VOID 0x01
ELEMENT_TYPE_BOOLEAN 0x02
ELEMENT_TYPE_CHAR 0x03
ELEMENT_TYPE_I1 0x04
ELEMENT_TYPE_U1 0x05
ELEMENT_TYPE_I2 0x06
ELEMENT_TYPE_U2 0x07
ELEMENT_TYPE_I4 0x08
ELEMENT_TYPE_U4 0x09
ELEMENT_TYPE_I8 0x0a
ELEMENT_TYPE_U8 0x0b
ELEMENT_TYPE_R4 0x0c
ELEMENT_TYPE_R8 0x0d
ELEMENT_TYPE_STRING 0x0e
ELEMENT_TYPE_PTR 0x0f Followed by type
ELEMENT_TYPE_BYREF 0x10 Followed by type
ELEMENT_TYPE_VALUETYPE 0x11 Followed by TypeDef or TypeRef token
ELEMENT_TYPE_CLASS 0x12 Followed by TypeDef or TypeRef token
ELEMENT_TYPE_VAR 0x13 Generic parameter in a generic type definition,

represented as number
ELEMENT_TYPE_ARRAY 0x14 type rank boundsCount bound1 … loCount lo1 …
ELEMENT_TYPE_GENERICINST 0x15 Generic type instantiation. Followed by type type-

arg-count type-1 ... type-n
ELEMENT_TYPE_TYPEDBYREF 0x16
ELEMENT_TYPE_I 0x18 System.IntPtr
ELEMENT_TYPE_U 0x19 System.UIntPtr

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature
ELEMENT_TYPE_OBJECT 0x1c System.Object

ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower bound

152 Partition II

Name Value Remarks
ELEMENT_TYPE_END 0x00 Marks end of a list
ELEMENT_TYPE_VOID 0x01
ELEMENT_TYPE_BOOLEAN 0x02
ELEMENT_TYPE_CHAR 0x03
ELEMENT_TYPE_I1 0x04
ELEMENT_TYPE_U1 0x05
ELEMENT_TYPE_I2 0x06
ELEMENT_TYPE_U2 0x07
ELEMENT_TYPE_I4 0x08
ELEMENT_TYPE_U4 0x09
ELEMENT_TYPE_I8 0x0a
ELEMENT_TYPE_U8 0x0b
ELEMENT_TYPE_R4 0x0c
ELEMENT_TYPE_R8 0x0d
ELEMENT_TYPE_STRING 0x0e
ELEMENT_TYPE_PTR 0x0f Followed by type
ELEMENT_TYPE_BYREF 0x10 Followed by type
ELEMENT_TYPE_VALUETYPE 0x11 Followed by TypeDef or TypeRef token
ELEMENT_TYPE_CLASS 0x12 Followed by TypeDef or TypeRef token
ELEMENT_TYPE_MVAR 0x1e Generic parameter in a generic method definition,

represented as number
ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a TypeDef or

TypeRef token
ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a TypeDef or

TypeRef token
ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI
ELEMENT_TYPE_MODIFIER 0x40 Or’d with following element types
ELEMENT_TYPE_SENTINEL 0x41 Sentinel for vararg method signature
ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that points at a pinned

object
 0x50 Indicates an argument of type System.Type.
 0x51 Used in custom attributes to specify a boxed object

(§23.3).
 0x52 Reserved
 0x53 Used in custom attributes to indicate a FIELD

(§22.10, 23.3).
 0x54 Used in custom attributes to indicate a PROPERTY

(§22.10, 23.3).

 Partition II 153

Name Value Remarks
ELEMENT_TYPE_END 0x00 Marks end of a list
ELEMENT_TYPE_VOID 0x01
ELEMENT_TYPE_BOOLEAN 0x02
ELEMENT_TYPE_CHAR 0x03
ELEMENT_TYPE_I1 0x04
ELEMENT_TYPE_U1 0x05
ELEMENT_TYPE_I2 0x06
ELEMENT_TYPE_U2 0x07
ELEMENT_TYPE_I4 0x08
ELEMENT_TYPE_U4 0x09
ELEMENT_TYPE_I8 0x0a
ELEMENT_TYPE_U8 0x0b
ELEMENT_TYPE_R4 0x0c
ELEMENT_TYPE_R8 0x0d
ELEMENT_TYPE_STRING 0x0e
ELEMENT_TYPE_PTR 0x0f Followed by type
ELEMENT_TYPE_BYREF 0x10 Followed by type
ELEMENT_TYPE_VALUETYPE 0x11 Followed by TypeDef or TypeRef token
ELEMENT_TYPE_CLASS 0x12 Followed by TypeDef or TypeRef token
 0x55 Used in custom attributes to specify an enum

(§23.3).

23.2 Blobs and signatures
The word signature is conventionally used to describe the type info for a function or method; that is, the type of
each of its parameters, and the type of its return value. Within metadata, the word signature is also used to
describe the type info for fields, properties, and local variables. Each Signature is stored as a (counted) byte
array in the Blob heap. There are several kinds of Signature, as follows:

• MethodRefSig (differs from a MethodDefSig only for VARARG calls)

• MethodDefSig

• FieldSig

• PropertySig

• LocalVarSig

• TypeSpec

• MethodSpec

The value of the first byte of a Signature 'blob' indicates what kind of Signature it is. Its lowest 4 bits hold one
of the following: C, DEFAULT, FASTCALL, STDCALL, THISCALL, or VARARG (whose values are defined in §23.2.3),
which qualify method signatures; FIELD, which denotes a field signature (whose value is defined in §23.2.4); or
PROPERTY, which denotes a property signature (whose value is defined in §23.2.5). This subclause defines the
binary 'blob' format for each kind of Signature. In the syntax diagrams that accompany many of the definitions,

154 Partition II

shading is used to combine into a single diagram what would otherwise be multiple diagrams; the
accompanying text describes the use of shading.

Signatures are compressed before being stored into the Blob heap (described below) by compressing the
integers embedded in the signature. The maximum encodable integer is 29 bits long, 0x1FFFFFFF. The
compression algorithm used is as follows (bit 0 is the least significant bit):

• If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer (bit 7 is
clear, value held in bits 6 through 0)

• If the value lies between 28 (0x80) and 214 – 1 (0x3FFF), inclusive, encode as a 2-byte integer
with bit 15 set, bit 14 clear (value held in bits 13 through 0)

• Otherwise, encode as a 4-byte integer, with bit 31 set, bit 30 set, bit 29 clear (value held in bits 28
through 0)

• A null string should be represented with the reserved single byte 0xFF, and no following data

[Note: The table below shows several examples. The first column gives a value, expressed in familiar (C-like)
hex notation. The second column shows the corresponding, compressed result, as it would appear in a PE file,
with successive bytes of the result lying at successively higher byte offsets within the file. (This is the opposite
order from how regular binary integers are laid out in a PE file.) end note]

Original Value Compressed Representation

0x03 03

0x7F 7F (7 bits set)

0x80 8080

0x2E57 AE57

0x3FFF BFFF

0x4000 C000 4000

0x1FFF FFFF DFFF FFFF

The most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal whether it
occupies 1, 2, or 4 bytes, as well as its value. For this to work, the “compressed” value, as explained above, is
stored in big-endian order; i.e., with the most significant byte at the smallest offset within the file.

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see §23.1.16. In particular,
signatures include two modifiers called:

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I). This modifier can only occur in the
definition of LocalVarSig (§23.2.6), Param (§23.2.10) or RetType (§23.2.11). It shall not occur within the
definition of a Field (§23.2.4)

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I). This modifier can occur in the
definition of LocalVarSig (§23.2.6), Param (§23.2.10), RetType (§23.2.11) or Field (§23.2.4)

23.2 .1 MethodDefSig

A MethodDefSig is indexed by the Method.Signature column. It captures the signature of a method or global
function. The syntax diagram for a MethodDefSig is:

 Partition II 155

This diagram uses the following abbreviations:

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see §15.3

GENERIC = 0x10, used to indicate that the method has one or more generic parameters.

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention (DEFAULT, VARARG,
or GENERIC). These are ORed together.

GenParamCount is the number of generic parameters for the method. This is a compressed int32. [Note: For
generic methods, both MethodDef and MemberRef shall include the GENERIC calling convention, together with
GenParamCount; these are significant for binding—they enable the CLI to overload on generic methods by the
number of generic parameters they include. end note]

ParamCount is an integer that holds the number of parameters (0 or more). It can be any number between 0
and 0x1FFFFFFF. The compiler compresses it too (see Partition II Metadata Validation) – before storing into
the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return type)

The RetType item describes the type of the method’s return value (§23.2.11)

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances
of the Param item (§23.2.10).

23.2 .2 MethodRefSig

A MethodRefSig is indexed by the MemberRef.Signature column. This provides the call site Signature for a
method. Normally, this call site Signature shall match exactly the Signature specified in the definition of the
target method. For example, if a method Foo is defined that takes two unsigned int32s and returns void; then
any call site shall index a signature that takes exactly two unsigned int32s and returns void. In this case, the
syntax diagram for a MethodRefSig is identical with that for a MethodDefSig – see §23.2.1

156 Partition II

The Signature at a call site differs from that at its definition, only for a method with the VARARG calling
convention. In this case, the call site Signature is extended to include info about the extra VARARG arguments
(for example, corresponding to the “...” in C syntax). The syntax diagram for this case is:

This diagram uses the following abbreviations:

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see §15.3

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see §15.3

VARARG = 0x5, used to encode the keyword vararg in the calling convention, see 15.3

SENTINEL = 0x41 (§23.1.16), used to encode “...” in the parameter list, see §15.3

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS, and the calling convention
VARARG. These are ORed together.

• ParamCount is an integer that holds the number of parameters (0 or more). It can be any number
between 0 and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata
Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it
does not include the method’s return type)

• The RetType item describes the type of the method’s return value (§23.2.11)

• The Param item describes the type of each of the method’s parameters. There shall be
ParamCount instances of the Param item (§23.2.10).

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances
of the Param item.This starts just like the MethodDefSig for a VARARG method (§23.2.1). But then a SENTINEL
token is appended, followed by extra Param items to describe the extra VARARG arguments. Note that the
ParamCount item shall indicate the total number of Param items in the Signature – before and after the
SENTINEL byte (0x41).

In the unusual case that a call site supplies no extra arguments, the signature shall not include a SENTINEL (this
is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig
definition).

23.2 .3 StandAloneMethodSig

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column. It is typically created as
preparation for executing a calli instruction. It is similar to a MethodRefSig, in that it represents a call site
signature, but its calling convention can specify an unmanaged target (the calli instruction invokes either
managed, or unmanaged code). Its syntax diagram is:

 Partition II 157

This diagram uses the following abbreviations (§15.3):

HASTHIS for 0x20

EXPLICITTHIS for 0x40

DEFAULT for 0x0

VARARG for 0x5

C for 0x1

STDCALL for 0x2

THISCALL for 0x3

FASTCALL for 0x4

SENTINEL for 0x41 (§23.1.16 and §15.3)

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention –
DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR’d together.

• ParamCount is an integer that holds the number of non-vararg and vararg parameters, combined.
It can be any number between 0 and 0x1FFFFFFF The compiler compresses it too (see
Partition II Metadata Validation) – before storing into the blob (ParamCount counts just the
method parameters – it does not include the method’s return type)

• The RetType item describes the type of the method’s return value (§23.2.11)

• The first Param item describes the type of each of the method’s non-vararg parameters. The
(optional) second Param item describes the type of each of the method’s vararg parameters.
There shall be ParamCount instances of Param (§23.2.10).

This is the most complex of the various method signatures. Two separate diagrams have been combined into
one in this diagram, using shading to distinguish between them. Thus, for the following calling conventions:
DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the
SENTINEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling
conventions:

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are
not required, however). These options are indicated by the shading of boxes in the syntax diagram.

158 Partition II

23.2 .4 FieldSig

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case
where it specifies a reference to a field, not a method, of course). The Signature captures the field’s definition.
The field can be a static or instance field in a class, or it can be a global variable. The syntax diagram for a
FieldSig looks like this:

This diagram uses the following abbreviations:

FIELD for 0x6

CustomMod is defined in §23.2.7. Type is defined in §23.2.12

23.2 .5 PropertySig

A PropertySig is indexed by the Property.Type column. It captures the type information for a Property –
essentially, the signature of its getter method:

the number of parameters supplied to its getter method

the base type of the Property (the type returned by its getter method)

type information for each parameter in the getter method (that is, the index parameters)

Note that the signatures of getter and setter are related precisely as follows:

• The types of a getter’s paramCount parameters are exactly the same as the first paramCount
parameters of the setter

• The return type of a getter is exactly the same as the type of the last parameter supplied to the
setter

The syntax diagram for a PropertySig looks like this:

The first byte of the Signature holds bits for HASTHIS and PROPERTY. These are OR’d together.

Type specifies the type returned by the Getter method for this property. Type is defined in §23.2.12. Param is
defined in §23.2.10.

ParamCount is an integer that holds the number of index parameters in the getter methods (0 or more).
(§23.2.1) (ParamCount counts just the method parameters – it does not include the method’s base type of the
Property)

23.2 .6 LocalVarSig

A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the type of all the local
variables in a method. Its syntax diagram is:

 Partition II 159

This diagram uses the following abbreviations:

LOCAL_SIG for 0x7, used for the .locals directive, see§15.4.1.3

BYREF for ELEMENT_TYPE_BYREF (§23.1.16)

Constraint is defined in §23.2.9.

Type is defined in §23.2.12

Count is an unsigned integer that holds the number of local variables. It can be any number between 1 and
0xFFFE.

There shall be Count instances of the Type in the LocalVarSig

23.2 .7 CustomMod

The CustomMod (custom modifier) item in Signatures has a syntax diagram like this:

This diagram uses the following abbreviations:

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (§23.1.16)

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (§23.1.16)

The CMOD_OPT or CMOD_REQD value is compressed, see §23.2.

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the
TypeRef table. However, these tokens are encoded and compressed – see §23.2.8 for details

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely.
Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‘understand’ the
semantic implied by this CustomModifier in order to reference the surrounding Signature.

23.2 .8 TypeDefOrRefEncoded

These items are compact ways to store a TypeDef, TypeRef, or TypeSpec token in a Signature (§23.2.12).

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef
token (see Partition VI for a list of the supported metadata token types). The lower 3 bytes (0x000012) index
row number 0x12 in the TypeRef table.

The encoded version of this TypeRef token is made up as follows:

160 Partition II

1. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0,
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively

2. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit
encoding from step 1

3. compress the resulting value (§23.2). This example yields the following encoded value:

a) encoded = value for TypeRef table = 0x01 (from 1. above)

b) encoded = (0x000012 << 2) | 0x01

 = 0x48 | 0x01

 = 0x49

c) encoded = Compress (0x49)

 = 0x49

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the
Signature 'blob', this TypeRef token is encoded as a single byte.

23.2 .9 Constraint

The Constraint item in Signatures currently has only one possible value, ELEMENT_TYPE_PINNED (§23.1.16),
which specifies that the target type is pinned in the runtime heap, and will not be moved by the actions of
garbage collection.

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of the local variable shall
either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String);
or it shall include the BYREF item. The reason is that local variables are allocated on the runtime stack – they
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC
heap, pinning makes no sense.

23.2 .10 Param

The Param (parameter) item in Signatures has this syntax diagram:

This diagram uses the following abbreviations:

BYREF for 0x10 (§23.1.16)

TYPEDBYREF for 0x16 (§23.1.16)

CustomMod is defined in §23.2.7. Type is defined in §23.2.12

23.2 .11 RetType

The RetType (return type) item in Signatures has this syntax diagram:

 Partition II 161

RetType is identical to Param except for one extra possibility, that it can include the type VOID. This diagram
uses the following abbreviations:

BYREF for ELEMENT_TYPE_BYREF (§23.1.16)

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (§23.1.16)

VOID for ELEMENT_TYPE_VOID (§23.1.16)

23.2 .12 Type

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, U1 is an abbreviation for
ELEMENT_TYPE_U1, and so on; see 23.1.16):

Type ::=

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U |

| ARRAY Type ArrayShape (general array, see §23.2.13)

| CLASS TypeDefOrRefEncoded

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *

| MVAR number

| OBJECT

| PTR CustomMod* Type

| PTR CustomMod* VOID

| STRING

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e., vector)

| VALUETYPE TypeDefOrRefEncoded

| VAR number

The GenArgCount non-terminal is an int32 value (compressed) specifying the number of generic arguments in
this signature.

23.2 .13 ArrayShape

An ArrayShape has the following syntax diagram:

162 Partition II

Rank is an integer (stored in compressed form, see §23.2) that specifies the number of dimensions in the array
(shall be 1 or more). NumSizes is a compressed integer that says how many dimensions have specified sizes (it
shall be 0 or more). Size is a compressed integer specifying the size of that dimension – the sequence starts at
the first dimension, and goes on for a total of NumSizes items. Similarly, NumLoBounds is a compressed
integer that says how many dimensions have specified lower bounds (it shall be 0 or more). And LoBound is a
compressed integer specifying the lower bound of that dimension – the sequence starts at the first dimension,
and goes on for a total of NumLoBounds items. None of the dimensions in these two sequences can be skipped,
but the number of specified dimensions can be less than Rank.

Here are a few examples, all for element type int32:

 Type Rank NumSizes Size NumLoBounds LoBound
[0...2] I4 1 1 3 0

[,,,,,,] I4 7 0 0

[0...3, 0...2,,,,] I4 6 2 4 3 2 0 0

[1...2, 6...8] I4 2 2 2 3 2 1 6

[5, 3...5, ,] I4 4 2 5 3 2 0 3

[Note: definitions can nest, since the Type can itself be an array. end note]

23.2 .14 TypeSpec

The signature in the Blob heap indexed by a TypeSpec token has the following format –
TypeSpecBlob ::=

 PTR CustomMod* VOID

| PTR CustomMod* Type

| FNPTR MethodDefSig

| FNPTR MethodRefSig

| ARRAY Type ArrayShape

| SZARRAY CustomMod* Type

| GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type Type*

For compactness, the ELEMENT_TYPE_ prefixes have been omitted from this list. So, for example, “PTR” is
shorthand for ELEMENT_TYPE_PTR. (§23.1.16) Note that a TypeSpecBlob does not begin with a calling-
convention byte, so it differs from the various other signatures that are stored into Metadata.

23.2 .15 MethodSpec

The signature in the Blob heap indexed by a MethodSpec token has the following format –
MethodSpecBlob ::=

 GENRICINST GenArgCount Type Type*

GENRICINST has the value 0x0A. [Note: This value is known as IMAGE_CEE_CS_CALLCONV_GENERICINST in
the Microsoft CLR implementation. end note] The GenArgCount is a compressed int32 indicating the number
of generic arguments in the method. The blob then specifies the instantiated type, repeating a total of
GenArgCount times.

 Partition II 163

23.2 .16 Short form signatures

The general specification for signatures leaves some leeway in how to encode certain items. For example, it
appears valid to encode a String as either

long-form: (ELEMENT_TYPE_CLASS, TypeRef-to-System.String)

short-form: ELEMENT_TYPE_STRING

Only the short form is valid. The following table shows which short-forms should be used in place of each
long-form item. (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE
is short for ELEMENT_TYPE_VALUETYPE)

Long Form Short Form

Prefix TypeRef to:
CLASS System.String STRING

CLASS System.Object OBJECT

VALUETYPE System.Void VOID

VALUETYPE System.Boolean BOOLEAN

VALUETYPE System.Char CHAR

VALUETYPE System.Byte U1

VALUETYPE System.Sbyte I1

VALUETYPE System.Int16 I2

VALUETYPE System.UInt16 U2

VALUETYPE System.Int32 I4

VALUETYPE System.UInt32 U4

VALUETYPE System.Int64 I8

VALUETYPE System.UInt64 U8

VALUETYPE System.IntPtr I

VALUETYPE System.UIntPtr U

VALUETYPE System.TypedReference TYPEDBYREF

[Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY.
There is no long form involving a TypeRef to System.Array. end note]

23.3 Custom attributes
A Custom Attribute has the following syntax diagram:

All binary values are stored in little-endian format (except PackedLen items, which are used only as counts for
the number of bytes to follow in a UTF8 string). If there are no fields, parameters, or properties specified the
entire attribute is represented as an empty blob.

CustomAttrib starts with a Prolog – an unsigned int16, with value 0x0001.

Next comes a description of the fixed arguments for the constructor method. Their number and type is found
by examining that constructor’s row in the MethodDef table; this information is not repeated in the

164 Partition II

CustomAttrib itself. As the syntax diagram shows, there can be zero or more FixedArgs. (Note that VARARG
constructor methods are not allowed in the definition of Custom Attributes.)

Next is a description of the optional “named” fields and properties. This starts with NumNamed – an unsigned
int16 giving the number of “named” properties or fields that follow. Note that NumNamed shall always be
present. A value of zero indicates that there are no “named” properties or fields to follow (and of course, in this
case, the CustomAttrib shall end immediately after NumNamed). In the case where NumNamed is non-zero, it
is followed by NumNamed repeats of NamedArgs.

The format for each FixedArg depends upon whether that argument is an SZARRAY or not – this is shown in the
lower and upper paths, respectively, of the syntax diagram. So each FixedArg is either a single Elem, or
NumElem repeats of Elem.

(SZARRAY is the single byte 0x1D, and denotes a vector – a single-dimension array with a lower bound of zero.)

NumElem is an unsigned int32 specifying the number of elements in the SZARRAY, or 0xFFFFFFFF to indicate
that the value is null.

An Elem takes one of the forms in this diagram, as follows:

• If the parameter kind is simple (first line in the above diagram) (bool, char, float32,
float64, int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned
int32 or unsigned int64) then the 'blob' contains its binary value (Val). (A bool is a single
byte with value 0 (false) or 1 (true); char is a two-byte Unicode character; and the others have
their obvious meaning.) This pattern is also used if the parameter kind is an enum -- simply store
the value of the enum's underlying integer type.

• If the parameter kind is string, (middle line in above diagram) then the blob contains a SerString –
a PackedLen count of bytes, followed by the UTF8 characters. If the string is null, its PackedLen
has the value 0xFF (with no following characters). If the string is empty (“”), then PackedLen
has the value 0x00 (with no following characters).

 Partition II 165

• If the parameter kind is System.Type, (also, the middle line in above diagram) its value is stored
as a SerString (as defined in the previous paragraph), representing its canonical name. The
canonical name is its full type name, followed optionally by the assembly where it is defined, its
version, culture and public-key-token. If the assembly name is omitted, the CLI looks first in the
current assembly, and then in the system library (mscorlib); in these two special cases, it is
permitted to omit the assembly-name, version, culture and public-key-token.

• If the parameter kind is System.Object, (third line in the above diagram) the value stored
represents the “boxed” instance of that value-type. In this case, the blob contains the actual type's
FieldOrPropType (see below), followed by the argument’s unboxed value. [Note: it is not
possible to pass a value of null in this case. end note]

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or
property it represents. [Note: Recall that the CLI allows fields and properties to have the same name; so we
require a means to disambiguate such situations. end note]

FIELD is the single byte 0x53.

PROPERTY is the single byte 0x54.

If the type of the named field or property is a boxed simple value type (bool, char, float32, float64,
int8, int16, int32, int64, unsigned int8, unsigned int16, unsigned int32 or
unsigned int64) then FieldOrPropType is immediately preceded by a byte containing the value 0x51 .

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4,
ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8,

ELEMENT_TYPE_STRING. A single-dimensional, zero-based array is specified as a single byte 0x1D followed by
the FieldOrPropType of the element type. (See §23.1.16) An enum is specified as a single byte 0x55 followed
by a SerString.

The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).

A number of examples involving custom attributes are contained in Annex B of Partition VI.

23.4 Marshalling descriptors
A Marshalling Descriptor is like a signature – it’s a 'blob' of binary data. It describes how a field or parameter
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or
from unmanaged code via PInvoke dispatch. The ILAsm syntax marshal can be used to create a marshalling
descriptor, as can the pseudo custom attribute MarshalAsAttribute – see §21.2.1)

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier
– see §15.5.4.

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx. Their names and values are listed
in the following table:

Name Value
NATIVE_TYPE_BOOLEAN 0x02

166 Partition II

NATIVE_TYPE_I1 0x03

NATIVE_TYPE_U1 0x04

NATIVE_TYPE_I2 0x05

NATIVE_TYPE_U2 0x06

NATIVE_TYPE_I4 0x07

NATIVE_TYPE_U4 0x08

NATIVE_TYPE_I8 0x09

NATIVE_TYPE_U8 0x0a

NATIVE_TYPE_R4 0x0b

NATIVE_TYPE_R8 0x0c

NATIVE_TYPE_LPSTR 0x14

NATIVE_TYPE_LPWSTR 0x15

NATIVE_TYPE_INT 0x1f

NATIVE_TYPE_UINT 0x20

NATIVE_TYPE_FUNC 0x26

NATIVE_TYPE_ARRAY 0x2a

The 'blob' has the following format –
MarshalSpec ::=
 NativeIntrinsic
| ARRAY ArrayElemType
| ARRAY ArrayElemType ParamNum
| ARRAY ArrayElemType ParamNum NumElem

NativeIntrinsic ::=
 BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8
| LPSTR | LPSTR | INT | UINT | FUNC

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists; for example, “ARRAY” is
shorthand for NATIVE_TYPE_ARRAY.

ArrayElemType ::=
 NativeIntrinsic

ParamNum is an integer (compressed as described in §23.2) specifying the parameter in the method call that
provides the number of elements in the array – see below.

NumElem is an integer compressed as described in §23.2 (specifying the number of elements or additional
elements – see below).

[Note: For example, in the method declaration:
.method void M(int32[] ar1, int32 size1, unsigned int8[] ar2, int32 size2) { … }

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap
with the format:

ARRAY MAX 2 1

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY. There is no additional info about the type of
each element (signified by that NATIVE_TYPE_MAX). The value of ParamNum is 2, which indicates that
parameter number 2 in the method (the one called size1) will specify the number of elements in the actual
array – let’s suppose its value on a particular call is 42. The value of NumElem is 0. The calculated total size,
in bytes, of the array is given by the formula:

 Partition II 167

if ParamNum = 0
 SizeInBytes = NumElem * sizeof (elem)
else
 SizeInBytes = (@ParamNum + NumElem) * sizeof (elem)
endif

 The syntax “@ParamNum” is used here to denote the value passed in for parameter number ParamNum – it
would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in
Foo’s signature – an ELEMENT_TYPE_I4 (§23.1.16) of size 4 bytes. end note]

168 Partition II

24 Metadata physical layout
The physical on-disk representation of metadata is a direct reflection of the logical representation described
in §22 and §23. That is, data is stored in streams representating the metadata tables and heaps. The main
complication is that, where the logical representation is abstracted from the number of bytes needed for
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how
to map logical metadata heaps and tables into their physical representations.

 Unless stated otherwise, all binary values are stored in little-endian format.

24.1 Fixed fields
Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable
Executable (PE) File Format (§25). Because of this heritage, some of the fields in the physical representation
of metadata have fixed values. When writing these fields it is best that they be set to the value indicated, on
reading they should be ignored.

24.2 File headers

24.2 .1 Metadata root

The root of the physical metadata starts with a magic signature, several bytes of version and other
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of
headers.

Offset Size Field Description

0 4 Signature Magic signature for physical metadata : 0x424A5342.
4 2 MajorVersion Major version, 1 (ignore on read)
6 2 MinorVersion Minor version, 1 (ignore on read)
8 4 Reserved Reserved, always 0 (§24.1).
12 4 Length Length of version string in bytes, say m (<= 255), rounded

up to a multiple of four.
16 m Version UTF8-encoded version string of length m (see below)
16+m Padding to next 4 byte boundary, say x.
x 2 Flags Reserved, always 0 (§24.1).
x+2 2 Streams Number of streams, say n.
x+4 StreamHeaders Array of n StreamHdr structures.

The Version string shall be “Standard CLI 2005” for any file that is intended to be executed on any conforming
implementation of the CLI, and all conforming implementations of the CLI shall accept files that use this
version string. Other strings shall be used when the file is restricted to a vendor-specific implementation of the
CLI. Future versions of this standard shall specify different strings, but they shall begin “Standard CLI”. Other
standards that specify additional functionality shall specify their own specific version strings beginning with
“Standard□”, where “□” represents a single space. Vendors that provide implementation-specific extensions
shall provide a version string that does not begin with “Standard□”. (For the first version of this Standard, the
Version string was “Standard CLI 2002”.)

 Partition II 169

24.2 .2 Stream header

A stream header gives the names, and the position and length of a particular table or heap. Note that the length
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-
terminated string).

Offset Size Field Description

0 4 Offset Memory offset to start of this stream from start of the
metadata root (§24.2.1)

4 4 Size Size of this stream in bytes, shall be a multiple of 4.
8 Name Name of the stream as null-terminated variable length array

of ASCII characters, padded to the next 4-byte boundary
with \0 characters. The name is limited to 32 characters.

Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header
with name “#Strings” that points to the physical representation of the string heap where identifier strings are
stored; a stream header with name “#US” that points to the physical representation of the user string heap; a
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with
name “#~” that points to the physical representation of a set of tables.

Each kind of stream shall occur at most once, that is, a meta-data file shall not contain two “#US” streams, or
five “#Blob” streams. Streams need not be there if they are empty.

The next subclauses describe the structure of each kind of stream in more detail.

24.2 .3 #Strings heap

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap.
The physical heap can contain garbage, that is, it can contain parts that are unreachable from any of the tables,
but parts that are reachable from a table shall contain a valid null-terminated UTF8 string. When the #String
heap is present, the first entry is always the empty string (i.e., \0).

24.2 .4 #US and #Blob heaps

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical
Userstring and 'blob' heaps respectively. Both these heaps can contain garbage, as long as any part that is
reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in
the first few bytes:

• If the first one byte of the 'blob' is 0bbbbbbb2, then the rest of the 'blob' contains the bbbbbbb2
bytes of actual data.

• If the first two bytes of the 'blob' are 10bbbbbb2 and x, then the rest of the 'blob' contains the
(bbbbbb2 << 8 + x) bytes of actual data.

• If the first four bytes of the 'blob' are 110bbbbb2, x, y, and z, then the rest of the 'blob' contains the
(bbbbb2 << 24 + x << 16 + y << 8 + z) bytes of actual data.

The first entry in both these heaps is the empty 'blob' that consists of the single byte 0x00.

Strings in the #US (user string) heap are encoded using 16-bit Unicode encodings. The count on each string is
the number of bytes (not characters) in the string. Furthermore, there is an additional terminal byte (so all byte
counts are odd, not even). This final byte holds the value 1 if and only if any UTF16 character within the string
has any bit set in its top byte, or its low byte is any of the following: 0x01–0x08, 0x0E–0x1F, 0x27, 0x2D,
0x7F. Otherwise, it holds 0. The 1 signifies Unicode characters that require handling beyond that normally
provided for 8-bit encoding sets.

170 Partition II

24.2 .5 #GUID heap

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the
stream.

24.2 .6 #~ stream

The “#~” streams contain the actual physical representations of the logical metadata tables (§22). A “#~”
stream has the following top-level structure:

Offset Size Field Description

0 4 Reserved Reserved, always 0 (§24.1).
4 1 MajorVersion Major version of table schemata; shall be 2 (§24.1).
5 1 MinorVersion Minor version of table schemata; shall be 0 (§24.1).
6 1 HeapSizes Bit vector for heap sizes.
7 1 Reserved Reserved, always 1 (§24.1).
8 8 Valid Bit vector of present tables, let n be the number of bits that

are 1.
16 8 Sorted Bit vector of sorted tables.
24 4*n Rows Array of n 4-byte unsigned integers indicating the number of

rows for each present table.
24+4*n Tables The sequence of physical tables.

The HeapSizes field is a bitvector that encodes the width of indexes into the various heaps. If bit 0 is set,
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes
wide; if bit 2 is set, indexes into the “#Blob” heap are 4 bytes wide. Conversely, if the HeapSize bit for a
particular heap is not set, indexes into that heap are 2 bytes wide.

Heap size flag Description

0x01 Size of “#String” stream >= 216.
0x02 Size of “#GUID” stream >= 216.
0x04 Size of “#Blob” stream >= 216.

The Valid field is a 64-bit bitvector that has a specific bit set for each table that is stored in the stream; the
mapping of tables to indexes is given at the start of §22. For example when the DeclSecurity table is present in
the logical metadata, bit 0x0e should be set in the Valid vector. It is invalid to include non-existent tables in
Valid, so all bits above 0x2c shall be zero.

The Rows array contains the number of rows for each of the tables that are present. When decoding physical
metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array.

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in §22. For
example, the table with assigned index 0x02 is a TypeDef table, which, according to its specification in §22.37,
has the following columns: a 4-byte-wide flags, an index into the String heap, another index into the String
heap, an index into TypeDef , TypeRef , or TypeSpec table, an index into Field table, and an index into
MethodDef table.

The physical representation of a table with n columns and m rows with schema (C0,…,Cn-1) consists of the
concatenation of the physical representation of each of its rows. The physical representation of a row with
schema (C0,…, n-1) is the concatenation of the physical representation of each of its elements. The physical
representation of a row cell e at a column with type C is defined as follows:

 Partition II 171

• If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e., a
2-bit mask of type PropertyAttributes)

• If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes
as defined in the HeapSizes field.

• If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than 216
rows, otherwise it is stored using 4 bytes.

• If e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e
<< (log n) | tag{ t0, …tn-1}[ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1,
is less than 2(16 – (log n)), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is
defined below. Note that decoding a physical row requires the inverse of this mapping. [For
example, the Parent column of the Constant table indexes a row in the Field, Param, or Property
tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 =>
Field, 1 => Param, 2 => Property.The remaining bits hold the actual row number being indexed.
For example, a value of 0x321, indexes row number 0xC8 in the Param table.]

TypeDefOrRef: 2 bits to encode tag Tag

TypeDef 0

TypeRef 1

TypeSpec 2

HasConstant: 2 bits to encode tag Tag

Field 0

Param 1

Property 2

HasCustomAttribute: 5 bits to encode tag Tag

MethodDef 0

Field 1

TypeRef 2

TypeDef 3

Param 4

InterfaceImpl 5

MemberRef 6

Module 7

Permission 8

Property 9

Event 10

StandAloneSig 11

ModuleRef 12

TypeSpec 13

Assembly 14

AssemblyRef 15

File 16

ExportedType 17

172 Partition II

ManifestResource 18

[Note: HasCustomAttributes only has values for tables that are “externally visible”; that is, that correspond to items
in a user source program. For example, an attribute can be attached to a TypeDef table and a Field table, but not a
ClassLayout table. As a result, some table types are missing from the enum above. end note]

HasFieldMarshall: 1 bit to encode tag Tag

Field 0

Param 1

HasDeclSecurity: 2 bits to encode tag Tag

TypeDef 0

MethodDef 1

Assembly 2

MemberRefParent: 3 bits to encode tag Tag

TypeDef 0

TypeRef 1

ModuleRef 2

MethodDef 3

TypeSpec 4

HasSemantics: 1 bit to encode tag Tag

Event 0

Property 1

MethodDefOrRef: 1 bit to encode tag Tag

MethodDef 0

MemberRef 1

MemberForwarded: 1 bit to encode tag Tag

Field 0

MethodDef 1

Implementation: 2 bits to encode tag Tag

File 0

AssemblyRef 1

ExportedType 2

CustomAttributeType: 3 bits to encode tag Tag

Not used 0

Not used 1

MethodDef 2

MemberRef 3

 Partition II 173

Not used 4

ResolutionScope: 2 bits to encode tag Tag

Module 0

ModuleRef 1

AssemblyRef 2

TypeRef 3

TypeOrMethodDef: 1 bit to encode tag Tag

TypeDef 0

MethodDef 1

174 Partition II

25 File format extensions to PE

This contains informative text only
The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format.
This extended PE format enables the operating system to recognize runtime images, accommodates code
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.
There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a
tool or compiler can use the specifications to emit valid CLI images.

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item
once loaded into memory, with the base address of the image file subtracted from it (i.e., the offset from the
base address where the file is loaded). The RVA of an item will almost always differ from its position within
the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find
the section with RVA s, length l and file position p in which the RVA lies, ie s ≤ r < s+l. The file position of
the item is then given by p+(r-s).

Unless stated otherwise, all binary values are stored in little-endian format.

End informative text

25.1 Structure of the runtime fi le format
The figure below provides a high-level view of the CLI file format. All runtime images contain the following:

• PE headers, with specific guidelines on how field values should be set in a runtime file.

• A CLI header that contains all of the runtime specific data entries. The runtime header is read-
only and shall be placed in any read-only section.

• The sections that contain the actual data as described by the headers, including imports/exports,
data, and code.

The CLI header (§25.3.3) is found using CLI Header directory entry in the PE header. The CLI header in turn
contains the address and sizes of the runtime data (for metadata, see §24; for CIL see § 25.4) in the rest of the
image. Note that the runtime data can be merged into other areas of the PE format with the other data based on
the attributes of the sections (such as read only versus execute, etc.).

25.2 PE headers
A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and
then the PE optional header followed by PE section headers.

 Partition II 175

25.2 .1 MS-DOS header

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the
module. At offset 0x3c in the DOS header is a 4-byte unsigned integer offset, lfanew, to the PE signature (shall
be “PE\0\0”), immediately followed by the PE file header.
0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 lfanew

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00

25.2 .2 PE f i le header

Immediately after the PE signature is the PE File header consisting of the following:

Offset Size Field Description
0 2 Machine Always 0x14c (§24.1).
2 2 Number of Sections Number of sections; indicates size of the Section Table,

which immediately follows the headers.
4 4 Time/Date Stamp Time and date the file was created in seconds since

January 1st 1970 00:00:00 or 0.
8 4 Pointer to Symbol Table Always 0 (§24.1).
12 4 Number of Symbols Always 0 (§24.1).
16 2 Optional Header Size Size of the optional header, the format is described below.
18 2 Characteristics Flags indicating attributes of the file, see §25.2.2.1.

25.2 .2.1 Characterist ics

A CIL-only DLL sets flag 0x2000 to 1, while a CIL-only .exe has flag 0x2000 set to zero:

Flag Value Description
IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, and 0x0100 shall all be set, while
all others shall always be zero (§24.1).

176 Partition II

25.2 .3 PE optional header

Immediately after the PE Header is the PE Optional Header. This header contains the following information:

Offset Size Header part Description
0 28 Standard fields These define general properties of the PE file, see §25.2.3.1.
28 68 NT-specific fields These include additional fields to support specific features of

Windows, see 25.2.3.2.
96 128 Data directories These fields are address/size pairs for special tables, found in

the image file (for example, Import Table and Export Table).

25.2 .3.1 PE header standard f ields

These fields are required for all PE files and contain the following information:

Offset Size Field Description
0 2 Magic Always 0x10B (§24.1).
2 1 LMajor Always 6 (§24.1).
3 1 LMinor Always 0 (§24.1).
4 4 Code Size Size of the code (text) section, or the sum of all code sections

if there are multiple sections.
8 4 Initialized Data Size Size of the initialized data section, or the sum of all such

sections if there are multiple data sections.
12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such

sections if there are multiple unitinitalized data sections.
16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25

followed by the RVA in a section marked execute/read for
EXEs or 0 for DLLs

20 4 Base Of Code RVA of the code section. (This is a hint to the loader.)
24 4 Base Of Data RVA of the data section. (This is a hint to the loader.)

This contains informative text only
The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this
stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use
the module handle to load the metadata from the image, and invoke the entry point specified in vthe CLI
header.

End informative text

25.2 .3.2 PE header Windows NT-specif ic f ie lds

These fields are Windows NT specific:

Offset Size Field Description
28 4 Image Base Always 0x400000 (§24.1).
32 4 Section Alignment Always 0x2000 (§24.1).
36 4 File Alignment Either 0x200 or 0x1000.
40 2 OS Major Always 4 (§24.1).

 Partition II 177

42 2 OS Minor Always 0 (§24.1).
44 2 User Major Always 0 (§24.1).
46 2 User Minor Always 0 (§24.1).
48 2 SubSys Major Always 4 (§24.1).
50 2 SubSys Minor Always 0 (§24.1).
52 4 Reserved Always 0 (§24.1).
56 4 Image Size Size, in bytes, of image, including all headers and padding;

shall be a multiple of Section Alignment.
60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional

Header and padding; shall be a multiple of the file alignment.
64 4 File Checksum Always 0 (§24.1).
68 2 SubSystem Subsystem required to run this image. Shall be either

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2).

70 2 DLL Flags Always 0 (§24.1).
72 4 Stack Reserve Size Always 0x100000 (1Mb) (§24.1).
76 4 Stack Commit Size Always 0x1000 (4Kb) (§24.1).
80 4 Heap Reserve Size Always 0x100000 (1Mb) (§24.1).
84 4 Heap Commit Size Always 0x1000 (4Kb) (§24.1).
88 4 Loader Flags Always 0 (§24.1)
92 4 Number of Data

Directories
Always 0x10 (§24.1).

25.2 .3.3 PE header data directories

The optional header data directories give the address and size of several tables that appear in the sections of the
PE file. Each data directory entry contains the RVA and Size of the structure it describes, in that order.

Offset Size Field Description
96 8 Export Table Always 0 (§24.1).
104 8 Import Table RVA and Size of Import Table, (§25.3.1).
112 8 Resource Table Always 0 (§24.1).
120 8 Exception Table Always 0 (§24.1).
128 8 Certificate Table Always 0 (§24.1).
136 8 Base Relocation Table Relocation Table; set to 0 if unused (§25.3.1).
144 8 Debug Always 0 (§24.1).
152 8 Copyright Always 0 (§24.1).
160 8 Global Ptr Always 0 (§24.1).
168 8 TLS Table Always 0 (§24.1).
176 8 Load Config Table Always 0 (§24.1).

178 Partition II

184 8 Bound Import Always 0 (§24.1).
192 8 IAT RVA and Size of Import Address Table,

(§25.3.1).
200 8 Delay Import Descriptor Always 0 (§24.1).
208 8 CLI Header CLI Header with directories for runtime data,

(§25.3.1).
216 8 Reserved Always 0 (§24.1).

The tables pointed to by the directory entries are stored in one of the PE file’s sections; these sections
themselves are described by section headers.

25.3 Section headers
Immediately following the optional header is the Section Table, which contains a number of section headers.
This positioning is required because the file header does not contain a direct pointer to the section table; the
location of the section table is determined by calculating the location of the first byte after the headers.

Each section header has the following format, for a total of 40 bytes per entry:

Offset Size Field Description
0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null

if the string is exactly eight characters long.
8 4 VirtualSize Total size of the section in bytes. If this value is greater than

SizeOfRawData, the section is zero-padded.
12 4 VirtualAddress For executable images this is the address of the first byte of the

section, when loaded into memory, relative to the image base.
16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of

FileAlignment from the PE header. If this is less than VirtualSize
the remainder of the section is zero filled. Because this field is
rounded while the VirtualSize field is not it is possible for this to
be greater than VirtualSize as well. When a section contains only
uninitialized data, this field should be 0.

20 4 PointerToRawData Offset of section’s first page within the PE file. This shall be a
multiple of FileAlignment from the optional header. When a
section contains only uninitialized data, this field should be 0.

24 4 PointerToRelocations RVA of Relocation section.
28 4 PointerToLinenumbers Always 0 (§24.1).
32 2 NumberOfRelocations Number of relocations, set to 0 if unused.
34 2 NumberOfLinenumbers Always 0 (§24.1).
36 4 Characteristics Flags describing section’s characteristics, see below.

The following table defines the possible characteristics of the section.

Flag Value Description
IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable code.
IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data.
IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data.
IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code.

 Partition II 179

IMAGE_SCN_MEM_READ 0x40000000 Section can be read.
IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to.

25.3 .1 Import Table and Import Address Table (IAT)

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or
_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to
a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each
imported DLL):

Offset Size Field Description
0 4 ImportLookupTable RVA of the Import Lookup Table
4 4 DateTimeStamp Always 0 (§24.1).
8 4 ForwarderChain Always 0 (§24.1).
12 4 Name RVA of null-terminated ASCII string “mscoree.dll”.
16 4 ImportAddressTable RVA of Import Address Table (this is the same as the

RVA of the IAT descriptor in the optional header).
20 20 End of Import Table. Shall be filled with zeros.

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in
this table for every imported symbol.

Offset Size Field Description
0 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31

shall be set to 0 indicating import by name.
4 4 End of table, shall be filled with zeros.

The IAT should be in an executable and writable section as the loader will replace the pointers into the
Hint/Name table by the actual entry points of the imported symbols.

The Hint/Name table contains the name of the dll-entry that is imported.

Offset Size Field Description
0 2 Hint Shall be 0.
2 variable Name Case sensitive, null-terminated ASCII string containing name to

import. Shall be “_CorExeMain” for a .exe file and
“_CorDllMain” for a .dll file.

25.3 .2 Relocat ions

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x86
startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed
CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains
relocations for these as well.

The relocations shall be in their own section, named “.reloc”, which shall be the final section in the PE file. The
relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block
represents the fixups for a 4K page, and each block shall start on a 32-bit boundary.

Each fixup block starts with the following structure:

Offset Size Field Description

180 Partition II

0 4 PageRVA The RVA of the block in which the fixup needs to be
applied. The low 12 bits shall be zero.

4 4 Block Size Total number of bytes in the fixup block, including the
Page RVA and Block Size fields, as well as the
Type/Offset fields that follow, rounded up to the next
multiple of 4.

The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has
the following structure (if necessary, insert 2 bytes of 0 to pad to a multiple of 4 bytes in length):

Offset Size Field Description

0 4 bits Type Stored in high 4 bits of word. Value indicating which
type of fixup is to be applied (described above)

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting
address specified in the Page RVA field for the block.
This offset specifies where the fixup is to be applied.

25.3 .3 CLI header

The CLI header contains all of the runtime-specific data entries and other information. The header should be
placed in a read-only, sharable section of the image. This header is defined as follows:

Offset Size Field Description
0 4 Cb Size of the header in bytes
4 2 MajorRuntimeVersion The minimum version of the runtime required to run

this program, currently 2.
6 2 MinorRuntimeVersion The minor portion of the version, currently 0.
8 8 MetaData RVA and size of the physical metadata (§24).
16 4 Flags Flags describing this runtime image. (§25.3.3.1).
20 4 EntryPointToken Token for the MethodDef or File of the entry point

for the image
24 8 Resources RVA and size of implementation-specific resources.
32 8 StrongNameSignature RVA of the hash data for this PE file used by the

CLI loader for binding and versioning
40 8 CodeManagerTable Always 0 (§24.1).
48 8 VTableFixups RVA of an array of locations in the file that contain

an array of function pointers (e.g., vtable slots), see
below.

56 8 ExportAddressTableJumps Always 0 (§24.1).
64 8 ManagedNativeHeader Always 0 (§24.1).

25.3 .3.1 Runtime f lags

The following flags describe this runtime image and are used by the loader.

Flag Value Description
COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1 (§24.1).

 Partition II 181

COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image can only be loaded into a 32-bit process,
for instance if there are 32-bit vtablefixups, or
casts from native integers to int32. CLI
implementations that have 64-bit native
integers shall refuse loading binaries with this
flag set.

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature.
COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (§24.1).

25.3 .3.2 Entry point metadata token

• The entry point token (§15.4.1.2) is always a MethodDef token (§22.26) or File token (§22.19)
when the entry point for a multi-module assembly is not in the manifest assembly. The signature
and implementation flags in metadata for the method indicate how the entry is run

25.3 .3.3 Vtable f ixup

Certain languages, which choose not to follow the common type system runtime model, can have virtual
functions which need to be represented in a v-table. These v-tables are laid out by the compiler, not by the
runtime. Finding the correct v-table slot and calling indirectly through the value held in that slot is also done
by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of
Vtable Fixups (§15.5.1). V-tables shall be emitted into a read-write section of the PE file.

Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot starts out
initialized to the metadata token value for the method they need to call. At image load time, the runtime
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.

Offset Size Field Description
0 4 VirtualAddress RVA of Vtable

4 2 Size Number of entries in Vtable
6 2 Type Type of the entries, as defined in table below

Constant Value Description
COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits.
COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits.
COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanaged to managed code.
COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the

token (only valid for virtual methods).

25.3 .3.4 Strong name s ignature

This header entry points to the strong name hash for an image that can be used to deterministically identify a
module from a referencing point (§6.2.1.3).

25.4 Common Intermediate Language physical layout
This section contains the layout of the data structures used to describe a CIL method and its exceptions. Method
bodies can be stored in any read-only section of a PE file. The MethodDef (§22.26) records in metadata carry
each method's RVA.

A method consists of a method header immediately followed by the method body, possibly followed by extra
method data sections (§25.4.5), typically exception handling data. If exception-handling data is present, then

182 Partition II

CorILMethod_MoreSects flag (§25.4.4) shall be specified in the method header and for each chained item after
that.

There are two flavors of method headers - tiny (§25.4.2) and fat (§25.4.3). The two least significant bits in a
method header indicate which type is present (§25.4.1). The tiny header is 1 byte long and stores only the
method's code size. A method is given a tiny header if it has no local variables, maxstack is 8 or less, the
method has no exceptions, the method size is less than 64 bytes, and the method has no flags above 0x7. Fat
headers carry full information - local vars signature token, maxstack, code size, flag. Tiny method headers can
start on any byte boundary. Fat method headers shall start on a 4-byte boundary.

25.4 .1 Method header type values

The two least significant bits of the first byte of the method header indicate what type of header is present.
These 2 bits will be one and only one of the following:

Value Value Description
CorILMethod_TinyFormat 0x2 The method header is tiny (§25.4.2) .
CorILMethod_FatFormat 0x3 The method header is fat (§25.4.3).

25.4 .2 Tiny format

Tiny headers use a 6-bit length encoding. The following is true for all tiny headers:

• No local variables are allowed

• No exceptions

• No extra data sections

• The operand stack shall be no bigger than 8 entries

A Tiny Format header is encoded as follows:

Start Bit Count of Bits Description
0 2 Flags (CorILMethod_TinyFormat shall be set, see §25.4.4).
2 6 Size, in bytes, of the method body immediately following this

header.

25.4 .3 Fat format

The fat format is used whenever the tiny format is not sufficient. This can be true for one or more of the
following reasons:

• The method is too large to encode the size (i.e., at least 64 bytes)

• There are exceptions

• There are extra data sections

• There are local variables

• The operand stack needs more than 8 entries

A fat header has the following structure

Offset Size Field Description

0 12 (bits) Flags Flags (CorILMethod_FatFormat shall be set in bits 0:1,
see §25.4.4)

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte
integers occupied (currently 3)

 Partition II 183

2 2 MaxStack Maximum number of items on the operand stack
4 4 CodeSize Size in bytes of the actual method body
8 4 LocalVarSigTok Meta Data token for a signature describing the layout

of the local variables for the method. 0 means there
are no local variables present

25.4 .4 Flags for method headers

The first byte of a method header can also contain the following flags, valid only for the Fat format, that
indicate how the method is to be executed:

Flag Value Description
CorILMethod_FatFormat 0x3 Method header is fat.
CorILMethod_TinyFormat 0x2 Method header is tiny.
CorILMethod_MoreSects 0x8 More sections follow after this header (§25.4.5).
CorILMethod_InitLocals 0x10 Call default constructor on all local variables.

25.4 .5 Method data sect ion

At the next 4-byte boundary following the method body can be extra method data sections. These method data
sections start with a two byte header (1 byte for flags, 1 byte for the length of the actual data) or a 4-byte
header (1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the
header, and what data is in the actual section:

Flag Value Description
CorILMethod_Sect_EHTable 0x1 Exception handling data.
CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0.
CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3-

byte length least-significant byte first format. If not
set, the header is small with a 1-byte length

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section

Currently, the method data sections are only used for exception tables (§19). The layout of a small exception
header structure as is a follows:

Offset Size Field Description

0 1 Kind Flags as described above.
1 1 DataSize Size of the data for the block, including the header, say

n*12+4.
2 2 Reserved Padding, always 0.
4 n Clauses n small exception clauses (§25.4.6).

The layout of a fat exception header structure is as follows:

Offset Size Field Description

0 1 Kind Which type of exception block is being used
1 3 DataSize Size of the data for the block, including the header, say

n*24+4.

184 Partition II

4 n Clauses n fat exception clauses (§25.4.6).

25.4 .6 Exception handling clauses

Exception handling clauses also come in small and fat versions.

The small form of the exception clause should be used whenever the code sizes for the try block and the
handler code are both smaller than 256 bytes and both their offsets are smaller than 65536. The format for a
small exception clause is as follows:

Offset Size Field Description

0 2 Flags Flags, see below.
2 2 TryOffset Offset in bytes of try block from start of method body.
4 1 TryLength Length in bytes of the try block
5 2 HandlerOffset Location of the handler for this try block
7 1 HandlerLength Size of the handler code in bytes
8 4 ClassToken Meta data token for a type-based exception handler
8 4 FilterOffset Offset in method body for filter-based exception handler

The layout of the fat form of exception handling clauses is as follows:

Offset Size Field Description

0 4 Flags Flags, see below.
4 4 TryOffset Offset in bytes of try block from start of method body.
8 4 TryLength Length in bytes of the try block
12 4 HandlerOffset Location of the handler for this try block
16 4 HandlerLength Size of the handler code in bytes
20 4 ClassToken Meta data token for a type-based exception handler
20 4 FilterOffset Offset in method body for filter-based exception handler

The following flag values are used for each exception-handling clause:

Flag Value Description
COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause
COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause
COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause
COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on

exception only)

 Partition II 185

26 Index
! 18

!! 18

& 18

* 18

\n 6

\ooo...6

\t 6

+ 6

abstract..37, 39, 77

accessibility ..23

default ...38

overriding and...46

.addon ...94

address ..64

ansi..37, 39, 83

arglist ..81

array

jagged ...62

multi-dimensional...60

native ..21

rank of...60

single-dimensional..60

.assembly ..4, 9, 11, 14

assembly ...4

assembly ...10

assembly

defining an ..11

assembly

version number ...13

assembly

referencing an ...14

assembly ...77

assembly ...85

.assembly extern ...4, 9, 14

assert ...101

attribute...8

accessibility ..37

custom...102

CLS-defined..104

thread local storage ...105

field...85

field contract ...86

genuine custom...102

inheritance ..39

interoperation..39, 87

pre-defined..36

pseudo custom ..103

special handling ..39

type layout ..38

type semantics...38

visibility..37

auto ...37, 38

autochar ..37, 39, 83

beforefieldinit ...37, 40, 49

BeginInvoke ...67, 69, 70

blob...106

block

catch..98

fault...99

filter ..98

finally..99

handler ..98

protected ...97

bool...18, 21

boxing...56, 90

byte list ...7

bytearray ...87

call ..58, 71, 72

calli ...65

calling convention...72

callvirt...58, 71, 72

.capability ...45

186 Partition II

catch ... 97, 98

.cctor... 48, 73, 79

cdecl ... 83

char... 18

character

escape ...6

cil79, 82

.class... 9, 16, 36, 44

class.. 18

.class extern.. 9, 16

CLS tag .. 108

code

type-safe ... 3

unmanaged ... 82

unverifiable ..3

verifiable ..3

compilercontrolled ... 77, 86

constraint.. 34

constructor

class..48

instance... 48

conv.ovf.u... 65

conv.u... 65

.corflags.. 9, 11

.ctor .. 48, 73, 79, 102

.culture.. 12, 15

.custom 9, 12, 14, 15, 16, 17, 44, 74, 92, 94, 102

.data.. 9, 16, 44, 74, 83, 88

data marshaling .. 82

deadlock ... 49

default .. 72

delegate ..66

creation...67

delegate call

asynchronous.. 69

synchronous ... 68

demand... 101

deny.. 101

directive..9

dottedname ... 6, 46

.emitbyte... 74, 75

endfault... 99

endfinally ... 99

EndInvoke .. 67, 69, 70

.entrypoint .. 4, 14, 74, 75

enum...62

underlying type...62

enumeration...See enum

ERROR tag ..108

.event .. 44, 94

event ...94

event

declaration..94

event

adder...94

event

remover ..94

event

fire ..94

exception handling ...97

explicit.. 37, 38, 72, 85

extends ...36

famandassem.. 77, 85

family ... 77, 85

famorassem .. 77, 85

fastcall .. 83

fault .. 97, 99

.field ... 9, 16, 44, 85

field

global.. 52

field ..85

field

instance...85

field

static ...85

field

 Partition II 187

global ..85

.file..9, 14

file name ...8

filter ..97, 98

final...77

finalizer...48

finally..97, 99

.fire ...94

float32...7, 18, 21, 87

float64...7, 18, 22, 87

forwardref ...79, 82

fromunmanaged..82

generic instance ..28

generic method definition...28

generic parameter ...40

generic type definition ..26

generics...24

.get ..92

GUID..106

handle

opaque...84

handler ..97, 98

.hash..14, 15

.hash algorithm ...12, 14

heap ..106

Blob ..106

Guid ..106

String ..106

UserString...106

hexbyte ...5, 7

hidebysig...77

hiding..23

id 6

ID..6

identifier ...6

keyword as an ...6

ILAsm...2

case sensitivity of..5

syntax..5

implements ...36, 54

[in] ..74

inheritcheck ..101

init...74, 76

initobj..57

initonly..48, 85

instance ...48, 72

instance explicit ..72

instruction

protected ...97

int..22

native ..18

native unsigned ...18

int16..18, 22, 87

unsigned..19

int32..5, 18, 22, 82, 88

unsigned..19

int64..5, 18, 22, 82, 88

unsigned..19

int8..18, 22, 87

unsigned..19

interface ..36, 37, 38, 54

internalcall ..79

InvalidOperationException.......................................64

Invoke...67

isinst..56

label ..7

code ..7, 75

data ...7, 85, 88

list of...7

layout ..51

default ...38

explicit ..51

sequential ..51

ldarga ..64

ldelem ...60

ldelema ...60, 64

188 Partition II

ldflda .. 64

ldftn .. 65, 72

ldind ... 64

ldloca.. 64

ldsflda... 64

ldvirtftn... 65, 72

#line.. 75

.line... 8, 45, 75

linkcheck .. 101

literal .. 86

.locals ...76

.locals ... 74

localsinit flag.. 57

lpstr ..22

lpwstr..22

managed ... 66, 79

manifest..10

manifest resource ...14

marshal ... 21, 73, 86

marshaling..84

.maxstack.. 4, 74

member

special...48

metadata

semantics of.. 2

structure of ... 2

metadata merging ...52

metadata table

Assembly.. 108

AssemblyOS... 109

AssemblyProcessor ..109

AssemblyRef .. 109

AssemblyRefOS... 110

AssemblyRefProcessor....................................... 110

ClassLayout..111

Constant ... 113

CustomAttribute...113

DeclSecurity... 115

Event ..117

EventMap ...117

ExportedType...119

Field ...120

FieldLayout ..122

FieldMarshal ..123

FieldRVA ...124

File ... 124

GenericParam...125

GenericParamConstraint126

ImplMap...127

InterfaceImpl ..128

ManifestResource...128

MemberRef ..129

MethodDef ...130

MethodImpl..133

MethodSemantics ...134

MethodSpec..135

Module ...136

ModuleRef ...136

NestedClass ..137

Param ...137

Property.. 138

PropertyMap...139

StandAloneSig..140

TypeDef ...141

TypeRef..144

TypeSpec..145

.method... 4, 9, 16, 44, 71

method.. 18

method..22

method

virtual ... 45

method

global.. 52

method

static ...71

method

 Partition II 189

instance ...71

method

virtual..72

method

definition...73

method

entry point...75

method

predefined attributes for a.....................................77

method

implementation attributes for a79

method

vararg..81

method

unmanaged..82

Method.......................................See method definition

method body ...74

method declaration ...71

method definition..71

method descriptor ...71

method implementation45, 71

method reference ..71

method transition thunk ..82

MethodDecl .See method implementation, See method
declaration

MethodImpl ..54

MethodRef................................. See method reference

modifier

optional ..See modopt

required..See modreq

modopt..19, 74

modreq..19, 74

.module ...9, 15, 16, 19, 20

module ..10

module

declaring a ..15

module

referencing a ...16

module

manifest ..16

module ..107

<Module> ...52, 121, 131, 133

.module extern ..9, 16

.mresource ..9, 14

mscorlib ..4

namespace...10

native ..79, 83

nested assembly ..37

nested famandassem ...37

nested family ..37

nested famorassem..37

nested private..37

nested public ...37

newarr ...60

newobj ..57, 67

newslot..23, 45, 72, 77

noinlining..79

nometadata..14

notserialized..86

null..53

object ..18

operator

+ 6

[opt] ..74

.other...92, 94

[out] ..74

.override..45, 74

.override method...75

.pack ...45, 51

.param ...74, 75, 76

.param type ...45, 75, 76

.permission..75, 101

.permissionset ...75, 101

permitonly...101

pinned ...19, 20

PInvoke...See platform invoke

190 Partition II

pinvokeimpl ... 77, 83

platform invoke .. 80, 82, 83

platformapi ... 83

pointer ..63

managed ... 63, 65

method..65

unmanaged ... 63, 64

pointer arithmetic ...64

private .. 37, 77, 86

.property ... 45, 92

property ..92

property

declaration.. 92

property

getter...92

property

setter ...92

public.. 37, 77, 86

.publickey... 12, 15

.publickeytoken ..15

QSTRING ..6

race... 49

realnumber ... 5, 7

.removeon... 94

reqopt ... 101

reqrefuse... 101

request .. 101

resolution scope.. 20

rtspecialname 37, 40, 48, 77, 86, 92, 94

runtime ... 66, 79

scope block... 81

sealed.. 37, 39

security

declarative ..101

sequential ... 37, 38

serializable ... 37, 40

serialization .. 40

.set ..92

signature ...155

.size .. 45

specialname.......................... 37, 40, 48, 77, 86, 92, 94

SQSTRING ..6

Standard Public Key...12

static ... 77, 86

static data

initialization of ...90

stdcall ... 83

stelem ... 60

stind.. 64

string .. 18

string literal

concatenation of ...6

.subsystem.. 9, 11

synchronized .. 79

System.ArgIterator ... 81

System.Array.. 60

System.Array.Initialize... 57

System.AsyncCallback....................................... 67, 70

System.Attribute... 102

System.AttributeUsageAttribute 104

System.CLSCompliantAttribute 104

System.Console.. 4

System.Delegate... 66

System.Diagnostics.ConditionalAttribute 105

System.Enum ... 62

System.Enum.ToString .. 113

System.FlagsAttribute .. 105

System.Globalization.CultureInfo............................ 12

System.IAsyncResult ... 67, 70

System.IntPtr.. 67

System.MarshalByRefObject 64

System.MissingMethodException............................ 71

System.Net.DnsPermissionAttribute...................... 104

System.Net.SocketPermissionAttribute 104

System.Net.WebPermissionAttribute..................... 104

System.Object .. 18, 36, 67, 70

 Partition II 191

System.Object.Finalize ...48

System.ObsoleteAttribute.......................................104

System.ParamArrayAttribute..................................105

System.Reflection.AssemblyAlgorithmIDAttribute
..103

System.Reflection.AssemblyFlagsAttribute103

System.Reflection.DefaultMemberAttribute ..103, 105

System.Runtime.CompilerServices.DecimalConstant
Attribute..105

System.Runtime.CompilerServices.FaultModeAttribu
te ...105

System.Runtime.CompilerServices.IndexerNameAttri
bute ...105

System.Runtime.CompilerServices.InitializeArray..91

System.Runtime.CompilerServices.MethodImplAttrib
ute ...103

System.Runtime.InteropServices.DllImportAttribute
..103

System.Runtime.InteropServices.FieldOffsetAttribute
..103

System.Runtime.InteropServices.GCHandle............84

System.Runtime.InteropServices.InAttribute103

System.Runtime.InteropServices.MarshalAsAttribute
..103

System.Runtime.InteropServices.OutAttribute103

System.Runtime.InteropServices.StructLayoutAttribut
e ..103

System.Runtime.Interopservices.UnmanagedType ..21

System.Security.Permissions.CodeAccessSecurityAttr
ibute ..104

System.Security.Permissions.ecurityAttribute........104

System.Security.Permissions.EnvironmentPermission
Attribute..104

System.Security.Permissions.FileIOPermissionAttribu
te ...104

System.Security.Permissions.ReflectionPermissionAtt
ribute...104

System.Security.Permissions.SecurityAttribute9

System.Security.Permissions.SecurityPermissionAttri
bute ...104

System.String..4, 18, 39

System.ThreadStaticAttribute.................................105

System.ValueType..62

table ..106

tail. ..81

terminal...5

thiscall...83

thunk...82

token

foreign...119

regular...119

.try...97

try..97

try block..97

type ...18

abstract..39

base ...36

built-in ..18, 20

closed..28

concrete...47

definition of a..18, 36

instantiated..28

marshalling of a ..21

native data...21

nested..50

open ..28

pointer...63

reference ...18

specification..19

user defined ..18

value ...56

type initializer ...48

type layout ..111

typedref...19

unbox ..58

unboxing ...56

unicode ...37, 39, 83

unmanaged..79, 83

unmanaged cdecl ..73

unmanaged fastcall ...73

192 Partition II

unmanaged stdcall .. 73

unmanaged thiscall... 73

unsigned int ..22

unsigned int16 .. 22

unsigned int32 .. 22

unsigned int64 .. 22

unsigned int8 .. 22

validation.. 3

value type ... 19

vararg ... 72, 74, 81

vector..60

.ver ...13

.ver ... 12

.ver ... 15

verification ... 3

virtual ... 77

visibility ... 23

default...38

void .. 19, 73

.vtfixup ... 9, 82

WARNING tag...108

Common Language Infrastructure (CLI)
Partition III:
CIL Instruction Set

 Partition III i

Table of Contents

1 Introduction 1
1 .1 Data types 1
1.1 .1 Numeric data types 2
1.1 .2 Boolean data type 4
1.1 .3 Object references 4
1.1 .4 Runtime pointer types 4

1.2 Ins truct ion var iant table 6
1.2 .1 Opcode encodings 6

1.3 Stack transit ion diagram 11
1.4 English descr ip t ion 11
1.5 Operand type table 11
1.6 Implic i t argument coercion 14
1.7 Restr ic t ions on CIL code sequences 15
1.7 .1 The instruction s tream 16
1.7 .2 Valid branch targets 16
1.7 .3 Except ion ranges 16
1.7 .4 Must provide maxstack 17
1.7 .5 Backward branch constra ints 17
1.7 .6 Branch ver if icat ion constrain ts 17

1.8 Ver if iabi l i ty and correctness 17
1.8 .1 Flow control res tr ic t ions for ver if iable CIL 18

1.9 Metadata tokens 22
1.10 Except ions thrown 23

2 Pref ixes to instruct ions 24
2 .1 constrained. – (pref ix) invoke a member on a value of a var iable type 25
2.2 no. – (pref ix) possibly skip a faul t check 27
2.3 readonly. (pref ix) – fo llowing instruct ion returns a controlled-mutabi l i ty
managed pointer 28
2.4 ta i l . (pref ix) – cal l terminates current method 29
2.5 unal igned. (pref ix) – pointer instruct ion might be unal igned 30
2.6 volat i le. (pref ix) – pointer reference is volat i le 31

3 Base instructions 32
3 .1 add – add numeric values 33
3.2 add.ovf.<signed> – add in teger values with overf low check 34

ii Partition III

3.3 and – b i twise AND 35
3.4 argl is t – get argument l is t 36
3.5 beq.<length> – branch on equal 37
3.6 bge.<length> – branch on greater than or equal to 38
3.7 bge.un.<length> – branch on greater than or equal to , unsigned or
unordered 39
3.8 bgt.<length> – branch on greater than 40
3.9 bgt.un.<length> – branch on greater than, unsigned or unordered 41
3.10 ble.<length> – branch on less than or equal to 42
3.11 ble.un.<length> – branch on less than or equal to , unsigned or unordered 43
3.12 bl t .< length> – branch on less than 44
3.13 bl t .un.<length> – branch on less than, unsigned or unordered 45
3.14 bne.un<length> – branch on not equal or unordered 46
3.15 br.< length> – uncondit ional branch 47
3.16 break – breakpoint instruct ion 48
3.17 brfa lse.<length> – branch on fa lse , nul l , or zero 49
3.18 brtrue.<length> – branch on non-false or non-nul l 50
3.19 cal l – cal l a method 51
3.20 cal l i – indirect method cal l 53
3.21 ceq – compare equal 54
3.22 cgt – compare greater than 55
3.23 cgt.un – compare greater than, unsigned or unordered 56
3.24 ckf in i te – check for a f in i te real number 57
3.25 cl t – compare less than 58
3.26 cl t .un – compare less than, unsigned or unordered 59
3.27 conv.<to type> – data convers ion 60
3.28 conv.ovf .<to type> – data conversion with overf low detection 61
3.29 conv.ovf.<to type>.un – unsigned data conversion with overf low
detect ion 62
3.30 cpblk – copy data from memory to memory 63
3.31 div – d ivide values 64
3.32 div.un – d ivide in teger values, unsigned 65
3.33 dup – dupl icate the top value of the s tack 66
3.34 endf i l ter – end except ion handl ing f i l ter c lause 67
3.35 endf inal ly – end the f inal ly or faul t c lause of an except ion block 68
3.36 in i tb lk – in i t ia l ize a b lock of memory to a value 69
3.37 jmp – jump to method 70
3.38 ldarg.<length> – load argument onto the s tack 71
3.39 ldarga.<length> – load an argument address 72

 Partition III iii

3.40 ldc.<type> – load numeric constant 73
3.41 ld f tn – load method pointer 74
3.42 ld ind.<type> – load value indirect onto the s tack 75
3.43 ld loc – load local var iable onto the s tack 77
3.44 ld loca.<length> – load local var iable address 78
3.45 ldnul l – load a nul l pointer 79
3.46 leave.<length> – exi t a protected region of code 80
3.47 local loc – a l locate space in the local dynamic memory pool 81
3.48 mul – mult ip ly values 82
3.49 mul.ovf .<type> – mult ip ly in teger values with overf low check 83
3.50 neg – negate 84
3.51 nop – no operat ion 85
3.52 not – b i twise complement 86
3.53 or – b i twise OR 87
3.54 pop – remove the top element of the s tack 88
3.55 rem – compute remainder 89
3.56 rem.un – compute in teger remainder , unsigned 90
3.57 ret – re turn from method 91
3.58 shl – shif t in teger lef t 92
3.59 shr – shif t in teger r ight 93
3.60 shr.un – shif t in teger r ight , unsigned 94
3.61 starg.<length> – s tore a value in an argument s lot 95
3.62 st ind.<type> – s tore value indirect f rom s tack 96
3.63 st loc – pop value from stack to local var iable 97
3.64 sub – subtract numeric values 98
3.65 sub.ovf .<type> – subtract in teger values, checking for overf low 99
3.66 switch – table switch based on value 100
3.67 xor – b i twise XOR 101

4 Object model instruct ions 102
4 .1 box – conver t a boxable value to i ts boxed form 103
4.2 cal lvi r t – cal l a method associated, a t runt ime, with an object 104
4.3 castc lass – cast an object to a c lass 105
4.4 cpobj – copy a value from one address to another 106
4.5 in i tobj – in i t ia l ize the value a t an address 107
4.6 is inst – tes t i f an object is an instance of a c lass or in terface 108
4.7 ldelem – load element f rom array 109
4.8 ldelem.<type> – load an element of an array 110

iv Partition III

4.9 ldelema – load address of an element of an array 112
4.10 ld f ld – load f ield of an object 113
4.11 ldf lda – load f ie ld address 114
4.12 ld len – load the length of an array 115
4.13 ldobj – copy a value from an address to the s tack 116
4.14 ldsf ld – load s ta t ic f ie ld of a c lass 117
4.15 ldsf lda – load s tat ic f ie ld address 118
4.16 ldstr – load a l i teral s t r ing 119
4.17 ld token – load the runtime representat ion of a metadata token 120
4.18 ldv i r t f tn – load a v ir tual method pointer 121
4.19 mkrefany – push a typed reference on the s tack 122
4.20 newarr – create a zero-based, one-dimensional array 123
4.21 newobj – create a new object 124
4.22 refanytype – load the type out of a typed reference 125
4.23 refanyval – load the address out of a typed reference 126
4.24 rethrow – rethrow the current except ion 127
4.25 sizeof – load the s ize, in bytes ,of a type 128
4.26 stelem – s tore e lement to ar ray 129
4.27 stelem.<type> – s tore an element of an array 130
4.28 stf ld – s tore in to a f ie ld of an object 131
4.29 stobj – s tore a value at an address 132
4.30 stsf ld – s tore a s ta t ic f ie ld of a c lass 133
4.31 throw – throw an exception 134
4.32 unbox – conver t boxed value type to i ts raw form 135
4.33 unbox.any – conver t boxed type to value 136

5 Index 137

 Partition III 1

1 Introduction
This partition is a detailed description of the Common Intermediate Language (CIL) instruction set, part of the
specification of the CLI. Partition I describes the architecture of the CLI and provides an overview of a large
number of issues relating to the CIL instruction set. That overview is essential to an understanding of the
instruction set as described here.

In this partition, each instruction is described in its own subclause, one per page. Related CLI machine instructions
are described together. Each instruction description consists of the following parts:

• A table describing the binary format, assembly language notation, and description of each variant of
the instruction. See §1.2.

• A stack transition diagram, that describes the state of the evaluation stack before and after the
instruction is executed. (See §1.3.)

• An English description of the instruction. See §1.4.

• A list of exceptions that might be thrown by the instruction. (See Partition I for details.) There are
three exceptions which can be thrown by any instruction and are not listed with the instruction:

System.ExecutionEngineException: indicates that the internal state of the Execution Engine is
corrupted and execution cannot continue. [Note: in a system that executes only verifiable code this exception
is not thrown. end note]

System.StackOverflowException: indicates that the hardware stack size has been exceeded. The
precise timing of this exception and the conditions under which it occurs are implementation-specific. [Note:
this exception is unrelated to the maximum stack size described in §1.7.4. That size relates to the depth of the
evaluation stack that is part of the method state described in Partition I, while this exception has to do with
the implementation of that method state on physical hardware.]

System.OutOfMemoryException: indicates that the available memory space has been exhausted,
either because the instruction inherently allocates memory (newobj, newarr) or for an implementation-
specific reason (e.g., an implementation based on JIT compilation to native code can run out of space to store
the translated method while executing the first call or callvirt to a given method).

• A section describing the verifiability conditions associated with the instruction. See §1.8.

In addition, operations that have a numeric operand also specify an operand type table that describes how they
operate based on the type of the operand. See §1.5.

Note that not all instructions are included in all CLI Profiles. See Partition IV for details.

1.1 Data types
While the CTS defines a rich type system and the CLS specifies a subset that can be used for language
interoperability, the CLI itself deals with a much simpler set of types. These types include user-defined value types
and a subset of the built-in types. The subset, collectively known as the “basic CLI types”, contains the following
types:

• A subset of the full numeric types (int32, int64, native int, and F).

• Object references (O) without distinction between the type of object referenced.

• Pointer types (native unsigned int and &) without distinction as to the type pointed to.

Note that object references and pointer types can be assigned the value null. This is defined throughout the CLI to
be zero (a bit pattern of all-bits-zero).

2 Partition III

[Note: As far as VES operations on the evaluation stack are concerned, there is only one floating-point type, and the
VES does not care about its size. The VES makes the distinction about the size of numerical values only when
storing these values to, or reading from, the heap, statics, local variables, or method arguments. end note]

1.1 .1 Numeric data types

• The CLI only operates on the numeric types int32 (4-byte signed integers), int64 (8-byte signed
integers), native int (native-size integers), and F (native-size floating-point numbers). However,
the CIL instruction set allows additional data types to be implemented:

• Short integers: The evaluation stack only holds 4- or 8-byte integers, but other locations (arguments,
local variables, statics, array elements, fields) can hold 1- or 2-byte integers. Loading from these
locations onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-extends (ldind.i*,
ldelem.i*, etc.) to a 4-byte value. Storing to integers (stind.i1, stelem.i2, etc.) truncates. Use the
conv.ovf.* instructions to detect when this truncation results in a value that doesn’t correctly
represent the original value.

[Note: Short integers are loaded as 4-byte numbers on all architectures and these 4-byte numbers are always
tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that the default arithmetic
behavior (i.e., when no conv or conv.ovf instruction is executed) will have identical results on all
implementations. end note]

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it
is guaranteed that only the low bits have meaning (i.e., the more significant bits are all zero for the unsigned
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer
operations a conversion to the short form is required before the div, rem, shr, comparison and conditional
branch instructions.

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in
a special way:

1. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer
type automatically truncates to the size specified for the local or argument.

2. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a short signed
integer type automatically sign extends.

3. Calling a procedure with an argument that is a short integer type is equivalent to assignment to
the argument value, so it truncates.

4. Returning a value from a method whose return type is a short integer is modeled as storing into
a short integer within the called procedure (i.e., the CLI automatically truncates) and then
loading from a short integer within the calling procedure (i.e., the CLI automatically zero- or
sign-extends).

In the last two cases it is up to the native calling convention to determine whether values are actually
truncated or extended, as well as whether this is done in the called procedure or the calling procedure. The
CIL instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv
instruction.

• 4-byte integers: The shortest value actually stored on the stack is a 4-byte integer. These can be
converted to 8-byte integers or native-size integers using conv.* instructions. Native-size integers can
be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i4 and
conv.u4 can be used for this conversion if the excess significant bits should be ignored; the
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information. Arithmetic
operations allow 4-byte integers to be combined with native size integers, resulting in native size
integers. 4-byte integers cannot be directly combined with 8-byte integers (they shall be converted to
8-byte integers first).

 Partition III 3

• Native-size integers: Native-size integers can be combined with 4-byte integers using any of the
normal arithmetic instructions, and the result will be a native-size integer. Native-size integers shall
be explicitly converted to 8-byte integers before they can be combined with 8-byte integers.

• 8-byte integers: Supporting 8-byte integers on 32-bit hardware can be expensive, whereas 32-bit
arithmetic is available and efficient on current 64-bit hardware. For this reason, numeric instructions
allow int32 and I data types to be intermixed (yielding the largest type used as input), but these
types cannot be combined with int64s. Instead, a native int or int32 shall be explicitly
converted to int64 before it can be combined with an int64.

• Unsigned integers: Special instructions are used to interpret integers on the stack as though they
were unsigned, rather than tagging the stack locations as being unsigned.

• Floating-point numbers: See also Partition I, Handling of Floating Point Datatypes. Storage
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size.
The supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack,
as arguments, as return types, and as local variables) floating-point numbers are represented using an
internal floating-point type. In each such instance, the nominal type of the variable or expression is
either float32 or float64, but its value might be represented internally with additional range
and/or precision. The size of the internal floating-point representation is implementation-dependent,
might vary, and shall have precision at least as great as that of the variable or expression being
represented. An implicit widening conversion to the internal representation from float32 or
float64 is performed when those types are loaded from storage. The internal representation is
typically the natural size for the hardware, or as required for efficient implementation of an operation.
The internal representation shall have the following characteristics:

o The internal representation shall have precision and range greater than or equal to the nominal
type.

o Conversions to and from the internal representation shall preserve value. [Note: This implies
that an implicit widening conversion from float32 (or float64) to the internal
representation, followed by an explicit conversion from the internal representation to float32
(or float64), will result in a value that is identical to the original float32 (or float64)
value.]

 [Note: The above specification allows a compliant implementation to avoid rounding to the precision of the
target type on intermediate computations, and thus permits the use of wider precision hardware registers, as
well as the application of optimizing transformations (such as contractions), which result in the same or
greater precision. Where exactly reproducible behavior precision is required by a language or application
(e.g., the Kahan Summation Formula), explicit conversions can be used. Reproducible precision does not
guarantee reproducible behavior, however. Implementations with extra precision might round twice: once for
the floating-point operation, and once for the explicit conversion. Implementations without extra precision
effectively round only once. In rare cases, rounding twice versus rounding once can yield results differing by
one unit of least precision. end note]

When a floating-point value whose internal representation has greater range and/or precision than its nominal
type is put in a storage location, it is automatically coerced to the type of the storage location. This might
involve a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However,
the value might be retained in the internal representation for future use, if it is reloaded from the storage
location without having been modified. It is the responsibility of the compiler to ensure that the memory
location is still valid at the time of a subsequent load, taking into account the effects of aliasing and other
execution threads (see memory model section). This freedom to carry extra precision is not permitted,
however, following the execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal
representation shall be exactly representable in the associated type.

4 Partition III

[Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction
(conv.r4, or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when
converting to a particular storage type, a comparison to zero is required before and after the conversion. end
note]

[Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point
numbers, nor does it specify when or whether such representations should be created. This is in keeping with
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this
behavior is deliberately left implementation-specific. end note]

1.1 .2 Boolean data type

A CLI Boolean type occupies 1 byte in memory. A bit pattern of all zeroes denotes a value of false. A bit pattern
with any one or more bits set (analogous to a non-zero integer) denotes a value of true.

1.1 .3 Object references

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object references
as operands, and the only comparison operations permitted are equality and inequality between two object
references. There are no conversion operations defined on object references. Object references are created by
certain CIL object instructions (notably newobj and newarr). Object references can be passed as arguments, stored
as local variables, returned as values, and stored in arrays and as fields of objects.

1.1 .4 Runtime pointer types

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or
object (see Partition I), the following arithmetic operations are defined:

• Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a
pointer of the same kind.

• Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. (Note
that subtracting a pointer from an integer is not permitted.)

• Two pointers, regardless of kind, can be subtracted one from the other, producing a signed integer
that specifies the number of bytes between the addresses they reference.

None of these operations is allowed in verifiable code.

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of
pointers. Since unmanaged pointers shall never reference memory that is controlled by the garbage collector,
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable), but since
they are not reported to the garbage collector there is no impact on its operation.

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the contents of
the location to which they point and the pointer itself can be modified. The garbage collector will ignore managed
pointers if they point into memory that is not under its control (the evaluation stack, the call stack, static memory,
or memory under the control of another allocator). If, however, a managed pointer refers to memory controlled by
the garbage collector it shall point to either a field of an object, an element of an array, or the address of the element
just past the end of an array. If address arithmetic is used to create a managed pointer that refers to any other
location (an object header or a gap in the allocated memory) the garbage collector’s behavior is unspecified.

1.1 .4.1 Unmanaged pointers

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on their
use, although for the most part they result in code that cannot be verified. While it is perfectly valid to mark
locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how they are

 Partition III 5

treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data. This is done by
using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an argument or by using a pointer
type for a field or array element.

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be
used.

• Unmanaged pointers should be treated as unsigned (i.e., using conv.ovf.u rather than conv.ovf.i,
etc.).

• Verifiable code cannot use unmanaged pointers to reference memory.

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This is
safe only if one of the following is true:

a. The unmanaged pointer refers to memory that is not in memory managed by the garbage
collector.

b. The unmanaged pointer refers to a field within an object.

c. The unmanaged pointer refers to an element within an array.

d. The unmanaged pointer refers to the location where the element following the last element in an
array would be located.

1.1 .4.2 Managed pointers (type &)

Managed pointers (&) can point to a local variable, a method argument, a field of an object, a field of a value type,
an element of an array, a static field, or the address where an element just past the end of an array would be stored
(for pointer indexes into managed arrays). Managed pointers cannot be null. (They shall be reported to the
garbage collector, even if they do not point to managed memory)

Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return value, local variable
or an argument or by using a byref type for a field or array element.

• Managed pointers can be passed as arguments and stored in local variables.

• If you pass a parameter by reference, the corresponding argument is a managed pointer.

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value
types.

• Managed pointers are not interchangeable with object references.

• A managed pointer cannot point to another managed pointer, but it can point to an object reference or
a value type.

• Managed pointers that do not point to managed memory can be converted (using conv.u or
conv.ovf.u) into unmanaged pointers, but this is not verifiable.

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can seriously
compromise the integrity of the CLI. This conversion is safe if any of the following is known to be
true:

a. the managed pointer does not point into the garbage collector’s memory area

b. the memory referred to has been pinned for the entire time that the unmanaged pointer is in use

c. a garbage collection cannot occur while the unmanaged pointer is in use

d. the garbage collector for the given implementation of the CLI is known to not move the
referenced memory

6 Partition III

1.2 Instruction variant table
In §3 an Instruction Variant Table is presented for each instruction. It describes each variant of the instructions. The
format column of the table lists the opcode for the instruction variant, along with any operands that follow the
instruction in the instruction stream. For example:

Format Assembly Format Description

FE 0A <unsigned int16> ldarga argNum Fetch the address of argument argNum.

0F <unsigned int8> ldarga.s argNum Fetch the address of argument argNum, short form.

The first one or two hex numbers in the format show how this instruction is encoded (its “opcode”). For example,
the ldarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type names
delimited by < and > represent numbers that should follow in the instruction stream; for example, a 2-byte quantity
that is to be treated as an unsigned integer directly follows the FE 0A opcode. [Example: One of the forms of the
ldc.<type> instruction is ldc.r8 num, which has a Format “23 <float64>”. For the instruction ldc.r8
3.1415926535897931, the resulting code is 23 182D4454FB210940, where 182D4454FB210940 is the 8-byte hex
representation for 3.1415926535897931.

Similarly, another of the forms of the ldc.<type> instruction is ldc.i4.s num, which a Format of “1F <int8>”. For
the instruction ldc.i4.s -3, the resulting code is 1F FD, where FD is the 1-byte hex representation for -3. end
example]

Any of the fixed-size built-in types (int8, unsigned int8, int16, unsigned int16, int32,
unsigned int32, int64, unsigned in64, float32, and float64) can appear in format descriptions.
These types define the number of bytes for the operand and how it should be interpreted (signed, unsigned or
floating-point). In addition, a metadata token can appear, indicated as <T>. Tokens are encoded as 4-byte integers.
All operand numbers are encoded least-significant-byte-at-smallest-address (a pattern commonly termed “little-
endian”). Bytes for instruction opcodes and operands are packed as tightly as possible (no alignment padding is
done).

The assembly format column defines an assembly code mnemonic for each instruction variant. For those
instructions having instruction stream operands, this column also assigns names to each of the operands to the
instruction. For each instruction operand, there is a name in the assembly format. These names are used later in the
instruction description.

1.2 .1 Opcode encodings

CIL opcodes are one or more bytes long; they can be followed by zero or more operand bytes. All opcodes whose
first byte lies in the ranges 0x00 through 0xEF, or 0xFC through 0xFF are reserved for standardization. Opcodes
whose first byte lies in the range 0xF0 through 0xFB inclusive, are available for experimental purposes. The use of
experimental opcodes in any method renders the method invalid and hence unverifiable.

The currently defined encodings are specified in Table 1: Opcode Encodings.

 Partition III 7

Table 1: Opcode Encodings

Opcode Instruction

0x00 nop

0x01 break

0x02 ldarg.0

0x03 ldarg.1

0x04 ldarg.2

0x05 ldarg.3

0x06 ldloc.0

0x07 ldloc.1

0x08 ldloc.2

0x09 ldloc.3

0x0A stloc.0

0x0B stloc.1

0x0C stloc.2

0x0D stloc.3

0x0E ldarg.s

0x0F ldarga.s

0x10 starg.s

0x11 ldloc.s

0x12 ldloca.s

0x13 stloc.s

0x14 ldnull

0x15 ldc.i4.m1

0x16 ldc.i4.0

0x17 ldc.i4.1

0x18 ldc.i4.2

0x19 ldc.i4.3

0x1A ldc.i4.4

0x1B ldc.i4.5

0x1C ldc.i4.6

0x1D ldc.i4.7

0x1E ldc.i4.8

Opcode Instruction

0x1F ldc.i4.s

0x20 ldc.i4

0x21 ldc.i8

0x22 ldc.r4

0x23 ldc.r8

0x25 dup

0x26 pop

0x27 jmp

0x28 call

0x29 calli

0x2A ret

0x2B br.s

0x2C brfalse.s

0x2D brtrue.s

0x2E beq.s

0x2F bge.s

0x30 bgt.s

0x31 ble.s

0x32 blt.s

0x33 bne.un.s

0x34 bge.un.s

0x35 bgt.un.s

0x36 ble.un.s

0x37 blt.un.s

0x38 br

0x39 brfalse

0x3A brtrue

0x3B beq

0x3C bge

0x3D bgt

0x3E ble

0x3F blt

0x40 bne.un

8 Partition III

Opcode Instruction

0x41 bge.un

0x42 bgt.un

0x43 ble.un

0x44 blt.un

0x45 switch

0x46 ldind.i1

0x47 ldind.u1

0x48 ldind.i2

0x49 ldind.u2

0x4A ldind.i4

0x4B ldind.u4

0x4C ldind.i8

0x4D ldind.i

0x4E ldind.r4

0x4F ldind.r8

0x50 ldind.ref

0x51 stind.ref

0x52 stind.i1

0x53 stind.i2

0x54 stind.i4

0x55 stind.i8

0x56 stind.r4

0x57 stind.r8

0x58 add

0x59 sub

0x5A mul

0x5B div

0x5C div.un

0x5D rem

0x5E rem.un

0x5F and

0x60 or

0x61 xor

Opcode Instruction

0x62 shl

0x63 shr

0x64 shr.un

0x65 neg

0x66 not

0x67 conv.i1

0x68 conv.i2

0x69 conv.i4

0x6A conv.i8

0x6B conv.r4

0x6C conv.r8

0x6D conv.u4

0x6E conv.u8

0x6F callvirt

0x70 cpobj

0x71 ldobj

0x72 ldstr

0x73 newobj

0x74 castclass

0x75 isinst

0x76 conv.r.un

0x79 unbox

0x7A throw

0x7B ldfld

0x7C ldflda

0x7D stfld

0x7E ldsfld

0x7F ldsflda

0x80 stsfld

0x81 stobj

0x82 conv.ovf.i1.un

0x83 conv.ovf.i2.un

0x84 conv.ovf.i4.un

 Partition III 9

Opcode Instruction

0x85 conv.ovf.i8.un

0x86 conv.ovf.u1.un

0x87 conv.ovf.u2.un

0x88 conv.ovf.u4.un

0x89 conv.ovf.u8.un

0x8A conv.ovf.i.un

0x8B conv.ovf.u.un

0x8C box

0x8D newarr

0x8E ldlen

0x8F ldelema

0x90 ldelem.i1

0x91 ldelem.u1

0x92 ldelem.i2

0x93 ldelem.u2

0x94 ldelem.i4

0x95 ldelem.u4

0x96 ldelem.i8

0x97 ldelem.i

0x98 ldelem.r4

0x99 ldelem.r8

0x9A ldelem.ref

0x9B stelem.i

0x9C stelem.i1

0x9D stelem.i2

0x9E stelem.i4

0x9F stelem.i8

0xA0 stelem.r4

0xA1 stelem.r8

0xA2 stelem.ref

0xA3 ldelem

0xA4 stelem

0xA5 unbox.any

Opcode Instruction

0xB3 conv.ovf.i1

0xB4 conv.ovf.u1

0xB5 conv.ovf.i2

0xB6 conv.ovf.u2

0xB7 conv.ovf.i4

0xB8 conv.ovf.u4

0xB9 conv.ovf.i8

0xBA conv.ovf.u8

0xC2 refanyval

0xC3 ckfinite

0xC6 mkrefany

0xD0 ldtoken

0xD1 conv.u2

0xD2 conv.u1

0xD3 conv.i

0xD4 conv.ovf.i

0xD5 conv.ovf.u

0xD6 add.ovf

0xD7 add.ovf.un

0xD8 mul.ovf

0xD9 mul.ovf.un

0xDA sub.ovf

0xDB sub.ovf.un

0xDC endfinally

0xDD leave

0xDE leave.s

0xDF stind.i

0xE0 conv.u

0xFE 0x00 arglist

0xFE 0x01 ceq

0xFE 0x02 cgt

0xFE 0x03 cgt.un

0xFE 0x04 clt

10 Partition III

Opcode Instruction

0xFE 0x05 clt.un

0xFE 0x06 ldftn

0xFE 0x07 ldvirtftn

0xFE 0x09 ldarg

0xFE 0x0A ldarga

0xFE 0x0B starg

0xFE 0x0C ldloc

0xFE 0x0D ldloca

0xFE 0x0E stloc

0xFE 0x0F localloc

0xFE 0x11 endfilter

0xFE 0x12 unaligned.

0xFE 0x13 volatile.

0xFE 0x14 tail.

0xFE 0x15 initobj

0xFE 0x17 cpblk

0xFE 0x18 initblk

0xFE 0x1A rethrow

0xFE 0x1C sizeof

0xFE 0x1D refanytype

 Partition III 11

1.3 Stack transit ion diagram
The stack transition diagram displays the state of the evaluation stack before and after the instruction is
executed. Below is a typical stack transition diagram.

…, value1, value2 …, result

This diagram indicates that the stack shall have at least two elements on it, and in the definition the topmost
value (“top-of-stack” or “most-recently-pushed”) will be called value2 and the value underneath (pushed prior
to value2) will be called value1. (In diagrams like this, the stack grows to the right, across the page). The
instruction removes these values from the stack and replaces them by another value, called result in the
description.

1.4 English description
The English description describes any details about the instructions that are not immediately apparent once the
format and stack transition have been described.

1.5 Operand type table
Many CIL operations take numeric operands on the stack. These operations fall into several categories,
depending on how they deal with the types of the operands. The following tables summarize the valid kinds of
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are:
int32, int64, native int, F, O, and &.

A op B (used for add, div, mul, rem, and sub). The table below shows the result type, for each possible
combination of operand types. Boxes holding simply a result type, apply to all five instructions. Boxes
marked indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable.
Boxes with a list of instructions are valid only for those instructions.

Table 2: Binary Numeric Operations

B's Type A's Type

int32 int64 native
int

F & O

int32 int32 native
int

 & (add)

int64 int64

native
int

native
int

 native
int

 & (add)

F F

& & (add,
sub)

 & (add,
sub)

 native
int (sub)

O

Used for the neg instruction. Boxes marked indicate an invalid CIL instruction. All valid uses of this
instruction are verifiable.

Table 3: Unary Numeric Operations

Operand
Type

int32 int64 native
int

F & O

Result
Type

int32 int64 native
int

F

12 Partition III

These return a Boolean value or branch based on the top two values on the stack. Used for beq, beq.s, bge,
bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un, blt.un.s,
bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked indicate that all instructions are valid for that
combination of operand types. Boxes marked indicate invalid CIL sequences. Shaded boxes boxes indicate a
CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those instructions.

Table 4: Binary Comparison or Branch Operations

 int32 int64 native
int

F & O

int32

int64

native
int

 beq[.s],
bne.un[.s],
ceq

F

& beq[.s],
bne.un[.s],
ceq

 1

O beq[.s],
bne.un[.s]
ceq2

1. Except for beq, bne.un (or short versions), or ceq these combinations make sense if both
operands are known to be pointers to elements of the same array. However, there is no security
issue for a CLI that does not check this constraint

[Note: if the two operands are not pointers into the same array, then the result is simply the distance apart
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful
end note]

2. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an
ObjectRef with null (there is no “compare-not-equal” instruction, which would otherwise be a
more obvious solution)

These operate only on integer types. Used for and, div.un, not, or, rem.un, xor. The div.un and rem.un
instructions treat their operands as unsigned integers and produce the bit pattern corresponding to the unsigned
result. As described in the CLI standard, however, the CLI makes no distinction between signed and unsigned
integers on the stack. The not instruction is unary and returns the same type as the input. The shl and shr
instructions return the same type as their first operand, and their second operand shall be of type int32 or
native int. Boxes marked indicate invalid CIL sequences. All other boxes denote verifiable
combinations of operands.

Table 5: Integer Operations

 int32 int64 native
int

F & O

int32 int32 native
int

int64 int64

native
int

native
int

 native
int

 Partition III 13

F

&

O

Below are the valid combinations of operands and result for the shift instructions: shl, shr, shr.un. Boxes
marked indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the
“Shift-By” operand is larger than the width of the “To-Be-Shifted” operand, then the results are unspecified.
(e.g., shift an int32 integer left by 37 bits)

Table 6: Shift Operations

Shift-By

int32 int6
4

native
int

F & O

int32 int32 int32

int64 int64 int64

native
int

native
int

 native
int

F

&

To Be
Shifted

O

These operations generate an exception if the result cannot be represented in the target data type. Used for
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, and sub.ovf.un The shaded uses are not verifiable, while
boxes marked indicate invalid CIL sequences.

Table 7: Overflow Arithmetic Operations

 int32 int6
4

native int F & O

int32 int32 native int & add.ovf.un

int64 int6
4

native
int

native int native int & add.ovf.un

F

& &
add.ovf.un,
sub.ovf.un

 &
add.ovf.un,
sub.ovf.un

 native int
sub.ovf.un

O

These operations convert the top item on the evaluation stack from one numeric type to another. The result type
is guaranteed to be representable as the data type specified as part of the operation (i.e., the conv.u2 instruction
returns a value that can be stored in an unsigned int16). The stack, however, can only store values that
are a minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un
instructions. The shaded uses are not verifiable, while boxes marked indicate invalid CIL sequences.

Table 8: Conversion Operations

Convert-To Input (from evaluation stack)

14 Partition III

int32 int64 native
int

F & O

int8
unsigned
int8
int16
unsigned
int16

Truncate1 Truncate1 Truncate1 Truncate to
zero2

int32
unsigned
int32

Nop Truncate1 Truncate1 Truncate to
zero2

int64 Sign extend Nop Sign extend Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

unsigned
int64

Zero extend Nop Zero extend Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

native int Sign extend Truncate1 Nop Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

native
unsigned int

Zero extend Truncate1 Nop Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

All Float Types To Float To Float To Float Change
precision3

3. 1 “Truncate” means that the number is truncated to the desired size (i.e., the most significant bytes

of the input value are simply ignored). If the result is narrower than the minimum stack width of
4 bytes, then this result is zero extended (if the target type is unsigned) or sign-extended (if the target
type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an 8-bit datum
yields the result 0xCD; if the target type were int8, this is sign-extended to give 0xFFFF FFCD; if,
instead, the target type were unsigned int8, this is zero-extended to give 0x0000 00CD.

4. 2 “Truncate to zero” means that the floating-point number will be converted to an integer by
truncation toward zero. Thus 1.1 is converted to 1, and –1.1 is converted to –1.

5. 3 Converts from the current precision available on the evaluation stack to the precision specified
by the instruction. If the stack has more precision than the output size the conversion is performed
using the IEC 60559:1989 “round-to-nearest” mode to compute the low order bit of the result.

6. 4 “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported
to subsequent garbage-collection operations (and therefore will not be updated by such operations).

7. Rounding mode for integer to and from F conversions is the same as for arithmetic.

1.6 Implicit argument coercion
While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a
much richer model for parameters of methods. When about to call a method, the CLI performs implicit type
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the
CIL stream, which might result in an information loss through truncation or rounding) This implicit conversion
occurs for boxes marked . Shaded boxes are not verifiable. Boxes marked indicate invalid CIL sequences.
(A compiler is, of course, free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired effect.)

Table 9: Signature Matching

Stack Parameter Type In
Signature int32 native

int
int64 F & O

 Partition III 15

int8

unsigned
int8,
bool

int16

unsigned
int16,
char

int32

unsigned
int32

int64

unsigned
int64

native
int

 Sign
extend

native
unsigned
int

 Zero
extend

 Zero
extend

float32 Note4

float64 Note4

Class

Value Type
(Note2)

Note1 Note1 Note1 Note1

By-Ref
(&)

 Start GC
tracking

Ref Any
(Note3)

8. 1 Passing a built-in type to a parameter that is required to be a value type is not allowed.

9. 2 The CLI’s stack can contain a value type. These can only be passed if the particular value type
on the stack exactly matches the class required by the corresponding parameter.

10. 3 There are special instructions to construct and pass a Ref Any.

11. 4 The CLI is permitted to pass floating point arguments using its internal F type, see §1.1.1. CIL
generators can, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction.

Further notes concerning this table:

• On a 32-bit machine passing a native int argument to an unsigned int32 parameter
involves no conversion. On a 64-bit machine it is implicitly converted.

• “Start GC Tracking” means that, following the implicit conversion, the item’s value will be
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the
item pointed-to being relocated in the heap.

1.7 Restrictions on CIL code sequences
As well as detailed restrictions on CIL code sequences to ensure:

• Valid CIL

16 Partition III

• Verifiable CIL

There are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code
compiler. This subclause specifies the general restrictions that apply in addition to this listed for individual
instructions.

1.7 .1 The instruct ion stream

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified
below. The address of the instruction block for a method as well as its length is specified in the file format (see
Partition II, CIL Physical Layout). The first instruction is at the first byte (lowest address) of the instruction
block.

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment
and byte-order insensitive.

Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the
block’s length) to end without forming a complete last instruction.

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction
prefix.

[Note: Until the end of the instruction block, the instruction following any control transfer instruction is
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a
branch. Only instructions can appear in the instruction stream, even if unreachable. There are no address-
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain
instructions allow embedding of immediate data as part of the instruction; however that differs from allowing
raw data embedded directly in the instruction stream. Unreachable code can appear as the result of machine-
generated code and is allowed, but it shall always be in the form of properly formed instruction sequences.

The instruction stream can be translated and the associated instruction block discarded prior to execution of the
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream. end note]

1.7 .2 Valid branch targets

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions,
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler
targets.

Branch instructions specify branch targets as either a 1-byte or 4-byte signed relative offset; the size of the
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following
instruction.]

The value of a 1-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a 4-
byte offset is can be computed by concatenating the bytes into a signed integer in the following manner: the
byte of lowest address forms the least significant byte, and the byte with highest address forms the most
significant byte of the integer. [Note: This representation is often called “a signed integer in little-endian byte-
order”.]

1.7 .3 Exception ranges

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid
branch target as specified in §1.7.2. It is invalid for a protected block, filter clause, or handler to end without
forming a complete last instruction.

 Partition III 17

1.7 .4 Must provide maxstack

Every method specifies a maximum number of items that can be pushed onto the CIL evaluation stack. The
value is stored in the IMAGE_COR_ILMETHOD structure that precedes the CIL body of each method. A
method that specifies a maximum number of items less than the amount required by a static analysis of the
method (using a traditional control flow graph without analysis of the data) is invalid (hence also unverifiable)
and need not be supported by a conforming implementation of the CLI.

[Note: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify
the maximum size in bytes of a stack frame, but rather the number of items that shall be tracked by an analysis
tool. end note]

[Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be
pushed on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-
native-code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating
internal data structures that model the stack and/or verification algorithm. end rationale]

1.7 .5 Backward branch constraints

It shall be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the
exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each
item on the evaluation stack).

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that
the evaluation stack at X be empty.

Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a
non-empty evaluation stack

[Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single,
forward-pass analysis of the instruction stream. end rationale]

[Note: the stack state at location X in the above can be inferred by various means: from a previous forward
branch to X; because X marks the start of an exception handler, etc. end note]

See the following for further information:

• Exceptions: Partition I

• Verification conditions for branch instructions: §3

• The tail. prefix: §3.19

1.7 .6 Branch verif icat ion constraints

The target of all branch instruction shall be a valid branch target (see§1.7.2) within the method holding that
branch instruction.

1.8 Verifiabil ity and correctness
Memory safety is a property that ensures programs running in the same address space are correctly isolated
from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs
that are not verifiable are still memory safe.

Correct CIL is CIL that executes on all conforming implementations of the CLI, with well-defined behavior as
specified in this standard. However, correct CIL need not result in identical behavior across conforming
implementations; that is, the behavior might be implementation-specific.

18 Partition III

It is perfectly acceptable to generate correct CIL code that is not verifiable, but which is known to be memory
safe by the compiler writer. Thus, correct CIL might not be verifiable, even though the producing compiler
might know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the
pointer arithmetic versions of add that are required for the faithful and efficient compilation of C programs.
For non-verifiable code, memory safety is the responsibility of the application programmer.

Correct CIL contains a verifiable subset. The Verifiability description gives details of the conditions under
which a use of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in
much finer detail than is required for the basic functioning of the CLI, because it is checking that a CIL code
sequence respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also
the typing rules of the CTS. This helps to guarantee the sound operation of the entire CLI.

The verifiability section of each operation description specifies requirements both for correct CIL generation
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack
correspond to the types shown in the stack transition diagram. The verifiability section specifies only
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the
requirements for correct CIL generation and the specific verification conditions that are described with the
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified.
The operation of CIL sequences that meet the correctness requirements, but which are not verifiable, might
violate type safety and hence might violate security or memory access constraints.

1.8 .1 Flow control restrict ions for verif iable CIL

This subclause specifies a verification algorithm that, combined with information on individual CIL
instructions (see §3) and metadata validation (see Partition II), guarantees memory integrity.

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly
on all compliant implementations of the CLI.

The CLI provides a security permission (see Partition IV) that controls whether or not the CLI shall run
programs that might violate memory safety. Any program that is verifiable according to this standard does not
violate memory safety, and a conforming implementation of the CLI shall run such programs. The
implementation might also run other programs provided it is able to show they do not violate memory safety
(typically because they use a verification algorithm that makes use of specific knowledge about the
implementation).

[Note: While a compliant implementation is required to accept and run any program this verification algorithm
states is verifiable, there might be programs that are accepted as verifiable by a given implementation but
which this verification algorithm will fail to consider verifiable. Such programs will run in the given
implementation but need not be considered verifiable by other implementations.

For example, an implementation of the CLI might choose to correctly track full signatures on method pointers
and permit programs to execute the calli instruction even though this is not permitted by the verification
algorithm specified here.

Implementers of the CLI are urged to provide a means for testing whether programs generated on their
implementation meet this portable verifiability standard. They are also urged to specify where their verification
algorithms are more permissive than this standard. end note]

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity
conditions are specified on a per-CIL instruction basis (see §3), and on the overall file format in Partition II.

1.8 .1.1 Verif icat ion algorithm

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type
that shall be present in that slot. The initial stack state is empty (there are no items on the stack).

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore,
verifiable methods shall have the localsinit bit set, see Partition II (Flags for Method Headers). If this bit is not

 Partition III 19

set, then a CLI might throw a Verification exception at any point where a local variable is accessed, and where
the assembly containing that method has not been granted SecurityPermission.SkipVerification.

[Rationale: This requirement strongly enhances program portability, and a well-known technique (definite
assignment analysis) allows a CIL-to-native-code compiler to minimize its performance impact. Note that a
CLI might optionally choose to perform definite-assignment analysis – in such a case, it might confirm that a
method, even without the localsinit bit set, might in fact be verifiable (and therefore not throw a Verification
exception) end rationale]

[Note: Definite assignment analysis can be used by the CLI to determine which locations are written before
they are read. Such locations needn’t be zeroed, since it isn’t possible to observe the contents of the memory as
it was provided by the EE.

Performance measurements on C++ implementations (which do not require definite-assignment analysis)
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore,
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often
fails when small, unrelated changes are made to the program. end note]

The verification algorithm shall simulate all possible control flow paths through the code and ensure that a
valid stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage
of any data values during its simulation (e.g., it does not perform constant propagation), but uses only type
assignments. Details of the type system used for verification and the algorithm used to merge stack states are
provided in §1.8.1.3. The verification algorithm terminates as follows:

1. Successfully, when all control paths have been simulated.

2. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL
instruction.

3. Unsuccessfully when additional tests specified in this clause fail.

With the exception of the unconditional branch instructions, throw, rethrow, and ret, there is a control flow
path from every instruction to the subsequent instruction. There is also a control flow path from each branch
instruction (conditional or unconditional) to the branch target (or targets, in the case of the switch instruction).

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type
mismatch between the specified conditions on the stack state (see §3) and the simulated stack state shall cause
the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it does not
perform the actual computation). The algorithm shall also fail if there is an existing stack state at the next
instruction address (for conditional branches or instructions within a try block there might be more than one
such address) that cannot be merged with the stack state just computed. For rules of this merge operation,
see §1.8.1.3.

The CLI supports the notion of a controlled-mutability managed pointer. (See §1.8.1.2.2, the merging rules in
§1.8.1.3, the readonly. instruction prefix in §2.3, the ldfld instruction in §4.10, the stfld instruction in §4.30,
and the unbox instruction in §4.32.)

The VES ensures that both special constraints and type constraints are satisfied. The constraints can be checked
as early as when a closed type is constructed, or as late as when a method on the constrained generic type is
invoked, a constrained generic method is invoked, a field in a constrained generic type is accessed, or an
instance of a constrained generic type is created.

To accommodate generics, the type compatibility relation is extended to deal with:

• generic parameters: a generic parameter is compatible only with itself.

• boxed generic parameters: a boxed generic parameter is compatible with the constraint types
declared on the generic parameter.

In the verification semantics, boxing a value of primitive or value type on the stack introduces a value
of type “boxed” type. This notion of boxed type is extended to generic parameters. Boxing a value
whose type is a generic parameter (!0, for example) introduces a value of the boxed parameter type on
the stack (“boxed” !0, for example). The boxed forms of value types, and now generic parameters, are
used to support efficient instance and virtual method calls on boxed values. Because the “boxed” type

20 Partition III

statically records the exact type of the underlying value, there is no need to perform a checked cast on
the instance from some less informative, but syntactically expressible, reference type.

Just like the boxed forms of primitive and non-primitive value types, the boxed forms of generic
parameters only occur on the verification stack (after being introduced by a box instruction). They
cannot be explicitly specified using metadata signatures.

1.8 .1.2 Verif icat ion type system

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory
safety violations. The types used by the verification algorithm are specified in §1.8.1.2.1, the type compatibility
rules are specified in §1.8.1.2.2, and the rules for merging stack states are in §1.8.1.3.

1.8 .1.2.1 Verif icat ion types
The following table specifies the mapping of types used in the CLI and those used in verification. Notice that
verification compresses the CLI types to a smaller set that maintains information about the size of those types
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4-byte
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as
64-bit quantities regardless of the actual representation.

Arrays are objects, but with special compatibility rules.

There is a special encoding for null that represents an object known to be the null value, hence with
indeterminate actual type.

In the following table, “CLI Type” is the type as it is described in metadata. The “Verification Type” is a
corresponding type used for type compatibility rules in verification (see §1.8.1.2.2) when considering the types
of local variables, arguments, and parameters on methods being called. The column “Verification Type (in
stack state)” is used to simulate instructions that load data onto the stack, and shows the types that are actually
maintained in the stack state information of the verification algorithm. The column “Managed Pointer to Type”
shows the type tracked for managed pointers.

CLI Type Verification Type Verification Type
(in stack state)

Managed Pointer to Type

int8, unsigned int8,
bool

int8 int32 int8&

int16, unsigned int16,
char

int16 int32 int16&

int32, unsigned int32 int32 int32 int32&

int64, unsigned int64 int64 int64 int64&

native int, native
unsigned int

native int native int native int&

float32 float32 float64 float32&

float64 float64 float64 float64&

Any value type Same type Same type Same type&

Any object type Same type Same type Same type&

Method pointer Same type Same type Not valid

A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable. When
returning byrefs, verification is done at the return site, not at the call site.

[Rationale: Some uses of returning a managed pointer are perfectly verifiable (e.g., returning a reference to a
field in an object); but some not (e.g., returning a pointer to a local variable of the called method). Tracking this
in the general case is a burden, and therefore not included in this standard. end rationale]

 Partition III 21

1.8 .1.2.2 Controlled-mutabil i ty managed pointers
The readonly. prefix and unbox instructions can produce what is called a controlled-mutability managed
pointer. Unlike ordinary managed pointer types, a controlled-mutability managed pointer is incompatible with
ordinary managed pointers; e.g., it cannot be passed as a byref argument to a method. At control flow points, a
controlled-mutability managed pointer can be merged with a managed pointer of the same type to yield a
controlled-mutability managed pointer.

Controlled-mutability managed pointers can only be used in the following ways:

1. As the object parameter for an ldfld, ldflda, stfld, call, callvirt, or constrained. callvirt
instruction.

2. As the pointer parameter to a ldind.* or ldobj instruction.

3. As the source parameter to a cpobj instruction.

All other operations (including stobj, stind.*, initobj, and mkrefany) are invalid.

The pointer is called a controlled-mutability managed pointer because the defining type decides whether the
value can be mutated. For value classes that expose no public fields or methods that update the value in place,
the pointer is read-only (hence the name of the prefix). In particular, the classes representing primitive types
(such as System.Int32) do not expose mutators and thus are read-only.

1.8 .1.2.3 Verif icat ion type compatibi l i ty
The following rules define type compatibility. We use S and T to denote verification types, and the notation
“S := T” to indicate that the verification type T can be used wherever the verification type S can be used,
while “S !:= T” indicates that T cannot be used where S is expected. These are the verification type
compatibility (see Partition I) rules. We use T[] to denote an array (of any rank) whose elements are of type T,
and T& to denote a managed pointer to type T.

1. [:= is reflexive] For all verification types S, S := S

2. [:= is transitive] For all verification types S, T, and U if S := T and T := U, then S := U.

3. S := T if S is the base class of T or an interface implemented by T and T is not a value type.

4. object := T if T is an interface type.

5. S := T if S and T are both interfaces and the implementation of T requires the implementation
of S

6. S := null if S is an object type or an interface

7. S[] := T[] if S := T and the arrays are either both vectors (zero-based, rank one) or neither
is a vector and both have the same rank. (This rule deals with array covariance.)

8. If S and T are method pointers, then S := T if the signatures (return types, parameter types and
calling convention) are the same.

9. Otherwise, S !:= T

1.8 .1.3 Merging stack states

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail.

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows.
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the
compatibility function defined in §1.8.1.2.2):

1. if S := T then U=S

22 Partition III

2. Otherwise, if T := S then U=T

3. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and
T then U=V.

4. Otherwise, the merge shall fail.

Merging a controlled-mutability managed pointer with an ordinary (that is, non-controlled-mutability) managed
pointer to the same type results in a controlled-mutability managed pointer to that type.

1.8 .1.4 Class and object init ial izat ion rules

The VES ensures that all statics are initially zeroed (i.e., built-in types are 0 or false, object references are null),
hence the verification algorithm does not test for definite assignment to statics.

An object constructor shall not return unless a constructor for the base class or a different construct for the
object’s class has been called on the newly constructed object. The verification algorithm shall treat the this
pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an
uninitialized this except for storing into and loading from the object’s fields.

[Note: If the constructor generates an exception the this pointer in the corresponding catch block is still
uninitialized. end note]

1.8 .1.5 Delegate constructors

The verification algorithm shall require that one of the following code sequences is used for constructing
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type.
There shall be only one instance constructor method for a delegate (overloading is not allowed)

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the
start of the sequence).

[Note: See Partition II for the signature of delegates and a validity requirement regarding the signature of the
method used in the constructor and the signature of Invoke and other methods on the delegate class. end note]

1.8 .1.5.1 Delegat ing via virtual dispatch
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with an object on the stack.

dup
ldvirtftn mthd ; Method shall be on the class of the object,
 ; or one of its parent classes, or an interface
 ; implemented by the object
newobj delegateclass::.ctor(object, native int)

[Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t
match and could lead to memory violations. end rationale]

1.8 .1.5.2 Delegat ing via instance dispatch
The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence
begins with either null or an object on the stack.

ldftn mthd ; Method shall either be a static method or
 ; a method on the class of the object on the stack or
 ; one of the object’s parent classes
newobj delegateclass::.ctor(object, native int)

1.9 Metadata tokens
Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full

 Partition III 23

list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata
token with value 0x02000007 specifies row number 7 in the TypeDef table)

1.10 Exceptions thrown
A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception
called ExecutionEngineException. See Partition I for details.

24 Partition III

2 Prefixes to instructions
These special values are reserved to precede specific instructions. They do not constitute full instructions in
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the
instructions it is permitted to precede.

 Partition III 25

2.1 constrained. – (prefix) invoke a member on a value of a variable type

Format Assembly Format Description

FE 16 <T> constrained.
thisType

Call a virtual method on a type constrained to be type T

Stack Transition:

…, ptr, arg1, … argN …, ptr, arg1, … argN

Description:

The constrained. prefix is permitted only on a callvirt instruction. The type of ptr must be a managed
pointer (&) to thisType. The constrained prefix is designed to allow callvirt instructions to be made in a
uniform way independent of whether thisType is a value type or a reference type.

When callvirt method instruction has been prefixed by constrained thisType the instruction is executed as
follows.

If thisType is a reference type (as opposed to a value type) then

 ptr is dereferenced and passed as the ‘this’ pointer to the callvirt of method

If thisType is a value type and thisType implements method then

 ptr is passed unmodified as the ‘this’ pointer to a call of method implemented by thisType

If thisType is a value type and thisType does not implement method then

 ptr is dereferenced, boxed, and passed as the ‘this’ pointer to the callvirt of method

This last case can only occur when method was defined on System.Object, System.ValueType, or
System.Enum and not overridden by thisType. In this last case, the boxing causes a copy of the original
object to be made, however since all methods on System.Object, System.ValueType, and
System.Enum do not modify the state of the object, this fact can not be detected.

The need for the constrained prefix was motivated by the needs IL generators creating generic code. Normally
the callvirt instruction is not valid on value types. Instead it is required that IL compilers effectively perform
the `this’ transformation outlined above at IL compile time, depending on the type of ptr and the method being
called. It is not possible to do this transformation at IL compile time, however, when ptr is a generic type
(which is unknown at IL compile time). This is why the constrained prefix is needed. The constrained
opcode allows IL compilers to make a call to a virtual function in a uniform way independent of whether ptr is
a value type or reference type. While this was targeted for the case were thisType is a generic type variable,
constrained works for non-generic types too, and can ease the complexity of generating virtual calls in
languages that hide the distinction between value and reference types.

Exceptions:

None.

Correctness:

The constrained prefix will be immediately followed by a callvirt instruction. thisType shall be a valid
typedef, typeref, or typespec metadata token.

Verifiability:

The ptr argument will be a managed pointer (&) to thisType. In addition all the normal verification rules of
the callvirt instruction apply after the ptr transformation as described above. This is equivalent to requiring
that a boxed thisType must be a subclass of the class which method belongs to.

[Rationale: The goal of this instruction was to achieve uniformity of calling virtual functions, so such calls
could be made verifiably in generic routines. One way of achieving this uniformity was to always box the
‘this’ pointer before making a callvirt. This works for both reference type (where box is a no-op), and value

26 Partition III

types. The problem with this approach is that a copy is made in the value type case. Thus if the method being
called modifies the state of the value type, this will not be reflected after the call completes since this
modification was made in the boxed copy. This semantic difference (as well as the performance cost of the
extra boxing), makes this alternative unacceptable.]

 Partition III 27

2.2 no. – (prefix) possibly skip a fault check

Format Assembly Format Description

FE 19 <unsigned int8> no. { typecheck
 | rangecheck
 | nullcheck }

The specified fault check(s) normally performed
as part of the execution of the subsequent
instruction can/shall be skipped.

Description:

This prefix indicates that the subsequent instruction need not perform the specified fault check when it is
executed. The byte that follows the instruction code indicates which checks can optionally be skipped. This
instruction is not verifiable.

The prefix can be used in the following circumstances:

0x01: typecheck (castclass, unbox, ldelema, stelem, stelem). The CLI can optionally skip any type
checks normally performed as part of the execution of the subsequent instruction.
InvalidCastException can optionally still be thrown if the check would fail.

0x02: rangecheck (ldelem.*, ldelema, stelem.*). The CLI can optionally skip any array range checks
normally performed as part of the execution of the subsequent instruction. IndexOutOfRangeException
can optionally still be thrown if the check would fail.

0x04: nullcheck (ldfld, stfld, callvirt, ldvirtftn, ldelem.*, stelem.*, ldelema). The CLI can optionally skip
any null-reference checks normally performed as part of the execution of the subsequent instruction.
NullReferenceException can optionally still be thrown if the check would fail.

The byte values can be OR-ed; e.g.; a value of 0x05 indicates that both typecheck and nullcheck can
optionally be omitted.

Exceptions:

None.

Correctness:

Correct IL permits the prefix only on the instructions specified above.

Verifiability:

Verifiable IL does not permit the use of no.

28 Partition III

2.3 readonly. (prefix) – following instruction returns a controlled-mutability
managed pointer

Format Assembly Format Description

FE 1E readonly. Specify that the subsequent array address operation performs no
type check at runtime, and that it returns a controlled-mutability
managed pointer

Description:

This prefix can only appear only immediately preceding the ldelema instruction and calls to the special
Address method on arrays. Its effect on the subsequent operation is twofold.

1. At run-time, no type check operation is performed. (For the value class case there is never a runtime time
check so this is a noop in that case).

2. The verifier treats the result of the address-of operation as a controlled-mutability managed pointer
(§1.8.1.2.2).

Exceptions:

None.

Correctness:
Verifiability:

A controlled-mutability managed pointer must obey the verifier rules given in (2) of §1.8.1.2.2. See also
§1.8.1.3.

[Rationale: The main goal of the readonly. prefix is to avoid a type check when fetching an element from an
array in generic code. For example the expression

array[i].method()

where array has type T[] (where T is a generic parameter), and T has been constrained to have an interface with
method ‘method’ might compile into the following IL code.

ldloc array
ldloc j // j is array index
readonly.
ldelema !0 // loads the pointer to the object
… // load the arguments to the call
constrained. !0
callvirt method

Without the readonly. prefix the ldelema would do a type check in the case that !0 was a reference class.
Not only is this type check inefficient, but it is semantically incorrect. The type check for ldelema does an
exact match typecheck, which is too strong in general. If the array held derived classes of !0 then the code
above would fail the ldelema typecheck. The only reason we fetch the address of the array element instead of
the element itself (which is what the source code says), is because we need a handle for array[i] that works
both for value types and reference types that can be passed to the constrained callvirt instruction.

If the array holds elements of a reference type, in general, skipping the runtime check would be unsafe. To be
safe we have to insure that no modifications of the array happen through this pointer. The verifier rules stated
above insure this. Since we explicitly allow read-only pointers to be passed as the object of instance method
calls, these pointers are not strictly read-only for value types, but there is no type safety problem for value
types. end rationale]

 Partition III 29

2.4 tai l . (prefix) – call terminates current method

Format Assembly Format Description

FE 14 tail. Subsequent call terminates current method

Description:

The tail. prefix shall immediately precede a call, calli, or callvirt instruction. It indicates that the current
method’s stack frame is no longer required and thus can be removed before the call instruction is executed.
Because the value returned by the call will be the value returned by this method, the call can be converted into
a cross-method jump.

The evaluation stack shall be empty except for the arguments being transferred by the following call. The
instruction following the call instruction shall be a ret. Thus the only valid code sequence is

tail. call (or calli or callvirt) somewhere
ret

Correct CIL shall not branch to the call instruction, but it is permitted to branch to the ret. The only values on
the stack shall be the arguments for the method being called.

The tail. call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch, or
finally block. See Partition I.

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since
this would jeopardize code identity security. Security checks can therefore cause the tail. to be ignored, leaving
a standard call instruction.

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is
ignored when used to exit a method that is marked synchronized.

There can also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in certain
cases. While an implementation is free to ignore the tail. prefix under these circumstances, they should be
clearly documented as they can affect the behavior of programs.

CLI implementations are required to honor tail. call requests where caller and callee methods can be statically
determined to lie in the same assembly; and where the caller is not in a synchronized region; and where caller
and callee satisfy all conditions listed in the “Verifiability” rules below. (To “honor” the tail. prefix means to
remove the caller’s frame, rather than revert to a regular call sequence). Consequently, a CLI implementation
need not honor tail. calli or tail. callvirt sequences.

[Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are
required by some languages. In the presence of ldloca and ldarga instructions it isn’t always possible for a
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted. end
rationale]

Exceptions:

None.

Correctness:

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed
to the method being called if they point into the stack frame that is about to be removed. The return type of the
method being called shall be compatible with the return type of the current method.

Verifiability:

Verification requires that no managed pointers are passed to the method being called, since it does not track
pointers into the current frame.

30 Partition III

2.5 unaligned. (prefix) – pointer instruction might be unaligned

Format Assembly Format Description

FE 12 <unsigned int8> unaligned. alignment Subsequent pointer instruction might be unaligned.

Stack Transition:

…, addr …, addr

Description:

The unaligned. prefix specifies that addr (an unmanaged pointer (&), or native int) on the stack mignt not
be aligned to the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or
cpblk instruction. That is, for a ldind.i4 instruction the alignment of addr might not be to a 4-byte boundary.
For initblk and cpblk the default alignment is architecture-dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition II)
shall use unaligned. if the alignment is not known at compile time to be 8-byte.

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte,
double-byte, or quad-byte-aligned, respectively.

[Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the
source and one for the destination), there is no noticeable impact on performance if only the lower number is
specified. end rationale]

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind,
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction.

[Note: See Partition I, 12.7 for information about atomicity and data alignment. end note]

Exceptions:

None.

Correctness and Verifiability:

An unaligned. prefix shall be followed immediately by one of the instructions listed above.

 Partition III 31

2.6 volati le. (prefix) – pointer reference is volati le

Format Assembly Format Description

FE 13 volatile. Subsequent pointer reference is volatile.

Stack Transition:

…, addr …, addr

Description:

The volatile. prefix specifies that addr is a volatile address (i.e., it can be referenced externally to the current
thread of execution) and the results of reading that location cannot be cached or that multiple stores to that
location cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to
the same location shall be marked separately. Access to volatile locations need not be performed atomically.
(See Partition I, “Memory Model and Optimizations”)

The unaligned. and volatile. prefixes can be combined in either order. They shall immediately precede a ldind,
stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed with the ldsfld
and stsfld instructions.
Exceptions:

None.

Correctness and Verifiability:

A volatile. prefix should be followed immediately by one of the instructions listed above.

32 Partition III

3 Base instructions
These instructions form a “Turing Complete” set of basic operations. They are independent of the object model
that might be employed. Operations that are specifically related to the CTS’s object model are contained in the
Object Model Instructions section.

 Partition III 33

3.1 add – add numeric values

Format Assembly Format Description

58 add Add two values, returning a new value.

Stack Transition:

…, value1, value2 …, result

Description:

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for
integral operations (but see add.ovf); floating-point overflow returns +inf or -inf.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

34 Partition III

3.2 add.ovf.<signed> – add integer values with overflow check

Format Assembly Format Description

D6 add.ovf Add signed integer values with overflow check.

D7 add.ovf.un Add unsigned integer values with overflow check.

Stack Transition:

…, value1, value2 …, result

Description:

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand
types and their corresponding result data type are encapsulated in Table 7: Overflow Arithmetic Operations.

Exceptions:

System.OverflowException is thrown if the result cannot be represented in the result type.

Correctness and Verifiability:

See Table 7: Overflow Arithmetic Operations.

 Partition III 35

3.3 and – bitwise AND

Format Instruction Description

5F and Bitwise AND of two integral values, returns an integral value.

Stack Transition:

…, value1, value2 …, result

Description:

The and instruction computes the bitwise AND of value1 and value2and pushes the result on the stack. The
acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

36 Partition III

3.4 arglist – get argument l ist

Format Assembly Format Description

FE 00 arglist Return argument list handle for the current method.

Stack Transition:

… …, argListHandle

Description:

The arglist instruction returns an opaque handle (having type System.RuntimeArgumentHandle)
representing the argument list of the current method. This handle is valid only during the lifetime of the current
method. The handle can, however, be passed to other methods as long as the current method is on the thread of
control. The arglist instruction can only be executed within a method that takes a variable number of
arguments.

[Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like
‘printf’. It is intended for use with the class library implementation of System.ArgIterator. end
rationale]

Exceptions:

None.

Correctness:

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates
it accepts a variable number of arguments.

Verifiability:

Its use is verifiable within the body of a method whose signature indicates it accepts a variable number of
arguments, but verification requires that the result be an instance of the
System.RuntimeArgumentHandle class.

 Partition III 37

3.5 beq.<length> – branch on equal

Format Assembly Format Description

3B <int32> beq target Branch to target if equal.

2E <int8> beq.s target Branch to target if equal, short form.

Stack Transition:

…, value1, value2 …

Description:

The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing
a ceq instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for beq, 1 byte
for beq.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

38 Partition III

3.6 bge.<length> – branch on greater than or equal to

Format Assembly Format Description

3C <int32> bge target Branch to target if greater than or equal to.

2F <int8> bge.s target Branch to target if greater than or equal to, short form.

Stack Transition:

…, value1, value2 …

Description:

The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical
to performing a clt.un instruction followed by a brfalse target. target is represented as a signed offset (4 bytes
for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction.

The effect of a “bge target” instruction is identical to:

• If stack operands are integers, then clt followed by a brfalse target

• If stack operands are floating-point, then clt.un followed by a brfalse target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 39

3.7 bge.un.<length> – branch on greater than or equal to, unsigned or
unordered

Format Assembly Format Description

41 <int32> bge.un target Branch to target if greater than or equal to (unsigned or unordered).

34 <int8> bge.un.s target Branch to target if greater than or equal to (unsigned or unordered),
short form.

Stack Transition:

…, value1, value2 …

Description:

The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared
unsigned (for integer values) or unordered (for floating-point values).

target is represented as a signed offset (4 bytes for bge.un, 1 byte for bge.un.s) from the beginning of the
instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

40 Partition III

3.8 bgt.<length> – branch on greater than

Format Assembly Format Description

3D <int32> bgt target Branch to target if greater than.

30 <int8> bgt.s target Branch to target if greater than, short form.

Stack Transition:

…, value1, value2 …

Description:

The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to
performing a cgt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 41

3.9 bgt.un.<length> – branch on greater than, unsigned or unordered

Format Assembly Format Description

42 <int32> bgt.un target Branch to target if greater than (unsigned or unordered).

35 <int8> bgt.un.s target Branch to target if greater than (unsigned or unordered), short form.

Stack Transition:

…, value1, value2 …

Description:

The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for
integer values) or unordered (for floating-point values). The effect is identical to performing a cgt.un
instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for bgt.un, 1 byte for
bgt.un.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

42 Partition III

3.10 ble.<length> – branch on less than or equal to

Format Assembly Format Description

3E <int32> ble target Branch to target if less than or equal to.

31 <int8> ble.s target Branch to target if less than or equal to, short form.

Stack Transition:

…, value1, value2 …

Description:

The ble instruction transfers control to target if value1 is less than or equal to value2. target is represented as a
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current
instruction.

The effect of a “ble target” instruction is identical to:

• If stack operands are integers, then : cgt followed by a brfalse target

• If stack operands are floating-point, then : cgt.un followed by a brfalse target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 43

3.11 ble.un.<length> – branch on less than or equal to, unsigned or unordered

Format Assembly Format Description

43 <int32> ble.un target Branch to target if less than or equal to (unsigned or unordered).

36 <int8> ble.un.s target Branch to target if less than or equal to (unsigned or unordered),
short form.

Stack Transition:

…, value1, value2 …

Description:

The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared
unsigned (for integer values) or unordered (for floating-point values). target is represented as a signed offset
(4 bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction.

The effect of a “ble.un target” instruction is identical to:

• If stack operands are integers, then cgt.un followed by a brfalse target

• If stack operands are floating-point, then cgt followed by a brfalse target

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

44 Partition III

3.12 blt .<length> – branch on less than

Format Assembly Format Description

3F <int32> blt target Branch to target if less than.

32 <int8> blt.s target Branch to target if less than, short form.

Stack Transition:

…, value1, value2 …

Description:

The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing
a clt instruction followed by a brtrue target. target is represented as a signed offset (4 bytes for blt, 1 byte for
blt.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 45

3.13 blt .un.<length> – branch on less than, unsigned or unordered

Format Assembly Format Description

44 <int32> blt.un target Branch to target if less than (unsigned or unordered).

37 <int8> blt.un.s target Branch to target if less than (unsigned or unordered), short form.

Stack Transition:

…, value1, value2 …

Description:

The blt.un instruction transfers control to target if value1 is less than value2, when compared unsigned (for
integer values) or unordered (for floating-point values). The effect is identical to performing a clt.un instruction
followed by a brtrue target. target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s) from
the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

46 Partition III

3.14 bne.un<length> – branch on not equal or unordered

Format Assembly Format Description

40 <int32> bne.un target Branch to target if unequal or unordered.

33 <int8> bne.un.s target Branch to target if unequal or unordered, short form.

Stack Transition:

…, value1, value2 …

Description:

The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned
(for integer values) or unordered (for floating-point values). The effect is identical to performing a ceq
instruction followed by a brfalse target. target is represented as a signed offset (4 bytes for bne.un, 1 byte for
bne.un.s) from the beginning of the instruction following the current instruction.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee that the top two
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 47

3.15 br.<length> – unconditional branch

Format Assembly Format Description

38 <int32> br target Branch to target.

2B <int8> br.s target Branch to target, short form.

Stack Transition:

…, …

Description:

The br instruction unconditionally transfers control to target. target is represented as a signed offset (4 bytes
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

[Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is
empty, doing so might increase the resources required to compile from CIL to native code and/or lead to
inferior native code. Therefore CIL generators should use a br instruction in preference to a leave instruction
when both are valid. end rationale]

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

48 Partition III

3.16 break – breakpoint instruction

Format Assembly Format Description

01 break Inform a debugger that a breakpoint has been reached.

Stack Transition:

…, …

Description:

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has
been tripped. It has no other effect on the interpreter state.

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint
with minimal disturbance to the surrounding code.

The break instruction might trap to a debugger, do nothing, or raise a security exception: the exact behavior is
implementation-defined.

Exceptions:

None.

Correctness:
Verifiability:

The break instruction is always verifiable.

 Partition III 49

3.17 brfalse.<length> – branch on false, null , or zero

Format Assembly Format Description

39 <int32> brfalse target Branch to target if value is zero (false).

2C <int8> brfalse.s target Branch to target if value is zero (false), short form.

39 <int32> brnull target Branch to target if value is null (alias for brfalse).

2C <int8> brnull.s target Branch to target if value is null (alias for brfalse.s), short form.

39 <int32> brzero target Branch to target if value is zero (alias for brfalse).

2C <int8> brzero.s target Branch to target if value is zero (alias for brfalse.s), short form.

Stack Transition:

…, value …

Description:

The brfalse instruction transfers control to target if value (of type int32, int64, object reference, managed
pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true), execution continues at
the next instruction.

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the
instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a
minimum of one item on the stack.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

50 Partition III

3.18 brtrue.<length> – branch on non-false or non-null

Format Assembly Format Description

3A <int32> brtrue target Branch to target if value is non-zero (true).

2D <int8> brtrue.s target Branch to target if value is non-zero (true), short form.

3A <int32> brinst target Branch to target if value is a non-null object reference (alias for
brtrue).

2D <int8> brinst.s target Branch to target if value is a non-null object reference, short form
(alias for brtrue.s).

Stack Transition:

…, value …

Description:

The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is
zero (false) execution continues at the next instruction.

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an
instance of an object (i.e., isn’t the null object reference, see ldnull).

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the
instruction following the current instruction.

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this instruction.
(Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for details).

Exceptions:

None.

Correctness:

Correct CIL shall observe all of the control transfer rules specified above and shall guarantee there is a
minimum of one item on the stack.

Verifiability:

Verifiable code requires the type-consistency of the stack, locals and arguments for every possible path to the
destination instruction. See §1.8 for more details.

 Partition III 51

3.19 cal l – call a method

Format Assembly Format Description

28 <T> call method Call method described by method.

Stack Transition:

…, arg1, arg2 … argN …, retVal (not always returned)

Description:

The call instruction calls the method indicated by the descriptor method. method is a metadata token (a
methodref, methoddef, or methodspec;See Partition II) that indicates the method to call, and the
number, type, and order of the arguments that have been placed on the stack to be passed to that method, as
well as the calling convention to be used. (See Partition I for a detailed description of the CIL calling
sequence.) The call instruction can be immediately preceded by a tail. prefix to specify that the current method
state should be released before transferring control (see §2.3).

The metadata token carries sufficient information to determine whether the call is to a static method, an
instance method, a virtual method, or a global function. In all of these cases the destination address is
determined entirely from the metadata token. (Contrast this with the callvirt instruction for calling virtual
methods, where the destination address also depends upon the exact type of the instance reference pushed
before the callvirt; see below.)

 If the method does not exist in the class specified by the metadata token, the base classes are searched to find
the most derived class which defines the method and that method is called.

[Rationale: This implements“call base class” behavior. end rationale]

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, and so on. There are three important special cases:

1. Calls to an instance (or virtual, see below) method shall push that instance reference (the this
pointer) before any of the user-visible arguments. The signature carried in the metadata does not
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to
indicate whether the method requires passing the this pointer (see Partition II) (For calls to
methods on value types, the this pointer is a managed pointer, not an instance reference.)

2. It is valid to call a virtual method using call (rather than callvirt); this indicates that the method is
to be resolved using the class specified by method rather than as specified dynamically from the
object being invoked. This is used, for example, to compile calls to “methods on super” (i.e.,
the statically known parent class).

3. Note that a delegate’s Invoke method can be called with either the call or callvirt instruction.

Exceptions:

System.SecurityException can be thrown if system security does not grant the caller access to the
called method. The security check can occur when the CIL is converted to native code rather than at runtime.

System.MethodAccessException can be thrown when there is an invalid attempt to access a private or
protected method inside a class.

System.MissingMethodException can be thrown when there is an attempt to dynamically access a
method that does not exist.

Correctness:

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being
called.

Verifiability:

For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref,
methoddef, or methodspec token; (b) the types of the objects on the stack are consistent with the types

52 Partition III

expected by the method call, and (c) the method is accessible from the call site, and (d) the method is not
abstract (i.e., it has an implementation).

The call instruction can also be used to call an object’s base class constructor, or to initialize a value type
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call
annotated by tail. is also a special case.

If the target method is global (defined outside of any type), then the method shall be static.

 Partition III 53

3.20 cal l i – indirect method call

Format Assembly Format Description

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by
callsitedescr.

Stack Transition:

…, arg1, arg2 … argN, ftn …, retVal (not always returned)

Description:

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argN. The types
of these arguments are described by the signature callsitedescr. (See Partition I for a description of the CIL
calling sequence.) The calli instruction can be immediately preceded by a tail. prefix to specify that the current
method state should be released before transferring control. If the call would transfer control to a method of
higher trust than the originating method the stack frame will not be released; instead, the execution will
continue silently as if the tail. prefix had not been supplied.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller.]

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a
pointer can be created using the ldftn or ldvirtftn instructions, or could have been passed in from native code.

The standalone signature specifies the number and type of parameters being passed, as well as the calling
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli
instruction will not work correctly if the destination does not actually use the specified calling convention.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, and so on. The argument-building code sequence for an instance or
virtual method shall push that instance reference (the this pointer, which shall not be null) before any of the
user-visible arguments. (For calls to methods on value types, the this pointer is a managed pointer, not an
instance reference.)

Exceptions:

System.SecurityException can be thrown if the system security does not grant the caller access to the
called method. The security check can occur when the CIL is converted to native code rather than at runtime.

Correctness:

Correct CIL requires that the function pointer contains the address of a method whose signature matches that
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’s
parameters.

Verifiability:

Verification checks that ftn is a pointer to a function generated by ldftn or ldvirtfn.

54 Partition III

3.21 ceq – compare equal

Format Assembly Format Description

FE 01 Ceq Push 1 (of type int32) if value1 equals value2, else push 0.

Stack Transition:

…, value1, value2 …, result

Description:

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type int32) is
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, ceq will return 0 if the numbers are unordered (either or both are NaN). The
infinite values are equal to themselves.

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations.

Verifiability:

There are no additional verification requirements.

 Partition III 55

3.22 cgt – compare greater than

Format Assembly Format Description

FE 02 Cgt Push 1 (of type int32) if value1 > value2, else push 0.

Stack Transition:

…, value1, value2 …, result

Description:

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type
int32) is pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments
are NaN).

As with IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations.

Verifiability:

There are no additional verification requirements.

56 Partition III

3.23 cgt.un – compare greater than, unsigned or unordered

Format Assembly Format Description

FE 03 cgt.un Push 1 (of type int32) if value1 > value2, unsigned or unordered,
else push 0.

Stack Transition:

…, value1, value2 …, result

Description:

The cgt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if

• for floating-point numbers, either value1 is strictly greater than value2, or value1 is not ordered
with respect to value2.

• for integer values, value1 is strictly greater than value2 when considered as unsigned numbers.

Otherwise, 0 (of type int32) is pushed on the stack.

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations.

Verifiability:

There are no additional verification requirements.

 Partition III 57

3.24 ckfinite – check for a f inite real number

Format Assembly Format Description

C3 Ckfinite Throw ArithmeticException if value is not a finite number.

Stack Transition:

…, value …, value

Description:

The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a “not
a number” value (NaN) or +/- infinity value. ckfinite leaves the value on the stack if no exception is thrown.
Execution behavior is unspecified if value is not a floating-point number.

Exceptions:

System.ArithmeticException is thrown if value is not a ‘normal’ number.

Correctness:

Correct CIL guarantees that value is a floating-point number.

Verifiability:

There are no additional verification requirements.

58 Partition III

3.25 clt – compare less than

Format Assembly Format Description

FE 04 Clt Push 1 (of type int32) if value1 < value2, else push 0.

Stack Transition:

…, value1, value2 …, result

Description:

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type int32) is
pushed on the stack. Otherwise, 0 (of type int32) is pushed on the stack.

For floating-point numbers, clt will return 0 if the numbers are unordered (that is, one or both of the arguments
are NaN).

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations.

Verifiability:

There are no additional verification requirements.

 Partition III 59

3.26 clt .un – compare less than, unsigned or unordered

Format Assembly Format Description

FE 05 clt.un Push 1 (of type int32) if value1 < value2, unsigned or unordered,
else push 0.

Stack Transition:

…, value1, value2 …, result

Description:

The clt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if

• for floating-point numbers, either value1 is strictly less than value2, or value1 is not ordered with
respect to value2.

• for integer values, value1 is strictly less than value2 when considered as unsigned numbers.

Otherwise, 0 (of type int32) is pushed on the stack.

As per IEC 60559:1989, infinite values are ordered with respect to normal numbers (e.g., +infinity > 5.0 > -
infinity).

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.

Exceptions:

None.

Correctness:

Correct CIL provides two values on the stack whose types match those specified in
Table 4: Binary Comparison or Branch Operations_Table4_BinaryComparisonOrBranchOperations.

Verifiability:

There are no additional verification requirements.

60 Partition III

3.27 conv.<to type> – data conversion

Format Assembly Format Description

67 conv.i1 Convert to int8, pushing int32 on stack.

68 conv.i2 Convert to int16, pushing int32 on stack.

69 conv.i4 Convert to int32, pushing int32 on stack.

6A conv.i8 Convert to int64, pushing int64 on stack.

6B conv.r4 Convert to float32, pushing F on stack.

6C conv.r8 Convert to float64, pushing F on stack.

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack.

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack.

6D conv.u4 Convert to unsigned int32, pushing int32 on stack.

6E conv.u8 Convert to unsigned int64, pushing int64 on stack.

D3 conv.i Convert to native int, pushing native int on stack.

E0 conv.u Convert to native unsigned int, pushing native int on stack.

76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack.

Stack Transition:

…, value …, result

Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when
they are loaded onto the evaluation stack, and floating-point values are converted to the F type.

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting
from a float64 to a float32, precision might be lost. If value is too large to fit in a float32, the IEC
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is
returned. If overflow occurs when converting one integer type to another, the high-order bits are silently
truncated. If the result is smaller than an int32, then the value is sign-extended to fill the slot.

If overflow occurs converting a floating-point type to an integer, or if the floating-point value being converted
to an integer is a NaN, the value returned is unspecified. The conv.r.un operation takes an integer off the stack,
interprets it as unsigned, and replaces it with a floating-point number to represent the integer; either a
float32, if this is wide enough to represent the integer without loss of precision, else a float64.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 8: Conversion Operations.

Exceptions:

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type
cannot properly represent the result value.

Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.

Verifiability:

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

 Partition III 61

3.28 conv.ovf.<to type> – data conversion with overflow detection

Format Assembly Format Description

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an
exception on overflow.

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an
exception on overflow.

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an
exception on overflow.

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an
exception on overflow.

B4 conv.ovf.u1 Convert to an unsigned int8 (on the stack as int32) and throw
an exception on overflow.

B6 conv.ovf.u2 Convert to an unsigned int16 (on the stack as int32) and
throw an exception on overflow.

B8 conv.ovf.u4 Convert to an unsigned int32 (on the stack as int32) and
throw an exception on overflow

BA conv.ovf.u8 Convert to an unsigned int64 (on the stack as int64) and
throw an exception on overflow.

D4 conv.ovf.i Convert to a native int (on the stack as native int) and throw
an exception on overflow.

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int)
and throw an exception on overflow.

Stack Transition:

…, value …, result

Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the result cannot be represented in the target type, an exception is thrown.

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 8: Conversion Operations.

Exceptions:

System.OverflowException is thrown if the result can not be represented in the result type.

Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.

Verifiability:

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

62 Partition III

3.29 conv.ovf.<to type>.un – unsigned data conversion with overflow detection

Format Assembly Format Description

82 conv.ovf.i1.un Convert unsigned to an int8 (on the stack as int32) and throw
an exception on overflow.

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and
throw an exception on overflow.

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and
throw an exception on overflow.

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and
throw an exception on overflow.

86 conv.ovf.u1.un Convert unsigned to an unsigned int8 (on the stack as int32)
and throw an exception on overflow.

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32)
and throw an exception on overflow.

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32)
and throw an exception on overflow.

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64)
and throw an exception on overflow.

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int)
and throw an exception on overflow.

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as
native int) and throw an exception on overflow.

Stack Transition:

…, value …, result

Description:

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the
top of the stack. If the value cannot be represented, an exception is thrown. The item on the top of the stack is
treated as an unsigned value before the conversion.

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 8: Conversion Operations.

Exceptions:

System.OverflowException is thrown if the result cannot be represented in the result type.

Correctness:

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack.

Verifiability:

The table Table 8: Conversion Operations specifies a restricted set of types that are acceptable in verified code.

 Partition III 63

3.30 cpblk – copy data from memory to memory

Format Instruction Description

FE 17 cpblk Copy data from memory to memory.

Stack Transition:

…, destaddr, srcaddr, size …

Description:

The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native
int, or &) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the
source and destination areas overlap.

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the
unaligned. prefix instruction). The operation of the cpblk instruction can be altered by an immediately
preceding volatile. or unaligned. prefix instruction.

[Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler
that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit
platform. end rationale]

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

Correctness:

CIL ensures the conditions specified above.

Verifiability:

The cpblk instruction is never verifiable.

64 Partition III

3.31 div – divide values

Format Assembly Format Description

5B Div Divide two values to return a quotient or floating-point result.

Stack Transition:

…, value1, value2 …, result

Description:

result = value1 div value2 satisfies the following conditions:

|result| = |value1| / |value2|, and

sign(result) = +, if sign(value1) = sign(value2), or
 –, if sign(value1) ~= sign(value2)

The div instruction computes result and pushes it on the stack.

Integer division truncates towards zero.

Floating-point division is per IEC 60559:1989. In particular, division of a finite number by 0 produces the
correctly signed infinite value and

0 / 0 = NaN

infinity / infinity = NaN.

X / infinity = 0

The acceptable operand types and their corresponding result data type are encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

Integral operations throw System.ArithmeticException if the result cannot be represented in the
result type. (This can happen if value1 is the smallest representable integer value, and value2 is -1.)

Integral operations throw DivideByZeroException if value2 is zero.

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I).

Example:

+14 div +3 is 4

+14 div -3 is -4

-14 div +3 is -4

-14 div -3 is 4

Correctness and Verifiability

See Table 2: Binary Numeric Operations.

 Partition III 65

3.32 div.un – divide integer values, unsigned

Format Assembly Format Description

5C div.un Divide two values, unsigned, returning a quotient.

Stack Transition:

…, value1, value2 …, result

Description:

The div.un instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the
result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

System.DivideByZeroException is thrown if value2 is zero.

Example:

+5 div.un +3 is 1

+5 div.un -3 is 0

-5 div.un +3 is 14316557630 or 0x55555553

-5 div.un -3 is 0

Correctness and Verifiability

See Table 5: Integer Operations.

66 Partition III

3.33 dup – duplicate the top value of the stack

Format Assembly Format Description

25 Dup Duplicate the value on the top of the stack.

Stack Transition:

…, value …, value, value

Description:

The dup instruction duplicates the top element of the stack.

Exceptions:

None.

Correctness and Verifiability:

No additional requirements.

 Partition III 67

3.34 endfi lter – end exception handling fi lter clause

Format Assembly Format Description

FE 11 Endfilter End an exception handling filter clause.

Stack Transition:

…, value …

Description:

Used to return from the filter clause of an exception (see the Exception Handling subclause of Partition I for a
discussion of exceptions). value (which shall be of type int32 and one of a specific set of values) is returned
from the filter clause. It should be one of:

• exception_continue_search (0) to continue searching for an exception handler

• exception_execute_handler (1) to start the second phase of exception handling where
finally blocks are run until the handler associated with this filter clause is located. Then the
handler is executed.

The result of using any other integer value is unspecified.

The entry point of a filter, as shown in the method’s exception table, shall be the (lexically) first instruction in
the filter’s code block. The endfilter shall be the (lexically) last instruction in the filter’s code block (hence
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control
logically flows back to the CLI exception handling mechanism.

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be
transferred out of a filter block except through the use of a throw instruction or executing the final endfilter
instruction. In particular, it is not valid to execute a ret or leave instruction within a filter block. It is not
valid to embed a try block within a filter block. If an exception is thrown inside the filter block, it is
intercepted and a value of exception_continue_search is returned.

Exceptions:

None.

Correctness:

Correct CIL guarantees the control transfer restrictions specified above.

Verifiability:

The stack shall contain exactly one item (of type int32).

68 Partition III

3.35 endfinally – end the finally or fault clause of an exception block

Format Assembly Format Description

DC endfault End fault clause of an exception block.

DC endfinally End finally clause of an exception block.

Stack Transition:

… …

Description:

Return from the finally or fault clause of an exception block (see the Exception Handling subclause of
Partition I for details).

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception
handler is invoked. The endfinally or endfault instruction transfers control back to the CLI exception
mechanism. This then searches for the next finally clause in the chain, if the protected block was exited
with a leave instruction. If the protected block was exited with an exception, the CLI will search for the next
finally or fault, or enter the exception handler chosen during the first pass of exception handling.

An endfinally instruction can only appear lexically within a finally block. Unlike the endfilter instruction,
there is no requirement that the block end with an endfinally instruction, and there can be as many endfinally
instructions within the block as required. These same restrictions apply to the endfault instruction and the
fault block, mutatis mutandis.

Control cannot be transferred into a finally (or fault block) except through the exception mechanism.
Control cannot be transferred out of a finally (or fault) block except through the use of a throw
instruction or executing the endfinally (or endfault) instruction. In particular, it is not valid to “fall out” of a
finally (or fault) block or to execute a ret or leave instruction within a finally (or fault) block.

Note that the endfault and endfinally instructions are aliases—they correspond to the same opcode.

endfinally empties the evaluation stack as a side-effect.

Exceptions:

None.

Correctness:

Correct CIL guarantees the control transfer restrictions specified above.

Verifiability:

There are no additional verification requirements.

 Partition III 69

3.36 initblk – init ial ize a block of memory to a value

Format Assembly Format Description

FE 18 initblk Set all bytes in a block of memory to a given byte value.

Stack Transition:

…, addr, value, size …

Description:

The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int,
or &) to value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the
machine (but see the unaligned. prefix instruction).

[Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures,
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the compiler
that generates initblk instructions to be aware of whether the code will eventually execute on a 32-bit or 64-bit
platform. end rationale]

The operation of the initblk instructions can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

Correctness:

Correct CIL code ensures the restrictions specified above.

Verifiability:

The initblk instruction is never verifiable.

70 Partition III

3.37 jmp – jump to method

Format Assembly Format Description

27 <T> jmp method Exit current method and jump to the specified method.

Stack Transition:

… …

Description:

Transfer control to the method specified by method, which is a metadata token (either a methodref or
methoddef (See Partition II). The current arguments are transferred to the destination method.

The evaluation stack shall be empty when this instruction is executed. The calling convention, number and type
of arguments at the destination address shall match that of the current method.

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or
finally block; or out of a synchronized region. If this is done, results are undefined. See Partition I.

Exceptions:

None.

Correctness:

Correct CIL code obeys the control flow restrictions specified above.

Verifiability:

The jmp instruction is never verifiable.

 Partition III 71

3.38 ldarg.<length> – load argument onto the stack

Format Assembly
Format

Description

FE 09 <unsigned int16> ldarg num Load argument numbered num onto the stack.

0E <unsigned int8> ldarg.s num Load argument numbered num onto the stack, short form.

02 ldarg.0 Load argument 0 onto the stack.

03 ldarg.1 Load argument 1 onto the stack.

04 ldarg.2 Load argument 2 onto the stack.

05 ldarg.3 Load argument 3 onto the stack.

Stack Transition:

… …, value

Description:

The ldarg num instruction pushes onto the evaluation stack, the num’th incoming argument, where arguments
are numbered 0 onwards (see Partition I). The ldarg instruction can be used to load a value type or a built-in
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of
the argument, as specified by the current method’s signature.

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any one of the first
4 arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4–255.

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial
fixed arguments, not those in the variable part of the signature. (See the arglist instruction.)

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are
loaded onto the stack. Floating-point values are expanded to their native size (type F).

Exceptions:

None.

Correctness:

Correct CIL guarantees that num is a valid argument index.

Verifiability:

See §1.8 for details on how verification determines the type of the value loaded onto the stack.

72 Partition III

3.39 ldarga.<length> – load an argument address

Format Assembly Format Description

FE 0A <unsigned int16> ldarga argNum Fetch the address of argument argNum.

0F <unsigned int8> ldarga.s argNum Fetch the address of argument argNum, short form.

Stack Transition:

…, …, address of argument number argNum

Description:

The ldarga instruction fetches the address (of type &, i.e., managed pointer) of the argNum’th argument, where
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target
machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for argument numbers 0–255.

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial
fixed arguments, not those in the variable part of the signature.

[Rationale: ldarga is used for byref parameter passing (see Partition I). In other cases, ldarg and starg should
be used. end rationale]

Exceptions:

None.

Correctness:

Correct CIL ensures that argNum is a valid argument index.

Verifiability:

See §1.8 for details on how verification determines the type of the value loaded onto the stack.

 Partition III 73

3.40 ldc.<type> – load numeric constant

Format Assembly Format Description

20 <int32> ldc.i4 num Push num of type int32 onto the stack as int32.

21 <int64> ldc.i8 num Push num of type int64 onto the stack as int64.

22 <float32> ldc.r4 num Push num of type float32 onto the stack as F.

23 <float64> ldc.r8 num Push num of type float64 onto the stack as F.

16 ldc.i4.0 Push 0 onto the stack as int32.

17 ldc.i4.1 Push 1 onto the stack as int32.

18 ldc.i4.2 Push 2 onto the stack as int32.

19 ldc.i4.3 Push 3 onto the stack as int32.

1A ldc.i4.4 Push 4 onto the stack as int32.

1B ldc.i4.5 Push 5 onto the stack as int32.

1C ldc.i4.6 Push 6 onto the stack as int32.

1D ldc.i4.7 Push 7 onto the stack as int32.

1E ldc.i4.8 Push 8 onto the stack as int32.

15 ldc.i4.m1 Push -1 onto the stack as int32.

15 ldc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for
ldc.i4.m1).

1F <int8> ldc.i4.s num Push num onto the stack as int32, short form.

Stack Transition:

… …, num

Description:

The ldc num instruction pushes number num or some constant onto the stack. There are special short encodings
for the integers –128 through 127 (with especially short encodings for –1 through 8). All short encodings push
4-byte integers on the stack. Longer encodings are used for 8-byte integers and 4- and 8-byte floating-point
numbers, as well as 4-byte values that do not fit in the short forms.

There are three ways to push an 8-byte integer constant onto the stack

1. For constants that shall be expressed in more than 32 bits, use the ldc.i8 instruction.

2. For constants that require 9–32 bits, use the ldc.i4 instruction followed by a conv.i8.

3. For constants that can be expressed in 8 or fewer bits, use a short form instruction followed by a
conv.i8.

There is no way to express a floating-point constant that has a larger range or greater precision than a 64-bit
IEC 60559:1989 number, since these representations are not portable across architectures.

Exceptions:

None.

Correctness:
Verifiability:

The ldc instruction is always verifiable.

74 Partition III

3.41 ldftn – load method pointer

Format Assembly Format Description

FE 06 <T> ldftn method Push a pointer to a method referenced by method, on the stack.

Stack Transition:

… …, ftn

Description:

The ldftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the
method described by method (a metadata token, either a methoddef or methodref (see Partition II) onto
the stack). The value pushed can be called using the calli instruction if it references a managed method (or a
stub that transitions from managed to unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method
pointer can be passed to unmanaged native code (e.g., as a callback routine). Note that the address computed by
this instruction can be to a thunk produced specially for this purpose (for example, to re-enter the CIL
interpreter when a native version of the method isn’t available).

[Note: There are many options for implementing this instruction. Conceptually, this instruction places on the
virtual machine’s evaluation stack a representation of the address of the method specified. In terms of native
code this can be an address (as specified), a data structure that contains the address, or any value that can be
used to compute the address, depending on the architecture of the underlying machine, the native calling
conventions, and the implementation technology of the VES (JIT, interpreter, threaded code, etc.). end note]

Exceptions:

None.

Correctness:

Correct CIL requires that method is a valid methoddef or methodref token.

Verifiability:

Verification tracks the type of the value pushed in more detail than the native int type, remembering that
it is a method pointer. Such a method pointer can then be used with calli or to construct a delegate.

 Partition III 75

3.42 ldind.<type> – load value indirect onto the stack

Format Assembly Format Description

46 ldind.i1 Indirect load value of type int8 as int32 on the stack.

48 ldind.i2 Indirect load value of type int16 as int32 on the stack.

4A ldind.i4 Indirect load value of type int32 as int32 on the stack.

4C ldind.i8 Indirect load value of type int64 as int64 on the stack.

47 ldind.u1 Indirect load value of type unsigned int8 as int32 on the
stack.

49 ldind.u2 Indirect load value of type unsigned int16 as int32 on
the stack.

4B ldind.u4 Indirect load value of type unsigned int32 as int32 on
the stack.

4E ldind.r4 Indirect load value of type float32 as F on the stack.

4C ldind.u8 Indirect load value of type unsigned int64 as int64 on
the stack (alias for ldind.i8).

4F ldind.r8 Indirect load value of type float64 as F on the stack.

4D ldind.i Indirect load value of type native int as native int on the
stack

50 ldind.ref Indirect load value of type object ref as O on the stack.

Stack Transition:

…, addr …, value

Description:

The ldind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. All of the ldind
instructions are shortcuts for an ldobj instruction that specifies the corresponding built-in value class.

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Correct CIL ensures that the ldind instructions are used in a manner consistent with the type of the pointer.

The address specified by addr shall be to a location with the natural alignment of <type> or a
NullReferenceException might occur (but see the unaligned. prefix instruction). (Alignment is
discussed in Partition I.) The results of all CIL instructions that return addresses (e.g., ldloca and ldarga) are
safely aligned. For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that
depends on byte ordering might not run on all platforms.

The operation of the ldind instructions can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

[Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether
to sign extend or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; ldind.u8 is an
alias for ldind.i8; ldind.u4 and ldind.i4 have different opcodes, but their effect is identical. end rationale]

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

Correctness:

Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer.

76 Partition III

Verifiability:

For verifiable code, the address on the stack shall be a managed pointer, and the instruction form used shall be
consistent with the type of the pointer, as specified by the table above.

 Partition III 77

3.43 ldloc – load local variable onto the stack

Format Assembly
Format

Description

FE 0C<unsigned int16> ldloc indx Load local variable of index indx onto stack.

11 <unsigned int8> ldloc.s indx Load local variable of index indx onto stack, short form.

06 ldloc.0 Load local variable 0 onto stack.

07 ldloc.1 Load local variable 1 onto stack.

08 ldloc.2 Load local variable 2 onto stack.

09 ldloc.3 Load local variable 3 onto stack.

Stack Transition:

… …, value

Description:

The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack,
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method
only if the localsinit on the method is true (see Partition I). The ldloc.0, ldloc.1, ldloc.2, and ldloc.3
instructions provide an efficient encoding for accessing the first 4 local variables. The ldloc.s instruction
provides an efficient encoding for accessing local variables 4–255.

The type of the value is the same as the type of the local variable, which is specified in the method header. See
Partition I.

Local variables that are smaller than 4 bytes are expanded to type int32 when they are loaded onto the stack.
Floating-point values are expanded to their native size (type F).

Exceptions:

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and
the assembly containing this method has not been granted
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL
does not perform automatic definite-assignment analysis)

Correctness:

Correct CIL ensures that indx is a valid local index.

For the ldloc indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid).

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:

For verifiable code, this instruction shall guarantee that it is not loading an uninitialized value – whether that
initialization is done explicitly by having set thelocalsinit bit for the method, or by previous instructions (where
the CLI performs definite-assignment analysis).

See §1.8 for more details on how verification determines the type of a local variable.

78 Partition III

3.44 ldloca.<length> – load local variable address

Format Assembly Format Description

FE 0D <unsigned int16> ldloca indx Load address of local variable with index indx.

12 <unsigned int8> ldloca.s indx Load address of local variable with index indx, short form.

Stack Transition:

… …, address

Description:

The ldloca instruction pushes the address of the local variable number indx onto the stack, where local
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with
instructions like ldind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides an
efficient encoding for use with the local variables 0–255. (Local variables that are the subject of ldloca shall be
aligned as described in the ldind instruction, since the address obtained by ldloca can be used as an argument
to ldind.)

Exceptions:

System.VerificationException is thrown if the the localsinit bit for this method has not been set, and
the assembly containing this method has not been granted
System.Security.Permissions.SecurityPermission.SkipVerification (and the CIL
does not perform automatic definite-assignment analysis)

Correctness:

Correct CIL ensures that indx is a valid local index.

For the ldloca indx instruction, indx shall lie in the range 0–65534 inclusive (specifically, 65535 is not valid).

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:

See §1.8 for details on how verification determines the type of a local variable.

For verifiable code, this instruction shall guarantee that it is not loading the address of an uninitialized value –
whether that initialization is done explicitly by having set the localsinit bit for the method, or by previous
instructions (where the CLI performs definite-assignment analysis)

 Partition III 79

3.45 ldnull – load a null pointer

Format Assembly Format Description

14 ldnull Push a null reference on the stack.

Stack Transition:

… …, null value

Description:

The ldnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become
live or when they become dead.

[Rationale: It might be thought that ldnull is redundant: why not use ldc.i4.0 or ldc.i8.0 instead? The answer is
that ldnull provides a size-agnostic null – analogous to an ldc.i instruction, which does not exist. However,
even if CIL were to include an ldc.i instruction it would still benefit verification algorithms to retain the ldnull
instruction because it makes type tracking easier. end rationale]

Exceptions:

None.

Correctness:

Verifiability:

The ldnull instruction is always verifiable, and produces a value that verification considers compatible with any
other reference type.

80 Partition III

3.46 leave.<length> – exit a protected region of code

Format Assembly Format Description

DD <int32> leave target Exit a protected region of code.

DE <int8> leave.s target Exit a protected region of code, short form.

Stack Transition:

…,

Description:

The leave instruction unconditionally transfers control to target. target is represented as a signed offset
(4 bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction.

The leave instruction is similar to the br instruction, but the former can be used to exit a try, filter, or
catch block whereas the ordinary branch instructions can only be used in such a block to transfer control
within it. The leave instruction empties the evaluation stack and ensures that the appropriate surrounding
finally blocks are executed.

It is not valid to use a leave instruction to exit a finally block. To ease code generation for exception
handlers it is valid from within a catch block to use a leave instruction to transfer control to any instruction
within the associated try block.

The leave instruction can be used to exit multiple nested blocks (see Partition I).

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes.

Exceptions:

None.

Correctness:

Correct CIL requires the computed destination lie within the current method.

Verifiability:

See §1.8 for details.

 Partition III 81

3.47 localloc – allocate space in the local dynamic memory pool

Format Assembly Format Description

FE 0F localloc Allocate space from the local memory pool.

Stack Transition:

size address

Description:

The localloc instruction allocates size (type native unsigned int or U4) bytes from the local dynamic
memory pool and returns the address (an unmanaged pointer, type native int) of the first allocated byte. If the
localsinit flag on the method is true, the block of memory returned is initialized to 0; otherwise, the initial value
of that block of memory is unspecified. The area of memory is newly allocated. When the current method
returns, the local memory pool is available for reuse.

address is aligned so that any built-in data type can be stored there using the stind instructions and loaded
using the ldind instructions.

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault.

[Rationale: localloc is used to create local aggregates whose size shall be computed at runtime. It can be used
for C’s intrinsic alloca method. end rationale]

Exceptions:

System.StackOverflowException is thrown if there is insufficient memory to service the request.

Correctness:

Correct CIL requires that the evaluation stack be empty, apart from the size item

Verifiability:

This instruction is never verifiable.

82 Partition III

3.48 mul – multiply values

Format Assembly Format Description

5A mul Multiply values.

Stack Transition:

…, value1, value2 …, result

Description:

The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently
truncate the upper bits on overflow (see mul.ovf).

For floating-point types, 0 × infinity = NaN.

The acceptable operand types and their corresponding result data types are encapsulated in
Table 2: Binary Numeric Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

 Partition III 83

3.49 mul.ovf.<type> – multiply integer values with overflow check

Format Assembly Format Description

D8 mul.ovf Multiply signed integer values. Signed result shall fit in same
size.

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result shall fit in
same size.

Stack Transition:

…, value1, value2 …, result

Description:

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An exception
is thrown if the result will not fit in the result type.

The acceptable operand types and their corresponding result data types are encapsulated in
Table 7: Overflow Arithmetic Operations.

Exceptions:

System.OverflowException is thrown if the result can not be represented in the result type.

Correctness and Verifiability:

See Table 8: Conversion Operations.

84 Partition III

3.50 neg – negate

Format Assembly Format Description

65 Neg Negate value.

Stack Transition:

…, value …, result

Description:

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the
operand type.

Negation of integral values is standard twos-complement negation. In particular, negating the most negative
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow
use the sub.ovf instruction instead (i.e., subtract from 0).

Negating a floating-point number cannot overflow; negating NaN returns NaN.

The acceptable operand types and their corresponding result data types are encapsulated in
Table 3: Unary Numeric Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 3: Unary Numeric Operations.

 Partition III 85

3.51 nop – no operation

Format Assembly Format Description

00 Nop Do nothing.

Stack Transition:

…, …,

Description:

The nop instruction does nothing. It is intended to fill in space if bytecodes are patched.

Exceptions:

None.

Correctness:

Verifiability:

The nop instruction is always verifiable.

86 Partition III

3.52 not – bitwise complement

Format Assembly Format Description

66 Not Bitwise complement.

Stack Transition:

…, value …, result

Description:

The not instruction computes the bitwise complement of the integer value on top of the stack and leaves the
result on top of the stack. The return type is the same as the operand type.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

 Partition III 87

3.53 or – bitwise OR

Format Instruction Description

60 Or Bitwise OR of two integer values, returns an integer.

Stack Transition:

…, value1, value2 …, result

Description:

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

88 Partition III

3.54 pop – remove the top element of the stack

Format Assembly Format Description

26 pop Pop value from the stack.

Stack Transition:

…, value …

Description:

The pop instruction removes the top element from the stack.

Exceptions:

None.

Correctness:

Verifiability:

No additional requirements.

 Partition III 89

3.55 rem – compute remainder

Format Assembly Format Description

5D rem Remainder when dividing one value by another.

Stack Transition:

…, value1, value2 …, result

Description:

The rem instruction divides value1 by value2 and pushes the remainder result on the stack.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 2: Binary Numeric Operations.

For integer operands

result = value1 rem value2 satisfies the following conditions:

 result = value1 – value2×(value1 div value2), and

 0 ≤ |result| < |value2|, and

 sign(result) = sign(value1),

where div is the division instruction, which truncates towards zero.

For floating-point operands

rem is defined similarly as for integer operands, except that, if value2 is zero or value1 is infinity, result is
NaN. If value2 is infinity, result is value1. This definition is different from the one for floating-point
remainder in the IEC 60559:1989 Standard. That Standard specifies that value1 div value2 is the nearest integer
instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC
60559:1989 behavior.

Exceptions:

Integral operations throw System.DivideByZeroException if value2 is zero.

Integral operations can throw System.ArithmeticException if value1 is the smallest representable
integer value and value2 is -1.

Example:

+10 rem +6 is 4 (+10 div +6 = 1)

+10 rem -6 is 4 (+10 div -6 = -1)

-10 rem +6 is -4 (-10 div +6 = -1)

-10 rem -6 is -4 (-10 div -6 = 1)

For the various floating-point values of 10.0 and 6.0, rem gives the same values;
System.Math.IEEERemainder, however, gives the following values.

System.Math.IEEERemainder(+10.0,+6.0) is -2 (+10.0 div +6.0 = 1.666…7)

System.Math.IEEERemainder(+10.0,-6.0) is -2 (+10.0 div -6.0 = -1.666…7)

System.Math.IEEERemainder(-10.0,+6.0) is 2 (-10.0 div +6.0 = -1.666…7)

System.Math.IEEERemainder(-10.0,-6.0) is 2 (-10.0 div -6.0 = 1.666…7)

Correctness and Verifiability:

See Table 2: Binary Numeric Operations.

90 Partition III

3.56 rem.un – compute integer remainder, unsigned

Format Assembly Format Description

5E rem.un Remainder when dividing one unsigned value by another.

Stack Transition:

…, value1, value2 …, result

Description:

The rem.un instruction divides value1 by value2 and pushes the remainder result on the stack. (rem.un treats
its arguments as unsigned integers, while rem treats them as signed integers.)

result = value1 rem.un value2 satisfies the following conditions:

 result = value1 – value2×(value1 div.un value2), and

 0 ≤ result < value2,

where div.un is the unsigned division instruction. rem.un is unspecified for floating-point numbers.

The acceptable operand types and their corresponding result data type are encapsulated in
Table 5: Integer Operations.

Exceptions:

Integral operations throw System.DivideByZeroException if value2 is zero.

Example:

+5 rem.un +3 is 2 (+5 div.un +3 = 1)

+5 rem.un -3 is 5 (+5 div.un -3 = 0)

-5 rem.un +3 is 2 (-5 div.un +3 = 1431655763 or 0x55555553)

-5 rem.un -3 is -5 or 0xfffffffb (-5 div.un -3 = 0)

Correctness and Verifiability:

See Table 5: Integer Operations.

 Partition III 91

3.57 ret – return from method

Format Assembly Format Description

2A Ret Return from method, possibly with a value.

Stack Transition:

 retVal on callee evaluation stack (not always present)

…, retVal on caller evaluation stack (not always present)

Description:

Return from the current method. The return type, if any, of the current method determines the type of value to
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The
evaluation stack for the current method shall be empty except for the value to be returned.

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block.
From within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all
enclosing exception blocks. Because the filter and finally blocks are logically part of exception
handling, not the method in which their code is embedded, correctly generated CIL does not perform a method
return from within a filter or finally. See Partition I.

Exceptions:

None.

Correctness:

Correct CIL obeys the control constraints describe above.

Verifiability:

Verification requires that the type of retVal is compatible with the declared return type of the current method.

92 Partition III

3.58 shl – shift integer left

Format Assembly Format Description

62 Shl Shift an integer left (shifting in zeros), return an integer.

Stack Transition:

…, value, shiftAmount …, result

Description:

The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is
greater than or equal to the width of value. See Table 6: Shift Operations for details of which operand types are
allowed, and their corresponding result type.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

 Partition III 93

3.59 shr – shift integer right

Format Assembly Format Description

63 Shr Shift an integer right (shift in sign), return an integer.

Stack Transition:

…, value, shiftAmount …, result

Description:

The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is
greater than or equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of
the original value in result. See Table 6: Shift Operations for details of which operand types are allowed, and
their corresponding result type.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

94 Partition III

3.60 shr.un – shift integer right, unsigned

Format Assembly Format Description

64 shr.un Shift an integer right (shift in zero), return an integer.

Stack Transition:

…, value, shiftAmount …, result

Description:

The shr.un instruction shifts value (int32, int 64 or native int) right by the number of bits specified
by shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if
shiftAmount is greater than or equal to the width of value. shr.un inserts a zero bit on each shift. See Table 6:
Shift Operations for details of which operand types are allowed, and their corresponding result type.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

 Partition III 95

3.61 starg.<length> – store a value in an argument slot

Format Assembly
Format

Description

FE 0B <unsigned int16> starg num Store value to the argument numbered num.

10 <unsigned int8> starg.s num Store value to the argument numbered num, short form.

Stack Transition:

…, value …,

Description:

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The
type of the value shall match the type of the argument, as specified in the current method’s signature. The
starg.s instruction provides an efficient encoding for use with the first 256 arguments.

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed
arguments, not those in the variable part of the signature.

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Exceptions:

None.

Correctness:

Correct CIL requires that num is a valid argument slot.

Verifiability:

Verification also checks that the verification type of value matches the type of the argument, as specified in the
current method’s signature (verification types are less detailed than CLI types).

96 Partition III

3.62 st ind.<type> – store value indirect from stack

Format Assembly Format Description

52 stind.i1 Store value of type int8 into memory at address

53 stind.i2 Store value of type int16 into memory at address

54 stind.i4 Store value of type int32 into memory at address

55 stind.i8 Store value of type int64 into memory at address

56 stind.r4 Store value of type float32 into memory at address

57 stind.r8 Store value of type float64 into memory at address

DF stind.i Store value of type native int into memory at address

51 stind.ref Store value of type object ref (type O) into memory at address

Stack Transition:

…, addr, val …

Description:

The stind instruction stores value val at address addr (an unmanaged pointer, type native int, or managed
pointer, type &). The address specified by addr shall be aligned to the natural size of val or a
NullReferenceException can occur (but see the unaligned. prefix instruction). The results of all CIL
instructions that return addresses (e.g., ldloca and ldarga) are safely aligned. For data types larger than 1 byte,
the byte ordering is dependent on the target CPU. Code that depends on byte ordering might not run on all
platforms. All of the stind instructions are shortcuts for an stobj instruction that specifies the corresponding
built-in value class.

Type-safe operation requires that the stind instruction be used in a manner consistent with the type of the
pointer.

The operation of the stind instruction can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

Exceptions:

System.NullReferenceException is thrown if addr is not naturally aligned for the argument type
implied by the instruction suffix.

Correctness:

Correct CIL ensures that addr is a pointer whose type is assignment-compatible with that of val, subject to
implicit conversion as specified in §1.6.

Verifiability:

For verifiable code, addr shall be a managed pointer, and the type of val shall be assignment compatible with
addr: if addr has type S& and val has type T, then S := T according to the rules in §1.8.1.2.2.

 Partition III 97

3.63 st loc – pop value from stack to local variable

Format Assembly Format Description

FE 0E <unsigned int16> stloc indx Pop a value from stack into local variable indx.

13 <unsigned int8> stloc.s indx Pop a value from stack into local variable indx, short form.

0A stloc.0 Pop a value from stack into local variable 0.

0B stloc.1 Pop a value from stack into local variable 1.

0C stloc.2 Pop a value from stack into local variable 2.

0D stloc.3 Pop a value from stack into local variable 3.

Stack Transition:

…, value …

Description:

The stloc indx instruction pops the top value off the evaluation stack and moves it into local variable number
indx (see Partition I), where local variables are numbered 0 onwards. The type of value shall match the type of
the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and
stloc.3 instructions provide an efficient encoding for the first 4 local variables; the stloc.s instruction provides
an efficient encoding for local variables 4–255.

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size
associated with the argument.

Exceptions:

None.

Correctness:

Correct CIL requires that indx be a valid local index. For the stloc indx instruction, indx shall lie in the
range 0–65534 inclusive (specifically, 65535 is not valid)

[Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had
been made valid, it would require a wider integer to track the number of locals in such a method. end rationale]

Verifiability:

Verification also checks that the verification type of value matches the type of the local, as specified in the
current method’s locals signature.

98 Partition III

3.64 sub – subtract numeric values

Format Assembly Format Description

59 sub Subtract value2 from value1, returning a new value.

Stack Transition:

…, value1, value2 …, result

Description:

The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -
inf on negative overflow, and zero on floating-point underflow.

The acceptable operand types and their corresponding result data type are encapsulated in Table 2: Binary
Numeric Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table2: Binary Numeric Operations.

 Partition III 99

3.65 sub.ovf.<type> – subtract integer values, checking for overflow

Format Assembly Format Description

DA sub.ovf Subtract native int from a native int. Signed result shall fit in
same size.

DB sub.ovf.un Subtract native unsigned int from a native unsigned int.
Unsigned result shall fit in same size.

Stack Transition:

…, value1, value2 …, result

Description:

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values
and the return type are specified by the instruction. An exception is thrown if the result does not fit in the result
type.

The acceptable operand types and their corresponding result data type is encapsulated in
Table 7: Overflow Arithmetic Operations.

Exceptions:

System.OverflowException is thrown if the result can not be represented in the result type.

Correctness and Verifiability:

See Table 7: Overflow Arithmetic Operations.

100 Partition III

3.66 switch – table switch based on value

Format Assembly Format Description

45 <unsigned int32> <int32>… <int32> switch (t1, t2 … tN) Jump to one of n values.

Stack Transition:

…, value …,

Description:

The switch instruction implements a jump table. The format of the instruction is an unsigned int32
representing the number of targets N, followed by N int32 values specifying jump targets: these targets are
represented as offsets (positive or negative) from the beginning of the instruction following this switch
instruction.

The switch instruction pops value off the stack and compares it, as an unsigned integer, to n. If value is less
than n, execution is transferred to the value’th target, where targets are numbered from 0 (i.e., a value of 0 takes
the first target, a value of 1 takes the second target, and so on). If value is not less than n, execution continues at
the next instruction (fall through).

If the target instruction has one or more prefix codes, control can only be transferred to the first of these
prefixes.

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this
instruction. (Such transfers are severely restricted and shall use the leave instruction instead; see Partition I for
details).

Exceptions:

None.

Correctness:

Correct CIL obeys the control transfer constraints listed above.

Verifiability:

Verification requires the type-consistency of the stack, locals and arguments for every possible way of reaching
all destination instructions. See §1.8 for more details.

 Partition III 101

3.67 xor – bitwise XOR

Format Assembly Format Description

61 xor Bitwise XOR of integer values, returns an integer.

Stack Transition:

..., value1, value2 ..., result

Description:

The xor instruction computes the bitwise XOR of value1 and value2and leaves the result on the stack.

The acceptable operand types and their corresponding result data type is encapsulated in Table 5: Integer
Operations.

Exceptions:

None.

Correctness and Verifiability:

See Table 5: Integer Operations.

102 Partition III

4 Object model instructions
The instructions described in the base instruction set are independent of the object model being executed. Those
instructions correspond closely to what would be found on a real CPU. The object model instructions are less
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to
the underlying operating system.

[Rationale: The object model instructions provide a common, efficient implementation of a set of services used
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions
defined by the CTS. This include (among other things):

• Field layout within an object

• Layout for late bound method calls (vtables)

• Memory allocation and reclamation

• Exception handling

• Boxing and unboxing to convert between reference-based objects and value types

For more details, see Partition I. end rationale]

 Partition III 103

4.1 box – convert a boxable value to its boxed form

Format Assembly Format Description

8C <T> box typeTok Convert a boxable value to its boxed form

Stack Transition:

…, val …, obj

Description:

If typeTok is a value type, the box instruction converts val to its boxed form; this is accomplished by creating a
new object and copying the data from val into the newly allocated object. If typeTok is a reference type, the
box instruction does nothing.

typeTok is a metadata token (a typedef, typeref, or typespec) indicating the type of val. typeTok can
represent a value type, a reference type, or a generic parameter.

Exceptions:

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

System.TypeLoadException is thrown if typeTok cannot be found. (This is typically detected when CIL
is converted to native code rather than at runtime.)

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token. The type operand typeTok
shall represent a boxable type.

Verifiability:

The top-of-stack shall be assignment compatible with the type represented by typeTok. When typeTok
represents a value type or generic parameter, the resulting type is “boxed” typeTok. When typeTok is a
reference type, the resulting type is typeTok. The type operand typeTok shall not be a byref, byref-like or void
type.

104 Partition III

4.2 cal lvirt – call a method associated, at runtime, with an object

Format Assembly Format Description

6F <T> callvirt method Call a method associated with an object.

Stack Transition:

…, obj, arg1, … argN …, returnVal (not always returned)

Description:

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the exact
type of obj rather than the compile-time class visible in the method metadata token. callvirt can be used to call
both virtual and instance methods. See Partition I for a detailed description of the CIL calling sequence. The
callvirt instruction can be immediately preceded by a tail. prefix to specify that the current stack frame should
be released before transferring control. If the call would transfer control to a method of higher trust than the
original method the stack frame will not be released.

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of
the caller]

method is a metadata token (a methoddef, methodref or methodspec see Partition II) that provides the
name, class and signature of the method to call. In more detail, callvirt can be thought of as follows. Associated
with obj is the class of which it is an instance. If obj’s class defines a non-static method that matches the
indicated method name and signature, this method is called. Otherwise all classes in the base class chain of
obj’s class are checked in order. It is an error if no method is found.

callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method has
a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is
accessed as argument 0, arg1 as argument 1, and so on.

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed
on the stack, then the second argument, etc. The this pointer (always required for callvirt) shall be pushed
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the
parameter list for the this pointer, but uses a bit (called HASTHIS) to indicate whether the method requires
passing the this pointer (see Partition II)

Note that a virtual method can also be called using the call instruction.

Exceptions:

System.MissingMethodException is thrown if a non-static method with the indicated name and
signature could not be found in obj’s class or any of its base classes. This is typically detected when CIL is
converted to native code, rather than at runtime.

System.NullReferenceException is thrown if obj is null.

System.SecurityException is thrown if system security does not grant the caller access to the called
method. The security check can occur when the CIL is converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of
the parameters of the method being called.

Verifiability:

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent
with the types expected by the method call, and (d) the method is accessible from the call site. A callvirt
annotated by tail. has additional considerations – see §1.8.

 Partition III 105

4.3 castclass – cast an object to a class

Format Assembly Format Description

74 <T> castclass class Cast obj to class.

Stack Transition:

…, obj …, obj2

Description:

The castclass instruction attempts to cast obj (of type O) to the class. class is a metadata token (a typeref,
typedef or typespec), indicating the desired class. If the class of the object on the top of the stack does not
implement class (if class is an interface), and is not a derived class of class (if class is a regular class), then an
InvalidCastException is thrown.

Note that:

1. Arrays inherit from System.Array.

2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[].

3. For the purposes of note 2 above, enums are treated as their underlying type: thus E1[] can be cast
to E2[] if E1 and E2 share an underlying type.

If obj is null, castclass succeeds and returns null. This behavior differs from isinst.
Exceptions:

System.InvalidCastException is thrown if obj cannot be cast to class.

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid typeRef, typeDef or typeSpec token, and that obj is always
either null or an object reference.

Verifiability:

There are no additional verification requirements.

106 Partition III

4.4 cpobj – copy a value from one address to another

Format Assembly Format Description

70 <T> cpobj typeTok Copy a value type from src to dest.

Stack Transition:

…, dest, src …,

Description:

The cpobj instruction copies the value at the address specified by src (an unmanaged pointer, native int,
or a managed pointer, &) to the address specified by dest (also a pointer). typeTok can be a typedef,
typeref, or typespec. The behavior is unspecified if the type of the location referenced by src is not
assignment-compatible with the type of the location referenced by dest.

If typeTok is a reference type, the cpobj instruction has the same effect as ldind.ref followed by stind.ref.
Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL
is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

The static types of the destination (dest) and source (src) values shall both be managed pointers (&) to values
whose types we denote destType and srcType, respectively. Finally, srcType shall be assignment-compatible
with typeTok, and typeTok shall be assignment-compatible with destType. In the case of an Enum, its type is
that of the underlying, or base, type of the Enum.

 Partition III 107

4.5 initobj – initialize the value at an address

Format Assembly Format Description

FE 15 <T> initobj typeTok Initialize the value at address dest.

Stack Transition:

…, dest …,

Description:

The initobj instruction initializes an address with a default value. typeTok is a metadata token (a typedef,
typeref, or typespec). dest is an unmanaged pointer (native int), or a managed pointer (&). If
typeTok is a value type, the initobj instruction initializes each field of dest to null or a zero of the appropriate
built-in type. If typeTok is a value type, then after this instruction is executed, the instance is ready for a
constructor method to be called. If typeTok is a reference type, the initobj instruction has the same effect as
ldnull followed by stind.ref.

Unlike newobj, the initobj instruction does not call any constructor method.

Exceptions:

None.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

The type of the destination value on top of the stack shall be a managed pointer to some type destType, and
typeTok shall be a subtype of destType. If typeTok is a non-reference type, the definition of subtyping implies
that destType and typeTok shall be equal.

108 Partition III

4.6 isinst – test i f an object is an instance of a class or interface

Format Assembly Format Description

75 <T> isinst class Test if obj is an instance of class, returning null or an instance of
that class or interface.

Stack Transition:

…, obj …, result

Description:

The isinst instruction tests whether obj (type O) is an instance of class. class is a metadata token (a typeref,
typedef or typespecsee Partition II) indicating the desired class. If the class of the object on the top of the
stack implements class (if class is an interface) or is a derived class of class (if class is a regular class), then it
is cast to the type class and the result is pushed on the stack, exactly as though castclass had been called.
Otherwise null is pushed on the stack. If obj is null, isinst returns null.

Note that:

1. Arrays inherit from System.Array.
2. If Foo can be cast to Bar, then Foo[] can be cast to Bar[].

3. For the purposes of note 2, enums are treated as their underlying type: thus E1[] can cast to E2[]
if E1 and E2 share an underlying type.

Exceptions:

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid typeref or typedef or typespec token indicating a class, and
that obj is always either null or an object reference.

Verifiability:

There are no additional verification requirements.

 Partition III 109

4.7 ldelem – load element from array

Format Assembly Format Description

A3 <T> ldelem typeTok Load the element at index onto the top of the stack.

Stack Transition:

…, array, index …, value

Description:

The ldelem instruction loads the value of the element with index index (of type native int or int32) in
the zero-based one-dimensional array array, and places it on the top of the stack. The type of the return value
is indicated by the type token typeTok in the instruction.

Exceptions:

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.

System.NullReferenceException is thrown if array is null.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

array shall be either null or a single dimensional, zero-based array.

Verifiability:

The static type of array is either the special reference type Null or a proper zero-based, one-dimensional array
type elem[], for some type elem. If the array type is Null, take elem to be the type represented by operand
typeTok. The value index shall have type native int. The type elem shall be a subtype of the type operand
typeTok. The type of the value left on the stack is typeTok.

110 Partition III

4.8 ldelem.<type> – load an element of an array

Format Assembly Format Description

90 ldelem.i1 Load the element with type int8 at index onto the top of the stack as
an int32.

92 ldelem.i2 Load the element with type int16 at index onto the top of the stack
as an int32.

94 ldelem.i4 Load the element with type int32 at index onto the top of the stack
as an int32.

96 ldelem.i8 Load the element with type int64 at index onto the top of the stack
as an int64.

91 ldelem.u1 Load the element with type unsigned int8 at index onto the top of
the stack as an int32.

93 ldelem.u2 Load the element with type unsigned int16 at index onto the top of
the stack as an int32.

95 ldelem.u4 Load the element with type unsigned int32 at index onto the top of
the stack as an int32.

96 ldelem.u8 Load the element with type unsigned int64 at index onto the top of
the stack as an int64 (alias for ldelem.i8).

98 ldelem.r4 Load the element with type float32 at index onto the top of the stack
as an F

99 ldelem.r8 Load the element with type float64 at index onto the top of the stack
as an F.

97 ldelem.i Load the element with type native int at index onto the top of the
stack as a native int.

9A ldelem.ref Load the element at index onto the top of the stack as an O. The type
of the O is the same as the element type of the array pushed on the
CIL stack.

Stack Transition:

…, array, index …, value

Description:

The ldelem instruction loads the value of the element with index index (of type int32 or native int) in
the zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence
represented by a value of type O. The return value is indicated by the instruction.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a
Get method.

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded
onto the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.

Correctness:

 Partition III 111

Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared
element type matches exactly the type for this particular instruction suffix (e.g., ldelem.r4 can only be applied
to a zero-based, one dimensional array of float32s)

Verifiability:

The type of index shall be int32 or native int. The element type of array shall match the type
specified by the suffix, as described above.

112 Partition III

4.9 ldelema – load address of an element of an array

Format Assembly Format Description

8F <T> ldelema class Load the address of element at index onto the top of the stack.

Stack Transition:

…, array, index …, address

Description:

The ldelema instruction loads the address of the element with index index (of type int32 or native int)
in the zero-based one-dimensional array array (of element type class) and places it on the top of the stack.
Arrays are objects and hence represented by a value of type O. The return address is a managed pointer
(type &).

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides an
Address method.

If this instruction is prefixed by the readonly. prefix, it produces a controlled-mutability managed pointer
(§1.8.1.2.2).

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Correctness:

Correct CIL ensures that class is a typeref or typedef or typespec token to a class, and that array is
indeed always either null or a zero-based, one-dimensional array whose declared element type matches class
exactly.

Verifiability:

The type of index shall be int32 or native int. The element type of array shall match class exactly.

 Partition III 113

4.10 ldf ld – load field of an object

Format Assembly Format Description

7B <T> ldfld field Push the value of field of object (or value type) obj, onto the stack.

Stack Transition:

…, obj …, value

Description:

The ldfld instruction pushes onto the stack the value of a field of obj. obj shall be an object (type O), a managed
pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of an
unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef
see Partition II) that shall refer to a field member. The return type is that associated with field. ldfld pops the
object reference off the stack and pushes the value for the field in its place. The field can be either an instance
field (in which case obj shall not be null) or a static field.

The ldfld instruction can be preceded by either or both of the unaligned. and volatile. prefixes.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

System.NullReferenceException is thrown if obj is null and the field is not static.

Correctness:

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type
compatible with that required for the lookup being performed.

Verifiability:

For verifiable code, obj shall not be an unmanaged pointer.

It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

114 Partition III

4.11 ldflda – load field address

Format Assembly Format Description

7C <T> ldflda field Push the address of field of object obj on the stack.

Stack Transition:

…, obj …, address

Description:

The ldflda instruction pushes the address of a field of obj. obj is either an object, type O, a managed pointer,
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in
verifiable code. The value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged pointer,
in which case it is an unmanaged pointer (type native int).

field is a metadata token (a fieldref or fielddef; see Partition II) that shall refer to a field member. The
field can be either an instance field (in which case obj shall not be null) or a static field.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.InvalidOperationException is thrown if the obj is not within the application domain from
which it is being accessed. The address of a field that is not inside the accessing application domain cannot be
loaded.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

System.NullReferenceException is thrown if obj is null and the field isn’t static.

Correctness:

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with
that required for the lookup being performed.

Verifiability:

For verifiable code, field cannot be init-only.

It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

Remark:

Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to modify
that value outside the body of the class initializer might lead to unpredictable behavior.

 Partition III 115

4.12 ldlen – load the length of an array

Format Assembly Format Description

8E ldlen Push the length (of type native unsigned int) of array on the stack.

Stack Transition:

…, array …, length

Description:

The ldlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the
stack.

Arrays are objects and hence represented by a value of type O. The return value is a native unsigned
int.

Exceptions:

System.NullReferenceException is thrown if array is null.

Correctness:

Correct CIL ensures that array is indeed always null or a zero-based, one dimensional array.

Verifiability:

116 Partition III

4.13 ldobj – copy a value from an address to the stack

Format Assembly Format Description

71 <T> ldobj typeTok Copy the value stored at address src to the stack.

Stack Transition:

…, src …, val

Description:

The ldobj instruction copies a value to the evaluation stack. typeTok is a metadata token (a typedef,
typeref, or typespec). src is an unmanaged pointer (native int), or a managed pointer (&). If
typeTok is a reference type, the ldobj instruction has the same effect as ldind.ref.

[Rationale: The ldobj instruction can be used to pass a value type as an argument. end rationale]

The operation of the ldobj instruction can be altered by an immediately preceding volatile. or
unaligned. prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL
is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

The static type of the source value on top of the stack shall be a managed pointer to some type srcType, and
srcType shall be a subtype of typeTok. The static type of the value remaining on the stack is typeTok.

 Partition III 117

4.14 ldsfld – load static f ield of a class

Format Assembly Format Description

7E <T> ldsfld field Push the value of field on the stack.

Stack Transition:

…, …, value

Description:

The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack. field
is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The
return type is that associated with field.

The ldsfld instruction can have a volatile. prefix.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid metadata token referring to a static field member.

Verifiability:

There are no additional verification requirements.

118 Partition III

4.15 ldsflda – load static f ield address

Format Assembly Format Description

7F <T> ldsflda field Push the address of the static field, field, on the stack.

Stack Transition:

…, …, address

Description:

The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory is
managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a
metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that
field can be a static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for
Relative Virtual Address, the offset of the field from the base address at which its containing PE file is loaded
into memory)

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type
whose memory is managed.

Verifiability:

For verifiable code, field cannot be init-only.

Remark:

Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to modify
that value outside the body of the class initializer can lead to unpredictable behavior.

 Partition III 119

4.16 ldstr – load a literal string

Format Assembly Format Description

72 <T> ldstr string Push a string object for the literal string.

Stack Transition:

…, …, string

Description:

The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (which
is a string literal).

The ldstr instruction allocates memory and performs any format conversion required to convert from the form
used in the file to the string format required at runtime. The CLI guarantees that the result of two ldstr
instructions referring to two metadata tokens that have the same sequence of characters, return precisely the
same string object (a process known as “string interning”).

Exceptions:

None.

Correctness:

Correct CIL requires that string is a valid string literal metadata token.

Verifiability:

There are no additional verification requirements.

120 Partition III

4.17 ldtoken – load the runtime representation of a metadata token

Format Assembly Format Description

D0 <T> ldtoken token Convert metadata token to its runtime representation.

Stack Transition:

… …, RuntimeHandle

Description:

The ldtoken instruction pushes a RuntimeHandle for the specified metadata token. The token shall be one of:

A methoddef, methodref or methodspec: pushes a RuntimeMethodHandle

A typedef, typeref, or typespec : pushes a RuntimeTypeHandle

A fielddef or fieldref : pushes a RuntimeFieldHandle

The value pushed on the stack can be used in calls to reflection methods in the system class library

Exceptions:

None.

Correctness:

Correct CIL requires that token describes a valid metadata token of the kinds listed above

Verifiability:

There are no additional verification requirements.

 Partition III 121

4.18 ldvirtftn – load a virtual method pointer

Format Assembly Format Description

FE 07 <T> ldvirtftn method Push address of virtual method method on the stack.

Stack Transition:

… object …, ftn

Description:

The ldvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing
the virtual method associated with object and described by the method reference method (a metadata token, a
methoddef, methodref or methodspec; see Partition II) onto the stack. The value pushed can be
called using the calli instruction if it references a managed method (or a stub that transitions from managed to
unmanaged code).

The value returned points to native code using the calling convention specified by method. Thus a method
pointer can be passed to unmanaged native code (e.g., as a callback routine) if that routine expects the
corresponding calling convention. Note that the address computed by this instruction can be to a thunk
produced specially for this purpose (for example, to re-enter the CLI when a native version of the method isn’t
available)

Exceptions:

System.NullReferenceException is thrown if object is null.

Correctness:

Correct CIL ensures that method is a valid methoddef, methodref or methodspec token. Also that
method references a non-static method that is defined for object.

Verifiability:

Verification tracks the type of the value pushed in more detail than the native int type, remembering that
it is a method pointer. Such a method pointer can then be used in verified code with calli or to construct a
delegate.

122 Partition III

4.19 mkrefany – push a typed reference on the stack

Format Assembly Format Description

C6 <T> mkrefany class Push a typed reference to ptr of type class onto the stack.

Stack Transition:

…, ptr …, typedRef

Description:

The mkrefany instruction supports the passing of dynamically typed references. ptr shall be a pointer (type &,
or native int) that holds the address of a piece of data. class is the class token (a typeref or typedef;
see Partition II) describing the type of ptr. mkrefany pushes a typed reference on the stack, that is an opaque
descriptor of ptr and class. The only valid operation on a typed reference on the stack is to pass it to a method
that requires a typed reference as a parameter. The callee can then use the refanytype and refanyval
instructions to retrieve the type (class) and address (ptr) respectively.

Exceptions:

System.TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is
converted to native code rather than at runtime.

Correctness:

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is a
pointer to exactly that type.

Verifiability:

Verification additionally requires that ptr be a managed pointer. Verification will fail if it cannot deduce that
ptr is a pointer to an instance of class.

 Partition III 123

4.20 newarr – create a zero-based, one-dimensional array

Format Assembly Format Description

8D <T> newarr etype Create a new array with elements of type etype.

Stack Transition:

…, numElems …, array

Description:

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of
type etype, a metadata token (a typeref, typedef or typespec; see Partition II). numElems (of type
native int or int32) specifies the number of elements in the array. Valid array indexes are 0 ≤ index <
numElems. The elements of an array can be any type, including value types.

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate
value type (System.Int32, etc.). Elements of the array are initialized to 0 of the appropriate type.

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather
than newarr. More commonly, they are created using the methods of System.Array class in the Base
Framework.

Exceptions:

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

System.OverflowException is thrown if numElems is < 0

Correctness:

Correct CIL ensures that etype is a valid typeref, typedef or typespec token.

Verifiability:

.numElems shall be of type native int or int32.

124 Partition III

4.21 newobj – create a new object

Format Assembly Format Description

73 <T> newobj ctor Allocate an uninitialized object or value type and call ctor.

Stack Transition:

…, arg1, … argN …, obj

Description:

The newobj instruction creates a new object or a new instance of a value type. ctor is a metadata token (a
methodref or methodef that shall be marked as a constructor; see Partition II) that indicates the name,
class, and signature of the constructor to call. If a constructor exactly matching the indicated name, class and
signature cannot be found, MissingMethodException is thrown.

The newobj instruction allocates a new instance of the class associated with ctor and initializes all the fields in
the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the given
arguments along with the newly created instance. After the constructor has been called, the now initialized
object reference is pushed on the stack.

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to
newobj follow in order.

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj.

Value types are not usually created using newobj. They are usually allocated either as arguments or local
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value
type on the stack, that can then be passed as an argument, stored in a local, etc.

Exceptions:

System.InvalidOperationException is thrown if ctor’s class is abstract.

System.OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.

System.MissingMethodException is thrown if a constructor method with the indicated name, class,
and signature could not be found. This is typically detected when CIL is converted to native code, rather than at
runtime.

Correctness:

Correct CIL ensures that ctor is a valid methodref or methoddef token, and that the arguments on the
stack are compatible with those expected by the constructor.

Verifiability:

Verification considers a delegate constructor as a special case, checking that the method pointer passed in as
the second argument, of type native int, does indeed refer to a method of the correct type.

 Partition III 125

4.22 refanytype – load the type out of a typed reference

Format Assembly Format Description

FE 1D Refanytype Push the type token stored in a typed reference.

Stack Transition:

…, TypedRef …, type

Description:

Retrieves the type token embedded in TypedRef. See the mkrefany instruction.

Exceptions:

None.

Correctness:

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany).

Verifiability:

The refanytype instruction is always verifiable.

126 Partition III

4.23 refanyval – load the address out of a typed reference

Format Assembly Format Description

C2 <T> refanyval type Push the address stored in a typed reference.

Stack Transition:

…, TypedRef …, address

Description:

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef shall match the
type specified by type (a metadata token, either a typedef or a typeref; see Partition II). See the mkrefany
instruction.

Exceptions:

System.InvalidCastException is thrown if type is not identical to the type stored in the TypedRef (ie,
the class supplied to the mkrefany instruction that constructed that TypedRef)

System.TypeLoadException is thrown if type cannot be found.

Correctness:

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany).

Verifiability:

The refanyval instruction is always verifiable.

 Partition III 127

4.24 rethrow – rethrow the current exception

Format Assembly Format Description

FE 1A rethrow Rethrow the current exception.

Stack Transition:

…, …,

Description:

The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the
same exception that was caught by this handler. A rethrow does not change the stack trace in the object.

Exceptions:

The original exception is thrown.

Correctness:

Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers
embedded within that catch handler). If a rethrow occurs elsewhere, an exception will be thrown, but
precisely which exception, is undefined

Verifiability:

There are no additional verification requirements.

128 Partition III

4.25 sizeof – load the size, in bytes,of a type

Format Assembly Format Description

FE 1C <T> sizeof typeTok Push the size, in bytes, of a type as an unsigned int32.

Stack Transition:

…, …, size (4 bytes, unsigned)

Description:

Returns the size, in bytes, of a type. typeTok can be a generic parameter, a reference type or a value type.

For a reference type, the size returned is the size of a reference value of the corresponding type, not the size of
the data stored in objects referred to by a reference value.

[Rationale: The definition of a value type can change between the time the CIL is generated and the time that it
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof
returns the total size that would be occupied by each element in an array of this type – including any padding
the implementation chooses to add. Specifically, array elements lie sizeof bytes apart. end rationale]

Exceptions:

None.

Correctness:

typeTok shall be a typedef, typeref, or typespec metadata token.

Verifiability:

It is always verifiable.

 Partition III 129

4.26 stelem – store element to array

Format Assembly Format Description

A4 <T> stelem typeTok Replace array element at index with the value on the stack

Stack Transition:

…, array, index, value, …

Description:

The stelem instruction replaces the value of the element with zero-based index index (of type native int
or int32) in the one-dimensional array array, with value. Arrays are objects and hence are represented by a
value of type O. The value has the type specified by the token typeTok in the instruction.

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is larger than the bound of array.

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

array shall be null or a single dimensional array.

Verifiability:

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional
array type elem[], for some type elem. If the array type is Null, take elem to be the type represented by type
operand typeTok. The value index shall have type native int. The type of elem shall be a supertype of the
type operand typeTok. The type of value shall be assignment-compatible with typeTok.

130 Partition III

4.27 stelem.<type> – store an element of an array

Format Assembly Format Description

9C stelem.i1 Replace array element at index with the int8 value on the stack.

9D stelem.i2 Replace array element at index with the int16 value on the stack.

9E stelem.i4 Replace array element at index with the int32 value on the stack.

9F stelem.i8 Replace array element at index with the int64 value on the stack.

A0 stelem.r4 Replace array element at index with the float32 value on the stack.

A1 stelem.r8 Replace array element at index with the float64 value on the stack.

9B stelem.i Replace array element at index with the i value on the stack.

A2 stelem.ref Replace array element at index with the ref value on the stack.

Stack Transition:

…, array, index, value …,

Description:

The stelem instruction replaces the value of the element with zero-based index index (of type int32 or
native int) in the one-dimensional array array with value. Arrays are objects and hence represented by a
value of type O.

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array
element. This cast can fail, even for verified code. Thus the stelem.ref instruction can throw the
ArrayTypeMismatchException.

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a
StoreElement method.

Exceptions:

System.NullReferenceException is thrown if array is null.

System.IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.

System.ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.

Correctness:

Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches
exactly the type for this particular instruction suffix (e.g., stelem.r4 can only be applied to a zero-based, one
dimensional array of float32s).

Verifiability:

The static type of array shall either be the special reference type Null or a proper zero-based, one-dimensional
array type elem[], for some type elem. Both the type of array and the type of value shall be consistent with the
instruction suffix. For the stelem.ref instruction, it is required only that the value and array element type are
both reference types.

 Partition III 131

4.28 stf ld – store into a field of an object

Format Assembly Format Description

7D <T> stfld field Replace the value of field of the object obj with value.

Stack Transition:

…, obj, value …,

Description:

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type native int, or &)
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field
member reference. stfld pops the value and the object reference off the stack and updates the object.

The stfld instruction can have a prefix of either or both of unaligned. and volatile..
Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.NullReferenceException is thrown if obj is null and the field isn’t static.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6.

Verifiability:

For verifiable code, obj shall not be an unmanaged pointer.

[Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer can lead
to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not tested by
verification. end note]

It is not verifiable to access an overlapped object reference field.

A field is accessible only if every field that overlaps it is also accessible.

132 Partition III

4.29 stobj – store a value at an address

Format Assembly Format Description

81 <T> Stobj typeTok Store a value of type typeTok at an address.

Stack Transition:

…, dest, src …,

Description:

If typeTok is a value type, the stobj instruction copies the value src to the address dest. If typeTok is a
reference type, the stobj instruction has the same effect as stind.ref.

The operation of the stobj instruction can be altered by an immediately preceding volatile. or unaligned.
prefix instruction.

Exceptions:

System.NullReferenceException can be thrown if an invalid address is detected.

System.TypeLoadException is thrown if typeTok cannot be found. This is typically detected when CIL
is converted to native code rather than at runtime.

Correctness:

typeTok shall be a valid typedef, typeref, or typespec metadata token.

Verifiability:

Let the static type of the value on top of the stack be some type srcType. The value shall be initialized (when
srcType is a reference type). The static type of the destination address dest on the preceding stack slot shall be a
managed pointer (of type destType &) to some type destType. Finally, srcType shall be assignment-
compatible with typeTok, and typeTok shall be a subtype of destType. When typeTok is a non-reference type,
the definition of subtyping implies that srcType shall be assignment-compatible with destType (which, itself,
shall be equal to typeTok).

 Partition III 133

4.30 stsf ld – store a static f ield of a class

Format Assembly Format Description

80 <T> stsfld field Replace the value of field with val.

Stack Transition:

…, val …,

Description:

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token (a
fieldref or fielddef; see Partition II) that shall refer to a static field member. stsfld pops the value off
the stack and updates the static field with that value.

The stsfld instruction can have a volatile. prefix.

Exceptions:

System.FieldAccessException is thrown if field is not accessible.

System.MissingFieldException is thrown if field is not found in the metadata. This is typically
checked when CIL is converted to native code, not at runtime.

Correctness:

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type
appropriate for the assignment being performed, subject to implicit conversion as specified in §1.6.

Verifiability:

 [Note: Using stsfld to change the value of a static, init-only field outside the body of the class initializer can
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not
tested by verification. end note]

134 Partition III

4.31 throw – throw an exception

Format Assembly Format Description

7A throw Throw an exception.

Stack Transition:

…, object …,

Description:

The throw instruction throws the exception object (type O) on the stack and empties the stack. For details of the
exception mechanism, see Partition I.

[Note: While the CLI permits any object to be thrown, the CLS describes a specific exception class that shall be
used for language interoperability. end note]

Exceptions:

System.NullReferenceException is thrown if obj is null.

Correctness:

Correct CIL ensures that object is always either null or an object reference (i.e., of type O).

Verifiability:

There are no additional verification requirements.

 Partition III 135

4.32 unbox – convert boxed value type to its raw form

Format Assembly Format Description

79 <T> unbox valuetype Extract a value-type from obj, its boxed representation.

Stack Transition:

…, obj …, valueTypePtr

Description:

A value type has two separate representations (see Partition I) within the CLI:

• A ‘raw’ form used when a value type is embedded within another object.

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object, so it can exist
as an independent entity.

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a
controlled-mutability managed pointer (§1.8.1.2.2), type &), its unboxed form. valuetype is a metadata token (a
typeref, typedef or typespec) indicating the type of value type contained within obj.

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to
copy the value type from the object. Typically it simply computes the address of the value type that is already
present inside of the boxed object.

Exceptions:

System.InvalidCastException is thrown if obj is not a boxed valuetype, or if obj is a boxed enum and
valuetype is not its underlying type.

System.NullReferenceException is thrown if obj is null.

System.TypeLoadException is thrown if the class cannot be found. (This is typically detected when CIL
is converted to native code rather than at runtime.)

Correctness:

Correct CIL ensures that valueType is a typeref, typedef or typespec metadata token for some value
type, and that obj is always an object reference (i.e., of type O), and represents a boxed instance of a valuetype
value type.

Verifiability:

There are no additional verification requirements.

136 Partition III

4.33 unbox.any – convert boxed type to value

Format Assembly Format Description

A5 <T> unbox.any typeTok Extract a value-type from obj, its boxed representation

Stack Transition:

…, obj …, value or obj

Description:

When applied to the boxed form of a value type, the unbox.any instruction extracts the value contained within
obj (of type O). (It is equivalent to unbox followed by ldobj.) When applied to a reference type, the
unbox.any instruction has the same effect as castclass typeTok.

If typeTok is a GenericParam, the runtime behavior is determined by the actual instantiation of that parameter.

Exceptions:

System.InvalidCastException is thrown if obj is not a (boxed) type.

System.NullReferenceException is thrown if obj is null.

Correctness:

obj shall be of reference type.

Verifiability:

The obj object reference shall be initialized. The type operand typeTok shall not be a byref, byref-like, or void
type. The type of the value left on the stack is typeTok.

Rationale:

There are two reasons for having both unbox.any and unbox instructions:

1. Unlike the unbox instruction, for value types, unbox.any leaves a value, not an address of a
value, on the stack.

2. The type operand to unbox has a restriction: it can only represent value types and instantiations
of generic value types.

 Partition III 137

5 Index

ArithmeticException...57

array covariance..21

binary format ..1

controlled-mutability managed pointer.....................21

ELEMENT_TYPE_BYREF.......................................5

ELEMENT_TYPE_PTR ..5

endianess...6

evaluation stack ..11

exception_continue_search.......................................67

exception_execute_handler.......................................67

Execution Engine..1

ExecutionEngineException...................................1, 23

IMAGE_COR_ILMETHOD17

instruction description ..1

assembly language notation....................................1

binary format See binary format

exception list...1

operand type table...1

stack transition diagram..1

variants ...1

verifiability ...1

instruction format ...16

instruction prefix ..24

constrained......................................See constrained.

no. ... See no.

readonly. ... See readonly.

tail. ... See tail.

unaligned. ... See unaligned.

volatile. ... See volatile.

Instruction Variant Table..6

integer

4-byte..2

8-byte..3

native-size...3

short ..2

unsigned..3

localsinit flag ..18, 77, 78, 81

maxstack ...17

metadata token..22

null..1

opcode...6

experimental ...6

standard...6

operand type ...11

OutOfMemoryException ..1

pointer...4

controlled-mutability managed See controlled-
mutability managed pointer

managed..5

unmanaged..4

profile ...1

RuntimeArgumentHandle...36

RuntimeFieldHandle...120

RuntimeHandle...120

RuntimeMethodHandle ..120

RuntimeTypeHandle...120

SecurityPermission.SkipVerification..................77, 78

stack transition..1, 11

StackOverflowException..1

string interning..119

System.ArgIterator ...36

System.Array ..105, 108

System.Math.IEEERemainder89

System.RuntimeArgumentHandleSee
RuntimeArgumentHandle

thunk...74, 121

type

Boolean...4

floating-point ..3

numeric ...2

pointer...See pointer

138 Partition III

reference... 4

User String heap... 22

verifiability... 1, 17

Common Language Infrastructure (CLI)
Partition IV:
Profiles and Libraries

 Partition IV i

Table of contents

1 Overview 1

2 Libraries and prof i les 2
2 .1 Librar ies 2
2.2 Prof i les 2
2.3 The relat ionship between l ibrar ies and prof i les 3

3 The standard prof i les 4
3 .1 The kernel prof i le 4
3.2 The compact prof i le 4

4 Kernel profi le feature requirements 5
4 .1 Features excluded from the kernel prof i le 5
4.1 .1 Float ing point 5
4.1 .2 Non-vector arrays 5
4.1 .3 Reflect ion 5
4.1 .4 Applicat ion domains 6
4.1 .5 Remoting 6
4.1 .6 Vararg 6
4.1 .7 Frame growth 6
4.1 .8 Fi l tered except ions 6

5 The standard l ibraries 7
5 .1 General comments 7
5.2 Runtime infras tructure l ibrary 7
5.3 Base Class Library (BCL) 7
5.4 Network l ibrary 7
5.5 Ref lect ion l ibrary 7
5.6 XML l ibrary 7
5.7 Extended numerics l ibrary 8
5.8 Extended array l ibrary 8
5.9 Vararg l ibrary 8
5.10 Paral le l l ibrary 8

6 Implementat ion-specif ic modif icat ions to the system l ibraries 10

7 The XML specif icat ion 11

ii Partition IV

7.1 Semantics 11
7.1 .1 Value types as objects 19
7.1 .2 Except ions 19

7.2 XML signature notat ion issues 19
7.2 .1 Ser ia l izat ion 19
7.2 .2 Delegates 19
7.2 .3 Proper t ies 20
7.2 .4 Nested types 20

 Partition IV 1

1 Overview
[Note: While compiler writers are most concerned with issues of file format, instruction set design, and a
common type system, application programmers are most interested in the programming library that is available
to them in the language they are using. The Common Language Infrastructure (CLI) specifies a Common
Language Specification (CLS, see Partition I) that shall be used to define the externally visible aspects (such as
method signatures) when they are intended to be used from a wide range of programming languages. Since it is
the goal of the CLI Libraries to be available from as many programming languages as possible, all of the
library functionality is available through CLS-compliant types and type members.

The CLI Libraries were designed with the following goals in mind:

• To support for a wide variety of programming languages.

• To have consistent design patterns throughout.

• To have features on parity with the ISO/IEC C Standard library of 1990.

• To support more recent programming paradigms, notably networking, XML, runtime type inspection,
instance creation, and dynamic method dispatch.

• To be factored into self-consistent libraries with minimal interdependence.

end note]

This partition provides an overview of the CLI Libraries, and a specification of their factoring into Profiles and
Libraries. A companion file, considered to be part of this Partition but distributed in XML format, provides
details of each type in the CLI Libraries. While the normative specification of the CLI Libraries is in XML
form, it can be processed using an XSL transform to produce easily browsed information about the Class
Libraries.

[Note: Partition VI contains an informative annex describing programming conventions used in defining the
CLI Libraries. These conventions significantly simplify the use of libraries. Implementers are encouraged to
follow them when creating additional (non-standard) Libraries. end note]

2 Partition IV

2 Libraries and profiles
Libraries and Profiles, defined below, are constructs created for the purpose of standards conformance. They
specify a set of features that shall be present in an implementation of the CLI, and a set of types that shall be
available to programs run by that CLI.

[Note: There need not be any direct support for Libraries and Profiles in the Virtual Execution System (VES).
They are not represented in the metadata and they have no impact on the structure or performance of an
implementation of the CLI. Libraries and Profiles can span assemblies (the deployment unit), and the names of
types in a single Library or Profile are not required to have a common prefix (“namespace”). end note]

In general, there is no way to test whether a feature is available at runtime, nor a way to enquire whether a
particular Profile or Library is available. If present, however, the Reflection Library makes it possible to test, at
runtime, for the existence of particular types and members.

2.1 Libraries
A Library specifies three things:

1. A set of types that shall be available, including their grouping into assemblies. (The standard
library types are contained in three assemblies: mscorlib, System, and System.Xml. The
specification for each type indicates the assembly in which it resides.)

2. A set of features of the CLI that shall be available.

[Note: The set of features required for any particular Library is a subset of the complete set of CLI
features. Each Library described in §5 has text that defines the CLI features that are required for
implementations that support that Library. end note]

3. Modifications to types defined in other Libraries. These modifications typically involve the
addition of methods and interfaces to types belonging to some other Library, and additional
exception types that can be thrown by methods of that other Library’s types. These modifications
shall provide only additional functionality or specify behavior where it was previously
unspecified; they shall not be used to alter previously specified behavior.

[Example: Consider the Extended Numerics Library. Since it provides a base data type, Double, it also
specifies that the method ToDouble be added to the System.Convert class that is part of the Base Class
Library. It also defines a new exception type, System.NotFiniteNumberException, and specifies
existing methods in other Libraries methods that throw it (as it happens, there are no such methods). end
example]

In the XML specification of the Libraries, each type specifies the Library to which it belongs. For those
members (e.g., Console.WriteLine(float)) that are part of one Library (Extended Numerics), but
whose type is in another Library (BCL), the XML specifies the Library that defines the method. See §7.

2.2 Profiles
A Profile is simply a set of Libraries, grouped together to form a consistent whole that provides a fixed level of
functionality. A conforming implementation of the CLI shall specify the Profile it implements, as well as any
additional Libraries that it provides. The Kernel Profile (§3.1) shall be included in all conforming
implementations of the CLI. Thus, all Libraries and CLI features that are part of the Kernel Profile are available
in all conforming implementations. This minimal feature set is described in §4.

[Rationale: The rules for combining Libraries together are complex, since each Library can add members to
types defined in other libraries. By standardizing a small number of Profiles the interaction of the Libraries that
are part of each Profile are specified completely. A Profile provides a consistent target for vendors of devices,
compilers, tools, and applications. Each Profile specifies a trade-off of CLI feature and implementation
complexity against resource constraints. By defining a very small number of Profiles, market for each Profile is
increased, making each a desirable target for a class of applications across a wide range of implementations and
tool sets. end rationale]

 Partition IV 3

2.3 The relationship between l ibraries and profiles
This standard specifies two Standard Profiles (§3) and seven Standard Libraries (§5). The following diagram
shows the relationship between the Libraries and the Profiles:

The
Extended Array and Extended Numerics Libraries are not part of either Profile, but can be combined with
either of them. Doing so adds the appropriate methods, exceptions, and interfaces to the types specified in the
Profile.

4 Partition IV

3 The standard profiles
There are two Standard Profiles. The smallest conforming implementation of the CLI is the Kernel Profile,
while the Compact Profile contains additional features useful for applications targeting a more resource-rich set
of devices.

A conforming implementation of the CLI shall throw an appropriate exception (e.g., System.Not-
ImplementedException, System.MissingMethodException, or
System.ExecutionEngineException) when it encounters a feature specified in this Standard but not
supported by the particular Profile (see Partition III).

[Note: Implementers should consider providing tools that statically detect features they do not support so users
have an option of checking programs for the presence of such features before running them. end note]

[Note: Vendors of compliant CLI implementations should specify exactly which configurations of Standard
Libraries and Standard Profiles they support. end note]

[Note: “Features” can be something like the use of a floating-point CIL instruction in the implementation of a
method when the CLI upon which it is running does not support the Extended Numerics Library. Or, the
“feature” might be a call to a method that this Standard specifies exists only when a particular Library is
implemented and yet the code making the call is running on an implementation of the CLI that does not support
that particular library. end note]

3.1 The kernel profile
This profile is the minimal possible conforming implementation of the CLI. It contains the types commonly
found in a modern programming language class library, plus the types needed by compilers targeting the CLI.

Contents: Base Class Library, Runtime Infrastructure Library

3.2 The compact profile
This Profile is designed to allow implementation on devices with only modest amounts of physical memory yet
provides more functionality than the Kernel Profile alone. It also contains everything required to implement the
proposed ECMAScript compact profile.

Contents: Kernel Profile, XML Library, Network Library, Reflection Library

 Partition IV 5

4 Kernel profile feature requirements
All conforming implementations of the CLI support at least the Kernel Profile. Consequently, all CLI features
required by the Kernel Profile shall be implemented by all conforming implementations. This clause defines
that minimal feature set, by enumerating the set of features that are not required; i.e., a minimal conforming
implementation shall implement all CLI features except those specified in the remainder of this clause. The
feature requirements of individual Libraries as specified in §5 are defined by reference to restricted items
described in this clause. For ease of reference, each feature has a name indicated by the name of the clause or
subclause heading. Where Libraries do not specify any additional feature requirement, it shall be assumed that
only the features of the Kernel Profile as described in this clause are required.

4.1 Features excluded from the kernel profile
The following internal data types and constructs, specified elsewhere in this Standard, are not required of CLI
implementations that conform only to the Kernel Profile. All other CLI features are required.

4.1 .1 Float ing point

The floating point feature set consists of the user-visible floating-point data types float32 and float64,
and support for an internal representation of floating-point numbers.

If omitted: The CIL instructions that deal specifically with these data types throw the
System.NotImplementedException exception. These instructions are: ckfinite, conv.r.un, conv.r4,
conv.r8, ldc.r4, ldc.r8, ldelem.r4, ldelem.r8, ldind.r4, ldind.r8, stelem.r4, stelem.r8, stind.r4, stind.r8.
Any attempt to reference a signature including the floating-point data types shall throw the
System.NotImplementedException exception. The precise timing of the exception is not specified.

[Note: These restrictions guarantee that the VES will not encounter any floating-point data. Hence the
implementation of the arithmetic instructions (such as add) need not handle those types. end note]

Part of Library: Extended Numerics (§5.7)

4.1 .2 Non-vector arrays

The non-vector arrays feature set includes support for arrays with more than one dimension or with lower
bounds other than zero. This includes support for signatures referencing such arrays, runtime representations of
such arrays, and marshalling of such arrays to and from native data types.

If omitted: Any attempt to reference a signature including a non-vector array shall throw the
System.NotImplementedException exception. The precise timing of the exception is not specified.

[Note: The type System.Array is part of the Kernel Profile and is available in all conforming
implementations of the CLI. An implementation that does not provide the non-vector array feature set can
correctly assume that all instances of that type are vectors. end note]

Part of Library: Extended Arrays (see §5.8).

4.1 .3 Reflect ion

The reflection feature set supports full reflection on data types. All of its functionality is exposed through
methods in the Reflection Library.

If omitted: The Kernel profile specifies an opaque type, System.Type, instances of which uniquely
represent any type in the system and provide access to the name of the type.

[Note: With just the Kernel profile there is no requirement, for example, to determine the members of the type,
dynamically create instances of the type, or invoke methods of the type given an instance of System.Type.
This can simplify the implementation of the CLI compared to that required when the Reflection Library is
available. end note]

Part of Library: Reflection (see §5.5).

6 Partition IV

4.1 .4 Applicat ion domains

The application domain feature set supports multiple application domains. The Kernel profile requires that a
single application domain exist.

If omitted: Methods for creating application domains (part of the Base Class Library, see §5.3) throw the
System.NotImplementedException exception.

Part of Library: (none)

4.1 .5 Remoting

The remoting feature set supports remote method invocation. It is provided primarily through special
semantics of the class System.MarshalByRefObject as described in Partition I.

If omitted: The class System.MarshalByRefObject shall be treated as a simple class with no special
meaning.

Part of Library: (none)

4 .1 .6 Vararg

The vararg feature set supports variable-length argument lists and runtime-typed pointers.

If omitted: Any attempt to reference a method with the vararg calling convention or the signature encodings
associated with vararg methods (see Partition II) shall throw the System.NotImplementedException
exception. Methods using the CIL instructions arglist, refanytype, mkrefany, and refanyval shall throw the
System.NotImplementedException exception. The precise timing of the exception is not specified.
The type System.TypedReference need not be defined.

Part of Library: Vararg (see §5.9).

4.1 .7 Frame growth

The frame growth feature set supports dynamically extending a stack frame.

If omitted: Methods using the CIL localloc instruction shall throw the
System.NotImplementedException exception. The precise timing of the exception is not specified.

Part of Library: (none)

4.1 .8 Filtered exceptions

The filtered exceptions feature set supports user-supplied filters for exceptions.

If omitted: Methods using the CIL endfilter instruction or with an exceptionentry that contains a non-
null filterstart (see Partition I) shall throw the System.NotImplementedException exception.
The precise timing of the exception is not specified.

Part of Library: (none)

 Partition IV 7

5 The standard libraries
The detailed content of each Library, in terms of the types it provides and the changes it makes to types in other
Libraries, is provided in XML form. This clause provides a brief description of each Library’s purpose as well
as specifying the features of the CLI required by each Library beyond those required by the Kernel Profile.

5.1 General comments
Unless stated otherwise in the documentation of a method, all copy operations are shallow, not deep.

Some methods traffic in “default values”. For a reference type, the default value is null; for a value type, the
default value is all-bits-zero (which for Boolean represents false, and for all arithmetic types represents zero).

5.2 Runtime infrastructure library
The Runtime Infrastructure Library is part of the Kernel Profile. It provides the services needed by a compiler
to target the CLI and the facilities needed to dynamically load types from a stream in the file format specified
in Partition II. For example, it provides System.BadImageFormatException, which is thrown when a
stream that does not have the correct format is loaded.

Name used in XML: RuntimeInfrastructure

CLI Feature Requirement: None

5.3 Base Class Library (BCL)
The Base Class Library is part of the Kernel Profile. It is a simple runtime library for modern programming
languages. It serves as the Standard for the runtime library for the language C# as well as one of the CLI
Standard Libraries. It provides types to represent the built-in data types of the CLI, simple file access, custom
attributes, security attributes, string manipulation, formatting, streams, collections, among other things.

Name used in XML: BCL

CLI Feature Requirement: None

5.4 Network l ibrary
The Network Library is part of the Compact Profile. It provides simple networking services including direct
access to network ports as well as HTTP support.

Name used in XML: Networking

CLI Feature Requirement: None

5.5 Reflection l ibrary
The Reflection Library is part of the Compact Profile. It provides the ability to examine the structure of types,
create instances of types, and invoke methods on types, all based on a description of the type.

Name used in XML: Reflection

CLI Feature Requirement: Must support Reflection, see §5.1.

5.6 XML library
The XML Library is part of the Compact Profile. It provides a simple “pull-style” parser for XML. It is
designed for resource-constrained devices, yet provides a simple user model. A conforming implementation of
the CLI that includes the XML Library shall also implement the Network Library (see §5.4).

Name used in XML: XML

CLI Feature Requirement: None

8 Partition IV

5.7 Extended numerics l ibrary
The Extended Numerics Library is not part of any Profile, but can be supplied as part of any CLI
implementation. It provides the support for floating-point (System.Single, System.Double) and
extended-precision (System.Decimal) data types. Like the Base Class Library, this Library is directly
referenced by the C# Standard.

[Note: Programmers who use this library will benefit if implementations specify which arithmetic operations on
these data types are implemented primarily through hardware support. end note]

[Rationale: The Extended Numerics Library is kept separate because some commonly available processors do
not provide direct support for the data types. While software emulation can be provided, the performance
difference is often so large (1,000-fold or more) that it is unreasonable to build software using floating-point
operations without being aware of whether the underlying implementation is hardware-based. end rationale]

Name used in XML: ExtendedNumerics

CLI Feature Requirement: Floating Point, see §4.1.1.

5.8 Extended array l ibrary
This Library is not part of any Profile, but can be supplied as part of any CLI implementation. It provides
support for non-vector arrays. That is, arrays that have more than one dimension, or arrays that have non-zero
lower bounds.

CLI Feature Requirement: Non-vector Arrays, see § 4.1.2.

5.9 Vararg l ibrary
The Vararg Library is not part of any Profile. It provides support for dealing with variable-length argument
lists.

Name used in XML: Vararg

CLI Feature Requirement: None

5.10 Parallel l ibrary
This Library is not part of any Profile, but can be supplied as part of any CLI implementation. The purpose of the
extended threading library is twofold:

1. Provide easy parallelism for non-expert programmers, so that multithreaded CPUs can be exploited.
The profile stresses simplicity over large scalability.

2. Not require changing the virtual machine or source languages. All features of the profile can be
implemented as a library on top of the existing CLI. The profile can be used in conjunction with any
CLI language that supports delegates.

The loop class hierarchy is summarized below:

 ParallelLoop
 ParallelWhile
 ParallelForEach
 ParallelFor

The base class ParallelLoop factors out common functionality for parallel looping over a collection of
values. The three derived classes distinguish three common kinds of parallel looping. If the collection might
grow while being processed, then use ParallelWhile. Otherwise, if the collection implements
IEnumerable, use ParallelForEach. If the collection or collections are indexible by int32, use
ParallelFor.

To choose the kind of loop to use in a specific situation, consider how the loop could be written sequentially. If
the loop could be written using “for (int i=0; i<n; ++i)”, and n is known before the loop executes, use
ParallelFor. If the loop could be written with a foreach statement, over collection that does not change

 Partition IV 9

while the foreach is running, use ParallelForEach. If the loop could be written “while (collection is not yet
empty) {remove item from collection and process it}”, use ParallelWhile. When there is a choice, use
ParallelFor if possible, because it is significantly more efficient.

 Name used in XML: Parallel

CLI Feature Requirement: BCL

10 Partition IV

6 Implementation-specific modifications to the system libraries
Implementers are encouraged to extend or modify the types specified in this Standard to provide additional
functionality. Implementers should notice, however, that type names beginning with “System.” and bearing
the special Standard Public Key are intended for use by the Standard Libraries: such names not currently in use
might be defined in a future version of this Standard.

To allow programs compiled against the Standard Libraries to work when run on implementations that have
extended or modified the Standard Libraries, such extensions or modifications shall obey the following rules:

• The contract specified by virtual methods shall be maintained in new classes that override them.

• New exceptions can be thrown, but where possible these should be derived classes of the
exceptions already specified as thrown rather than entirely new exception types. Exceptions
initiated by methods of types defined in the Standard Libraries shall be derived from
System.Exception.

• Interfaces and virtual methods shall not be added to an existing interface. Nor shall they be added
to an abstract class unless that class provides an implementation.

[Rationale: An interface or virtual method can be added only where it carries an implementation. This
allows programs written when the interface or method was not present to continue to work. end
rationale]

• Instance methods shall not be implemented as virtual methods.

[Rationale: Methods specified as instance (non-static, non-virtual) in this standard are not permitted to be
implemented as virtual methods in order to reduce the likelihood of creating non-portable files by using
implementation-supplied libraries at compile time. Even though a compiler need not take a dependence
on the distinction between virtual and instance methods, it is easy for a user to inadvertently override a
virtual method and thus create non-portable code. The alternative of providing special files
corresponding to this Standard for use at compile time is prone to user error. end rationale]

• The accessibility of fields and non-virtual methods can be widened from than specified in this
Standard.

[Note: The following common extensions are permitted by these rules.

• Adding new members to existing types.

• Concrete (non-abstract) classes can implement interfaces not defined in this standard.

• Adding fields (values) to enumerations.

• An implementation can insert a new type into the hierarchy between a type specified in this standard and
the type specified as its base type. That is, this standard specifies an inheritance relation between types but
does not specify the immediate base type.

• Implementations can add overrides to existing virtual methods, provided the new overrides satisfy the
existing contract.

end note]

[Rationale: An implementation might wish to split functionality across several types in order to provide non-
standard extension mechanisms, or might wish to provide additional non-standard functionality through the
new base type. As long as programs do not reference these non-standard types, they will remain portable across
conforming implementations of the CLI. end rationale]

 Partition IV 11

7 The XML specification

7.1 Semantics
The XML specification conforms to the Document Type Definition (DTD) in Figure 7-1. Only types that are
included in a specified library are included in the XML.

There are three types of elements/attributes:

• Normative: An element or attribute is normative such that the XML specification would be
incomplete without it.

• Informative: An element or attribute is informative if it specifies information that helps clarify the
XML specification, but without it the specification still stands alone.

• Rendering/Formatting: An element or attribute is for rendering or formatting if it specifies
information to help an XML rendering tool.

Unless explicitly stated otherwise, the text associated with an element or an attribute (e.g., #PCDATA,
#CDATA) is normative or informative depending on the element or attribute with which it is associated, as
described in the figure.

[Note: Many of the elements and attributes in the DTD are for rendering purposes. end note]

Figure 7-1: XML DTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT AssemblyCulture (#PCDATA)>

(Normative) Specifies the culture of the assembly that defines the current type. Currently this value is
always “none”. It is reserved for future use.

<!ELEMENT AssemblyInfo (AssemblyName, AssemblyPublicKey,
AssemblyVersion, AssemblyCulture, Attributes)>

(Normative) Specifies information about the assembly of a given type. This information corresponds to
sections of the metadata of an assembly as described in Partition II, and includes information from the
AssemblyName, AssemblyPublicKey, AssemblyVersion, AssemblyCulture and Attributes elements.

<!ELEMENT AssemblyName (#PCDATA)>

(Normative) Specifies the name of the assembly to which a given type belongs. For example, all of the
types in the BCL are members of the “mscorlib” assembly.

<!ELEMENT AssemblyPublicKey (#PCDATA)>

(Normative) Specifies the public key of the assembly. The public key is represented as a 128-bit value.

<!ELEMENT AssemblyVersion (#PCDATA)>

(Normative) Specifies the version of the assembly in the form 2.0.x.y, where x is a build number and y
is a revision number.

<!ELEMENT Attribute (AttributeName, Excluded, ExcludedTypeName?,
ExcludedLibraryName?)>

(Normative) Specifies the text for a custom attribute on a type or a member of a type. This includes the
attribute name and whether or not the attribute type itself is contained in another library.

<!ELEMENT AttributeName (#PCDATA)>

(Normative) Specifies the name of the custom attribute associated with a type or member of a type.
Also contains the data needed to instantiate the attribute.

<!ELEMENT Attributes (Attribute*)>

(Normative) Specifies the list of the attributes on a given type or member of a type.

12 Partition IV

<!ELEMENT Base (BaseTypeName?, ExcludedBaseTypeName?,
ExcludedLibraryName?)>

(Normative) Specifies the information related to the base type of the current type. Although the
ExcludedBaseTypeName and ExcludedLibraryName elements are rarely found within this element,
they are required when a type inherits from a type not found in the current library.

<!ELEMENT BaseTypeName (#PCDATA)>

(Normative) Specifies the fully qualified name of the class from which a type inherits (i.e., the type’s
base class).

<!ELEMENT Docs (summary?, altmember?, altcompliant?, param*, returns?,
value?, exception*, threadsafe?, remarks?, example?, permission?)>

(Normative) Specifies the textual documentation of a given type or member of a type.

<!ELEMENT Excluded (#PCDATA)>

(Normative) Specifies, by a ‘0’ or ‘1’, whether a given member can be excluded from the current type
in the absence of a given library. ‘0’ specifies that it cannot be excluded.

<!ELEMENT ExcludedBaseTypeName (#PCDATA)>

(Normative) Specifies the fully qualified name of the type that the current type must inherit from if a
given library were present in an implementation. The library name is specified in the
ExcludedLibraryName element. An example is the System.Type class that inherits from
System.Object, but if the Reflection library is present, it must inherit from
System.Reflection.MemberInfo.

<!ELEMENT ExcludedLibrary (#PCDATA)>

(Normative) Specifies the library that must be present in order for a given member of a type to be
required to be implemented. For example, System.Console.WriteLine(double) need only be
implemented if the ExtendedNumerics library is available.

<!ELEMENT ExcludedLibraryName (#PCDATA)>

(Normative) This element appears only in the description of custom attributes. It specifies the name of
the library that defines the described attribute. For example, the member that is invoked when no
member name is specified for System.Text.StringBuilder (in C#, this is the indexer) is called “Chars”.
The attribute needed for this is System.Reflection.DefaultMemberAttribute. This is found in the
RuntimeInfrastructure library. This element is used with the ExcludedTypeName element.

<!ELEMENT ExcludedTypeName (#PCDATA)>

(Normative) Specifies the fully qualified name of the attribute that is needed for a member to
succesfully specify the given attribute. This element is related to the ExcludedLibraryName element
and is used for attributes.

<!ELEMENT Interface (InterfaceName, Excluded)>

(Normative) Specifies information about an interface that a type implements. This element contains
sub-elements specifying the interface name and whether another library is needed for the interface to be
required in the current library.

<!ELEMENT InterfaceName (#PCDATA)>

(Normative) Represents the fully-qualified interface name that a type implements.

<!ELEMENT Interfaces (Interface*)>

(Normative) Specifies information on the interfaces, if any, a type implements. There is one Interface
element for each interface implemented by the type.

<!ELEMENT Libraries (Types+)>

(Normative) This is the root element. Specifies all of the information necessary for all of the class
libraries of the standard. This includes all of the types and all children elements underneath.

 Partition IV 13

<!ELEMENT Member (MemberSignature+, MemberType, Attributes?,
ReturnValue, Parameters, MemberValue?, Docs, Excluded,
ExcludedLibrary*)>

(Normative) Specifies information about a member of a type. This information includes the signatures,
type of the member, parameters, etc., all of which are elements in the XML specification.

<!ATTLIST Member

MemberName NMTOKEN #REQUIRED

 (Normative) MemberName specifies the name of the current member.

>

<!ELEMENT MemberOfLibrary (#PCDATA)>

(Normative) PCDATA is the name of the library containing the type.

<!ELEMENT MemberSignature EMPTY>

(Normative) Specifies the text (in source code format) for the signature of a given member of a type.

<!ATTLIST MemberSignature

Language CDATA #REQUIRED

 (Normative) CDATA is the programming language in which the signature is written. All members
are described in both ILAsm and C#.

 Value CDATA #REQUIRED

(Normative) CDATA is the text of the member signature in a given language.

>

<!ELEMENT MemberType (#PCDATA)>

(Normative) Specifies the kind of the current member. The member kinds are: method, property,
constructor, field, and event.

<!ELEMENT MemberValue (#PCDATA)>

(Normative) Specifies the value of a static literal field.

<!ELEMENT Members (Member*)>

(Normative) Specifies information about all of the members of a given type.

<!ELEMENT PRE EMPTY>

(Rendering/Formatting) This element exists for rendering purposes only to specify, for example, that
future text should be separated from the previous text

<!ELEMENT Parameter (Attributes?)>

(Normative) Specifies the information about a specific parameter of a method or property.

<!ATTLIST Parameter

 Name NMTOKEN #REQUIRED

 (Normative) Specifies the name of the parameter.

 Type CDATA #REQUIRED

 (Normative) Specifies the fully-qualified name of the type of the parameter.

>

<!ELEMENT Parameters (Parameter*)>

14 Partition IV

(Normative) Specifies information for the parameters of a given method or property. The information
specified is included in each Parameter element of this element. This element will contain one
Parameter for each parameter of the method or property.

<!ELEMENT ReturnType (#PCDATA)>

(Normative) Specifies the fully-qualified name of the type that the current member returns.

<!ELEMENT ReturnValue (ReturnType?)>

(Normative) Specifies the return type of a member. ReturnType shall be present for all kinds of
members except constructors.

<!ELEMENT SPAN (#PCDATA | para | paramref | SPAN | see | block)*>

(Rendering/Formatting) This element specifies that the text should be segmented from other text (e.g.,
with a carriage return). References to parameters, other types, and even blocks of text can be included
within a SPAN element.

<!ELEMENT ThreadingSafetyStatement (#PCDATA)>

(Normative) Specifies a thread safety statement for a given type.

<!ELEMENT Type (TypeSignature+, MemberOfLibrary, AssemblyInfo,
ThreadingSafetyStatement?, Docs, Base, Interfaces, Attributes?,
Members, TypeExcluded)>

(Normative) Specifies all of the information for a given type.

<!ATTLIST Type

 Name CDATA #REQUIRED

 (Informative) Specifies the simple name (e.g., “String” rather than “System.String”) of a given type.

 FullName CDATA #REQUIRED

 (Normative) Specifies the fully-qualified name of a given type. For generic types, this includes the
spelling of generic parameter names.

FullNameSP CDATA #REQUIRED

(Informative) Specifies the fully-qualified name with each ‘.’ of the fully qualified name replaced by
an ‘_’.

>

<!ELEMENT TypeExcluded (#PCDATA)>

(Normative) PCDATA shall be ‘0’.

<!ELEMENT TypeSignature EMPTY>

(Normative) Specifies the text for the signature (in code representation) of a given type.

<!ATTLIST TypeSignature

 Language CDATA #REQUIRED

 (Normative) Specifies the language the specified type signature is written in. All type signatures are
specified in both ILAsm and C#.

 Value CDATA #REQUIRED

 (Normative) CDATA is the type signature in the specified language.

>

<!ELEMENT Types (Type+)>

(Normative) Specifies information about all of the types of a library.

<!ATTLIST Types

 Partition IV 15

 Library NMTOKEN #REQUIRED

 (Normative) Specifies the library in which all of the types are defined. An example of such a library
is “BCL”.

>

<!ELEMENT altcompliant EMPTY>

(Informative) Specifies that an alternative, CLS compliant method call exists for the current non-CLS
compliant method. For example, this element exists in the System.IO.TextWriter.WriteLine(ulong)
method to show that System.IO.TextWriter.WriteLine(long) is an alternative, CLS compliant method.

<!ATTLIST altcompliant

 cref CDATA #REQUIRED

 (Informative) Specifies the link to the actual documentation for the alternative CLS compliant
method. [Note: In this specification, CDATA matches the documentation comment format specified in
Appendix E of the C# language standard.]

>

<!ELEMENT altmember EMPTY>

(Informative) Specifies that an alternative, equivalent member call exists for the current method.
This element is used for operator overloads.

<!ATTLIST altmember

 cref CDATA #REQUIRED

 (Informative) Specifies the link to the actual documentation for the alternative member call. [Note:
In this specification, CDATA matches the documentation comment format specified in Appendix E of
the C# language standard.]

>

<!ELEMENT block (#PCDATA | see | para | paramref | list | block | c |
subscript | code | sup | pi)*>

(Rendering/Formatting) Specifies that the children should be formatted according to the type
specified as an attribute.

<!ATTLIST block

 subset CDATA #REQUIRED

 (Rendering/Formatting) This attribute is reserved for future use and currently only has the value of
‘none’.

 type NMTOKEN #REQUIRED

 (Rendering/Formatting) Specifies the type of block that follows, one of: usage, overrides, note,
example, default, behaviors.

>

<!ELEMENT c (#PCDATA | para | paramref | code | see)*>

(Rendering/Formatting) Specifies that the text is the output of a code sample.

<!ELEMENT code (#PCDATA)>

(Informative) Specifies the text is a code sample.

<!ATTLIST code

 lang CDATA #IMPLIED

 (Informative) Specifies the programming language of the code sample. This specification uses C#
as the language for the samples.

16 Partition IV

>

<!ELEMENT codelink EMPTY>

(Informative) Specifies a piece of code to which a link might be made from another sample. [Note:
the XML format specified here does not provide a means of creating such a link.]

<!ATTLIST codelink

 SampleID CDATA #REQUIRED

(Informative) SampleID is the unique id assigned to this code sample.

 SnippetID CDATA #REQUIRED

 (Informative) SnippetID is the unique id assigned to a section of text within the sample code.

>

<!ELEMENT description (#PCDATA | SPAN | paramref | para | see | c |
permille | block | sub)*>

(Normative) Specifies the text for a description for a given term element in a list or table. This
element also specifies the text for a column header in a table.

<!ELEMENT example (#PCDATA | para | code | c | codelink | see)*>

(Informative) Specifies that the text will be an example on the usage of a type or a member of a
given type.

<!ELEMENT exception (#PCDATA | paramref | see | para | SPAN | block)*>

(Normative) Specifies text that provides the information for an exception that shall be thrown by a
member of a type, unless specified otherwise. This element can contain just text or other rendering
options such as blocks, etc.

<!ATTLIST exception

 cref CDATA #REQUIRED

 (Rendering/Formatting) Specifies a link to the documentation of the exception. [Note: In this
specification, CDATA matches the documentation comment format specified in Appendix E of the C#
language standard.]

>

<!ELEMENT i (#PCDATA)>

(Rendering/Formatting) Specifies that the text should be italicized.

<!ELEMENT item (term, description*)>

(Rendering/Formatting) Specifies a specific item of a list or a table.

<!ELEMENT list (listheader?, item*)>

(Rendering/Formatting) Specifies that the text should be displayed in a list format.

<!ATTLIST list

 type NMTOKEN #REQUIRED

 (Rendering/Formatting) Specifies the type of list in which the following text will be represented.
Values in the specification are: bullet, number and table.

>

<!ELEMENT listheader (term, description+)>

(Rendering/Formatting) Specifies the header of all columns in a given list or table.

<!ELEMENT onequarter EMPTY>

 Partition IV 17

(Rendering/Formatting) Specifies that text, in the form of ¼, is to be displayed.

<!ELEMENT para (#PCDATA | see | block | paramref | c | onequarter |
superscript | sup | permille | SPAN | list | pi | theta | sub)*>

(Rendering/Formatting) Specifies that the text is part of what can be considered a paragraph of its
own.

<!ELEMENT param (#PCDATA | c | paramref | see | block | para | SPAN)*>

(Normative) Specifies the information on the meaning or purpose of a parameter. The name of the
parameter and a textual description will be associated with this element.

<!ATTLIST param

 name CDATA #REQUIRED

 (Nomrative) Specifies the name of the parameter being described.

>

<!ELEMENT paramref EMPTY>

(Rendering/Formatting) Specifies a reference to a parameter of a member of a type.

<!ATTLIST paramref

 name CDATA #REQUIRED

 (Rendering/Formatting) Specifies the name of the parameter to which the paramref element is
referring.

>

<!ELEMENT permille EMPTY>

(Rendering/Formatting) Represents the current text is to be displayed as the ‘‰’ symbol.

<!ELEMENT permission (#PCDATA | see | paramref | para | block)*>

(Normative) Specifies the permission, given as a fully-qualified type name and supportive text,
needed to call a member of a type.

<!ATTLIST permission

 cref CDATA #REQUIRED

 (Rendering/Formatting) Specifies a link to the documentation of the permission. [Note: In this
specification, CDATA matches the documentation comment format specified in Appendix E of the C#
language standard.]

>

<!ELEMENT pi EMPTY>

(Rendering/Fomatting) Represents the current text is to be displayed as the ‘π’ symbol

<!ELEMENT pre EMPTY>

(Rendering/Formatting) Specifies a break between the preceding and following text.

<!ELEMENT remarks (#PCDATA | para | block | list | c | paramref | see |
pre | SPAN | code | PRE)*>

(Normative) Specifies additional information, beyond that supplied by the summary, on a type or
member of a type.

<!ELEMENT returns (#PCDATA | para | list | paramref | see)*>

(Normative) Specifies text that describes the return value of a given type member.

<!ELEMENT see EMPTY>

18 Partition IV

(Informative) Specifies a link to another type or member.

<!ATTLIST see

 cref CDATA #IMPLIED

 (Informative) cref specifies the fully-qualified name of the type or member to link to. [Note: In
this specification, CDATA matches the documentation comment format specified in Appendix E of the
C# language standard.]

 langword CDATA #IMPLIED

 (Informative) langword specifies that the link is to a language agnostic keyword such as “null”.

 qualify CDATA #IMPLIED

 (Informative) Qualify indicates that the type or member specified in the link must be displayed as
fully-qualified. Value of this attribute is ‘true’ or ‘false’, with a default value of ‘false’

>

<!ELEMENT sub (#PCDATA | paramref)*>

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation.

<!ELEMENT subscript EMPTY>

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation.

<!ATTLIST subscript

 term CDATA #REQUIRED

 (Rendering/Formatting) Specifies the value to be rendered as a subscript.

>

<!ELEMENT summary (#PCDATA | para | see | block | list)*>

(Normative) Specifies a summary description of a given type or member of a type.

<!ELEMENT sup (#PCDATA | i | paramref)*>

(Rendering/Formatting) Specifies that the current piece of text is to be displayed in superscript
notation.

<!ELEMENT superscript EMPTY>

(Rendering/Formatting) Specifies that current piece of text is to be displayed in superscript notation.

<!ATTLIST superscript

 term CDATA #REQUIRED

 (Rendering/Formatting) Specifies the value to be rendered as a superscript.

>

<!ELEMENT term (#PCDATA | block | see | paramref | para | c | sup | pi
| theta)*>

(Rendering/Formatting) Specifies the text is a list item or an item in the primary column of a table.

<!ELEMENT theta EMPTY>

(Rendering/Formatting) Specifies that text, in the form of ‘θ’, is to be displayed.

<!ELEMENT threadsafe (para+)>

(Normative) Specifies that the text describes additional detail, beyond that specified by
ThreadingSafetyStatement, the thread safety implications of the current type. For example, the text
will describe what an implementation must do in terms of synchronization.

<!ELEMENT value (#PCDATA | para | list | see)*>

 Partition IV 19

(Normative) Specifies description information on the “value” passed into the set method of a
property.

7.1 .1 Value types as objects

Throughout the textual descriptions of methods in the XML, there are places where a parameter of type
object or an interface type is expected, but the description refers to passing a value type for that parameter.
In these cases, the caller shall box the value type before making the call.

7.1 .2 Exceptions

Many members of types defined in the XML have associated exception conditions. Unless it is stated otherwise
in a member’s definition, the exceptions listed for any given member shall be thrown when the stated
conditions occur.

7.2 XML signature notation issues
For each type and member described in the XML, there is an ILAsm and C# signature pair. These are intended
to be equivalent and to provide sufficient information to allow these types and members to be implemented
correctly. Each signature pair shows both the low-level and one high-level view of these signatures. However,
as written in the XML, the members of a given pair of signatures are not always written in an equivalent
manner, even though they are intended to produce identical behavior. The differences in signature notation are
described in this subclause.

7.2 .1 Serial izat ion

As shown in the ILAsm signatures, many of the types in the standard library have the predefined attribute
serializable attached. A type that is marked with this attribute is to be serialized as part of the persistent
state of a value of the type. This standard does not require that a conforming implementation provide support
for serialization (or its counterpart, deserialization), nor does it specify the mechanism by which these
operations might be accomplished.

Consider the ILAsm and C# signatures in the XML for System.String:

[ILAsm]
.class public sealed serializable String …

[C#]
public sealed class String …

Although the C# standard does not address the issue of serialization, if this library type is written in C#, when
the C# declaration above is compiled, the intent is that the code generated for the class contains the
serializable attribute as shown. [Note: Some implementations provide an attribute type,
System.SerializableAttribute, for this purpose. end note]

7.2 .2 Delegates

The standard library contains a number of delegate types. However, as recorded in the XML, their ILAsm
signatures are incomplete. Consider System.EventHandler as an example; its ILAsm signature is defined
in the XML as follows:

.class public sealed serializable EventHandler extends System.Delegate {

.method public hidebysig newslot virtual instance void Invoke(object
 sender, class System.EventArgs e) }

However, this type also has a constructor and two optional asynchronous methods, BeginInvoke and
EndInvoke, all of which are described in Partition II, “Delegates”. The signatures for these three members
for System.EventHandler are as follows:

.method public hidebysig specialname rtspecialname void .ctor(object
 'object', native int 'method')
.method public hidebysig newslot virtual class System.IAsyncResult

20 Partition IV

 BeginInvoke(object sender, class System.EventArgs e, class
 System.AsyncCallback callback, object 'object')
.method public hidebysig newslot virtual void EndInvoke(
 class System.IAsyncResult result)

The other standard delegate types have a corresponding constructor and method pair whose signatures can be
deduced from the ILAsm in the XML and the information in Partition II, “Delegates”.

Unless stated otherwise, a standard delegate type provides the two optional asynchronous methods,
BeginInvoke and EndInvoke.

7.2 .3 Properties

The standard library contains many types that have properties. However, as recorded in the XML, their ILAsm
signatures are incomplete. Consider the read-write instance property
System.Collections.ArrayList.Capacity. Its ILAsm signature is defined in the XML as follows:

.property int32 Capacity {
 public hidebysig virtual specialname int32 get_Capacity()
 public hidebysig virtual specialname void set_Capacity(int32 value)
}

However, this is an abbreviation of the ILAsm syntax. The complete (and correct) signature for this property is
as follows:

.property instance int32 Capacity() {
 .get instance int32 ArrayList::get_Capacity()
 .set instance void ArrayList::set_Capacity(int32)
}
.method public hidebysig newslot specialname virtual instance int32
 get_Capacity() { … }
.method public hidebysig newslot specialname virtual instance void
 set_Capacity(int32 'value') { … }

As a second example, consider the readonly static property System.DateTime.Now; its ILAsm signature is
defined in the XML as follows:

.property valuetype System.DateTime Now {
 public hidebysig static specialname valuetype System.DateTime
 get_Now()
}

However, the complete (and correct) signature for this property is:

.property valuetype System.DateTime Now() {
 .get valuetype System.DateTime DateTime::get_Now()
}
.method public hidebysig specialname static valuetype System.DateTime
 get_Now() { ... }

All other properties (including those that are indexed) are formatted in the XML in a similar abbreviated
manner.

7.2 .4 Nested types

With one exception, the definitions of all members of any given type are contained in the XML for that type.
The exception is for nested types. Nested types have their own definition in the XML, where their names are
qualified by the name of the type in which they are nested. [Example: The type
System.Collections.Generic.List<T> contains the nested type Enumerator. These types are
described in the BCL library of the XML under the names List<T> and List<T>.Enumerator,
respectively. end example]

Common Language Infrastructure (CLI)
Partition V:
Debug Interchange Format

 Partition V i

Table of contents

1 Portable CILDB fi les 1
1 .1 Encoding of in tegers 1
1.2 CILDB header 1
1.2 .1 Version GUID 1

1.3 Tables and heaps 1
1.3 .1 SymConstant table 2
1.3 .2 SymDocument table 2
1.3 .3 SymMethod table 2
1.3 .4 SymSequencePoint table 3
1.3 .5 SymScope table 3
1.3 .6 SymVariable table 3
1.3 .7 SymUsing table 4
1.3 .8 SymMisc heap 4
1.3 .9 SymStr ing heap 4

1.4 Signatures 4

 Partition V 1

1 Portable CILDB files
Portable CILDB files provide a standard way to interchange debugging information between CLI producers
and consumers. This partition serves to fill in gaps not covered by metadata, notably the names of local
variables and source line correspondences.

1.1 Encoding of integers
All integers are stored in little-endian format, except for those in signatures, which are encoded as described in
Partition II.

1.2 CILDB header
A CILDB file starts with a 72-byte header, whose layout is as follows:

Offset Size Field Description

0 16 Signature Magic signature for CILDB “_ildb_signature\0”

16 16 GUID Version GUID

32 4 UserEntryPoint MethodDef token of the entry point.

36 4 CountOfMethods Number of rows in the SymMethod table.

40 4 CountOfScopes Number of rows in the SymScopes table.

44 4 CountOfVars Number of rows in the SymVariable table.

48 4 CountOfUsing Number of rows in the SymUsing table.

52 4 CountOfConstants Number of rows in the SymConstant table.

56 4 CountOfDocuments Number of rows in the SymDocument table.

60 4 CountOfSequencePoints Number of rows in the SymSequencePoint table.

64 4 CountOfMiscBytes Number of bytes in the SymMisc heap.

68 4 CountOfStringBytes Number of bytes in the SymString heap.

1.2 .1 Version GUID

The version GUID is the 16-byte sequence shown below:

0x7F 0x55 0xE7 0xF1 0x3C 0x42 0x17 0x41
0x8D 0xA9 0xC7 0xA3 0xCD 0x98 0x8D 0xF1

1.3 Tables and heaps
The CILDB header is immediately followed by various tables and heaps, in the following order:

1. SymConstant

2. SymMethod

3. SymScopes

4. SymVariable

5. SymUsing

6. SymSequencePoint

7. SymDocument

2 Partition V

8. SymMisc

9. SymString

Some of the tables contain CIL offsets. These offsets are in bytes, and the offset of the first instruction is zero.
The offsets do not necessarily match the beginning of a CIL instruction. For example, offsets denoting the end of
a range of bytes often refer to the last byte of an instruction. Lengths are also in bytes.

The rows in each of the tables 3–7 above that belong to the same method must be contiguous within their parent
table.

1.3 .1 SymConstant table

Each row of the SymConstant table describes a constant, as follows:
Offset Size Field Description

0 4 Scope Index of parent scope

4 4 Name Index of the name in the SymString heap

8 4 Signature Index of the signature in the SymMisc heap

12 4 SignatureSize Length of the signature

16 4 Value Index of the value in the SymMisc heap

20 4 ValueSize Length of the value.

The value of the constant is encoded just like a Blob for the Value column of a Constant metadata table in Partition II,
except that there is no length prefix.

1.3 .2 SymDocument table

Each row of a SymDocument describes a source document, as shown below. The document can either be
referred to indirectly (by its URL) or incorporated directly into the CILDB file as part of the SymMisc heap.
Offset Size Field Description

0 16 Language GUID for the language.

16 16 LanguageVendor GUID for the language vendor.

32 16 DocumentType GUID for the document type.

48 16 AlgorithmId GUID of the checksum algorithm; or 0 if there is no
checksum.

64 4 CheckSumSize Size of the checksum; or 0 if there is no checksum.

68 4 CheckSumEntry Index of the checksum in the SymMisc heap; or 0 if there
is no checksum.

72 4 SourceSize Size of the source in the SymMisc heap; or 0 if the source
document is not directly incorporated into the file.

76 4 SourceEntry Index of the source in the SymMisc heap; or 0 if the
source document is not directly incorporated into the file.

80 4 UrlEntry Index of the document URL in the SymString heap.

1.3 .3 SymMethod table

Each row of a SymMethod table has the following format:

Offset Size Field Description

0 4 MethodToken A MethodDef metadata token.

 Partition V 3

4 8 Scopes [Start,Stop) range of SymScope table.

12 8 Vars [Start,Stop) range of SymVariable table.

20 8 Using [Start,Stop) range of SymUsing table.

28 8 Constant [Start,Stop) range of SymConstant table.

36 8 Documents [Start,Stop) range of SymDocument table.

44 8 SequencePoints [Start,Stop) range of SymSequencePoint table.

Each [Start,Stop) range is represented as two 4-byte integers. The first integer is the index of the first related
table row; the second integer is the index of one past the last related table row.

The rows of a SymMethod table are sorted in ascending order of the MethodToken field. There is at most one
row for each method.

1.3 .4 SymSequencePoint table

Each row of a SymSequencePoint table describes a sequence point, as follows:
Offset Size Field Description

0 4 Offset CIL offset of the sequence point.

4 4 StartLine Starting line of the source document.

8 4 StartColumn Starting column, or 0 if not specified.

12 4 EndLine Ending line of the source document, or 0 if not specified.

16 4 EndColumn Ending column, or 0 if not specified.

20 4 Doc Index of the source document in the SymString heap.

Together, EndLine and EndColumn specify the column “one past” the last byte position associated with the
sequence point. In other words, they specify the end of a half-open interval [start,end).

Rows of the SymSequencePoint belonging to the same Method must be contiguous and sorted in ascending
order of Offset.

1.3 .5 SymScope table

Each row of a SymScope table describes a scope, as follows:
Offset Size Field Description

0 4 Parent Index of parent SymScope row, or –1 if scope has no parent.

4 4 StartOffset CIL offset of the first byte in the scope.

8 4 EndOffset CIL offset of the last byte in the scope.

12 4 HasChildren 1 if scope has child scopes; 0 otherwise

16 4 HasVars 1 if scope has variables; 0 otherwise

The scopes belonging to a method must form a tree, with the following constraints:

• A parent scope must precede its child scopes.

• The StartOffset and EndOffset of a child scope must be within the (inclusive) range of offsets specified
by its parent’s scope.

1.3 .6 SymVariable table

Each row of a SymVariable table describes a local variable.

4 Partition V

Offset Size Field Description

0 4 Scope Index of the parent scope

4 4 Name Index of the variable’s name in the SymString heap.

8 4 Attributes Flags describing the variable (see below).

12 4 Signature Index of the signature in the SymMisc heap.

16 4 SignatureSize Length of the signature.

20 4 AddressKind Always 1.

24 4 Address1 Local variable number.

28 4 Address2 Always 0.

32 4 Address3 Always 0.

36 4 StartOffset CIL offset where the variable is first visible .

40 4 EndOffset CIL offset where the variable is last visible.

44 4 Sequence Always 0.

48 4 IsParam Always 0.

52 4 IsHidden 1 if variable should be hidden from debugger; 0 otherwise.

The least-significant bit of Attributes indicates whether the variable is user-generated (0) or compiler-
generated (1). The other bits are reserved and should be set to zero.
Because parameters are fully described by the Metadata, they do not appear in the SymVariable table.

1.3 .7 SymUsing table

Each row of the SymUsing table describes importation of a namespace, as follows:
Offset Size Field Description

0 4 Scope Index of the parent scope

4 4 Namespace Index of the namespace in the SymString heap

1.3 .8 SymMisc heap

The SymMisc heap holds various byte sequences (e.g., signatures and checksums).

1.3 .9 SymString heap

The stream of bytes in the SymString heap has the same form as those for the #Strings heap (see Partition II).

1.4 Signatures
Signatures of variables and constants are encoded as an index into the SymMisc heap, and a signature size. The
values of the bytes are similar to those for a FieldSig (see Partition II), and include the prefix FIELD (0x6),
even though the variables are not fields. Because the length of the signature is encoded in the tables, it is not
included in the SymMisc heap. For example, type int32 is encoded as “0x06 0x08”.

Common Language Infrastructure (CLI)
Partition VI:
Annexes

 Partition VI i

Annex A Introduction 1

Annex B Sample programs 2
B.1 Mutual ly recursive program (with ta i l cal ls) 2
B.2 Using value types 3
B.3 Custom at t r ibutes 6
B.4 Gener ics code and metadata 10
B.4.1 ILAsm version 10
B.4.2 C# version 11
B.4.3 Metadata 11

Annex C CIL assembler implementat ion 13
C.1 ILAsm keywords 13
C.2 CIL opcode descr ip t ions 16
C.3 Complete grammar 28
C.4 Instruct ion syntax 45
C.4.1 Top-level ins truct ion syntax 45
C.4.2 Instruct ions with no operand 46
C.4.3 Instruct ions that refer to parameters or local var iables 47
C.4.4 Instruct ions that take a s ingle 32-bit in teger argument 48
C.4.5 Instruct ions that take a s ingle 64-bit in teger argument 48
C.4.6 Instruct ions that take a s ingle f loat ing-point argument 48
C.4.7 Branch instruct ions 49
C.4.8 Instruct ions that take a method as an argument 49
C.4.9 Instruct ions that take a f ie ld of a c lass as an argument 49
C.4.10 Instruct ions that take a type as an argument 50
C.4.11 Instruct ions that take a s t r ing as an argument 50
C.4.12 Ins truct ions that take a s ignature as an argument 50
C.4.13 Ins truct ions that take a metadata token as an argument 51
C.4.14 Switch instruct ion 51

Annex D Class l ibrary design guidel ines 52

Annex E Portabil ity considerations 53
E.1 Uncontrol lable behavior 53
E.2 Language- and compiler-control lable behavior 53
E.3 Programmer-control lable behavior 53

ii Partition VI

Annex F Imprecise faults 55
F .1 Instruct ion reorder ing 55
F.2 Inl in ing 55
F.3 Final ly handlers s t i l l guaranteed once a try b lock is entered 55
F.4 Inter leaved cal ls 56
F.4.1 Rejected not ions for fencing 57

F.5 Examples 57
F.5.1 Hoist ing checks out of a loop 57
F.5.2 Vector izing a loop 57
F.5.3 Autothreading a loop 58

Annex G Parallel l ibrary 59
G.1 Considerat ions 59
G.2 Paral le lFor 59
G.3 Paral le lForEach 60
G.4 Paral le lWhile 60
G.5 Debugging 60

 Partition VI 1

Annex A Introduction
Annex A this annex.

Annex B contains a number of sample programs written in CIL Assembly Language (ILAsm)

Annex C contains information about a particular implementation of an assembler, which provides a
superset of the functionality of the syntax described in Partition II. It also provides a machine-
readable description of the CIL instruction set which can be used to derive parts of the grammar used
by this assembler as well as other tools that manipulate CIL.

Annex D contains a set of guidelines used in the design of the libraries of Partition IV. The rules are
provided here since they have proven themselves effective in designing cross-language APIs. They
also serve as guidelines for those intending to supply additional functionality in a way that meshes
seamlessly with the standardized libraries.

Annex E contains information of interest to implementers with respect to the latitude they have in
implementing the CLI.

Annex F contains information of interest to implementers with respect to relaxed fault handling.

Annex G shows several complete examples written using the parallel library.

2 Partition VI

Annex B Sample programs

This clause contains only informative text
This Annex shows several complete examples written using ILAsm.

B.1 Mutually recursive program (with tail calls)
The following is an example of a mutually recursive program that uses tail calls. The methods below
determine whether a number is even or odd.

[Example:

.assembly extern mscorlib { }

.assembly test.exe { }

.class EvenOdd
{ .method private static bool IsEven(int32 N) cil managed
 { .maxstack 2
 ldarg.0 // N
 ldc.i4.0
 bne.un NonZero
 ldc.i4.1
 ret

NonZero:
 ldarg.0
 ldc.i4.1
 sub
 tail.
 call bool EvenOdd::IsOdd(int32)
 ret
 } // end of method ‘EvenOdd::IsEven’

 .method private static bool IsOdd(int32 N) cil managed
 { .maxstack 2
 // Demonstrates use of argument names and labels
 // Notice that the assembler does not convert these
 // automatically to their short versions
 ldarg N
 ldc.i4.0
 bne.un NonZero
 ldc.i4.0
 ret

NonZero:
 ldarg N
 ldc.i4.1
 sub
 tail.

 call bool EvenOdd::IsEven(int32)
 ret
 } // end of method ‘EvenOdd::IsOdd’

 .method public static void Test(int32 N) cil managed
 { .maxstack 1
 ldarg N
 call void [mscorlib]System.Console::Write(int32)
 ldstr " is "

 Partition VI 3

 call void [mscorlib]System.Console::Write(string)
 ldarg N
 call bool EvenOdd::IsEven(int32)
 brfalse LoadOdd
 ldstr "even"

Print:
 call void [mscorlib]System.Console::WriteLine(string)
 ret

LoadOdd:
 ldstr "odd"
 br Print
 } // end of method ‘EvenOdd::Test’
} // end of class ‘EvenOdd’

//Global method
.method public static void main() cil managed
{ .entrypoint
 .maxstack 1
 ldc.i4.5
 call void EvenOdd::Test(int32)
 ldc.i4.2
 call void EvenOdd::Test(int32)
 ldc.i4 100
 call void EvenOdd::Test(int32)
 ldc.i4 1000001
 call void EvenOdd::Test(int32)
 ret
} // end of global method ‘main’

end example]

B.2 Using value types
The following program shows how rational numbers can be implemented using value types.

[Example:

.assembly extern mscorlib { }

.assembly rational.exe { }

.class private sealed Rational extends [mscorlib]System.ValueType
 implements mscorlib]System.IComparable

{ .field public int32 Numerator
 .field public int32 Denominator

 .method virtual public int32 CompareTo(object o)
 // Implements IComparable::CompareTo(Object)
 { ldarg.0 // ‘this’ as a managed pointer
 ldfld int32 value class Rational::Numerator
 ldarg.1 // ‘o’ as an object
 unbox value class Rational
 ldfld int32 value class Rational::Numerator
 beq.s TryDenom
 ldc.i4.0
 ret

TryDenom:
 ldarg.0 // ‘this’ as a managed pointer
 ldfld int32 value class Rational::Denominator

4 Partition VI

 ldarg.1 // ‘o’ as an object
 unbox value class Rational
 ldfld int32 class Rational::Denominator
 ceq
 ret
 }

 .method virtual public string ToString()
 // Implements Object::ToString
 { .locals init (class [mscorlib]System.Text.StringBuilder SB,
 string S, object N, object D)
 newobj void [mscorlib]System.Text.StringBuilder::.ctor()
 stloc.s SB
 ldstr "The value is: {0}/{1}"
 stloc.s S
 ldarg.0 // Managed pointer to self
 dup

 ldfld int32 value class Rational::Numerator
 box [mscorlib]System.Int32
 stloc.s N
 ldfld int32 value class Rational::Denominator
 box [mscorlib]System.Int32
 stloc.s D
 ldloc.s SB
 ldloc.s S
 ldloc.s N
 ldloc.s D

 call instance class [mscorlib]System.Text.StringBuilder
 [mscorlib]System.Text.StringBuilder::AppendFormat(string,
 object, object)
 callvirt instance string [mscorlib]System.Object::ToString()
 ret
 }

 .method public value class Rational Mul(value class Rational)
 {
 .locals init (value class Rational Result)
 ldloca.s Result
 dup
 ldarg.0 // ‘this’
 ldfld int32 value class Rational::Numerator
 ldarga.s 1 // arg
 ldfld int32 value class Rational::Numerator
 mul
 stfld int32 value class Rational::Numerator

 ldarg.0 // this
 ldfld int32 value class Rational::Denominator
 ldarga.s 1 // arg
 ldfld int32 value class Rational::Denominator
 mul
 stfld int32 value class Rational::Denominator
 ldloc.s Result
 ret
 }
}

 Partition VI 5

.method static void main()
{
 .entrypoint
 .locals init (value class Rational Half,
 value class Rational Third,
 value class Rational Temporary,
 object H, object T)

 // Initialize Half, Third, H, and T
 ldloca.s Half
 dup
 ldc.i4.1
 stfld int32 value class Rational::Numerator
 ldc.i4.2
 stfld int32 value class Rational::Denominator
 ldloca.s Third
 dup

 ldc.i4.1
 stfld int32 value class Rational::Numerator
 ldc.i4.3
 stfld int32 value class Rational::Denominator
 ldloc.s Half
 box value class Rational
 stloc.s H
 ldloc.s Third
 box value class Rational
 stloc.s T
 // WriteLine(H.IComparable::CompareTo(H))
 // Call CompareTo via interface using boxed instance

 ldloc H
 dup
 callvirt int32 [mscorlib]System.IComparable::CompareTo(object)
 call void [mscorlib]System.Console::WriteLine(bool)
 // WriteLine(Half.CompareTo(T))
 // Call CompareTo via value type directly
 ldloca.s Half
 ldloc T
 call instance int32
 value class Rational::CompareTo(object)
 call void [mscorlib]System.Console::WriteLine(bool)

 // WriteLine(Half.ToString())
 // Call virtual method via value type directly
 ldloca.s Half
 call instance string class Rational::ToString()
 call void [mscorlib]System.Console::WriteLine(string)

 // WriteLine(T.ToString)
 // Call virtual method inherited from Object, via boxed instance
 ldloc T
 callvirt string [mscorlib]System.Object::ToString()
 call void [mscorlib]System.Console::WriteLine(string)
 // WriteLine((Half.Mul(T)).ToString())
 // Mul is called on two value types, returning a value type
 // ToString is then called directly on that value type

6 Partition VI

 // Note that we are required to introduce a temporary variable
 // since the call to ToString requires
 // a managed pointer (address)
 ldloca.s Half
 ldloc.s Third
 call instance value class Rational
 Rational::Mul(value class Rational)

 stloc.s Temporary
 ldloca.s Temporary
 call instance string Rational::ToString()
 call void [mscorlib]System.Console::WriteLine(string)
 ret
}

end example]

B.3 Custom attributes
 [Example:

This subclause includes many example uses of custom attributes to help clarify the grammar and
rules described above. The examples are written in C#, and each one shows a collection of one or
more attributes, applied to a class (called “App”). The hex and ‘translation’ of the custom attribute
blobs are shown as comments. The following abbreviations are used:

• FIELD = ELEMENT_TYPE_FIELD
• PROPERTY = 0x54
• STRING = ELEMENT_TYPE_STRING
• SZARRAY = ELEMENT_TYPE_SZARRAY
• U1 = ELEMENT_TYPE_U1
• I4 = ELEMENT_TYPE_I4
• OBJECT = 0x51

//

// CustomSimple.cs
using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class B : Attribute { public B(int i, ushort u) {} }

[B(7,9)] // 01 00 // Prolog
 // 07 00 00 00 // 0x00000007
 // 09 00 // 0x0009
 // 00 00 // NumNamed
class App { static void Main() {} }

//

// CustomString.cs
using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class A : Attribute {
 public string field; // field
 private string back; // backing field for property
 public string prop { // property

 Partition VI 7

 get { return back; }
 set { back = value; }
 }
 public A(string x) {} // ctor
}
[A(null)] // 01 00 // Prolog
 // FF // null
 // 00 00 // NumNamed

[A("")] // 01 00 // Prolog
 // 00 // zero-length string
 // 00 00 // NumNamed

[A("ab",field="cd",prop="123")] // 01 00 // Prolog
 // 02 61 62 // "ab"
 // 02 00 // NumNamed
 // 53 0e // FIELD,
STRING
 // 05 66 69 65 6c 64 // "field" as
counted-UTF8
 // 02 63 64 // "cd" as
counted-UTF8
 // 54 0e // PROPERTY,
STRING
 // 04 70 72 6f 70 // "prop" as
counted-UTF8
 // 03 31 32 33 // "123" as
counted-UTF8
class App { static void Main() {} }

//

// CustomType.cs
using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class C : Attribute {
 public C(Type t) {}
}
[C(typeof(C))]
// 01 00 // Prolog
// 01 43 // "C" as
counted-UTF8
// 00 00 // NumNamed

[C(typeof(string))]
// 01 00 // Prolog
// 0d 53 79 73 74 65 6d 2e 53 74 72 69 6e 67 //
"System.String" as counted-UTF8
// 00 00 // NumNamed

[C(typeof(System.Windows.Forms.Button))]
// 01 00 // Prolog
// 76 53 79 73 74 65 6d 2e 57 69 6e 64 6f 77 //
"System.Window

8 Partition VI

// 73 2e 46 6f 72 6d 73 2e 42 75 74 74 6f 6e 2c 53 //
s.Forms.Button,S
// 79 73 74 65 6d 2e 57 69 6e 64 6f 77 73 2e 46 6f //
ystem.Windows.Fo
// 72 6d 73 2c 20 56 65 72 73 69 6f 6e 3d 32 2e 30 // rms,
Version=2.0
// 2e 33 36 30 30 2e 30 2c 20 43 75 6c 74 75 72 65 // .3600.0,
Culture
// 3d 6e 65 75 74 72 61 6c 2c 20 50 75 62 6c 69 63 // =neutral,
Public
// 4b 65 79 54 6f 6b 65 6e 3d 62 37 37 61 35 63 35 //
KeyToken=b77a5c5
// 36 31 39 33 34 65 30 38 39 00 00 // 61934e089"
// 00 00 // NumNamed
class App { static void Main() {} }

Notice how various types are ‘stringified’: if the type is defined in the local assembly, or in mscorlib,
then only its full name is required; if the type is defined in a different assembly, then its fully-
qualified assembly name is required, includeing Version, Culture and PublicKeyToken, if non-
defaulted.

//

// CustomByteArray.cs
using System;
class D : Attribute {
 public byte[] field; // field
 private byte[] back; // backing
field for property
 public byte[] prop { // property
 get { return back; }
 set { back = value; }
 }
 public D(params byte[] bs) {} // ctor
}
[D(1,2, field=new byte[]{3,4},prop=new byte[]{5})]
// 01 00 // Prolog
// 02 00 00 00 // NumElem
// 01 02 // 1,2
// 02 00 // NumNamed
// 53 1d 05 // FIELD,
SZARRAY, U1
// 05 66 69 65 6c 64 // "field" as
counted-UTF8
// 02 00 00 00 // NumElem =
0x00000002
// 03 04 // 3,4
// 54 1d 05 // PROPERTY,
SZARRAY, U1
// 04 70 72 6f 70 // "prop" as
counted-UTF8
// 01 00 00 00 // NumElem =
0x00000001
// 05 // 5
class App { static void Main() {} }

 Partition VI 9

//

// CustomBoxedValuetype.cs
using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class E : Attribute {
 public object obj; // field called
"obj"
 public object o { // property called
"o"
 get { return o; }
 set { o = value; }
 }
 public E() {} // default ctor
 public E(object x) {}
}

[E(42)] // boxed 42
// 01 00 // Prolog
// 08 // I4
// 2a 00 00 00 // 0x0000002A
// 00 00 // NumNamed

[E(obj=7)] // named field
// 01 00 // Prolog
// 01 00 // NumNamed
// 53 51 // FIELD, OBJECT
// 03 6f 62 6a // "obj" as
counted-UTF8
// 08 // I4
// 07 00 00 00 // 0x00000007

[E(o=0xEE)] // named property
// 01 00 // Prolog
// 01 00 // NumNamed
// 54 51 // PROPERTY, OBJECT
// 01 6f // "o" as counted-
UTF8
// 08 // I4
// ee 00 00 00 // 0x000000EE
class App { static void Main() {} }

This example illustrates how to construct blobs for a custom attribute that accepts a
System.Object in its constructor, as a named field, and as a named property. In each case, the
argument given is an int32, which is boxed automatically by the C# compiler.

Notice the OBJECT = 0x51 byte. This is emitted for “named” fields or properties of type
System.Object. The value emitted should have been ELEMENT_TYPE_OBJECT = 0x1C.
Alas, this tiny mistake has now ‘escaped’ into the wild, and it’s too late to correct.

//

// CustomShortArray.cs

10 Partition VI

using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple=true)]
class F : Attribute {
 public F(params short[] cs) {} // ctor
}
//[F()]
// 01 00 // Prolog
// 00 00 00 00 // NumElem
// 00 00 // NumNamed

//[F(null)]
// 01 00 // Prolog
// ff ff ff ff // NumElem = -1 => null
// 00 00 // NumNamed

[F(1,2)]
// 01 00 // Prolog
// 02 00 00 00 // NumElem
// 01 00 02 00 // 0x0001, 0x0002
// 00 00 // NumNamed
class App { static void Main() {} }

end example]

B.4 Generics code and metadata
The following informative text, shows a partial implementation for a naive phone-book class. It
shows the source first, as written in ILAsm, followed by the equivalent (much shorter) code, written
in C#. The section then goes on to examine the metadata generated for this code.

B.4.1 ILAsm version

.assembly extern mscorlib {}

.assembly Phone {}

.class private Phone`2<([mscorlib]System.Object) K,
([mscorlib]System.Object) V>
 extends [mscorlib]System.Object {
 .field private int32 hi
 .field private !0[] keys
 .field private !1[] vals
 .method public instance void Add(!0 k, !1 v) {
 .maxstack 4
 .locals init (int32 temp)
 ldarg.0
 ldfld !0[] class Phone`2<!0,!1>::keys
 ldarg.0
 dup
 ldfld int32 class Phone`2<!0,!1>::hi
 ldc.i4.1
 add
 dup
 stloc.0
 stfld int32 class Phone`2<!0,!1>::hi
 ldloc.0
 ldarg.1
 stelem !0
 ldarg.0

 Partition VI 11

 ldfld !1[] class Phone`2<!0,!1>::vals
 ldarg.0
 ldfld int32 class Phone`2<!0,!1>::hi
 ldarg.2
 stelem !1
 ret
 } // end of Method Add
} // end of class Phone

.class App extends [mscorlib]System.Object {
 .method static void Main() {
 .entrypoint
 .maxstack 3
 .locals init (class Phone`2<string,int32> temp)
 newobj instance void class
 Phone`2<string,int32>::.ctor()
 stloc.0
 ldloc.0
 ldstr "Jim"
 ldc.i4.7
 callvirt instance void class
 Phone`2<string,int32>::Add(!0, !1)
 ret
 } // end of method Main
} // end of class App

B.4.2 C# version

using System;

class Phone<K,V> {
 private int hi = -1;
 private K[] keys;
 private V[] vals;
 public Phone() { keys = new K[10]; vals = new V[10]; }
 public void Add(K k, V v) { keys[++hi] = k; vals[hi] = v; }
}

class App {
 static void AddOne<KK,VV>(Phone<KK,VV> phone, KK kk, VV vv) {
 phone.Add(kk, vv);
 }
 static void Main() {
 Phone<string, int> d = new Phone<string, int>();
 d.Add("Jim", 7);
 AddOne(d, "Joe", 8);
 }
}

B.4.3 Metadata

As detailed in §23.2.12 of Partition II, the Type non-terminal now includes a production for generic
instantiations, as follows:

Type ::= . . .

 | GENERICINST (CLASS | VALUETYPE) TypeDefOrRefEncoded GenArgCount Type *

Following this production, the Phone<string,int> instantiation above is encoded as:

12 Partition VI

0x15 ELEMENT_TYPE_GENERICINST
0x12 ELEMENT_TYPE_CLASS
0x08 TypeDefOrRef coded index for class “Phone<K,V>”
0x02 GenArgCount = 2
0x0E ELEMENT_TYPE_STRING
0x08 ELEMENT_TYPE_I4

Similarly, the signature for the field vals is encoded as:

0x06 FIELD
0x1D ELEMENT_TYPE_SZARRAY
0x13 ELEMENT_TYPE_VAR
0x01 1, representing generic argument number 1 (i.e., “V”)

Similarly, the signature for the (rather contrived) static method AddOne is encoded as:

0x10 IMAGE_CEE_CS_CALLCONV_GENERIC
0x02 GenParamCount = 2 (2 generic parameters for this method: KK
and VV
0x03 ParamCount = 3 (phone, kk and vv)
0x01 RetType = ELEMENT_TYPE_VOID
0x15 Param-0: ELEMENT_TYPE_GENERICINST
0x12 ELEMENT_TYPE_CLASS
0x08 TypeDefOrRef coded index for class “Phone<KK,VV>”
0x02 GenArgCount = 2
0x1e ELEMENT_TYPE_MVAR
0x00 !!0 (KK in AddOne<KK,VV>)
0x1e ELEMENT_TYPE_MVAR
0x01 !!1 (VV in AddOne<KK,VV>)
0x1e Param-1 ELEMENT_TYPE_MVAR
0x00 !!0 (KK in AddOne<KK,VV>)
0x1e Param-2 ELEMENT_TYPE_MVAR
0x01 !!1 (VV in AddOne<KK,VV>)

Notice that the above example uses indenting to help denote loops over the three method parameters,
and the two generic parameters on Phone.

 Partition VI 13

Annex C CIL assembler implementation

This clause contains only informative text
This clause provides information about a particular assembler for CIL, called ilasm. It supports a
superset of the syntax defined normatively in Partition II, and provides a concrete syntax for the CIL
instructions specified in Partition III.

Even for those who have no interest in this particular assembler, §C.1 and §C.3 might be of interest.
The former is a machine-readable file (ready for input to a C or C++ preprocessor) that partially
describes the CIL instructions. It can be used to generate tables for use by a wide variety of tools that
deal with CIL. The latter contains a concrete syntax for CIL instructions, which is not described
elsewhere.

C.1 ILAsm keywords
This subclause provides a complete list of the keywords used by ilasm. If users wish to use any of
these as simple identifiers within programs they just make use of the appropriate escape notation
(single or double quotation marks as specified in the grammar). This assembler is case-sensitive.

#line

.addon

.assembly

.cctor

.class

.corflags

.ctor

.custom

.data

.emitbyte

.entrypoint

.event

.export

.field

.file

.fire

.get

.hash

.imagebase

.import

.language

.line

.locale

.localized

.locals

.manifestres

.maxstack

.method

.module

.mresource

.namespace

.other

.override

.pack

.param

.pdirect

.permission

.permissionset

.property

.publickey

.publickeytoken

.removeon

.set

.size

.subsystem

.try

.ver

.vtable

.vtentry

.vtfixup

.zeroinit

^THE_END^

abstract

add

add.ovf

add.ovf.un

algorithm

alignment

and

ansi

any

arglist

array

as

assembly

assert

at

auto

autochar

beforefieldinit

beq

beq.s

bge

bge.s

bge.un

bge.un.s

bgt

bgt.s

bgt.un

bgt.un.s

ble

ble.s

ble.un

ble.un.s

blob

blob_object

blt

blt.s

14 Partition VI

blt.un

blt.un.s

bne.un

bne.un.s

bool

box

br

br.s

break

brfalse

brfalse.s

brinst

brinst.s

brnull

brnull.s

brtrue

brtrue.s

brzero

brzero.s

bstr

bytearray

byvalstr

call

calli

callmostderived

callvirt

carray

castclass

catch

cdecl

ceq

cf

cgt

cgt.un

char

cil

ckfinite

class

clsid

clt

clt.un

const

constrained.

conv.i

conv.i1

conv.i2

conv.i4

conv.i8

conv.ovf.i

conv.ovf.i.un

conv.ovf.i1

conv.ovf.i1.un

conv.ovf.i2

conv.ovf.i2.un

conv.ovf.i4

conv.ovf.i4.un

conv.ovf.i8

conv.ovf.i8.un

conv.ovf.u

conv.ovf.u.un

conv.ovf.u1

conv.ovf.u1.un

conv.ovf.u2

conv.ovf.u2.un

conv.ovf.u4

conv.ovf.u4.un

conv.ovf.u8

conv.ovf.u8.un

conv.r.un

conv.r4

conv.r8

conv.u

conv.u1

conv.u2

conv.u4

conv.u8

cpblk

cpobj

currency

custom

date

decimal

default

default

demand

deny

div

div.un

dup

endfault

endfilter

endfinally

endmac

enum

error

explicit

extends

extern

false

famandassem

family

famorassem

fastcall

fastcall

fault

field

filetime

filter

final

finally

fixed

float

float32

float64

forwardref

fromunmanaged

handler

hidebysig

hresult

idispatch

il

illegal

implements

implicitcom

implicitres

import

in

inheritcheck

init

initblk

initobj

initonly

instance

int

int16

int32

int64

int8

interface

internalcall

 Partition VI 15

isinst

iunknown

jmp

lasterr

lcid

ldarg

ldarg.0

ldarg.1

ldarg.2

ldarg.3

ldarg.s

ldarga

ldarga.s

ldc.i4

ldc.i4.0

ldc.i4.1

ldc.i4.2

ldc.i4.3

ldc.i4.4

ldc.i4.5

ldc.i4.6

ldc.i4.7

ldc.i4.8

ldc.i4.M1

ldc.i4.m1

ldc.i4.s

ldc.i8

ldc.r4

ldc.r8

ldelem

ldelem.i

ldelem.i1

ldelem.i2

ldelem.i4

ldelem.i8

ldelem.r4

ldelem.r8

ldelem.ref

ldelem.u1

ldelem.u2

ldelem.u4

ldelem.u8

ldelema

ldfld

ldflda

ldftn

ldind.i

ldind.i1

ldind.i2

ldind.i4

ldind.i8

ldind.r4

ldind.r8

ldind.ref

ldind.u1

ldind.u2

ldind.u4

ldind.u8

ldlen

ldloc

ldloc.0

ldloc.1

ldloc.2

ldloc.3

ldloc.s

ldloca

ldloca.s

ldnull

ldobj

ldsfld

ldsflda

ldstr

ldtoken

ldvirtftn

leave

leave.s

linkcheck

literal

localloc

lpstr

lpstruct

lptstr

lpvoid

lpwstr

managed

marshal

method

mkrefany

modopt

modreq

mul

mul.ovf

mul.ovf.un

native

neg

nested

newarr

newobj

newslot

noappdomain

no.

noinlining

nomachine

nomangle

nometadata

noncasdemand

noncasinheritance

noncaslinkdemand

nop

noprocess

not

not_in_gc_heap

notremotable

notserialized

null

nullref

object

objectref

opt

optil

or

out

permitonly

pinned

pinvokeimpl

pop

prefix1

prefix2

prefix3

prefix4

prefix5

prefix6

prefix7

prefixref

prejitdeny

prejitgrant

preservesig

private

privatescope

protected

16 Partition VI

public

readonly.

record

refany

refanytype

refanyval

rem

rem.un

reqmin

reqopt

reqrefuse

reqsecobj

request

ret

rethrow

retval

rtspecialname

runtime

safearray

sealed

sequential

serializable

shl

shr

shr.un

sizeof

special

specialname

starg

starg.s

static

stdcall

stdcall

stelem

stelem.i

stelem.i1

stelem.i2

stelem.i4

stelem.i8

stelem.r4

stelem.r8

stelem.ref

stfld

stind.i

stind.i1

stind.i2

stind.i4

stind.i8

stind.r4

stind.r8

stind.ref

stloc

stloc.0

stloc.1

stloc.2

stloc.3

stloc.s

stobj

storage

stored_object

stream

streamed_object

string

struct

stsfld

sub

sub.ovf

sub.ovf.un

switch

synchronized

syschar

sysstring

tail.

tbstr

thiscall

thiscall

throw

tls

to

true

typedref

unaligned.

unbox

unbox.any

unicode

unmanaged

unmanagedexp

unsigned

unused

userdefined

value

valuetype

vararg

variant

vector

virtual

void

volatile.

wchar

winapi

with

wrapper

xor

C.2 CIL opcode descriptions
This subclause contains text, which is intended for use with the C or C++ preprocessor. By
appropriately defining the macros OPDEF and OPALIAS before including this text, it is possible to
use this to produce tables or code for handling CIL instructions.

The OPDEF macro is passed 10 arguments, in the following order:

1. A symbolic name for the opcode, beginning with CEE_

2. A string that constitutes the name of the opcode and corresponds to the names given in
Partition III.

3. Data removed from the stack to compute this operations result. The possible values here
are the following:

 Partition VI 17

a. Pop0 – no inputs

b. Pop1 – one value type specified by data flow

c. Pop1+Pop1 – two input values, types specified by data flow

d. PopI – one machine-sized integer

e. PopI+Pop1 – Top of stack is described by data flow, next item is a native pointer

f. PopI+PopI – Top two items on stack are integers (size can vary by instruction)

g. PopI+PopI+PopI – Top three items on stack are machine-sized integers

h. PopI8+Pop8 – Top of stack is an 8-byte integer, next is a native pointer

i. PopI+PopR4 – Top of stack is a 4-byte floating point number, next is a native
pointer

j. PopI+PopR8 – Top of stack is an 8-byte floating point number, next is a native
pointer

k. PopRef – Top of stack is an object reference

l. PopRef+PopI – Top of stack is an integer (size can vary by instruction), next is an
object reference

m. PopRef+PopI+PopI – Top of stack has two integers (size can vary by instruction),
next is an object reference

n. PopRef+PopI+PopI8 – Top of stack is an 8-byte integer, then a native-sized
integer, then an object reference

o. PopRef+PopI+PopR4 – Top of stack is an 4-byte floating point number, then a
native-sized integer, then an object reference

p. PopRef+PopI+PopR8 – Top of stack is an 8-byte floating point number, then a
native-sized integer, then an object reference

q. VarPop – variable number of items used, see Partition III for details

4. Amount and type of data pushed as a result of the instruction. The possible values here
are the following:

a. Push0 – no output value

b. Push1 – one output value, type defined by data flow.

c. Push1+Push1 – two output values, type defined by data flow

d. PushI – push one native integer or pointer

e. PushI8 – push one 8-byte integer

f. PushR4 – push one 4-byte floating point number

g. PushR8 – push one 8-byte floating point number

h. PushRef – push one object reference

i. VarPush – variable number of items pushed, see Partition III for details

5. Type of in-line argument to instruction. The in-line argument is stored with least
significant byte first (“little endian”). The possible values here are the following:

a. InlineBrTarget – Branch target, represented as a 4-byte signed integer from the
beginning of the instruction following the current instruction.

18 Partition VI

b. InlineField – Metadata token (4 bytes) representing a FieldRef (i.e., a MemberRef
to a field) or FieldDef

c. InlineI – 4-byte integer

d. InlineI8 – 8-byte integer

e. InlineMethod – Metadata token (4 bytes) representing a MethodRef (i.e., a
MemberRef to a method) or MethodDef

f. InlineNone – No in-line argument

g. InlineR – 8-byte floating point number

h. InlineSig – Metadata token (4 bytes) representing a standalone signature

i. InlineString – Metadata token (4 bytes) representing a UserString

j. InlineSwitch – Special for the switch instructions, see Partition III for details

k. InlineTok – Arbitrary metadata token (4 bytes) , used for ldtoken instruction, see
Partition III for details

l. InlineType – Metadata token (4 bytes) representing a TypeDef, TypeRef, or
TypeSpec

m. InlineVar – 2-byte integer representing an argument or local variable

n. ShortInlineBrTarget – Short branch target, represented as 1 signed byte from the
beginning of the instruction following the current instruction.

o. ShortInlineI – 1-byte integer, signed or unsigned depending on instruction

p. ShortInlineR – 4-byte floating point number

q. ShortInlineVar – 1-byte integer representing an argument or local variable

6. Type of opcode. The current classification is of no current value, but is retained for
historical reasons.

7. Number of bytes for the opcode. Currently 1 or 2, can be 4 in future

8. First byte of 2-byte encoding, or 0xFF if single byte instruction.

9. One byte encoding, or second byte of 2-byte encoding.

10. Control flow implications of instruction. The possible values here are the following:

a. BRANCH – unconditional branch

b. CALL – method call

c. COND_BRANCH – conditional branch

d. META – unused operation or prefix code

e. NEXT – control flow unaltered (“fall through”)

f. RETURN – return from method

g. THROW – throw or rethrow an exception

The OPALIAS macro takes three arguments:

1. A symbolic name for a “new instruction” which is simply an alias (renaming for the
assembler) of an existing instruction.

2. A string name for the “new instruction.”

 Partition VI 19

3. The symbolic name for an instruction introduced using the OPDEF macro. The “new
instruction” is really just an alternative name for this instruction.

#ifndef __OPCODE_DEF_
#define __OPCODE_DEF_

#define MOOT 0x00 // Marks unused second byte when encoding single
#define STP1 0xFE // Prefix code 1 for Standard Map
#define REFPRE 0xFF // Prefix for Reference Code Encoding
#define RESERVED_PREFIX_START 0xF7

#endif

// If the first byte of the standard encoding is 0xFF, then
// the second byte can be used as 1 byte encoding. Otherwise
l b b
// the encoding is two bytes.
e y y
//
n t t
//
g e e
//
(unused) t
// Canonical Name String Name Stack Behaviour
Operand Params Opcode Kind h 1 2 Control Flow
// --

OPDEF(CEE_NOP, "nop", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x00, NEXT)
OPDEF(CEE_BREAK, "break", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x01, BREAK)
OPDEF(CEE_LDARG_0, "ldarg.0", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x02, NEXT)
OPDEF(CEE_LDARG_1, "ldarg.1", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x03, NEXT)
OPDEF(CEE_LDARG_2, "ldarg.2", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x04, NEXT)
OPDEF(CEE_LDARG_3, "ldarg.3", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x05, NEXT)
OPDEF(CEE_LDLOC_0, "ldloc.0", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x06, NEXT)
OPDEF(CEE_LDLOC_1, "ldloc.1", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x07, NEXT)
OPDEF(CEE_LDLOC_2, "ldloc.2", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x08, NEXT)
OPDEF(CEE_LDLOC_3, "ldloc.3", Pop0, Push1,
InlineNone, IMacro, 1, 0xFF, 0x09, NEXT)
OPDEF(CEE_STLOC_0, "stloc.0", Pop1, Push0,
InlineNone, IMacro, 1, 0xFF, 0x0A, NEXT)
OPDEF(CEE_STLOC_1, "stloc.1", Pop1, Push0,
InlineNone, IMacro, 1, 0xFF, 0x0B, NEXT)
OPDEF(CEE_STLOC_2, "stloc.2", Pop1, Push0,
InlineNone, IMacro, 1, 0xFF, 0x0C, NEXT)
OPDEF(CEE_STLOC_3, "stloc.3", Pop1, Push0,
InlineNone, IMacro, 1, 0xFF, 0x0D, NEXT)
OPDEF(CEE_LDARG_S, "ldarg.s", Pop0, Push1,
ShortInlineVar, IMacro, 1, 0xFF, 0x0E, NEXT)
OPDEF(CEE_LDARGA_S, "ldarga.s", Pop0, PushI,
ShortInlineVar, IMacro, 1, 0xFF, 0x0F, NEXT)
OPDEF(CEE_STARG_S, "starg.s", Pop1, Push0,
ShortInlineVar, IMacro, 1, 0xFF, 0x10, NEXT)
OPDEF(CEE_LDLOC_S, "ldloc.s", Pop0, Push1,
ShortInlineVar, IMacro, 1, 0xFF, 0x11, NEXT)
OPDEF(CEE_LDLOCA_S, "ldloca.s", Pop0, PushI,
ShortInlineVar, IMacro, 1, 0xFF, 0x12, NEXT)
OPDEF(CEE_STLOC_S, "stloc.s", Pop1, Push0,
ShortInlineVar, IMacro, 1, 0xFF, 0x13, NEXT)
OPDEF(CEE_LDNULL, "ldnull", Pop0, PushRef,
InlineNone, IPrimitive, 1, 0xFF, 0x14, NEXT)

20 Partition VI

OPDEF(CEE_LDC_I4_M1, "ldc.i4.m1", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x15, NEXT)
OPDEF(CEE_LDC_I4_0, "ldc.i4.0", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x16, NEXT)
OPDEF(CEE_LDC_I4_1, "ldc.i4.1", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x17, NEXT)
OPDEF(CEE_LDC_I4_2, "ldc.i4.2", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x18, NEXT)
OPDEF(CEE_LDC_I4_3, "ldc.i4.3", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x19, NEXT)
OPDEF(CEE_LDC_I4_4, "ldc.i4.4", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x1A, NEXT)
OPDEF(CEE_LDC_I4_5, "ldc.i4.5", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x1B, NEXT)
OPDEF(CEE_LDC_I4_6, "ldc.i4.6", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x1C, NEXT)
OPDEF(CEE_LDC_I4_7, "ldc.i4.7", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x1D, NEXT)
OPDEF(CEE_LDC_I4_8, "ldc.i4.8", Pop0, PushI,
InlineNone, IMacro, 1, 0xFF, 0x1E, NEXT)
OPDEF(CEE_LDC_I4_S, "ldc.i4.s", Pop0, PushI,
ShortInlineI, IMacro, 1, 0xFF, 0x1F, NEXT)
OPDEF(CEE_LDC_I4, "ldc.i4", Pop0, PushI,
InlineI, IPrimitive, 1, 0xFF, 0x20, NEXT)
OPDEF(CEE_LDC_I8, "ldc.i8", Pop0, PushI8,
InlineI8, IPrimitive, 1, 0xFF, 0x21, NEXT)
OPDEF(CEE_LDC_R4, "ldc.r4", Pop0, PushR4,
ShortInlineR, IPrimitive, 1, 0xFF, 0x22, NEXT)
OPDEF(CEE_LDC_R8, "ldc.r8", Pop0, PushR8,
InlineR, IPrimitive, 1, 0xFF, 0x23, NEXT)
OPDEF(CEE_UNUSED49, "unused", Pop0,
Push0, InlineNone, IPrimitive, 1, 0xFF, 0x24, NEXT)
OPDEF(CEE_DUP, "dup", Pop1,
Push1+Push1, InlineNone, IPrimitive, 1, 0xFF, 0x25, NEXT)
OPDEF(CEE_POP, "pop", Pop1, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x26, NEXT)
OPDEF(CEE_JMP, "jmp", Pop0, Push0,
InlineMethod, IPrimitive, 1, 0xFF, 0x27, CALL)
OPDEF(CEE_CALL, "call", VarPop, VarPush,
InlineMethod, IPrimitive, 1, 0xFF, 0x28, CALL)
OPDEF(CEE_CALLI, "calli", VarPop, VarPush,
InlineSig, IPrimitive, 1, 0xFF, 0x29, CALL)
OPDEF(CEE_RET, "ret", VarPop, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x2A, RETURN)
OPDEF(CEE_BR_S, "br.s", Pop0, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x2B, BRANCH)
OPDEF(CEE_BRFALSE_S, "brfalse.s", PopI, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x2C, COND_BRANCH)
OPDEF(CEE_BRTRUE_S, "brtrue.s", PopI, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x2D, COND_BRANCH)
OPDEF(CEE_BEQ_S, "beq.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x2E, COND_BRANCH)
OPDEF(CEE_BGE_S, "bge.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x2F, COND_BRANCH)
OPDEF(CEE_BGT_S, "bgt.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x30, COND_BRANCH)
OPDEF(CEE_BLE_S, "ble.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x31, COND_BRANCH)
OPDEF(CEE_BLT_S, "blt.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x32, COND_BRANCH)
OPDEF(CEE_BNE_UN_S, "bne.un.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x33, COND_BRANCH)
OPDEF(CEE_BGE_UN_S, "bge.un.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x34, COND_BRANCH)
OPDEF(CEE_BGT_UN_S, "bgt.un.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x35, COND_BRANCH)
OPDEF(CEE_BLE_UN_S, "ble.un.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x36, COND_BRANCH)
OPDEF(CEE_BLT_UN_S, "blt.un.s", Pop1+Pop1, Push0,
ShortInlineBrTarget,IMacro, 1, 0xFF, 0x37, COND_BRANCH)

 Partition VI 21

OPDEF(CEE_BR, "br", Pop0, Push0,
InlineBrTarget, IPrimitive, 1, 0xFF, 0x38, BRANCH)
OPDEF(CEE_BRFALSE, "brfalse", PopI, Push0,
InlineBrTarget, IPrimitive, 1, 0xFF, 0x39, COND_BRANCH)
OPDEF(CEE_BRTRUE, "brtrue", PopI, Push0,
InlineBrTarget, IPrimitive, 1, 0xFF, 0x3A, COND_BRANCH)
OPDEF(CEE_BEQ, "beq", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x3B, COND_BRANCH)
OPDEF(CEE_BGE, "bge", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x3C, COND_BRANCH)
OPDEF(CEE_BGT, "bgt", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x3D, COND_BRANCH)
OPDEF(CEE_BLE, "ble", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x3E, COND_BRANCH)
OPDEF(CEE_BLT, "blt", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x3F, COND_BRANCH)
OPDEF(CEE_BNE_UN, "bne.un", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x40, COND_BRANCH)
OPDEF(CEE_BGE_UN, "bge.un", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x41, COND_BRANCH)
OPDEF(CEE_BGT_UN, "bgt.un", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x42, COND_BRANCH)
OPDEF(CEE_BLE_UN, "ble.un", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x43, COND_BRANCH)
OPDEF(CEE_BLT_UN, "blt.un", Pop1+Pop1, Push0,
InlineBrTarget, IMacro, 1, 0xFF, 0x44, COND_BRANCH)
OPDEF(CEE_SWITCH, "switch", PopI, Push0,
InlineSwitch, IPrimitive, 1, 0xFF, 0x45, COND_BRANCH)
OPDEF(CEE_LDIND_I1, "ldind.i1", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x46, NEXT)
OPDEF(CEE_LDIND_U1, "ldind.u1", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x47, NEXT)
OPDEF(CEE_LDIND_I2, "ldind.i2", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x48, NEXT)
OPDEF(CEE_LDIND_U2, "ldind.u2", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x49, NEXT)
OPDEF(CEE_LDIND_I4, "ldind.i4", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x4A, NEXT)
OPDEF(CEE_LDIND_U4, "ldind.u4", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x4B, NEXT)
OPDEF(CEE_LDIND_I8, "ldind.i8", PopI, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0x4C, NEXT)
OPDEF(CEE_LDIND_I, "ldind.i", PopI, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x4D, NEXT)
OPDEF(CEE_LDIND_R4, "ldind.r4", PopI, PushR4,
InlineNone, IPrimitive, 1, 0xFF, 0x4E, NEXT)
OPDEF(CEE_LDIND_R8, "ldind.r8", PopI, PushR8,
InlineNone, IPrimitive, 1, 0xFF, 0x4F, NEXT)
OPDEF(CEE_LDIND_REF, "ldind.ref", PopI, PushRef,
InlineNone, IPrimitive, 1, 0xFF, 0x50, NEXT)
OPDEF(CEE_STIND_REF, "stind.ref", PopI+PopI, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x51, NEXT)
OPDEF(CEE_STIND_I1, "stind.i1", PopI+PopI, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x52, NEXT)
OPDEF(CEE_STIND_I2, "stind.i2", PopI+PopI, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x53, NEXT)
OPDEF(CEE_STIND_I4, "stind.i4", PopI+PopI, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x54, NEXT)
OPDEF(CEE_STIND_I8, "stind.i8", PopI+PopI8, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x55, NEXT)
OPDEF(CEE_STIND_R4, "stind.r4", PopI+PopR4, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x56, NEXT)
OPDEF(CEE_STIND_R8, "stind.r8", PopI+PopR8, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x57, NEXT)
OPDEF(CEE_ADD, "add", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x58, NEXT)
OPDEF(CEE_SUB, "sub", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x59, NEXT)
OPDEF(CEE_MUL, "mul", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5A, NEXT)

22 Partition VI

OPDEF(CEE_DIV, "div", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5B, NEXT)
OPDEF(CEE_DIV_UN, "div.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5C, NEXT)
OPDEF(CEE_REM, "rem", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5D, NEXT)
OPDEF(CEE_REM_UN, "rem.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5E, NEXT)
OPDEF(CEE_AND, "and", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x5F, NEXT)
OPDEF(CEE_OR, "or", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x60, NEXT)
OPDEF(CEE_XOR, "xor", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x61, NEXT)
OPDEF(CEE_SHL, "shl", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x62, NEXT)
OPDEF(CEE_SHR, "shr", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x63, NEXT)
OPDEF(CEE_SHR_UN, "shr.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x64, NEXT)
OPDEF(CEE_NEG, "neg", Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x65, NEXT)
OPDEF(CEE_NOT, "not", Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0x66, NEXT)
OPDEF(CEE_CONV_I1, "conv.i1", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x67, NEXT)
OPDEF(CEE_CONV_I2, "conv.i2", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x68, NEXT)
OPDEF(CEE_CONV_I4, "conv.i4", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x69, NEXT)
OPDEF(CEE_CONV_I8, "conv.i8", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0x6A, NEXT)
OPDEF(CEE_CONV_R4, "conv.r4", Pop1, PushR4,
InlineNone, IPrimitive, 1, 0xFF, 0x6B, NEXT)
OPDEF(CEE_CONV_R8, "conv.r8", Pop1, PushR8,
InlineNone, IPrimitive, 1, 0xFF, 0x6C, NEXT)
OPDEF(CEE_CONV_U4, "conv.u4", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x6D, NEXT)
OPDEF(CEE_CONV_U8, "conv.u8", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0x6E, NEXT)
OPDEF(CEE_CALLVIRT, "callvirt", VarPop, VarPush,
InlineMethod, IObjModel, 1, 0xFF, 0x6F, CALL)
OPDEF(CEE_CPOBJ, "cpobj", PopI+PopI, Push0,
InlineType, IObjModel, 1, 0xFF, 0x70, NEXT)
OPDEF(CEE_LDOBJ, "ldobj", PopI, Push1,
InlineType, IObjModel, 1, 0xFF, 0x71, NEXT)
OPDEF(CEE_LDSTR, "ldstr", Pop0, PushRef,
InlineString, IObjModel, 1, 0xFF, 0x72, NEXT)
OPDEF(CEE_NEWOBJ, "newobj", VarPop, PushRef,
InlineMethod, IObjModel, 1, 0xFF, 0x73, CALL)
OPDEF(CEE_CASTCLASS, "castclass", PopRef, PushRef,
InlineType, IObjModel, 1, 0xFF, 0x74, NEXT)
OPDEF(CEE_ISINST, "isinst", PopRef, PushI,
InlineType, IObjModel, 1, 0xFF, 0x75, NEXT)
OPDEF(CEE_CONV_R_UN, "conv.r.un", Pop1, PushR8,
InlineNone, IPrimitive, 1, 0xFF, 0x76, NEXT)
OPDEF(CEE_UNUSED58, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x77, NEXT)
OPDEF(CEE_UNUSED1, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0x78, NEXT)
OPDEF(CEE_UNBOX, "unbox", PopRef, PushI,
InlineType, IPrimitive, 1, 0xFF, 0x79, NEXT)
OPDEF(CEE_THROW, "throw", PopRef, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x7A, THROW)
OPDEF(CEE_LDFLD, "ldfld", PopRef, Push1,
InlineField, IObjModel, 1, 0xFF, 0x7B, NEXT)
OPDEF(CEE_LDFLDA, "ldflda", PopRef, PushI,
InlineField, IObjModel, 1, 0xFF, 0x7C, NEXT)
OPDEF(CEE_STFLD, "stfld", PopRef+Pop1, Push0,
InlineField, IObjModel, 1, 0xFF, 0x7D, NEXT)

 Partition VI 23

OPDEF(CEE_LDSFLD, "ldsfld", Pop0, Push1,
InlineField, IObjModel, 1, 0xFF, 0x7E, NEXT)
OPDEF(CEE_LDSFLDA, "ldsflda", Pop0, PushI,
InlineField, IObjModel, 1, 0xFF, 0x7F, NEXT)
OPDEF(CEE_STSFLD, "stsfld", Pop1, Push0,
InlineField, IObjModel, 1, 0xFF, 0x80, NEXT)
OPDEF(CEE_STOBJ, "stobj", PopI+Pop1, Push0,
InlineType, IPrimitive, 1, 0xFF, 0x81, NEXT)
OPDEF(CEE_CONV_OVF_I1_UN, "conv.ovf.i1.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x82, NEXT)
OPDEF(CEE_CONV_OVF_I2_UN, "conv.ovf.i2.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x83, NEXT)
OPDEF(CEE_CONV_OVF_I4_UN, "conv.ovf.i4.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x84, NEXT)
OPDEF(CEE_CONV_OVF_I8_UN, "conv.ovf.i8.un", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0x85, NEXT)
OPDEF(CEE_CONV_OVF_U1_UN, "conv.ovf.u1.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x86, NEXT)
OPDEF(CEE_CONV_OVF_U2_UN, "conv.ovf.u2.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x87, NEXT)
OPDEF(CEE_CONV_OVF_U4_UN, "conv.ovf.u4.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x88, NEXT)
OPDEF(CEE_CONV_OVF_U8_UN, "conv.ovf.u8.un", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0x89, NEXT)
OPDEF(CEE_CONV_OVF_I_UN, "conv.ovf.i.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x8A, NEXT)
OPDEF(CEE_CONV_OVF_U_UN, "conv.ovf.u.un", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0x8B, NEXT)
OPDEF(CEE_BOX, "box", Pop1, PushRef,
InlineType, IPrimitive, 1, 0xFF, 0x8C, NEXT)
OPDEF(CEE_NEWARR, "newarr", PopI, PushRef,
InlineType, IObjModel, 1, 0xFF, 0x8D, NEXT)
OPDEF(CEE_LDLEN, "ldlen", PopRef, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x8E, NEXT)
OPDEF(CEE_LDELEMA, "ldelema", PopRef+PopI, PushI,
InlineType, IObjModel, 1, 0xFF, 0x8F, NEXT)
OPDEF(CEE_LDELEM_I1, "ldelem.i1", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x90, NEXT)
OPDEF(CEE_LDELEM_U1, "ldelem.u1", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x91, NEXT)
OPDEF(CEE_LDELEM_I2, "ldelem.i2", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x92, NEXT)
OPDEF(CEE_LDELEM_U2, "ldelem.u2", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x93, NEXT)
OPDEF(CEE_LDELEM_I4, "ldelem.i4", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x94, NEXT)
OPDEF(CEE_LDELEM_U4, "ldelem.u4", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x95, NEXT)
OPDEF(CEE_LDELEM_I8, "ldelem.i8", PopRef+PopI, PushI8,
InlineNone, IObjModel, 1, 0xFF, 0x96, NEXT)
OPDEF(CEE_LDELEM_I, "ldelem.i", PopRef+PopI, PushI,
InlineNone, IObjModel, 1, 0xFF, 0x97, NEXT)
OPDEF(CEE_LDELEM_R4, "ldelem.r4", PopRef+PopI, PushR4,
InlineNone, IObjModel, 1, 0xFF, 0x98, NEXT)
OPDEF(CEE_LDELEM_R8, "ldelem.r8", PopRef+PopI, PushR8,
InlineNone, IObjModel, 1, 0xFF, 0x99, NEXT)
OPDEF(CEE_LDELEM_REF, "ldelem.ref", PopRef+PopI, PushRef,
InlineNone, IObjModel, 1, 0xFF, 0x9A, NEXT)
OPDEF(CEE_STELEM_I, "stelem.i", PopRef+PopI+PopI, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x9B, NEXT)
OPDEF(CEE_STELEM_I1, "stelem.i1", PopRef+PopI+PopI, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x9C, NEXT)
OPDEF(CEE_STELEM_I2, "stelem.i2", PopRef+PopI+PopI, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x9D, NEXT)
OPDEF(CEE_STELEM_I4, "stelem.i4", PopRef+PopI+PopI, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x9E, NEXT)
OPDEF(CEE_STELEM_I8, "stelem.i8", PopRef+PopI+PopI8, Push0,
InlineNone, IObjModel, 1, 0xFF, 0x9F, NEXT)
OPDEF(CEE_STELEM_R4, "stelem.r4", PopRef+PopI+PopR4, Push0,
InlineNone, IObjModel, 1, 0xFF, 0xA0, NEXT)

24 Partition VI

OPDEF(CEE_STELEM_R8, "stelem.r8", PopRef+PopI+PopR8, Push0,
InlineNone, IObjModel, 1, 0xFF, 0xA1, NEXT)
OPDEF(CEE_STELEM_REF, "stelem.ref", PopRef+PopI+PopRef, Push0,
InlineNone, IObjModel, 1, 0xFF, 0xA2, NEXT)
OPDEF(CEE_UNUSED2, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA3, NEXT)
OPDEF(CEE_UNUSED3, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA4, NEXT)
OPDEF(CEE_UNUSED4, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA5, NEXT)
OPDEF(CEE_UNUSED5, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA6, NEXT)
OPDEF(CEE_UNUSED6, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA7, NEXT)
OPDEF(CEE_UNUSED7, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA8, NEXT)
OPDEF(CEE_UNUSED8, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xA9, NEXT)
OPDEF(CEE_UNUSED9, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAA, NEXT)
OPDEF(CEE_UNUSED10, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAB, NEXT)
OPDEF(CEE_UNUSED11, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAC, NEXT)
OPDEF(CEE_UNUSED12, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAD, NEXT)
OPDEF(CEE_UNUSED13, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAE, NEXT)
OPDEF(CEE_UNUSED14, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xAF, NEXT)
OPDEF(CEE_UNUSED15, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xB0, NEXT)
OPDEF(CEE_UNUSED16, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xB1, NEXT)
OPDEF(CEE_UNUSED17, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xB2, NEXT)
OPDEF(CEE_CONV_OVF_I1, "conv.ovf.i1", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB3, NEXT)
OPDEF(CEE_CONV_OVF_U1, "conv.ovf.u1", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB4, NEXT)
OPDEF(CEE_CONV_OVF_I2, "conv.ovf.i2", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB5, NEXT)
OPDEF(CEE_CONV_OVF_U2, "conv.ovf.u2", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB6, NEXT)
OPDEF(CEE_CONV_OVF_I4, "conv.ovf.i4", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB7, NEXT)
OPDEF(CEE_CONV_OVF_U4, "conv.ovf.u4", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xB8, NEXT)
OPDEF(CEE_CONV_OVF_I8, "conv.ovf.i8", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0xB9, NEXT)
OPDEF(CEE_CONV_OVF_U8, "conv.ovf.u8", Pop1, PushI8,
InlineNone, IPrimitive, 1, 0xFF, 0xBA, NEXT)
OPDEF(CEE_UNUSED50, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xBB, NEXT)
OPDEF(CEE_UNUSED18, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xBC, NEXT)
OPDEF(CEE_UNUSED19, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xBD, NEXT)
OPDEF(CEE_UNUSED20, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xBE, NEXT)
OPDEF(CEE_UNUSED21, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xBF, NEXT)
OPDEF(CEE_UNUSED22, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC0, NEXT)
OPDEF(CEE_UNUSED23, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC1, NEXT)
OPDEF(CEE_REFANYVAL, "refanyval", Pop1, PushI,
InlineType, IPrimitive, 1, 0xFF, 0xC2, NEXT)
OPDEF(CEE_CKFINITE, "ckfinite", Pop1, PushR8,
InlineNone, IPrimitive, 1, 0xFF, 0xC3, NEXT)

 Partition VI 25

OPDEF(CEE_UNUSED24, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC4, NEXT)
OPDEF(CEE_UNUSED25, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC5, NEXT)
OPDEF(CEE_MKREFANY, "mkrefany", PopI, Push1,
InlineType, IPrimitive, 1, 0xFF, 0xC6, NEXT)
OPDEF(CEE_UNUSED59, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC7, NEXT)
OPDEF(CEE_UNUSED60, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC8, NEXT)
OPDEF(CEE_UNUSED61, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xC9, NEXT)
OPDEF(CEE_UNUSED62, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCA, NEXT)
OPDEF(CEE_UNUSED63, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCB, NEXT)
OPDEF(CEE_UNUSED64, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCC, NEXT)
OPDEF(CEE_UNUSED65, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCD, NEXT)
OPDEF(CEE_UNUSED66, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCE, NEXT)
OPDEF(CEE_UNUSED67, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xCF, NEXT)
OPDEF(CEE_LDTOKEN, "ldtoken", Pop0, PushI,
InlineTok, IPrimitive, 1, 0xFF, 0xD0, NEXT)
OPDEF(CEE_CONV_U2, "conv.u2", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xD1, NEXT)
OPDEF(CEE_CONV_U1, "conv.u1", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xD2, NEXT)
OPDEF(CEE_CONV_I, "conv.i", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xD3, NEXT)
OPDEF(CEE_CONV_OVF_I, "conv.ovf.i", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xD4, NEXT)
OPDEF(CEE_CONV_OVF_U, "conv.ovf.u", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xD5, NEXT)
OPDEF(CEE_ADD_OVF, "add.ovf", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xD6, NEXT)
OPDEF(CEE_ADD_OVF_UN, "add.ovf.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xD7, NEXT)
OPDEF(CEE_MUL_OVF, "mul.ovf", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xD8, NEXT)
OPDEF(CEE_MUL_OVF_UN, "mul.ovf.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xD9, NEXT)
OPDEF(CEE_SUB_OVF, "sub.ovf", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xDA, NEXT)
OPDEF(CEE_SUB_OVF_UN, "sub.ovf.un", Pop1+Pop1, Push1,
InlineNone, IPrimitive, 1, 0xFF, 0xDB, NEXT)
OPDEF(CEE_ENDFINALLY, "endfinally", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xDC, RETURN)
OPDEF(CEE_LEAVE, "leave", Pop0, Push0,
InlineBrTarget, IPrimitive, 1, 0xFF, 0xDD, BRANCH)
OPDEF(CEE_LEAVE_S, "leave.s", Pop0, Push0,
ShortInlineBrTarget,IPrimitive, 1, 0xFF, 0xDE, BRANCH)
OPDEF(CEE_STIND_I, "stind.i", PopI+PopI, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xDF, NEXT)
OPDEF(CEE_CONV_U, "conv.u", Pop1, PushI,
InlineNone, IPrimitive, 1, 0xFF, 0xE0, NEXT)
OPDEF(CEE_UNUSED26, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE1, NEXT)
OPDEF(CEE_UNUSED27, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE2, NEXT)
OPDEF(CEE_UNUSED28, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE3, NEXT)
OPDEF(CEE_UNUSED29, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE4, NEXT)
OPDEF(CEE_UNUSED30, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE5, NEXT)
OPDEF(CEE_UNUSED31, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE6, NEXT)

26 Partition VI

OPDEF(CEE_UNUSED32, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE7, NEXT)
OPDEF(CEE_UNUSED33, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE8, NEXT)
OPDEF(CEE_UNUSED34, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xE9, NEXT)
OPDEF(CEE_UNUSED35, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xEA, NEXT)
OPDEF(CEE_UNUSED36, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xEB, NEXT)
OPDEF(CEE_UNUSED37, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xEC, NEXT)
OPDEF(CEE_UNUSED38, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xED, NEXT)
OPDEF(CEE_UNUSED39, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xEE, NEXT)
OPDEF(CEE_UNUSED40, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xEF, NEXT)
OPDEF(CEE_UNUSED41, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF0, NEXT)
OPDEF(CEE_UNUSED42, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF1, NEXT)
OPDEF(CEE_UNUSED43, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF2, NEXT)
OPDEF(CEE_UNUSED44, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF3, NEXT)
OPDEF(CEE_UNUSED45, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF4, NEXT)
OPDEF(CEE_UNUSED46, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF5, NEXT)
OPDEF(CEE_UNUSED47, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF6, NEXT)
OPDEF(CEE_UNUSED48, "unused", Pop0, Push0,
InlineNone, IPrimitive, 1, 0xFF, 0xF7, NEXT)
OPDEF(CEE_PREFIX7, "prefix7", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xF8, META)
OPDEF(CEE_PREFIX6, "prefix6", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xF9, META)
OPDEF(CEE_PREFIX5, "prefix5", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFA, META)
OPDEF(CEE_PREFIX4, "prefix4", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFB, META)
OPDEF(CEE_PREFIX3, "prefix3", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFC, META)
OPDEF(CEE_PREFIX2, "prefix2", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFD, META)
OPDEF(CEE_PREFIX1, "prefix1", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFE, META)
OPDEF(CEE_PREFIXREF, "prefixref", Pop0, Push0,
InlineNone, IInternal, 1, 0xFF, 0xFF, META)

OPDEF(CEE_ARGLIST, "arglist", Pop0, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x00, NEXT)
OPDEF(CEE_CEQ, "ceq", Pop1+Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x01, NEXT)
OPDEF(CEE_CGT, "cgt", Pop1+Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x02, NEXT)
OPDEF(CEE_CGT_UN, "cgt.un", Pop1+Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x03, NEXT)
OPDEF(CEE_CLT, "clt", Pop1+Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x04, NEXT)
OPDEF(CEE_CLT_UN, "clt.un", Pop1+Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x05, NEXT)
OPDEF(CEE_LDFTN, "ldftn", Pop0, PushI,
InlineMethod, IPrimitive, 2, 0xFE, 0x06, NEXT)
OPDEF(CEE_LDVIRTFTN, "ldvirtftn", PopRef, PushI,
InlineMethod, IPrimitive, 2, 0xFE, 0x07, NEXT)
OPDEF(CEE_UNUSED56, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x08, NEXT)

 Partition VI 27

OPDEF(CEE_LDARG, "ldarg", Pop0, Push1,
InlineVar, IPrimitive, 2, 0xFE, 0x09, NEXT)
OPDEF(CEE_LDARGA, "ldarga", Pop0, PushI,
InlineVar, IPrimitive, 2, 0xFE, 0x0A, NEXT)
OPDEF(CEE_STARG, "starg", Pop1, Push0,
InlineVar, IPrimitive, 2, 0xFE, 0x0B, NEXT)
OPDEF(CEE_LDLOC, "ldloc", Pop0, Push1,
InlineVar, IPrimitive, 2, 0xFE, 0x0C, NEXT)
OPDEF(CEE_LDLOCA, "ldloca", Pop0, PushI,
InlineVar, IPrimitive, 2, 0xFE, 0x0D, NEXT)
OPDEF(CEE_STLOC, "stloc", Pop1, Push0,
InlineVar, IPrimitive, 2, 0xFE, 0x0E, NEXT)
OPDEF(CEE_LOCALLOC, "localloc", PopI, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x0F, NEXT)
OPDEF(CEE_UNUSED57, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x10, NEXT)
OPDEF(CEE_ENDFILTER, "endfilter", PopI, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x11, RETURN)
OPDEF(CEE_UNALIGNED, "unaligned.", Pop0, Push0,
ShortInlineI, IPrefix, 2, 0xFE, 0x12, META)
OPDEF(CEE_VOLATILE, "volatile.", Pop0, Push0,
InlineNone, IPrefix, 2, 0xFE, 0x13, META)
OPDEF(CEE_TAILCALL, "tail.", Pop0, Push0,
InlineNone, IPrefix, 2, 0xFE, 0x14, META)
OPDEF(CEE_INITOBJ, "initobj", PopI, Push0,
InlineType, IObjModel, 2, 0xFE, 0x15, NEXT)
OPDEF(CEE_UNUSED68, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x16, NEXT)
OPDEF(CEE_CPBLK, "cpblk", PopI+PopI+PopI, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x17, NEXT)
OPDEF(CEE_INITBLK, "initblk", PopI+PopI+PopI, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x18, NEXT)
OPDEF(CEE_UNUSED69, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x19, NEXT)
OPDEF(CEE_RETHROW, "rethrow", Pop0, Push0,
InlineNone, IObjModel, 2, 0xFE, 0x1A, THROW)
OPDEF(CEE_UNUSED51, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x1B, NEXT)
OPDEF(CEE_SIZEOF, "sizeof", Pop0, PushI,
InlineType, IPrimitive, 2, 0xFE, 0x1C, NEXT)
OPDEF(CEE_REFANYTYPE, "refanytype", Pop1, PushI,
InlineNone, IPrimitive, 2, 0xFE, 0x1D, NEXT)
OPDEF(CEE_UNUSED52, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x1E, NEXT)
OPDEF(CEE_UNUSED53, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x1F, NEXT)
OPDEF(CEE_UNUSED54, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x20, NEXT)
OPDEF(CEE_UNUSED55, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x21, NEXT)
OPDEF(CEE_UNUSED70, "unused", Pop0, Push0,
InlineNone, IPrimitive, 2, 0xFE, 0x22, NEXT)

// These are not real opcodes, but they are handy internally in the EE

OPDEF(CEE_ILLEGAL, "illegal", Pop0, Push0,
InlineNone, IInternal, 0, MOOT, MOOT, META)
OPDEF(CEE_MACRO_END, "endmac", Pop0, Push0,
InlineNone, IInternal, 0, MOOT, MOOT, META)

#ifndef OPALIAS
#define _OPALIAS_DEFINED_
#define OPALIAS(canonicalName, stringName, realOpcode)
#endif

OPALIAS(CEE_BRNULL, "brnull", CEE_BRFALSE)
OPALIAS(CEE_BRNULL_S, "brnull.s", CEE_BRFALSE_S)
OPALIAS(CEE_BRZERO, "brzero", CEE_BRFALSE)

28 Partition VI

OPALIAS(CEE_BRZERO_S, "brzero.s", CEE_BRFALSE_S)
OPALIAS(CEE_BRINST, "brinst", CEE_BRTRUE)
OPALIAS(CEE_BRINST_S, "brinst.s", CEE_BRTRUE_S)
OPALIAS(CEE_LDIND_U8, "ldind.u8", CEE_LDIND_I8)
OPALIAS(CEE_LDELEM_U8, "ldelem.u8", CEE_LDELEM_I8)
OPALIAS(CEE_LDC_I4_M1x, "ldc.i4.M1", CEE_LDC_I4_M1)
OPALIAS(CEE_ENDFAULT, "endfault", CEE_ENDFINALLY)

#ifdef _OPALIAS_DEFINED_
#undef OPALIAS
#undef _OPALIAS_DEFINED_
#endif

C.3 Complete grammar
This grammar provides a number of ease-of-use features not provided in the grammar of Partition II,
as well as supporting some features which are not portable across implementations and hence are not
part of this standard. Unlike the grammar of Partition II, this one is designed for ease of
programming rather than ease of reading; it can be converted directly into a YACC grammar.

Lexical tokens
 ID - C style alphaNumeric identifier (e.g., Hello_There2)
 QSTRING - C style quoted string (e.g., "hi\n")
 SQSTRING - C style singlely quoted string(e.g., 'hi')
 INT32 - C style 32-bit integer (e.g., 235, 03423, 0x34FFF)
 INT64 - C style 64-bit integer (e.g., -2353453636235234,
0x34FFFFFFFFFF)
 FLOAT64 - C style floating point number (e.g., -0.2323, 354.3423,
3435.34E-5)
 INSTR_* - IL instructions of a particular class (see opcode.def).

START : decls
 ;

decls : /* EMPTY */
 | decls decl
 ;

decl : classHead '{' classDecls '}'
 | nameSpaceHead '{' decls '}'
 | methodHead methodDecls '}'
 | fieldDecl
 | dataDecl
 | vtableDecl
 | vtfixupDecl
 | extSourceSpec
 | fileDecl
 | assemblyHead '{' assemblyDecls '}'
 | assemblyRefHead '{' assemblyRefDecls '}'
 | comtypeHead '{' comtypeDecls '}'
 | manifestResHead '{' manifestResDecls '}'
 | moduleHead
 | secDecl
 | customAttrDecl
 | '.subsystem' int32
 | '.corflags' int32
 | '.file' 'alignment' int32
 | '.imagebase' int64

 Partition VI 29

 | languageDecl
 ;

compQstring : QSTRING
 | compQstring '+' QSTRING
 ;

languageDecl : '.language' SQSTRING
 | '.language' SQSTRING ',' SQSTRING
 | '.language' SQSTRING ',' SQSTRING ','
SQSTRING
 ;

customAttrDecl : '.custom' customType
 | '.custom' customType '=' compQstring
 | customHead bytes ')'
 | '.custom' '(' ownerType ')' customType
 | '.custom' '(' ownerType ')' customType '='
compQstring
 | customHeadWithOwner bytes ')'
 ;

moduleHead : '.module'
 | '.module' name1
 | '.module' 'extern' name1
 ;

vtfixupDecl : '.vtfixup' '[' int32 ']' vtfixupAttr 'at' id
 ;

vtfixupAttr : /* EMPTY */
 | vtfixupAttr 'int32'
 | vtfixupAttr 'int64'
 | vtfixupAttr 'fromunmanaged'
 | vtfixupAttr 'callmostderived'
 ;

vtableDecl : vtableHead bytes ')'
 ;

vtableHead : '.vtable' '=' '('
 ;

nameSpaceHead : '.namespace' name1
 ;

classHead : '.class' classAttr id extendsClause
implClause
 ;

classAttr : /* EMPTY */
 | classAttr 'public'
 | classAttr 'private'
 | classAttr 'value'
 | classAttr 'enum'

30 Partition VI

 | classAttr 'interface'
 | classAttr 'sealed'
 | classAttr 'abstract'
 | classAttr 'auto'
 | classAttr 'sequential'
 | classAttr 'explicit'
 | classAttr 'ansi'
 | classAttr 'unicode'
 | classAttr 'autochar'
 | classAttr 'import'
 | classAttr 'serializable'
 | classAttr 'nested' 'public'
 | classAttr 'nested' 'private'
 | classAttr 'nested' 'family'
 | classAttr 'nested' 'assembly'
 | classAttr 'nested' 'famandassem'
 | classAttr 'nested' 'famorassem'
 | classAttr 'beforefieldinit'
 | classAttr 'specialname'
 | classAttr 'rtspecialname'
 ;

extendsClause : /* EMPTY */
 | 'extends' className
 ;

implClause : /* EMPTY */
 | 'implements' classNames
 ;

classNames : classNames ',' className
 | className
 ;

classDecls : /* EMPTY */
 | classDecls classDecl
 ;

classDecl : methodHead methodDecls '}'
 | classHead '{' classDecls '}'
 | eventHead '{' eventDecls '}'
 | propHead '{' propDecls '}'
 | fieldDecl
 | dataDecl
 | secDecl
 | extSourceSpec
 | customAttrDecl
 | '.size' int32
 | '.pack' int32
 | exportHead '{' comtypeDecls '}'
 | '.override' typeSpec '::' methodName 'with'
callConv type typeSpec '::' methodName '(' sigArgs0 ')'
 | languageDecl
 ;

 Partition VI 31

fieldDecl : '.field' repeatOpt fieldAttr type id atOpt
initOpt
 ;

atOpt : /* EMPTY */
 | 'at' id
 ;

initOpt : /* EMPTY */
 | '=' fieldInit
 ;

repeatOpt : /* EMPTY */
 | '[' int32 ']'
 ;

customHead : '.custom' customType '=' '('
 ;

customHeadWithOwner : '.custom' '(' ownerType ')' customType '='
'('
 ;

memberRef : methodSpec callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | methodSpec callConv type methodName '('
sigArgs0 ')'
 | 'field' type typeSpec '::' id
 | 'field' type id
 ;

customType : callConv type typeSpec '::' '.ctor' '('
sigArgs0 ')'
 | callConv type '.ctor' '(' sigArgs0 ')'
 ;

ownerType : typeSpec
 | memberRef
 ;

eventHead : '.event' eventAttr typeSpec id
 | '.event' eventAttr id
 ;

eventAttr : /* EMPTY */
 | eventAttr 'rtspecialname' /**/
 | eventAttr 'specialname'
 ;

eventDecls : /* EMPTY */
 | eventDecls eventDecl
 ;

32 Partition VI

eventDecl : '.addon' callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | '.addon' callConv type methodName '('
sigArgs0 ')'
 | '.removeon' callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | '.removeon' callConv type methodName '('
sigArgs0 ')'
 | '.fire' callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | '.fire' callConv type methodName '(' sigArgs0
')'
 | '.other' callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | '.other' callConv type methodName '('
sigArgs0 ')'
 | extSourceSpec
 | customAttrDecl
 | languageDecl
 ;

propHead : '.property' propAttr callConv type id '('
sigArgs0 ')' initOpt
 ;

propAttr : /* EMPTY */
 | propAttr 'rtspecialname' /**/
 | propAttr 'specialname'
 ;

propDecls : /* EMPTY */
 | propDecls propDecl
 ;

propDecl : '.set' callConv type typeSpec '::' methodName
'(' sigArgs0 ')'
 | '.set' callConv type methodName '(' sigArgs0
')'
 | '.get' callConv type typeSpec '::' methodName
'(' sigArgs0 ')'
 | '.get' callConv type methodName '(' sigArgs0
')'
 | '.other' callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | '.other' callConv type methodName '('
sigArgs0 ')'
 | customAttrDecl
 | extSourceSpec
 | languageDecl
 ;

methodHeadPart1 : '.method'
 ;

 Partition VI 33

methodHead : methodHeadPart1 methAttr callConv paramAttr
type methodName '(' sigArgs0 ')' implAttr '{'
 | methodHeadPart1 methAttr callConv paramAttr
type 'marshal' '(' nativeType ')' methodName '(' sigArgs0 ')' implAttr
'{'
 ;

methAttr : /* EMPTY */

 | methAttr 'static'
 | methAttr 'public'
 | methAttr 'private'
 | methAttr 'family'
 | methAttr 'final'
 | methAttr 'specialname'
 | methAttr 'virtual'
 | methAttr 'abstract'
 | methAttr 'assembly'
 | methAttr 'famandassem'
 | methAttr 'famorassem'
 | methAttr 'privatescope'
 | methAttr 'hidebysig'
 | methAttr 'newslot'
 | methAttr 'rtspecialname' /**/
 | methAttr 'unmanagedexp'
 | methAttr 'reqsecobj'

 | methAttr 'pinvokeimpl' '(' compQstring 'as'
compQstring pinvAttr ')'
 | methAttr 'pinvokeimpl' '(' compQstring
pinvAttr ')'
 | methAttr 'pinvokeimpl' '(' pinvAttr ')'
 ;

pinvAttr : /* EMPTY */
 | pinvAttr 'nomangle'
 | pinvAttr 'ansi'
 | pinvAttr 'unicode'
 | pinvAttr 'autochar'
 | pinvAttr 'lasterr'
 | pinvAttr 'winapi'
 | pinvAttr 'cdecl'
 | pinvAttr 'stdcall'
 | pinvAttr 'thiscall'
 | pinvAttr 'fastcall'
 ;

methodName : '.ctor'
 | '.cctor'
 | name1
 ;

paramAttr : /* EMPTY */
 | paramAttr '[' 'in' ']'
 | paramAttr '[' 'out' ']'

34 Partition VI

 | paramAttr '[' 'opt' ']'
 | paramAttr '[' int32 ']'
 ;

fieldAttr : /* EMPTY */
 | fieldAttr 'static'
 | fieldAttr 'public'
 | fieldAttr 'private'
 | fieldAttr 'family'
 | fieldAttr 'initonly'
 | fieldAttr 'rtspecialname' /**/
 | fieldAttr 'specialname'
 /* commented out because PInvoke
for fields is not supported by EE
 | fieldAttr 'pinvokeimpl' '(' compQstring 'as'
compQstring pinvAttr ')'
 | fieldAttr 'pinvokeimpl' '(' compQstring
pinvAttr ')'
 | fieldAttr 'pinvokeimpl' '(' pinvAttr ')'
 */
 | fieldAttr 'marshal' '(' nativeType ')'
 | fieldAttr 'assembly'
 | fieldAttr 'famandassem'
 | fieldAttr 'famorassem'
 | fieldAttr 'privatescope'
 | fieldAttr 'literal'
 | fieldAttr 'notserialized'
 ;

implAttr : /* EMPTY */
 | implAttr 'native'
 | implAttr 'cil'
 | implAttr 'optil'
 | implAttr 'managed'
 | implAttr 'unmanaged'
 | implAttr 'forwardref'
 | implAttr 'preservesig'
 | implAttr 'runtime'
 | implAttr 'internalcall'
 | implAttr 'synchronized'
 | implAttr 'noinlining'
 ;

localsHead : '.locals'
 ;

methodDecl : '.emitbyte' int32
 | sehBlock
 | '.maxstack' int32
 | localsHead '(' sigArgs0 ')'
 | localsHead 'init' '(' sigArgs0 ')'
 | '.entrypoint'
 | '.zeroinit'
 | dataDecl
 | instr

 Partition VI 35

 | id ':'
 | secDecl
 | extSourceSpec
 | languageDecl
 | customAttrDecl
 | '.export' '[' int32 ']'
 | '.export' '[' int32 ']' 'as'
id
 | '.vtentry' int32 ':' int32
 | '.override' typeSpec '::' methodName
 | scopeBlock
 | '.param' '[' int32 ']' initOpt
 ;

scopeBlock : scopeOpen methodDecls '}'
 ;

scopeOpen : '{'
 ;

sehBlock : tryBlock sehClauses
 ;

sehClauses : sehClause sehClauses
 | sehClause
 ;

tryBlock : tryHead scopeBlock
 | tryHead id 'to' id
 | tryHead int32 'to' int32
 ;

tryHead : '.try'
 ;

sehClause : catchClause handlerBlock
 | filterClause handlerBlock
 | finallyClause handlerBlock
 | faultClause handlerBlock
 ;

filterClause : filterHead scopeBlock
 | filterHead id
 | filterHead int32
 ;

filterHead : 'filter'
 ;

catchClause : 'catch' className
 ;

finallyClause : 'finally'
 ;

36 Partition VI

faultClause : 'fault'
 ;

handlerBlock : scopeBlock
 | 'handler' id 'to' id
 | 'handler' int32 'to' int32
 ;

methodDecls : /* EMPTY */
 | methodDecls methodDecl
 ;

dataDecl : ddHead ddBody
 ;

ddHead : '.data' tls id '='
 | '.data' tls
 ;

tls : /* EMPTY */
 | 'tls'
 ;

ddBody : '{' ddItemList '}'
 | ddItem
 ;

ddItemList : ddItem ',' ddItemList
 | ddItem
 ;

ddItemCount : /* EMPTY */
 | '[' int32 ']'
 ;

ddItem : 'char' '*' '(' compQstring ')'
 | '&' '(' id ')'
 | bytearrayhead bytes ')'
 | 'float32' '(' float64 ')' ddItemCount
 | 'float64' '(' float64 ')' ddItemCount
 | 'int64' '(' int64 ')' ddItemCount
 | 'int32' '(' int32 ')' ddItemCount
 | 'int16' '(' int32 ')' ddItemCount
 | 'int8' '(' int32 ')' ddItemCount
 | 'float32' ddItemCount
 | 'float64' ddItemCount
 | 'int64' ddItemCount
 | 'int32' ddItemCount
 | 'int16' ddItemCount
 | 'int8' ddItemCount
 ;

fieldInit : 'float32' '(' float64 ')'
 | 'float64' '(' float64 ')'

 Partition VI 37

 | 'float32' '(' int64 ')'
 | 'float64' '(' int64 ')'
 | 'int64' '(' int64 ')'
 | 'int32' '(' int64 ')'
 | 'int16' '(' int64 ')'
 | 'char' '(' int64 ')'
 | 'int8' '(' int64 ')'
 | 'bool' '(' truefalse ')'
 | compQstring
 | bytearrayhead bytes ')'
 | 'nullref'
 ;

bytearrayhead : 'bytearray' '('
 ;

bytes : /* EMPTY */
 | hexbytes
 ;

hexbytes : HEXBYTE
 | hexbytes HEXBYTE
 ;

instr_r_head : INSTR_R '('
 ;

instr_tok_head : INSTR_TOK
 ;

methodSpec : 'method'
 ;

instr : INSTR_NONE
 | INSTR_VAR int32
 | INSTR_VAR id
 | INSTR_I int32
 | INSTR_I8 int64
 | INSTR_R float64
 | INSTR_R int64
 | instr_r_head bytes ')'
 | INSTR_BRTARGET int32
 | INSTR_BRTARGET id
 | INSTR_METHOD callConv type typeSpec '::'
methodName '(' sigArgs0 ')'
 | INSTR_METHOD callConv type methodName '('
sigArgs0 ')'
 | INSTR_FIELD type typeSpec '::' id
 | INSTR_FIELD type id
 | INSTR_TYPE typeSpec
 | INSTR_STRING compQstring
 | INSTR_STRING bytearrayhead bytes ')'
 | INSTR_SIG callConv type '(' sigArgs0 ')'
 | INSTR_RVA id
 | INSTR_RVA int32

38 Partition VI

 | instr_tok_head ownerType /* ownerType ::=
memberRef | typeSpec */
 | INSTR_SWITCH '(' labels ')'
 | INSTR_PHI int16s
 ;

sigArgs0 : /* EMPTY */
 | sigArgs1
 ;

sigArgs1 : sigArg
 | sigArgs1 ',' sigArg
 ;

sigArg : '...'
 | paramAttr type
 | paramAttr type id
 | paramAttr type 'marshal' '(' nativeType ')'
 | paramAttr type 'marshal' '(' nativeType ')'
id
 ;

name1 : id
 | DOTTEDNAME
 | name1 '.' name1
 ;

className : '[' name1 ']' slashedName
 | '[' '.module' name1 ']' slashedName
 | slashedName
 ;

slashedName : name1
 | slashedName '/' name1
 ;

typeSpec : className
 | '[' name1 ']'
 | '[' '.module' name1 ']'
 | type
 ;

callConv : 'instance' callConv
 | 'explicit' callConv
 | callKind
 ;

callKind : /* EMPTY */
 | 'default'
 | 'vararg'
 | 'unmanaged' 'cdecl'
 | 'unmanaged' 'stdcall'
 | 'unmanaged' 'thiscall'
 | 'unmanaged' 'fastcall'
 ;

 Partition VI 39

nativeType : /* EMPTY */
 | 'custom' '(' compQstring ',' compQstring ','
compQstring ',' compQstring ')'
 | 'custom' '(' compQstring ',' compQstring ')'
 | 'fixed' 'sysstring' '[' int32 ']'
 | 'fixed' 'array' '[' int32 ']'
 | 'variant'
 | 'currency'
 | 'syschar'
 | 'void'
 | 'bool'
 | 'int8'
 | 'int16'
 | 'int32'
 | 'int64'
 | 'float32'
 | 'float64'
 | 'error'
 | 'unsigned' 'int8'
 | 'unsigned' 'int16'
 | 'unsigned' 'int32'
 | 'unsigned' 'int64'
 | nativeType '*'
 | nativeType '[' ']'
 | nativeType '[' int32 ']'
 | nativeType '[' int32 '+' int32 ']'
 | nativeType '[' '+' int32 ']'
 | 'decimal'
 | 'date'
 | 'bstr'
 | 'lpstr'
 | 'lpwstr'
 | 'lptstr'
 | 'objectref'
 | 'iunknown'
 | 'idispatch'
 | 'struct'
 | 'interface'
 | 'safearray' variantType
 | 'safearray' variantType ',' compQstring

 | 'int'
 | 'unsigned' 'int'
 | 'nested' 'struct'
 | 'byvalstr'
 | 'ansi' 'bstr'
 | 'tbstr'
 | 'variant' 'bool'
 | methodSpec
 | 'as' 'any'
 | 'lpstruct'
 ;

variantType : /* EMPTY */
 | 'null'
 | 'variant'

40 Partition VI

 | 'currency'
 | 'void'
 | 'bool'
 | 'int8'
 | 'int16'
 | 'int32'
 | 'int64'
 | 'float32'
 | 'float64'
 | 'unsigned' 'int8'
 | 'unsigned' 'int16'
 | 'unsigned' 'int32'
 | 'unsigned' 'int64'
 | '*'
 | variantType '[' ']'
 | variantType 'vector'
 | variantType '&'
 | 'decimal'
 | 'date'
 | 'bstr'
 | 'lpstr'
 | 'lpwstr'
 | 'iunknown'
 | 'idispatch'
 | 'safearray'
 | 'int'
 | 'unsigned' 'int'
 | 'error'
 | 'hresult'
 | 'carray'
 | 'userdefined'
 | 'record'
 | 'filetime'
 | 'blob'
 | 'stream'
 | 'storage'
 | 'streamed_object'
 | 'stored_object'
 | 'blob_object'
 | 'cf'
 | 'clsid'
 ;

type : 'class' className
 | 'object'
 | 'string'
 | 'value' 'class' className
 | 'valuetype' className
 | type '[' ']'
 | type '[' bounds1 ']'
 /* uncomment when and if this type
is supported by the Runtime
 | type 'value' '[' int32 ']'
 */
 | type '&'
 | type '*'

 Partition VI 41

 | type 'pinned'
 | type 'modreq' '(' className ')'
 | type 'modopt' '(' className ')'
 | '!' int32
 | methodSpec callConv type '*' '(' sigArgs0 ')'
 | 'typedref'
 | 'char'
 | 'void'
 | 'bool'
 | 'int8'
 | 'int16'
 | 'int32'
 | 'int64'
 | 'float32'
 | 'float64'
 | 'unsigned' 'int8'
 | 'unsigned' 'int16'
 | 'unsigned' 'int32'
 | 'unsigned' 'int64'
 | 'native' 'int'
 | 'native' 'unsigned' 'int'
 | 'native' 'float'
 ;

bounds1 : bound
 | bounds1 ',' bound
 ;

bound : /* EMPTY */
 | '...'
 | int32
 | int32 '...' int32
 | int32 '...'
 ;

labels : /* empty */
 | id ',' labels
 | int32 ',' labels
 | id
 | int32
 ;

id : ID
 | SQSTRING
 ;

int16s : /* EMPTY */
 | int16s int32
 ;

int32 : INT64
 ;

int64 : INT64
 ;

42 Partition VI

float64 : FLOAT64
 | 'float32' '(' int32 ')'
 | 'float64' '(' int64 ')'
 ;

secDecl : '.permission' secAction typeSpec '('
nameValPairs ')'
 | '.permission' secAction typeSpec
 | psetHead bytes ')'
 ;

psetHead : '.permissionset' secAction '=' '('
 ;

nameValPairs : nameValPair
 | nameValPair ',' nameValPairs
 ;

nameValPair : compQstring '=' caValue
 ;

truefalse : 'true'
 | 'false'
 ;

caValue : truefalse
 | int32
 | 'int32' '(' int32 ')'
 | compQstring
 | className '(' 'int8' ':' int32 ')'
 | className '(' 'int16' ':' int32 ')'
 | className '(' 'int32' ':' int32 ')'
 | className '(' int32 ')'
 ;

secAction : 'request'
 | 'demand'
 | 'assert'
 | 'deny'
 | 'permitonly'
 | 'linkcheck'
 | 'inheritcheck'
 | 'reqmin'
 | 'reqopt'
 | 'reqrefuse'
 | 'prejitgrant'
 | 'prejitdeny'
 | 'noncasdemand'
 | 'noncaslinkdemand'
 | 'noncasinheritance'
 ;

extSourceSpec : '.line' int32 SQSTRING
 | '.line' int32
 | '.line' int32 ':' int32 SQSTRING

 Partition VI 43

 | '.line' int32 ':' int32
 | P_LINE int32 QSTRING
 ;

fileDecl : '.file' fileAttr name1 fileEntry hashHead
bytes ')' fileEntry
 | '.file' fileAttr name1 fileEntry
 ;

fileAttr : /* EMPTY */
 | fileAttr 'nometadata'
 ;

fileEntry : /* EMPTY */
 | '.entrypoint'
 ;

hashHead : '.hash' '=' '('
 ;

assemblyHead : '.assembly' asmAttr name1
 ;

asmAttr : /* EMPTY */
 | asmAttr 'noappdomain'
 | asmAttr 'noprocess'
 | asmAttr 'nomachine'
 ;

assemblyDecls : /* EMPTY */
 | assemblyDecls assemblyDecl
 ;

assemblyDecl : '.hash' 'algorithm' int32
 | secDecl
 | asmOrRefDecl

 ;

asmOrRefDecl : publicKeyHead bytes ')'
 | '.ver' int32 ':' int32 ':' int32 ':' int32
 | '.locale' compQstring
 | localeHead bytes ')'
 | customAttrDecl
 ;

publicKeyHead : '.publickey' '=' '('
 ;

publicKeyTokenHead : '.publickeytoken' '=' '('
 ;

localeHead : '.locale' '=' '('
 ;

assemblyRefHead : '.assembly' 'extern' name1

44 Partition VI

 | '.assembly' 'extern' name1 'as' name1
 ;

assemblyRefDecls : /* EMPTY */
 | assemblyRefDecls assemblyRefDecl
 ;

assemblyRefDecl : hashHead bytes ')'
 | asmOrRefDecl
 | publicKeyTokenHead bytes ')'
 ;

comtypeHead : '.class' 'extern' comtAttr name1
 ;

exportHead : '.export' comtAttr name1
 ;

comtAttr : /* EMPTY */
 | comtAttr 'private'
 | comtAttr 'public'
 | comtAttr 'nested' 'public'
 | comtAttr 'nested' 'private'
 | comtAttr 'nested' 'family'
 | comtAttr 'nested' 'assembly'
 | comtAttr 'nested' 'famandassem'
 | comtAttr 'nested' 'famorassem'
 ;

comtypeDecls : /* EMPTY */
 | comtypeDecls comtypeDecl
 ;

comtypeDecl : '.file' name1
 | '.class' 'extern' name1
 | '.class' int32
 | customAttrDecl
 ;

manifestResHead : '.mresource' manresAttr name1
 ;

manresAttr : /* EMPTY */
 | manresAttr 'public'
 | manresAttr 'private'
 ;

manifestResDecls : /* EMPTY */
 | manifestResDecls manifestResDecl
 ;

manifestResDecl : '.file' name1 'at' int32
 | '.assembly' 'extern' name1
 | customAttrDecl
 ;

 Partition VI 45

C.4 Instruction syntax
While each subclause specifies the exact list of instructions that are included in a grammar class, this
information is subject to change over time. The precise format of an instruction can be found by
combining the information in §C.1 with the information in the following table:

Table 1: Instruction Syntax classes

Grammar Class Format(s) Specified in §C.1

<instr_brtarget> InlineBrTarget, ShortInlineBrTarget

<instr_field> InlineField

<instr_i> InlineI, ShortInlineI

<instr_i8> InlineI8

<instr_method> InlineMethod

<instr_none> InlineNone

<instr_phi> InlinePhi

<instr_r> InlineR, ShortInlineR

<instr_rva> InlineRVA

<instr_sig> InlineSig

<instr_string> InlineString

<instr_switch> InlineSwitch

<instr_tok> InlineTok

<instr_type> InlineType

<instr_var> InlineVar, ShortInlineVar

C.4.1 Top-level instruct ion syntax

<instr> ::=

 <instr_brtarget> <int32>

 | <instr_brtarget> <label>

 | <instr_field> <type> [<typeSpec> ::] <id>

 | <instr_i> <int32>

 | <instr_i8> <int64>

 | <instr_method>

 <callConv> <type> [<typeSpec> ::]

<methodName> (<parameters>)

 | <instr_none>

 | <instr_phi> <int16>*

 | <instr_r> (<bytes>) // <bytes> represent the binary image of

 // float or double (4 or 8 bytes,

46 Partition VI

// respectively)

 | <instr_r> <float64>

 | <instr_r> <int64> // integer is converted to float

// with possible

 // loss of precision

 | <instr_sig> <callConv> <type> (<parameters>)

 | <instr_string> bytearray (<bytes>)

 | <instr_string> <QSTRING>

 | <instr_switch> (<labels>)

 | <instr_tok> field <type> [<typeSpec> ::] <id>

 | <instr_tok> b

 <callConv> <type> [<typeSpec> ::]

<methodName> (<parameters>)

 | <instr_tok> <typeSpec>

 | <instr_type> <typeSpec>

 | <instr_var> <int32>

 | <instr_var> <localname>

C.4.2 Instruct ions with no operand

These instructions require no operands, so they simply appear by themselves.

<instr> ::= <instr_none>

<instr_none> ::= // Derived from opcode.def

 add | add.ovf | add.ovf.un | and |

 arglist | break | ceq | cgt |

 cgt.un | ckfinite | clt | clt.un |

 conv.i | conv.i1 | conv.i2 | conv.i4 |

 conv.i8 | conv.ovf.i | conv.ovf.i.un | conv.ovf.i1|

 conv.ovf.i1.un | conv.ovf.i2 | conv.ovf.i2.un | conv.ovf.i4|

 conv.ovf.i4.un | conv.ovf.i8 | conv.ovf.i8.un | conv.ovf.u |

 conv.ovf.u.un | conv.ovf.u1 | conv.ovf.u1.un | conv.ovf.u2|

 conv.ovf.u2.un | conv.ovf.u4 | conv.ovf.u4.un | conv.ovf.u8|

 conv.ovf.u8.un | conv.r.un | conv.r4 | conv.r8 |

 conv.u | conv.u1 | conv.u2 | conv.u4 |

 conv.u8 | cpblk | div | div.un |

 dup | endfault | endfilter | endfinally |

 initblk | | ldarg.0 | ldarg.1 |

 ldarg.2 | ldarg.3 | ldc.i4.0 | ldc.i4.1 |

 Partition VI 47

 ldc.i4.2 | ldc.i4.3 | ldc.i4.4 | ldc.i4.5 |

 ldc.i4.6 | ldc.i4.7 | ldc.i4.8 | ldc.i4.M1 |

 ldelem.i | ldelem.i1 | ldelem.i2 | ldelem.i4 |

 ldelem.i8 | ldelem.r4 | ldelem.r8 | ldelem.ref |

 ldelem.u1 | ldelem.u2 | ldelem.u4 | ldind.i |

 ldind.i1 | ldind.i2 | ldind.i4 | ldind.i8 |

 ldind.r4 | ldind.r8 | ldind.ref | ldind.u1 |

 ldind.u2 | ldind.u4 | ldlen | ldloc.0 |

 ldloc.1 | ldloc.2 | ldloc.3 | ldnull |

 localloc | mul | mul.ovf | mul.ovf.un |

 neg | nop | not | or |

 pop | refanytype | rem | rem.un |

 ret | rethrow | shl | shr |

 shr.un | stelem.i | stelem.i1 | stelem.i2 |

 stelem.i4 | stelem.i8 | stelem.r4 | stelem.r8 |

 stelem.ref | stind.i | stind.i1 | stind.i2 |

 stind.i4 | stind.i8 | stind.r4 | stind.r8 |

 stind.ref | stloc.0 | stloc.1 | stloc.2 |

 stloc.3 | sub | sub.ovf | sub.ovf.un |

 tail. | throw | volatile. | xor

Examples:
ldlen

not

C.4.3 Instruct ions that refer to parameters or local variables

These instructions take one operand, which references a parameter or local variable of the current
method. The variable can be referenced by its number (starting with variable 0) or by name (if the
names are supplied as part of a signature using the form that supplies both a type and a name).

<instr> ::= <instr_var> <int32> |

 <instr_var> <localname>

<instr_var> ::= // Derived from opcode.def

 | ldarg | ldarg.s | ldarga

ldarga.s | ldloc | ldloc.s | ldloca

ldloca.s | starg | starg.s | stloc

stloc.s

48 Partition VI

Examples:
stloc 0 // store into 0th local

ldarg X3 // load from argument named X3

C.4.4 Instruct ions that take a s ingle 32-bit integer argument

These instructions take one operand, which must be a 32-bit integer.

<instr> ::= <instr_i> <int32>

<instr_i> ::= // Derived from opcode.def

ldc.i4 | ldc.i4.s | unaligned.

Examples:
ldc.i4 123456 // Load the number 123456

ldc.i4.s 10 // Load the number 10

C.4.5 Instruct ions that take a s ingle 64-bit integer argument

These instructions take one operand, which must be a 64-bit integer.

<instr> ::= <instr_i8> <int64>

<instr_i8> ::= // Derived from opcode.def

ldc.i8

Examples:
ldc.i8 0x123456789AB

ldc.i8 12

C.4.6 Instruct ions that take a s ingle f loat ing-point argument

These instructions take one operand, which must be a floating point number.

<instr> ::= <instr_r> <float64> |

 <instr_r> <int64> |

 <instr_r> (<bytes>) // <bytes> is
binary image

<instr_r> ::= // Derived from opcode.def

ldc.r4 | ldc.r8

Examples:
ldc.r4 10.2

ldc.r4 10

ldc.r4 0x123456789ABCDEF

ldc.r8 (00 00 00 00 00 00 F8 FF)

 Partition VI 49

C.4.7 Branch instruct ions

The assembler does not optimize branches. The branch must be specified explicitly as using either
the short or long form of the instruction. If the displacement is too large for the short form, then the
assembler will display an error.

<instr> ::=

<instr_brtarget> <int32> |

<instr_brtarget> <label>

<instr_brtarget> ::= // Derived from opcode.def

 | beq | beq.s | bge | bge.s
|

bge.un | bge.un.s | bgt | bgt.s | bgt.un | bgt.un.s
|

ble | ble.s | ble.un | ble.un.s | blt | blt.s
|

blt.un | blt.un.s | bne.un | bne.un.s | br | br.s
|

brfalse | brfalse.s | brtrue | brtrue.s | leave | leave.s

Example:
br.s 22

br foo

C.4.8 Instruct ions that take a method as an argument

These instructions reference a method, either in another class (first instruction format) or in the
current class (second instruction format).

<instr> ::=

 <instr_method>

 <callConv> <type> [<typeSpec> ::] <methodName> (
<parameters>)

<instr_method> ::= // Derived from opcode.def

 call | callvirt | jmp | ldftn | ldvirtftn | newobj

Examples:
call instance int32 C.D.E::X(class W, native int)

ldftn vararg char F(...) // Global Function F

C.4.9 Instruct ions that take a f ie ld of a class as an argument

These instructions reference a field of a class.

50 Partition VI

<instr> ::=

<instr_field> <type> <typeSpec> :: <id>

<instr_field> ::= // Derived from opcode.def

ldfld | ldflda | ldsfld | ldsflda | stfld | stsfld

Examples:
ldfld native int X::IntField

stsfld int32 Y::AnotherField

C.4.10 Instruct ions that take a type as an argument

These instructions reference a type.

<instr> ::= <instr_type> <typeSpec>

<instr_type> ::= // Derived from opcode.def

box | castclass | cpobj | initobj | isinst |

ldelema | ldobj | mkrefany | newarr | refanyval |

sizeof | stobj | unbox

Examples:
initobj [mscorlib]System.Console

sizeof class X

C.4.11 Instruct ions that take a string as an argument

These instructions take a string as an argument.

<instr> ::= <instr_string> <QSTRING>

<instr_string> ::= // Derived from opcode.def

ldstr

Examples:
ldstr “This is a string”

ldstr “This has a\nnewline in it”

C.4.12 Instruct ions that take a s ignature as an argument

These instructions take a stand-alone signature as an argument.

<instr> ::= <instr_sig> <callConv> <type> (<parameters>)

<instr_sig> ::= // Derived from opcode.def

calli

 Partition VI 51

Examples:
calli class A.B(wchar *)

calli vararg bool(int32[,] X, ...)

// Returns a boolean, takes at least one argument. The first

// argument, named X, must be a two-dimensional array of

// 32-bit ints

C.4.13 Instruct ions that take a metadata token as an argument

This instruction takes a metadata token as an argument. The token can reference a type, a method, or
a field of a class.

<instr> ::= <instr_tok> <typeSpec> |

 <instr_tok> method

 <callConv> <type> <typeSpec> :: <methodName>

 (<parameters>) |

 <instr_tok> method

 <callConv> <type> <methodName>

 (<parameters>) |

 <instr_tok> field <type> <typeSpec> :: <id>

<instr_tok> ::= // Derived from opcode.def

ldtoken

Examples:
ldtoken class [mscorlib]System.Console

ldtoken method int32 X::Fn()

ldtoken method bool GlobalFn(int32 &)

ldtoken field class X.Y Class::Field

C.4.14 Switch instruct ion

The switch instruction takes a set of labels or decimal relative values.

<instr> ::= <instr_switch> (<labels>)

<instr_switch> ::= // Derived from opcode.def

switch

Examples:
switch (0x3, -14, Label1)

switch (5, Label2)

52 Partition VI

Annex D Class library design guidelines

This clause contains only informative text
Information on this topic can be found at the following location:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

 Partition VI 53

Annex E Portability considerations
This clause gathers together information about areas where this Standard deliberately leaves leeway
to implementations. This leeway is intended to allow compliant implementations to make choices
that provide better performance or add value in other ways. But this leeway inherently makes
programs non-portable. This clause describes the techniques that can be used to ensure that programs
operate the same way independent of the particular implementation of the CLI.

Note that code can be portable even though the data is not, both due to size of integer type and
direction of bytes in words. Read/write invariance holds provided the read method corresponds to the
write method (i.e., write as int read as int works, but write as string read as int might not).

E.1 Uncontrollable behavior
The following aspects of program behavior are implementation dependent. Many of these items will
be familiar to programmers used to writing code designed for portability (for example, the fact that
the CLI does not impose a minimum size for heap or stack).

1. Size of heap and stack aren't required to have minimum sizes

2. Behavior relative to asynchronous exceptions (see System.Thread.Abort)

3. Globalization is not supported, so every implementation specifies its culture information
including such user-visible features as sort order for strings.

4. Threads cannot be assumed to be either pre-emptively or non-pre-emptively scheduled.
This decision is implementation specific.

5. Locating assemblies is an implementation-specific mechanism.

6. Security policy is an implemenation-specific mechanism.

7. File names are implementation-specific.

8. Timer resolution (granularity) is implementation-specific, although the unit is specified.

E.2 Language- and compiler-controllable behavior
The following aspects of program behavior can be controlled through language design or careful
generation of CIL by a language-specific compiler. The CLI provides all the support necessary to
control the behavior, but the default is to allow implementation-specific optimizations.

1. Unverifiable code can access arbitrary memory and cannot be guaranteed to be portable

2. Floating point – compiler can force all intermediate values to known precision

3. Integer overflow – compiler can force overflow checking

4. Native integer type need not be exposed, or can be exposed for opaque handles only, or
can reliably recast with overflow check to known size values before use. Note that "free
conversion" between native integer and fixed-size integer without overflow checks will
not be portable.

5. Deterministic initialization of types is portable, but "before first reference to static
variable" is not. Language design can either force all initialization to be deterministic
(cf. Java) or can restrict initialization to deterministic cases (i.e., simple static
assignments).

E.3 Programmer-controllable behavior
The following aspects of program behavior can be controlled directly by the programmer.

54 Partition VI

1. Code that is not thread-safe might operate differently even on a single implementation.
In particular, the atomicity guarantees around 64-bit must be adhered to and testing on
64-bit implementations might not be sufficient to find all such problems. The key is
never to use both normal read/write and interlocked access to the same 64-bit datum.

2. Calls to unmanaged code or calls to non-standardized extensions to libraries

3. Do not depend on the relative order of finalization of objects.

4. Do not use explicit layout of data.

5. Do not rely on the relative order of exceptions within a single CIL instruction or a given
library method call.

 Partition VI 55

Annex F Imprecise faults

This clause contains only informative text
Some CIL instructions perform implicit run-time checks that ensure memory and type safety.
Originally, the CLI guaranteed that exceptions were precise, meaning that program state was
preserved when an exception was thrown. However, enforcing precise exceptions for implicit
checks makes some important optimizations practically impossible to apply. Programmers can now
declare, via a custom attribute, that a method is “relaxed”, which says that exceptions arising from
implicit run-time checks need not be precise.

Relaxed checks preserve verifiability (by preserving memory and type safety) while permitting
optimizations that reorder instructions. In particular, it enables the following optimizations:

• Hoisting implicit run-time checks out of loops.

• Reordering loop iterations (e.g., vectorization and automatic multithreading)

• Interchanging loops

• Inlining that makes an inlined method as least as fast as the equivalent macro

F.1 Instruction reordering
Programs that always perform explicit checks and explicit throws, instead of relying on implicit run-
time checks, are never visibly affected by relaxation, except for variations already permitted by the
existing CLI standard (e.g., non-determinism of cross-thread non-volatile reads and writes).
Furthermore, only control dependences induced by implicit run-time checks are relaxed.
Nonetheless, data dependences must be respected.

Authors of strict methods can reason about their behavior without knowing details about whether
their callers or callees are relaxed, because strict instructions act as a fence. On the other hand, we
want calls from E-relaxed methods to E-relaxed methods to be inlinable “as if” they were inlined by
hand at the source level. That is why an E-relaxed sequence is allowed to span between methods.

F.2 Inlining
Inliners must be careful when dealing with a call to a method of different strictness. A call from a
method to a more relaxed method can be inlined, conservatively, by treating the callee as strict as the
caller; i.e., by ignoring any additional latitude granted the callee. Otherwise, if the strictness of the
caller and callee differ, inlining the call requires either careful tracking of whether each check is
relaxed or strict, or demoting the entire caller and inlined copy of the callee to a strictness that is at
least as strict as the strictnesses of the caller and callee.

F.3 Finally handlers sti l l guaranteed once a try block is entered
Because relaxed sequences cannot span across protected non-trivial region boundaries, this guarantee
still holds. This is essential for preserving the usual idiom for acquiring and releasing a resource:
[Example:

bool acquired = false;
try {
 acquire(ref acquired);
 S1;
} finally {
 if (acquired) release resource;
}

end example]

56 Partition VI

Quite often, the programmer knows little about how S1 might fail. If the “acquire”, S1, and “release”
were allowed to be part of the same relaxed sequence, and S1 failed, then the acquire and/or release
portions could be suppressed at whim (by the rest of the rules). By forcing the three parts to be in
three separate sequences, we eliminate problems with regard to S1 failing. Of course, we do not
eliminate problems that might arise if something else in the sequence for “acquire” fails, but that is a
problem that can’t be dealt with at the CLI level, and must be left to the programmer.

Relaxed sequences are allowed to span trivial region boundaries because optimizers were already
allowed to remove such regions even when strict exception handling is specified.

F.4 Interleaved calls
One potential hazard that users should look out for is that when a relaxed method calls another
relaxed method, checks can appear to migrate from callee to caller and vice versa. Thus, methods
that enforce program invariants that must be maintained in spite of faults should be marked as being
strict for faults whose retiming may break the invariant.

For example, the method T.M below keeps x+y invariant.

[Example:

.class M {
 .field public int32 x;
 .field public int32 y;

 .method public void T() cil managed {
 .maxstack 2
 ldarg.0 // Compute x=x-1

 dup
 ldfld x
 ldc.i4.1
 sub
 stfld x

 ldarg.0 // Compute y=y+1

 dup
 ldfld y
 ldc.i4.1
 add
 stfld y
 }
 ...
}

end example]

If this method is relaxed, and the caller is also relaxed, then the caller would be allowed, in the
absence of constraining data or control dependences, to interleave the call with other instructions in
the caller. If one of those other interleaved instructions faults, then any or all of M’s side effects
might be suppressed. Thus, method M should be marked as strict if it is important to prevent a fault
from destroying the invariant.

This “interference” from the caller is potentially annoying, but seems to be intrinsic to any definition
of relaxed exceptions that permits both:

1. instruction reordering and

2. inlined method calls are at least as fast as manual inlining.

 Partition VI 57

F.4.1 Rejected not ions for fencing

This subclause explains why some alternative ideas for “check fence” rules that were rejected.

Volatile operations were a candidate, since they already prevent some kinds of reordering. Treating
volatile memory operations as check fences would prevent interference in critical sections. However,
there are two arguments against this. First, not all situations that need check fences have anything to
do with volatile operations. Second, it would penalize volatile references, which exist for sake of fast
cross-thread communication.

F.5 Examples
This subclause shows some classic optimizations, and how relaxed exceptions make them much
easier to apply than strict exceptions.

F.5.1 Hoist ing checks out of a loop

In a relaxed method, bounds checks for arithmetically progressing indices can be hoisted out of a
loop, and only the extremes are checked. For example, consider:

for(int i=lower; i<upper; ++i) {
 a[i] = b[i];
 c[i] = d[i];
}

In a strict method, the bounds checks on a and b are difficult to hoist, because the assignment to
c[i] is control-dependent on success of all the bounds checks in the loop. If a fault causes the loop
to end prematurely, the initial prefixes of a and c must be written up to where the fault occurred.
The hoisting can be of course done via “two versioning”, but that would double the size of the
generated code.

In relaxed methods, the bounds checks can easily be hoisted without resorting to two-versioning, so
that the code executes as if written:

if(lower < upper) {
 // “Landing pad” in compiler parlance.
 if(lower < 0 || upper < a.Length || upper < b.Length || upper <
c.Length
 || upper < d.Length)
 throw IndexOutOfRangeException;

 int i=lower;
 do {
 a[i] = b[i]; // Unchecked
 c[i] = d[i]; // Unchecked
 } while(++i<upper);
}

Notice that the rewrite implicitly hoists the check for NullReferenceException too. With
strict exceptions, that hoisting would not be valid, because perhaps a[0]=b[0] succeeds but then c
is null. For similar reasons, relaxed exceptions (specifically, with the exceptions indicated by
CompilationRelaxations.RelaxedArrayExceptions and
CompilationRelaxations.RelaxedNullReferenceException relaxed) enables the
hoisting of the checks for ArrayTypeMismatchException for both assignments. Notice that
relaxation allows the checks to be hoisted, not removed.

F.5.2 Vectorizing a loop

Vectorizing a loop usually requires knowing two things:

1. The loop iterations are independent

58 Partition VI

2. The number of loop iterations is known.

In a method relaxed for the checks that might fault, part 1 is frequently false, because the possibility
of a fault induces a control dependence from each loop iteration to succeeding loop iterations. In a
relaxed method, those control dependences can be ignored.

In most cases, relaxed methods simplify vectorization by allowing checks to be hoisted out of a loop.
Nevertheless, even when such hoisting is not possible, ignoring cross-iteration dependences implied
by faults can be crucial to vectorization for “short vector” SIMD hardware such as IA-32 SSE or
PowerPC Altivec. For example, consider this loop:

for (k = 0; k < n; k++) {
 x[k] = x[k] + y[k] * s[k].a;
}

where s is an array of references. The checks for null references cannot be hoisted out of the loop,
even in a relaxed context. But relaxed does allow “unroll-and-jam” to be applied successfully. The
loop can be unrolled by a factor of 4 to create aggregate iterations, and the checks hoisted to the top
of each aggregate iteration.

F.5.3 Autothreading a loop

Below is a C# rendition of the key routine for a sparse matrix multiply from the SciMark 2.0 suite:

int M = row.Length - 1;

for (int r=0; r<M; r++) {
 double sum = 0.0;
 int rowR = row[r];
 int rowRp1 = row[r + 1];
 for (int i = rowR; i < rowRp1; i++)
 sum += x[col[i]] * val[i];
 y[r] = sum;
}

This is an attractive candidate for parallelizing the outer loop. In a strict method, doing so is quite
difficult; either we have to know x[col[i]] never faults, or have a way to make the writes to
y[r] speculative.

 If the method is relaxed for the possible faults, parallelizing the outer loop is only a matter of solving
the usual data dependence problem (“Does y[r] ever alias x[col[i]]”). If any iteration of the
loop faults, the relaxed exceptions allows the other iterations to quit early or keep going without
concern for what state they leave y in.

 Partition VI 59

Annex G Parallel library

This clause contains only informative text
This Annex shows several complete examples written using the parallel library

The classes in System.Threading.Parallel enable you to write parallel loops that take
advantage of hardware that can execute multiple threads in parallel, without having to get involved in
the details of dispatching and synchronizing multiple threads. [Example: The library lets you take an
ordinary sequential loop like this:

for(int i=0; i<n; ++i) {
 loop body
}

and rewrite it as a parallel loop like this:
new ParallelFor().Run(delegate(int i) {
 loop body
});

end example]

G.1 Considerations
The programmer is responsible for ensuring that the loop iterations are independent (for sake of
correctness) and have sufficient grain size (for sake of efficiency.) Loop iterations are independent if
they can be carried out in arbitrary order, or concurrently and still produce the right answer. The
grain size is the amount of work performed by a loop iteration. If the grain size is too small, the
overhead (calling the delegate, synchronizing with other threads, etc.) may overwhelm the intended
work. The ideal is to make the grain size large and uniform, but not so large as to make it difficult to
distribute work evenly across physical threads.

For efficiency, ParallelFor is the preferred loop class when there is a choice. It tends to be the
most efficient because it has the least general iteration space.

G.2 ParallelFor
ParallelFor should be used when parallelizing a loop whose index takes on values from 0 to n-
1. Below is an example of how ParallelFor might be used in C# to parallelize the iterations in a
cellular automaton on a grid. The variables oldState and newState are two-dimensional arrays
the respectively hold the old and new states of the cells. [Example:

int n = oldState.GetLength(0);
new ParallelFor(n-2).Run(delegate(int iteration) {
 int i = iteration+1;

 for (int j = 1; j < n-1; j++){
 int count =
 (oldState[i-1,j-1] + oldState[i-1,j] + oldState[i-1,j+1] +
 oldState[i,j-1] + oldState[i,j+1] +
 oldState[i+1,j-1] + oldState[i+1,j] + oldState[i+1,j+1]);
 byte s = (count | oldState[i, j]) == 3 ? Live : Dead;
 newState[i, j] = s;
 }

});
end example]

There are two key points to notice. First, the outer loop logically iterates i from 1 to n-1.
However, the ParallelFor class always iterates starting at 0. Hence the desired logical value of i is
computed from the physical loop iteration number iteration. Second, outer loop is parallel; the

60 Partition VI

inner loop is sequential. In general, if the loop iterations are independent for both inner and outer
loops, it is better to parallelize the outer loop because doing so yields the largest grain size.

G.3 ParallelForEach
ParallelForEach should be used to parallelize a loop that iterates over a collection that supports the
usual enumerator pattern. Below is an example that iterates over a list of file names. [Example:

List<string> files = ...;
new ParallelForEach(files).Run(delegate(filename) {
 FileStream f = new FileStream(filename, FileMode.Open);
 ...read file f and process it...
 f.Close();
});

end example]

G.4 ParallelWhile
Use ParallelWhile to parallelize a loop over a collection that grows while it is being processed.
Below is an excerpt showing how ParallelWhile might be used for parallel update of cells in a
spreadsheet. Each cell is presumed to have a set Successors of cells that depend upon it, and a field
PredecessorCount that is initially zero. Each cell must be updated before any of its successors is
updated.

[Example:
void UpdateAll() {
 // Phase 1: Count predecessors
 foreach (Cell c in SetOfAllCells)
 foreach (Cell dependent in currentCell.Sucessors)

 ++dependent.PredecessorCount

 // Phase 2: Find cells with no predecessors
 ParallelWhile<Cell> parallelWhile = new ParallelWhile<Cell>();
 foreach (Cell c in SetOfAllCells)
 if (c.PredecessorCount]==0)
 parallelWhile.Add(c);

 // Phase 3: Do the updating
 parallelWhile.Run(delegate(Cell c) {
 update value of cell c...
 foreach (Cell dependent in c.Sucessors)
 if (Interlocked.Decrement(ref dependent.PredecessorCount)==0)
 parallelWhile.Add(dependent);
 });
}
end example]

The example is structured as a classic topological sort. Phases 1 and 2 are sequential code. Because
they are sequential, they do not have to update PredecessorCount in a thread-safe manner. Phase 3
is parallel: it starts processing all cells that phase 2 found were ready to update, and any cells found
by phase 3 itself that were found ready to run. Because phase 3 is parallel, it updates
PredecessorCount in a thread-safe manner.

G.5 Debugging
During initial debugging, set System.Threading.Parallel.ParallelEnvironment.MaxThreads
to 1, which causes sequential execution of the parallel loop classes. Once your code runs correctly
sequentially, experiment with setting
System.Threading.Parallel.ParallelEnvironment.MaxThreads to higher values. In final
production code, it is preferable to not set it at all, because it affects parallel loops everywhere in the
application domain.

	ECMA-335 (CLI) - Final draft 3rd Edition
	Partition I -- Architecture
	Table of Contents
	Foreword
	1 Scope
	2 Conformance
	3 Normative references
	4 Conventions
	4.1 Organization
	4.2 Informative text

	5 Terms and definitions
	6 Overview of the Common Language Infrastructure
	6.1 Relationship to type safety
	6.2 Relationship to managed metadata-driven execution
	6.2.1 Managed code
	6.2.2 Managed data
	6.2.3 Summary

	7 Common Language Specification
	7.1 Introduction
	7.2 Views of CLS compliance
	7.2.1 CLS framework
	7.2.2 CLS consumer
	7.2.3 CLS extender

	7.3 CLS compliance
	7.3.1 Marking items as CLS-compliant

	8 Common Type System
	8.1 Relationship to object-oriented programming
	8.2 Values and types
	8.2.1 Value types and reference types
	8.2.2 Built-in value and reference types
	8.2.3 Classes, interfaces, and objects
	8.2.4 Boxing and unboxing of values
	8.2.5 Identity and equality of values

	8.3 Locations
	8.3.1 Assignment-compatible locations
	8.3.2 Coercion
	8.3.3 Casting

	8.4 Type members
	8.4.1 Fields, array elements, and values
	8.4.2 Methods
	8.4.3 Static fields and static methods
	8.4.4 Virtual methods

	8.5 Naming
	8.5.1 Valid names
	8.5.2 Assemblies and scoping
	8.5.3 Visibility, accessibility, and security

	8.6 Contracts
	8.6.1 Signatures

	8.7 Assignment compatibility
	8.8 Type safety and verification
	8.9 Type definers
	8.9.1 Array types
	8.9.2 Unmanaged pointer types
	8.9.3 Delegates
	8.9.4 Interface type definition
	8.9.5 Class type definition
	8.9.6 Object type definitions
	8.9.7 Value type definition
	8.9.8 Type inheritance
	8.9.9 Object type inheritance
	8.9.10 Value type inheritance
	8.9.11 Interface type derivation

	8.10 Member inheritance
	8.10.1 Field inheritance
	8.10.2 Method inheritance
	8.10.3 Property and event inheritance
	8.10.4 Hiding, overriding, and layout

	8.11 Member definitions
	8.11.1 Method definitions
	8.11.2 Field definitions
	8.11.3 Property definitions
	8.11.4 Event definitions
	8.11.5 Nested type definitions

	9 Metadata
	9.1 Components and assemblies
	9.2 Accessing metadata
	9.2.1 Metadata tokens
	9.2.2 Member signatures in metadata

	9.3 Unmanaged code
	9.4 Method implementation metadata
	9.5 Class layout
	9.6 Assemblies: name scopes for types
	9.7 Metadata extensibility
	9.8 Globals, imports, and exports
	9.9 Scoped statics

	10 Name and type rules for the Common Language Specification
	10.1 Identifiers
	10.2 Overloading
	10.3 Operator overloading
	10.3.1 Unary operators
	10.3.2 Binary operators
	10.3.3 Conversion operators

	10.4 Naming patterns
	10.5 Exceptions
	10.6 Custom attributes
	10.7 Generic types and methods
	10.7.1 Nested type parameter re-declaration
	10.7.2 Type names and arity encoding
	10.7.3 Type constraint re-declaration
	10.7.4 Constraint type restrictions
	10.7.5 Frameworks and accessibility of nested types
	10.7.6 Frameworks and abstract or virtual methods

	11 Collected Common Language Specification rules
	12 Virtual Execution System
	12.1 Supported data types
	12.1.1 Native size: native int, native unsigned int, O and &
	12.1.2 Handling of short integer data types
	12.1.3 Handling of floating-point data types
	12.1.4 CIL instructions and numeric types
	12.1.5 CIL instructions and pointer types
	12.1.6 Aggregate data

	12.2 Module information
	12.3 Machine state
	12.3.1 The global state
	12.3.2 Method state

	12.4 Control flow
	12.4.1 Method calls
	12.4.2 Exception handling

	12.5 Proxies and remoting
	12.6 Memory model and optimizations
	12.6.1 The memory store
	12.6.2 Alignment
	12.6.3 Byte ordering
	12.6.4 Optimization
	12.6.5 Locks and threads
	12.6.6 Atomic reads and writes
	12.6.7 Volatile reads and writes
	12.6.8 .Other memory model issues

	13 Index

	Partition II -- Metadata
	Table of Contents
	1 Introduction
	2 Overview
	3 Validation and verification
	4 Introductory examples
	4.1 “Hello world!”
	4.2 Other examples

	5 General syntax
	5.1 General syntax notation
	5.2 Basic syntax categories
	5.3 Identifiers
	5.4 Labels and lists of labels
	5.5 Lists of hex bytes
	5.6 Floating-point numbers
	5.7 Source line information
	5.8 File names
	5.9 Attributes and metadata
	5.10 ilasm source files

	6 Assemblies, manifests and modules
	6.1 Overview of modules, assemblies, and files
	6.2 Defining an assembly
	6.2.1 Information about the assembly (AsmDecl)
	6.2.2 Manifest resources
	6.2.3 Associating files with an assembly

	6.3 Referencing assemblies
	6.4 Declaring modules
	6.5 Referencing modules
	6.6 Declarations inside a module or assembly
	6.7 Exported type definitions

	7 Types and signatures
	7.1 Types
	7.1.1 modreq and modopt
	7.1.2 pinned

	7.2 Built-in types
	7.3 References to user-defined types (TypeReference)
	7.4 Native data types

	8 Visibility, accessibility and hiding
	8.1 Visibility of top-level types and accessibility of nested ty
	8.2 Accessibility
	8.3 Hiding

	9 Generics
	9.1 Generic type definitions
	9.2 Generics and recursive inheritance graphs
	9.3 Generic method definitions
	9.4 Instantiating generic types
	9.5 Generics variance
	9.6 Assignment compatibility of instantiated types
	9.7 Validity of member signatures
	9.8 Signatures and binding
	9.9 Inheritance and overriding
	9.10 Explicit method overrides
	9.11 Constraints on generic parameters
	9.12 References to members of generic types

	10 Defining types
	10.1 Type header (ClassHeader)
	10.1.1 Visibility and accessibility attributes
	10.1.2 Type layout attributes
	10.1.3 Type semantics attributes
	10.1.4 Inheritance attributes
	10.1.5 Interoperation attributes
	10.1.6 Special handling attributes
	10.1.7 Generic parameters (GenPars)

	10.2 Body of a type definition
	10.3 Introducing and overriding virtual methods
	10.3.1 Introducing a virtual method
	10.3.2 The .override directive
	10.3.3 Accessibility and overriding

	10.4 Method implementation requirements
	10.5 Special members
	10.5.1 Instance constructor
	10.5.2 Instance finalizer
	10.5.3 Type initializer

	10.6 Nested types
	10.7 Controlling instance layout
	10.8 Global fields and methods

	11 Semantics of classes
	12 Semantics of interfaces
	12.1 Implementing interfaces
	12.2 Implementing virtual methods on interfaces

	13 Semantics of value types
	13.1 Referencing value types
	13.2 Initializing value types
	13.3 Methods of value types

	14 Semantics of special types
	14.1 Vectors
	14.2 Arrays
	14.3 Enums
	14.4 Pointer types
	14.4.1 Unmanaged pointers
	14.4.2 Managed pointers

	14.5 Method pointers
	14.6 Delegates
	14.6.1 Delegate signature compatibility
	14.6.2 Synchronous calls to delegates
	14.6.3 Asynchronous calls to delegates

	15 Defining, referencing, and calling methods
	15.1 Method descriptors
	15.1.1 Method declarations
	15.1.2 Method definitions
	15.1.3 Method references
	15.1.4 Method implementations

	15.2 Static, instance, and virtual methods
	15.3 Calling convention
	15.4 Defining methods
	15.4.1 Method body
	15.4.2 Predefined attributes on methods
	15.4.3 Implementation attributes of methods
	15.4.4 Scope blocks
	15.4.5 vararg methods

	15.5 Unmanaged methods
	15.5.1 Method transition thunks
	15.5.2 Platform invoke
	15.5.3 Method calls via function pointers
	15.5.4 Data type marshaling

	16 Defining and referencing fields
	16.1 Attributes of fields
	16.1.1 Accessibility information
	16.1.2 Field contract attributes
	16.1.3 Interoperation attributes
	16.1.4 Other attributes

	16.2 Field init metadata
	16.3 Embedding data in a PE file
	16.3.1 Data declaration
	16.3.2 Accessing data from the PE file

	16.4 Initialization of non-literal static data
	16.4.1 Data known at link time

	16.5 Data known at load time
	16.5.1 Data known at run time

	17 Defining properties
	18 Defining events
	19 Exception handling
	19.1 Protected blocks
	19.2 Handler blocks
	19.3 Catch blocks
	19.4 Filter blocks
	19.5 Finally blocks
	19.6 Fault handlers

	20 Declarative security
	21 Custom attributes
	21.1 CLS conventions: custom attribute usage
	21.2 Attributes used by the CLI
	21.2.1 Pseudo custom attributes
	21.2.2 Custom attributes defined by the CLS
	21.2.3 Custom attributes for security
	21.2.4 Custom attributes for TLS
	21.2.5 Custom attributes, various

	22 Metadata logical format: tables
	22.1 Metadata validation rules
	22.2 Assembly : 0x20
	22.3 AssemblyOS : 0x22
	22.4 AssemblyProcessor : 0x21
	22.5 AssemblyRef : 0x23
	22.6 AssemblyRefOS : 0x25
	22.7 AssemblyRefProcessor : 0x24
	22.8 ClassLayout : 0x0F
	22.9 Constant : 0x0B
	22.10 CustomAttribute : 0x0C
	22.11 DeclSecurity : 0x0E
	22.12 EventMap : 0x12
	22.13 Event : 0x14
	22.14 ExportedType : 0x27
	22.15 Field : 0x04
	22.16 FieldLayout : 0x10
	22.17 FieldMarshal : 0x0D
	22.18 FieldRVA : 0x1D
	22.19 File : 0x26
	22.20 GenericParam : 0x2A
	22.21 GenericParamConstraint : 0x2C
	22.22 ImplMap : 0x1C
	22.23 InterfaceImpl : 0x09
	22.24 ManifestResource : 0x28
	22.25 MemberRef : 0x0A
	22.26 MethodDef : 0x06
	22.27 MethodImpl : 0x19
	22.28 MethodSemantics : 0x18
	22.29 MethodSpec : 0x2B
	22.30 Module : 0x00
	22.31 ModuleRef : 0x1A
	22.32 NestedClass : 0x29
	22.33 Param : 0x08
	22.34 Property : 0x17
	22.35 PropertyMap : 0x15
	22.36 StandAloneSig : 0x11
	22.37 TypeDef : 0x02
	22.38 TypeRef : 0x01
	22.39 TypeSpec : 0x1B

	23 Metadata logical format: other structures
	23.1 Bitmasks and flags
	23.1.1 Values for AssemblyHashAlgorithm
	23.1.2 Values for AssemblyFlags
	23.1.3 Values for Culture
	23.1.4 Flags for events [EventAttributes]
	23.1.5 Flags for fields [FieldAttributes]
	23.1.6 Flags for files [FileAttributes]
	23.1.7 Flags for Generic Parameters [GenericParamAttributes]
	23.1.8 Flags for ImplMap [PInvokeAttributes]
	23.1.9 Flags for ManifestResource [ManifestResourceAttributes]
	23.1.10 Flags for methods [MethodAttributes]
	23.1.11 Flags for methods [MethodImplAttributes]
	23.1.12 Flags for MethodSemantics [MethodSemanticsAttributes]
	23.1.13 Flags for params [ParamAttributes]
	23.1.14 Flags for properties [PropertyAttributes]
	23.1.15 Flags for types [TypeAttributes]
	23.1.16 Element types used in signatures

	23.2 Blobs and signatures
	23.2.1 MethodDefSig
	23.2.2 MethodRefSig
	23.2.3 StandAloneMethodSig
	23.2.4 FieldSig
	23.2.5 PropertySig
	23.2.6 LocalVarSig
	23.2.7 CustomMod
	23.2.8 TypeDefOrRefEncoded
	23.2.9 Constraint
	23.2.10 Param
	23.2.11 RetType
	23.2.12 Type
	23.2.13 ArrayShape
	23.2.14 TypeSpec
	23.2.15 MethodSpec
	23.2.16 Short form signatures

	23.3 Custom attributes
	23.4 Marshalling descriptors

	24 Metadata physical layout
	24.1 Fixed fields
	24.2 File headers
	24.2.1 Metadata root
	24.2.2 Stream header
	24.2.3 #Strings heap
	24.2.4 #US and #Blob heaps
	24.2.5 #GUID heap
	24.2.6 #~ stream

	25 File format extensions to PE
	25.1 Structure of the runtime file format
	25.2 PE headers
	25.2.1 MS-DOS header
	25.2.2 PE file header
	25.2.3 PE optional header

	25.3 Section headers
	25.3.1 Import Table and Import Address Table (IAT)
	25.3.2 Relocations
	25.3.3 CLI header

	25.4 Common Intermediate Language physical layout
	25.4.1 Method header type values
	25.4.2 Tiny format
	25.4.3 Fat format
	25.4.4 Flags for method headers
	25.4.5 Method data section
	25.4.6 Exception handling clauses

	26 Index

	Partition III -- CIL
	Table of Contents
	1 Introduction
	1.1 Data types
	1.1.1 Numeric data types
	1.1.2 Boolean data type
	1.1.3 Object references
	1.1.4 Runtime pointer types

	1.2 Instruction variant table
	1.2.1 Opcode encodings

	1.3 Stack transition diagram
	1.4 English description
	1.5 Operand type table
	1.6 Implicit argument coercion
	1.7 Restrictions on CIL code sequences
	1.7.1 The instruction stream
	1.7.2 Valid branch targets
	1.7.3 Exception ranges
	1.7.4 Must provide maxstack
	1.7.5 Backward branch constraints
	1.7.6 Branch verification constraints

	1.8 Verifiability and correctness
	1.8.1 Flow control restrictions for verifiable CIL

	1.9 Metadata tokens
	1.10 Exceptions thrown

	2 Prefixes to instructions
	2.1 constrained. – (prefix) invoke a member on a value of a vari
	2.2 no. – (prefix) possibly skip a fault check
	2.3 readonly. (prefix) – following instruction returns a control
	2.4 tail. (prefix) – call terminates current method
	2.5 unaligned. (prefix) – pointer instruction might be unaligned
	2.6 volatile. (prefix) – pointer reference is volatile

	3 Base instructions
	3.1 add – add numeric values
	3.2 add.ovf.<signed> – add integer values with overflow check
	3.3 and – bitwise AND
	3.4 arglist – get argument list
	3.5 beq.<length> – branch on equal
	3.6 bge.<length> – branch on greater than or equal to
	3.7 bge.un.<length> – branch on greater than or equal to, unsign
	3.8 bgt.<length> – branch on greater than
	3.9 bgt.un.<length> – branch on greater than, unsigned or unorde
	3.10 ble.<length> – branch on less than or equal to
	3.11 ble.un.<length> – branch on less than or equal to, unsigned
	3.12 blt.<length> – branch on less than
	3.13 blt.un.<length> – branch on less than, unsigned or unordered
	3.14 bne.un<length> – branch on not equal or unordered
	3.15 br.<length> – unconditional branch
	3.16 break – breakpoint instruction
	3.17 brfalse.<length> – branch on false, null, or zero
	3.18 brtrue.<length> – branch on non-false or non-null
	3.19 call – call a method
	3.20 calli – indirect method call
	3.21 ceq – compare equal
	3.22 cgt – compare greater than
	3.23 cgt.un – compare greater than, unsigned or unordered
	3.24 ckfinite – check for a finite real number
	3.25 clt – compare less than
	3.26 clt.un – compare less than, unsigned or unordered
	3.27 conv.<to type> – data conversion
	3.28 conv.ovf.<to type> – data conversion with overflow detection
	3.29 conv.ovf.<to type>.un – unsigned data conversion with overfl
	3.30 cpblk – copy data from memory to memory
	3.31 div – divide values
	3.32 div.un – divide integer values, unsigned
	3.33 dup – duplicate the top value of the stack
	3.34 endfilter – end exception handling filter clause
	3.35 endfinally – end the finally or fault clause of an exception
	3.36 initblk – initialize a block of memory to a value
	3.37 jmp – jump to method
	3.38 ldarg.<length> – load argument onto the stack
	3.39 ldarga.<length> – load an argument address
	3.40 ldc.<type> – load numeric constant
	3.41 ldftn – load method pointer
	3.42 ldind.<type> – load value indirect onto the stack
	3.43 ldloc – load local variable onto the stack
	3.44 ldloca.<length> – load local variable address
	3.45 ldnull – load a null pointer
	3.46 leave.<length> – exit a protected region of code
	3.47 localloc – allocate space in the local dynamic memory pool
	3.48 mul – multiply values
	3.49 mul.ovf.<type> – multiply integer values with overflow check
	3.50 neg – negate
	3.51 nop – no operation
	3.52 not – bitwise complement
	3.53 or – bitwise OR
	3.54 pop – remove the top element of the stack
	3.55 rem – compute remainder
	3.56 rem.un – compute integer remainder, unsigned
	3.57 ret – return from method
	3.58 shl – shift integer left
	3.59 shr – shift integer right
	3.60 shr.un – shift integer right, unsigned
	3.61 starg.<length> – store a value in an argument slot
	3.62 stind.<type> – store value indirect from stack
	3.63 stloc – pop value from stack to local variable
	3.64 sub – subtract numeric values
	3.65 sub.ovf.<type> – subtract integer values, checking for overf
	3.66 switch – table switch based on value
	3.67 xor – bitwise XOR

	4 Object model instructions
	4.1 box – convert a boxable value to its boxed form
	4.2 callvirt – call a method associated, at runtime, with an obj
	4.3 castclass – cast an object to a class
	4.4 cpobj – copy a value from one address to another
	4.5 initobj – initialize the value at an address
	4.6 isinst – test if an object is an instance of a class or inte
	4.7 ldelem – load element from array
	4.8 ldelem.<type> – load an element of an array
	4.9 ldelema – load address of an element of an array
	4.10 ldfld – load field of an object
	4.11 ldflda – load field address
	4.12 ldlen – load the length of an array
	4.13 ldobj – copy a value from an address to the stack
	4.14 ldsfld – load static field of a class
	4.15 ldsflda – load static field address
	4.16 ldstr – load a literal string
	4.17 ldtoken – load the runtime representation of a metadata toke
	4.18 ldvirtftn – load a virtual method pointer
	4.19 mkrefany – push a typed reference on the stack
	4.20 newarr – create a zero-based, one-dimensional array
	4.21 newobj – create a new object
	4.22 refanytype – load the type out of a typed reference
	4.23 refanyval – load the address out of a typed reference
	4.24 rethrow – rethrow the current exception
	4.25 sizeof – load the size, in bytes,of a type
	4.26 stelem – store element to array
	4.27 stelem.<type> – store an element of an array
	4.28 stfld – store into a field of an object
	4.29 stobj – store a value at an address
	4.30 stsfld – store a static field of a class
	4.31 throw – throw an exception
	4.32 unbox – convert boxed value type to its raw form
	4.33 unbox.any – convert boxed type to value

	5 Index

	Partition IV -- Library
	Table of Contents
	1 Overview
	2 Libraries and profiles
	2.1 Libraries
	2.2 Profiles
	2.3 The relationship between libraries and profiles

	3 The standard profiles
	3.1 The kernel profile
	3.2 The compact profile

	4 Kernel profile feature requirements
	4.1 Features excluded from the kernel profile
	4.1.1 Floating point
	4.1.2 Non-vector arrays
	4.1.3 Reflection
	4.1.4 Application domains
	4.1.5 Remoting
	4.1.6 Vararg
	4.1.7 Frame growth
	4.1.8 Filtered exceptions

	5 The standard libraries
	5.1 General comments
	5.2 Runtime infrastructure library
	5.3 Base Class Library (BCL)
	5.4 Network library
	5.5 Reflection library
	5.6 XML library
	5.7 Extended numerics library
	5.8 Extended array library
	5.9 Vararg library
	5.10 Parallel library

	6 Implementation-specific modifications to the system librarie
	7 The XML specification
	7.1 Semantics
	7.1.1 Value types as objects
	7.1.2 Exceptions

	7.2 XML signature notation issues
	7.2.1 Serialization
	7.2.2 Delegates
	7.2.3 Properties
	7.2.4 Nested types

	Partition V -- Binary Formats
	Table of Contents
	1 Portable CILDB files
	1.1 Encoding of integers
	1.2 CILDB header
	1.2.1 Version GUID

	1.3 Tables and heaps
	1.3.1 SymConstant table
	1.3.2 SymDocument table
	1.3.3 SymMethod table
	1.3.4 SymSequencePoint table
	1.3.5 SymScope table
	1.3.6 SymVariable table
	1.3.7 SymUsing table
	1.3.8 SymMisc heap
	1.3.9 SymString heap

	1.4 Signatures

	Partition VI -- Annexes
	Table of Contents
	A Introduction
	B Sample programs
	B.1 Mutually recursive program (with tail calls)
	B.2 Using value types
	B.3 Custom attributes
	B.4 Generics code and metadata
	B.4.1 ILAsm version
	B.4.2 C# version
	B.4.3 Metadata

	C CIL assembler implementation
	C.1 ILAsm keywords
	C.2 CIL opcode descriptions
	C.3 Complete grammar
	C.4 Instruction syntax
	C.4.1 Top-level instruction syntax
	C.4.2 Instructions with no operand
	C.4.3 Instructions that refer to parameters or local variables
	C.4.4 Instructions that take a single 32-bit integer argument
	C.4.5 Instructions that take a single 64-bit integer argument
	C.4.6 Instructions that take a single floating-point argument
	C.4.7 Branch instructions
	C.4.8 Instructions that take a method as an argument
	C.4.9 Instructions that take a field of a class as an argument
	C.4.10 Instructions that take a type as an argument
	C.4.11 Instructions that take a string as an argument
	C.4.12 Instructions that take a signature as an argument
	C.4.13 Instructions that take a metadata token as an argument
	C.4.14 Switch instruction

	D Class library design guidelines
	E Portability considerations
	E.1 Uncontrollable behavior
	E.2 Language- and compiler-controllable behavior
	E.3 Programmer-controllable behavior

	F Imprecise faults
	F.1 Instruction reordering
	F.2 Inlining
	F.3 Finally handlers still guaranteed once a try block is entere
	F.4 Interleaved calls
	F.4.1 Rejected notions for fencing

	F.5 Examples
	F.5.1 Hoisting checks out of a loop
	F.5.2 Vectorizing a loop
	F.5.3 Autothreading a loop

	G Parallel library
	G.1 Considerations
	G.2 ParallelFor
	G.3 ParallelForEach
	G.4 ParallelWhile
	G.5 Debugging

