
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECMA-363 
4th Edition / June 2007 

Universal 3D File 

Format 

 

 



 COPYRIGHT PROTECTED DOCUMENT 

  © Ecma International 2007 

 

 

patrick
Stamp



 

 

Ecma International   Rue du Rhône 114   CH-1204 Geneva   T/F: +41 22 849 6000/01   www.ecma-international.org 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Universal 3D File Format 

 
 

Standard 

ECMA-363 
4
th
 Edition / June 2007 

http://www.ecma-international.org/
http://www.ecma-international.org/


 

 

. 



 

 

Brief history 

In 2004, Ecma International formed Technical Committee 43 (TC43) to specify Universal 3D (U3D) File Format 
specification. The Universal 3D File Format specification is primarily intended for downstream 3D CAD repurposing 
and visualization purposes.  The 1

st
 Edition of the U3D File Format was adopted by the General Assembly of 

December 2004. 

In 2005, TC43 added file format extensibility to the 2
nd
 Edition of the U3D File Format specification.  The 2

nd
 Edition 

of the U3D File Format was submitted to ISO/IEC for fast-track processing. 

In 2006, changes were made as a result of comments received during the ISO/IEC DIS ballot process. 

In 2007, TC43 added the Free-Form Curve and Surface Extension to the 4
th
 Edition of the U3D File Format 

specification that adds support for Uniform and Non-Uniform, Rational and Non-Rational Free-Form Curves and 
Surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Ecma Standard has been adopted by the General Assembly of June 2007 . 



 

 

 

 





































































































































 

- 62 - 

 

9.6.1.2.4.3.2 F32: Base Diffuse Color Green 

Base Diffuse Color Green is the green component of the base diffuse color. 

9.6.1.2.4.3.3 F32: Base Diffuse Color Blue 

Base Diffuse Color Blue is the blue component of the base diffuse color. 

9.6.1.2.4.3.4 F32: Base Diffuse Color Alpha 

Base Diffuse Color Alpha is the alpha component of the base diffuse color. 

9.6.1.2.4.4 Base Specular Color 

Base Specular Color is an RGBA color in the specular color array. 

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black 
and the value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed. 

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully 
transparent and the value +1.0 corresponds to fully opaque. Values outside the ordinary range 
are allowed. 

 

9.6.1.2.4.4.1 F32: Base Specular Color Red 

Base Specular Color Red is the red component of the base specular color. 

9.6.1.2.4.4.2 F32: Base Specular Color Green 

Base Specular Color Green is the green component of the base specular color. 

9.6.1.2.4.4.3 F32: Base Specular Color Blue 

Base Specular Color Blue is the blue component of the base specular color. 

9.6.1.2.4.4.4 F32: Base Specular Color Alpha 

Base Specular Color Alpha is the alpha component of the base specular color. 

9.6.1.2.4.5 Base Texture Coord 

Base Texture Coord is a 4D texture coordinate in the texture coordinate array. 

The shader list description may define a texture coordinate layer to have 1, 2, 3 or 4 dimension 
texture coordinates. For 1D texture coordinate layers, only the U coordinate value is used. For 
2D texture coordinate layers, the U and V coordinate values are used. For 3D texture 
coordinate layers, the U, V ,and S coordinates are used. For 4D texture coordinate layers, the 
U, V, S and T coordinates are used. 

Base Specular Color Red 

Base Specular Color Green 

Base Specular Color Blue 

Base Specular Color Alpha 



 

 

- 63 - 

 

 

9.6.1.2.4.5.1 F32: Base Tex Coord U 

Base Tex Coord U is the first coordinate of the texture coordinate vector. 

9.6.1.2.4.5.2 F32: Base Tex Coord V 

Base Tex Coord V is the second coordinate of the texture coordinate vector. 

9.6.1.2.4.5.3 F32: Base Tex Coord S 

Base Tex Coord S is the third coordinate of the texture coordinate vector. 

9.6.1.2.4.5.4 F32: Base Tex Coord T 

Base Tex Coord T is the fourth coordinate of the texture coordinate vector. 

9.6.1.2.4.6 Base Face 

Base Face is a face in the base mesh. The face contains an index into the shader list 
description array and indices into the various mesh arrays for each corner. 

 

9.6.1.2.4.6.1 U32 [cShading]: Shading ID 

Shading ID is the index of the shader list descriptions used for this face. The Shading List 
Description array is defined in the CLOD Mesh Declaration block. 

9.6.1.2.4.6.2 Base Corner Info 

Base Corner Info contains the indices into the various mesh arrays for a corner of a face in 
the base mesh. The indices are limited to the sizes in Base Mesh Description. 

Base Tex Coord U 

Base Tex Coord V 

Base Tex Coord S 

Base Tex Coord T 

Shading ID 

Base Corner Info 
3 



 

- 64 - 

 

 

9.6.1.2.4.6.2.1 U32 [rBasePositionCount]: Base Position Index 

Base Position Index must be less than Base Position Count in the Base Mesh 
Description. 

9.6.1.2.4.6.2.2 U32 [rBaseNormalCount]: Base Normal Index 

Base Normal Index must be less than Base Normal Count in the Base Mesh 
Description. Base Normal Index is not present if 9.6.1.1.3.1 Mesh Attributes in the Max 
Mesh Description indicates Exclude Normals. 

9.6.1.2.4.6.2.3 U32 [rBaseDiffColorCnt]: Base Diffuse Color Index 

Base Diffuse Color Index must be less than Base Diffuse Color Count in Base Mesh 
Description. Base Diffuse Color Index is present only if shader list description indicated 
by Shading ID indicates diffuse colors are used. 

9.6.1.2.4.6.2.4 U32 [rBaseSpecColorCnt]: Base Specular Color Index 

Base Specular Color Index must be less than Base Specular Color Count in Base Mesh 
Description. Base Specular Color Index is present only if shading description indicated 
by Shading ID indicates specular colors are used. 

9.6.1.2.4.6.2.5 U32 [rBaseTexCoordCnt]: Base Texture Coord Index 

Base Texture Coord Index must be less than Base Texture Coord Count in Base Mesh 
Description. Texture Layer Count in the shading description indicated by Shading ID 
determines the number of times Base Texture Coord Index in repeated at this corner. 

Base Position Index 

Base Normal Index 

Base Diffuse Color Index 

Base Specular Color Index 

Base Texture Coord Index 
Texture Layers Count 



 

 

- 65 - 

 

9.6.1.3 CLOD Progressive Mesh Continuation (blocktype: 0xFFFFFF3C) 

The CLOD Mesh Progressive Continuation block contains progressive mesh information for 
a continuous level of detail mesh generator. 

The CLOD Mesh Progressive Continuation block is a continuation type block. The CLOD 
Mesh Progressive Continuation block is present only if Final Maximum Resolution is greater 
than Minimum Resolution. 

 

9.6.1.3.1 String: Mesh Name 

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the 
model resource modifier chain that contains the CLOD mesh generator. 

9.6.1.3.2 U32: Chain Index 

Chain Index is the position of the CLOD mesh generator in the model resource modifier 
chain. The value of Chain Index shall be zero for this blocktype. 

9.6.1.3.3 Resolution Update Range 

Resolution Update Range specifies the range of progressive mesh vertex updates 
provided in this continuation block. 

This continuation block contains CLOD mesh information for positions from (Start 
Resolution) to (End Resolution – 1). The total number of positions added by this block is 
Resolution Update Count = End Resolution – Start Resolution. 

 

9.6.1.3.3.1 U32: Start Resolution 

Start Resolution is the index of the first position added by this block. 

9.6.1.3.3.2 U32: End Resolution 

End Resolution is one more than the index of the last position added by this block. 

Mesh Name 

Resolution Update 

Resolution Update Range 

Chain Index 

Resolution Update Count 

Start Resolution 

End Resolution 



 

- 66 - 

 

9.6.1.3.4 Resolution Update 

 

9.6.1.3.4.1 U32 [rCurrentPositionCount]: Split Position Index 

Split Position Index is the index of the position to be split by this Resolution Update. Each 
Resolution Update adds one new position to the position array. Split Position Index will be less 
than the current position count. Each new face added by a Resolution Update will use the split 
position and the new position. Each face updated by a Resolution Update will change the split 
position to the new position. The new position is predicted based on the split position. The 
method for selecting the split position index is implementation dependent. 

Neighborhood Position Count 

Move Face Count 

New Face Position Info 
New Face Count 

Split Position Index 

New Face Count 

Stay Or Move 
Faces Using Split Position Count 

New Position Info 

New Diffuse Color Info 

New Normal Info 

New Specular Color Info 

New Texture Coord Info 

Move Face Info 

New Face Info 
New Face Count 



 

 

- 67 - 

 

When the CurrentPositionCount has the value zero, the compression context used shall be 
“cZero” instead of “r0”. 

The zero vector shall be used for split position vertex if no vertices are available to serve as 
split position vertex. 

9.6.1.3.4.2 New Diffuse Color Info 

New Diffuse Color Info describes new color values added to the diffuse color array of the mesh 
in this resolution update. The prediction for the new diffuse color value is calculated as the 
average of all diffuse color values used at the split position. 

 

9.6.1.3.4.2.1 U16[cDiffuseCount]: NewDiffuse Color Count 

New Diffuse Color Count is the number of new color values added in this resolution update. 

9.6.1.3.4.2.2 U8 [cDiffuseColorSign]: Diffuse Color Difference Signs 

Diffuse Color Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Diffuse Color Difference Red 

0x02 – Sign bit for Diffuse Color Difference Green 

0x04 – Sign bit for Diffuse Color Difference Blue 

0x08 – Sign bit for Diffuse Color Difference Alpha 

9.6.1.3.4.2.3 U32[cColorDiffR]: Diffuse Color Difference Red 

Reconstructed Color red component is calculated as 

Reconstructed Red = InverseQuant( predicted red, 

      (Diffuse Color Difference Signs & 0x01), 

      Diffuse Color Difference Red, 

      Diffuse Color Inverse Quant). 

New Diffuse Color Count 
Diffuse Color Difference Signs 

Diffuse Color Difference Blue 

Diffuse Color Difference Red 

Diffuse Color Difference Green 

Diffuse Color Difference Alpha 

New Diffuse Color Count 



 

- 68 - 

 

9.6.1.3.4.2.4 U32 [cColorDiffG]: Diffuse Color Difference Green 

Reconstructed Color green component is calculated as 

Reconstructed Green = InverseQuant(predicted green, 

((Diffuse Color Difference Signs & 0x02) >> 1), 

Diffuse Color Difference Green, 

Diffuse Color Inverse Quant). 

9.6.1.3.4.2.5 U32 [cColorDiffB]: Diffuse Color Difference Blue 

Reconstructed Color blue component is calculated as 

Reconstructed Blue = InverseQuant( predicted blue, 

     ((Diffuse Color Difference Signs & 0x04) >> 2), 

Diffuse Color Difference Blue, 

Diffuse Color Inverse Quant). 

9.6.1.3.4.2.6 U32 [cColorDiffA]: Diffuse Color Difference Alpha 

Reconstructed Color alpha component is calculated as 

Reconstructed Alpha = InverseQuant( predicted alpha, 

     ((Diffuse Color Difference Signs & 0x08) >> 3), 

Diffuse Color Difference Alpha, 

Diffuse Color Inverse Quant). 

9.6.1.3.4.3 New Specular Color Info 

New Specular Color Info describes new color values added to the specular color array of the 
mesh in this resolution update. The prediction for the new specular color value is calculated as 
the average of all specular color values used at the split position. 

 

New Specular Color Count 
Specular Color Difference Signs 

Specular Color Difference Blue 

Specular Color Difference Red 

Specular Color Difference Green 

Specular Color Difference Alpha 

New Specular Color Count 



 

 

- 69 - 

 

9.6.1.3.4.3.1 U16[cSpecularCount]: New Specular Color Count 

New Specular Color Count is the number of new color values added in this resolution 
update. 

9.6.1.3.4.3.2 U8 [cSpecularColorSign]: Specular Color Difference Signs 

Specular Color Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Specular Color Difference Red 

0x02 – Sign bit for Specular Color Difference Green 

0x04 – Sign bit for Specular Color Difference Blue 

0x08 – Sign bit for Specular Color Difference Alpha 

9.6.1.3.4.3.3 U32[cColorDiffR]: Specular Color Difference Red 

Reconstructed Color red component is calculated as 

Reconstructed Red = InverseQuant( predicted red, 

    (Specular Color Difference Signs & 0x01), 

Specular Color Difference Red, 

Specular Color Inverse Quant). 

9.6.1.3.4.3.4 U32 [cColorDiffG]: Specular Color Difference Green 

Reconstructed Color green component is calculated as 

Reconstructed Green = InverseQuant(predicted green, 

     ((Specular Color Difference Signs & 0x02) >> 1)), 

Specular Color Difference Green, 

Specular Color Inverse Quant). 

9.6.1.3.4.3.5 U32 [cColorDiffB]: Specular Color Difference Blue 

Reconstructed Color blue component is calculated as 

Reconstructed Blue = InverseQuant( predicted blue, 

     ((Specular Color Difference Signs & 0x04) >> 2)), 

Specular Color Difference Blue, 

Specular Color Inverse Quant). 

9.6.1.3.4.3.6 U32 [cColorDiffA]: Specular Color Difference Alpha 

Reconstructed Color alpha component is calculated as 

Reconstructed Alpha = InverseQuant( predicted alpha, 

((Specular Color Difference Signs & 0x08) >> 3)), 

Specular Color Difference Alpha, 

Specular Color Inverse Quant). 

9.6.1.3.4.4 New Texture Coord Info 

New Texture Coord Info describes new texture coordinate values added to the texture 
coordinate array of the mesh in this resolution update. The prediction for the new texture 
coordinate value is calculated as the average of all texture coordinates used at the split position 
in the first layer. 



 

- 70 - 

 

 

9.6.1.3.4.4.1 U16[cTexCoordCount]: New Tex Coord Count 

New Tex Coord Count is the number of new texture coordinate values added in this 
resolution update. 

9.6.1.3.4.4.2 U8 [cTexCoordSign]: Tex Coord Difference Signs 

Tex Coord Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Texture Coord Difference U 

0x02 – Sign bit for Texture Coord Difference V 

0x04 – Sign bit for Texture Coord Difference S 

0x08 – Sign bit for Texture Coord Difference T 

9.6.1.3.4.4.3 U32 [cTexCDiffU]: Texture Coord Difference U 

The reconstructed texture coordinate U is calculated as 

Reconstructed TexCoord U = InverseQuant( predicted Tex Coord U, 

      (Tex Coord Signs & 0x01), 

Texture Coord Difference U, 

Texture Coord Inverse Quant). 

9.6.1.3.4.4.4 U32 [cTexCDiffV]: Texture Coord Difference V 

The reconstructed texture coordinate V is calculated as 

Reconstructed TexCoord V = InverseQuant( predicted Tex Coord V, 

((Tex Coord Signs & 0x02) >> 1), 

Texture Coord Difference V, 

Texture Coord Inverse Quant). 

New Tex Coord Count 
Tex Coord Difference Signs 

Tex Coord Difference S 

Tex Coord Difference U 

Tex Coord Difference V 

Tex Coord Difference T 

New Tex Coord Count 



 

 

- 71 - 

 

9.6.1.3.4.4.5 U32 [cTexCDiffS]: Texture Coord Difference S 

The reconstructed texture coordinate S is calculated as 

Reconstructed TexCoord S = InverseQuant( predicted Tex Coord S, 

((Tex Coord Signs & 0x04) >> 2), 

Texture Coord Difference S, 

Texture Coord Inverse Quant). 

9.6.1.3.4.4.6 U32 [cTexCDiffT]: Texture Coord Difference T 

The reconstructed texture coordinate T is calculated as 

Reconstructed TexCoord T = InverseQuant( predicted Tex Coord, 

((Tex Coord Signs & 0x08) >> 3), 

Texture Coord Difference T, 

Texture Coord Inverse Quant). 

9.6.1.3.4.5 U32 [cFaceCnt]: New Face Count 

New Face Count is the number of new faces added to the mesh by this Resolution Update. 

9.6.1.3.4.6 New Face Position Info 

New Face Position Info describes a new face to be added to the mesh. One of the corners of 
the new face will use the Split Position and another of the corners will use the New Position. 

 

9.6.1.3.4.6.1 U32 [cShading]: Shading ID 

Shading ID is the index of the shader list used for this face. The Shading Description array is 
defined in the CLOD Mesh Declaration block. 

9.6.1.3.4.6.2 U8 [cFaceOrnt]: Face Orientation 

Face Orientation refers to the winding order of the face. 

0x01 – Left Orientation: Split Position; New Position; Third Position 

0x02 – Right Orientation: New Position; Split Position; Third Position 

Shading ID 

Third Position Type 

Face Orientation 

Local Third Position Index Global Third Position Index 



 

- 72 - 

 

9.6.1.3.4.6.3 U8 [cThrdPosType]: Third Position Type 

Third Position Type indicates whether the Third Position Index that follows is an index into 
the full position array or a smaller local position array. 

0x01 – Local Third Position Index 

0x02 – Global Third Position Index 

9.6.1.3.4.6.4 U32 [cLocal3rdPos]: Local Third Position Index 

The local position array is generated by adding all positions used by faces that also use the 
Split Position. Each position is added only once to the local position array. The local position 
array contains indices into the full position array. The local position array is sorted with the 
larger values first. 

9.6.1.3.4.6.5 U32 [rCurrentPositionCount]: Global Third Position Index 

Global Third Position Index is an index into the full position array. Current Position Count is 
the number of positions in the full position array. 

9.6.1.3.4.7 U8 [cStayMove+StayMovePrediction]: Stay Or Move 

For each face that was using the Split Position, Stay Or Move specifies if that face should 
continue to use the Split Position or be updated to use the New Position. The list of faces is 
sorted with the larger index faces first. 

0x00 – Stay; Continue to use the Split Position 

0x01 – Move; Update face to use the New Position 

The compression context depends on whether the face is predicted to stay or move. Valid 
values for StayMovePrediction are: 

0 – No prediction 

1 – Predict move from use of third position by face 

2 – Predict stay from use of third position by face 

3 – Predict move from prediction used for neighboring face 

4 – Predict stay from prediction used for neighboring face 

For faces that use the split position and one third position from a new face: if the corner winding 
order puts the split position before the third position, then predict stay if the new face orientation 
was right or predict move if the new face orientation was left; if the corner winding order puts 
the split position after the third position, then predict stay if the new face orientation was left or 
predict move if the new face orientation was right. 

For faces that use the split position and do not use a third position from a new face: if a 
neighboring face has been predicted stay or move, then use that prediction for this face. 

If there is a conflict where one neighboring face is predicted stay and another neighboring face 
is predicted move, then make no prediction. 

For faces where the preceding prediction rules do not apply, make no prediction. 

9.6.1.3.4.8 Move Face Info 

The move faces are the faces for which one of the corners changes from using the split 
position to using the new position. For each face of the move faces, the other properties at that 
corner may also change. Move Face Info describes how those corners of move faces should 
be updated for vertex color and texture coordinate properties. 



 

 

- 73 - 

 

 

9.6.1.3.4.8.1 Diffuse Color Face Update 

Diffuse Color Face Update is present only if the shading description for this face indicates 
that the face has diffuse colors at the corners of the face. 

 

9.6.1.3.4.8.1.1 U8 [cDiffuseKeepChange]: Diffuse Keep Change 

For each face with diffuse colors and a split position that is moving to the New Position, 
Diffuse Keep Change indicates whether the diffuse color at the same corner as the split 
position should also change. 

0x02 – Keep; The diffuse color should not change. 

0x01 – Change; The diffuse color should change. The new value for the diffuse color 
index can be found in the following change index. 

Diffuse Keep Change 

Diffuse Change Type 

Diffuse Change Index New 

Diffuse Change Index Global 

Diffuse Change Index Local 

Texture Layer Count 

Diffuse Color Face Update 

Specular Color Face Update 

Texture Coordinate Face Update 



 

- 74 - 

 

9.6.1.3.4.8.1.2 U8 [cDiffuseChangeType]: Diffuse Change Type 

Diffuse Change Type indicates the type of change index that follows. 

0x01 – New; 

0x02 – Local; 

0x03 – Global. 

9.6.1.3.4.8.1.3 U32 [cDiffuseChangeIndexNew]: Diffuse Change Index New 

Diffuse Change Index New is an index into the list of new diffuse colors for this 
resolution update as described in 9.6.1.3.4.2 New Diffuse Color Info. 

9.6.1.3.4.8.1.4 U32 [cDiffuseChangeIndexLocal]: Diffuse Change Index Local 

Diffuse Change Index Local is an index into the list of diffuse color indices used at the 
split position. Larger indices appear first in the that list. 

9.6.1.3.4.8.1.5 U32 [cDiffuseChangeIndexGlobal]: Diffuse Change Index Global 

Diffuse Change Index Global is an index into the full diffuse color pool. 

9.6.1.3.4.8.2 Specular Color Face Update 

Specular Color Face Update is present only if the shading description for this face indicates 
that the face has specular colors at the corners of the face. 

 

9.6.1.3.4.8.2.1 U8 [cSpecularKeepChange]: Specular Keep Change 

For each face with specular colors and a split position that is moving to the New 
Position, Specular Keep Change indicates whether the specular color at the same 
corner as the split position should also change. 

0x02 – Keep; The specular color should not change. 

0x01 – Change; The specular color should change. The new value for the specular color 
index can be found in the following change index. 

Specular Keep Change 

Specular Change Type 

Specular Change Index New 

Specular Change Index Global 

Specular Change Index Local 



 

 

- 75 - 

 

9.6.1.3.4.8.2.2 U8 [cSpecularChangeType]: Specular Change Type 

Specular Change Type indicates the type of change index that follows. 

0x01 – New; 

0x02 – Local; 

0x03 – Global. 

9.6.1.3.4.8.2.3 U32 [cSpecularChangeIndexNew]: Specular Change Index New 

Specular Change Index New is an index into the list of new specular colors for this 
resolution update as described in 9.6.1.3.4.3 New Specular Color Info. 

9.6.1.3.4.8.2.4 U32 [cSpecularChangeIndexLocal]: Specular Change Index Local 

Specular Change Index Local is an index into the list of specular color indices used at 
the split position. Larger indices appear first in the that list. 

9.6.1.3.4.8.2.5 U32 [cSpecularChangeIndexGlobal]: Specular Change Index Global 

Specular Change Index Global is an index into the full specular color pool. 

9.6.1.3.4.8.3 Texture Coordinate Face Update 

Texture Coordinate Face Update is repeated once for each texture layer for the move face. 
If there are no texture layers, then Texture Coordinate Face Update is not present. 

 

9.6.1.3.4.8.3.1 U8 [cTCKeepChange]: Tex Coord Keep Change 

For each face with texture coordinates and a split position that is moving to the New 
Position, Tex Coord Keep Change indicates whether the texture coordinate at the same 
corner as the split position should also change. 

0x02 – Keep; The texture coordinate should not change. 

0x01 – Change; The texture coordinate should change. The new value for the texture 
coordinate can be found in the following change index. 

Tex Coord Keep Change 

Tex Coord Change Type 

Tex Coord Change Index New 

Tex Coord Change Index Global 

Tex Coord Change Index Local 



 

- 76 - 

 

9.6.1.3.4.8.3.2 U8 [cTCChangeType]: Tex Coord Change Type 

Tex Coord Change Type indicates the type of change index that follows. 

0x01 – New; 

0x02 – Local; 

0x03 – Global. 

9.6.1.3.4.8.3.3 U32 [cTCChangeIndexNew]: Tex Coord Change Index New 

Tex Coord Change Index New is an index into the list of new texture coordinates for this 
resolution update as described in 9.6.1.3.4.4 New Texture Coord Info. 

9.6.1.3.4.8.3.4 U32 [cTCChangeIndexLocal]: Tex Coord Change Index Local 

Tex Coord Change Index Local is an index into the list of texture coordinate indices used 
at the split position at this texture layer. Larger indices appear first in the that list. 

9.6.1.3.4.8.3.5 U32 [cTCChangeIndexGlobal]: Tex Coord Change Index Global 

Tex Coord Change Index Global is an index into the full texture coordinate pool. 

9.6.1.3.4.9 New Face Info 

New Face Info completes the description of the new faces to be added to the mesh. The 
description was started in 9.6.1.3.4.6 New Face Position Info. The presence of the diffuse, 
specular or texture coordinate face info is determined by the Shading Description indicated by 
the Shading ID for this new face. 

 

9.6.1.3.4.9.1 New Face Diffuse Color Info 

New Face Diffuse Color Info indicates which colors from the diffuse color pool are used at 
each corner of this face. New Face Diffuse Color Info is only present if the shader list 
identified by Shading ID uses diffuse color coordinates. One of the Shading Attributes flags 
indicates the presence of diffuse color coordinates. 

New Face Diffuse Color Info 

New Face Texture Coord Info 

New Face Specular Color Info 



 

 

- 77 - 

 

 

9.6.1.3.4.9.1.1 U8 [cColorDup]: Diffuse Duplicate Flag 

Diffuse Duplicate Flag is a set of flags that indicates if the index for the color at a 
particular corner is the same as the corresponding index from the previous diffuse face. 
If the flag is set (one), then the most recently used color is used again. If the flag is not 
set (zero), then a color index is used to indicate the color to be used from the diffuse 
color pool. All other values are reserved. 

0x00 – Split Vertex uses color indicated by the color index. 

0x01 – Split Vertex uses color used at previous diffuse split vertex. 

0x02 – New Vertex uses color used at previous diffuse new vertex. 

0x04 – Third Vertex uses color used at previous diffuse third vertex. 

9.6.1.3.4.9.1.2 Split Vertex Diffuse Color 

Split Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the Split 
Vertex does not use a duplicate color. This color index uses the list of diffuse color 
indices used at the split position for the local index list. This color index uses the diffuse 
color pool. 

 

9.6.1.3.4.9.1.2.1 Color Index 

Diffuse Duplicate Flag 

Split Vertex Diffuse Color 

New Vertex Diffuse Color 

Third Vertex Diffuse Color 

Color Index Type 

Color Index Local Color Index Global 

Color Index 



 

- 78 - 

 

9.6.1.3.4.9.1.2.1.1 U8[cColorIndexType]: Color Index Type 

Color Index Type indicates whether the following index is an index into the 
complete color pool or an index into a smaller local list of color indices. 

0x02 – Local; 

0x03 – Global. 

9.6.1.3.4.9.1.2.1.2 U32[cColorIndexLocal]: Color Index Local 

Color Index Local is an index into a local list of colors. The indices in the list are 
sorted with the larger indices first. 

9.6.1.3.4.9.1.2.1.3 U32[cColorIndexGlobal]: Color Index Global 

Color Index Global is an index into the complete color pool. 

9.6.1.3.4.9.1.3 New Vertex Diffuse Color 

New Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the New 
Vertex does not use a duplicate color. This color index uses the list of diffuse color 
indices used at the split position for the local index list. This color index uses the diffuse 
color pool for the complete color pool. 

 

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index. 

9.6.1.3.4.9.1.4 Third Vertex Diffuse Color 

Third Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the Third 
Vertex does not use a duplicate color. This color index uses the list of diffuse color 
indices used at the third position for the local index list. This color index uses the diffuse 
color pool for the complete color pool. 

 

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index. 

9.6.1.3.4.9.2 New Face Specular Color Info 

New Face Specular Color Info indicates which colors from the specular color pool are used 
at each corner of this face. New Face Specular Color Info is only present if the shader list 
identified by Shading ID uses specular color coordinates. One of the Shading Attributes flags 
indicates the presence of specular color coordinates. 

Color Index 

Color Index 



 

 

- 79 - 

 

 

9.6.1.3.4.9.2.1 U8 [cColorDup]: Specular Duplicate Flag 

Specular Duplicate Flag is a set of flags that indicates if the index for the color at a 
particular corner is the same as the corresponding index from the previous specular 
face. If the flag is set (one), then the most recently used color is used again. If the flag is 
not set (zero), then a color index is used to indicate the color to be used from the 
specular color pool. All other values are reserved. 

0x01 – Split Vertex uses color used at previous specular split vertex. 

0x02 – New Vertex uses color used at previous specular new vertex. 

0x04 – Third Vertex uses color used at previous specular third vertex. 

9.6.1.3.4.9.2.2 Split Vertex Specular Color 

Split Vertex Specular Color is present only if Specular Duplicate Flag indicates the Split 
Vertex does not use a duplicate color. This color index uses the list of specular color 
indices used at the split position for the local index list. This color index uses the 
specular color pool for the complete color pool. 

 

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index. 

9.6.1.3.4.9.2.3 New Vertex Specular Color 

New Vertex Specular Color is present only if Specular Duplicate Flag indicates the New 
Vertex does not use a duplicate color. This color index uses the list of specular color 
indices used at the split position for the local index list. This color index uses the 
specular color pool for the complete color pool. 

 

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index. 

Color Index 

Color Index 

Specular Duplicate Flag 

Split Vertex Specular Color 

New Vertex Specular Color 

Third Vertex Specular Color 



 

- 80 - 

 

9.6.1.3.4.9.2.4 Third Vertex Specular Color 

Third Vertex Specular Color is present only if Specular Duplicate Flag indicates the Third 
Vertex does not use a duplicate color. This color index uses the list of specular color 
indices used at the third position for the local index list. This color index uses the 
specular color pool for the complete color pool. 

 

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index. 

9.6.1.3.4.9.3 New Face Texture Coord Info 

New Face Texture Coord Info indicates which texture coordinates from the texture 
coordinate pool are used at each corner of this face for each texgture coordinate layer. New 
Face Texture Coord Info is only present if the shader list identified by Shading ID uses 
texture coordinates. A texture layer count greater than zero indicates the presence of texture 
coordinates. 

 

9.6.1.3.4.9.3.1 U8 [cTexCDup]: Texture Coord Duplicate Flag 

Texture Coord Duplicate Flag is a set of flags that indicates if the index for the texture 
coordinagte at a particular corner is the same as the corresponding index from the 
previous corner. If the flag is set (one), then the most recently used texture coordinate is 
used again. If the flag is not set (zero), then a texture coordinate index is used to 
indicate the texture coordinate to be used from the texture coordinate pool. All other 
values are reserved. 

0x01 – Split Vertex uses previous texture coordinate used at a split vertex in this mesh. 

0x02 – New Vertex uses previous texture coordinate used at a new vertex in this mesh. 

0x04 – Third Vertex uses previous texture coordinate used at a third vertex in this mesh. 

Texture Coord Duplicate Flag 

Split Vertex Texture Coord 

New Vertex Texture Coord 

Third Vertex Texture Coord 

Texture Layer Count 

Color Index 



 

 

- 81 - 

 

9.6.1.3.4.9.3.2 Split Vertex Texture Coordinate 

Split Vertex Texture Coordinate is present only if Texture Coord Duplicate Flag indicates 
the Split Vertex does not use a duplicate texture coordinate. This texture coordinate 
index uses the list of texture coordinate indices used at the split position for the local 
index list. 

 

9.6.1.3.4.9.3.2.1 Texture Coordinate Index 

9.6.1.3.4.9.3.2.1.1 U8[cTexCIndexType]: Texture Coord Index Type 

Texture Coord Index Type indicates whether the following index is an index into 
the complete texture coordinate pool or an index into a smaller local list of 
texture coordinate indices. 

0x02 – Local; 

0x03 – Global. 

9.6.1.3.4.9.3.2.1.2 U32[cTextureIndexLocal]: Texture Coord Index Local 

Texture Coord Index Local is an index into a local list of texture coordinates. The 
indices in the list are sorted with the larger indices first. 

9.6.1.3.4.9.3.2.1.3 U32[cTextureIndexGlobal]: Texture Coord Index Global 

Texture Coord Index Global is an index into the complete texture coordinate 
pool. 

9.6.1.3.4.9.3.3 New Vertex Texture Coord 

New Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the 
New Vertex does not use a duplicate texture coordinate. This texture coordinate index 
uses the list of texture coordinates indices used at the split position for the current 
texture layer for the local index list. 

 

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord 
Index. 

Texture Coord Index 

Texture Coord Index Type 

Texture Coord Index Local Texture Coord Index Global 

Texture Coordinate Index 



 

- 82 - 

 

9.6.1.3.4.9.3.4 Third Vertex Texture Coord 

Third Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the 
Third Vertex does not use a duplicate texture coordinate. This texture coordinate index 
uses the list of texture coordinate indices used at the third position for the current texture 
layer for the local index list. This texture coordinate index uses the texture coordinate 
pool for the complete texture coordinate pool. 

 

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord 
Index. 

9.6.1.3.4.10 New Position Info 

New Position Info describes the position added to the mesh during this resolution upate. The 
new position value is predicted as the split position value. 

 

9.6.1.3.4.10.1 U8 [cPosDiffSign]: Position Difference Signs 

Position Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Position Difference X 

0x02 – Sign bit for Position Difference Y 

0x04 – Sign bit for Position Difference Z 

9.6.1.3.4.10.2 U32 [cPosDiffX]: Position Difference X 

Reconstructed Position X coordinate is calculated as 

Reconstructed Position X = InverseQuant(split position X, 

(Position Difference Signs & 0x01), 

Position Difference X, 

Position Inverse Quant). 

Texture Coord Index 

Position Difference Signs 

Position Difference X 

Position Difference Y 

Position Difference Z 



 

 

- 83 - 

 

9.6.1.3.4.10.3 U32 [cPosDiffY]: Position Difference Y 

Reconstructed Position Y coordinate is calculated as 

Reconstructed Position Y = InverseQuant(split position Y, 

((Position Difference Signs & 0x02)>>1), 

Position Difference Y, 

Position Inverse Quant). 

9.6.1.3.4.10.4 U32 [cPosDiffZ]: Position Difference Z 

Reconstructed Position Z coordinate is calculated as 

Reconstructed Position Z = InverseQuant(split position Z, 

((Position Difference Signs & 0x04)>>2), 

Position Difference Z, 

Position Inverse Quant). 

9.6.1.3.4.11 New Normal Info 

New Normal Info is repeated once for each position in the neighbourhood of the new position. 
Positions with higher index values are handled first. This neighbourhood includes the new 
position. New Normal Info describes new normals added to the normal pool. New Normal Info 
also specifies which normal should be used by each corner that uses that position. New Normal 
Info is not present if 9.6.1.1.3.1 Mesh Attributes in the Max Mesh Description indicates Exclude 
Normals. 

Count of faces using position 

New Normal Count 

New Normal Count 

Normal Local Index 

Normal Difference Signs 

Normal Difference X 

Normal Difference Y 

Normal Difference Z 



 

- 84 - 

 

9.6.1.3.4.11.1 U32 [cNormlCnt]: New Normal Count 

New Normal Count is the number of normals added to the normal array. An array of 
predicted normals is generated and the difference from the predictions is quantized and 
encoded in the following sections. To generate the array of predicted normals, start by 
putting the face normal for each face that uses this position into an array. While the size of 
this array is larger than New Normal Count, merge the two normals that are closest. Merging 
normals is done using a weighted spherical-linear average where each normal is weighted 
by the number of original face normals that it includes. 

9.6.1.3.4.11.2 U8 [cDiffNormalSign]: Normal Difference Signs 

Normal Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Normal Difference X 

0x02 – Sign bit for Normal Difference Y 

0x04 – Sign bit for Normal Difference Z 

9.6.1.3.4.11.3 U32 [cDiffNormalX]: Normal Difference X 

Reconstructed Normal X coordinate is calculated as 

Reconstructed Normal X = InverseQuant(predicted normal X, 

(Normal Difference Signs & 0x01), 

Normal Difference X, 

Normal Inverse Quant). 

9.6.1.3.4.11.4 U32 [cDiffNormalY]: Normal Difference Y 

Reconstructed Normal Y coordinate is calculated as 

Reconstructed Normal Y = InverseQuant(predicted normal Y, 

((Normal Difference Signs & 0x02)>>1), 

Normal Difference Y, 

Normal Inverse Quant). 

9.6.1.3.4.11.5 U32 [cDiffNormalZ]: Normal Difference Z 

Reconstructed Normal Z coordinate is calculated as 

Reconstructed Normal Z = InverseQuant(predicted normal Z, 

((Normal Difference Signs & 0x04)>>2), 

Normal Difference Z, 

Normal Inverse Quant). 

9.6.1.3.4.11.6 U32 [cNormlIdx]: Normal Local Index 

For each face using the position, the face shall use a New Normal from the new normal 
array at the corner that is using the position. Normal Local Index specifies which of the new 
normals should be used. The face may be a new face added during this resolution update or 
may be a face that already existed in the mesh. 

9.6.2 Point Set (blocktypes: 0xFFFFFF36; 0xFFFFFF3E) 

The Point Set generator contains the data needed to represent a set of points. 

The Point Set produces the following outputs: Renderable Group, Renderable Group Bounds, 
Transform Set. 

The Point Set’s outputs have no dependencies. 



 

 

- 85 - 

 

9.6.2.1 Point Set Declaration (blocktype: 0xFFFFFF36) 

The Point Set Declaration contains the declaration information for a point set generator. The 
declaration information is sufficient to allocate space for the point set data and create the 
point set generator object. The point set data is contained in following continuation blocks. 

 

9.6.2.1.1 String: Point Set Name 

Point Set Name is the name of the point set generator. This name is also the name of the 
model resource modifier chain that contains the point set generator. 

9.6.2.1.2 U32: Chain Index 

Chain Index is the position of the point set generator in the model resource modifier 
chain.The value of Chain Index shall be zero for this blocktype. 

9.6.2.1.3 Point Set Description 

Point Set Description describes the size of the point set. Point Set Description can be 
used to allocate space for the point set. 

Point Set Name 

Point Set Description 

Resource Description 

Chain Index 

Skeleton Description 



 

- 86 - 

 

 

9.6.2.1.3.1 U32: Point Set Reserved 

Point Set Reserved is a reserved field and shall have the value 0. 

9.6.2.1.3.2 U32: Point Count 

Point Count is the number of points in the point set. 

9.6.2.1.3.3 U32: Position Count 

Position Count is the number of positions in the position array. 

9.6.2.1.3.4 U32: Normal Count 

Normal Count is the number of normals in the normal array. 

9.6.2.1.3.5 U32: Diffuse Color Count 

Diffuse Color Count is the number of colors in the diffuse color array. 

9.6.2.1.3.6 U32: Specular Color Count 

Specular Color Count is the number of colors in the specular color array. 

Point Count 

Position Count 

Normal Count 

Diffuse Color Count 

Specular Color Count 

Texture Coord Count 

Shading Count 

Shading Description 

Point Set Reserved 

Shading Count 



 

 

- 87 - 

 

9.6.2.1.3.7 U32: Texture Coord Count 

Texture Coord Count is the number of texture coordinates in the texture coordinate array. 

9.6.2.1.3.8 U32: Shading List Count 

Shading List Count Count is the number of materials used in the point set. 

9.6.2.1.3.9 Shading Description 

Shading Description indicates which per vertex attributes, in addition to position and normal, 
are used by each shader list. Details are covered in 9.6.1.1.3.9 Shading Description. 

9.6.2.1.4 Resource Description 

 

9.6.2.1.4.1 Quality Factors 

The quality factors are defined in 9.6.1.1.5.1 Quality Factors. 

9.6.2.1.4.2 Inverse Quantization 

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization. 

9.6.2.1.4.3 Resource Parameters 

Resource Parameters control the operation of the point set generator. The parameters defined 
in this section control the creation of the renderable point set. These parameters are reserved 
for future definition. 

 

9.6.2.1.4.3.1 U32: Reserved Point Set Parameter 1 

Reserved Point Set Parameter 1 shall have the value 0. 

9.6.2.1.4.3.2 U32: Reserved Point Set Parameter 2 

Reserved Point Set Parameter 2 shall have the value 0. 

Reserved Point Set Parameter 1 

Reserved Point Set Parameter 3 

Reserved Point Set Parameter 2 

Quality Factors 

Inverse Quantization 

Resource Parameters 



 

- 88 - 

 

9.6.2.1.4.3.3 U32: Reserved Point Set Parameter 3 

Reserved Point Set Parameter 3 shall have the value 0. 

9.6.2.1.5 Skeleton Description 

Skeleton Description provides bone structure information. Definition of Skeleton 
Description is in 9.6.1.1.6 Skeleton Description. 

9.6.2.2 Point Set Continuation (blocktype: 0xFFFFFF3E) 

The Point Set Continuation contains point data for a point set generator. 

The Point Set Continuation block is a continuation type block. 

 

 

9.6.2.2.1 String: Point Set Name 

Point Set Name is the name of the point set generator. This name is also the name of the 
model resource modifier chain that contains the point set generator. 

9.6.2.2.2 U32: Chain Index 

Chain Index is the position of the point set generator in the model resource modifier chain. 
The value of Chain Index shall be zero for this blocktype. 

9.6.2.2.3 Point Resolution Range 

Point Resolution Range specifies the range of point description data provided in this 
continuation block. 

This continuation block contains point description data for positions from (Start 
Resolution) to (End Resolution – 1). The total number of positions added by this block is 
Point Resolution Count = End Resolution – Start Resolution. 

 

Point Set Name 

Point Description  

Point Resolution Range 

Chain Index 

Point Resolution Count 

Start Resolution 

End Resolution 



 

 

- 89 - 

 

9.6.2.2.3.1 U32: Start Resolution 

Start Resolution is the index of the first position added by this block. 

9.6.2.2.3.2 U32: End Resolution 

End Resolution is one more than the index of the last position added by this block. 

9.6.2.2.4 Point Description 

 

9.6.2.2.4.1 U32 [rCurrentPositionCount]: Split Position Index 

Each Point Description adds one new position to the position array. Split Position Index is the 
index of the position of the points used as a prediction reference by this Point Description. Split 
Position Index will be less than the current position count. 

When the CurrentPositionCount has the value zero, the compression context used shall be “r1” 
instead of “r0”. 

9.6.2.2.4.2 New Position Info 

The new position is predicted as the split position. New Position Info is defined above in 
9.6.1.3.4.10 New Position Info. 

9.6.2.2.4.3 U32 [cNormlCnt]: New Normal Count 

New Normal Count is the number of normals added to the normal array for use by points at this 
position. 

9.6.2.2.4.4 New Normal Info 

The normals are predicted as the spherical-linear average of the normals used by points at the 
split position. 

New Point Info 
New Point Count 

Split Position Index 

New Point Count 

New Position Info 

New Normal Info 

New Normal Count 

New Normal Count 



 

- 90 - 

 

 

9.6.2.2.4.4.1 U8 [cDiffNormalSign]: Normal Difference Signs 

Normal Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Normal Difference X 

0x02 – Sign bit for Normal Difference Y 

0x04 – Sign bit for Normal Difference Z 

9.6.2.2.4.4.2 U32 [cDiffNormalX]: Normal Difference X 

Reconstructed Normal X coordinate is calculated as 

Reconstructed Normal X = InverseQuant(predicted normal X, 

(Normal Difference Signs & 0x01), 

Normal Difference X, 

Normal Inverse Quant). 

9.6.2.2.4.4.3 U32 [cDiffNormalY]: Normal Difference Y 

Reconstructed Normal Y coordinate is calculated as 

Reconstructed Normal Y = InverseQuant(predicted normal Y, 

((Normal Difference Signs & 0x02)>>1), 

Normal Difference Y, 

Normal Inverse Quant). 

9.6.2.2.4.4.4 U32 [cDiffNormalZ]: Normal Difference Z 

Reconstructed Normal Z coordinate is calculated as 

Reconstructed Normal Z = InverseQuant(predicted normal Z, 

((Normal Difference Signs & 0x04)>>2), 

Normal Difference Z, 

Normal Inverse Quant). 

9.6.2.2.4.5 U32 [cPointCnt]: New Point Count 

New Point Count is the number of new points added to the point set by this Point Description. 

 

Normal Difference Signs 

Normal Difference X 

Normal Difference Y 

Normal Difference Z 



 

 

- 91 - 

 

9.6.2.2.4.6 New Point Info 

New Point Info describes a new point to be added to the point set. The position index of the 
point is the current position count. 

 

9.6.2.2.4.6.1 U32 [cShading]: Shading ID 

Shading ID is the index of the shading description used for this point. The Shading 
Description array is defined in the Point Set Declaration block. 

9.6.2.2.4.6.2 U32 [cNormlIdx]: Normal Local Index 

The new point shall use a normal the New Normal Info array for this point. Normal Local 
Index specifies which of the new normals should be used. 

9.6.2.2.4.6.3 New Point Diffuse Color Coords 

New Point Diffuse Color Coords is only present if the shading list identified by Shading ID 
uses diffuse color coordinates. One of the Shading Attributes flags indicates the presence of 
diffuse color coordinates. 

 

9.6.2.2.4.6.3.1 U8 [cDiffDup]: Diffuse Duplicate Flag 

Diffuse Duplicate Flag is a set of flags that indicates if a new color is added to the color 
pool or if the most recently added color is used again. If the flag is set (one), then the 
most recently added color is used again. If the flag is not set (zero), then a new color is 
added to the diffuse color pool. All other values are reserved. 

0x02 – New point uses duplicate color 

Shading ID 

New Point Diffuse Color Coords 

New Point Specular Color Coords 

New Point Texture Coords 

Normal Local Index 

Diffuse Duplicate Flag 

New Point Diffuse Color 



 

- 92 - 

 

9.6.2.2.4.6.3.2 New Point Diffuse Color 

New Point Diffuse Color is present only if Diffuse Duplicate Flag indicates the new point 
does not use a duplicate color. 

The New Point Diffuse Color is predicted as the average of the diffuse colors used by all 
points that use the Split Position. 

 

9.6.2.2.4.6.3.2.1 U8 [cDiffuseColorSign]: Diffuse Color Difference Signs 

Diffuse Color Difference Signs is a collection of sign bits for the prediction 
differences. 

0x01 – Sign bit for Diffuse Color Difference Red 

0x02 – Sign bit for Diffuse Color Difference Green 

0x04 – Sign bit for Diffuse Color Difference Blue 

0x08 – Sign bit for Diffuse Color Difference Alpha 

9.6.2.2.4.6.3.2.2 U32[cColorDiffR]: Diffuse Color Difference Red 

Reconstructed Color red component is calculated as 

Reconstructed Red = InverseQuant( predicted red, 

(Diffuse Color Difference Signs & 0x01), 

Diffuse Color Difference Red, 

Diffuse Color Inverse Quant). 

9.6.2.2.4.6.3.2.3 U32 [cColorDiffG]: Diffuse Color Difference Green 

Reconstructed Color green component is calculated as 

Reconstructed Green = InverseQuant(predicted green, 

((Diffuse Color Difference Signs & 0x02) >> 1), 

Diffuse Color Difference Green, 

Diffuse Color Inverse Quant). 

Diffuse Color Difference Signs 

Diffuse Color Difference Blue 

Diffuse Color Difference Red 

Diffuse Color Difference Green 

Diffuse Color Difference Alpha 



 

 

- 93 - 

 

9.6.2.2.4.6.3.2.4 U32 [cColorDiffB]: Diffuse Color Difference Blue 

Reconstructed Color blue component is calculated as 

Reconstructed Blue = InverseQuant(predicted blue, 

((Diffuse Color Difference Signs & 0x04) >> 2), 

Diffuse Color Difference Blue, 

Diffuse Color Inverse Quant). 

9.6.2.2.4.6.3.2.5 U32 [cColorDiffA]: Diffuse Color Difference Alpha 

Reconstructed Color alpha component is calculated as 

Reconstructed Alpha = InverseQuant(predicted alpha, 

((Diffuse Color Difference Signs & 0x08) >> 3), 

Diffuse Color Difference Alpha, 

Diffuse Color Inverse Quant). 

9.6.2.2.4.6.4 New Point Specular Color Coords 

New Point Specular Color Coords is only present if the shading list identified by Shading ID 
uses specular color coordinates. One of the Shading Attributes flags indicates the presence 
of specular color coordinates. 

 

9.6.2.2.4.6.4.1 U8 [cSpecDup]: Specular Duplicate Flag 

Specular Duplicate Flag is a set of flags that indicates if a new color is added to the color 
pool or if the most recently added color is used again. If the flag is set (one), then the 
most recently added color is used again. If the flag is not set (zero), then a new color is 
added to the specular color pool. All other values are reserved. 

0x02 – New point uses duplicate color 

9.6.2.2.4.6.4.2 New Point Specular Color 

New Point Specular Color is present only if Specular Duplicate Flag indicates the new 
point does not use a duplicate color. 

The New Point Specular Color is predicted as the average of the specular colors used at 
all points that use the Split Position. 

Specular Duplicate Flag 

New Point Specular Color 



 

- 94 - 

 

 

9.6.2.2.4.6.4.2.1 U8 [cSpecularColorSign]: Specular Color Difference Signs 

Specular Color Difference Signs is a collection of sign bits for the prediction 
differences. 

0x01 – Sign bit for Specular Color Difference Red 

0x02 – Sign bit for Specular Color Difference Green 

0x04 – Sign bit for Specular Color Difference Blue 

0x08 – Sign bit for Specular Color Difference Alpha 

9.6.2.2.4.6.4.2.2 U32[cColorDiffR]: Specular Color Difference Red 

Reconstructed Color red component is calculated as 

Reconstructed Red = InverseQuant( predicted red, 

(Specular Color Difference Signs & 0x01), 

Specular Color Difference Red, 

Specular Color Inverse Quant). 

9.6.2.2.4.6.4.2.3 U32 [cColorDiffG]: Specular Color Difference Green 

Reconstructed Color green component is calculated as 

Reconstructed Green = InverseQuant(predicted green, 

((Specular Color Difference Signs & 0x02) >> 1), 

Specular Color Difference Green, 

Specular Color Inverse Quant). 

9.6.2.2.4.6.4.2.4 U32 [cColorDiffB]: Specular Color Difference Blue 

Reconstructed Color blue component is calculated as 

Reconstructed Blue = InverseQuant(predicted blue, 

((Specular Color Difference Signs & 0x04) >> 2), 

Specular Color Difference Blue, 

Specular Color Difference Signs 

Specular Color Difference Blue 

Specular Color Difference Red 

Specular Color Difference Green 

Specular Color Difference Alpha 



 

 

- 95 - 

 

Specular Color Inverse Quant). 

9.6.2.2.4.6.4.2.5 U32 [cColorDiffA]: Specular Color Difference Alpha 

Reconstructed Color alpha component is calculated as 

Reconstructed Alpha = InverseQuant(predicted alpha, 

((Specular Color Difference Signs & 0x08) >> 3), 

Specular Color Difference Alpha, 

Specular Color Inverse Quant) 

9.6.2.2.4.6.5 New Point Texture Coords 

 

9.6.2.2.4.6.5.1 U8 [cTexCDup]: Tex Coord Duplicate Flag 

Tex Coord Duplicate Flag is a set of flags that indicates if a new texture coordinate is 
added to the texture coordinate pool or if the most recently added texture coordinate is 
used again. If the flag is set (one), then the most recently added texture coordinate is 
used again. If the flag is not set (zero), then a new texture coordinate is added to the 
texture coordinate pool. All other values are reserved. 

0x02 – New point uses duplicate texture coordinate 

9.6.2.2.4.6.5.2 New Tex Coord 

The New Tex Coord is predicted as the average of the texture coordinates at the same 
layer used by all points using the split position. 

 

Tex Coord Difference Signs 

Tex Coord Difference S 

Tex Coord Difference U 

Tex Coord Difference V 

Tex Coord Difference T 

Tex Coord Duplicate Flag 

New Tex Coord 

Texture Layer Count 



 

- 96 - 

 

9.6.2.2.4.6.5.2.1 U8 [cTexCoordSign]: Tex Coord Difference Signs 

Tex Coord Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Texture Coord Difference U 

0x02 – Sign bit for Texture Coord Difference V 

0x04 – Sign bit for Texture Coord Difference S 

0x08 – Sign bit for Texture Coord Difference T 

9.6.2.2.4.6.5.2.2 U32 [cTexCDiffU]: Texture Coord Difference U 

The reconstructed texture coordinate U is calculated as 

Reconstructed TexCoord U = InverseQuant( predicted Tex Coord U, 

      (Tex Coord Signs & 0x01), 

Texture Coord Difference U, 

Texture Coord Inverse Quant). 

9.6.2.2.4.6.5.2.3 U32 [cTexCDiffV]: Texture Coord Difference V 

The reconstructed texture coordinate V is calculated as 

Reconstructed TexCoord V = InverseQuant( predicted Tex Coord V, 

((Tex Coord Signs & 0x02) >> 1)), 

Texture Coord Difference V, 

Texture Coord Inverse Quant). 

9.6.2.2.4.6.5.2.4 U32 [cTexCDiffS]: Texture Coord Difference S 

The reconstructed texture coordinate S is calculated as 

Reconstructed TexCoord S = InverseQuant( predicted Tex Coord S, 

((Tex Coord Signs & 0x04) >> 2), 

Texture Coord Difference S, 

Texture Coord Inverse Quant). 

9.6.2.2.4.6.5.2.5 U32 [cTexCDiffT]: Texture Coord Difference T 

The reconstructed texture coordinate T is calculated as 

Reconstructed TexCoord T = InverseQuant( predicted Tex Coord, 

((Tex Coord Signs & 0x08) >> 3), 

Texture Coord Difference T, 

Texture Coord Inverse Quant). 

9.6.3 Line Set (blocktypes: 0xFFFFFF37; 0xFFFFFF3F) 

The Line Set generator contains the data needed to represent a set of lines. 

The Line Set produces the following outputs: Renderable Group, Renderable Group Bounds, 
Transform Set. 

The Line Set’s outputs have no dependencies. 

9.6.3.1 Line Set Declaration (blocktype: 0xFFFFFF37) 

The Line Set Declaration contains the declaration information for a line set generator. The 
declaration information is sufficient to allocate space for the line set data and create the line 
set generator object. The line set data is contained in following continuation blocks. 



 

 

- 97 - 

 

 

9.6.3.1.1 String: Line Set Name 

Line Set Name is the name of the line set generator. This name is also the name of the 
model resource modifier chain that contains the line set generator. 

9.6.3.1.2 U32: Chain Index 

Chain Index is the position of the line set generator in the model resource modifier chain. 
The value of Chain Index shall be zero for this blocktype. 

9.6.3.1.3 Line Set Description 

Line Set Description describes the size of the line set. Line Set Description can be used to 
allocate space for the line set. 

Line Set Name 

Line Set Description 

Resource Description 

Chain Index 

Skeleton Description 



 

- 98 - 

 

 

9.6.3.1.3.1 U32: Line Set Reserved 

Line Set Reserved is a reserved field and shall have the value 0. 

9.6.3.1.3.2 U32: Line Count 

Line Count is the number of line segments in the line set. 

9.6.3.1.3.3 U32: Position Count 

Position Count is the number of positions in the position array. 

9.6.3.1.3.4 U32: Normal Count 

Normal Count is the number of normals in the normal array. 

9.6.3.1.3.5 U32: Diffuse Color Count 

Diffuse Color Count is the number of colors in the diffuse color array. 

Line Count 

Position Count 

Normal Count 

Diffuse Color Count 

Specular Color Count 

Texture Coord Count 

Shading Count 

Shading Description 

Line Set Reserved 

Shading Count 



 

 

- 99 - 

 

9.6.3.1.3.6 U32: Specular Color Count 

Specular Color Count is the number of colors in the specular color array. 

9.6.3.1.3.7 U32: Texture Coord Count 

Texture Coord Count is the number of texture coordinates in the texture coordinate array. 

9.6.3.1.3.8 U32: Shading Count 

Shading Count is the number of shading descriptions used in the line set. 

9.6.3.1.3.9 Shading Description 

Shading Description indicates which per vertex attributes, in addition to position and normal, 
are used by each shading list. Details are provided above in 9.6.1.1.3.9 Shading Description. 

9.6.3.1.4 Resource Description 

 

9.6.3.1.4.1 Quality Factors 

The quality factors are defined in 9.6.1.1.5.1 Quality Factors. 

9.6.3.1.4.2 Inverse Quantization 

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization. 

9.6.3.1.4.3 Resource Parameters 

Resource Parameters control the operation of the line set generator. The parameters defined in 
this section control the creation of the renderable line group. These parameters are reserved 
for future definition. 

 

9.6.3.1.4.3.1 U32: Reserved Line Set Parameter 1 

Reserved Line Set Parameter 1 shall have the value 0. 

Reserved Line Set Parameter 1 

Reserved Line Set Parameter 3 

Reserved Line Set Parameter 2 

Quality Factors 

Inverse Quantization 

Resource Parameters 



 

- 100 - 

 

9.6.3.1.4.3.2 U32: Reserved Line Set Parameter 2 

Reserved Line Set Parameter 2 shall have the value 0. 

9.6.3.1.4.3.3 U32: Reserved Line Set Parameter 3 

Reserved Line Set Parameter 3 shall have the value 0. 

9.6.3.1.5 Skeleton Description 

Skeleton Description provides bone structure information. Details are provided in 9.6.1.1.6 
Skeleton Description. 

9.6.3.2 Line Set Continuation (blocktype: 0xFFFFFF3F) 

The Line Set Continuation contains data for a line set generator. 

The Line Set Continuation block is a continuation type block. 

 

 

9.6.3.2.1 String: Line Set Name 

Line Set Name is the name of the line set generator. This name is also the name of the 
model resource modifier chain that contains the line set generator. 

9.6.3.2.2 U32: Chain Index 

Chain Index is the position of the line set generator in the model resource modifier chain. 
The value of Chain Index shall be zero for this blocktype. 

9.6.3.2.3 Line Resolution Range 

Line Resolution Range specifies the range of line description data provided in this 
continuation block. 

This continuation block contains line description data for positions from (Start Resolution) 
to (End Resolution – 1). The total number of positions added by this block is Point 
Resolution Count = End Resolution – Start Resolution. 

Line Set Name 

Line Description  

Line Resolution Range 

Chain Index 

Line Resolution Count 



 

 

- 101 - 

 

 

9.6.3.2.3.1 U32: Start Resolution 

Start Resolution is the index of the first position added by this block. 

9.6.3.2.3.2 U32: End Resolution 

End Resolution is one more than the index of the last position added by this block. 

9.6.3.2.4 Line Description 

 

9.6.3.2.4.1 U32 [rCurrentPositionCount]: Split Position Index 

Each Line Description adds one new position to the position array. Split Position Index is the 
index of the position used as a prediction reference by this Line Description. Split Position 
Index will be less than the current position count. 

When the CurrentPositionCount has the value zero, the compression context used shall be “r1” 
instead of “r0”. 

9.6.3.2.4.2 New Position Info 

The new position is predicted as the split position. New Position Info is defined above in 
9.6.1.3.4.10 New Position Info. 

9.6.3.2.4.3 U32 [cNormlCnt]: New Normal Count 

Start Resolution 

End Resolution 

New Line Info 
New Line Count 

Split Position Index 

New Line Count 

New Position Info 

New Normal Info 

New Normal Count 

New Normal Count 



 

- 102 - 

 

New Normal Count is the number of normals added to the normal array for use by lines using 
the new position. 

9.6.3.2.4.4 New Normal Info 

The normals are predicted as the average of the normals used at the split position. New 
Normal Info is defined in 9.6.2.2.4.4 New Normal Info. 

9.6.3.2.4.5 U32 [cLineCnt]: New Line Count 

New Line Count is the number of new lines added to the line set by this Line Description. 

9.6.3.2.4.6 New Line Info 

New Line Info describes a new line segment to be added to the line set. The normal, color and 
texture coordinate information is given first for the first end of the line segment and then for the 
second end of the line segment. 

 

9.6.3.2.4.6.1 U32 [cShading]:Shading ID 

Shading ID is the index of the shading description used for this line segment. The Shading 
Description array is defined in the Line Set Declaration block. 

9.6.3.2.4.6.2 U32 [rCurrentPositionCount]: First Position Index 

First Position Index is the index of the first end of the line segment. The index of the second 
end of the line segment is the current position count. 

9.6.3.2.4.6.3 U32 [cNormlIdx]: Normal Local Index 

The new line segment shall use a normal in the New Normal Info array for this line. Normal 
Local Index specifies which of the new normals should be used. 

First Position Index 

New Line Diffuse Color Coords 

New Line Specular Color Coords 

New Line Texture Coords 

Normal Local Index 

Shading ID 

2 



 

 

- 103 - 

 

9.6.3.2.4.6.4 New Line Diffuse Color Coords 

New Line Diffuse Color Coords is only present if the shading list identified by Shading List ID 
uses diffuse color coordinates. One of the Shading Attributes flags indicates the presence of 
diffuse color coordinates. 

 

9.6.3.2.4.6.4.1 U8 [cDiffDup]: Diffuse Duplicate Flag 

Diffuse Duplicate Flag is a set of flags that indicates if a new color is added to the color 
pool or if the most recently added color is used again. If the flag is set (one), then the 
most recently added color is used again. If the flag is not set (zero), then a new color is 
added to the diffuse color pool. All other values are reserved. 

0x02 – New line segment end uses duplicate color 

9.6.3.2.4.6.4.2 New Line Diffuse Color 

New Line Diffuse Color is present only if Diffuse Duplicate Flag indicates the new line 
does not use a duplicate color. 

The New Line Diffuse Color is predicted as the average of the diffuse colors used by all 
line segment ends that use the Split Position. 

The formatting for New Line Diffuse Color is the same as for 9.6.2.2.4.6.3.2 New Point 
Diffuse Color. 

9.6.3.2.4.6.5 New Line Specular Color Coords 

New Line Specular Color Coords is only present if the shading list identified by Shading ID 
uses specular color coordinates. One of the Shading Attributes flags indicates the presence 
of specular color coordinates. 

 

9.6.3.2.4.6.5.1 U8 [cSpecDup]: Specular Duplicate Flag 

Specular Duplicate Flag is a set of flags that indicates if a new color is added to the color 
pool or if the most recently added color is used again. If the flag is set (one), then the 
most recently added color is used again. If the flag is not set (zero), then a new color is 
added to the specular color pool. All other values are reserved. 

0x02 – New line segment end uses duplicate color 

Specular Duplicate Flag 

New Line Specular Color 

Diffuse Duplicate Flag 

New Line Diffuse Color 



 

- 104 - 

 

9.6.3.2.4.6.5.2 New Line Specular Color 

New Line Specular Color is present only if Specular Duplicate Flag indicates the new line 
segment end does not use a duplicate color. 

The New Line Specular Color is predicted as the average of the specular colors used at 
all line segment ends that use the Split Position. 

The formatting for New Line Specular Color is the same as for 9.6.2.2.4.6.4.2 New Point 
Specular Color. 

9.6.3.2.4.6.6 New Line Texture Coords 

 

9.6.3.2.4.6.6.1 U8 [cTexCDup]: Tex Coord Duplicate Flag 

Tex Coord Duplicate Flag is a set of flags that indicates if a new texture coordinate is 
added to the texture coordinate pool or if the most recently added texture coordinate is 
used again. If the flag is set (one), then the most recently added texture coordinate is 
used again. If the flag is not set (zero), then a new texture coordinate is added to the 
texture coordinate pool. All other values are reserved. 

0x02 – New line segment end uses duplicate texture coordinate 

9.6.3.2.4.6.6.2 New Tex Coord 

The New Tex Coord is predicted as the average of the texture coordinates at the same 
layer used by all line segment ends using the split position. The formatting for New Tex 
Coord is the same as for 9.6.2.2.4.6.5.2 New Tex Coord. 

9.7 Modifier blocks 

Modifier blocks contain the information necessary to create certain modifiers that can be added to 
a modifier chain. Note that the declaration blocks for modifiers must be contained within a 
modifier chain block. 

9.7.1 2D Glyph Modif ier (blocktype: 0xFFFFFF41)  

The 2D Glyph Modifier contains information used to create a 2D shape. The shape is defined 
by a number of control points and parameters that define how to connect the points. The shape 
consists of a sequence of individual glyphs called a glyph string. Each glyph in the glyph string 
is defined by a sequence of drawing commands. 

The 2D Glyph Modifier produces the following outputs: Renderable Group, and Renderable 
Group Bounds. 

The 2D Glyph Modifier’s outputs depend on: Transfrom Set and View Transform. 

Tex Coord Duplicate Flag 

New Tex Coord 

Texture Layer Count 



 

 

- 105 - 

 

 

9.7.1.1 String: 2D Glyph Modif ier Name 

2D Glyph Modifier Name is the string used to identify this 2D Glyph Modifier. 

9.7.1.2 U32: Chain Index 

Chain Index is the position of this modifier in the modifier chain. 

9.7.1.3 U32: Glyph Attributes 

Glyph Attributes is a bit field containing information about the Glyph. The bit field is 
combined using a bitwise OR. Other values are reserved. Valid values are: 

0x00000001: Billboard: the glyph should be oriented to the view. 

0x00000002: Single Shader: a single shader list is used for all glyphs in the glyph string. 

If Single Shader bit is not set, then each glyph in the glyph string uses a different shader list 
from the associated shading group. 

9.7.1.4 U32: Glyph Command Count 

Glyph Command Count is the number of commands used to create this glyph. 

9.7.1.5 Glyph Command 

 

Command Type 

Glyph Move To Glyph Line To Glyph Curve To Glyph End Glyph 

2D Glyph Modifier Name 

Chain Index 

Glyph Command Count 

Glyph Transform Element 

Glyph Attributes 

Glyph Command Count 

16 

Glyph Command 



 

- 106 - 

 

9.7.1.5.1 U32: Command Type 

Valid Glyph Commands are: 

0: STARTGLYPHSTRING Start a sequence of glyph symbols. The glyphs symbols 
included in this sequence are defined in the subsequent 
commands until the next ENDGLYPHSTRING command. 

1: STARTGLYPH Start a glyph. The glyph will be defined by the subsequent 
commands until the next ENDGLYPH command. 

2: STARTPATH  Start a new path to be drawn. The path is defined by the 
subsequent commands until the next ENDPATH command. 

3: MOVETO Move the current drawing position. 

4: LINETO Draw a line from the current drawing position to the new 
position. 

5: CURVETO  Draw a curve from the current drawing position to the new 
position. The curve shape is determined by two control 
points. 

6: ENDPATH  End the current path. 

7: ENDGLYPH End the current glyph definition. 

8: ENDGLYPHSTRING End a sequence of glyph symbols. 

ENDGLYPH, MOVETO, LINETO, and CURVETO require addition information described 
below. The other commands do not require any additional parameters. 

9.7.1.5.2 Glyph End Glyph 

Glyph End Glyph completes the current glyph and moves the starting point for the next 
glyph by the offset vector. 

 

9.7.1.5.2.1 F32: End Glyph Offset X 

End Glyph Offset X is the horizontal offset between the starting point for this glyph and the 
starting point for next glyph. 

9.7.1.5.2.2 F32: End Glyph Offset Y 

End Glyph Offset Y is the vertical offset between the starting point for this glyph and the starting 
point for the next glyph. 

End Glyph Offset X 

End Glyph Offset Y 



 

 

- 107 - 

 

9.7.1.5.3 Glyph Move To 

The Glyph Move To command moves the active point without drawing. 

 

9.7.1.5.3.1 F32: Move To X 

Move To X is the new horizontal position of the active point. 

9.7.1.5.3.2 F32: Move To Y 

Move To Y is the new vertical position of the active point. 

9.7.1.5.4 Glyph Line To 

 

The Glyph Line To command draws a line to the specified point. 

9.7.1.5.4.1 F32: Line To X 

Line To X is the horizontal position of the end point of the line. 

9.7.1.5.4.2 F32: Line To Y 

Line To Y is the vertical position of the end point of the line. 

Move To X 

Move To Y 

Line To X 

Line To Y 



 

- 108 - 

 

9.7.1.5.5 Glyph Curve To 

 

The Glyph Curve To command draws a curve to the specified point. The control points are 
used to determine the curve. 

9.7.1.5.5.1 F32: Control 1 X 

Control 1 X is the horizontal position of the first control point. 

9.7.1.5.5.2 F32: Control 1 Y 

Control 1 Y is the vertical position of the first control point. 

9.7.1.5.5.3 F32: Control 2 X 

Control 2 X is the horizontal position of the second control point. 

9.7.1.5.5.4 F32: Control 2 Y 

Control 2 Y is the vertical position of the second control point. 

9.7.1.5.5.5 F32: End Point X 

End Point X is the horizontal position of the end point of the curve. 

9.7.1.5.5.6 F32: End Point Y 

End Point Y is the vertical position of the end point of the curve. 

Control 1 X 

Control 1 Y 

Control 2 X 

Control 2 Y 

End Point X 

End Point Y 



 

 

- 109 - 

 

9.7.1.6 F32: Glyph Transform Element 

The Glyph Transform Elements make up the Transform that is applied to the glyph modifier 
after drawing to place it in the 3D world. The matrix is written in the alphabetic order 
described below:  



















PLHD

OKGC

NJFB

MIEA

 

9.7.2 Subdivision Modif ier (blocktype: 0xFFFFFF42) 

The Subdivision Modifier increases the resolution of a shape by dividing polygons into smaller 
polygons. The Subdivision Modifier block contains parameters that control the performance 
and appearance of the output of the subdivision algorithm. 

The Subdivision Modifier produces the following outputs: Renderable Group Bounds. 

The Subdivision Modifier’s outputs depend on: Renderable Group, Transform Set, View 
Transform, and View Frustum. 

 

9.7.2.1 String: Modif ier Name 

Modifier Name is the name of this Subdivision Modifier. Modifier Name is also the name of 
the object being modified and the name of the modifier chain that contains this modifier. 

9.7.2.2 U32: Chain Index 

Chain Index indicates the position of this modifier in the modifier chain. 

9.7.2.3 U32: Subdivision Attributes 

Subdivision Attributes is a collection of flags. The flags are combined using the binary OR 
operator. All other values are reserved. 

Chain Index 

Subdivision Attributes 

Subdivision Error 

Subdivision Tension 

Subdivision Depth 

Modifier Name 



 

- 110 - 

 

0x00000001 – Enabled: The subdivision modifier is enabled. 

0x00000002 – Adaptive: The subdivision modifier should use adaptive subdivision. 

Uniform subdivision is used unless the adaptive subdivision flag is set. Uniform division 
divides all of the polygons the same number of times. Adaptive subdivision divides the 
polygons based on the model and if the polygons are visible. 

9.7.2.4 U32: Subdivision Depth 

Subdivision Depth is the maximum number of levels of subdivision. 

9.7.2.5 F32: Subdivision Tension 

Subdivision Tension is the tension value used for adaptive subdivision. 

9.7.2.6 F32: Subdivision Error 

Subdivision Error is the value of the screen space error metric. This value is used for 
adaptive subdivision. 

9.7.3 Animation Modif ier (blocktype: 0xFFFFFF43)  

The Animation Modifier block describes parameters for animating a node or a renderable 
group. These parameters indicate which motion resources should be used and how they should 
be applied. The animation modifier modifies the transforms for nodes and the transformations 
of bones relative to their parent bones. The hierarchy of bones is called a skeleton and is 
defined in the Skeleton Description of the geometry generator. The animation modifier uses the 
skeleton and bone weights defined by a bone weight modifier to change the positions and 
normals in the renderable group. 

The animation modifier block is limited to modifying transformations of nodes and bones and 
modifying positions and normals based on the changes in the transformations. There are many 
other types of information that the animation modifier does not animate. 

The Animation Modifier produces the following outputs: Transform Set, Renderable Group, and 
Skeleton. 

The Animation Modifier’s outputs depend on: Transform Set, Simulation Time, Skeleton, Bone 
Weights, and Renderable Group. 

 



 

 

- 111 - 

 

 

9.7.3.1 String: Animation Modif ier Name 

Animation Modifier Name is the string that is used to identify this animation modifier. This is 
also the name of the modifier chain that contains this modifier. 

9.7.3.2 U32: Chain Index 

Chain Index is the position of this modifier in a modifier chain. 

9.7.3.3 U32:Animation Modif ier Attributes 

Animation Modifier Attributes is a bit field that holds state information for this animation 
modifier. The values are combined using a bitwise OR operation. All other values are 
reserved. 

0x00000001: Animation should start when possible. 

0x00000002: The root bone is locked. The node’s root bone’s transform does not change as 
a result of the animation. 

0x00000004: Playing a single track. 

0x00000008: The bones’ transtorms should transition smoothly from one motion to the next 
during the animation. 

9.7.3.4 F32: Time Scale 

Time Scale is a scaling value for the times of the motions. 

9.7.3.5 U32: Motion Count 

Motion Count is the number of motion resources referenced by this modifier. If the Motion 
Count is zero, the Animation Modifier will use the default motion. 

Chain Index 

Animation Modifier Attributes 

Time Scale 

Motion Count 

Blend Time 

Motion Information Motion Count 

Animation Modifier Name 



 

- 112 - 

 

9.7.3.6 Motion Information 

 

9.7.3.6.1 String: Motion Name 

Motion Name is a string that identifies a motion resource. 

9.7.3.6.2 U32: Motion Attributes 

Motion Attributes is a bit field of flags about the animation modifier. The values are 
combined with a bitwise or. Other values are reserved. 

0x00000001: Loop: determines whether this motion repeats. 

0x00000002: Sync: determines if all of the motion resources playing concurrently should 
end at the same time. 

9.7.3.6.3 F32: Time Offset 

Time Offset is the number of milliseconds to offset the start time of the motion. 

9.7.3.6.4 F32: Time Scale 

Time Scale is a scaling factor for the time of this motion resource for this animation 
modifier. 

9.7.3.7 F32: Blend Time 

The Blend Time specifies the amount of time in milliseconds used when blending between 
motions. 

9.7.4 Bone Weight Modif ier (blocktype: 0xFFFFFF44) 

The Bone Weight Modifier block describes a set of bone weights that can be added to a 
modifier chain. The animation modifier uses the bone weights in combination with the skeleton 
to animate the positions in a renderable group (mesh, point set, or line set). The normals are 
also changed by the animation modifier. 

The Bone Weight Modifier produces the following outputs: Bone Weights. 

The Bone Weight Modifier’s outputs have no dependencies. 

Motion Name 

Time Offset 

Motion Attributes 

Time Scale 



 

 

- 113 - 

 

 

9.7.4.1 String: Bone Weight Modif ier Name 

Bone Weight Modifier Name is the name of the modifier chain to which these bone weight 
should be added. 

9.7.4.2 U32: Chain Index 

Chain Index is the position of this modifier in a modifier chain. 

9.7.4.3 U32: Bone Weight Attributes 

The bone weights may be applied to the type of geometry specified by the Bone Weight 
Attributes. All other values are reserved. 

0x00000001 – these bone weights are for a mesh 

0x00000002 – these bone weights are for a line set 

0x00000004 – these bone weights are for a point set 

9.7.4.4 F32: Bone Weight Inverse Quant 

The bone weight inverse quant is the inverse quantization factor for the bone weights below. 

9.7.4.5 U32: Posit ion Count 

Position Count is the number of positions for which bone weights are provided by this 
modifier. 

9.7.4.6 Posit ion Bone Weight List 

Position Bone Weight List indicates which bones have a non-zero influence at this 
position.The reconstructed bone weights at this position should sum to +1.0. The bone 
weights cannot be negative. 

Chain Index 

Position Count 

Position Count 
Position Bone Weight List 

Bone Weight Attributes 

Bone Weight Inverse Quant 

Bone Weight Modifier Name 



 

- 114 - 

 

 

9.7.4.6.1 U32 [cBoneWeightCnt]:  Bone Weight Count 

Bone Weight Count is the number of bones which have influence at this position. 

9.7.4.6.2 U32 [cBoneIdx]:  Bone Index 

Bone Index is the index of the bone in the skeleton that has influence at this position. 
Bone Index is present only if Bone Weight Count is greater than zero. 

9.7.4.6.3 U32 [cQntBoneWeight]:  Quantized Bone Weight 

Quantized Bone Weight is the quantized bone weight value. Quantized Bone Weight is 
present only if Bone Weight Count is greater than one. 

For other than the last bone weight value, the reconstructed bone weight value is 
calculated as: 

(reconstructed bone weight) = (Quantized Bone Weight) * (Bone Weight Inverse Quant) 

The last bone weight value is reconstructed by subtracting the sum of all the other 
reconstructed bone weight values from +1.0. The sum of all the bone weights at this 
position will be +1.0. 

9.7.5 Shading Modif ier (blocktype: 0xFFFFFF45) 

The Shading Modifier block describes the shading group that is used in the drawing of a 
renderable group. The shading modifier replaces the shading group associated with a 
renderable group. 

The Shading Modifier produces the following outputs: Renderable Group. 

The Shading Modifier’s outputs depend on: Renderable Group. 

Bone Weight Count 

Bone Index 

Quantized Bone Weight 
Bone Weight Count - 1 

Bone Weight Count 



 

 

- 115 - 

 

 

9.7.5.1 String: Shading Modif ier Name 

The Shading Modifier Name identifies this shading modifier. Shading Modifier Name is also 
the name of the modifier chain that contains this modifier. 

9.7.5.2 U32: Chain Index 

Chain Index indicates the position of this modifier in the modifier chain. 

9.7.5.3 U32: Shading Attributes 

Shading Attributes is a collection of flags. The flags are combined using the binary OR 
operator. Other attributes are reserved. 

0x00000001 – Mesh: the shading group is applied to the renderable mesh group. 

0x00000002 – Line: the shading group is applied to the renderable line group. 

0x00000004 – Point : the shading group is applied to the renderable point group. 

0x00000008 – Glyph : the shading group is applied to the glyph string. 

9.7.5.4 U32: Shader List Count 

Shader List Count is the number of shader lists in the shading group. Each shader list is 
associated with a renderable element in the associated renderable group. 

If the number of shader lists exceeds the number of renderable elements, the excess shader 
lists have no effect. If the number of shader lists is less than the number of renderable 
elements, the excess renderable elements shall be associated with a shader list containing 
one shader and that one shader shall be the default shader. 

9.7.5.5 U32: Shader Count 

Shader Count is the number of shaders in the shader list. 

Shader List Count 

Shader Name 

Shader Count 

Shader Count 

Shader List Count 

Chain Index 

Shading Attributes 

Shading Modifier Name 



 

- 116 - 

 

9.7.5.6 String: Shader Name 

Each shader in the shader list is identified by Shader Name. Shader Name refers to a shader 
in the shader resource palette. 

9.7.6 CLOD Modif ier (blocktype: 0xFFFFFF46) 

The CLOD Modifier adjusts the level of detail in the renderable meshes in the data packet. The 
CLOD Modifier block contains parameters for how the level of detail should be adjusted. 

The CLOD Modifier produces the following outputs: Renderable Group. 

The CLOD Modifier’s outputs depend on: Renderable Group, Renderable Group Bounds, 
Transform Set, View Transform, View Frustum, View Size. 

 

9.7.6.1 String: CLOD Modif ier Name 

CLOD Modifier Name is the name of the modifier chain to which the CLOD Modifier should 
be added. 

9.7.6.2 U32: Chain Index 

Chain Index is the position of this modifier in a modifier chain. 

9.7.6.3 U32: CLOD Modif ier Attributes 

0x00000000 – Default attributes (automatic LOD control is disabled) 

0x00000001 – automatic level of detail control. 

If the automatic level of detail control bit is set, the level of detail of the model should be 
determined automatically at runtime. The calculation of the level of detail is implementation 
specific, but may be adjusted based on a target rendering frame rate or the size of the model 
on screen. All other values are reserved. 

9.7.6.4 F32: CLOD Automatic Level of Detail  Bias 

The CLOD Modifier Automatic Level of Detail Bias is used when the level of detail of 
geometry is to be determined at runtime. The range of bias is 0.0 to 1.0. When calculating 
the level of detail used, the runtime should set a higher level of detail for larger values of this 
bias. 

9.7.6.5 F32: CLOD Modif ier Level 

The range for CLOD Modifier Level is 0.0 to 1.0. 

Chain Index 

CLOD Modifier Level 

CLOD Modifier Attributes 

CLOD Automatic LOD Bias 

CLOD Modifier Name 



 

 

- 117 - 

 

The CLOD Modifier adjusts the resolution of the renderable meshes. 

The target resolution is determined by multiplying the CLOD Modifier Level by the maximum 
resolution of the author mesh. If the target resolution is less than the minimum resolution, 
then the resolution will be adjusted to the minimum resolution. 

If the automatic LOD control is enabled, then the automatic LOD control overrides the CLOD 
Modifier Level specified in this block. 

9.8 Resource blocks 

Resource blocks contain the declarative information for resources. The resources can then be 
referenced by nodes to create specific instances during rendering. 

9.8.1 Light Resource (blocktype: 0xFFFFFF51) 

The Light Resource contains information regarding the type of light, color, attenuation, and 
intensity. Some of the fields are not used for all light types. Unused fields will not affect the 
appearance of the scene. For example, ambient lights do not use attenuation. 

 

9.8.1.1 String: Light Resource Name 

Light Resource Name is the name used to identify this Light Resource. 

9.8.1.2 U32: Light Attributes 

Light Attributes is a collection of flags. The flags are combined using the binary OR operator. 

Other values are reserved. 

0x00000001 – Light Enabled; the light is used. 

0x00000002 – Specular; the light provides specular highlights. 

0x00000004 – Spot Decay; the spot light has a smooth edge and not a hard edge cutoff. 

Light Attributes 

Light Type 

Light Spot Angle 

Light Resource Name 

Light Intensity 

Light Color 

Light Attenuation 



 

- 118 - 

 

9.8.1.3 U8: Light Type 

Light Type is the type of this Light Resource. 

0x00 – Ambient; Light provides uniform non-directional light to the scene. 

0x01 – Directional; Light provides uniform directional light to the scene. 

0x02 – Point; Light is emitted from a specific point in the scene. 

0x03 – Spot; Like point light, but constrained to specific directions. 

9.8.1.4 Light Color 

Light Color is the color of the Light Resource. 

 

9.8.1.4.1 F32: Light Color Red 

Light Color Red is the red component of the Light Color. The normal range of color 
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

9.8.1.4.2 F32: Light Color Green 

Light Color Green is the green component of the Light Color. The normal range of color 
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

9.8.1.4.3 F32: Light Color Blue 

Light Color Blue is the blue component of the Light Color. The normal range of color 
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

9.8.1.4.4 F32: Light Reserved Parameter 

Light Color Reserved Parameter is a reserved field and shall have the value 1.0. This 
value shall not be used by a loader. 

9.8.1.5 Light Attenuation 

Light Attenuation is a vector of attenuation factors. Lights that are of type Point or Spot will 
light objects based on the distance from the object’s vertices to the light’s position. The 
formula for this attenuation is  

1 / (C + L*D + Q*D*D) 

D: distance from vertex position to light position 

C: attenuation constant factor 

Light Color Red 

Light Color Green 

Light Color Blue 

Light Reserved Parameter 



 

 

- 119 - 

 

L: attenuation linear factor 

Q: attenuation quadratic factor 

 

9.8.1.5.1 F32: Light Attenuation Constant Factor 

Light Attenuation Constant Factor is used to calculate attenuation for spot and point lights. 

9.8.1.5.2 F32: Light Attenuation Linear Factor 

Light Attenuation Linear Factor is used to calculate attenuation for spot and point lights. 

9.8.1.5.3 F32: Light Attenuation Quadratic Factor 

Light Attenuation Quadratic Factor is used to calculate attenuation for spot and point 
lights. 

9.8.1.6 F32: Light Spot Angle 

Light Spot Angle is the angle of the cone that emanates from the light position and defines 
what portions of the scene are affected by this light. The Light Spot Angle is only used if the 
light is of Spot type. 

9.8.1.7 F32: Light Intensity 

Light Intensity is multiplied into the affect that this light has on a scene. It is similar in 
practice to 1 / (Light Attenuation Constant Factor), but works on Directional lights in addition 
to Point and Spot lights (this does not affect lights with type Ambient). Keep in mind that this 
value can have any value (including negative and 0), resulting in the ability to produce some 
strange effects. 

9.8.2 View Resource (blocktype: 0xFFFFFF52) 

The View Resource contains information regarding the rendered view that is not specific to a 
particular view instance. Fields include: fog and frame buffer properties. More fields, such as 
view port, backdrops and overlays are stored at the node level and are specific to each 
instance. 

Light Attenuation Constant Factor 

Light Attenuation Linear Factor 

Light Attenuation Quadratic Factor 



 

- 120 - 

 

 

9.8.2.1 String: View Resource Name 

The View Resource Name is the name used to identify this view resource. 

9.8.2.2 U32: Pass Count 

The Pass Count is the number of passes that are used when rendering this view. Note that 
the rendering system may change the order to correctly render transparent objects. 

9.8.2.3 String: Root Node Name 

The Root Node Name is the name of a node. The view will render this node and all of the 
node’s children. 

9.8.2.4 U32: Render Attributes 

Render Attributes is a bit field that determines properties of the view. The only property 
defined for this edition is Fog Enabled. The properties are combined with a bitwise or 
operation. Other values are reserved. 

0x00000001: Fog Enabled 

Fog Properties 

Pass Count 

View Resource Name 

Render Attributes 

Pass Count 

Root Node Name 



 

 

- 121 - 

 

9.8.2.5 Fog Properties 

 

9.8.2.5.1 U32: Fog Mode 

The fog mode determines the method used for rendering fog. In the following equations, d 
represents the distance from the view. Fog is enabled or disabled by the flag in the render 
attributes field above. 

0x00000000: Linear 

startend

dend
f

−

−
=  

0x00000001: Exponential 

)( densitydef ⋅−
= , 

fogfar
density

)100ln(
=  

0x00000002: Exponential 2 

2)( densitydef ⋅−
= , 

fogfar
density

)100ln(
=  

Fog far is the fog far value specified below (9.8.2.5.7). 

9.8.2.5.2 F32: Fog Color Red 

Fog Color Red is the red component of the fog’s color. 

9.8.2.5.3 F32: Fog Color Green 

Fog Color Green is the green component of the fog’s color. 

Fog Mode 

Fog Color Red 

Fog Color Green 

Fog Color Blue 

Fog Color Alpha 

For Near Value 

Fog Far Value 



 

- 122 - 

 

9.8.2.5.4 F32: Fog Color Blue 

Fog Color Blue is the blue component of the fog’s color. 

9.8.2.5.5 F32: Fog Color Alpha 

Fog Color Alpha is the alpha component of the fog’s color. 

9.8.2.5.6 F32: Fog Near Value 

For linear fog mode, the Fog Near Value is the distance from the view where fog begins. 

9.8.2.5.7 F32: Fog Far Value 

For linear fog mode, the Fog Far Value is the distance from the view where the fog 
reaches its maximum density. The fog far value is also used to calculate the fog density 
scale factor used with exp and exp2 fog modes (details are in 9.8.2.5.1 Fog Mode). 

9.8.3 Lit  Texture Shader (blocktype: 0xFFFFFF53) 

The Lit Texture Shader contains information needed to determine the appearance of a surface 
during rendering. The Lit Texture Shader includes references to Material Resources and 
Texture Resources and how to combine those resources when rendering. 



 

 

- 123 - 

 

 

9.8.3.1 String: Lit  Texture Shader Name 

Lit Texture Shader Name is the string used to identify this shader. 

9.8.3.2 U32: Lit  Texture Shader Attributes 

Lit Texture Shader Attibutes is a bit field that stores information about the shader. The 
attributes are combined by a bitwise OR operation. All other values are reserved. 

0x00000001: Lighting Enabled 

0x00000002: Alpha Test Enabled 

0x00000004: Use Vertex Color 

9.8.3.3 F32: Alpha Test Reference 

Alpha Test Reference is the value used in comparisons when alpha test is enabled. 

Lit Texture Shader Name 

Lit Texture Shader Attributes 

Alpha Test Reference 

Alpha Test Function 

Color Blend Function 

Render Pass Flags 

Alpha Texture Channels 

Texture Information 

Material Name 

Shader Channels 

Active Texture Count 



 

- 124 - 

 

9.8.3.4 U32: Alpha Test Function 

0x00000610: NEVER: The test never passes. No pixels are drawn. 

0x00000611: LESS: The rendered alpha value must be less than the reference value. 

0x00000612: GREATER: The rendered alpha value must be greater than the ref. value. 

0x00000613: EQUAL: The rendered alpha value must be equal to the reference value. 

0x00000614: NOT_EQUAL: The rendered alpha value must not be equal to the ref. value. 

0x00000615: LEQUAL: The rendered alpha value must be less than or equal to the reference 
value. 

0x00000616: GEQUAL: The rendered alpha value must be greater than or equal to the 
reference value. 

0x00000617: ALWAYS: The test always passes. No pixels are rejected. 

9.8.3.5 U32: Color Blend Function 

Color Blend Function is the function used to blend rendered pixels and the existing frame 
buffer. 

0x00000604: FB_ADD: Add the RGB components into the framebuffer 

0x00000605: FB_MULTIPLY: Multiply the RGB components into the framebuffer 

0x00000606: FB_ALPHA_BLEND: Linear blend the RGB components into the framebuffer 
based on the rendered alpha value. 

0x00000607: FB_INV_ALPHA_BLEND: Linear blend the RGB components into framebuffer 
based on the inverse (1.0 - a) of the rendered alpha. 

9.8.3.6 U32: Render Pass Enabled Flags 

The Render Pass Enable Flags determines which passes this shader uses. Each bit (1<<n) 
in the flags determines if the shader is used in pass n. The flags are combined with the 
bitwise OR operation. 

9.8.3.7 U32: Shader Channels 

Shader Channels is a bit field that determines which of the model’s texture coordinate layers 
are used for this shader. The least significant 8 bits are used to store this information. A 
layer is active if the corresponding bit is set. The Active Texture Count is the number of 
active shader channels. The active bits are combined with a bitwise OR operation. The 
remaining 24 bits are reserved. 

Example: A Shader Channel Value of (binary 00001001) would mean the first and fourth 
texture coordinate layers are used. Another shader using the same model could have a 
Shader Channel value of (binary 00000111) meaning the first, second, and third texture 
coordinate layers are used by that shader. 

9.8.3.8 U32: Alpha Texture Channels 

Alpha Texture Channels is a bit field that determines which texture layers should use the 
alpha component if an alpha component exists. The Alpha Texture Channels bits correspond 
to the Shader Channels bits. The Alpha Texture Channel bit shall not be set if the 
corresponding Shader Channel bit is not set. The least significant 8 bits are used to store 
this information. A layer is active if the corresponding bit is set. The active bits are combined 
with a bitwise OR operation. The remaining 24 bits are reserved. 

Example: A shader has a Shader Channel value of (binary 00000011) and an Alpha Texture 
Channels value of (binary 00000010) would mean that the shader should use the alpha 
component for the second texture layer and should ignore the alpha component for the first 
texture layer. Ignoring the alpha component is equivalent to assuming the alpha value is 1.0. 



 

 

- 125 - 

 

9.8.3.9 String: Material Name 

The Material Name is the name of the material associated with this shader that determines 
how the shader appears when lit. 

9.8.3.10 Texture Information 

Texture Information identifies the texture used by a particular shader channel. Texture 
Information also describes how the textures are blended and which texture coordinates to 
use for that shader channel. Texture Information is repeated once for each active shader 
channel. Active Texture Count is the number of active shader channels as described in 
9.8.3.7 Shader Channels. 

 

9.8.3.10.1 String: Texture Name 

The Texture Name is the name of the texture resource that is used for this texture layer. 

9.8.3.10.2 F32: Texture Intensity 

Texture Intensity is a scale factor applied to the color components of the texture. 

Texture Name 

Blend Function 

Blend Source 

Blend Constant 

Texture Mode 

Texture Transform 
Matrix Element 

Texture Wrap Transform 
Matrix Element 

Texture Repeat 

Texture Intensity 

16 

16 



 

- 126 - 

 

9.8.3.10.3 U8: Blend Function 

The Blend Function determines how the current texture layer is combined with the result 
from previous layers. 

0 – Multiply: blended = current * previous 

1 – Add: blended = current + previous 

2 – Replace: blended = current 

3 – Blend: blended = current * currentAlpha + previous * (1 – currentAlpha). 

9.8.3.10.4 U8: Blend Source 

Blend Source indicates whether the blending operation combines the current layer with the 
result from previous layers using a blending constant or the alpha value of each pixel. 

0 – Alpha value of each pixel 

1 – Blending constant. 

9.8.3.10.5 F32: Blend Constant 

The Blending constant is used when combining the results of texture layers. 

9.8.3.10.6 U8: Texture Mode 

The Texture Mode indicates the source of the texture coordinates used to map the texture 
onto the model. TM_NONE indicates the shader should use the texture coordinates of the 
model. All other coordinates are generated by the shader as needed. 

0x00: TM_NONE The shader does not generate texture coordinates. 

0x01: TM_PLANAR The shader transforms the model by the inverse of the 
texture wrap transform and then performs a planar x, y 
mapping of the texture onto the model. 

0x02: TM_CYLINDRICAL The shader transforms the model by the inverse of the 
texture wrap transform and then performs a cylindrical 
mapping of the texture onto the model. The Z-axis of the 
transformed model is the cylinder axis. 

0x03: TM_SPHERICAL The shader transforms the model by the inverse of the 
texture wrap transform and then performs a spherical 
mapping of the texture onto the model. The Z-axis of the 
transformed model is the sphere’s vertical axis. 

0x04: TM_REFLECTION: The shader performs a spherical reflection mapping. This is 
used to generate texture coordinates for reflection mapping 
when using a specially designed spherical reflection texture. 

9.8.3.10.7 F32: Texture Transform Matrix Element 

The Texture Transform Matrix operates on the texture coordinates in this texture 
coordinate layer of the model. This transform is used for all texture modes. 

The matrix is written in the alphabetic order described below:  



















PLHD

OKGC

NJFB

MIEA

. 



 

 

- 127 - 

 

9.8.3.10.8 F32: Texture Wrap Transform Matrix Element 

The Texture Wrap Transform is used for the following texture modes: TM_PLANAR; 
TM_CYLINDRICAL; TM_SPHERICAL. In these texture modes, texture coordinates are 
procedurely generated based on the position values of vertices in the model. 

The texture coordinates from a reference shape are projected onto the model. The 
Texture Wrap Transform operates on the procedurely generated texture coordinates 
before they are applied to the model. 

The matrix is written in the alphabetic order described below: 



















PLHD

OKGC

NJFB

MIEA

. 

NOTE  
In an equivalent implementation, the inverse of the Texture Wrap Transform could operate on the 
position value in the model to look up the texture coordinate values in the reference shape. 

The Texture Wrap Transform is also discussed in 9.8.3.10.6 Texture Mode. 

9.8.3.10.9 U8: Texture Repeat 

Texture Repeat indicates whether or not the texure in the specified texture layer should be 
tiled beyond the coordinate range. Texture Repeat is a bitfield and the values below are 
combined using a bitwise OR operator. All other values are reserved. 

0x01 – Repeat in the direction of the first texture coordinate dimension 

0x02 – Repeat in the direction of the second texture coordinate dimension 

Repeating the texture shall be accomplished in the manner of tiling the texture image. 

NOTE 
This edition of the specification does not support 3 and 4-dimensional texture resources. Future 
editions may support additional repeat modes and may support 3 and 4-dimensional textures. 

9.8.4 Material Resource (blocktype: 0xFFFFFF54) 

The Material Resource contains information defining how a material interacts with light in a 
scene. A shader references a Material Resource to determine how surfaces will appear when 
rendered. 



 

- 128 - 

 

 

9.8.4.1 String: Material Resource Name 

Material Resource Name is the string used to identify this material. 

9.8.4.2 U32: Material Attributes 

Material Attributes is a collection of flags that define which of the material attributes specified 
below are enabled. The flags are combined using the binary OR operator. Other values are 
reserved. 

0x00000001 – Ambient 

0x00000002 – Diffuse 

0x00000004 – Specular 

0x00000008 – Emissive 

0x00000010 – Reflectivity 

0x00000020 – Opacity 

The material attributes are described below. 

9.8.4.3 Ambient Color 

The Ambient Color defines the material’s appearance in ambient light. The normal range of 
color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

Material Attributes 

Opacity 

Reflectivity 

Material Resource Name 

Ambient Color 

Diffuse Color 

Specular Color 

Emissive Color 



 

 

- 129 - 

 

 

9.8.4.3.1 F32: Red 

Red is the red component of the color. 

9.8.4.3.2 F32: Green 

Green is the green component of the color. 

9.8.4.3.3 F32: Blue 

Blue is the blue component of the color. 

9.8.4.4 Diffuse Color 

The Diffuse Color defines the material’s appearance in diffuse light. The normal range of 
color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

 

9.8.4.4.1 F32: Red 

Red is the red component of the color. 

9.8.4.4.2 F32: Green 

Green is the green component of the color. 

9.8.4.4.3 F32: Blue 

Blue is the blue component of the color. 

9.8.4.5 Specular Color 

The Specular Color defines the material’s appearance in specular light. The normal range of 
color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

Red 

Blue 

Green 

Red 

Blue 

Green 



 

- 130 - 

 

 

9.8.4.5.1 F32: Red  

Red is the red component of the color. 

9.8.4.5.2 F32: Green 

Green is the green component of the color. 

9.8.4.5.3 F32: Blue 

Blue is the blue component of the color. 

9.8.4.6 Emissive Color 

The Emissive Color defines the light that the material appears to give off. The normal range 
of color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are 
allowed. 

 

9.8.4.6.1 F32: Red 

Red is the red component of the color. 

9.8.4.6.2 F32: Green 

Green is the green component of the color. 

9.8.4.6.3 F32: Blue 

Blue is the blue component of the color. 

9.8.4.7 F32: Reflectivity 

Reflectivity measures how shiny a material appears to be. Specular reflections are 
calculated based on the light position, surface normal, and camera position. The result is 
then raised to an exponent to control specular light falloff. The exponent is determined from 
the reflectivity value. The normal range of reflectivity is 0.0 (exponent of zero disables 
specular lighting) to 1.0 (exponent of 128). Values outside this range are allowed but are 
clamped before use. 

Red 

Blue 

Green 

Red 

Blue 

Green 



 

 

- 131 - 

 

9.8.4.8 F32: Opacity 

Opacity is a measure of on object’s transparency. The value is used when alpha blending. 
Higher Opacity means the object is less transparent and objects behind it will be less visible. 
The normal range of opacity is 0.0 (invisible) to 1.0 (completely opaque). Values outside this 
range are allowed. 

9.8.5 Texture Resource (blocktypes: 0xFFFFFF55; 0xFFFFFF5C) 

The Texture Resource contains information for creating a texture image to be applied to 
geometry. The usage of the texture resource is controlled by a shader. The texture resource is 
divided into two parts: the declaration and the continuation. The texture declaration contains 
information for creating the texture resource object and allocating memory. The texture 
continuation contains image data for the texture. 

The texture image may be created by composing more than one continuation image. For 
example, an RGBA texture image may be created by composing an RGB continuation image 
with an Alpha continuation image. 

A continuation image may be contained in one or more continuation blocks in the same U3D 
file as the declaration block. 

As an alternative, the continuation image may be contained in an external referenced image 
file. 

9.8.5.1 Texture Declaration (blocktype: 0xFFFFFF55) 

The Texture Declaration describes the texture image and the continuation images. 

 

9.8.5.1.1 String: Texture Name 

The Texture Name is the name used to identify the texture. 

9.8.5.1.2 Texture Image Format 

Texture Image Format describes the size (height and width) of the texture image and the 
format of the texture data. 

A rendering system may convert the texture image to a different size (height and width) for 
rendering. For example, the rendering system may filter and re-size the image because it 
is too big or the dimensions are not a power of two. Such rendering details are outside the 
scope of this specification. 

Texture Name 

Continuation Image Count 

Continuation Image Count 

Texture Image Format 

Continuation Image Format 



 

- 132 - 

 

 

9.8.5.1.2.1 U32: Texture Height 

Texture Height is the height of the texture in pixels. Texture Height shall be greater than zero. 

9.8.5.1.2.2 U32: Texture Width 

Texture Width is the width of the texture in pixels. Texture Width shall be greater than zero. 

9.8.5.1.2.3 U8: Texture Image Type 

Texture Image Type identifies the color channels present in the texture image. The valid values 
are: 

0x01 – alpha component  

0x0E – color RGB (red, green, and blue)  

0x0F – color RGBA (red, green, blue, and alpha)  

0x10 – luminance (greyscale) 

0x11 – luminance and alpha (greyscale and alpha) 

All other values are reserved. 

9.8.5.1.3 U32: Continuation Image Count 

Continuation Image Count is the number of continuation images used to compose the 
texture image. This count is not the number of texture continuation blocks because each 
continuation image is contained in one or more blocks. The index into the sequence of 
continuation image formats that follows is used by the continuation blocks to indicate 
which continuation image their image data is for. 

9.8.5.1.4 Continuation Image Format 

Continuation Image Format provides some information about the continuation image in the 
texture declaration. 

Texture Height 

Texture Width 

Texture Image Type 



 

 

- 133 - 

 

 

9.8.5.1.4.1 U8: Compression Type 

Compression Type defines the scheme used to compress the Image Data in the texture 
continuation blocks. The types are: 

0x01 – JPEG-24 (color, baseline profile) 

0x02 – PNG 

0x03 – JPEG-8 (greyscale, baseline profile) 

0x04 – TIFF 

9.8.5.1.4.2 U8: Texture Image Channels 

Texture Image Channels indicates which color channels of the texture image are composed 
using this continuation image. The texture image channel bits can be combined using the OR 
operator. A particular texture image channel can be composed from only one continuation 
image. The values for the texture image channel bits are: 

0x01: alpha channel 

0x02: blue channel 

0x04: green channel 

0x08: red channel 

0x10: luminance (red, blue and green channels) 

9.8.5.1.4.3 U16: Continuation Image Attributes 

Continuation Image Attributes contains additional information about the continuation image. All 
other values are reserved. 

0x0000: default attributes 

0x0001: external continuation image file reference 

By default, the continuation image data is contained in texture continuation blocks in the same 
U3D file as the texture declaration block. If the external continuation image file reference bit is 
set, then the continuation image data is contained in an external file. 

Image URL Count 

Compression Type 

Texture Image Channels 

Image Data Byte Count 

Continuation Image Attributes 

Image URL Count 

Image URL 



 

- 134 - 

 

9.8.5.1.4.4 U32: Image Data Byte Count 

Image Data Byte Count is the sum of the number of bytes of Image Data in all the continuation 
blocks for this continuation image. This value can be useful for setting up an image decoder 
and for determining when all of the image data is available for decoding. Image Data Byte 
Count is not present if the external continuation image file reference bit is set. 

9.8.5.1.4.5 U32: Image URL Count 

Image URL Count is the number of URL strings that follow. Image URL Count is only present if 
the external continuation image file reference bit is set. 

9.8.5.1.4.6 String: Image URL 

Image URL is a String identifying the external image file location. Multiple locations can be 
specified for the external file. A loader shall load the image file from one of the locations. HTTP 
and FTP protocols will be recognized with absolute and relative addressing. Image URL is only 
present if the Image URL Count is greater than zero and the external continuation image file 
reference bit is set. 

9.8.5.2 Texture Continuation (blocktype: 0xFFFFFF5C) 

The Texture Continuation contains image data for a continuation image previously described 
in the texture declaration. 

 

9.8.5.2.1 String: Texture Name 

Texture Name is the name of the texture resource with which this continuation block is 
associated. 

9.8.5.2.2 U32: Continuation Image Index 

This block’s image data is used to decode the continuation image indicated by 
Continuation Image Index. This value is an index into the sequence of continuation image 
formats in the texture declaration. 

9.8.5.2.3 Image Data 

The Image Data is the data for the continuation image used for a texture. The format of 
the image data is indicated by Compression Type in the texture declaration. The size of 
the compressed image data can be determined by subtracting the size of Texture Name 
and Continuation Image Index from the size of the data section. The image data can be 
contained in multiple texture continuation blocks with the same Texture Name and 
Continuation Image Index. Spreading the image data across several blocks is particularly 
useful when used with a progressive compressed image format. 

The setting of the no compression mode bit in 9.4.1.2 Profile Identifier does not affect the 
encoding of Image Data. 

Texture Name 

Image Data 

Continuation Image Index 



 

 

- 135 - 

 

9.8.6 Motion Resource (blocktype: 0xFFFFFF56) 

The motion resource contains animation data. The data is stored in a number of tracks. Each 
track is composed of key frames with rotation, displacement and time information. A motion 
track can be used to animate a bone in a bone hierarchy. A motion track can also be used to 
animate a node in the scene graph. 

 

9.8.6.1 String: Motion Name 

Motion Name is the name of this motion resource. 

9.8.6.2 U32: Track Count 

Track Count is the number of motion tracks in this motion resource. 

9.8.6.3 F32: Time Inverse Quant 

Time Inverse Quant is the inverse quantization factor for time values. 

9.8.6.4 F32: Rotation Inverse Quant 

Rotation Inverse Quant is the inverse quantization factor for rotation values. 

Motion Name 

Track Count 

Time Inverse Quant 

Rotation Inverse Quant 

Motion Track 
Track Count 



 

- 136 - 

 

9.8.6.5 Motion Track 

 

9.8.6.5.1 String: Track Name 

Track Name is the name of this motion track. 

9.8.6.5.2 U32: Time Count 

Time Count is the number of time samples for this motion track. 

9.8.6.5.3 F32: Displacement Inverse Quant 

Displacement Inverse Quant is the inverse quantization factor for displacement values for 
this motion track. 

9.8.6.5.4 F32: Scale Inverse Quant 

Scale Inverse Quant is the inverse quantization factor for scale values for this motion 
track. 

9.8.6.5.5 Key Frame 

The motion track has one Key Frame for each time sample. The first and last Key Frames 
use unquantized values and all other key frames use quantized differential values. 

Track Name 

Time Count 

Displacement Inverse Quant 

Scale Inverse Quant 

Key Frame 
Time Count 



 

 

- 137 - 

 

 

9.8.6.5.5.1 F32: Time  

Time is the time value for this Key Frame. 

9.8.6.5.5.2 Displacement 

Displacement is the translation of the start of the bone from the end of its parent bone. For a 
root bone or for a node, Displacement is the translation from the origin of the local coordinate 
space. 

 

9.8.6.5.5.2.1 F32: Displacement X 

Displacement X is the X coordinate of the Displacement. 

9.8.6.5.5.2.2 F32: Displacement Y 

Displacement Y is the Y coordinate of the Displacement. 

9.8.6.5.5.2.3 F32: Displacement Z 

Displacement Z is the Z coordinate of the Displacement. 

9.8.6.5.5.3 Rotation 

Rotation is the change in orientation of the bone relative to the parent bone. Rotation is 
expressed as a quaternion with the real part first. 

Time Differential 

Rotation Differential 

Displacement Differential 

Scale Differential 

Rotation 

Displacement 

Scale 

Time 

Displacement X 

Displacement Z 

Displacement Y 



 

- 138 - 

 

 

9.8.6.5.5.3.1 F32: Rotation 0 

Rotation 0 is the real part of the Rotation quaternion. 

9.8.6.5.5.3.2 F32: Rotation 1 

Rotation 1 is the coefficient for i in the Rotation quaternion. 

9.8.6.5.5.3.3 F32: Rotation 2 

Rotation 2 is the coefficient for j in the Rotation quaternion. 

9.8.6.5.5.3.4 F32: Rotation 3 

Rotation 3 is the coefficient for k in the Rotation quaternion. 

9.8.6.5.5.4 Scale 

Scale is the scaling component of the transformation of the bone relative to its parent bone. 

 

9.8.6.5.5.4.1 F32: Scale X 

Scale X is the scaling factor in the X dimension. 

9.8.6.5.5.4.2 F32: Scale Y 

Scale Y is the scaling factor in the Y dimension. 

9.8.6.5.5.4.3 F32: Scale Z 

Scale X is the scaling factor in the Z dimension. 

Scale X 

Scale Z 

Scale Y 

Rotation 0 

Rotation 2 

Rotation 1 

Rotation 3 



 

 

- 139 - 

 

9.8.6.5.5.5 Time Differential 

Time Differential is the quantized difference between the actual time value and the predicted 
time value. The reconstructed time value from the previous Key Frame is used as a prediction 
for this Key Frame. 

The reconstructed time is calculated as 

reconstructed time = InverseQuant(predicted time,Time Sign,Time Difference,Time Inverse 
Quant). 

 

9.8.6.5.5.5.1 U8 [cTimeSign]: Time Sign 

Time Sign contains the sign bits for the time prediction difference. 

0x00 – the prediction difference is positive or zero 

0x01 – the prediction difference is negative 

9.8.6.5.5.5.2 U32 [cTimeDiff]: Time Difference 

Time Difference is the quantized absolute prediction difference for the time value. 

9.8.6.5.5.6 Displacement Differential 

Displacement Differential is the quantized difference between the actual displacement value 
and the predicted displacement value. The reconstructed displacement value from the previous 
Key Frame is used as a prediction for this Key Frame. 

 

9.8.6.5.5.6.1 U8 [cDispSign]: Displacement Difference Signs 

Displacement Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Displacement Difference X 

0x02 – Sign bit for Displacement Difference Y 

Time Sign 

Time Difference 

Displacement Difference Signs 

Displacement Difference X 

Displacement Difference Z 

Displacement Difference Y 



 

- 140 - 

 

0x04 – Sign bit for Displacement Difference Z 

9.8.6.5.5.6.2 U32 [cDispDiff]: Displacement Difference X 

reconstructed X = InverseQuant(predicted X, (DisplacementDifferenceSigns & 0x01), 

Displacement Difference X, Displacement Inverse Quant). 

9.8.6.5.5.6.3 U32 [cDispDiff]: Displacement Difference Y 

reconstructed Y = InverseQuant(predicted Y, ((DisplacementDifferenceSigns & 0x02)>>1), 

Displacement Difference Y, Displacement Inverse Quant). 

9.8.6.5.5.6.4 U32 [cDispDiff]: Displacement Difference Z 

reconstructed Z = InverseQuant(predicted Z, ((DisplacementDifferenceSigns & 0x04)>>2), 

Displacement Difference Z, Displacement Inverse Quant). 

9.8.6.5.5.7 Rotation Differential 

The reconstructed Rotation quaternion from the previous Key Frame is used as the prediction 
for this Key Frame. The reconstructed Rotation quaternion for this Key Frame is obtained by 
multiplying the prediction quaternion by the reconstructed quaternion difference. 

 

9.8.6.5.5.7.1 U8 [cRotSign]: Rotation Difference Signs 

Rotation Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Rotation Difference 0 

0x02 – Sign bit for Rotation Difference 1 

0x04 – Sign bit for Rotation Difference 2 

0x08 – Sign bit for Rotation Difference 3 

9.8.6.5.5.7.2 U32 [cRotDiff]: Rotation Difference 1 

The coefficient for i in the reconstructed quaternion difference is calculated as 

RQD1 = InverseQuant( 0, 

((RotationDifferenceSigns & 0x02) >> 1), 

Rotation Difference 1, 

Rotation Inverse Quant) 

Rotation Difference Signs 

Rotation Difference 1 

Rotation Difference 3 

Rotation Difference 2 



 

 

- 141 - 

 

9.8.6.5.5.7.3 U32 [cRotDiff]: Rotation Difference 2 

The coefficient for j in the reconstructed quaternion difference is calculated as 

RQD2 = InverseQuant( 0, 

((RotationDifferenceSigns & 0x04) >> 2), 

Rotation Difference 2, 

Rotation Inverse Quant) 

9.8.6.5.5.7.4 U32 [cRotDiff]: Rotation Difference 3 

The coefficient for k in the reconstructed quaternion difference is calculated as 

RQD3 = InverseQuant( 0, 

((RotationDifferenceSigns & 0x08) >> 3), 

Rotation Difference 3, 

Rotation Inverse Quant) 

 

The real part of the reconstructed quaternion difference is calculated as 

)321(0.1))010&(21(0
222

RQDRQDRQDxgnsfferenceSiRotationDiRQD ++−⋅⋅−=  

9.8.6.5.5.8 Scale Differential 

Scale Differential is the quantized difference between the actual scale value and the predicted 
scale value. The reconstructed scale value from the previous Key Frame is used as a 
prediction for this Key Frame. 

 

9.8.6.5.5.8.1 U8 [cScalSign]: Scale Difference Signs 

Scale Difference Signs is a collection of sign bits for the prediction differences. 

0x01 – Sign bit for Scale Difference X 

0x02 – Sign bit for Scale Difference Y 

0x04 – Sign bit for Scale Difference Z 

 

Scale Difference Signs 

Scale Difference X 

Scale Difference Z 

Scale Difference Y 



 

- 142 - 

 

9.8.6.5.5.8.2 U32 [cScalDiff]: Scale Difference X 

reconstructed X = InverseQuant( predicted X, 

(ScaleDifferenceSigns & 0x01),  

Scale Difference X, 

Scale Inverse Quant). 

9.8.6.5.5.8.3 U32 [cScalDiff]: Scale Difference Y 

reconstructed Y = InverseQuant( predicted Y, 

((ScaleDifferenceSigns & 0x02) >> 1), 

Scale Difference Y, 

Scale Inverse Quant). 

9.8.6.5.5.8.4 U32 [cScalDiff]: Scale Difference Z 

reconstructed Z = InverseQuant( predicted Z, 

((ScaleDifferenceSigns & 0x04) >> 2),  

Scale Difference Z, 



 

 

- 143 - 

 

10 Bit Encoding Algorithm 

10.1 Definitions 

The following definitions are applicable to the U3D bit encoding algorithm. 

Term Definition 

Clear Set the bits to 0. 

Context  Captures the estimated probability distribution of the current symbol of a 
particular type. 

Cumulative 

frequency 

of a symbol  

Sum of the occurrences of all of the symbols less than current symbol stored in 
the histogram for a given context. 

Dynamic 

context  

Estimated probability is based on previous occurrences of symbols.  

Dynamic 

Histogram 

Used to store the frequency counts of symbols written by the encoding algorithm 
in a dynamic context. The values written have a corresponding symbol equal to 
the value + 1. The symbol 0 is the escape symbol and has an initial frequency of 
1. All other symbols have an initial frequency of 0. A dynamic histogram is 
updated as values are written by the bit encoding algorithm. 

Frequency 

of the 

symbol  

Number of occurrences of a symbol stored in the histogram for a given context. 

High High probability limit. 

Low Low probability limit. 

Set  Assign the bits to the specified value (if no value specified, value is 1) 

Static 

context  

Estimated probability is not based on previous occurrences of symbols, i.e. all 
valid symbols have equal probability. 

Static 

Histogram 

Used by the encoding algorithm to encode symbols. The static histogram is 
defined by a number R that represents a range of valid values from 0 to R - 1. 
Each value has a corresponding symbol equal to the value + 1. Each symbol has 
a frequency of 1. The symbol 0 is the escape symbol used by the encoding 
algorithm and has a frequency of 0 for all static histograms. Static Histograms 
are constant. 

Total 

cumulative 

frequency  

Total occurrences of all symbols including the escape symbol stored in the 
histogram for a given context. 

Underflow 

bits  

A count of the series of bits that are the same between the high and low 
probabilities starting with the QBits of high and low and comparing until a 
mismatch is found (due to the fixed storage size for Low and High). 

Write-bit Write a bit in order with least significant bit of the byte written first to the output 
stream. 

 



 

- 144 - 

 

10.2 Acronyms and Abbreviations 

The following acronyms and abbreviations are applicable to the U3D bit encoding algorithm. 

Acronym Description 

HBit ‘half’ bit representing 0.5 in the fixed-point 16.16 format (in a 32-bit word this is the 
17

th
 most significant bit) 

LBit Least significant bit 

MBit Most significant bit 

QBit ‘quarter’ bit representing 0.25 in the fixed-point 16.16 format (in a 32-bit word this is 
the 18

th
 most significant bit) 

 

10.3 Overview 

This section provides an overview of the U3D bit encoding algorithm. The bit encoding algorithm 
shall be used to write all U3D files. The bit encoding algorithm defines a platform independent 
representation of the binary data that is a U3D file. 

The bit encoding algorithm is a single pass statistical data compression method using an 
arithmetic algorithm that transforms the input into a single floating point number between 0 and 1. 
The encoding performed is lossless, i.e. data is not discarded during the encoding process and 
the original data is obtained after the decoding process. All data blocks as defined in Clause 9 of 
the specification are processed through the encoder. Only encoding is specified as normative. 

The compression algorithm supports compression of unsigned integers. When a value is to be 
compressed and encoded, a compression context must be specified. The compression context 
determines which histogram is used to encode the value. The algorithm may use multiple 
histograms to encode a series of values. Clause 9 identifies the values that are compressed and 
the contexts for the compression. Compression is performed for parts of the file that are expected 
to contain large amounts of compressible data, e.g. geometry and animation.  

The algorithm uses static or dynamic histograms for the encoding. The static histograms 
represent a uniform distribution over a range of numbers. The dynamic histograms build the 
distribution from the values written using a context. The dynamic contexts are used for values 
that are expected to have a narrow distribution. 

10.3.1 Prerequisites and Inputs 

The algorithm accepts as input U8, U16, U32, U64, I32, F32 and F64 values. All uncompressed 
values are cast to unsigned integers and written as a sequence of compressed U8 using a 
static context with range 0-255. The algorithm transforms compressed U8, U16, and 
U32 values into symbols based on the context given. 

10.3.2 Description 

When encoding a value, a context with an associated histogram is specified. Static histograms 
are used when the distribution of the encoding numbers is expected to be roughly even or very 
random and difficult to predict. Dynamic contexts should be used to encode data that tends to 
cluster around a few values and is easy to predict. 

The bit encoding algorithm transforms all of the input value into a sequence of one or more 
symbols. All of the uncompressed values written are cast to unsigned integer values with the 
same number of bytes as the original type, and then broken into a series of unsigned 8-bit 
values. The 8-bit values are then written as symbols using a static context with a range from 0 
to 255. 

The symbols written by the algorithm are represented as a floating point number. Each value in 
the histogram is given a portion of the numbers between 0 and 1. The size of the range 
allocated to each value corresponds to the probability the value will appear. Each value in a 
static context has the same probability and the same range size. For dynamic contexts, the 



 

 

- 145 - 

 

probability is based on the number of times that the symbol has been written to that context. 
When writing a symbol, the encoding algorithm encodes the range that corresponds to that 
value. Encoding a sequence of values involves encoding the range of the value to be written 
with in the range of the previous value. Because the encoding algorithm is very order 
dependent, all of the steps must be performed in the order described in the algorithm below. 

10.4 Encoding Algorithm 

This section describes the details and the normative requirements for the bit encoding algorithm. 
Specifically, only the encoding algorithm is specified in this clause since either one of the 
encoding algorithm or the decoding algorithm needs to be specified normatively. Refer to Annex 
A for an example implementation of the bit encoding algorithm. 

Note that the algorithm follows standard rules for operator precedence in arithmetic expressions. 

Static contexts are specified by the range from: 0 to (R-1), maximum value for R is: 0x3FFE 
(16382). If R is larger than this value an uncompressed U16 or U32 is written, as appropriate. 

10.4.1 General Requirements 

This section specifies general requirements for the bit encoding algorithm. 

1. All blocks shall be processed through the bit encoding algorithm. 

2. Encoding procedure shall depend on the type of the block (as defined in Clause 9 File 
Format). 

10.4.2 Operations 

The operations of the algorithm shall be performed as in the following table: 

Type of value to be 

written to output 

stream 

How value is written 

Compressed U32 Refer to algorithm in section 10.4.5 below 

Compressed U16 Refer to algorithm in section 10.4.6 below 

Compressed U8 Refer to algorithm in section 10.4.7 below 

U8 Refer to algorithm in section 10.4.8 below 

U16 Low order U8 followed by high order U8 

U32 Low order U16 followed by high order U16 

U64 Low order U32 followed by high order U32 

I32 Memory pattern of 2’s complement signed integer interpreted as U32 

F32 Memory pattern of IEEE 32-bit format interpreted as U32 

F64 Memory pattern of IEEE 64-bit format interpreted as U64 

String U16 count of U8s in string followed by the U8s in the string 

 

10.4.3 Init ial ization 

The bit encoding algorithm shall perform the following initializations: 

high probability limit = 0x0000FFFF (represents 1.0 as the fixed point equivalent of the binary 
repeating number 0.111…) 

low probability limit = 0 

underflow count = 0 



 

- 146 - 

 

initial histogram for a dynamic context: escape symbol frequency = 1 and all other frequencies 
= 0 (the histogram is modified as symbols are written to the context) 

histogram for a static context: escape symbol frequency = 0, all symbols <= R the frequency = 
1 and frequency for all other symbols = 0 

10.4.4 Algorithm for Writ ing a Compressed Symbol 

The procedure for how symbols shall be written by the bit encoding algorithm are detailed in 
the following subsections. 

Inputs: value to be written and context 

10.4.4.1 Obtain Frequency Values 

set symbol = value + 1 

Obtain total cumulative frequency of all symbols for this context 

Obtain total cumulative frequency of this symbol for this context 

Obtain frequency of this symbol for this context 

If frequency of this symbol for this context is 0 then prepare to write the escape symbol as 
follows: 

Set symbol = 0 

Obtain total cumulative frequency of this symbol for this context. 

NOTE 
Total cumulative frequency of the escape symbol for all contexts is 0. 

Obtain frequency of this symbol for this context 

10.4.4.2 Update the Probabil ity Limits 

probability range = High - Low + 0x00000001 

Update the high probability limit: High = Low + probability range * (cumulative frequency of 
symbol + frequency of the symbol) / (total cumulative frequency of all symbols) – 
0x00000001 

Update the low probability limit: Low = Low + (probability range * cumulative frequency of 
symbol / total cumulative frequency of all symbols) 

10.4.4.3 Update the Compression Context 

Update the compression context with this symbol. Note that this symbol may be the escape 
symbol 

10.4.4.4 Write to Output Stream Based on Current Probabil ity Range 

WHILE Hbit of High and Low are same 

set output bit = Hbit  

write-bit output bit 

clear HBit for High, left shift High, and set LBit of High 

clear Hbit for Low, left shift Low, and clear LBit of Low 

WHILE underflow count > 0 

write-bit NOT(output bit) 

decrement underflow count 

END WHILE 

END WHILE 



 

 

- 147 - 

 

10.4.4.5 Determine Underflow Count 

WHILE QBit Low is 1 and QBit High is 0 

clear Hbit for High, left shift High, set LBit High and set Hbit High 

clear Hbit for Low, left shift Low, clear LBit Low and clear Hbit Low 

increment underflow count 

END WHILE  

10.4.4.6 Return 

Return either success or a warning that an escape value was written 

10.4.5 Algorithm for Writ ing a Compressed U32 Value 

if context is static with (R > maximum R) 

then 

write uncompressed U32 

else 

result = write value as compressed symbol 

if result is a warning that an escape was written 

then 

write value as an uncompressed U32 

update the histogram for this context with value + 1 

10.4.6 Algorithm for Writ ing a Compressed U16 Value 

if context is static with (R > maximum R) 

then 

write uncompressed U16 

else 

result = write value as compressed symbol 

if result is a warning that an escape was written 

then 

write value as an uncompressed U16 

update the histogram for this context with value + 1 

10.4.7 Algorithm for Writ ing a Compressed U8 Value 

result = write value as compressed symbol  

if result is a warning that an escape was written 

then 

write value as an uncompressed U8  

update the histogram for this context with value + 1 

NOTE 
For static contexts, the maximum value of R = 256. 

10.4.8 Algorithm for Writ ing an Uncompressed U8 Value 

set symbol = value with bit order swapped, i.e. reverse order of bits (most significant bit 
exchanged with least significant bit and so on…) 



 

- 148 - 

 

write symbol as compressed symbol with static context R=256 

10.4.9 Algorithm for Updating the Compression Context 

The histogram shall not be updated for symbols larger than 0xFFFF. 

A histogram stores a limited number of symbol occurrences. When the total number of symbol 
occurrences = 0x1FFF all of symbol frequencies in the histogram shall be divided by 2 
rounding down. The frequency count of the escape symbol is then incremented by 1. 

NOTE 
Limiting the number of occurrences stored allows the histogram to adapt to changing distributions within 
a given context. More recent values will have a greater influence on the histogram for a given context. 
The value 0x1FFF was determined empirically. Larger values for this number allow for more efficient 
compression for stable probability distributions, whereas, smaller values enable faster adaptation to 
changing probability distributions. Additionally, values larger than 0x1FFF may cause numeric overflow 
issues on some 32-bit hardware. 

10.4.10 Algorithm for Flushing the Compression State 

If one or more compressed values have been written then an uncompressed U32 value of 0 
shall be written in order to ensure that all the bits required for decoding are written to the 
output stream. 

11 Free-Form Curve and Surface Extension 

11.1 Overview 

This extension adds a Free-Form Surface Object to the U3D File Format specification that adds 
support for Uniform and Non-Uniform, Rational and Non-Rational Free-Form Curves and 
Surfaces.  The object has a compact and general geometry representation.  However, this 
extension does not define a fully compressed free-form representation.  In particular, floating 
point values are not quantized. 

The purpose of the Free-form Curve and Surface Extension is to provide a free-form surface 
representation for the Universal 3D File Format.  In some usages, a free-form surface 
representation, e.g. NURBS representation, can have advantages compared to a triangle mesh 
surface representation.  In particular, where the original information represents a curved surface, 
the free-form surface representation can be more compact and describes the original surface 
analytically correct. 

11.2 Definitions 

For the purpose of the Free-Form Curve and Surface Extension and its Free-Form Surface 
Object the following definitions apply. 

Term Definition 

Bases A set of real-valued blending functions (such as Bezier [often called Bernstein] 
polynomials or B-Spline functions) that are used to help define a free-form curve or 
surface. 

Bezier A type of smooth curve or surface defined by control points and Bezier [often called 
Bernstein] polynomials of a specified degree. The curve or surface passes through 
some control points, and others define tangents.  Note that, in common usage, the 
term “Bezier” can refer not only to the real-valued Bernstein polynomials but also to 
the curve or surface that is represented as a sum of the product of control points 
with corresponding Bernstein polynomials. 

B-Spline A type of smooth curve or surface defined by control points and B-Spline basis 
functions. The curve or surface does not usually pass through the control points.  
Note that, in common usage, the term "B-Spline" can refer not only to the real-
valued B-Spline basis functions but also to the curve or surface that is represented 
as a sum of the product of control points with corresponding B-spline basis 



 

 

- 149 - 

 

Term Definition 

functions. 

Edge The boundary between two faces.  It is an association of two corresponding trim 
curve segments from the two faces. 

Face A free-form surface described by a  set of trim curve loops. 

Free-Form 

object 

A new type of geometry generator that contains information for a set of faces and a 
set of edges. 

Free-Form 

surface 

A 3D geometric object defined by bases and control points, as opposed to a 3D 
geometric object consisting of polygons. 

Knot vector A non-decreasing set of real numbers that, together with the degree, uniquely 
specifies a set of B-spline basis functions.  The values of the knot vector denote 
locations in parameter space where the basis functions transition from one 
polynomial representation to another. 

NURBS A Non-Uniform Rational B-Spline curve or surface. It is a mathematical 
representation of a smooth curve or surface.  Non-Uniform means the knots are not 
necessarily uniformly spaced.  Rational means that the representation can be a 
ratio of a multi-dimensional valued spline with a real valued spline.  B-Spline means 
that the underlying basis functions are B-Spline basis functions. 

Surface 

control point 

A 3 or 4-dimensional (x, y, z, (w)) vertex defining a free-form surface. (w) is the 
weight. 

Trim curve 

control point 

A 2 or 3-dimensional (u, v, (w)) point defining a trimming curve. (w) is the weight. 

Trim curve 

loop 

A closed, non self-intersecting sequence of trim curve segments.  It restricts the 
range in the surface parameter space that defines the free-form surface. 
Everything that falls outside the trim curve loop is cut away.  

Trim curve 

segment 

A bounded and connected piece of a 2-dimensional free-form curve defined in the 
(u, v, (w)) parameter space of a free-form surface.  

Weight A value (w) which is associated with a control point and which is used to define a 
rational free-form curve or surface.  A non-rational free-form curve or surface does 
not have weights. 

 

11.3 Architecture 

The Free-Form Curve and Surface Extension adds a free-form object to the U3D File Format 
following the extensibility mechanism in 8.11 Extensibility. The free-form object is an addition to 
the architecture defined in Clause 8 Architecture. 

The free-form object is a new type of geometry generator.  Like other geometry generators, free-
form objects are placed in the model resource palette and are the first modifier in a modifier 
chain. 

A free-form object can have two different mathematical representations. The supported 
polynomial types for curves and surfaces are Bezier and B-Spline. 

Bezier specifies the basis functions as follows: 

N i,n (t) =
n

i

 

 
 
 

 
 t

i(1− t)n− i
, 

where n is the degree of the polynomial. 



 

- 150 - 

 

B-Spline specifies a non-uniform B-spline representation whose basis functions are given by the 
following recursive definition: 

N i,0(t) =
1 if x i ≤ t < x i+1

0 otherwise

 

 

 

  

and 

)()()( 1,1

11

1

1,, tN
xx

tx
tN

xx

xt
tN ni

ini

ni

ni

ini

i

ni −+

+++

++

−

+
−

−
+

−

−
=  

where, by convention, 0 /0 = 0. (x0,...,xq ) is known as the knot vector. It must be specified 

through the parameter lists when using B-Spline bases in curves and surfaces.  

The free-form object contains information for a set of Faces and a set of Edges.  A Face is 
described by a free-form surface and a set of trim curve loops.  The trim curve loops restrict the 
range of surface parameter space used by the face.  A trim curve loop is a closed, non-self-
intersecting sequence of trim curve segments.  A trim curve segment is a 2-dimensional free-form 
curve.  An edge describes the boundary between two faces and is an association of two 
corresponding trim curve segments from the two faces. 

11.4 Free-Form Object New Object Type 

The free-form object shall use a new object type according to 9.4.5 New Object Type, and two 
new object blocks according to 9.4.6 New Object Block. One new object block is used for the 
Declaration Block, see 11.5 Free-Form Object Declaration, and one new object block is used for 
the Continuation Block, see 11.6 Free-Form Object Continuation. 

The New Object Type Name shall be “Free-Form Object”. The Modifier Type shall be Model 
Resource.  The Extension ID used for the free-form object shall be the GUID 

    { 0x95467df, 0xee24, 0x4c59, { 0x9a, 0xa5, 0x76, 0x8e, 0x39, 0xe2, 0x68, 0xde } }. 

The Continuation Block Type Count shall be one. The Extension Vendor Name shall be “Ecma 
International”. There shall be at least one Extension Information URL. The first Extension 
Information URL shall point to the ECMA-363 web page at the Ecma International web site, which 
is currently http://www.ecma-international.org/publications/standards/Ecma-363.htm. 

Other fields in the New Object Type block may be implementation dependent. 

http://www.ecma-international.org/publications/standards/Ecma-363.htm


 

 

- 151 - 

 

11.5 Free-Form Object Declaration 

The free-form object uses a declaration block following the structure of 9.4.6 New Object Block. 
The block type of the declaration block is defined in the New Declaration Block Type of the New 
Object Type, see 11.4 Free-Form Object New Object Type. 

 

11.5.1 String: Free-Form Object Name 

Free-Form Object Name is the name of the Free-Form Object.  This name is also the name of 
the model resource modifier chain that contains the Free-Form Object. 

11.5.2 U32: Chain Index 

Chain Index is the position of the free-form object in the model resource modifier chain.  The 
value of Chain Index shall be zero. 

11.5.3 U32: Free-Form Attributes 

Free-Form Attributes is a collection of flags combined using the binary OR operator.  These 
flags are used to indicate the precision of various parameters.  All other values are reserved. 

0x00000000 – Default: Weights and Knots use F32 type. 

Free-Form Object Name 

 

Surface Count 

 

Face Count 

 

Edge Count 

 

Shading Count 

 

Skeleton Description 

Shading Description 
 

Free-Form Attributes 

 

Chain Index 

 

Shading Count 



 

- 152 - 

 

0x00000001 – Double Precision Knots: Knots use F64 type. 

0x00000002 – Double Precision Weights: Weights use F64 type. 

0x00000004 – Double Precision Curve Control Points: Control Point U and Control Point V use 
F64 type. 

11.5.4 U32: Surface Count 

Surface Count is the total number of Surfaces in the Free-Form Object. 

11.5.5 U32: Face Count 

Face Count is the total number of Faces in the Free-Form Object. 

11.5.6 U32: Edge Count 

Edge Count is the total number of Edges in the Free-Form Object. 

11.5.7 U32: Shading Count 

Shading Count is the number of shading descriptions used by the Free-Form Object. 

11.5.8 Shading Description 

Shading Description indicates which per vertex attributes, in addition to position, are used by 
each shader list.  Shading Description also indicates which components are present in the 
Control Points.  Details are covered in 9.6.1.1.3.9 Shading Description. 

11.5.9 Skeleton Description 

Skeleton Description provides bone structure information. Definition of Skeleton Description is 
in 9.6.1.1.6 Skeleton Description. 



 

 

- 153 - 

 

11.6 Free-Form Object Continuation 

The free-form object uses no, one, or more continuation blocks following the structure of 9.4.6 
New Object Block. The block type of the continuation blocks is defined in the single New 
Continuation Block Type of the New Object Type, see 11.4 Free-Form Object New Object Type. 

 

11.6.1 String: Free-Form Object Name 

Free-Form Object Name is the name of the Free-Form Object to which these surfaces, faces 
and edges should be added. 

11.6.2 U32: Chain Index 

Chain Index is the position of the Free-Form Object in the model resource modifier chain.  The 
value of Chain Index shall be zero. 

11.6.3 U32: Surface Start  Index 

Surface Start Index is the index of the first surface added to the Free-Form Object by this 
block. 

Surface Start Index 

 

Surface End Index 

 

Surface Description 

 

Face Count 

 

Face Description 

 

Edge Count 

 

Edge Description 

Chain Index 

 

Free-Form Object Name 

 

Face Count 

 

Edge Count 

 

Surface Count 

 



 

- 154 - 

 

11.6.4 U32: Surface End Index 

Surface End Index is one more than the index of the last surface added to the Free-Form 
Object by this block. 

11.6.5 Surface Description 

The number of surfaces added to the Free-Form Object by this block is  

Surface Count = Surface End Index – Surface Start Index. 

Surface parameter space has two dimensions, U and V. 



 

 

- 155 - 

 

 

 

Knot Array U Specular Color 

Knot Array V Specular Color 

Knot Array U Tex Coord 

Knot Array V Tex Coord 

Texture 
Coord 
Layer 
Count 

Independent Knot Attributes 

 

Tex Coord Knot Attributes 

 

Knot Array V Diffuse Color 

Knot Array U Diffuse Color 

Surface Degree U 

 

Surface Degree V 

 

Knot Array V 

Control Point Array 

Knot Array V 

Shading ID 

 

Surface Attribute 

 

Knot Array V Position 

Knot Array U Position 



 

- 156 - 

 

11.6.5.1 U32: Surface Attributes 

Surface Attributes is a collection of flags.  The flags may be combined using a bitwise OR 
operation.  All other values are reserved. 

0x00000000 – Default:  the surface is a rational B-spline. 

0x00000001 – Non-rational: the surface is a non-rational free-form surface. 

0x00000002 – Bezier surface type. 

0x00000004 – Uniform U: the surface has uniform knot spacing in U dimension. 

0x00000008 – Uniform V: the surface has uniform knot spacing in V dimension. 

0x00000010 – Independent Knots. 

If the Non-rational bit is set, then the control point weight values are not present in the file.  

If the Bezier bit is not set the free-form surface type is a B-spline. 

If a Uniform bit is set, then the knot array for that dimension reduces to two values stored in 
the file. The two values stored denote the minimum and the maximum knot value, 
respectively, between which the missing remaining knot values are spaced uniformly. 

If the Independent Knots bit is set, then there is an independent knot array for each 
component of the Control Point. 

11.6.5.2 U32[cShading]:  Shading ID 

Shading ID is the index of the shading description used for this surface.  The shading 
description array is defined in the declaration block. The shading description indicates which 
components are present in the Control Points. 

11.6.5.3 U32: Surface Degree U 

Surface Degree U is the degree of the surface in the U dimension. 

11.6.5.4 U32: Surface Degree V 

Surface Degree V is the degree of the surface in the V dimension. 

11.6.5.5 Knot Array U 

Knot Array U is the array containing the knots in the U dimension.   

Repeated knots are stored as a unique knot value with a Knot Multiplicity value greater than 
one. Unique knot values are stored in strictly increasing order. The precision of the knot 
values is indicated in the declaration block.  Knot Multiplicity shall be greater than zero. 

For the Bezier surface type the total number of knots (parameter) shall be equal to the 
(number of control points – 1)/surface degree U + 1. 

For the B-Spline surface type the total number of knots shall be equal to the number of 
control points + surface degree U + 1. 

If the Uniform bit of the Surface Attributes is set, then the knot array reduces to two values 
stored in the file. The two values stored denote the minimum and the maximum knot value, 
respectively, each with multiplicity equal to the surface degree U + 1. Between the two 
values  the missing remaining knot values are spaced uniformly and with multiplicity one. 



 

 

- 157 - 

 

 

11.6.5.5.1 U32[cKnotCntU]: Unique Knot Count U 

Unique Knot Count U is the number of knots with unique values in the U dimension. 

11.6.5.5.2 U32[cKnotMultU]:  Knot Mult iplicity U 

Knot Multiplicity U is the number of times this knot value should be repeated. 

For the Bezier surface type the multiplicity for a knot (parameter) is always 1. 

For the B-Spline surface type the maximum multiplicity for a knot is degree, except for the 
first and last knots where the maximum multiplicity is degree + 1. 

11.6.5.5.3 F32: Knot Value 

Knot Value is the value of this knot in single floating-point precision if the Double Precision 
Knots flag is not set in the Free-Form Attributes in the declaration block. This Knot Value 
shall be greater than the previous Knot Value in the array. 

11.6.5.5.4 F64: Knot Value Double 

Knot Value Double is the value of this knot in double floating-point precision if the Double 
Precision Knots flag is set in the Free-Form Attributes in the declaration block. This Knot 
Value Double shall be greater than the previous Knot Value Double in the array. 

11.6.5.5.5 F32: Uniform Knot Value 

If the Uniform bit of the Surface Attributes is set, then the knot array reduces to two values 
stored in the file in increasing order.  Uniform Knot Value is the value of each knot in 
single floating-point precision if the Double Precision Knots flag is not set in the Free-
Form Attributes in the declaration block. 

11.6.5.5.6 F64: Uniform Knot Value Double 

If the Uniform bit of the Surface Attributes is set, then the knot array reduces to two values 
stored in the file in increasing order.  Uniform Knot Value Double is the value of each knot 
in double floating-point precision if the Double Precision Knots flag is set in the Free-Form 
Attributes in the declaration block. 

11.6.5.6 Knot Array V 

See 11.6.5.5 Knot Array U.  Replace “U” with “V”. 

Knot Multiplicity U 

 

Knot Value 

 

Knot Value Double 

Unique Knot 
Count U 

Uniform Knot 
Value Double 

Uniform 
Knot Value 

2 

Unique Knot Count U 

 



 

- 158 - 

 

11.6.5.7 Control Point Array 

 

11.6.5.7.1 32: Control Point Count U 

Control Point Count U is the size of the control point array in the U dimension. 

For the Bezier surface type the control point count is equal to (number of parameters -1) 
times surface degree U + 1. 

For the B-spline surface type the minimum control point count is surface degree U + 1. 
The total number of knots in the Knot Array U shall be equal to Control Point Count U + 
surface degree U + 1. 

11.6.5.7.2 U32: Control Point Count V 

Control Point Count V is the size of the control point array in the V dimension. 

For the Bezier surface type the control point count is equal to (number of parameters -1) 
times surface degree V + 1. 

For the B-spline surface type the minimum control point count is surface degree V + 1. 
The total number of knots in the Knot Array V shall be equal to Control Point Count V + 
surface degree V + 1. 

11.6.5.7.3 Surface Control Point 

The total number of Control Points is Control Point Count U * Control Point Count V. 

In ordering the control points, the V index is incremented first. 

In other words, the ordering of the control points is (u,v): (0,0), (0,1), … (0,Control Point 
Count V-1), (1,0), (1,1), … 

Note that normal values are not included in the control point.  The normals should be 
calculated from the surface. 

Control Point Count U 

Control Point Count V 

Surface Control Point 

Control Point Weight 

Control Point Weight Double 

Control Point Count U * 
Control Point Count V 



 

 

- 159 - 

 

 

11.6.5.7.3.1 Control Point Position 

 

11.6.5.7.3.1.1 F32: Control Point Position X 

Control Point Position X is the X-coordinate of the control point. 

11.6.5.7.3.1.2 F32: Control Point Position Y 

Control Point Position Y is the Y-coordinate of the control point. 

11.6.5.7.3.1.3 F32: Control Point Position Z 

Control Point Position Z is the Z-coordinate of the control point. 

11.6.5.7.3.2 Control Point Diffuse Color 

Control Point Diffuse Color is present only if indicated by the shading description 
indicated by Shading ID. 

Control Point Position 

Control Point Diffuse Color 

Control Point Specular Color 

Control Point Texture Coord 
Texture Coord Layer Count 

Control Point Position X 

Control Point Position Z 

Control Point Position Y 



 

- 160 - 

 

 

11.6.5.7.3.2.1 F32: Control Point Diffuse Color Red 

Control Point Diffuse Color Red is the red component of the control point diffuse color. 

11.6.5.7.3.2.2 F32: Control Point Diffuse Color Green 

Control Point Diffuse Color Green is the green component of the control point diffuse color. 

11.6.5.7.3.2.3 F32: Control Point Diffuse Color Blue 

Control Point Diffuse Color Blue is the blue component of the control point diffuse color. 

11.6.5.7.3.2.4 F32: Control Point Diffuse Color Alpha 

Control Point Diffuse Color Alpha is the alpha component of the control point diffuse color. 

11.6.5.7.3.3 Control Point Specular Color 

Control Point Specular Color is present only if indicated by the shading description 
indicated by Shading ID. 

 

11.6.5.7.3.3.1 F32: Control Point Specular Color Red 

Control Point Diffuse Color Red is the red component of the control point specular color. 

11.6.5.7.3.3.2 F32: Control Point Specular Color Green 

Control Point Diffuse Color Green is the green component of the control point specular color. 

Control Point Specular Color Red 

Control Point Specular Color Blue 

Control Point Specular Color Green 

Control Point Specular Color Alpha 

Control Point Diffuse Color Red 

Control Point Diffuse Color Blue 

Control Point Diffuse Color Green 

Control Point Diffuse Color Alpha 



 

 

- 161 - 

 

11.6.5.7.3.3.3 F32: Control Point Specular Color Blue 

Control Point Diffuse Color Blue is the blue component of the control point specular color. 

11.6.5.7.3.3.4 F32: Control Point Specular Color Alpha 

Control Point Diffuse Color Alpha is the alpha component of the control point specular color. 

11.6.5.7.3.4 Control Point Texture Coord 

Control Point Texture Coord is present only if indicated by the shading description 
indicated by Shading ID.  The shading description determines the Texture Coord Layer 
Count and the Texture Coord Dimension at each layer. 

 

11.6.5.7.3.4.1 F32: Control Point Texture Coord Value 

Control Point Texture Coord Value is the value for one dimension of the texture 
coordinate.  Texture Coord Dimension can have values 1, 2, 3, or 4. 

11.6.5.7.4 F32: Control Point Weight 

Control Point Weight is the weight value that should be used with this control point.  If the 
Surface Attributes indicate this is a non-rational surface, then the Control Point Weight 
field is not present in the file. 

11.6.5.7.5 F64: Control Point Weight Double 

The precision for control point weights is indicated in the declaration block.  Control Point 
Weight Double is used in place of Control Point Weight if Free-Form Attributes indicates 
64-bit weights should be used. 

11.6.5.8 U32[cKnotAttr]:  Independent Knot Attributes 

Independent Knot Attributes is present if the Independent Knots bit is set in the Surface 
Attributes for this surface. 

0x00000001 – Uniform U Position 

0x00000002 – Uniform V Position 

0x00000004 – Uniform U Diffuse Color 

0x00000008 – Uniform V Diffuse Color 

0x00000010 – Uniform U Specular Color 

0x00000020 – Uniform V Specular Color 

11.6.5.9 Knot Array U Posit ion 

See 11.6.5.5 Knot Array U.  Replace “U” with “U Position”. 

11.6.5.10 Knot Array V Posit ion 

See 11.6.5.5 Knot Array U.  Replace “U” with “V Position”. 

11.6.5.11 Knot Array U Diffuse Color 

See 11.6.5.5 Knot Array U.  Replace “U” with “U Diffuse Color”.  Not present if Diffuse Color 
is not a component of the control point. 

Control Point Texture Coord Value  
Texture Coord Dimension 



 

- 162 - 

 

11.6.5.12 Knot Array V Diffuse Color 

See 11.6.5.5 Knot Array U.  Replace “U” with “V Diffuse Color”.  Not present if Diffuse Color 
is not a component of the control point. 

11.6.5.13 Knot Array U Specular Color 

See 11.6.5.5 Knot Array U.  Replace “U” with “U Specular Color”.  Not present if Specular 
Color is not a component of the control point. 

11.6.5.14 Knot Array V Specular Color 

See 11.6.5.5 Knot Array U.  Replace “U” with “V Specular Color”.  Not present if Specular 
Color is not a component of the control point. 

11.6.5.15 U32[cTCKnotAttr]:  Tex Coord Knot Attributes 

0x00000001 – Uniform U Tex Coord 

0x00000002 – Uniform V Tex Coord 

11.6.5.16 Knot Array U Tex Coord 

See 11.6.5.5 Knot Array U.  Replace “U” with “U Tex Coord”.   

11.6.5.17 Knot Array V Tex Coord 

See 11.6.5.5 Knot Array U.  Replace “U” with “V Tex Coord”.   

11.6.6 U32: Face Count 

Face Count is the number of faces using this surface. 

11.6.7 Face Description 

A Face consists of a sequence of Trim Curve Loops. The first Trim Curve Loop defines the 
outer boundary of the Face as a clockwise oriented sequence of Trim Curve Segments.  A 
subsequent Trim Curve Loop defines a hole in the Face as a counterclockwise sequence of 
Trim Curve Segments. 

A Trim Curve Loop that is enclosed by another Trim Curve Loop shall not enclose a third Trim 
Curve Loop.  In other words, islands are not allowed within a hole created by a Trim Curve 
Loop; use a separate face for the island. 

 

11.6.7.1 U32[cTCLCount]:  Trim Curve Loop Count 

Trim Curve Loop Count is the number of Trim Curve Loops used by this Face.   

11.6.7.2 Trim Curve Loop 

Each Trim Curve Loop shall be a closed, non-intersecting sequence of Trim Curve 
Segments.  Loops describing outer boundaries are oriented clockwise. Loops describing 
holes are oriented counterclockwise. 

Trim Curve Loop 
Trim Curve Loop Count 

Trim Curve Loop Count 

 



 

 

- 163 - 

 

 

11.6.7.2.1 U32[cTCSCount]:  Trim Curve Segment Count 

Trim Curve Segment Count is the number of Trim Curve Segments in this Trim Curve 
Loop. 

11.6.7.2.2 Trim Curve Segment 

 

11.6.7.2.2.1 U32[cTCSAttr]: Trim Curve Segment Attributes 

0x00000001 – Non-rational: the curve is a non-rational free-form curve. 

0x00000002 – Bezier curve type 

0x00000004 – B-Spline curve type 

0x00000008 – Natural boundary, minimum U 

0x00000010 – Natural boundary, maximum U 

0x00000020 – Natural boundary, minimum V 

0x00000040 – Natural boundary, maximum V 

0x00000800 – Uniform Knot type 

The Bezier and B-Spline attribute bits shall not all be set. If either the Bezier or B-Spline 
bits are set then the free-form curve type has been chosen. 

If one of the Natural boundary bits is set, then the Trim Curve Segment is the curve that 
runs along the corresponding natural boundary of the parameter space.  In this case, 
the Curve Degree T, Knot Array T, and Curve Control Point Array are not present. 

If a Uniform bit is set, then the knot array for that dimension reduces to two values 
stored in the file. The two values stored denote the minimum and the maximum knot 
value, respectively, between which the missing remaining knot values are spaced 
uniformly. 

Trim Curve Segment 
Trim Curve Segment Count 

Trim Curve Segment Count 

 

Knot Array T 

Curve Control Point Array 

Curve Degree T 

 

Trim Curve Segment Attributes 

 



 

- 164 - 

 

11.6.7.2.2.2 U32[cCDegrT]: Curve Degree T 

Curve Degree T is the degree of the free-form curve. 

11.6.7.2.2.3 Knot Array T 

See 11.6.5.5 Knot Array U above; replace “U” with “T”. 

11.6.7.2.2.4 Curve Control Point Array 

 

11.6.7.2.2.4.1 U32[cCPCountT]: Control Point Count T 

Control Point Count T is the number of control points for this trim curve segment. 

For the Bezier curve type the control point count T is equal (number of parameters -1) 
times curve degree T + 1. 

For the B-spline curve type the minimum control point count T is curve degree T + 1. 
The total number of knots in the Knot Array V shall be equal to Control Point Count V 
+ curve degree T + 1. 

11.6.7.2.2.4.2 Curve Control Point 

Curve Control Point is a control point in the U,V parameter space for the surface.  
The precision for the control point is determined by the free-form Attributes in the 
declaration block. 

 

 

11.6.7.2.2.4.2.1 F32: Control Point U 

Control Point U is the U coordinate of the curve control point. 

Control Point Weight 

Control Point Weight Double 

Control Point Count T 
Curve Control Point 

Control Point Count T 

 

Control Point U 

Control Point V 

Control Point U Double 

Control Point V Double 



 

 

- 165 - 

 

11.6.7.2.2.4.2.2 F32: Control Point V 

Control Point V is the V coordinate of the curve control point. 

11.6.7.2.2.4.2.3 F64: Control Point U Double 

Control Point U is the U coordinate of the curve control point, expressed as a 
64-bit float. 

11.6.7.2.2.4.2.4 F64: Control Point V Double 

Control Point V is the V coordinate of the curve control point, expressed as a 
64-bit float. 

11.6.7.2.2.4.3 F32: Control Point Weight 

Control Point Weight is the weight for this control point.  If the non-rational attribute 
bit is set, then Control Point Weight is not present. 

11.6.7.2.2.4.4 F64: Control Point Weight Double 

The precision for control point weights is indicated in the declaration block.  Control 
Point Weight Double is used in place of Control Point Weight if Free-Form Attributes 
indicates 64-bit weights should be used. 

11.6.8 U32: Edge Count 

Edge Count is the number of edges associated with all Trim Curve Segments from this face. 

11.6.9 Edge Description 

An Edge describes the boundary between two faces.  The first face is this face. The second 
face shall be a face appearing before this face in the file.  

A Range from a Trim Curve Segment describes a subset of the curve segment and is defined 
by the start parameter and the stop parameter for that curve segment. An Edge associates a 
Range from a Trim Curve Segment from this face with a Range from a Trim Curve Segment 
from the second face.   

 

First Trim Curve Segment 

Second Trim Curve Segment 

Second Face Index 

 



 

- 166 - 

 

11.6.9.1 First Trim Curve Segment 

 

11.6.9.1.1 U32[cLoopIndex]:  Loop Index 

Loop Index indicates which Trim Curve Loop in this face contains the first trim curve 
segment. 

11.6.9.1.2 U32[cTCSIndex]:  Trim Curve Segment Index 

Trim Curve Segment Index indicates which trim curve segment in the loop is the first trim 
curve segment for this edge. 

11.6.9.1.3 F32: Range Start  Parameter 

Range Start Parameter is the parameter to the curve segment where the edge starts. 

11.6.9.1.4 F32: Range Stop Parameter 

Range Stop Parameter is the parameter to the curve segment where the edge stops. 

11.6.9.2 U32[rCurrentFaceCount]:  Second Face Index 

Second Face Index indicates the face that contains the second trim curve segment.  It shall 
be a Face appearing before this face in the file. 

11.6.9.3 Second Trim Curve Segment 

 

Loop Index 

Trim Curve Segment Index 

 

Range Start Parameter 

Range Stop Parameter 

Loop Index  

Trim Curve Segment Index 

 

Range Start Parameter 

Range Stop Parameter 



 

 

- 167 - 

 

11.6.9.3.1 U32[cLoopIndex]:  Loop Index 

Loop Index indicates which Trim Curve Loop in the second face contains the second trim 
curve segment. 

11.6.9.3.2 U32[cTCSIndex]:  Trim Curve Segment Index 

Trim Curve Segment Index indicates which trim curve segment in the loop is the second 
trim curve segment for this edge. 

11.6.9.3.3 F32: Range Start  Parameter 

Range Start Parameter is the parameter to the curve segment where the edge starts. 

11.6.9.3.4 F32: Range Stop Parameter 

Range Stop Parameter is the parameter to the curve segment where the edge stops. 

 



 

- 168 - 

 

 



 

 

- 169 - 

 

Annex A 
(informative) 

 

Bit Encoding Algorithm – An Implementation 

A.1 Introduction 

This Annex provides an example implementation of the compression algorithm used to encode the 
fields defined in Clause 9. An implementation of the corresponding decompression algorithm is also 
provided. The algorithms are described in the C# Language (ECMA-334). It is highly recommended 
that all implementations of the compression algorithm presented with the same input sequence of 
values and compression contexts produce the same output sequence of bytes. Refer to Clause 10 
for the normative requirements of the bit encoding algorithm. 

The classes defined in A.3 define the compression and decompression algorithms. The interfaces 
supported by these classes are provided in A.2. 

The BitStreamWrite class is used to encode the bits for a sequence of values. Compressed 

write methods accept a compression context parameter in addition to the value to be written. The 
compression context is used to estimate the probability distribution of values. These probability 
estimates are provided by the ContextManager class and used by BitStreamWrite to attempt 

to reduce the number of bits required to store the value. 

The BitStreamRead class is used to recreate the sequence of values from the encoded bits. The 

BitStreamRead class uses the ContextManager class to re-create the same probability 

estimates as used by the BitStreamWrite class. 

The ContextManager class supports probability estimates that are based on the range of possible 

value or based on an adapting history of previous values encountered. 

The DataBlock class is used as a container to hold the encoded bits. The DataBlock class is 

also used to hold the other fields defined in 9.2 for the block structure. 

The Constants class provides names for certain constant values used in the other classes. 

A.1.1 Usage 

The usual writing operation would make several calls to the write methods on the interface of the 
BitStreamWrite class. After all writing is done, the DataBlock would be retrieved from the 

BitStreamWrite class. The BitStreamWrite class provides the encoding for the Data field 

(9.2.4) in the block format. Additional fields such as block type and meta data would be modified 
and then the DataBlock would be stored in a file according to the format in 9.2. 

The usual reading operation would read a block from the file into a DataBlock class. To 

interpret the Data field of the block, the DataBlock class would be provided to a 

BitStreamRead class after which several calls to the read methods on BitStreamRead would 

provide the encoded values. 

For correct results, the sequence of context parameters used by the reading operation must be 
the same as the sequence used by the writing operation. 

A.2 Interfaces 

A.2.1 Bit Stream Write 
using System; 
 
 



 

- 170 - 

 

namespace U3D 
 

{ 
 

 /// <summary> IBitStreamWrite.cs 
 

 /// This file defines the IBitStreamWrite interface and the associated 
 

 /// identifier. IBitStreamWrite is used to write compressed and 
 

 /// uncompressed data to a datablock. 
 

 /// </summary> 
 

 /// <remarks> 
 

 /// <para> The IBitStreamWrite is supported by the BitStreamWrite class. 
 

 /// </para> 
 

 /// <para> Bytes are written in little-endian order. 
 

 /// </para> 
 

 /// </remarks> 
 

 public interface IBitStreamWrite 
 

 { 
 

  /// <summary>Write a U8 to the datablock. 
 

  /// </summary> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// reuturn <returns> 
 

  /// void</returns> 
 

  void WriteU8(Byte uValue); 
 

 
 



 

 

- 171 - 

 

  /// <summary>Write a U16 to the datablock. 
 

  /// </summary> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// returns <returns> 
 

  /// void</returns> 
 

  void WriteU16(UInt16 uValue); 
 

   
 

  /// <summary>Write a U32 to the datablock. 
 

  /// </summary> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// returns <returns> 
 

  /// void</returns> 
 

  void WriteU32(UInt32 uValue); 
 

   
 

  /// <summary>Write a U64 to the datablock. 
 

  /// </summary> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// return <returns> 
 



 

- 172 - 

 

  /// void</returns> 
 

  void WriteU64(UInt64 uValue); 
 

   
 

  /// <summary>Write an I32 to the datablock. 
 

  /// </summary> 
 

  /// iValue <param name = "iValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// returns <returns> 
 

  /// void</returns> 
 

  void WriteI32(Int32 iValue); 
 

   
 

  /// <summary>Write a F32 datablock. 
 

  /// </summary> 
 

  /// fValue <param name = "fValue"> 
 

  /// the value to write to the datablock 
 

  /// </param> 
 

  /// returns <returns> 
 

  /// void</returns> 
 

  void WriteF32(Single fValue); 
 

 
 

  /// <summary>Write a compressed U32 to the datablock. 
 

  /// </summary> 
 

  /// context <param name = "context"> 
 



 

 

- 173 - 

 

  /// the context to use for the arithmetic encoder. 
 

  /// </param> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to compress and write to the datablock  
 

  /// </param> 
 

  /// returns <returns> 
 

  /// void</returns> 
 

  void WriteCompressedU32(UInt32 context, UInt32 uValue); 
 

   
 

  /// <summary>Write a compressed U16 to the datablock. 
 

  /// </summary> 
 

  /// context <param name = "context"> 
 

  /// the context to use for the arithmetic encoder. 
 

  /// </param> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to compress and write to the datablock  
 

  /// </param> 
 

  /// return <returns>void</returns> 
 

  void WriteCompressedU16(UInt32 context, UInt16 uValue); 
 

  
 

  /// <summary>Write a compressed U8 to the datablock. 
 

  /// </summary> 
 

  /// context <param name = "context"> 
 

  /// the context to use for the arithmetic encoder. 
 



 

- 174 - 

 

  /// </param> 
 

  /// uValue <param name = "uValue"> 
 

  /// the value to compress and write to the datablock  
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void WriteCompressedU8(UInt32 context, Byte uValue); 
 

   
 

  /// <summary>Stores the data written by the bit stream writer 
 

  /// in a datablock. 
 

  /// </summary> 
 

  /// rDataBlock <param name = "rDataBlock"> 
 

  /// returns the data written by the BitStreamWriter in a datablock 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void GetDataBlock(out IDataBlock rDataBlock); 
 

 
 

  /// <summary>Set the current position to the next byte boundary 
 

  /// </summary> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void AlignToByte(); 
 

   
 



 

 

- 175 - 

 

  /// <summary>Set the current position to the next 4 byte boundary 
 

  /// </summary> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void AlignTo4Byte(); 
 

 } 
} 

 

A.2.2 Bit Stream Read 
using System; 
 

namespace U3D 
 

{ 
 

 /// <summary>IBitStreamRead.cs 
 

 /// This file defines the IBitStreamRead interface and the associated  
 

 /// identifier. IBitStreamRead is used to read compressed and uncompressed  
 

 /// data to a data block. 
 

 /// </summary> 
 

 /// <remarks> 
 

 /// <para>The IBitStreamRead is supported by the BitStreamRead class. 
 

 /// </para> 
 

 /// <para>Bytes are read in little-endian order. 
 

 /// </para> 
 

    /// </remarks> 
 

 public interface IBitStreamRead 
 

 { 
 

  /// <summary>Read a U8 from the datablock associated with this 
 



 

- 176 - 

 

  ///  bitstream. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue.</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadU8(out Byte rValue); 
 

   
 

  /// <summary>Read a U16 from the datablock. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadU16(out UInt16 rValue); 
 

     
 

  /// <summary>Read a U32 from the datablock. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 



 

 

- 177 - 

 

  /// void</returns> 
 

  void ReadU32(out UInt32 rValue); 
 

     
 

  /// <summary>Read a U64 from the datablock. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadU64(out UInt64 rValue); 
 

     
 

  /// <summary>Read a I32 from the datablock. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadI32(out Int32 rValue); 
 

   
 

  /// <summary>Read a F32 from the datablock. 
 

  /// </summary> 
 

  /// rValue <param name = "rValue"><description> 
 



 

- 178 - 

 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadF32(out Single rValue); 
 

 
 

  /// <summary>Read a compressed U32 from the datablock. 
 

  /// </summary> 
 

  /// context <param name="context"> 
 

  /// the context used to interpret the compressed value 
 

  /// </param> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadCompressedU32(UInt32 context, out UInt32 rValue); 
 

     
 

  /// <summary>Read a compressed U16 from the datablock. 
 

  /// </summary> 
 

  /// context <param name="context"> 
 

  /// the context used to interpret the compressed value 
 

  /// </param> 
 

  /// rValue <param name = "rValue"><description> 
 



 

 

- 179 - 

 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadCompressedU16(UInt32 context, out UInt16 rValue); 
 

   
 

  /// <summary>Read a compressed U8 from the datablock. 
 

  /// </summary> 
 

  /// context <param name="context"> 
 

  /// the context used to interpret the compressed value 
 

  /// </param> 
 

  /// rValue <param name = "rValue"><description> 
 

  /// the value read is returned in rValue</description> 
 

  /// </param> 
 

  /// return <returns> 
 

  /// void</returns> 
 

  void ReadCompressedU8(UInt32 context, out Byte rValue); 
 

     
 

  /// <summary>Set the data that is read by the BitStreamReader. 
 

  /// </summary> 
 

  /// <param name = "dataBlock">the data that is to be read 
 

  /// </param> 
 

  /// <returns>void</returns> 
 

  void SetDataBlock(IDataBlock dataBlock); 
 



 

- 180 - 

 

 } 
} 

 

A.2.3 Context Manager 
using System; 
 

namespace U3D 
 

{ 
   
 

 /// <summary>IContextManager.cs 
 

 /// 
 

 /// This file defines the IContextManager interface. 
 

 /// IContextManager is used to access the static and dynamic contexts used  
 

 /// for the reading and writing of compressed data. 
 

 /// </summary> 
 

 /// <remarks> 
 

 /// <para> Dynamic Context: dynamic contexts are specified as 0x0001  
 

 /// through 0x3FFF.  Dynamic contexts keep a histogram that stores 
 

 /// the number of occurrences of symbols that are added through the 
 

 /// AddSymbol method. 
 

 /// </para> 
 

 /// <para> Static Context: static contexts are specified as 0x4000  
 

 /// through 0x7FFF.  Static contexts represent histograms where each  
 

 /// value between 0 and (context - 0x4000) are equally likely.  Static 
 

 /// contexts histograms are not changed by the AddSymbol method. 
 

 /// </para> 
 

 /// <para> Context 0 or Context8: context 0 is a shortcut to context  
 



 

 

- 181 - 

 

 /// 0x40FF which corresponds to values from 0 through 255. 
 

 /// </para> 
 

 /// <para> When a histogram for a dynamic context is initialized,  
 

 /// the symbol frequency of the escape symbol is initialized to 1. 
 

 /// </para> 
 

 /// <para> Symbols larger than 0xFFFF are treated as static. 
 

 /// </para> 
 

 /// <para> The IContextManager interface is supported by the  
 

 /// ContextManager class. 
 

 /// </para> 
 

 /// </remarks> 
 

 public interface IContextManager 
 

 { 
 

  /// <summary>Add an occurance of the symbol to the specified  
 

  /// context.</summary> 
 

  /// context <param name="context"> 
 

  /// add the occurrence to this context's histogram</param> 
 

  /// symbol <param name="symbol"> 
 

  /// add an occurrence of this symbol to the histogram</param>  
 

  void AddSymbol(UInt32 context, UInt32 symbol); 
 

   
 

  /// <summary>Get the number of occurrences of the given symbol 
 

  /// in the context. 
 

  /// </summary> 
 



 

- 182 - 

 

   /// context <param name="context"> 
 

   /// get the frequency from this context's histogram 
 

   /// </param> 
 

  /// symbol <param name="symbol"> 
 

  /// get the frequency of this symbol the symbol  
 

  /// </param> 
 

  /// <returns>the number of occurences of the specified symbol in the  
 

  /// specified context 
 

  /// </returns> 
 

  UInt32 GetSymbolFrequency(UInt32 context, UInt32 symbol); 
 

 
 

  /// <summary>Get the total number of occurrences for all of the  
 

  /// symbols that are less than the given symbol in the context. 
 

  /// </summary> 
 

  /// context <param name="context"> 
 

  /// use this context's histogram 
 

  /// </param> 
 

  /// symbol <param name="symbol"> 
 

  /// use this symbol 
 

  /// </param> 
 

  /// return <returns> 
 

  /// sum of all symbol freqs for symbols less than the  
 

  /// given symbol in the given context 
 

  /// </returns> 
 



 

 

- 183 - 

 

  UInt32 GetCumulativeSymbolFrequency(UInt32 context, UInt32 symbol); 
 

              
       
 

  /// <summary>Get the total occurrences of all the symbols in this  
 

  /// context. 
 

  /// </summary> 
 

  /// context<param name="context">use this context's    
  /// histogram</param> 
 

  /// <returns>total occurances of all symbols for the given context 
 

  /// </returns> 
 

  UInt32 GetTotalSymbolFrequency(UInt32 context); 
 

   
 

  /// <summary>Find the symbol in a histogram that has 
 

  /// the cumulative frequency specified. 
 

  /// </summary> 
 

  /// context<param name="context"> 
 

  /// use this context's histogram 
 

  /// </param> 
 

  /// symbolFrequency<param name="symbolFrequency"> 
 

  /// use this frequency 
 

  /// </param> 
 

  /// return<returns> 
 

  /// the symbol that corresponds to the given cumulative frequency 
 

  /// and context</returns> 
 

  UInt32 GetSymbolFromFrequency(UInt32 context, UInt32    
  symbolFrequency); 
 



 

- 184 - 

 

 } 

} 

A.2.4 Data Block 
using System; 
 

namespace U3D 
 

{ 
 

 /// <summary> 
 

 /// The IDataBlock interface defines the properties associated with  
 

 /// a block of data.  IDataBlock is used by the bitstream objects. 
 

 /// </summary> 
 

 public interface IDataBlock  
 

 { 
 

   
 

  /// <summary> 
 

  /// DataSize is the size of the data in bytes. 
 

  /// </summary> 
 

  UInt32 DataSize 
 

  { 
 

   get; 
 

   set; 
 

  } 
 

   
 

  /// <summary> 
 

  /// Data is an array that stores the information.  The information 
 

  /// in the DataBlock is in byte increments; so, not all of the array 
 



 

 

- 185 - 

 

  /// will contain valid data.  See the DataSize property for the  
 

  /// amount of valid data. 
 

  /// </summary> 
 

  UInt32[] Data 
 

  { 
 

   get; 
 

   set; 
 

  } 
 

 
 

  /// <summary> 
 

  /// MetaDataSize is the size of the MetaData in bytes. 
 

  /// </summary> 
 

  UInt32 MetaDataSize 
 

  { 
 

   get; 
 

   set; 
 

  } 
 

 
 

  /// <summary> 
 

  /// MetaData is an array that stores the information.  The 
 

  /// information in the DataBlock is in byte increments; so, not all  
 

  /// of the array will contain valid data.  See the MetaDataSize  
 

  /// property for the amount of valid data. 
 

  /// </summary> 
 



 

- 186 - 

 

  UInt32[] MetaData 
 

  { 
 

   get; 
 

   set; 
 

  } 
 

 
 

  /// <summary>   
 

  /// BlockType identifies the type of data stored in the data block  
 

  /// so that it can be interpreted correctly. 
 

  /// </summary> 
 

  UInt32 BlockType 
 

  { 
 

   get; 
 

   set; 
 

  } 
 

   
 

  /// <summary> 
 

  /// Priority indicates where the block should be placed in relation  
 

  /// to other blocks.  Blocks should be ordered in increasing   
  /// priority. 
 

  /// </summary> 
 

  UInt32 Priority 
 

  { 
 

   get; 
 

   set; 
 



 

 

- 187 - 

 

  } 
 

 } 
 

} 

 

A.3 Classes 

A.3.1 Bit Stream Write 
using System; 
 

 

namespace U3D 

{ 

 

 /// <summary>BitStreamWrite.cs 

 /// BitStreamWrite is the implementation of IBitStreamWrite. 

 /// </summary> 

 /// <remarks> 

 /// <para>All uncompressed writes are converted to unsigned integers and 

 ///  broken down into a sequence of U8 values that are written with the  

 /// private method WriteSymbol in the static context Context8. 

 /// </para> 

 /// <para> All compressed writes are for unsigned integers and are passed  

 /// through to the private method WriteSymbol with the associated context. 

 /// </para> 

 /// </remarks> 

 public class BitStreamWrite : IBitStreamWrite 

 { 

  public BitStreamWrite() 

  { 

   this.contextManager = new ContextManager(); 

   this.high = 0x0000FFFF; 

   this.data = new UInt32[DataSizeIncrement]; 

   this.compressed = false; 

  } 

 

  ~BitStreamWrite() 

  { 

  } 



 

- 188 - 

 

 

  #region IBitStreamWrite implementation 

 

  public void WriteU8(Byte uValue) 

  { 

   UInt32 symbol = (UInt32) uValue; 

   SwapBits8(ref symbol); 

   bool escape = false; 

   WriteSymbol(Constants.Context8, symbol, out escape);  

  } 

   

  public void WriteU16(UInt16 uValue) 

  { 

   WriteU8((Byte)(0x00FF & uValue)); 

   WriteU8((Byte)(0x00FF & (uValue >> 8))); 

  } 

   

  public void WriteU32(UInt32 uValue) 

  { 

   WriteU16((UInt16)(0x0000FFFF & uValue)); 

   WriteU16((UInt16)(0x0000FFFF & (uValue >> 16))); 

  } 

   

  public void WriteU64(UInt64 uValue) 

  { 

   WriteU32((UInt32)(0x00000000FFFFFFFF & uValue)); 

   WriteU32((UInt32)(0x00000000FFFFFFFF & (uValue >> 32))); 

  } 

   

  public void WriteI32(Int32 iValue) 

  { 

   WriteU32((UInt32)iValue); 

  } 

   

  public void WriteF32(Single fValue) 

  { 

   UInt32 uValue =  

    BitConverter.ToUInt32(BitConverter.GetBytes(fValue), 0); 

   WriteU32((UInt32) uValue); 

  } 



 

 

- 189 - 

 

   

  public void WriteCompressedU32(UInt32 context, UInt32 uValue) 

  { 

   compressed = true; 

   bool escape = false; 

   if((context != 0) && (context < Constants.MaxRange)) 

   { 

    WriteSymbol(context, uValue, out escape); 

    if(escape == true) 

    { 

     WriteU32(uValue); 

     this.contextManager.AddSymbol(context, uValue + 1U); 

    } 

   } 

   else 

   { 

    WriteU32(uValue); 
 

   } 

  } 

   

  public void WriteCompressedU16(UInt32 context, UInt16 uValue) 

  { 

   compressed = true; 

   bool escape = false; 

   if((context != 0) && (context < Constants.MaxRange)) 

   {     

    WriteSymbol(context, uValue, out escape); 

    if(escape == true) 

    { 

     WriteU16(uValue); 

     this.contextManager.AddSymbol(context, uValue + 1U); 

    } 

   } 

   else 

   { 

    WriteU16(uValue); 

   } 

  } 

   



 

- 190 - 

 

   

  public void WriteCompressedU8(UInt32 context, Byte uValue) 

  { 

   compressed = true; 

   bool escape = false; 

   if((context != 0) && (context < Constants.MaxRange)) 

   {     

    WriteSymbol(context, uValue, out escape); 

    if(escape == true) 

    { 

     WriteU8(uValue); 

     this.contextManager.AddSymbol(context, uValue + 1U); 

    } 

   } 

   else 

   { 

    WriteU8(uValue); 

   } 

  } 

 

  public void GetDataBlock(out IDataBlock rDataBlock) 

  { 

   if(compressed)   //Flush the arithmetic coder 

   { 

    this.WriteU32(0); 

   } 

   AlignToByte();  

   UInt32 numBytes = ((UInt32)this.dataPosition << 2)  

       + ((UInt32)this.dataBitOffset >> 3); 

   rDataBlock = new DataBlock(); 

   PutLocal(); 

   rDataBlock.DataSize = numBytes; 

   UInt32[] tempData = rDataBlock.Data; 

   Array.Copy(this.data, tempData, tempData.Length); 

   rDataBlock.Data = tempData; 

  } 

 

  public void AlignToByte() 

  { 

   // Check input(s) 



 

 

- 191 - 

 

   Int32 uBitCount = 0; 

   GetBitCount(ref uBitCount); 

   

   uBitCount = (8 - (uBitCount & 7)) & 7; 

   this.dataBitOffset += uBitCount; 

 

   if(this.dataBitOffset >= 32) 

   { 

    this.dataBitOffset -= 32; 

    IncrementPosition(); 

   } 

  } 

 

  public void AlignTo4Byte() 

  { 

   if(this.dataBitOffset > 0)  

   { 

    this.dataBitOffset = 0; 

    IncrementPosition(); 

   } 

  } 

    

  #endregion IBitStreamWriter methods 

  #region private helper methods 

 

  /*  

   * WriteSymbol 

   * Write the given symbol to the datablock in the specified context. 

   * rEscape returns as false if the symbol was written successfully. 

   * rEscape will return true when writing in dynamically compressed  

   * contexts when the symbol to write has not appeared yet in the 

   * context's histogram.  In this case, the escape symbol, 0, is  

   * written. 

   */ 

  private void WriteSymbol(UInt32 context, UInt32 symbol, out bool  
  rEscape) 

  { 

   symbol++; 

   rEscape = false; 

   UInt32 totalCumFreq = 0; 



 

- 192 - 

 

   UInt32 symbolCumFreq = 0; 

   UInt32 symbolFreq = 0; 

 

   totalCumFreq = 
this.contextManager.GetTotalSymbolFrequency(context); 

   symbolCumFreq = this.contextManager 

     .GetCumulativeSymbolFrequency(context, symbol); 

   symbolFreq =  

    this.contextManager.GetSymbolFrequency(context, symbol); 

 

   if(0 == symbolFreq) 

   { //the symbol has not occurred yet.   

    //Write out the escape symbol, 0. 

    symbol = 0; 

    symbolCumFreq = this.contextManager 

       GetCumulativeSymbolFrequency(context,  
       symbol); 

    symbolFreq =  

     this.contextManager.GetSymbolFrequency(context,  
     symbol); 

   } 

   if (0 == symbol)  

   { //the symbol is the escape symbol. 

    rEscape = true; 

   } 

   UInt32 range = this.high + 1 - this.low; 

 
 

   this.high = this.low -1 + range  

      * (symbolCumFreq + symbolFreq) / totalCumFreq; 

   this.low = this.low + range * symbolCumFreq / totalCumFreq; 

    

   this.contextManager.AddSymbol(context, symbol); 

 

   //write bits 

   UInt32 bit = this.low >> 15; 

    

   UInt32 highmask = this.high & Constants.HalfMask; 

   UInt32 lowmask = this.low & Constants.HalfMask; 

 

   while ((this.high & Constants.HalfMask)  



 

 

- 193 - 

 

     == (this.low & Constants.HalfMask)) 

   { 

    this.high &= ~Constants.HalfMask; 

    this.high += this.high + 1; 

    WriteBit(bit); 

 

    while(this.underflow > 0) 

    { 

     this.underflow--; 

     WriteBit((~bit) & 1); 

    } 

 

    this.low &= ~Constants.HalfMask; 

    this.low += this.low; 

    bit = this.low >> 15; 

   } 

 

   //check for underflow 

   // Underflow occurs when the values in this.low and this.high 

   // approach each other, without leaving the lower resp. upper 

   // half of the scaling interval. The range is not large enough 

   // to code the next symbol.  To avoid this, the interval is 

   // artificially enlarged once the this.low is larger than the 

   // first quarter and this.high is lower than the third quarter. 

   while ((0 == (this.high & Constants.QuarterMask))  

    && (Constants.QuarterMask  

     == (this.low & Constants.QuarterMask))) 

   { 

    this.high &= ~Constants.HalfMask; 

    this.high <<= 1; 

    this.low <<= 1; 

    this.high |= Constants.HalfMask; 

    this.high |= 1; 

    this.low &= ~Constants.HalfMask; 

    this.underflow++; 

   } 

  } 

   

  /* 

   * SwapBits8 



 

- 194 - 

 

   * reverses the order of the bits of an 8 bit value. 

   * E.g. abcdefgh -> hgfedcba 

   */ 

  private void SwapBits8(ref UInt32 rValue) 

  { 

   rValue = (Constants.Swap8[(rValue) & 0xf] << 4)  

     | (Constants.Swap8[(rValue) >> 4]); 

  } 

 

  /* 

   * WriteBit 

   * Write the given bit to the datablock. 

   */ 

  private void WriteBit(UInt32 bit) 

  { 

NOTE 
Shift operations on U32s are only valid for shifts of 0 to 31 bits. 

   UInt32 mask = 1; 

   bit &= mask; 

 

   this.dataLocal &= ~(mask << this.dataBitOffset); 

   this.dataLocal |= (bit << this.dataBitOffset); 

 

   this.dataBitOffset += 1; 

   if(this.dataBitOffset >= 32) 

   { 

    this.dataBitOffset -= 32; 

    IncrementPosition(); 

   } 

  } 

 

  /*  

   * IncrementPosition 

   * Updates the values of the datablock stored in dataLocal and  
  dataLocalNext 

   * to the next values in the datablock. 

   */ 

  private void IncrementPosition() 

  { 

   this.dataPosition++; 

   CheckPosition(); 



 

 

- 195 - 

 

   this.data[this.dataPosition-1] = this.dataLocal; 

   this.dataLocal = this.dataLocalNext; 

   this.dataLocalNext = this.data[this.dataPosition+1]; 

  } 

 

  /*  

   * GetLocal 

   * store the initial 64 bits of the datablock in dataLocal and  

   * dataLocalNext 

   */ 

  private void GetLocal() 

  { 

   CheckPosition(); 

   this.dataLocal = this.data[this.dataPosition]; 

   this.dataLocalNext = this.data[this.dataPosition+1]; 

  } 

 

  /* 

   * PutLocal 

   * stores the local values of the data to the data array 

   * 

   */ 

  private void PutLocal() 

   { 

    this.data[this.dataPosition] = dataLocal; 

    this.data[this.dataPosition+1] = dataLocalNext; 

   } 

    

   

 

  /*  

   * CheckPosition 

   * checks that the array allocated for writing is large 

   * enough.  Reallocates if necessary. 

   */ 

  private void CheckPosition() 

  { 

   if(this.dataPosition + 2 > this.data.Length)  

   { 



 

- 196 - 

 

    AllocateDataBuffer(this.dataPosition + 2 +    
    DataSizeIncrement); 

   } 

  } 

 

  /*  

   * AllocateDataBuffer 

   * Creates and new array for storing the data written.  Copies 

   * values of the old array to the new arry. 

   */ 

  private void AllocateDataBuffer(Int32 size) 

  { 

   // Store an old buffer if it exists 

   if(null != this.data) 

   { 

    UInt32[] oldData = this.data; 

    this.data = new UInt32[size]; 

     

    for(int i = 0; i < oldData.Length; i++) 

    { 

     this.data[i] = oldData[i]; 

    } 

   } 

   else 

   { 

    this.data = new UInt32[size]; 

   } 

  } 

 

  /*  

   * GetBitCount 

   * returns the number of bits written in rCount 

   */ 

  void GetBitCount(ref Int32 rCount) 

  { 

   rCount = (this.dataPosition << 5) + this.dataBitOffset; 

  } 

 

  #endregion private helper methods 

 



 

 

- 197 - 

 

  #region member variables 

 

  private IContextManager contextManager; //the context manager handles  

  // the updates to the histograms for the compression contexts. 

 

  private UInt32 high;   //high and low are the upper and  
  lower  

  private UInt32 low;   //limits on the probability  

  private UInt32 underflow;  //stores the number of bits of  
  underflow  

       //caused by the limited range of high  
  and  

       //low 

   

  private bool compressed; //this is true if a compressed value was 

      //written.  when the datablock is retrieved, 

      //a 32 bit 0 is written to reset the values of 

      //high, low, and underflow. 

   

  private UInt32[] data;  //the data section of the datablock to  
  write. 

  private Int32 dataPosition; //the position currently to write in the  

       //datablock specified in 32 bit increments. 

  private UInt32 dataLocal; //the local value of the data   
  corresponding 

       //to dataposition 

  private UInt32 dataLocalNext; //the 32 bits in data after   
  dataLocal 

  private Int32 dataBitOffset; //the offset into dataLocal that the  
  next  

       //write will occur 

 

  #endregion member variables 

 

  #region constants  

 

  private const Int32 DataSizeIncrement = 0x000023F8; 

 

  #endregion constants 

 } 

} 
 



 

- 198 - 

 

A.3.2 Bit Stream Read 
 

using System; 
 
 

namespace U3D 
 

{ 
 

 /// <summary> BitStreamRead.cs 
 

 /// BitStreamRead is the implementation of IBitStreamRead.</summary> 
 

 /// 
 

 /// <remarks> 
 

 /// <para> All uncompressed reads are read in as a sequence of U8s  
 

 /// with the private method ReadSymbol in context Context8 and then built  
 

 /// up to the appropriate size and cast to the appropriate type for  
 

 /// the read call. are converted to unsigned integers and broken down  
 

 /// into a sequence of U8 values that are writen with the private method   
 

 /// WriteSymbol in the static context Context8. 
 

 /// </para> 
 

 ///  
 

 /// <para> All compressed reads are for unsigned integers and are passed  
 

 /// through to the private method ReadSymbol with the associated context. 
 

 /// </para> 
 

 /// </remarks> 
 

  
 

 public class BitStreamRead : IBitStreamRead 
 

 { 
 

  public BitStreamRead() 
 



 

 

- 199 - 

 

  { 
 

   this.contextManager = new ContextManager(); 
 

   this.high = 0x0000FFFF; 
 

 
 

  } 
 

 
 

  ~BitStreamRead() 
 

  { 
 

  } 
 

  #region 

  IBitStreamRead interface implementation 
 

  public void ReadU8(out Byte rValue) 
 

  { 
 

   UInt32 uValue = 0; 
 

    
 

   ReadSymbol(Constants.Context8, out uValue); 
 

   uValue--; 

   SwapBits8(ref uValue); 
 

    
 

   rValue = (Byte) uValue; 
 

  } 
 

 
 

  public void ReadU16(out UInt16 rValue) 
 

  { 
 

   Byte low = 0; 
 



 

- 200 - 

 

   Byte high = 0; 
 

 
 

   ReadU8(out low); 
 

   ReadU8(out high); 
 

 
 

   rValue = (UInt16) (((UInt16) low) | (((UInt16) high) << 8)); 
 

  } 
 

 
 

  public void ReadU32(out UInt32 rValue) 
 

  { 
 

   UInt16 low = 0; 
 

   UInt16 high = 0; 
 

 
 

   ReadU16(out low); 
 

   ReadU16(out high); 
 

 
 

   rValue = ((UInt32) low) | ((UInt32) (high << 16)); 
 

  } 
 

 
 

  public void ReadU64(out UInt64 rValue) 
 

  { 
 

   UInt32 low = 0; 
 

   UInt32 high = 0; 
 

 
 



 

 

- 201 - 

 

   ReadU32(out low); 
 

   ReadU32(out high); 
 

 
 

   rValue = ((UInt64) low) | (((UInt64) high) << 32); 
 

  } 
 

 
 

  public void ReadI32(out Int32 rValue) 
 

  { 
 

   UInt32 uValue = 0; 
 

 
 

   ReadU32(out uValue); 
 

    
 

   rValue = (Int32)(uValue); 
 

  } 
 

 
 

  public void ReadF32(out Single rValue) 
 

  { 
 

   UInt32 uValue = 0; 
 

   ReadU32(out uValue); 
 

   rValue = BitConverter.ToSingle(BitConverter.GetBytes(uValue), 0); 
 

  } 
 

   
 

  public void ReadCompressedU32(UInt32 context, out UInt32 rValue) 
 

  { 
 



 

- 202 - 

 

   UInt32 symbol = 0; 
 

 
 

   if (context != Constants.Context8 && context < Constants.MaxRange)  
 

   {   //the context is a compressed context 
 

    ReadSymbol(context, out symbol); 
 

    if (symbol != 0)  
 

    {   //the symbol is compressed 
 

     rValue = symbol - 1; 
 

    } 
 

    else 
 

    { //escape character, the symbol was not compressed 
 

     ReadU32(out rValue); 
 

     this.contextManager.AddSymbol(context, rValue + 1U); 
 

    } 
 

   } 
 

   else 
 

   { //The context specified is uncompressed. 
 

    ReadU32(out rValue); 
 

   } 
 

  } 
 

 
 

  public void ReadCompressedU16(UInt32 context, out UInt16 rValue) 
 

  { 
 

   UInt32 symbol = 0; 
 



 

 

- 203 - 

 

 
 

   if (context != 0 && context < Constants.MaxRange)  
 

   {   //the context is a compressed context 
 

    ReadSymbol(context, out symbol); 
 

    if (symbol != 0)  
 

    {   //the symbol is compressed 
 

     rValue = (UInt16) (symbol - 1); 
 

    } 
 

    else 
 

    { //the symbol is uncompressed 
 

     ReadU16(out rValue); 
 

     this.contextManager.AddSymbol(context, rValue + 1U); 
 

    } 
 

   } 
 

   else 
 

   { //the context specified is not compressed 
 

    ReadU16(out rValue); 
 

   } 
 

  } 
 

 
 

  public void ReadCompressedU8(UInt32 context, out Byte rValue) 
 

  { 
 

   UInt32 symbol = 0; 
 

 
 



 

- 204 - 

 

   if (context != 0 && context < Constants.MaxRange)  
 

   {   //the context is a compressed context 
 

    ReadSymbol(context, out symbol); 
 

    if (symbol != 0)  
 

    {   //the symbol is compressed 
 

     rValue = (Byte)(symbol - 1); 
 

    } 
 

    else 
 

    { //the symbol is not compressed 
 

     ReadU8(out rValue); 
 

     this.contextManager.AddSymbol(context, rValue +  
     (UInt32)1); 
 

    } 
 

   } 
 

   else 
 

   { //the context specified is not compressed 
 

    ReadU8(out rValue); 
 

   } 
 

 
 

  } 
 

 
 

  public void SetDataBlock(IDataBlock dataBlock) 
 

  { //set the data to be read to data and get the first part of the 
   data 
 

   //into local variables 
 



 

 

- 205 - 

 

   UInt32[] tempData = dataBlock.Data; 
 

   this.data = new UInt32[tempData.Length]; 
 

   Array.Copy(tempData, this.data, tempData.Length); 
 

   this.dataPosition = 0; 
 

   this.dataBitOffset = 0; 
 

   GetLocal(); 
 

  } 
 

   
 

#endregion IBitStreamRead implementation 
 

 
 

#region private helper methods 
 

  /* internally the BitStreamRead object stores 64 bits from the  
  DataBlock's  
 

   * data section in dataLocal and dataLocalNext.   
 

   */ 
 

 
 

  /* SwapBits8 
 

   * reverses the order of the bits of an 8 bit value. 

   * E.g. abcdefgh -> hgfedcba 

   */ 
 

  private void SwapBits8(ref UInt32 rValue) 
 

  { 
 

   rValue = (Constants.Swap8[(rValue) & 0xf] << 4)  
 

     | (Constants.Swap8[(rValue) >> 4]); 
 

  } 
 

 
 



 

- 206 - 

 

  /* ReadSymbol 
 

   * Read a symbol from the datablock using the specified context. 
 

   * The symbol 0 represents the escape value and signifies that the 
 

   * next symbol read will be uncompressed. 
 

   */ 
 

  private void ReadSymbol(UInt32 context, out UInt32 rSymbol)  
 

  { 
 

   UInt32 uValue = 0; 
 

 
 

   // Fill in the code word 
 

   UInt32 position = 0; 
 

   GetBitCount(out position); 
 

   ReadBit(out this.code); 
 

   this.dataBitOffset += (Int32)this.underflow; 
 

 
 

   while (this.dataBitOffset >= 32) 
 

   { 
 

    this.dataBitOffset -= 32; 
 

    IncrementPosition(); 
 

   } 
 

 
 

   UInt32 temp = 0; 
 

   Read15Bits(out temp); 
 

   this.code <<= 15; 
 



 

 

- 207 - 

 

   this.code |= temp; 
 

   SeekToBit(position); 
 

  
 

   // Get total count to calculate probabilites 
 

   UInt32 totalCumFreq =  
 

    this.contextManager.GetTotalSymbolFrequency(context); 
 

 
 

   // Get the cumulative frequency of the current symbol 
 

   UInt32 range = this.high + 1 - this.low; 
 

 
 

   // The relationship: 
 

   // codeCumFreq <= (totalCumFreq * (this.code - this.low)) / range 
 

   // is used to calculate the cumulative frequency of the current  
 

   // symbol.  The +1 and -1 in the line below are used to counteract  
 

   // finite word length problems resulting from the division by  
   range. 
 

   UInt32 codeCumFreq =  
 

    ((totalCumFreq) * (1 + this.code - this.low) - 1) / (range); 
 

   // Get the current symbol 
 

   uValue = this.contextManager 
 

      .GetSymbolFromFrequency(context, codeCumFreq); 
 

   // Update state and context 
 

   UInt32 valueCumFreq =  
 

    this.contextManager 
 

     .GetCumulativeSymbolFrequency(context, uValue); 
 



 

- 208 - 

 

   UInt32 valueFreq =  
 

    this.contextManager.GetSymbolFrequency(context, uValue); 
 

 
 

   UInt32 low = this.low; 
 

   UInt32 high = this.high; 
 

 
 

   high = low - 1 + range * (valueCumFreq + valueFreq) /   
   totalCumFreq; 
 

   low  = low + range * (valueCumFreq) / totalCumFreq; 
 

   this.contextManager.AddSymbol(context, uValue); 
 

 
 

    
 

   Int32 bitCount; 
 

   UInt32 maskedLow; 
 

   UInt32 maskedHigh; 
 

   // Count bits to read 
 

    
 

   // Fast count the first 4 bits 
 

   //compare most significant 4 bits of low and high 
 

   bitCount =  
 

    (Int32)ReadCount[((low >> 12) ^ (high >> 12)) & 0x0000000F]; 
 

 
 

   low &= FastNotMask[bitCount]; 
 

   high &= FastNotMask[bitCount]; 
 

 
 



 

 

- 209 - 

 

   high <<=  bitCount; 
 

   low <<= bitCount; 

 
 

   high |= (UInt32) ((1 << bitCount) -1); 
 

   // Regular count the rest 
 

    
 

   maskedLow = Constants.HalfMask & low; 
 

   maskedHigh = Constants.HalfMask & high; 
 

 
 

   while (((maskedLow | maskedHigh) == 0)  
 

    || ((maskedLow == Constants.HalfMask)  
 

     && maskedHigh == Constants.HalfMask)) 
 

   { 
 

    low = (Constants.NotHalfMask & low) << 1; 
 

    high = ((Constants.NotHalfMask & high) << 1) | 1; 
 

    maskedLow = Constants.HalfMask & low; 
 

    maskedHigh = Constants.HalfMask & high; 
 

    bitCount++; 
 

   } 
 

 
 

   UInt32 savedBitsLow = maskedLow; 
 

   UInt32 savedBitsHigh = maskedHigh; 
 

 
 

   if(bitCount > 0) 
 

   { 
 



 

- 210 - 

 

    bitCount += (Int32)this.underflow; 
 

    this.underflow = 0; 
 

   } 
 

 
 

   // Count underflow bits 
 

   maskedLow = Constants.QuarterMask & low; 
 

   maskedHigh = Constants.QuarterMask & high; 
 

 
 

   UInt32 underflow = 0; 
 

 
 

   while ((maskedLow == 0x4000) && (maskedHigh == 0)) 
 

   { 
 

    low &= Constants.NotThreeQuarterMask; 
 

    high &= Constants.NotThreeQuarterMask; 
 

 
 

    low += low; 
 

    high += high; 
 

 
 

    high |= 1; 
 

    maskedLow = Constants.QuarterMask & low; 
 

    maskedHigh = Constants.QuarterMask & high; 
 

    underflow++; 
 

   } 
 

 
 



 

 

- 211 - 

 

   // Store the state 
 

   this.underflow += underflow; 
 

   low |= savedBitsLow; 
 

   high |= savedBitsHigh; 
 

   this.low = low; 
 

   this.high = high; 
 

 
 

   // Update bit read position 
 

   this.dataBitOffset += bitCount; 
 

 
 

   while(this.dataBitOffset >= 32) 
 

   { 
 

    this.dataBitOffset -= 32; 
 

    IncrementPosition(); 
 

   } 
 

   // Set return value 
 

   rSymbol = uValue; 
 

  } 
 

 
 

  /*  
 

   * GetBitCount 
 

   * returns the number of bits read in rCount 
 

   */ 
 

  private void GetBitCount(out UInt32 rCount) 
 



 

- 212 - 

 

  { 
 

   rCount = (UInt32)((this.dataPosition << 5) + this.dataBitOffset); 
 

  } 
 

 
 

  /* ReadBit 
 

   * Read the next bit in the datablock.  The value is returned in  
 

   * rValue. 
 

   */ 
 

  private void ReadBit(out UInt32 rValue) 
 

  { 
 

   UInt32 uValue = 0; 
 

 
 

   uValue = this.dataLocal >> this.dataBitOffset; 
 

   uValue &= 1; 
 

   this.dataBitOffset ++; 
 

   if(this.dataBitOffset >= 32) 
 

   { 
 

    this.dataBitOffset -= 32; 
 

    IncrementPosition(); 
 

   } 
 

    
 

   rValue = uValue; 
 

  } 
 

 
 



 

 

- 213 - 

 

  /* Read15Bits 
 

   * Read the next 15 bits from the datablock.  the value is returned 
 

   * in rValue. 
 

   */ 
 

  private void Read15Bits(out UInt32 rValue) 
 

  { 
 

   UInt32 uValue = this.dataLocal >> this.dataBitOffset; 
 

    
 

   if(this.dataBitOffset > 17) 
 

   { 
 

    uValue |= (this.dataLocalNext << (32 - this.dataBitOffset)); 
 

   } 
 

 
 

   uValue += uValue; 
 

 
 

   uValue = (Constants.Swap8[(uValue >> 12) & 0xf]) 
 

    | ((Constants.Swap8[(uValue >> 8) & 0xf ]) << 4 ) 
 

    | ((Constants.Swap8[(uValue >> 4) & 0xf]) << 8 ) 
 

    | ((Constants.Swap8[uValue & 0xf]) << 12 ); 
 

 
 

 
 

   rValue = uValue; 
 

   this.dataBitOffset += 15; 
 

   if(this.dataBitOffset >= 32) 
 



 

- 214 - 

 

   { 
 

    this.dataBitOffset -= 32; 
 

    IncrementPosition(); 
 

   } 
 

  } 
 

 
 

  /*  
 

   * IncrementPosition 
 

   * Updates the values of the datablock stored in dataLocal and  
  dataLocalNext 
 

   * to the next values in the datablock. 
 

   */ 
 

  private void IncrementPosition() 
 

  { 
 

   this.dataPosition++; 
 

   
 

   this.dataLocal = this.data[dataPosition]; 

   if(this.data.Length > this.dataPosition+1) 
 

   { 
 

    this.dataLocalNext = this.data[this.dataPosition+1]; 
 

   } 

   else 

   { 

    this.dataLocalNext = 0; 

   } 
 

  } 
 

 
 



 

 

- 215 - 

 

  /* SeekToBit 
 

   * Sets the dataLocal, dataLocalNext and bitOffSet values so that 
 

   * the next read will occur at position in the datablock. 
 

   */ 
 

  private void SeekToBit(UInt32 position) 
 

  { 
 

   this.dataPosition = position >> 5; 
 

   this.dataBitOffset = (Int32)(position & 0x0000001F); 
 

   GetLocal(); 
 

  } 
 

 
 

  /*  
 

   * GetLocal 
 

   * store the initial 64 bits of the datablock in dataLocal and  
 

   * dataLocalNext 
 

   */ 
 

  private void GetLocal() 
 

  { 
 

   this.dataLocal = this.data[this.dataPosition]; 
 

   if(this.data.Length > this.dataPosition + 1)  
 

   { 
 

    this.dataLocalNext = this.data[this.dataPosition+1]; 
 

   } 
 

  } 
 



 

- 216 - 

 

  #endregion private helper methods 
 

 
 

  #region member variables 
 

 
 

  private IContextManager contextManager; //the context manager handles  
 

        //the updates to the histograms 
 

        //for the compression contexts. 
 

 
 

  private UInt32 high;    //high and low are the upper and 
 

  private UInt32 low;    //lower limits on the  

        //probability  
 

  private UInt32 underflow;   //stores the number of bits of  
 

        //underflow caused by the  
 

        //limited range of high and low  
 

  private UInt32 code;    //the value as represented in  
 

        //the datablock 
 

 
 

  private UInt32[] data;   //the data section of the  
 

        //datablock to read from. 
 

  private UInt32 dataPosition;  //the position currently read in 
 

        //the datablock specified in 32  
 

        //bit increments. 
 

  private UInt32 dataLocal;   //the local value of the data  
 

        //corresponding to dataposition. 
 

  private UInt32 dataLocalNext;  //the 32 bits in data after  
 



 

 

- 217 - 

 

        //dataLocal 
 

  private Int32 dataBitOffset;  //the offset into dataLocal that 
 

        // the next read will occur 
 

 
 

  private static readonly UInt32[] FastNotMask  
 

   = {0x0000FFFF, 0x00007FFF, 0x00003FFF, 0x00001FFF, 0x00000FFF}; 
 

  private static readonly UInt32[] ReadCount  
 

   = {4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}; 
 

 
 

  #endregion member variables 
 

 } 
 

} 
 

 

A.3.3 Context Manager  
using System; 
 

 

namespace U3D 

{ 

 public class ContextManager : IContextManager 

 { 

  public ContextManager() 

  { 

   this.symbolCount = new UInt16[Constants.StaticFull][]; 

   this.cumulativeCount = new UInt16[Constants.StaticFull][]; 

  } 

  #region IContextManager Members 

 

  public void AddSymbol(UInt32 context, UInt32 symbol) 

  { 

   if (context < Constants.StaticFull && context !=    
   Constants.Context8 

    && symbol < MaximumSymbolInHistogram)   



 

- 218 - 

 

   { //check if dynamic.  nothing to do if static or if the  

    //symbol is larger than the maximum symbol allowed in the 

    //histogram 

 

    UInt16[] cumulativeCount = this.cumulativeCount[context]; 

    UInt16[] symbolCount = this.symbolCount[context]; 

 

    if (cumulativeCount == null || cumulativeCount.Length <= 
    symbol) 

    { //allocate new arrays if they do not exist yet or if they  

     //are too small. 

     cumulativeCount = new UInt16[symbol + ArraySizeIncr]; 

     symbolCount = new UInt16[symbol + ArraySizeIncr]; 

 

     if(cumulativeCount != null && symbolCount != null) 

     {//check that the arrays were allocated successfully 

      if (this.cumulativeCount[context] == null) 

      {//if this is a new context set up the histogram 

       this.cumulativeCount[context] =   
       cumulativeCount; 

       this.cumulativeCount[context][0] = 1; 

       this.symbolCount[context] = symbolCount; 

       this.symbolCount[context][0] = 1; 

      } 

      else 

      {//if this is an old context, copy over the values in  

       //the histogram to the new arrays 

       this.cumulativeCount[context] 

        .CopyTo(cumulativeCount, 0); 

      
 this.symbolCount[context].CopyTo(symbolCount, 0); 

      } 

     } 

 

     this.cumulativeCount[context] = cumulativeCount; 

     this.symbolCount[context] = symbolCount; 

    } 

 

    if(cumulativeCount[0] >= Elephant) 

    {//if total number of occurances is larger than Elephant, 

     //scale down the values to avoid overflow 



 

 

- 219 - 

 

     int len = cumulativeCount.Length;                        

     UInt16 tempAccum = 0; 

     for(int i = len - 1; i >= 0; i--) 

     { 

      symbolCount[i] >>= 1; 

      tempAccum += symbolCount[i]; 

      cumulativeCount[i] = tempAccum; 

     } 

     //preserve the initial escape value of 1 for the symbol  

     //count and  cumulative count 

     symbolCount[0]++; 

     cumulativeCount[0]++; 

    } 

 

    symbolCount[symbol]++; 

    for(int i = 0; i <= symbol; i++) 

    { 

     cumulativeCount[i]++; 

    } 

   } 

  } 

   

  public UInt32 GetSymbolFrequency(UInt32 context, UInt32 symbol) 

  { 

   //the static case is 1. 

   UInt32 rValue = 1; 

   if (context < Constants.StaticFull && context !=    
   Constants.Context8) 

   { 

    //the default for the dynamic case is 0 

    rValue = 0; 

    if ((this.symbolCount[context] != null)  

     && (symbol < this.symbolCount[context].Length)) 

    { 

     rValue = (UInt32) his.symbolCount[context][symbol]; 

    } 

    else if (symbol == 0) 

    { //if the histogram hasn't been created yet, the  
    symbol 0 is  

     //the escape value and should return 1 

     rValue = 1; 



 

- 220 - 

 

    } 

   } 

       

   return rValue; 

  } 

   

  public UInt32 GetCumulativeSymbolFrequency(UInt32 context, UInt32 symbol) 

  { 

   //the static case is just the value of the symbol. 

   UInt32 rValue = symbol - 1; 

   if (context < Constants.StaticFull && context != Constants.Context8) 

   {  

    rValue = 0; 

    if (this.cumulativeCount[context] != null) 

    { 

     if(symbol < this.cumulativeCount[context].Length) 

     { 

      rValue = (UInt32)(this.cumulativeCount[context][0]  

       - this.cumulativeCount[context][symbol]); 

     } 

     else  

      rValue = (UInt32)(this.cumulativeCount[context][0]); 

    } 

   } 

   return rValue; 

  } 

 

  public UInt32 GetTotalSymbolFrequency(UInt32 context) 

  { 

   if (context < Constants.StaticFull && context != Constants.Context8) 

   { 

    UInt32 rValue = 1; 

    if(this.cumulativeCount[context] != null) 

     rValue = this.cumulativeCount[context][0]; 

    return rValue; 

   } 

   else 

   { 

    if (context == Constants.Context8) 

     return 256; 



 

 

- 221 - 

 

    else 

     return context - Constants.StaticFull; 

   } 

  } 

 

  public UInt32 GetSymbolFromFrequency(UInt32 context, UInt32   
  symbolFrequency) 

  { 

   UInt32 rValue = 0; 

   if (context < Constants.StaticFull && context !=    
   Constants.Context8) 

   { 

    rValue = 0; 

    if (this.cumulativeCount[context] != null  

     && symbolFrequency != 0 

     && this.cumulativeCount[context][0] >= symbolFrequency) 

    { 

 

     UInt32 i = 0; 

 

     for(i = 0; i < this.cumulativeCount[context].Length; 
     i++) 

     { 

      if (this.GetCumulativeSymbolFrequency(context, i)  

        <= symbolFrequency)  

       rValue = i; 

      else  

       break; 

     } 

    } 

   } 

   else 

   { 

    rValue = symbolFrequency + 1; 

   } 

   return rValue; 

  } 

 

  #endregion 

 

  #region Member variables 



 

- 222 - 

 

  

  private UInt16[][] symbolCount;  //an array of arrays that store the 

        //number of occurrences of each  

        // symbol for each dynamic context. 

  private UInt16[][] cumulativeCount;     //an array of arrays that store the 

        //cumulative frequency of each  

        //symbol in each context.  the value 

        //is the number of occurences of a  

        //symbol and every symbol with a  

        //larger value. 

   

  #endregion Member variables 

 

  #region constants 

 

  // The Elephant is a value that determines the number of  

  // symbol occurences that are stored in each dynamic histogram.   

  // Limiting the number of occurences avoids overflow of the U16 array  

  // elements and allows the histogram to adapt to changing symbol 

  // distributions in files. 

  private const UInt32 Elephant = 0x00001fff; 

  //the maximum value that is stored in a histogram 

  private const UInt32 MaximumSymbolInHistogram = 0x0000FFFF;   

  //the ammount to increase the size of an array when reallocating  

  //an array. 

  private const UInt32 ArraySizeIncr = 32; 

  #endregion constants 
 

 } 

} 

A.3.4 Data Block 
using System; 

namespace U3D 

{ 

 public class DataBlock : IDataBlock 

 { 

  public DataBlock() 

  { 

   this.dataSize = 0; 

   this.data = null; 



 

 

- 223 - 

 

   this.metaDataSize = 0; 

   this.metaData = null; 

   this.blockType = 0; 

   this.priority = 0; 

  } 

   

  public UInt32 DataSize 

  { 

   get 

   { 

    return this.dataSize; 

   } 

   set 

   { 

    this.dataSize = value; 

    //allocate data buffer for block. 

    //the data is generally aligned to byte values 

    //but array is 4 bytes values . . . 

    if ((this.dataSize & 0x3) == 0) 

     this.data = new UInt32[value >> 2]; 

    else 

     this.data = new UInt32[(value >> 2) + 1]; 

   } 

  } 

   

  public UInt32[] Data 

  { 

   get 

   { 

    return this.data; 

   } 

   set 

   { 

    this.data = value; 

   } 

  } 

 

  public UInt32 MetaDataSize 

  { 

   get 



 

- 224 - 

 

   { 

    return this.metaDataSize; 

   } 

   set 

   { 

    this.metaDataSize = value; 

    //allocate data buffer for block. 

    //the data is generally aligned to byte values 

    //but array is 4 bytes values . . . 

    if ((this.metaDataSize & 0x3) == 0) 

     this.metaData = new UInt32[value >> 2]; 

    else 

     this.metaData = new UInt32[(value >> 2) + 1]; 

   } 

  } 

 

  public UInt32[] MetaData 

  { 

   get 

   { 

    return this.metaData; 

   } 

   set 

   { 

    if(value.Length == this.metaData.Length) 

    { 

     Array.Copy(value, this.metaData, value.Length); 

    } 

   } 

  } 

   

  public UInt32 BlockType 

  { 

   get 

   { 

    return this.blockType; 

   } 

   set 

   { 

    this.blockType = value; 



 

 

- 225 - 

 

   } 

  } 

   

  public UInt32 Priority 

  { 

   get 

   { 

    return this.priority; 

   } 

   set 

   { 

    this.priority = value; 

   } 

  } 

 

  private UInt32[] data; 

  private UInt32 dataSize; 

  private UInt32[] metaData; 

  private UInt32 metaDataSize; 

  private UInt32 priority; 

  private UInt32 blockType; 

 } 

} 
 

A.3.5 Constants 
using System; 
 

 

namespace U3D 

{ 

  

  /// <summary>Constants is a class that holds constants that are needed by 
 more than 

  /// one of the objects in the U3D namespace.</summary> 

 public class Constants 

 { 

 

  #region arithmetic compression constants 

 

  //context ranges 

  /// <summary> 



 

- 226 - 

 

  /// the context for uncompressed U8 

  /// </summary> 

  public const UInt32 Context8 = 0;  

 

  /// <summary> 

  /// contexts >= StaticFull are static contexts. 

  /// </summary> 

  public const UInt32 StaticFull = 0x00000400;    

   

  ///<summary> 

  ///The largest allowable static context.  values written to contexts 
  > MaxRange are 

  ///written as uncompressed. 

  ///</summary> 

  public const UInt32 MaxRange = StaticFull + 0x00003FFF; 

      

  /// <summary> 

  /// a defualt buffer size for U3D 

  /// </summary> 

         

  public const UInt32 SizeBuff = 1024;    

  /// <summary> 

  /// the initial size allocated for buffers 

  /// </summary> 

  public const UInt32 DataSizeInitial = 0x00000010; 

 

  //Bit masks for reading and writing symbols. 

  /// <summary> 

  /// masks all but the most significan bit 

  /// </summary> 

  public const UInt32 HalfMask = 0x00008000;  

  /// <summary> 

  /// masks the most significant bit 

  /// </summary> 

  public const UInt32 NotHalfMask = 0x00007FFF; 

  /// <summary> 

  /// masks all but the 2nd most significan bit 

  /// </summary> 

  public const UInt32 QuarterMask = 0x00004000; 

   



 

 

- 227 - 

 

  /// <summary> 

  /// masks the 2 most significant bits 

  /// </summary> 

  public const UInt32 NotThreeQuarterMask = 0x00003FFF; 

     

  /// <summary> 

  /// used to swap 8 bits in place 

  /// </summary> 

  public static readonly UInt32[] Swap8  

      = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 
      11, 7, 15}; 

  #endregion 
 

 } 
 

} 

 




