
1st Edition / June 2005

Eiffel Analysis, Design
and Programming
Language

ECMA-367

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

 27/6/05 17:18

Standard
ECMA-367
1st Edition - June 2005

Eiffel Analysis, Design and
Programming Language

PC ECMA-367

http://www.ecma-international.org

Brief history

Eiffel was originally designed, as a method of software construction and a notation to support that method, in
1985. The first implementation, from Eiffel Software (then Interactive Software Engineering Inc.), was
commercially released in 1986. The principal designer of the first versions of the language was Bertrand Meyer.
Other people closely involved with the original definition included Jean-Marc Nerson. The language was originally
described in Eiffel Software technical documents that were expanded to yield Meyer’s book Eiffel: The Language
in 1990-1991. The two editions of Object-Oriented Software Construction (1988 and 1997) also served to
describe the concepts. (For bibliographical references on the documents cited see 3.6.) As usage of Eiffel grew,
other Eiffel implementations appeared, including Eiffel/S and Visual Eiffel from Object Tools, Germany,
EiffelStudio and Eiffel Envision from Eiffel Software, and SmartEiffel from LORIA, France.
Eiffel today is used throughout the world for industrial applications in banking and finance, defense and
aerospace, health care, networking and telecommunications, computer-aided design, game programming, and
many other application areas. Eiffel is particularly suited for mission-critical developments in which programmer
productivity and product quality are essential. In addition Eiffel is a popular medium for teaching programming
and software engineering in universities.
In 2002 Ecma International formed Technical Group 4 (Eiffel) of Technical Committee 39 (Programming and
Scripting Languages). The Eiffel Analysis, Design and Programming Language Standard provides a precise
definition of the language and ensures interoperability between implementations. The first of these benefits is of
particular interest to implementors of Eiffel compilers and environments, who can rely on it as the reference on
which to base their work; the second, to Eiffel users, for whom the Standard delivers a guarantee of compatibility
between the products of different providers and of trust in the future of Eiffel.
TG4 devised this Standard from June 2002 to April 2005, starting from material from the original and revised
versions of the book Standard Eiffel (latest revision of Eiffel: The Language). During that period the Technical
Group conducted fifteen face-to-face meetings and numerous phone meetings, in addition to extensive technical
correspondence. The members of the committee have been: Karine Arnout (ETH, Zurich); Éric Bezault (Axa
Rosenberg, Orinda); Paul Cohen (Generic, Stockholm), Dominique Colnet (LORIA, Nancy); Mark Howard (Axa
Rosenberg, Orinda); Alexander Kogtenkov (Eiffel Software, Moscow); Bertrand Meyer (Eiffel Software, Santa
Barbara, and ETH, Zurich); Christine Mingins (Monash University, Melbourne); Roger Osmond (EMC, Boston);
Emmanuel Stapf (Eiffel Software, Santa Barbara); Kim Waldén (Generic, Stockholm).
Observers having attended one or more of the meetings include Cyril Adrian (LORIA), Volkan Arslan (ETH), Paul
Crismer (Groupe S, Brussels), Jocelyn Fiat (Eiffel Software, France), Randy John (Axa Rosenberg), Ian King
(Eiffel Software), Philippe Ribet (LORIA), Julian Rogers (Eiffel Software), Bernd Schoeller (ETH), David Schwartz
(Axa Rosenberg), Zoran Simic (Axa Rosenberg), Raphael Simon (Eiffel Software), Olivier Zendra (LORIA). The
committee acknowledges the contributions of many people including David Hollenberg, Marcel Satchell, Richard
O’Keefe and numerous others listed in the acknowledgments of the book Standard Eiffel.
The editor of the standard is Bertrand Meyer. Emmanuel Stapf is the convener of TG4 (succeeding Christine
Mingins, 2002-2003) and its secretary (succeeding Karine Arnout, 2002-2004).
The final version of the document was prepared by Éric Bezault, Mark Howard, Alexander Kogtenkov, Bertrand
Meyer and Emmanuel Stapf.

This Ecma Standard has been adopted by the General Assembly of June 2005.

Table of contents

- i -

 1 Scope 1

 1.1 Overview 1
 1.2 “The Standard” 1
 1.3 Aspects covered 1
 1.4 Aspects not covered 1

 2 Conformance 1

 2.1 Def in i t ion 1
 2.2 Compat ib i l i ty and non-defaul t opt ions 2
 2.3 Departure f rom the Standard 2

 3 Normative references 2

 3.1 Ear l ier Ei ffe l language speci f icat ions 2
 3.2 Ei ffe l Kernel L ibrary 2
 3.3 Float ing point number representat ion 2
 3.4 Character set : Unicode 3
 3.5 Character set : ASCII 3
 3.6 Phonet ic a lphabet 3

 4 Definit ions 3

 5 Notational conventions 3

 5.1 Standard elements 3
 5.2 Normat ive elements 3
 5.3 Rules on def in i t ions 3
 5.4 Use of def ined terms 4
 5.5 Unfo lded forms 4
 5.6 Language descr ipt ion 4
 5.7 Val id i ty: “ i f and only i f ” ru les 4

 6 Acronyms and abbreviat ions 5

 6.1 Name of the language 5
 6.2 Pronunciat ion 5

 7 General description 5

 7.1 Design pr incip les 5
 7.2 Object-or iented design 6
 7.3 Classes 6
 7.4 Types 10

- ii -

 7.5 Assert ions 11
 7.6 Except ions 13
 7.7 Gener ic i ty 14
 7.8 Inher i tance 15
 7.9 Polymorphism and dynamic binding 17
 7.10 Combining gener ic i ty and inher i tance 18
 7.11 Deferred c lasses 20
 7.12 Tuples and agents 21
 7.13 Type- and void-safety 22
 7.14 Putt ing a system together 23

 8 Language specif ication 23

 8.1 General organizat ion 23
 8.2 Syntax, val id i ty and semant ics 24

8.2.1 Def in i t ion: Syntax, BNF-E 24
8.2.2 Def in i t ion: Component, construct , specimen 24
8.2.3 Construct Specimen convent ion 24
8.2.4 Construct Name convent ion 24
8.2.5 Def in i t ion: Terminal , non-terminal , token 24
8.2.6 Def in i t ion: Product ion 25
8.2.7 Kinds of product ion 25
8.2.8 Def in i t ion: Aggregate product ion 25
8.2.9 Def in i t ion: Choice product ion 25
8.2.10 Def in i t ion: Repet i t ion product ion, separator 25
8.2.11 Basic syntax descr ipt ion ru le 26
8.2.12 Def in i t ion: Non-product ion syntax rule 26
8.2.13 Textual convent ions 26
8.2.14 Def in i t ion: Val id i ty constra int 27
8.2.15 Def in i t ion: Val id 27
8.2.16 Val id i ty: General Val id i ty ru le 27
8.2.17 Def in i t ion: Semant ics 27
8.2.18 Def in i t ion: Execut ion terminology 27
8.2.19 Semant ics: Case Insensi t iv i ty pr incip le 28
8.2.20 Def in i t ion: Upper name, lower name 28
8.2.21 Syntax (non-product ion) : Semicolon Opt ional i ty ru le 28

 8.3 The archi tecture of Ei ffe l software 29
8.3.1 Def in i t ion: Cluster , subcluster, contains direct ly 29
8.3.2 Def in i t ion: Terminal c luster, in ternal c luster 29
8.3.3 Def in i t ion: Universe 30
8.3.4 Val id i ty: Class Name ru le 30
8.3.5 Semant ics: Class name semant ics 30
8.3.6 Def in i t ion: System, root type name, root procedure name 30
8.3.7 Def in i t ion: Type dependency 30
8.3.8 Val id i ty: Root Type rule 31

- iii -

8.3.9 Val id i ty: Root Procedure rule 31
8.3.10 Def in i t ion: Root type, root procedure, root c lass 31
8.3.11 Semant ics: System execut ion 32
8.3.12 Syntax : Class names 32

 8.4 Classes 32
8.4.1 Def in i t ion: Current c lass 32
8.4.2 Syntax : Class declarat ions 32
8.4.3 Syntax : Notes 32
8.4.4 Semant ics: Notes semant ics 33
8.4.5 Syntax : Class headers 33
8.4.6 Val id i ty: Class Header rule 33
8.4.7 Def in i t ion: Deferred c lass, ef fect ive c lass 33
8.4.8 Syntax : Obsolete marks 33
8.4.9 Semant ics: Obsolete semant ics 33

 8.5 Features 34
8.5.1 Def in i t ion: Inher i ted, immediate; or ig in; redeclarat ion;
in troduce 34
8.5.2 Syntax : Feature parts 34
8.5.3 Feature categor ies: overview 34
8.5.4 Syntax : Feature declarat ions 35
8.5.5 Syntax : New feature l is ts 35
8.5.6 Syntax : Feature bodies 35
8.5.7 Val id i ty: Feature Body rule 35
8.5.8 Def in i t ion: Var iable at t r ibute 36
8.5.9 Def in i t ion: Constant at t r ibute 36
8.5.10 Def in i t ion: Rout ine, funct ion, procedure 36
8.5.11 Def in i t ion: Command, query 37
8.5.12 Def in i t ion: Signature, argument s ignature of a feature 37
8.5.13 Feature pr incip le 37
8.5.14 Syntax : Feature names 37
8.5.15 Syntax (non-product ion) : Al ias Syntax rule 38
8.5.16 Def in i t ion: Operator feature, bracket feature 38
8.5.17 Def in i t ion: Ident i f ier of a feature name 38
8.5.19 Def in i t ion: Same feature name, same operator, same al ias 39
8.5.20 Syntax : Operators 39
8.5.21 Val id i ty: Assigner Command rule 40
8.5.22 Def in i t ion: Synonym 40
8.5.23 Def in i t ion: Unfolded form of a possibly mult ip le declarat ion 40
8.5.24 Val id i ty: Feature Declarat ion ru le 41
8.5.25 Val id i ty: Al ias Val id i ty ru le 42

 8.6 The inher i tance relat ion 43
8.6.1 Syntax : Inher i tance par ts 43
8.6.2 Def in i t ion: Parent part for a type, for a c lass 43
8.6.3 Def in i t ion: Mul t ip le, s ingle inher i tance 43

- iv -

8.6.4 Val id i ty: Class ANY ru le 44
8.6.5 Val id i ty: Universal Conformance pr incip le 44
8.6.6 Def in i t ion: Unfo lded Inher i tance Part of a c lass 44
8.6.7 Def in i t ion: Inher i t , heir , parent 45
8.6.8 Def in i t ion: Conforming, non-conforming parent 45
8.6.9 Def in i t ion: Ancestor types of a type, of a c lass 45
8.6.10 Def in i t ion: Ancestor, descendant 45
8.6.11 Def in i t ion: Proper ancestor , proper descendant 45
8.6.12 Val id i ty: Parent ru le 45
8.6.13 Syntax : Rename clauses 46
8.6.14 Val id i ty: Rename Clause rule 46
8.6.15 Semant ics: Renaming pr incip le 47
8.6.16 Def in i t ion: Final name, extended f inal name, f inal name set 47
8.6.17 Def in i t ion: Inher i ted name 47
8.6.18 Def in i t ion: Declarat ion for a feature 47

 8.7 Cl ients and exports 48
8.7.1 Def in i t ion: Cl ient re lat ion between classes and types 48
8.7.2 Def in i t ion: Cl ient re lat ion between classes 48
8.7.3 Def in i t ion: Indirect c l ient 48
8.7.4 Def in i t ion: Suppl ier 48
8.7.5 Def in i t ion: Simple c l ient 48
8.7.6 Def in i t ion: Expanded cl ient 49
8.7.7 Def in i t ion: Gener ic c l ient , gener ic suppl ier 49
8.7.8 Def in i t ion: Cl ient set of a Clients part 49
8.7.9 Syntax : Cl ients 49
8.7.10 Syntax : Export adaptat ion 50
8.7.11 Val id i ty: Export L ist ru le 50
8.7.12 Def in i t ion: Cl ient set of a feature 50
8.7.13 Def in i t ion: Avai lable for cal l , avai lable 51
8.7.14 Def in i t ion: Exported, se lect ive ly avai lable, secret 51
8.7.15 Def in i t ion: Secret , publ ic 51
8.7.16 Def in i t ion: Incremental contract v iew, short form 52
8.7.17 Def in i t ion: Contract v iew, f lat-short form 52

 8.8 Rout ines 52
8.8.1 Def in i t ion: Formal argument, actual argument 53
8.8.2 Syntax : Formal argument and ent i ty declarat ions 53
8.8.3 Val id i ty: Formal Argument ru le 53
8.8.4 Val id i ty: Ent i ty Declarat ion rule 54
8.8.5 Syntax : Rout ine bodies 54
8.8.6 Def in i t ion: Once rout ine, once procedure, once funct ion 54
8.8.7 Syntax : Local var iable declarat ions 54
8.8.8 Val id i ty: Local Var iable ru le 54
8.8.9 Def in i t ion: Local var iable 54
8.8.10 Syntax : Instruct ions 54

- v -

 8.9 Correctness 55
8.9.1 Syntax : Assert ions 55
8.9.2 Def in i t ion: Precondi t ion, postcondi t ion, invar iant 55
8.9.3 Syntax (non-product ion): Assert ion Syntax rule 56
8.9.4 Def in i t ion: Speci f icat ion, subspeci f icat ion 56
8.9.5 Val id i ty: Precondi t ion Export ru le 56
8.9.6 Def in i t ion: Avai labi l i ty of an assert ion c lause 57
8.9.7 Syntax : “Old” postcondi t ion expressions 57
8.9.8 Val id i ty: Old Expression ru le 57
8.9.9 Semant ics: Old Expression Semant ics, associated var iable,
associated except ion mark 57
8.9.10 Semant ics: Associated Var iable Semant ics 58
8.9.11 Syntax : “Only” postcondi t ion c lauses 58
8.9.12 Def in i t ion: Unfolded feature l is t of an Only c lause 58
8.9.13 Val id i ty: Only Clause ru le 59
8.9.14 Def in i t ion: Unfolded form of an Only c lause 59
8.9.15 Def in i t ion: Invar iant of a c lass 59
8.9.16 Def in i t ion: Hoare t r ip le notat ion (total correctness) 60
8.9.17 Semant ics: Class consistency 60
8.9.18 Syntax : Check instruct ions 60
8.9.19 Def in i t ion: Check-correct 60
8.9.20 Syntax : Var iants 60
8.9.21 Def in i t ion: Loop invar iant and var iant 60
8.9.22 Val id i ty: Var iant Expression rule 60
8.9.23 Def in i t ion: Loop-correct 60
8.9.24 Def in i t ion: Except ion-correct 61
8.9.25 Def in i t ion: Correctness (c lass) 61
8.9.26 Def in i t ion: Local unfolded form of an asser t ion 61
8.9.27 Semant ics: Assert ion monitor ing 61
8.9.28 Semant ics: Evaluat ion of an assert ion 62
8.9.29 Semant ics: Assert ion v io lat ion 62
8.9.30 Semant ics: Assert ion semant ics 62
8.9.31 Semant ics: Assert ion monitor ing levels 62

 8.10 Feature adaptat ion 62
8.10.1 Def in i t ion: Redeclare, redeclarat ion 62
8.10.2 Def in i t ion: Unfolded form of an assert ion 63
8.10.3 Def in i t ion: Assert ion extensions 63
8.10.4 Def in i t ion: Covar iance-aware form of an assert ion extension 63
8.10.5 Def in i t ion: Combined precondi t ion, postcondi t ion 64
8.10.6 Def in i t ion: Inher i ted as ef fect ive, inher i ted as deferred 64
8.10.7 Def in i t ion: Ef fect , ef fect ing 64
8.10.8 Def in i t ion: Redef ine, redef in i t ion 64
8.10.9 Def in i t ion: Name clash 65
8.10.10 Syntax : Precursor 65

- vi -

8.10.11 Def in i t ion: Relat ive unfo lded form of a Precursor 65
8.10.12 Val id i ty: Precursor ru le 65
8.10.13 Def in i t ion: Unfolded form of a Precursor 66
8.10.14 Semant ics: Precursor semant ics 66
8.10.15 Syntax : Redef in i t ion 66
8.10.16 Val id i ty: Redef ine Subclause rule 66
8.10.17 Semant ics: Redef in i t ion semant ics 66
8.10.18 Syntax : Undef ine c lauses 67
8.10.19 Val id i ty: Undef ine Subclause rule 67
8.10.20 Semant ics: Undef in i t ion semant ics 67
8.10.21 Def in i t ion: Ef fect ive, deferred feature 67
8.10.22 Def in i t ion: Ef fect ing 67
8.10.23 Deferred c lass property 67
8.10.24 Effect ive c lass property 67
8.10.25 Def in i t ion: Or ig in, seed 68
8.10.26 Val id i ty: Redeclarat ion rule 68
8.10.27 Def in i t ion: Precursor (jo ined features) 69
8.10.28 Val id i ty: Join ru le 69
8.10.29 Semant ics: Join Semant ics ru le 70

 8.11 Types 70
8.11.1 Syntax : Types 70
8.11.2 Semant ics: Direct instances and values of a type 71
8.11.3 Semant ics: Instance of a type 71
8.11.4 Semant ics: Instance pr incip le 71
8.11.5 Def in i t ion: Instance, d i rect instance of a c lass 71
8.11.6 Base pr incip le 71
8.11.7 Base rule 72
8.11.8 Val id i ty: Class Type rule 72
8.11.9 Semant ics: Type Semant ics rule 72
8.11.10 Def in i t ion: Base c lass and base type of an expression 72
8.11.11 Semant ics: Non-gener ic c lass type semant ics 72
8.11.12 Def in i t ion: Expanded type, reference type 72
8.11.13 Def in i t ion: Basic type 73
8.11.14 Def in i t ion: Anchor, anchored type, anchored ent i ty 73
8.11.15 Def in i t ion: Anchor set ; cycl ic anchor 73
8.11.16 Def in i t ion: Types and classes involved in a type 74
8.11.17 Def in i t ion: Constant type 74
8.11.18 Def in i t ion: Deanchored form of a type 74
8.11.19 Val id i ty: Anchored Type ru le 75
8.11.20 Def in i t ion: At tached, detachable 75
8.11.21 Semant ics: At tached type semant ics 75
8.11.22 Def in i t ion: Stand-alone type 76

 8.12 Gener ic i ty 76
8.12.1 Syntax : Actual gener ic parameters 76

- vii -

8.12.2 Syntax : Formal gener ic parameters 76
8.12.3 Val id i ty: Formal Gener ic ru le 76
8.12.4 Def in i t ion: Gener ic c lass; constrained, unconstrained 77
8.12.5 Def in i t ion: Gener ic der ivat ion, non-gener ic type 77
8.12.6 Def in i t ion: Sel f - in i t ia l iz ing formal 77
8.12.7 Def in i t ion: Constraint , constrain ing types of a Formal_generic 77
8.12.8 Syntax : Gener ic constra ints 78
8.12.9 Val id i ty: Gener ic Constra int ru le 78
8.12.10 Def in i t ion: Constra in ing creat ion features 78
8.12.11 Val id i ty: Gener ic Der ivat ion rule 78
8.12.12 Def in i t ion: Gener ic-creat ion-ready type 79
8.12.13 Semant ics: Gener ica l ly der ived c lass type semant ics 79
8.12.14 Def in i t ion: Base type of a s ingle-constrained formal gener ic 80
8.12.15 Def in i t ion: Base type of an unconstrained formal gener ic 80
8.12.16 Def in i t ion: Reference or expanded status of a formal gener ic 80
8.12.17 Def in i t ion: Current type 80
8.12.18 Def in i t ion: Features of a type 80
8.12.19 Def in i t ion: Gener ic subst i tut ion 80
8.12.20 Def in i t ion: Gener ic Type Adaptat ion rule 80
8.12.21 Def in i t ion: Gener ical ly constrained feature name 81
8.12.22 Val id i ty: Mul t ip le Constraints ru le 81
8.12.23 Def in i t ion: Base type of a mult i -constraint formal gener ic
type 81

 8.13 Tuples 81
8.13.1 Syntax : Tuple types 81
8.13.2 Syntax : Mani fest tuples 82
8.13.3 Def in i t ion: Type sequence of a tuple type 82
8.13.4 Def in i t ion: Value sequences associated wi th a tuple type 82

 8.14 Conformance 82
8.14.1 Def in i t ion: Compat ib i l i ty between types 83
8.14.2 Def in i t ion: Compat ib i l i ty between expressions 83
8.14.3 Def in i t ion: Expression conformance 83
8.14.4 Val id i ty: Signature conformance 83
8.14.5 Def in i t ion: Covar iant argument 84
8.14.6 Val id i ty: General conformance 84
8.14.7 Def in i t ion: Conformance path 85
8.14.8 Val id i ty: Direct conformance: reference types 85
8.14.9 Val id i ty: Direct conformance: formal gener ic 85
8.14.10 Val id i ty: Direct conformance: expanded types 85
8.14.11 Val id i ty: Direct conformance: tuple types 86

 8.15 Convert ib i l i ty 86
8.15.1 Def in i t ion: Conversion procedure, conversion type 86
8.15.2 Def in i t ion: Conversion query, conversion feature 86
8.15.6 Syntax : Converter c lauses 86

- viii -

8.15.7 Val id i ty: Conversion Procedure ru le 87
8.15.8 Val id i ty: Conversion Query rule 87
8.15.9 Def in i t ion: Convert ing to a c lass 87
8.15.10 Def in i t ion: Convert ing to and from a type 88
8.15.11 Def in i t ion: Convert ing “ through” 88
8.15.12 Semant ics: Conversion semant ics 88
8.15.13 Def in i t ion: Expl ic i t conversion 88
8.15.14 Val id i ty: Expression convert ib i l i ty 89
8.15.15 Def in i t ion: Stat ica l ly sat isf ied precondi t ion 89
8.15.16 Val id i ty: Precondi t ion-free rout ine 89

 8.16 Repeated inher i tance 90
8.16.1 Def in i t ion: Repeated inher i tance, ancestor, descendant 90
8.16.2 Semant ics: Repeated Inher i tance ru le 91
8.16.3 Def in i t ion: Shar ing, repl icat ion 91
8.16.4 Val id i ty : Cal l Repl icat ion ru le 91
8.16.5 Semant ics: Repl icat ion Semant ics ru le 91
8.16.6 Syntax : Select c lauses 91
8.16.7 Val id i ty: Select Subclause rule 92
8.16.8 Def in i t ion: Version 92
8.16.9 Def in i t ion: Mul t ip le versions 92
8.16.10 Val id i ty: Repeated Inher i tance Consistency constraint 92
8.16.11 Def in i t ion: Dynamic b inding version 92
8.16.12 Def in i t ion: Inher i ted features 92
8.16.13 Semant ics: Jo in-Shar ing Reconci l iat ion rule 93
8.16.14 Def in i t ion: Precursor 93
8.16.15 Val id i ty: Feature Name rule 93
8.16.16 Val id i ty : Name Clash rule 93

 8.17 Control st ructures 94
8.17.1 Semant ics: Compound (non-except ion) semant ics 94
8.17.2 Syntax : Condi t ionals 94
8.17.3 Def in i t ion: Secondary par t 95
8.17.4 Def in i t ion: Prevai l ing immediate ly 95
8.17.5 Semant ics: Condi t ional semant ics 95
8.17.6 Def in i t ion: Inspect expression 95
8.17.7 Syntax : Mul t i -branch instruct ions 95
8.17.8 Def in i t ion: Interval 95
8.17.9 Def in i t ion: Unfolded form of a mult i -branch 95
8.17.10 Def in i t ion: Unfolded form of an interval 96
8.17.11 Val id i ty: Interval ru le 96
8.17.12 Def in i t ion: Inspect values of a mult i -branch 96
8.17.13 Val id i ty: Mul t i -branch rule 96
8.17.14 Semant ics: Matching branch 97
8.17.15 Semant ics: Mul t i -Branch semant ics 97
8.17.16 Syntax : Loops 97

- ix -

8.17.17 Semant ics: Loop semant ics 97
8.17.18 Syntax : Debug instruct ions 98
8.17.19 Semant ics: Debug semant ics 98

 8.18 Att r ibutes 98
8.18.1 Syntax : At t r ibute bodies 98
8.18.2 Val id i ty: Mani fest Constant ru le 98

 8.19 Objects, va lues and ent i t ies 99
8.19.1 Semant ics: Type, generat ing type of an object ; generator 99
8.19.2 Def in i t ion: Reference, void, at tached, at tached to 99
8.19.3 Semant ics: Object pr inciple 99
8.19.4 Def in i t ion: Object semant ics 99
8.19.5 Def in i t ion: Non-basic c lass, non-basic type, f ie ld 100
8.19.6 Def in i t ion: Subobject , composi te object 100
8.19.7 Def in i t ion: Ent i ty, var iable, read-only 100
8.19.8 Syntax : Ent i t ies and var iables 100
8.19.9 Val id i ty: Ent i ty ru le 100
8.19.10 Val id i ty: Var iable rule 101
8.19.11 Def in i t ion: Sel f - in i t ia l iz ing types 101
8.19.12 Semant ics: Defaul t In i t ia l izat ion rule 101
8.19.13 Def in i t ion: Sel f - in i t ia l iz ing var iable 102
8.19.14 Def in i t ion: Evaluat ion posi t ion, precedes 102
8.19.15 Def in i t ion: Setter instruct ion 103
8.19.16 Def in i t ion: Proper ly set var iable 103
8.19.17 Val id i ty: Var iable In i t ia l izat ion rule 103
8.19.18 Def in i t ion: Var iable set t ing and i ts value 104
8.19.19 Def in i t ion: Execut ion context 104
8.19.20 Semant ics: Var iable Semant ics 104
8.19.21 Semant ics: Ent i ty Semant ics ru le 105

 8.20 Creat ing objects 105
8.20.1 Semant ics: Creat ion pr incip le 105
8.20.2 Def in i t ion: Creat ion operat ion 106
8.20.3 Val id i ty: Creat ion Precondi t ion rule 106
8.20.4 Syntax : Creators par ts 106
8.20.5 Def in i t ion: Unfolded Creators part of a c lass 106
8.20.6 Val id i ty: Creat ion Clause rule 107
8.20.7 Def in i t ion: Creat ion procedures of a c lass 107
8.20.8 Def in i t ion: Creat ion procedure property 107
8.20.9 Def in i t ion: Creat ion procedures of a type 107
8.20.10 Def in i t ion: Avai lable for creat ion; general creat ion
procedure 108
8.20.11 Syntax : Creat ion instruct ions 108
8.20.12 Def in i t ion: Creat ion target , creat ion type 108
8.20.13 Semant ics: Creat ion Type theorem 108
8.20.14 Def in i t ion: Unfolded form of a creat ion instruct ion 108

- x -

8.20.15 Val id i ty: Creat ion Instruct ion ru le 108
8.20.16 Val id i ty: Creat ion Instruct ion propert ies 109
8.20.17 Semant ics: Creat ion Instruct ion Semant ics 110
8.20.18 Syntax : Creat ion expressions 110
8.20.19 Def in i t ion: Propert ies of a creat ion expression 110
8.20.20 Val id i ty: Creat ion Expression rule 111
8.20.21 Val id i ty: Creat ion Expression Propert ies 111
8.20.22 Semant ics: Creat ion Expression Semant ics 111

 8.21 Comparing and dupl icat ing objects 112
8.21.1 Def in i t ion: Object comparison features f rom ANY 112
8.21.2 Syntax : Equal i ty expressions 113
8.21.3 Semant ics: Equal i ty Expression Semant ics 113
8.21.4 Semant ics: Inequal i ty Expression Semant ics 113
8.21.5 Def in i t ion: Copying and cloning features f rom ANY 113
8.21.6 Def in i t ion: Deep equal i ty , copying and cloning 114

 8.22 Attaching values to ent i t ies 114
8.22.1 Def in i t ion: Reattachment, source, target 115
8.22.2 Syntax : Assignments 115
8.22.3 Val id i ty: Assignment ru le 115
8.22.4 Semant ics: Reattachment pr incip le 115
8.22.5 Semant ics: At taching an ent i ty, a t tached ent i ty 115
8.22.6 Semant ics: Reattachment Semant ics 116
8.22.7 Semant ics: Assignment Semant ics 116
8.22.8 Def in i t ion: Dynamic type 117
8.22.9 Def in i t ion: Polymorphic expression; dynamic type and class
sets 117
8.22.10 Syntax : Assigner cal ls 117
8.22.11 Val id i ty: Assigner Cal l ru le 117
8.22.12 Semant ics: Assigner Cal l semant ics 117

 8.23 Feature cal l 117
8.23.1 Val id i ty : Cal l Use ru le 118
8.23.2 Syntax : Feature cal ls 118
8.23.3 Syntax : Actual arguments 118
8.23.4 Def in i t ion: Unqual i f ied, qual i f ied cal l 118
8.23.5 Def in i t ion: Target of a cal l 118
8.23.6 Def in i t ion: Target type of a cal l 119
8.23.7 Def in i t ion: Feature of a cal l 119
8.23.8 Def in i t ion: Imported form of a Non_object_call 119
8.23.9 Val id i ty: Non-Object Cal l ru le 119
8.23.10 Semant ics: Non-Object Cal l Semant ics 120
8.23.11 Val id i ty: Export ru le 120
8.23.12 Val id i ty: Export Status pr incip le 120
8.23.13 Val id i ty: Argument ru le 120
8.23.14 Val id i ty : Target ru le 121

- xi -

8.23.15 Val id i ty : Class-Level Cal l ru le 121
8.23.16 Def in i t ion: Void-Unsafe 121
8.23.17 Def in i t ion: Target Object 121
8.23.18 Semant ics: Fai led target evaluat ion of a void-unsafe
system 121
8.23.19 Def in i t ion: Dynamic feature of a cal l 121
8.23.20 Def in i t ion: Freshness of a once rout ine cal l 122
8.23.21 Def in i t ion: Latest appl icable target of a non- fresh cal l 122
8.23.22 Semant ics: Once Rout ine Execut ion Semant ics 122
8.23.23 Semant ics: Current object , current rout ine 123
8.23.24 Semant ics: Current Semant ics 123
8.23.25 Semant ics: Non-Once Rout ine Execut ion rule 123
8.23.26 Semant ics: General Cal l Semant ics 123
8.23.27 Def in i t ion: Type of a Call used as expression 124
8.23.28 Def in i t ion: Cal l Result 124
8.23.29 Def in i t ion: Value of a cal l expression 124

 8.24 Eradicat ing void cal ls 124
8.24.1 Syntax : Object test 125
8.24.2 Def in i t ion: Object-Test Local 125
8.24.3 Val id i ty : Object Test ru le 125
8.24.4 Def in i t ion: Conjunct ive, d is junct ive, impl icat ive;
Term, semistr ic t term 125
8.24.5 Def in i t ion: Scope of an Object-Test Local 125
8.24.6 Semant ics: Object Test semant ics 126
8.24.7 Semant ics: Object-Test Local semant ics 126
8.24.8 Def in i t ion: Read-only void test 126
8.24.9 Def in i t ion: Scope of a read-only void test 126
8.24.10 Def in i t ion: Cert i f ied At tachment Pattern 126
8.24.11 Def in i t ion: At tached expression 127

 8.25 Typing-re lated propert ies 127
8.25.1 Def in i t ion: Catcal l 127
8.25.2 Val id i ty: Descendant Argument ru le 128
8.25.3 Val id i ty: Single- level Cal l ru le 128
8.25.4 Def in i t ion: System-val id, val id 128
8.25.5 Def in i t ion: Dynamic type set 128

 8.26 Except ion handl ing 128
8.26.1 Def in i t ion: Fai lure, except ion, t r igger 128
8.26.2 Syntax : Rescue clauses 129
8.26.3 Val id i ty: Rescue clause rule 129
8.26.4 Val id i ty: Retry ru le 129
8.26.5 Semant ics: Defaul t Rescue Orig inal Semant ics 129
8.26.6 Def in i t ion: Rescue b lock 129
8.26.7 Semant ics: Except ion Semant ics 130
8.26.8 Def in i t ion: Type of an except ion 130

- xii -

8.26.9 Semant ics: Except ion Cases 130
8.26.10 Semant ics: Except ion Propert ies 131
8.26.11 Def in i t ion: Ignor ing, cont inuing an except ion 131

 8.27 Agents, i terat ion and introspect ion 132
8.27.1 Def in i t ion: Operands of a cal l 132
8.27.2 Def in i t ion: Operand posi t ion 132
8.27.3 Def in i t ion: Construct ion t ime, cal l t ime 132
8.27.4 Syntact ica l forms for a cal l agent 132
8.27.5 Syntax : Agents 132
8.27.6 Syntax : Cal l agent bodies 133
8.27.7 Def in i t ion: Target type of an agent cal l 133
8.27.8 Val id i ty: Cal l Agent ru le 133
8.27.9 Def in i t ion: Associated feature of an in l ine agent 133
8.27.10 Val id i ty: In l ine Agent ru le 133
8.27.11 Val id i ty: In l ine Agent Requirements 133
8.27.12 Def in i t ion: Cal l -agent equivalent of an in l ine agent 134
8.27.13 Semant ics: Semant ics of in l ine agents 134
8.27.14 Def in i t ion: Use of Result in an in l ine funct ion agent 134
8.27.15 Def in i t ion: Open and closed operands 134
8.27.16 Def in i t ion: Open and closed operand posi t ions 134
8.27.17 Def in i t ion: Type of an agent expression 134
8.27.18 Def in i t ion: Agent Expression semant ics 134
8.27.19 Def in i t ion: Ef fect of execut ing call on an agent 134

 8.28 Expressions 135
8.28.1 Syntax : Expressions 135
8.28.2 Def in i t ion: Subexpression, operand 135
8.28.3 Semant ics: Parenthesized Expression Semant ics 135
8.28.4 Syntax : Operator expressions 136
8.28.5 Operator precedence levels 136
8.28.6 Def in i t ion: Parenthesized Form of an expression 136
8.28.7 Def in i t ion: Target-converted form of a binary expression 137
8.28.8 Val id i ty: Operator Expression rule 137
8.28.9 Semant ics: Expression Semant ics (str ic t case) 137
8.28.10 Def in i t ion: Semistr ic t operators 137
8.28.11 Semant ics: Operator Expression Semant ics (semistr ic t
cases) 137
8.28.12 Syntax : Bracket expressions 138
8.28.13 Val id i ty: Bracket Expression rule 138
8.28.14 Def in i t ion: Equivalent Dot Form of an expression 138
8.28.15 Val id i ty: Boolean Expression rule 139
8.28.16 Val id i ty: Ident i f ier ru le 139
8.28.17 Def in i t ion: Type of an expression 139

 8.29 Constants 140
8.29.1 Syntax : Constants 140

- xiii -

8.29.2 Val id i ty: Constant At t r ibute ru le 140
8.29.3 Syntax : Mani fest constants 140
8.29.4 Syntax (non-product ion) : Sign Syntax rule 140
8.29.5 Syntax (non-product ion) : Character Syntax rule 140
8.29.6 Def in i t ion: Type of a mani fest constant 141
8.29.7 Val id i ty: Mani fest-Type Qual i f ier ru le 141
8.29.8 Semant ics: Mani fest Constant Semant ics 141
8.29.9 Def in i t ion: Manifest va lue of a constant 141
8.29.10 Syntax : Mani fest str ings 142
8.29.11 Syntax (non-product ion): L ine sequence 142
8.29.12 Syntax (non-product ion): Mani fest Str ing rule 142
8.29.13 Def in i t ion: Line_wrapping_part 143
8.29.14 Semant ics: Mani fest str ing semant ics 143
8.29.15 Val id i ty: Verbat im Str ing rule 143
8.29.16 Semant ics: Verbat im str ing semant ics 143
8.29.17 Def in i t ion: Pref ix, longest break pref ix, lef t -a l igned form 144

 8.30 Basic types 144
8.30.1 Def in i t ion: Basic types and their s ized var iants 144
8.30.2 Def in i t ion: Sized var iants of STRING 144
8.30.3 Semant ics: Boolean value semant ics 144
8.30.4 Semant ics: Character types 144
8.30.5 Semant ics: Integer types 145
8.30.6 Semant ics: F loat ing-point types 145
8.30.7 Semant ics: Address semant ics 145

 8.31 Inter facing wi th C, C++ and other environments 145
8.31.1 Syntax : External rout ines 145
8.31.2 Val id i ty: Address rule 146
8.31.3 Address Type ru le 146
8.31.4 Semant ics: Address semant ics 146
8.31.5 Syntax : Registered languages 146
8.31.6 Syntax : External s ignatures 146
8.31.7 Val id i ty: External Signature ru le 147
8.31.8 Semant ics: External s ignature semant ics 147
8.31.9 Syntax : External f i le use 147
8.31.10 Val id i ty: External Fi le rule 148
8.31.11 Semant ics: External f i le semant ics 148
8.31.12 Syntax : C externals 148
8.31.13 Val id i ty: C external ru le 149
8.31.14 Semant ics: C In l ine semant ics 149
8.31.15 Syntax : C++ externals 149
8.31.16 Val id i ty: C++ external ru le 149
8.31.17 Semant ics: C++ In l ine semant ics 149
8.31.18 Syntax : DLL externals 150
8.31.19 Val id i ty: External DLL rule 150

- xiv -

8.31.20 Semant ics: External DLL semant ics 150
 8.32 Lexical components 150

8.32.1 Syntax (non-product ion) : Character, character set 150
8.32.2 Def in i t ion: Let ter , a lpha_bet ic, numeric, a lpha_numeric,
pr intable 151
8.32.3 Def in i t ion: Break character, break 151
8.32.4 Semant ics: Break semant ics 151
8.32.5 Def in i t ion: Expected, f ree comment 152
8.32.6 Syntax (non-product ion) : “Blanks or tabs” , new l ine 152
8.32.7 Syntax : Comments 152
8.32.8 Syntax (non-product ion) : Free Comment ru le 152
8.32.9 Header comment rule 152
8.32.10 Def in i t ion: Symbol, word 153
8.32.11 Syntax (non-product ion): Break ru le 153
8.32.12 Semant ics: Let ter Case rule 153
8.32.13 Def in i t ion: Reserved word, keyword 153
8.32.14 Syntax (non-product ion): Double Reserved Word ru le 154
8.32.15 Def in i t ion: Special symbol 154
8.32.16 Syntax (non-product ion): Ident i f ier 154
8.32.17 Val id i ty: Ident i f ier ru le 154
8.32.18 Def in i t ion: Predef ined operator 154
8.32.19 Def in i t ion: Standard operator 154
8.32.20 Def in i t ion: Operator symbol 154
8.32.21 Def in i t ion: Free operator 155
8.32.22 Syntax : Syntax (non-product ion): Mani fest character 155
8.32.23 Special characters and their codes 156
8.32.24 Syntax (non-product ion): Percent var iants 156
8.32.25 Semant ics: Mani fest character semant ics 157
8.32.26 Syntax (non-product ion): Str ing, s imple str ing 157
8.32.27 Semant ics: Str ing semant ics 157
8.32.28 Syntax : Integers 157
8.32.29 Val id i ty: Integer ru le 157
8.32.30 Semant ics: In teger semant ics 158
8.32.31 Syntax (non-product ion): Real number 158
8.32.32 Semant ics: Real semant ics 158

- 1 -

 1 Scope

 1.1 Overview
This document provides the full reference for the Eiffel language.

Eiffel is a method of software construction and a language applicable to the analysis,
design, implementation and maintenance of software systems. This Standard covers only
the language, with an emphasis on the implementation aspects. As a consequence, the
word “Eiffel” in the rest of this document is an abbreviation for “the Eiffel language”.

 1.2 “The Standard”
The language definition proper — “the Standard” — is contained in Partition 8 of this
document, with the exception of text appearing between markers Informative text and End;
such text only plays an explanatory role for human readers.

 1.3 Aspects covered
The Standard specifies:

• The form of legal basic constituents of Eiffel texts, or lexical properties of the language.
• The structure of legal Eiffel texts made of lexically legal constituents, or syntax properties.
• Supplementary restrictions imposed on syntactically legal Eiffel texts, or validity properties.
• The computational effect of executing valid Eiffel texts, or semantic properties.
• Some requirements on a conforming implementation of Eiffel, such as the ability to produce

certain forms of automatic documentation.

 1.4 Aspects not covered
The Standard does not specify:

• The requirements that a computing environment must meet to support the translation,
execution and other handling of Eiffel texts.

• The semantic properties of an Eiffel text if it or its data exceed the capacity of a particular
computing environment.

• The mechanisms for translating Eiffel texts into a form that can be executed in a computing
environment.

• The mechanisms for starting the execution of the result of such a translation.
• Other mechanisms for handling Eiffel texts and interacting with users of the language.

The specification of Partition 8 consists of precise specification elements, originating with
the book Standard Eiffel where these elements are accompanied by extensive
explanations and examples. The elements retained are:

• Definitions of technical terms and Eiffel concepts.
• Syntax specifications.
• Validity constraints (with their codes, such as VVBG).
• Semantic specifications.

 2 Conformance

 2.1 Definition
An implementation of the Eiffel language is conformant if and only if in its default operating
mode, when provided with a candidate software text, it:

- 2 -

• Can, if the text and all its elements satisfy the lexical, syntax and validity rules of the Standard,
execute the software according to the semantic rules of the Standard, or generate code for a
computing environment such that, according to the specification of that environment, the
generated code represents the semantics of the text according to these rules.

• Will, if any element of the text violates any lexical, syntactical or validity rule of the Standard,
report an error and perform no semantic processing (such as generating executable code, or
directly attempting to execute the software).

 2.2 Compatibility and non-default options
Implementations may provide options that depart in minor ways from the rules of this
Standard, for example to provide compatibility with earlier versions of the implementation
or of the language itself. Such options are permitted if and only if:

• Per 2.1, they are not the default.
• The implementation includes documentation that states that all such options are

nonconformant.

 2.3 Departure from the Standard
Material reasons, such as bugs or lack of time, may lead to the release of an
implementation that supports most of the Standard but misses a few rules and hence is not
yet conformant according to the definition of 2.1. In such a case the implementation shall
include documentation that:

• States that the implementation is not conformant.
• Lists all the known causes of non-conformance.
• Provides an estimate of the date or version number for reaching full conformance.

 3 Normative references

 3.1 Earlier Eiffel language specifications
Bertrand Meyer: Eiffel: The Language, Prentice Hall, second printing, 1992 (first printing:
1991).

Bertrand Meyer: Standard Eiffel (revision of preceding entry), ongoing, 1997-present, at
http://www.inf.ethz.ch/~meyer/ongoing/etl.

Bertrand Meyer: Object-Oriented Software Construction, Prentice Hall: first edition, 1988;
second edition, 1997.

 3.2 Eiffel Kernel Library
The terms “ELKS” and “Kernel Library”, as used in this Standard, refer to the latest version
of the Eiffel Library Kernel Standard. A preliminary version is available from the NICE
consortium:

NICE consortium: The Eiffel Library Kernel Standard, 2001 Vintage.

The Standard assumes the following classes to be present in ELKS: ANY, ARRAY [G],
BOOLEAN, CHARACTER, CHARACTER_8, CHARACTER_32, INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32, INTEGER_64, PART_COMPARABLE [G], REAL, REAL_32,
REAL_64, STRING, STRING_8, STRING_16, TYPE [G]. All are non-generic except those
marked [G], indicating a single, non-constrained generic parameter. The clauses referring
to these classes specify the needed features.

 3.3 Floating point number representation
IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989). Also known as ANSI/IEEE Standard 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic.

- 3 -

 3.4 Character set: Unicode
The Unicode Consortium: The Unicode Standard, Version 4.1, at http://www.unicode.org/
versions/Unicode4.1.0/..

 3.5 Character set: ASCII
ISO 14962:1997: Space data and information transfer systems.

 3.6 Phonetic alphabet
International Phonetic Association: International Phonetic Alphabet (revised 1993, updated
1996).

 4 Definitions

All the Eiffel-specific terms used in the Standard are defined in paragraphs labeled “Definition”.

 5 Notational conventions

 5.1 Standard elements
Every clause of the Standard belongs to one of the following categories:

• Syntax: rule affecting the structure of Eiffel texts, including lexical properties as well as syntax
proper. The conventions for describing syntax appear below.

• Validity: restrictions on syntactically legal texts.
• Semantics: properties of the execution of valid texts.
• Definition: introduction of a term defining a certain concept, which may relate to syntax,

validity of semantic properties; the rest of the Standard may use the term as an abbreviation
for the concept.

• Principle: a general language design rule, or a property of the software text resulting from
other properties covered by definition and syntax, validity and semantic rules.

The clauses of the Standard are labeled with the corresponding category. A clause with no
label shall be considered as “Definition”.

 5.2 Normative elements
The rules of syntax, validity and semantics constitute the necessary and sufficient
conditions for an implementation to be conformant.

The entries labeled principle, addressing validity in most cases and semantics in a few
others, express properties that follow from the official rules. For example the Feature
Identifier principle (8.5.18) states

Given a class C and an identifier f, C contains at most one feature of identifier f.

This property (expressing that there must be no overloading of feature identifiers within a
class) follows from a variety of validity rules.

Such principles are conceptually redundant and do not add any constraint on an
implementation; They provide an interesting angle on the language definition, both for:

• Programmers, by capturing a general property in a concise way.
• Implementers, who when reporting a rule violation in a candidate Eiffel text may choose to

refer to the principle rather than the (possibly less immediately clear) rules that underlie it.

 5.3 Rules on definitions
In a definition, the first occurrence of each term being defined appears in bold.

- 4 -

Some definitions are recursive, meaning that the definition of a certain property of certain
language elements distinguishes between two or more cases, and in some (but not all) of
these cases uses the same property applied to smaller language elements. (The definition
then makes sense as all cases eventually reduce to basic, non-recursive cases.) For
clarity, the recursive branches are always marked by the word “recursively”” in
parentheses.

In the text of the Standard, uses of a defined term may appear before the definition. The
underlining convention described next helps avoid any confusion in such cases.

 5.4 Use of defined terms
In any formal element of the language specification (definition, syntax, validity, semantics),
appearance of a word as underlined means that this is a technical term introduced in one
of the definitions of the Standard. For example, one of the conditions in the Name Clash
rule (8.16.16) reads:

1 It is invalid for C to introduce two different features with the same name.
The underlining indicates that words like “introduce” are not used in their plain English
sense but as Eiffel-related concepts defined precisely elsewhere in the Standard. Indeed,
8.5.1 defines the notion that a class “introduces” a feature. Similarly, the notion of features
having the “same name” is precisely defined (8.5.19) as meaning that their identifiers,
excluding any Operator aliases, are identical except possibly for letter case.

This use of underlining is subject to the following restrictions:

• Underlining applies only to the first occurrence of such a defined term in a particular definition
or rule.

• If a single clause defines a group of terms, occurrences of one of these terms in the definition
of another are not underlined.

• As a consequence, uses of a term in its own definition are not underlined (they do bear, as
noted, the mark “recursively”).

• In addition, a number of basic concepts, used throughout, are generally not underlined; they
include:

 5.5 Unfolded forms
The definition of Eiffel in the Standard frequently relies on unfolded forms defining certain
advanced constructs in terms of simpler ones. For example an “anchored type” of the form
like a has a “deanchored form”, which is just the type of a. Validity and semantic rules can
then rely on the unfolded form rather than the original.

This technique, applied to about twenty constructs of the language, makes the description
significantly simpler by identifying a basic set of constructs for which it provides direct
validity and semantic specifications, and defining the rest of the language in terms of this
core.

 5.6 Language description
The Standard follows precise rules and conventions for language description, described in
8.2.

 5.7 Validity: “if and only if” rules
A distinctive property of the language description is that the validity constraints, for
example type rules, do not just, as in many language descriptions, list properties that a

Assertion Attribute Call Character Class
Cluster Entity Expression Feature Identifier
Instruction Semantics Type Valid

- 5 -

software text must satisfy to be valid. They give the rules in an “if and only if” style. For
example (8.8.3, Formal Argument rule):

“Let fa be the Formal_arguments part of a routine r in a class C. Let formals be the
concatenation of every Identifier_list of every Entity_declaration_group in fa. Then fa is valid
if and only if no Identifier e appearing in formals is the final name of a feature of C.”

This does not just impose requirements on programmers, but tells them that if they satisfy
these requirements they are entitled to having the construct (here a “Formal_arguments
part”) accepted by an Eiffel language processing tool, for example a compiler. The rules,
then, are not only necessary but sufficient. This contributes (except of course for the
presence of any error or omission in the Standard) to the completeness of the language
definition, and reinforces the programmers’ trust in the language.

 6 Acronyms and abbreviations

 6.1 Name of the language
The word “Eiffel” is not an acronym. It is written with a capital initial E, followed by letters in
lower case.

 6.2 Pronunciation
Verbally, with reference to the International Phonetic Alphabet, the name is pronounced:

• In English: with the stress on the first syllable.
• In French: with the stress on the second syllable.
• In other languages: the closest approximation to the English or French variant as desired.

 7 General description

The following is an informal introduction to the Eiffel language. It is informative only.

 7.1 Design principles
The aim of Eiffel is to help specify, design, implement and modify quality software. This
goal of quality in software is a combination of many factors; the language design
concentrated on the three factors which, in the current state of the industry, are in direst
need of improvements: reusability, extendibility and reliability. Also important were other
factors such as efficiency, openness and portability.

Reusability is the ability to produce components that may be used in many different applications.
Central to the Eiffel approach is the presence of widely used libraries complementing the
language, and the language’s support for the production of new libraries.
Extendibility is the ability to produce easily modifiable software. “Soft” as software is supposed
to be, it is notoriously hard to modify software systems, especially large ones.
Among quality factors, reusability and extendibility play a special role: satisfying them means
having less software to write — and hence more time to devote to other important goals such as
efficiency, ease of use or integrity.
The third fundamental factor is reliability, the ability to produce software that is correct and robust
— that is to say, bug-free. Eiffel techniques such as static typing, assertions, disciplined exception
handling and automatic garbage collection are essential here.
Four other factors are also part of Eiffel’s principal goals:
• The language enables implementors to produce high efficiency compilers, so that systems

developed with Eiffel may run under speed and space conditions similar to those of programs
written in lower-level languages traditionally focused on efficient implementation.

- 6 -

• Ensuring openness, so that Eiffel software may cooperate with programs written in other
languages.

• Guaranteeing portability by a platform-independent language definition, so that the same
semantics may be supported on many different platforms.

• High-precision language definition, allowing independent implementers to provide
compilers and other tools, and providing Eiffel users the guarantee that their software will work
on all the Standard-compliant implementations. The language definition does not favor or refer
to any particular implementation.

 7.2 Object-oriented design
To achieve reusability, extendibility and reliability, the principles of object-oriented design
provide the best known technical answer.

An in-depth discussion of these principles falls beyond the scope of this introduction but here is a
short definition:

Object-oriented design is the construction of software systems as structured
collections of abstract data type implementations, or “classes”.

The following points are worth noting in this definition:

• The emphasis is on structuring a system around the types of objects it manipulates (not the
functions it performs on them) and on reusing whole data structures together with the
associated operations (not isolated routines).

• Objects are described as instances of abstract data types — that is to say, data structures
known from an official interface rather than through their representation.

• The basic modular unit, called the class, describes one implementation of an abstract data
type (or, in the case of “deferred” classes, as studied below, a set of possible implementations
of the same abstract data type).

• The word collection reflects how classes should be designed: as units interesting and useful
on their own, independently of the systems to which they belong, and ready to be reused by
many different systems. Software construction is viewed as the assembly of existing classes,
not as a top-down process starting from scratch.

• Finally, the word structured reflects the existence of two important relations between classes:
the client and inheritance relations.

Eiffel makes these techniques available to software developers in a simple and practical
way.

As a language, Eiffel includes more than presented in this introduction, but not much more; it is a
small language, not much bigger (by such a measure as the number of keywords) than Pascal.
The description as given in the Standard text — excluding “informative text” and retaining only the
rules — takes up about 80 pages. Eiffel was indeed meant to be a member of the class of
languages which programmers can master entirely — as opposed to languages of which most
programmers know only a subset. Yet it is appropriate for the development of industrial software
systems, as has by now been shown by many full-scale projects, some in the thousands of
classes and millions of lines, in companies around the world, for mission-critical systems in many
different areas from finance to health care and aerospace.

 7.3 Classes
A class, it was said above, is an implementation of an abstract data type. This means that
it describes a set of run-time objects, characterized by the features (operations) applicable
to them, and by the formal properties of these features.

Such objects are called the direct instances of the class. Classes and objects should not be
confused: “class” is a compile-time notion, whereas objects only exist at run time. This is similar
to the difference that exists in pre-object-oriented programming between a program and one
execution of that program, or between a type and a run-time value of that type.

- 7 -

(“Object-Oriented” is a misnomer; “Class-Oriented Analysis, Design and Programming”
would be a more accurate description of the method.)

To see what a class looks like, let us look at a simple example, ACCOUNT, which
describes bank accounts. But before exploring the class itself it is useful to study how it
may be used by other classes, called its clients.

A class X may become a client of ACCOUNT by declaring one or more entities of type
ACCOUNT. Such a declaration is of the form:

An entity such as acc that programs can directly modify is called a variable. An entity
declared of a reference type, such as acc, may at any time during execution become
“attached to” an object (see figure 1); the type rules imply that this object must be a direct
instance of ACCOUNT — or, as seen later, of a “descendant” of that class.

An entity is said to be void if it is not attached to any object. As seen below, the type
system achieves strict control over void entities, for run-time safety. To obtain objects at
run-time, a routine r appearing in the client class X may use a creation instruction of the
form

which creates a new direct instance of ACCOUNT, attaches acc to that instance, and
initializes all its fields to default values. A variant of this notation, studied below, makes it
possible to override the default initializations.

Once the client has attached acc to an object, it may call on this object the features defined in
class ACCOUNT. Here is an extract with some feature calls using acc as their target:

acc: ACCOUNT

create acc

acc.open ("Jill")
acc.deposit (5000)
if acc.may_withdraw (3000) then

acc.withdraw (3000); print (acc.balance)
end

acc
balance

owner

A direct instance
of PERSON

A direct instance
of ACCOUNT

Figure 1: References and objects

- 8 -

These feature calls use dot notation, of the form target.feature_name, possibly followed by
a list of arguments in parentheses. Features are of two kinds:

• Routines (such as open, deposit, may_withdraw, withdraw) represent computations
applicable to instances of the class.

• Attributes represent data items associated with these instances.

Routines are further divided into procedures (commands, which do not return a value) and
functions (queries, returning a value). Here may_withdraw is a function returning a
boolean; the other three-routines called are procedures.

The above extract of class X does not show whether, in class ACCOUNT, balance is an attribute
or a function without argument. This ambiguity is intentional. A client of ACCOUNT, such as X,
does not need to know how a balance is obtained: the balance could be stored as an attribute of
every account object, or computed by a function from other attributes. Choosing between these
techniques is the business of class ACCOUNT, not anybody else’s. Because such implementation
choices are often changed over the lifetime of a project, it is essential to protect clients against
their effects.

This Principle of Uniform Access permeates the use of attributes and functions throughout the
language design: whenever one of these feature variants can be used, and the other would make
sense too, both are permitted. For example it is possible to redefine a function into an attribute
and conversely (in descendant classes), and attributes can have assertions just like functions.
The term query covers both attributes and functions.

The above example illustrates the Eiffel syntax style: focusing on readability, not overwhelming
the reader with symbols, and using simple keywords, each based on a single English word (in its
simplest form: feature in the singular, require and not “requires”). The syntax is free-format —
spaces, new lines, tabs have the same effect — and yet does not require a separator between
successive instructions. You may use semicolons as separators if you wish, but they are optional
in all possible contexts, and most Eiffel programmers omit them (as an obstacle to readability)
except in the rare case of several instructions written on one line.

So much for how client classes will typically use ACCOUNT. Next is a first sketch of how class
ACCOUNT itself might look. Line segments beginning with -- are comments. The class includes
two feature clauses, introducing its features. The first begins with just the keyword feature,
without further qualification; this means that the features declared in this clause are available (or
“exported”) to all clients of the class. The second clause is introduced by feature {NONE} to
indicate that the feature that follows, called add, is available to no client. What appears between
the braces is a list of client classes to which the listed features are available; NONE is a special
class of the Kernel Library, which has no instances, so that add is in effect a secret feature,
available only locally to the other routines of class ACCOUNT. In a client class such as X, the call
acc.add (–3000) would be invalid and hence rejected by any Standard-compliant language
processing tool.

class ACCOUNT feature
balance: INTEGER
owner: PERSON
minimum_balance: INTEGER = 1000
open (who: PERSON)

-- Assign the account to owner who.
do

owner := who
end

deposit (sum: INTEGER)
-- Deposit sum into the account.

do
add (sum)

end

- 9 -

Let us examine the features in sequence. The do ...end distinguishes routines from
attributes. So here the class has implemented balance as an attribute, although, as noted,
a function would also have been acceptable. Feature owner is also an attribute.

The language definition guarantees automatic initialization, so that the initial balance of an
account object, just after creation, will be zero. Each type has a default initialization value: zero
for INTEGER and REAL, false for BOOLEAN, null character for CHARACTER, and a void
reference for reference types. The class designer may also provide clients with different
initialization options, as will be shown in a revised version of this example.
The other public features, open, deposit, withdraw and may_withdraw are straightforward
routines. The special variable Result, used in may_withdraw, denotes the function result; it is
initialized on function entry to the default value of the function’s result type.
The secret procedure add serves for the implementation of the public procedures deposit and
withdraw; the designer of ACCOUNT judged it too general to be exported by itself. The clause
= 1000 introduces minimum_balance as a constant attribute, which will not occupy any space in
instances of the class; in contrast, every instance has a field for every non-constant attribute such
as balance.
In Eiffel’s object-oriented programming style any operation is relative to a certain object. In a client
invoking the operation, this object is specified by writing the corresponding entity on the left of the
dot, as acc in acc.open ("Jill"). Within the class, however, the “current” instance to which
operations apply usually remains implicit, so that unqualified feature names, such as owner in
procedure open or add in deposit, mean “the owner attribute or add routine relative to the current
instance”.
If you need to denote the current object explicitly, you may use the special entity Current. For
example the unqualified occurrences of add appearing in the above class are essentially
equivalent to Current.add.
In some cases, infix or prefix notation will be more convenient than dot notation. For example, if a
class VECTOR offers an addition routine, most people will feel more comfortable with calls of the
form v + w than with the dot-notation call v.plus (w). To make this possible it suffices to give the
routine a name of the form plus alias "+"; internally, however, the operation is still a normal routine
call. You can also use unary operators for prefix notation. It is also possible to define a bracket
alias, as in the feature item alias "[]" of the Kernel Library class ARRAY, which returns an array
element of given index i: in dot notation, you will write this as your_array.item (i), but the bracket
alias allows your_array [i] as an exact synonym. At most one feature per class may have a
bracket alias. These techniques make it possible to use well-established conventions of
mathematical notation and traditional programming languages in full application of object-oriented
principles.

withdraw (sum: INTEGER)
-- Withdraw sum from the account.

do
add (–sum)

end

may_withdraw (sum: INTEGER): BOOLEAN
-- Is there enough money to withdraw sum?

do
Result := (balance >= sum + minimum_balance)

end

feature {NONE}
add (sum: INTEGER)

-- Add sum to the balance.
do

balance := balance + sum
end

end

- 10 -

The above simple example has shown the basic structuring mechanism of the language: the
class. A class describes a data structure, accessible to clients through an official interface
comprising some of the class features. Features are implemented as attributes or routines; the
implementation of exported features may rely on other, secret ones.

 7.4 Types
Eiffel is strongly typed for readability and reliability. Every entity is declared of a certain
type, which may be either a reference type or an expanded type.

Any type T is based on a class, which defines the operations that will be applicable to instances
of T. The difference between the two categories of type affects the semantics of using an instance
of T as source of an attachment: assignment or argument passing. An attachment from an object
of a reference type will attach a new reference to that object; with an expanded type, the
attachment will copy the contents of the object. Similarly, comparison operations such as a = b will
compare references in one case and objects contents in the other. (To get object comparison in
all cases, use a ~ b.) We talk of objects with reference semantics and objects with copy semantics.

Syntactically, the difference is simple: a class declared without any particular marker, like
ACCOUNT, yields a reference type. To obtain an expanded type, just start with expanded class
instead of just class.

It may be useful to think of expanded and reference types in terms of figure 2, where we assume
that ACCOUNT has an extra attribute exp of type EXP, using a class declared as expanded class
EXP. Figure 2 shows the entity acc denoting at run time a reference to an instance of ACCOUNT
and, in contrast, exp in that instance denoting a subobject, not a reference to another object:

This is only an illustration, however, and implementations are not required to implement
expanded values as subobjects. What matters is the distinction between copy and
reference semantics.

An important group of expanded types, based on library classes, includes the basic types
INTEGER, REAL, CHARACTER and BOOLEAN. Clearly, the value of an entity declared of
type INTEGER should be an integer, not a reference to an object containing an integer
value. Operations on these types are defined by prefix and infix operators such as "+" and
"<".

As a result of these conventions, the type system is uniform and consistent: all types, reference
or expanded — including the basic types —, are defined from classes.

In the case of basic types, for obvious reasons of efficiency, compilers can and usually do
implement the usual arithmetic and boolean operations directly through the corresponding
machine operations, not through routine calls. So the performance is the same as if basic types

acc: ACCOUNT
balance

owner

An object
of ACCOUNT)

Figure 2: Object and subobject

exp: EXP
A subobject
(direct instance
of EXP)

Reference

(direct instance

- 11 -

were “magic”, outside of the object-oriented type system. But this is only a compiler optimization,
which does not hamper the conceptual homogeneity of the type edifice.

 7.5 Assertions
If classes are to deserve their definition as abstract data type implementations, they must
be known not just by the available operations, but also by the formal properties of these
operations, which did not appear in the above example.

Eiffel encourages software developers to express formal properties of classes by writing
assertions, which may in particular appear in the following roles:

• Routine preconditions express the requirements that clients must satisfy whenever they call
a routine. For example the designer of ACCOUNT may wish to permit a withdrawal operation
only if it keeps the account’s balance at or above the minimum. Preconditions are introduced
by the keyword require.

• Routine postconditions, introduced by the keyword ensure, express conditions that the
routine (the supplier) guarantees on return, if the precondition was satisfied on entry.

• A class invariant must be satisfied by every instance of the class whenever the instance is
externally accessible: after creation, and after any call to an exported routine of the class. The
invariant appears in a clause introduced by the keyword invariant, and represents a general
consistency constraint imposed on all routines of the class.

With appropriate assertions, the ACCOUNT class becomes:

class ACCOUNT create
make

feature
... Attributes as before:

balance, minimum_balance, owner, open ...

deposit (sum: INTEGER)
-- Deposit sum into the account.

require
sum >= 0

do
add (sum)

ensure
balance = old balance + sum

end

withdraw (sum: INTEGER)
-- Withdraw sum from the account.

require
sum >= 0
sum <= balance – minimum_balance

do
add (–sum)

ensure
balance = old balance – sum

end
may_withdraw ... -- As before

feature {NONE}
add ... -- As before
make (initial: INTEGER)

-- Initialize account with balance initial.
require

initial >= minimum_balance
do

balance := initial
end

- 12 -

The notation old attribute_name may only be used in a routine postcondition. It denotes the
value the attribute had on routine entry.

In its last version above, the class now includes a creation procedure, make. With the first
version of ACCOUNT, clients used creation instructions such as create acc1 to create
accounts; but then the default initialization, setting balance to zero, violated the invariant.
By having one or more creation procedures, listed in the create clause at the beginning of
the class text, a class offers a way to override the default initializations. The effect of

is to allocate the object (as with default creation) and to call procedure make on it, with the
argument given. This call is correct since it satisfies the precondition; it will ensure the
invariant. (The underscore _ in the integer constant 5_500 has no semantic effect; you can
improve the readability of numbers by separating digits into groups, usually of three.)

Note that the same keyword, create, serves both to introduce creation instructions and the
creation clause listing creation procedures at the beginning of the class.
A procedure listed in the creation clause, such as make, otherwise enjoys the same properties as
other routines, especially for calls. Here the procedure make is secret since it appears in a clause
starting with feature {NONE}; so it would be invalid for a client to include a call such as

To make such a call valid, it would suffice to move the declaration of make to the first
feature clause of class ACCOUNT, which carries no export restriction. Such a call does not
create any new object, but simply resets the balance of a previously created account.

Syntactically, assertions are boolean expressions, with a few extensions such as the old
notation. Writing a succession of assertion clauses, as in the precondition to withdraw, is
equivalent to combining them with an “and”, but permits individual identification of the
components. (As with instructions you could use a semicolon between assertion clauses,
although it is optional and generally omitted.)

Assertions play a central part in the Eiffel method for building reliable object-oriented software.
They serve to make explicit the assumptions on which programmers rely when they write software
elements that they believe are correct. Writing assertions, in particular preconditions and
postconditions, amounts to spelling out the terms of the contract which governs the relationship
between a routine and its callers. The precondition binds the callers; the postcondition binds the
routine.
The underlying theory of Design by Contract, the centerpiece of the Eiffel method, views software
construction as based on contracts between clients (callers) and suppliers (routines), relying on
mutual obligations and benefits made explicit by the assertions.
Assertions are also an indispensable tool for the documentation of reusable software
components: one cannot expect large-scale reuse without a precise documentation of what
every component expects (precondition), what it guarantees in return (postcondition) and
what general conditions it maintains (invariant).

Documentation tools in Eiffel implementations use assertions to produce information for client
programmers, describing classes in terms of observable behavior, not implementation. In
particular the contract view of a class, which serves as its basic documentation, is obtained from
the full text by removing all non-exported features and all implementation information such as do

invariant
balance >= minimum_balance

end

create acc1.make (5_500)

acc.make (8_000)

- 13 -

clauses of routines, but keeping interface information and in particular assertions. Here is the
interface of the above class (without the extra attribute):

This is not an Eiffel text, only documentation of Eiffel classes, hence the use of slightly
different syntax to avoid any confusion (class interface rather than class). In accordance
with observations made above, the output for balance would be the same if this feature
were a function rather than an attribute.

Such an interface can be produced by automatic tools from the text of the software. It serves as
the primary form of class documentation. A variant of the contract view includes inherited features
along with those introduced in the class itself.
It is also possible to evaluate assertions at run time, to uncover potential errors (“bugs”). The
implementation provides several levels of assertion monitoring: preconditions only, postconditions
etc. With monitoring on, an assertion that evaluates to true has no further effect on the execution.
An assertion that evaluates to false will trigger an exception, as described next; in the absence of
a specific exception handler the exception will cause an error message and termination.
This ability to check assertions provides a powerful testing and debugging mechanism, in
particular because the classes of widely used libraries are equipped with extensive assertions.
Run-time checking, however, is only one application of assertions, whose role as design and
documentation aids, as part of the theory of Design by Contract, exerts a pervasive influence on
the Eiffel style of software development.

 7.6 Exceptions
Whenever there is a contract, the risk exists that someone will break it. This is where
exceptions come in.

Exceptions — contract violations — may arise from several causes. One is assertion violations, if
assertions are monitored. Another is the occurrence of a signal triggered by the hardware or
operating system to indicate an abnormal condition such as arithmetic overflow or lack of memory
to create a new object.
Unless a routine has made specific provision to handle exceptions, it will fail if an exception arises
during its execution. Failure of a routine is a third cause of exception: a routine that fails triggers
an exception in its caller.
A routine may, however, handle an exception through a rescue clause. This optional clause
attempts to “patch things up” by bringing the current object to a stable state (one satisfying the
class invariant). Then it can terminate in either of two ways:

class interface ACCOUNT create
make

feature
balance: INTEGER

...
deposit (sum: INTEGER)

-- Deposit sum into the account.
require

sum >= 0
ensure

balance = old balance + sum
withdraw (sum: INTEGER)

-- Withdraw sum from the account.
require

sum >= 0
sum <= balance – minimum_balance

ensure
balance = old balance – sum

may_withdraw ...
end

- 14 -

• The rescue clause may execute a retry instruction, which causes the routine to restart its
execution from the beginning, attempting again to fulfil its contract, usually through another
strategy. This assumes that the instructions of the rescue clause, before the retry, have
attempted to correct the cause of the exception.

• If the rescue clause does not end with retry, then the routine fails: it returns to its caller,
immediately signaling an exception. (The caller’s rescue clause will be executed according to
the same rules.)

The principle is that a routine must either succeed or fail: either it fulfils its contract, or it
does not; in the latter case it must notify its caller by triggering an exception.

Usually, only a few routines of a system will include explicit rescue clauses. An exception
occurring during the execution of a routine with no rescue clause will trigger a predefined rescue
procedure, which does nothing, and so will cause the routine to fail immediately, propagating the
exception to the routine’s caller.

An example using the exception mechanism is a routine attempt_transmission which tries to
transmit a message over a phone line. The actual transmission is performed by an external,
low-level routine transmit; once started, however, transmit may abruptly fail, triggering an
exception, if the line is disconnected. Routine attempt_transmission tries the transmission at most
50 times; before returning to its caller, it sets a boolean attribute successful to true or false
depending on the outcome. Here is the text of the routine:

Initialization rules ensure that failures, a local variable, is set to zero on entry.

This example illustrates the simplicity of the mechanism: the rescue clause never attempts to
achieve the routine’s original intent; this is the sole responsibility of the body (the do clause). The
only role of the rescue clause is to clean up the objects involved, and then either to fail or to retry.

The Kernel Library provides a class EXCEPTION and a number of descendants describing
specific kinds of exception. Triggering of an exception produces an instance of one of these types,
making it possible, in the rescue clause, to perform more specific exception processing.

This disciplined exception mechanism is essential for software developers, who need protection
against unexpected events, but cannot be expected to sacrifice safety and simplicity to pay for this
protection.

 7.7 Genericity

Building software components (classes) as implementations of abstract data types yields
systems with a solid architecture but does not in itself suffice to ensure reusability and
extendibility. Two key techniques address the problem: genericity (unconstrained or
constrained) and inheritance. Let us look first at the unconstrained form.

attempt_transmission (message: STRING)
-- Try to transmit message, at most 50 times.
-- Set successful accordingly.

local
failures: INTEGER

do
if failures < 50 then

transmit (message); successful := true
else

successful := false
end

rescue
failures := failures + 1; retry

end

- 15 -

To make a class generic is to give it formal generic parameters representing arbitrary types, as
in these examples from typical libraries:

These classes describe data structures — arrays, lists without commitment to a specific
representation, lists in linked representation — containing objects of a certain type. The
formal generic parameter G represents this type.

Such a class describes a type template. To derive a directly usable type, you must provide a type
corresponding to G, called an actual generic parameter; this might be a basic type (such as
INTEGER) or a reference type. Here are some possible generic derivations:

As the last example indicates, an actual generic parameter may itself be generically
derived.

Without genericity, it would be impossible to obtain static type checking in a realistic
object-oriented language.

A variant of this mechanism, constrained genericity, introduced below after inheritance, enables
a class to place specific requirements on possible actual generic parameters.

 7.8 Inheritance

Inheritance, the other fundamental generalization mechanism, makes it possible to define
a new class by combination and specialization of existing classes rather than from scratch.

The following simple example describes lists implemented by arrays, combining LIST and ARRAY
through inheritance:

The inherit... clauses list all the “parents” of the new class, which is said to be their “heir”.
(The “ancestors” of a class include the class itself, its parents, grandparents etc.; the
reverse term is “descendant”.) Declaring ARRAYED_LIST as shown ensures that all the
features and properties of lists and arrays are applicable to arrayed lists as well. Since the
class has more than one parent, this is a case of multiple inheritance.

ARRAY [G]
LIST [G]
LINKED_LIST [G]

il: LIST [INTEGER]
aa: ARRAY [ACCOUNT]
aal: LIST [ARRAY [ACCOUNT]]

class ARRAYED_LIST [G] inherit
LIST [G]

inherit {NONE}
ARRAY [G]

export ... See below ...end
feature

... Specific features of lists implemented by arrays ...
end

- 16 -

In this case one of the parents is introduced by a different clause, reading inherit {NONE}; this
specifies non-conforming inheritance, where it will not be possible to assign values of the new
types to variables of the parent type. The other branch, with just inherit, is conforming, so we can
assign an ARRAYED_LIST [T] to a LIST[T]. This reflects the distinction between the “subtyping”
and “pure reuse” forms of inheritance.

Standard graphical conventions (figure 3) serve to illustrate such inheritance structures:

A non-conforming heir class such as ARRAYED_LIST needs the ability to define its own
export policy. By default, inherited features keep their export status (publicly available,
secret, available to selected classes only); but this may be changed in the heir. Here, for
example, ARRAYED_LIST will export only the exported features of LIST, making those of
ARRAY unavailable directly to ARRAYED_LIST’s clients. The syntax to achieve this is
straightforward:

Another example of multiple inheritance comes from a windowing system based on a class
WINDOW, as in the EiffelVision graphics library. Windows have graphical features: a
height, a width, a position, routines to scale windows, move them, and other graphical
operations. The system permits windows to be nested, so that a window also has
hierarchical features: access to subwindows and the parent window, adding a subwindow,
deleting a subwindow, attaching to another parent and so on. Rather than writing a
complex class that would contain specific implementations for all of these features, it is
preferable to inherit all hierarchical features from TREE, and all graphical features from a
class RECTANGLE. In this case both branches are conforming, so a single inherit clause
listing two parents suffices:

Inheritance yields remarkable economies of effort — whether for analysis, design,
implementation or evolution — and has a profound effect on the entire development
process.

class ARRAYED_LIST [G] inherit
LIST [G]

inherit {NONE}
ARRAY [G]

 export {NONE} all end
... The rest as above ...

class WINDOW inherit
RECTANGLE
TREE [WINDOW]

...

ARRAYED_
LIST

ARRAY

Figure 3: Inheritance

Non-conforming
inheritance

Conforming
inheritance

LIST

- 17 -

The very power of inheritance demands adequate means to keep it under control. Multiple
inheritance, in particular, raises the question of name conflicts between features inherited from
different parents. You may simply remove such a name conflict through renaming, as in

Here, if both A and B have features named x and y, class C would be invalid without the
renaming.

Renaming also serves to provide more appropriate feature names in descendants. For example,
class WINDOW may inherit a routine insert_subtree from TREE. For clients of WINDOW,
however, such a routine name is no longer appropriate. An application using this class for window
manipulation needs coherent window terminology, and should not be concerned with the
inheritance structure that led to the implementation of the class. So you may wish to rename
insert_subtree as add_subwindow in the inheritance clause of WINDOW.
As a further facility to protect against misusing the multiple inheritance mechanism, the invariants
of all parent classes automatically apply to a newly defined class.

 7.9 Polymorphism and dynamic binding
Inheritance is not just a module combination and enrichment mechanism. It also enables
the definition of flexible entities that may become attached to objects of various forms at
run time, a property known as polymorphism.

Complementary mechanisms make this possibility particularly powerful: feature redefinition and
dynamic binding. The first enables a class to redefine some or all of the features which it inherits
from its parents. For an attribute or function, the redefinition may affect the type, replacing the
original by a descendant; for a routine it may also affect the implementation, replacing the
original’s routine body by a new one.
Assume for example a class POLYGON, describing polygons, whose features include an array of
points representing the vertices and a function perimeter which computes a polygon’s perimeter
by summing the successive distances between adjacent vertices. An heir of POLYGON may begin:

Here it is appropriate to redefine perimeter for rectangles as there is a simpler and more
efficient algorithm. Note the explicit redefine subclause (which would come after the
rename if present).

Other descendants of POLYGON may also have their own redefinitions of perimeter. The version
to use in any call is determined by the run-time form of the target. Consider the following class
fragment:

class C inherit
A rename x as x1, y as y1 end
B rename x as x2, y as y2 end

feature...

class RECTANGLE inherit
POLYGON redefine perimeter end

feature -- Specific features of rectangles, such as:
side1: REAL; side2: REAL
perimeter: REAL

Rectangle-specific version
do Result := 2 ∗ (side1 + side2) end

... Other RECTANGLE features ...

p: POLYGON; r: RECTANGLE
... create p; create r; ...
if some_condition then

p := r
end
print (p.perimeter)

- 18 -

The polymorphic assignment p := r is valid because the type of the source, RECTANGLE,
conforms, through inheritance, to the type of the target, POLYGON. If some_condition is

false, p will be attached to an object of type POLYGON for the computation of p.perimeter,
which will thus use the polygon algorithm. In the opposite case, however, p will be attached
to a rectangle; then the computation will use the version redefined for RECTANGLE. This is
known as dynamic binding.

Dynamic binding provides high flexibility. The advantage for clients is the ability to request an
operation (such as perimeter computation) without explicitly selecting one of its variants; the
choice only occurs at run-time. This is essential in large systems, where many variants may be
available; each component must be protected against changes in other components.

This technique is particularly attractive when compared to its closest equivalent in
non-object-oriented approaches where you would need records with variant components, and
case instructions to discriminate between variants. This means that every client must know about
every possible case, and that any extension may invalidate a large body of existing software.

Redefinition, polymorphism and dynamic binding support a development mode in which every
module is open and incremental. When you want to reuse an existing class but need to adapt it to
a new context, you can always define a new descendant of that class (with new features,
redefined ones, or both) without any change to the original. This facility is of great importance in
software development, an activity which — whether by design or by circumstance — is invariably
incremental.

The power of polymorphism and dynamic binding demands adequate controls. First, feature
redefinition is explicit. Second, because the language is typed, a compiler can check statically
whether a feature application a.f is valid, as discussed in more detail below. In other words, the
language reconciles dynamic binding with static typing. Dynamic binding guarantees that
whenever more than one version of a routine is applicable the right version (the one most directly
adapted to the target object) will be selected. Static typing means that the compiler makes sure
there is at least one such version.

This policy also yields an important performance benefit: the design of the inheritance mechanism
makes it possible for an implementation to find the appropriate routine, for a dynamically bound
call, in constant time.

Assertions provide a further mechanism for controlling the power of redefinition. In the absence of
specific precautions, redefinition may be dangerous: how can a client be sure that evaluation of
p.perimeter will not in some cases return, say, the area? Preconditions and postconditions
provide the answer by limiting the amount of freedom granted to eventual redefiners. The rule is
that any redefined version must satisfy a weaker or equal precondition and ensure a stronger or
equal postcondition than in the original. In other words, it must stay within the semantic boundaries
set by the original assertions.

The rules on redefinition and assertions are part of the Design by Contract theory, where
redefinition and dynamic binding introduce subcontracting. POLYGON, for example, subcontracts
the implementation of perimeter to RECTANGLE when applied to any entity that is attached at
run-time to a rectangle object. An honest subcontractor is bound to honor the contract accepted
by the prime contractor. This means that it may not impose stronger requirements on the clients,
but may accept more general requests, so that the precondition may be weaker; and that it must
achieve at least as much as promised by the prime contractor, but may achieve more, so that the
postcondition may be stronger.

 7.10 Combining genericity and inheritance

Genericity and inheritance, the two fundamental mechanisms for generalizing classes,
may be combined in two fruitful ways.

- 19 -

The first technique yields polymorphic data structures. Assume that in the generic class LIST
[G] the insertion procedure put has a formal argument of type G, representing the element to be
inserted. Then with a declaration such as

the type rules imply that in a call pl.put (...) the argument may be not just of type
POLYGON, but also of type RECTANGLE (an heir of POLYGON) or any other type
conforming to POLYGON through inheritance.

The conformance requirement used here is the inheritance-based type compatibility rule in simple
cases, V conforms to T if and only if V is a descendant of T.

Structures such as pl may contain objects of different types, hence the name “polymorphic data
structure”. Such polymorphism is, again, made safe by the type rules: by choosing an actual
generic parameter (POLYGON in the example) based higher or lower in the inheritance graph,
you extend or restrict the permissible types of objects in pl. A fully general list would be declared as

where ANY, a Kernel Library class, is automatically an ancestor of any class that you may
write.

The other mechanism for combining genericity and inheritance is constrained genericity. By
indicating a class name after a formal generic parameter, as in

you express that only descendants of that class (here ADDABLE) may be used as the
corresponding actual generic parameters. This makes it possible to use the corresponding
operations. Here, for example, class VECTOR may define a routine plus infix "+" for adding
vectors, based on the corresponding routine from ADDABLE for adding vector elements.
Then by making VECTOR itself inherit from ADDABLE, you ensure that it satisfies its own
generic constraint and enable the definition of types such as VECTOR [VECTOR [T]].

Unconstrained genericity, as in LIST [G], may be viewed as an abbreviation for genericity
constrained by ANY, as in

With these basic forms of genericity, it is not possible to create an instance of a formal
generic type, for example an object of type G in VECTOR [G]. Indeed without further
information we don’t know whether any creation procedures are available. To request
specific ones for an actual generic parameter, list them in the class declaration, just after
the constraint:

Then you can use the instruction create x.make (a), with the appropriate argument type for
a as specified for make in ADDABLE, and rely on the guarantee that when this gets applied
to a VECTOR [T] for a permissible T this type will have its own appropriate version of make.

pl: LIST [POLYGON]

LIST [ANY]

VECTOR [G –> ADDABLE]

LIST [G –> ANY]

VECTOR [G –> ADDABLE create make end]

- 20 -

 7.11 Deferred classes

The inheritance mechanism includes one more major component: deferred routines and
classes.

Declaring a routine r as deferred in a class C expresses that there is no default implementation of
r in C; such implementations will appear in eventual descendants of C. A class having one or more
deferred routines is itself said to be deferred. A non-deferred routine or class is called effective.

For example, a system used by a Department of Motor Vehicles to register vehicles could include
a class of the form

This example assumes that no single registration algorithm applies to all kinds of vehicle;
passenger cars, motorcycles, trucks etc. are all registered differently. But the same
precondition and postcondition apply in all cases. The solution is to treat register as a
deferred routine, making VEHICLE a deferred class. Descendants of class VEHICLE, such
as CAR or TRUCK, effect this routine, that is to say, give effective versions (figure 4). An
effecting is similar to a redefinition; only here there is no effective definition in the original
class, just a specification in the form of a deferred routine. There is no need here for a
redefine clause; the effective versions simply take over any inherited deferred version.
The term redeclaration covers both redefinition and effecting.

Deferred classes describe a group of implementations of an abstract data type rather than
just a single implementation. You may not instantiate a deferred class: create v is invalid
if v is a variable declared of type VEHICLE. But you may assign to v a reference to an
instance of a non-deferred descendant of VEHICLE. For example, assuming CAR and

deferred class VEHICLE feature
dues_paid (year: INTEGER): BOOLEAN

do... end
valid_plate (year: INTEGER): BOOLEAN

do... end
register (year: INTEGER)

-- Register vehicle for year.
require

 dues_paid (year)
deferred
ensure

 valid_plate (year)
end

... Other features, deferred or effective...
end

VEHICLE

CAR TRUCK

register+ register+

register*

* deferred
+ effective

Inherits

*

Figure 4: Abstracting variants into a deferred parent

- 21 -

TRUCK provide effective definitions for all deferred routines of VEHICLE, the following will
be valid:

This example fully exploits polymorphism: depending on the outcome of some_test, v will
be treated as a car or a truck, and the appropriate registration algorithm will be applied.
Also, “Some test” may depend on some event whose outcome is impossible to predict until
run-time, for example a user clicking with the mouse to select one among several vehicle
icons displayed on the screen.

Deferred classes are particularly useful at the design stage. The first version of a module may be
a deferred class, which will later be refined into one or more effective (non-deferred) classes.
Particularly important for this application is the possibility of associating a precondition and a
postcondition with a routine even though it is a deferred routine (as with register above), and an
invariant with a class even though it is a deferred class. This enables the designer to attach
precise semantics to a module at the design stage, long before making any implementation
choices.
These possibilities make Eiffel an attractive alternative to specialized notations, graphical or
textual, for design and also for analysis, The combination of deferred classes to capture partially
understood concepts, assertions to express what is known about their semantics, and the
language’s other structuring facilities (information hiding, inheritance, genericity) to obtain clear,
convincing architectures, yields a higher-level design method. A further benefit, of course, is that
the notation is also a programming language, making the development cycle smoother by
reducing the gap between design and implementation.
At the analysis stage, deferred classes describe not software objects, but objects from the external
reality’s model — documents, airplanes, investments. The Eiffel mechanisms are just as attractive
for such modeling.
An important property of deferred classes supporting all these lifecycle tasks, as part of a
seamless software development cycle, is that they do not have to be fully deferred, like pure
“interfaces”. A class may have a mix of effective features capturing what is known at a certain
stage of the development, and deferred ones describing what remains to be refined. This supports
a continuous refinement-based process, proceeding smoothly from the abstract to the concrete.

 7.12 Tuples and agents
A simple extension to the notion of class is the tuple. The type TUPLE [A, B, C] has, as its
instances, sequences (“tuples”) whose first three elements are of types A, B and C
respectively. A tuple expression appears as simply [a1, b1, c1] with elements of the given
type. It is also possible in the tuple type declaration to label the components, as in TUPLE

[x: A, y: B, z: C], making it simpler to access the elements, as in your_tuple.y, with the

proper type, here B, rather than your_tuple.item (2) of type ANY by default. Tuples provide
a simpler alternative to classes when you don’t need specific features, just a sequence of
values of given types.

Tuples also help in the definition of agents. An agent is a way to define an object that represents
a certain routine, ready to be called , possibly with some of its arguments set at the time of the
agent definition (closed operands) and others to be provided at the time of each actual call (open
operands). For example with a routine r (x: A, y: B) in a class C, as well as a1 of type A and c1
of type C, the agent

agent c1.r (a1, ?)

v: VEHICLE; c: CAR; t: TRUCK
...
create c ...; create t ...;...
if some_test then v := c else v := t end
v.register (1996)

- 22 -

represents the routine r ready to be called on the target c1, with the argument a1 and
another argument (corresponding to y, of type B) to be provided at the time of the call. The
question mark ? represents an open operand. The routine using this agent, for example
having received it as an actual argument to a routine, for the formal argument operation,
can then call the associated routine through

operation.call [b1]
for some b1 of type B, the only open operand. This will have the same effect as an original

call c1.r (a1, b1), but the routine executing it does not know that operation represents r
rather than any other routine with the same expected open operands. The argument to call
is not directly b1 but a tuple with b1 as its sole item; this is because call — a routine of the
corresponding general-purpose agent class in the Kernel Library — must be able to accept
argument sequences of any length, while ensuring type safety.

Agents add a further level of expressiveness to the mechanisms discussed earlier. They are
particularly useful for numerical applications — for example to pass agent f, where f is a
mathematical function, to an integration routine — and Graphical User Interface (GUI) applications,
where they provide an attractive alternative to techniques such as “function pointers” and the
Observer Pattern. For example an application may pass the above agent c1.r (a1, ?) to a GUI
routine, telling it to “subscribe” the associated operation to certain event types such as mouse click.
When such an event occurs, the GUI will automatically trigger the operation through a call.

 7.13 Type- and void-safety
As noted, Eiffel puts a great emphasis on reliability through static typing. Polymorphism
and dynamic binding in particular are controlled by type rules. The basic requirement is
simple: an assignment of the form a := b is permitted only if a and b are of reference types
A and B, based on classes A and B such that B is a descendant of A. The same applies to
argument passing.

This corresponds to the intuitive idea that a value of a more specialized type may be assigned to
an entity of a less specialized type — but not the reverse. (As an analogy, consider that if you
request vegetables, getting green vegetables is fine, but if you ask for green vegetables, receiving
a dish labeled just “vegetables” is not acceptable, as it could include, say, carrots.)
This inheritance-based type system rules out numerous errors, some potentially catastrophic if
their detection was left to run time.
Another, just as dangerous type of error has generally eluded static detection: void calls. In a
framework offering references or pointers, the risk exists that in the execution of a call x.f (...) the
value of x will be void rather than attached to an object, leading to a crash. The design of Eiffel
treats this case through the type system. Specifically:
• Types are by default attached, meaning that they do not permit void values. To support void,

a type must be declared as detachable: ? T rather than just T.
• You may use a qualified call x.f (...) only if the type of x is attached.
• As part of the conformance rules, you may assign a T source to a ? T target but (for risk of

losing the characteristic property of attached types) not the other way around.
• All entities, as noted, are initialized to default values. For detachable types the default value

is void, but for an attached type it must always be attached to an object. This means that either
the type must provide a default creation procedure (a procedure default_create from class
ANY is available for that purpose, which any class can use as creation procedure, after
possibly redefining it to suit its needs), or every variable must be explicitly initialized before
use.

These simple rules, compiler-enforceable, remove a whole category of tricky and
dangerous failures.

- 23 -

 7.14 Putting a system together
This discussion has focused so far on individual classes. This is consistent with the Eiffel
method, which emphasizes reusability and, as a consequence, the construction of
autonomous modules.

To execute software, you will need to group classes into executable compounds. Such a
compound is called a system — the Eiffel concept closest to the traditional notion of program —
and is defined by the following elements:

• A set of classes, called a universe.

• The designation of one of these classes as the system’s root class.

• The designation of one of the creation procedures of the root class as the root creation
procedure.

To execute such a system is to create one direct instance of the root class (the root object
for the current execution), and to apply to it the root creation procedure — which will
usually create other objects, call other routines and so on.

The method suggests grouping related classes — typically 5 to 40 classes — into collections
called clusters. A common convention, for the practical implementation on the file system, is to
store each class in a file, and associate each cluster with a directory. Then the universe is simply
the set of classes stored across a set of directories.

The classes of a system will include its root class and all the classes that it needs directly or
indirectly, where a class is said to need another if it is one of its heirs or clients.

To specify a system you will need to state, in addition to the list of directories, the name of the root
class (which must be one of the classes of the universe) and of the root creation procedure (which
must be one of the creation procedures of the root class). This is achieved through either a
graphical interface or a control file.

 8 Language specification

 8.1 General organization

Informative text

The remainder of the text provides the precise specification of Eiffel.

The overall order of the description is top-down, global structure to specific details:

• Conventions for the language description and basic conventions of the language itself.

• Architecture of Eiffel software, including the fundamental structuring mechanisms: cluster,
class, feature, inheritance, client.

• Key elements of a class: routines and assertions.

• Type and type adaptation mechanisms, including redeclaration, genericity, tuples,
conformance, convertibility and repeated inheritance.

• Control structures.

• Dynamic model: objects, attributes, entities, creation, copying.

• The calling mechanism and its consequences: expressions, type checking, barring void calls.

• Advanced mechanisms: exceptions, agents.

• Elementary mechanisms: constants, basic types, lexical elements.

End

- 24 -

 8.2 Syntax, validity and semantics
8.2.1 Definition: Syntax, BNF-E

Syntax is the set of rules describing the structure of software texts.
The notation used to define Eiffel’s syntax is called BNF-E.

Informative text
“BNF” is Backus-Naur Form, a traditional technique for describing the syntax of a certain category
of formalisms (“context-free languages”), originally introduced for the description of Algol 60.
BNF-E adds a few conventions — exactly one production per language construct, a practical
notation for repetitions with separators — that make the description clearer and more coherent.
The range of formalisms that can be described by BNF-E is the same as for traditional BNF.

End

8.2.2 Definition: Component, construct, specimen
Any class text, or syntactically meaningful part of that text, such as an instruction, an expression
or an identifier, is called a component.
The structure of any component is described by a construct. A component conforming to a
certain construct is called a specimen of that construct.

Informative text
For example, any particular class text, built according to the rules given in this language
description, is a component. The construct Class describes the structure of class texts; any class
text is a specimen of that construct. At the other end of the complexity spectrum, an identifier such
as your_variable is a specimen of the construct Identifier.
Although we could use the term “instance” in lieu of “specimen”, it could cause confusion with the
instances of an Eiffel class — the run-time objects built according to the class specification.

End

8.2.3 Construct Specimen convention
The phrase ‘‘an X’’, where X is the name of a construct, serves as a shorthand for ‘‘a specimen of
X’’.

Informative text
For example, ‘‘a Class’’ means ‘‘a specimen of construct Class’’: a text built according to the
syntactical specification of construct Class.

End

8.2.4 Construct Name convention
Every construct has a name starting with an upper-case letter and continuing with lower-case
letters, possibly with underscores (to separate parts of the name if it uses several English words).

Informative text
Typesetting conventions also help: construct names, such as Class, always appear in Roman and
in color — not the same as the color of Eiffel text, as in Result := x.

End

8.2.5 Definition: Terminal, non-terminal, token
Specimens of a terminal construct have no further syntactical structure. Examples include:
• Reserved words such as if, Result etc.
• Manifest constants such as the integer 234; symbols such as ; (semicolon) and + (plus sign).
• Identifiers (used to denote classes, features, entities) such as LINKED_LIST and put .

- 25 -

The specimens of terminal constructs are called tokens.
In contrast, the specimens of a non-terminal construct are defined in terms of other constructs.

Informative text
Tokens (also called lexical components) form the basic vocabulary of Eiffel texts. By starting with
tokens and applying the rules of syntax you may build more complex components — specimens
of non-terminals.

End

8.2.6 Definition: Production
A production is a formal description of the structure of all specimens of a non-terminal construct.
It has the form

Construct =∆ right-side
where right-side describes how to obtain specimens of the Construct.

Informative text
The symbol =∆ may be read aloud as ‘‘is defined as’’.
BNF-E uses exactly one production for each non-terminal. The reason for this convention is
explained below.

End

8.2.7 Kinds of production
A production is of one of the following three kinds, distinguished by the form of the right-side:
• Aggregate, describing a construct whose specimens are made of a fixed sequence of parts,

some of which may be optional.
• Choice, describing a construct having a set of given variants.
• Repetition, describing a construct whose specimens are made of a variable number of parts,

all specimens of a given construct.

8.2.8 Definition: Aggregate production
An aggregate right side is of the form C1 C2 ... Cn (n > 0), where every one of the Ci is a construct
and any contiguous subsequence may appear in square brackets as [Ci ... Cj] for 1 ≤ i ≤ j ≤ n.
Every specimen of the corresponding construct consists of a specimen of C1, followed by a
specimen of C2, ..., followed by a specimen of Cn , with the provision that for any subsequence in
brackets the corresponding specimens may be absent.

8.2.9 Definition: Choice production
A choice right side is of the form C1 | C2 | ... | Cn (n > 0), where every one of the Ci is a construct.
Every specimen of the corresponding construct consists of exactly one specimen of one of the Ci.

8.2.10 Definition: Repetition production, separator
A repetition right side is of one of the two forms

{C § ...}*
{C § ...}+

where C and § (the separator) are constructs.
Every specimen of the corresponding construct consists of zero or more (one or more in the
second form) specimens of C, each separated from the next, if any, by a specimen of §.
The following abbreviations may be used if the separator is empty:

C*
C+

- 26 -

Informative text
Because of the availability of Repetition productions, the grammar usually avoids recursion when
the purpose is simply to describe a construct whose specimens may contain successive
specimens of another construct. In that case a Repetition generally gives a clearer picture. An
example is the specification of the Object_call construct in terms of Call_chain.

End

8.2.11 Basic syntax description rule
Every non-terminal construct is defined by exactly one production.

Informative text
Unlike in most BNF variants, every BNF-E production always uses exactly one of Aggregate,
Choice and Repetition, never mixing them in the right sides. This convention yields a considerably
clearer grammar, even if it has a few more productions (giving in fact a more accurate image of
the language’s complexity).

End

8.2.12 Definition: Non-production syntax rule
A non-production syntax rule, marked “(non-production)”, is a syntax property expressed
outside of the BNF-E formalism.

Informative text
Unlike validity rules, non-production syntax rules definitely belong to the syntax, that is to say the
description of the structure of Eiffel texts, but they capture properties that are not expressible, or
not conveniently expressible, through a context-free grammar.
For example the BNF-E Aggregate productions allow successive right-side components to be
separated by an arbitrary break — any sequence of spaces, tabs and “new line” characters. In a
few cases, for example in an Alias declaration such as alias "+", it is convenient to use BNF-E —
with a right-side listing the keyword alias, a double quote, an Operator and again a double quote
— but we need to prohibit breaks between either double quote and the operator. In other cases
we require at least one break character. We still use BNF-E to specify such constructs, but add a
non-production syntax rule stating the supplementary constraints.

End

8.2.13 Textual conventions
The syntax (BNF-E) productions and other rules of the Standard apply the following conventions:

1 Symbols of BNF-E itself, such as the vertical bars | signaling a choice production,
appear in black (non-bold, non-italic).

2 Any construct name appears in dark green (non-bold, non-italic), with a first letter in
upper case, as Class.

3 Any component (Eiffel text element) appears in blue.
4 The double quote, one of Eiffel’s special symbols, appears in productions as '" ': a double

quote character (blue like other Eiffel text) enclosed in two single quote characters
(black since they belong to BNF-E, not Eiffel).

5 All other special symbols appear in double quotes, for example a comma as ",", an
assignment symbol as ":=", a single quote as "'" (double quotes black, single quote blue).

6 Keywords and other reserved words, such as class and Result, appear in bold (blue like
other Eiffel text), except TUPLE. They do not require quotes since the conventions avoid
ambiguity with construct names: Class is the name of a construct, class a keyword.

7 Examples of Eiffel comment text appear in non-bold, non-italic (and in blue), as -- A
comment.

- 27 -

8 Other elements of Eiffel text, such as entities and feature names (including in
comments) appear in non-bold italic (blue). This also applies to TUPLE.

The color-related parts of these conventions do not affect the language definition, which remains
unambiguous under black-and-white printing (thanks to the letter-case and font parts of the
conventions). Color printing is recommended for readability.

Informative text
Because of the difference between cases 1 and 3, { denotes the opening brace as it might appear
in an Eiffel class text, whereas { is a symbol of the syntax description, used in repetition
productions.
In case 2 the use of an upper-case first letter is a consequence of the “Construct Name
convention”.
Special symbols are normally enclosed in double quotes (case 5), except for the double quote
itself which, to avoid any confusion, appears enclosed in single quotes (case 4). In either variant,
the enclosing quotes — double or single respectively — are not part of the symbol.
In some contexts, such as the table of all such symbols, special symbols (cases 4 and 5) appear
in bold for emphasis.

In application of cases 7 and 8, occurrences of Eiffel entities or feature names in comments
appear in italics, to avoid confusion with other comment text, as in a comment

-- Update the value of value.

where the last word denotes a feature of name value in the enclosing class.

End

8.2.14 Definition: Validity constraint
A validity constraint on a construct is a requirement that every syntactically well-formed
specimen of the construct must satisfy to be acceptable as part of a software text.

8.2.15 Definition: Valid
A construct specimen, built according to the syntax structure defined by the construct’s
production, is said to be valid, and will be accepted by the language processing tools of any Eiffel
environment, if and only if it satisfies the validity constraints, if any, applying to the construct.

8.2.16 Validity: General Validity rule Validity code: VBGV

Every validity constraint relative to a construct is considered to include an implicit supplementary
condition stating that every component of the construct satisfies every validity constraint
applicable to the component.

8.2.17 Definition: Semantics
The semantics of a construct specimen that is syntactically legal and valid is the construct’s effect
on the execution of a system that includes the specimen.

8.2.18 Definition: Execution terminology
• Run time is the period during which a system is executed.

• The machine is the combination of hardware (one or more computers) and operating system
through which you can execute systems.

• The machine type, that is to say a certain combination of computer type and operating system,
is called a platform.

• Language processing tools serve to build, manipulate, explore and execute the text of an
Eiffel system on a machine.

- 28 -

Informative text
The most obvious example of a language processing tool is an Eiffel compiler or interpreter, which
you can use to execute a system. But many other tools can manipulate Eiffel texts: Eiffel-aware
editors, browsers to explore systems and their properties, documentation tools, debuggers,
configuration management systems. Hence the generality of the term “language processing tool”.

End

8.2.19 Semantics: Case Insensitivity principle
In writing the letters of an Identifier serving as name for a class, feature or entity, or a reserved
word, using the upper-case or lower-case versions has no effect on the semantics.

Informative text
So you can write a class or feature name as DOCUMENT, document and even dOcUmEnT with
exactly the same meaning.

End

8.2.20 Definition: Upper name, lower name
The upper name of an Identifier or Operator i is i written with all letters in upper case; its lower
name, i with all letters in lower case.

Informative text
In the example the lower name is document and the upper name DOCUMENT.
The definition is mostly useful for identifiers, but the names of some operators, such as and and
other boolean operators, also contain letters.
The reason for not letting letter case stand in the way of semantic interpretation is that it is simply
too risky to let the meaning of a software text hang on fine nuances of writing, such as changing
a letter into its upper-case variant; this can only cause confusion and errors. Different things
should, in reliable and maintainable software, have clearly different names.
Letter case is of course significant in “manifest strings”, denoting texts to be taken verbatim, such
as error messages or file names.
This letter case policy goes with strong rules on style:
• Classes and types should always use the upper name, as with a class DOCUMENT.
• Non-constant features and entities should always use the lower name, as with an attribute

document.
• Constants and “once” functions should use the lower name with the first letter changed to

upper, as with a constant attribute Document.

End

8.2.21 Syntax (non-production): Semicolon Optionality rule
In writing specimens of any construct defined by a Repetition production specifying the semicolon
";" as separator, it is permitted, without any effect on the syntax structure, validity and semantics
of the software, to omit any of the semicolons, or to add a semicolon after the last element.

Informative text
This rule applies to instructions, declarations, successive groups of formal arguments, and many
other Repetition constructs. It does not rely on the layout of the software: Eiffel’s syntax is
free-format, so that a return to the next line has the same effect as one or more spaces or any
other “break”. Rather than relying on line returns, the Semicolon Optionality rule is ensured by the
syntax design of the language, which guarantees that omitting a semicolon never creates an
ambiguity.

- 29 -

The rule also guarantees that an extra semicolon at the end, as in a ; b ; instead of just a ; b is
harmless.
The style guidelines suggest omitting semicolons (which would only obscure reading) for
successive elements appearing on separate lines, as is usually the case for instructions and
declarations, and including them to separate elements on a given line.
Because the semicolon is still formally in the grammar, programmers used to languages where
the semicolon is an instruction terminator, who may then out of habit add a semicolon after every
instruction, will not suffer any adverse effect, and will get the expected meaning.

End

 8.3 The architecture of Eiffel software

Informative text
The constituents of Eiffel software are called classes. To keep your classes and your
development organized, it is convenient to group classes into clusters. By combining classes
from one or more clusters, you may build executable systems.
These three concepts provide the basis for structuring Eiffel software:
• A class is a modular unit.
• A cluster is a logical grouping of classes.
• A system results from the assembly of one or more classes to produce an executable unit.

Of these, only “class”, describing the basic building blocks, corresponds directly to a construct of
the language. To build clusters and systems out of classes, you will use not a language
mechanism, but tools of the supporting environment.
Clusters provide an intermediate level between classes and systems, indispensable as soon as
your systems grow beyond the trivial:
• At one extreme, a cluster may be a simple library of a few classes.
• At the other extreme, a system as a whole is simply a cluster that you have made executable

(by selecting a root type and a root procedure).
• In-between, a cluster may be a more complex library, consisting of several subclusters, or an

existing system that you wish to integrate as a subcluster into a larger system.
Clusters also serve to store and group classes using the facilities of the underlying operating
system, such as files, folders or directories.
After the basic definitions, the language description concentrates on classes. This is the most
important concept in Eiffel development, which views software construction as an industrial
production activity: combining components, not writing one-of-a-kind applications.

End

8.3.1 Definition: Cluster, subcluster, contains directly
A cluster is a collection of classes, (recursively) other clusters called its subclusters, or both. The
cluster is said to contain directly these classes and subclusters.

Informative text
In the presence of subclusters, several clusters may contain a class, but exactly one contains it
directly.

End

8.3.2 Definition: Terminal cluster, internal cluster
A cluster is terminal if it contains directly at least one class.
A cluster is internal if it contains at least one subcluster.

- 30 -

Informative text

From these definitions, it is possible for a cluster to be both terminal and internal.

End

8.3.3 Definition: Universe

A universe is a set of classes.

Informative text

The universe provides a reference from which to draw classes of interest for a particular system.
Any Eiffel environment will provide a way to specify a universe.

End

8.3.4 Validity: Class Name rule Validity code: VSCN

It is valid for a universe to include a class if and only if no other class of the universe has the same
upper name.

Informative text

Eiffel expressly does not include a notion of “namespace” as present in some other languages.
Experience with these mechanisms shows that they suffer from two limitations: they only push
forward the problem of class name clashes, turning it into a problem of namespace clashes; even
more importantly, they tie a class to a particular context, making it impossible to reorganize the
software later without breaking existing code, and hence defeating some of the principal benefits
of object technology and modern software engineering. Name clashes, in the current Eiffel view,
should be handled by tools of the development environment, enabling application writers to
combine classes from many different sources, some possibly with clashing names, and resolving
these clashes automatically (with the possibility of registering user preferences and remembering
them from one release of an acquired external set of classes to the next) while maintaining clarity,
reusability and extendibility.

End

8.3.5 Semantics: Class name semantics

A Class_name C appearing in the text of a class D denotes the class called C in the enclosing
universe.

8.3.6 Definition: System, root type name, root procedure name

A system is defined by the combination of:

1 A universe.

2 A type name, called the root type name.

3 A feature name, called the root procedure name.

8.3.7 Definition: Type dependency

A type T depends on a type R if any of the following holds:

1 R is a parent of the base class C of T.

2 T is a client of R.

3 (Recursively) there is a type S such that T depends on S and S depends on R.

- 31 -

Informative text
In other words, C depends on A if it is connected to A directly or indirectly through some
combination of the basic relations between types and classes — inheritance and client — studied
later. Case 3 gives us indirect forms of dependency, derived from the other cases.

End

8.3.8 Validity: Root Type rule Validity code: VSRT
It is valid to designate a type TN as root type of a system of universe U if and only if it satisfies the
following conditions:

1 TN is the name of a stand-alone type T.
2 T only involves classes in U.
3 T’s base class is not deferred.
4 The base class of any type on which T depends is in U.

Informative text
These conditions make it possible to create the root object:
• A type is “stand-alone” if it only involves class names; this excludes “anchored” types (like

some_entity) and formal generic parameters, which only mean something in the context of a
particular class text. Clearly, if we want to use a type as root for a system, it must have an
absolute meaning, independent of any specific context. “Stand-alone type” is defined at the
end of the discussion of types.

• A deferred class is not fully implemented, and as a result cannot have any direct instances. It
wouldn’t work as base class here, since the very purpose of a root type is to be instantiated
as the first event of system execution.

• To be able to assemble the system, we need to ensure that any class to which the root refers
directly or indirectly is also part of the system’s universe.

In condition 2, a type TN “involves” a class C if it is defined in terms of C, meaning that C is the
base class of TN or of any of its generic parameters: U [V, X [Y, Z]] involves U, V, X, Y and Z. A
non-generic class T used as a type “involves” only itself.

End

8.3.9 Validity: Root Procedure rule Validity code: VSRP
It is valid to specify a name pn as root procedure name for a system S if and only if it satisfies the
following conditions:

1 pn is the name of a creation procedure p of S’s root type.
2 p has no formal argument.
3 p is precondition-free.

Informative text
A routine is precondition-free if it has no precondition, or a precondition that evaluates to true. A
routine can impose preconditions on their callers if these callers are other routines; but it makes
no sense to impose a precondition on the external agent (person, hardware device, other
program...) that triggers an entire system execution, since there is no way to ascertain that such
an agent, beyond the system’s control, will observe the precondition. Hence part 3 of the rule.

End

8.3.10 Definition: Root type, root procedure, root class
In a system S of root type name TN and root procedure name pn, the root type is the type of name
TN, the root class is the base class of that root type, and the root procedure is the procedure of
name pn in that class.

- 32 -

8.3.11 Semantics: System execution
To execute a system on a machine means to cause the machine to apply a creation instruction
to the system’s root type.

Informative text
If a routine is a creation procedure of a type used as root of a system, its execution will usually
create other objects and call other features on these objects. In other words, the execution of any
system is a chain of explosions — creations and calls — each one firing off the next, and the root
procedure is the spark which detonates the first step.

End

8.3.12 Syntax: Class names
Class_name =∆ Identifier

 8.4 Classes

Informative text
Classes are the components used to build Eiffel software.
Classes serve two complementary purposes: they are the modular units of software
decomposition; they also provide the basis for the type system of Eiffel.

End

8.4.1 Definition: Current class
The current class of a construct specimen is the class in which it appears.

Informative text
Every Eiffel software element — feature, expression, instruction, … — indeed appears in a class,
justifying this definition. Most of the language properties indeed refer, through this notion, to the
class in which a certain element belongs.

End

8.4.2 Syntax: Class declarations
Class_declaration =∆ [Notes]

Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end

8.4.3 Syntax: Notes
Notes =∆ note Note_list
Note_list =∆ {Note_entry ";" …}*
Note_entry =∆ Note_name Note_values
Note_name =∆ Identifier ":"
Note_values =∆ {Note_item ","…}+

Note_item =∆ Identifier | Manifest_constant

- 33 -

Informative text
Notes parts (there may be up to two, one at the beginning and one at the end) have no effect on
the execution semantics of the class. They serve to associate information with the class, for use
in particular by tools for configuration management, documentation, cataloging, archival, and for
retrieving classes based on their properties.

End

8.4.4 Semantics: Notes semantics
A Notes part has no effect on system execution.

8.4.5 Syntax: Class headers
Class_header =∆ [Header_mark] class Class_name
Header_mark =∆ deferred | expanded | frozen

Informative text
The Class_name part gives the name of the class. The recommended convention (here and in
any context where a class text refers to a class name) is the upper name.

End

8.4.6 Validity: Class Header rule Validity code: VCCH

A Class_header appearing in the text of a class C is valid if and only if has either no deferred
feature or a Header_mark of the deferred form.

Informative text
If a class has at least one deferred feature, either introduced as deferred in the class itself, or
inherited as deferred and not “effected” (redeclared in non-deferred form), then its declaration
must start not just with class but with deferred class.
There is no particular rule on the other possible markers, expanded and frozen, for a
Class_header. Expanded classes often make the procedure default_create available for creation,
but this is not a requirement since the corresponding entities may be initialized in other ways; they
follow the same rules as other “attached” entities.

End

8.4.7 Definition: Deferred class, effective class
A class is deferred if its Class_header is of the deferred form. It is effective otherwise.

Informative text
Any class that has at least one deferred feature is deferred; any class that only has effective
features is effective except if the class is explicitly declared as deferred class.

End

8.4.8 Syntax: Obsolete marks
Obsolete =∆ obsolete Message
Message =∆ Manifest_string

8.4.9 Semantics: Obsolete semantics
Specifying an an Obsolete mark for a class or feature has no run-time effect.
When encountering such a mark, language processing tools may issue a report, citing the
obsolescence Message and advising software authors to replace the class or feature by a newer
version.

- 34 -

 8.5 Features

Informative text
A class is characterized by its features. Every feature describes an operation for accessing or
modifying instances of the class.
A feature is either an attribute, describing information stored with each instance, or a routine,
describing an algorithm. Clients of a class C may apply C’s features to instances of C through call
instructions or expressions.
Every feature has an identifier, which identifies it uniquely in its class. In addition, a feature may
have an alias to permit calls using operator or bracket syntax.
The following discussion introduces the various categories of feature, explains how to write
feature declarations, and describes the form of feature names.

End

8.5.1 Definition: Inherited, immediate; origin; redeclaration; introduce
Any feature f of a class C is of one of the following two kinds:

1 If C obtains f from one of its parents, f is an inherited feature of C. In this case any
declaration of f in C (adapting the original properties of f for C) is a redeclaration.

2 If a declaration appearing in C applies to a feature that is not inherited, the feature is said
to be immediate in C. Then C is the origin (short for “class of origin”) of f, and is said to
introduce f.

Informative text
A feature redeclaration is a declaration that locally changes an inherited feature. The details of
redeclaration appear in the study of inheritance; what is important here is that a declaration in the
Features part only introduces a new feature (called “immediate” in C, or “introduced” by C) if it is
not a redeclaration of some feature obtained from a parent.
Every feature of a class is immediate either in the class or in one of its proper ancestors (parents,
grandparents and so on).

End

8.5.2 Syntax: Feature parts
Features =∆ Feature_clause+

Feature_clause =∆ feature [Clients] [Header_comment] Feature_declaration_list

Feature_declaration_list =∆ {Feature_declaration ";" …}*

Header_comment =∆ Comment

Informative text
As part of a general syntactical convention, semicolons are optional between a
Feature_declaration and the next. The recommended style rule suggests omitting them except in
the infrequent case of two successive declarations on a single line.

End

8.5.3 Feature categories: overview
Every feature of a class is either an attribute or a routine.

An attribute is either constant or variable.

A routine is either a procedure or a function.

- 35 -

Informative text
A set of definitions in the discussion that follows introduces each of these notions precisely,
making it possible to recognize, from a valid feature declaration, which kind of feature it
introduces.

End

8.5.4 Syntax: Feature declarations
Feature_declaration =∆ New_feature_list Declaration_body
Declaration_body =∆ [Formal_arguments] [Query_mark] [Feature_value]
Query_mark =∆ Type_mark [Assigner_mark]
Type_mark =∆ ":" Type
Assigner_mark =∆ assign Feature_name
Feature_value =∆ [Explicit_value]

[Obsolete]
[Header_comment]
[Attribute_or_routine]

Informative text
Not all combinations of Formal_arguments, Query_mark and Feature_value are possible; the
Feature Body rule and Feature Declaration rule will give the exact constraint. For example it
appears from the above syntax that both a Declaration_body and a Feature_value can be empty,
since their right-side components are all optional, but the validity constraints rule this out.

End

8.5.5 Syntax: New feature lists
New_feature_list =∆ {New_feature "," …}+

New_feature =∆ [frozen] Extended_feature_name

Informative text
Having a list of features, rather than just one, makes it possible for example to declare together
several attributes of the same type or, in the case of routines, to introduce several “synonym”
routines, with the same body.

End

8.5.6 Syntax: Feature bodies
Attribute_or_routine =∆ [Precondition]

[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end

Explicit_value =∆ "=" Manifest_constant
Feature_body =∆ Deferred | Effective_routine | Attribute

8.5.7 Validity: Feature Body rule Validity code: VFFB
A Feature_value is valid if and only if it satisfies one of the following conditions:

1 It has an Explicit_value and no Attribute_or_routine.
2 It has an Attribute_or_routine with a Feature_body of the Attribute kind.
3 It has no Explicit_value and has an Attribute_or_routine with a Feature_body of the

Effective_routine kind, itself of the Internal kind (beginning with do or once).

- 36 -

4 It has no Explicit_value and has an Attribute_or_routine with neither a
Local_declarations nor a Rescue part, and a Feature_body that is either Deferred or an
Effective_routine of the External kind.

Informative text
The Explicit_value only makes sense — either declared explicitly with Attribute or simply given a
type and a value — so cases 3 and 4 exclude this possibility.
The Local_declarations and Rescue parts only make sense (case 4) for a feature with an
associated algorithm present in the class text itself; this means a routine that is neither deferred
nor external, or an attribute with explicit initialization.
In both cases 1 and 2 the feature will be an attribute. Case 1 is the implicit form where we don’t
take the trouble to write the keyword attribute, writing for example just your_attribute:
SOME_TYPE. Case 2 is the long form, explicitly using the keyword attribute and making it
possible, for an attribute like for any other feature, to have a Precondition, a Postcondition, and
even an implementation (including a Rescue clause if desired) which will be used, for
“self-initializing” types, on first use of an uninitialized field.
The Feature Body rule is the basic validity condition on feature declarations. But for a full view of
the constraints we must take into account a set of definitions appearing next, which say what it
takes for a feature declaration — already satisfying the Feature Body rule — to belong to one of
the relevant categories: variable attribute, constant attribute, function, procedure. Another
fundamental constraint, the Feature Declaration rule (VFFD), will then require that the feature
described by any declaration match one of these categories. So the definitions below are a little
more than definitions: they collectively yield a validity requirement complementing the Feature
Body rule.

End

8.5.8 Definition: Variable attribute
A Feature_declaration is a variable attribute declaration if and only if it satisfies the following
conditions:

1 There is no Formal_arguments part.
2 There is a Query_mark part.
3 There is no Explicit_value part.
4 If there is a Feature_value part, it has an Attribute_or_routine with a Feature_body of

the Attribute kind.

8.5.9 Definition: Constant attribute
A Feature_declaration is a constant attribute declaration if and only if it satisfies the following
conditions:

1 It has no Formal_arguments part.
2 It has a Query_mark part.
3 There is a Feature_value part including an Explicit_value.

8.5.10 Definition: Routine, function, procedure
A Feature_declaration is a routine declaration if and only if it satisfies the following condition:
• There is a Feature_value including an Attribute_or_routine, whose Feature_body is of the

Deferred or Effective_routine kind.
If the Query_mark is present, the routine is a function; otherwise it is a procedure.

Informative text
For a routine the Formal_arguments (like the Query_mark) may or may not be present.

- 37 -

By convention this definition treats a deferred feature as a routine, even though its effectings in
proper descendants may be, in the case of a query, attributes as well as functions.

End

8.5.11 Definition: Command, query
A command is a procedure. A query is an attribute or function.

Informative text
These notions underlie two important principles of the Eiffel method:
• The Command-Query separation principle, which suggests that queries should not change

objects.
• The Uniform Access principle, which enjoins, whenever possible, to make no distinction

between attributes and argumentless functions.

End

8.5.12 Definition: Signature, argument signature of a feature
The signature of a feature f is a pair argument_types, result_type where argument_types and
result_type are the following sequences of types:
• If f is a routine, argument_types is the possibly empty sequence of formal argument types, in

the order of the arguments. If f is an attribute, argument_types is an empty sequence.
• If f is a query, result_type is a one-element sequence, whose element is the type of f. If f is a

procedure, result_type is an empty sequence.
The argument_types part is the feature’s argument signature.

Informative text
The argument signature is an empty sequence for attributes and for routines without arguments.

End

8.5.13 Feature principle
Every feature has an associated identifier.
Any valid call (qualified or unqualified) to the feature can be expressed through this identifier.

Informative text
The syntactic variants, available through alias clauses, offer other ways to express the calls,
reconciling object-oriented structure with traditional notations:
• You may qualify the name with alias "§" where § is some operator. For example if a feature is

named plus, clients must call it as a.plus (b); by naming it plus alias "+" you still allow this form
of calls — per the Feature principle — but you also permit a + b in accordance with traditional
syntax for arithmetic expressions. The details of alias operators, as well as the associated
conversion mechanism, appear next.

• You may also use a “bracket alias”, written simply alias "[]" (with an opening bracket
immediately followed by a closing bracket). This allows access through bracket syntax
x [index], For example if a class describing some table structure has a feature
item alias "[]" (index: H): G where H is some index type, items can be accessed through
your_table.item (i) but also through the more concise your_table [i]. Again this is just a
syntactic facility: the second form is a synonym for the first, which remains available.

End

8.5.14 Syntax: Feature names
Extended_feature_name =∆ Feature_name [Alias]
Feature_name =∆ Identifier

- 38 -

Alias =∆ alias '"' Alias_name '"' [convert]
Alias_name =∆ Operator | Bracket

Bracket =∆ "[]"

Informative text
The optional convert mark, for an operator feature, supports mixed-type expressions causing a
conversion of the target, as in the expression your_integer + your_real, which should use the “+”
operation from REAL, not INTEGER, for compatibility with ordinary arithmetic practice. See the
presentation of conversions.

End

8.5.15 Syntax (non-production): Alias Syntax rule
The Alias_name of an Alias must immediately follow and precede the enclosing double quote
symbols, with no intervening characters (in particular no breaks).

When appearing in such an Alias_name, the two-word operators and then and or else must be
written with one or more spaces (but no other characters) between the two words.

Informative text
In general, breaks or comment lines may appear between components prescribed by a BNF-E
production, making this rule necessary to complement the grammar: you must write alias "+", not
alias " + " etc.

End

8.5.16 Definition: Operator feature, bracket feature
A feature is an operator feature if its Extended_feature_name fn includes an Operator alias, a
bracket feature if fn includes a Bracket alias.

Informative text
The most common case is identifier-only. The other two kinds provide convenient modes of
expression (“syntactic sugar”) for some cases where a shorter form, compatible with traditional
mathematical conventions, is desirable for calling the feature.
When referring to feature names, some syntax rules use the Extended_feature_name, and some
use the Feature_name, which is just the identifier, dropping the Alias if any. The criterion is simple:
when a class text needs to refer to one of its own features, the Feature_name is sufficient since
(from the Feature Identifier principle below) it uniquely identifies the feature. So the
Extended_feature_name is used in only two cases: when you first introduce a feature, in a
Feature_declaration as discussed above, and when you change its name for a descendant, in a
Rename clause (for both inheritance and constrained genericity).
This also means that in descendants of its original class a feature will retain its Alias, if any, unless
a descendant explicitly renames it to a name that may drop the Alias, or provide a new one. In
particular, redeclaring a feature does not affect its Alias.

End

8.5.17 Definition: Identifier of a feature name
The Identifier that starts a Extended_feature_name is called the identifier of that
Extended_feature_name and, by extension, of the associated feature.

8.5.18 Validity: Feature Identifier principle
Given a class C and an identifier f, C contains at most one feature of identifier f.

- 39 -

Informative text
This principle reflects a critical property of object-oriented programming in general and Eiffel in
particular: no “overloading” of feature names within a class. It is marked as “validity” but has no
code of its own since it is just a consequence of other validity rules.

End

8.5.19 Definition: Same feature name, same operator, same alias
Two feature names are considered to be “the same feature name” if and only if their identifiers
have identical lower names.

Two operators are “the same operator” if they have identical lower names.

An Alias in an Extended_feature_name is “the same alias” as another if and only if they satisfy
the following conditions:

• They are either the same Operator or both Bracket.

• If either has a convert mark, so does the other.

Informative text
So my_name, MY_NAME and mY_nAMe are considered to be the same feature name. The
recommended style uses a name with an initial capital and the rest in lower case (as in My_name)
for constant attributes, and the lower name, all in lower case (as in my_name) for all other
features. If letters appear in operator feature names, letter case is also irrelevant when it comes
to deciding which feature names are the same and which different.
This notion is useful in particular to enforce the rule that, in any class, there can be only one
feature of a given name (no “overloading”), and to determine what constitutes a “name clash”
under multiple inheritance. In such cases the language rules simply ignore letter case.

End

8.5.20 Syntax: Operators
Operator =∆ Unary | Binary

Unary =∆ not | "+" | "–" | Free_unary

Binary =∆ "+" | "–" | "*" | "/" | "//" | "\\" | "^" | ".." |
"<" | ">" | "<=" | ">=" |
and | or | xor | and then | or else | implies |
 Free_binary

Informative text
Free operators enable developers to define their own operators with considerable latitude. This is
particularly useful in scientific applications where it is common to define special notations, which
Eiffel will render as unary or infix operators. You may for example define operators such as **, |–|
(maybe as an infix alias for a distance function, or various forms of arrow such as <–>, –|–>, =>).

End

Informative text
In an assignment x := y the target x must be a variable. If item is an attribute of the type T of a,
programmers used to other languages may be tempted to write an assignment such as a.item :=
v to assign directly to the corresponding object field, but this is not permitted as it goes against all
the rules of data abstraction and object technology. The normal mechanism is for the author of the
base class of T to provide a “setter” command (procedure), say put, enabling the clients to use
a.put (v).

- 40 -

The class author may, for convenience, permit a.item := v as a shorthand for this call a.put (v),
by specifying put as an assigner command associated with item. An instruction such as a.item
:= v is not an assignment, but simply a different notation for a procedure call; it is known as an
assigner call. This scheme, a notational simplification only, is also convenient for features that
have a Bracket alias, allowing for example, with a an array, an assigner call a [i] := v as shorthand
for a call a.put (v, i).
The mechanism is applicable not just to attributes but (in line with the Uniform Access principle)
to queries, including functions with arguments.
The following rules defines under what conditions you may, as author of a class, permit such
assigner calls from your clients by associating an assigner command with a query.

End

8.5.21 Validity: Assigner Command rule Validity code: VFAC

An Assigner_mark appearing in the declaration of a query q with n arguments (n ≥ 0) and listing
a Feature_name fn, called the assigner command for q, is valid if and only if it satisfies the
following conditions:

1 fn is the identifier of a command c of the class.

2 c has n + 1 arguments.

3 The type of c’s first argument is the result type of q.

4 For every i in 1..n, the type of the i+1-st argument of c is the type of the i-th argument
of q.

Informative text
The feature q can only be a query since, from the syntax of Declaration_body, an Assigner_mark
can only appear as part of a Query_mark, whose presence makes the feature a query.
In cases 3 and 4, we require the types to be identical, not just compatible (converting or
conforming). To understand why, recall that the assignment a.item := y is only a shorthand for a
call a.put (x) with, as a typical implementation:

item: T assign put do … end
put (b: U) do … item := b … end

Now consider the procedure call
a.put (a.item)

or the equivalent assignment form
a.item := a.item

which are in principle useless — they reassign to a field its own value — but should certainly
permitted. They become invalid, however, because the source a.item (actual argument of the call,
right side of the assignment) is of type T, the target (the formal argument) of type U, and it’s
generally impossible for two different types to be both compatible to the other.

End

8.5.22 Definition: Synonym
A synonym of a feature of a class C is a feature with a different Extended_feature_name such
that both names appear in the same New_feature_list of a Feature_declaration of C.

8.5.23 Definition: Unfolded form of a possibly multiple declaration
The unfolded form of a Feature_declaration listing one or more feature names, as in:

f1, f2, … , fn some_declaration_body (n ≥ 1)

- 41 -

where each fi is a New_feature, is the corresponding sequence of declarations naming only one
feature each, and with identical declaration bodies, as in:

f1 some_declaration_body
f2 some_declaration_body
...
fn some_declaration_body

Informative text
Thanks to the unfolded form, we may always assume, when studying the validity and semantics
of feature declarations, that each declaration applies to only one feature name. This convention
is used throughout the language description; to define both the validity and the semantics, it simply
refers to the unfolded form, which may give several declarations even if they are all grouped in the
class text.
A multiple declaration introduces the feature names as synonyms. But the synonymy only applies
to the enclosing class; there is no permanent binding between the corresponding features. They
simply have the same Declaration_body at the point of introduction, and are not otherwise related.
This means in particular that a proper descendant of the class may rename or redeclare one
without affecting the other.
Each fi, being a New_feature, may include a frozen mark. In the unfolded form this mark only
applies, as expected, to the i-th declaration.

End

8.5.24 Validity: Feature Declaration rule Validity code: VFFD

A Feature_declaration appearing in a class C is valid if and only if it satisfies all of the following
conditions for every declaration of a feature f in its unfolded form:

1 The Declaration_body describes a feature which, according to the rules given earlier, is
one of: variable attribute, constant attribute, procedure, function.

2 f does not have the same feature name as any other feature introduced in C (in
particular, any other feature of the unfolded form).

3 If f has the same feature name as the final name of any inherited feature, the
Declaration_body satisfies the Redeclaration rule.

4 If the Declaration_body describes a deferred feature, then the Extended_feature_name
of f is not preceded by frozen.

5 If the Declaration_body describes a once function, the result type is stand-alone.
6 Any anchored type for an argument is detachable.
7 The Alias clause, if present, is alias-valid for f.

Informative text
As stated at the beginning of the rule, the conditions apply to the unfolded form of the declaration;
this means that the rule treats a multiple declaration f1, f2, ... , fn some_declaration_body as a
succession of n separate declarations with different feature names but the same body.
Conditions 1 and 2 are straightforward: the Declaration_body must make sense, and the name or
names of the feature being introduced must not conflict with those of any other feature introduced
in the class.
In applying conditions 2 and 3, remember that two feature names are “the same” not just if they
are written identically, but also if they only differ by letter case. Only the identifiers (Feature_name)
of the features play a role in this notion, not any Alias they may have.
The Feature Name rule will state a consequence of conditions 2 and 3 that may be more
appropriate for error messages in some cases of violation.

- 42 -

Condition 4 prohibits a frozen feature from being declared as deferred. The two properties are
conceptually incompatible since frozen features, by definition, may not be redeclared, whereas
the purpose of deferred features is precisely to force redeclaration in proper descendants.
Condition 5 applies to once functions. A once routine only executes its body on its first call. Further
calls have no effect; for a function, they yield the result computed by the first. This puts a special
requirement on the result type T of such a function: if the class is generic, T should not depend on
any formal generic parameter, since successive calls could then apply to instances obtained from
different generic derivations; and T must not be anchored, as in the context of dynamic binding it
could yield incompatible types depending on the exact type of the target of a particular call. The
notion of stand-alone type, defined in a later discussion, captures these constraints on T.
Condition 6 addresses delicate cases of polymorphism and dynamic binding, where anchored
arguments and their implicit form of “covariance” may cause run-time errors known as “catcalls”.
It follows from the general rule for signature conformance and is discussed with it.
The last condition, 7, is the consistency requirement on features with an operator or bracket alias.
It relies on the following definition (which has a validity code enabling compilers to give more
precise error messages).

End

8.5.25 Validity: Alias Validity rule Validity code: VFAV

An Alias clause is alias-valid for a feature f of a class C if and only if it satisfies the following
conditions:

1 If it lists an Operator op: f is a query; no other query of C has an Operator alias using the
same operator and the same number of arguments; and either: op is a Unary and f has
no argument, or op is a Binary and f has one argument.

2 If it lists a Bracket alias: f is a query with at least one argument, and no other feature of
C has a Bracket alias.

3 If it includes a convert mark: it lists an Operator and f has one argument.

4 If it lists one of the “semistrict” operators and then, or else and implies: C is the Kernel
Library class BOOLEAN.

Informative text
The first two conditions express the uniqueness and signature requirements on operator and
bracket aliases:
• An operator feature plus alias "§" can be either unary (called as § a) or binary (called as a §

b), and so must take either zero or one argument. Two features may indeed share the same
alias— like identity alias "+" and plus alias "+", respectively unary and binary addition in class
INTEGER and others from the Kernel Library — as long as they have different identifiers (here
identity and plus) and different signatures, one unary and the other binary.

• A bracket feature, of which there may be at most one in a class, will be called under the form
x [a1, … an] with n ≥ 1, and so must be a query with at least one argument (and hence a
function). Condition 2 tells us that there may be at most one bracket feature per class.

Condition 3 indicates that a convert mark, specifying “target conversion” as in your_integer +
your_real, makes sense only for features with one argument, with an Operator which (from
condition 1) must be a Binary.
Condition 4 addresses the special case of the three semistrict boolean operators, which follow
unique semantic rules enabling them not to evaluate their second operand in some cases: a and
then b is guaranteed not to evaluate b if a evaluates to false, the result then being necessarily
false. Although the language definition almost always provides generality — based on the
principle that if a technique is useful to the language designer it must also be useful to the
language user — it makes an exception here, because there is no simple way for programmers

- 43 -

to write a semistrict function definition. So and then, or else and implies are for the private use of
class BOOLEAN. As condition 4 indicates, even its own proper descendants cannot redefine
these features.

End

 8.6 The inheritance relation

Informative text
Inheritance is one of the most powerful facilities available to software developers. It addresses two
key issues of software development, corresponding to the two roles of classes:
• As a module extension mechanism, inheritance makes it possible to define new classes from

existing ones by adding or adapting features.

• As a type refinement mechanism, inheritance supports the definition of new types as
specializations of existing ones, and plays a key role in defining the type system.

End

8.6.1 Syntax: Inheritance parts
Inheritance =∆ Inherit_clause+

Inherit_clause =∆ inherit [Non_conformance] Parent_list

Non_conformance =∆ "{" [NONE] "}"
Parent_list =∆ {Parent ";" …}+

Parent =∆ Class_type [Feature_adaptation]

Feature_adaptation =∆ [Undefine]
[Redefine]
[Rename]
[New_exports]
[Select]
end

Informative text
As with all other uses of semicolons, the semicolon separating successive Parent parts is optional.
The style guidelines suggest omitting it between clauses that appear (as they should) on
successive lines.

End

8.6.2 Definition: Parent part for a type, for a class
If a Parent part p of an Inheritance part lists a Class_type T, p is said to be a Parent part for T,
and also for the base class of T.

Informative text
So in inherit TREE [T] there is a Parent part for the type TREE [T] and for its base class TREE.
For convenience this definition, like those for “parent” and “heir” below, applies to both types and
classes.

End

8.6.3 Definition: Multiple, single inheritance
A class has multiple inheritance if it has an Unfolded Inheritance part with two or more Parent
parts. It has single inheritance otherwise.

- 44 -

Informative text
What counts for this definition is the number not of parent classes but of Parent parts. If two
clauses refer to the same parent class, this is a case of multiple inheritance known as repeated
inheritance, studied later on its own. If there is no Parent part, the class (as will be seen below)
has a de facto parent anyway, the Kernel Library class ANY.
The definition refers to the “Unfolded” inheritance part which is usually just the Inheritance part but
may take into account implicit inheritance from ANY, as detailed in the corresponding definition
below.
Multiple inheritance is a frequent occurrence in Eiffel development; most of the effective classes
in the widely used data structures libraries, for example, have two or more parents. The
widespread view that multiple inheritance is “bad” or “dangerous” is not justified; most of the time,
it results from experience with imperfect multiple inheritance mechanisms, or improper uses of
inheritance. Well-applied multiple and repeated inheritance is a powerful way to combine
abstractions, and a key technique of object-oriented software development.

End

Informative text
An important property of the inheritance structure is that every class inherits, directly or indirectly,
from a class called ANY, of which a version is provided in the Kernel Library. The semantics of the
language depends on the presence of such a class, whether the library version or one that a
programmer has provided as a replacement.

End

8.6.4 Validity: Class ANY rule Validity code: VHCA

Every system must include a non-generic class called ANY.

Informative text
The key property of ANY is that it is not only an ancestor of all classes and hence types, but that
all types conform to it, according to the following principle, which is not a separate validity rule
(although for reference it has a code of its own) but a consequence of the definitions and rules
below.

End

8.6.5 Validity: Universal Conformance principle Validity code: VHUC

Every type conforms to ANY.

Informative text
To achieve the Universal Conformance principle, the semantics of the language implies that a
class that doesn’t list any Parent explicitly is considered to have ANY as its parent. This is
captured by the notion of Unfolded Inheritance Part. The definition of “parent” below, and through
it the definition of “ancestor”, refer to the Unfolded Inheritance Part of a class rather than its actual
Inheritance part.

End

8.6.6 Definition: Unfolded Inheritance Part of a class
Any class C has an Unfolded Inheritance Part defined as follows:

1 If C has an Inheritance part: that part.

2 Otherwise: an Inheritance part of the form inherit ANY.

- 45 -

8.6.7 Definition: Inherit, heir, parent
A class C inherits from a type or class B if and only if C’s Unfolded Inheritance Part contains a
Parent part for B.
B is then a parent of C (“parent type” or “parent class” if there is any ambiguity), and C an heir
(“heir type”, “heir class”) of B.

8.6.8 Definition: Conforming, non-conforming parent
A parent B in an Inheritance part is non-conforming if and only if every Parent part for B in the
clause appears in an Inherit_clause with a Non_conformance marker. It is conforming otherwise.

8.6.9 Definition: Ancestor types of a type, of a class
The ancestor types of a type CT of base class C include:

1 CT itself.
2 (Recursively) The result of applying CT’s generic substitution to the ancestor types of

every parent type for C.
The ancestor types of a class are the ancestor types of its current type.

Informative text
The basic notion is for ancestor types of a type. Case 1 indicates that a type is its own ancestor.
Case 2, the recursive case, applies the notion of generic substitution introduced in the discussion
of genericity. The idea that if we consider the type C [INTEGER], with the class declaration class C
[G] inherit D [G] …, the type to include in the ancestors of C [INTEGER] as a result of this
Inheritance part is not D [G], which makes no sense outside of the text of C, but D [INTEGER], the
result of applying to D [G] the substitution G → INTEGER; this is the substitution that yields the
type C [INTEGER] from the class C [G] and is known as the generic substitution of that type.

End

8.6.10 Definition: Ancestor, descendant
Class A is an ancestor of class B if and only if A is the base class of an ancestor type of B.
Class B is a descendant of class A if and only if A is an ancestor of B.

Informative text
Any class, then, is both one of its own descendants and one of its own ancestors. Proper
descendants and ancestors exclude these cases.

End

8.6.11 Definition: Proper ancestor, proper descendant
The proper ancestors of a class C are its ancestors other than C itself. The proper descendants
of a class B are its descendants other than B itself.

8.6.12 Validity: Parent rule Validity code: VHPR
The Unfolded Inheritance Part of a class D is valid if and only if it satisfies the following conditions:

1 In every Parent part for a class B, B is not a descendant of D.
2 No conforming parent is a frozen class.
3 If two or more Parent parts are for classes which have a common ancestor A, D meets

the conditions of the Repeated Inheritance Consistency constraint for A.
4 If one or more Parent parts are present, at least one of them is conforming.
5 No two ancestor types of D are different generic derivations of the same class.
6 Every Parent is generic-creation-ready.

Informative text
Condition 1 ensures that there are no cycles in the inheritance relation.

- 46 -

The purpose of declaring a class as frozen (case 2) is to prohibit subtyping. We still permit the
non-conforming form of inheritance, which permits reuse but not subtyping.
Condition 3 corresponds to the case of repeated inheritance; the Repeated Inheritance
Consistency constraint will guarantee that there is no ambiguity on features that D inherits
repeatedly from A.
Condition 4 governs non-conforming inheritance; it ensures the Universal Conformance principle.
If there are no Inheritance part we accept this — since the rule applies to the Unfolded Inheritance
Part of the class — as shorthand for one of the form inherit ANY; but with an Inheritance part that
would only have branches marked {NONE}, this rule would not apply, and so the current type
would not conform to ANY. If at least one branch is conforming, then the corresponding parent
type will (through recursive application of the same property) conform to ANY, and so will the
current type.
Condition 5 avoids ambiguity when one of the ancestor classes is a generic class A [G] with, for
example, a feature f (x: G); if we allowed a class C to inherit from both A [T] and A [U] for different
types T and U, there would be no proper signature for f in C.
Condition 6 also concerns the case of a generically derived Parent A [T]; requiring it to be
“generic-creation-ready” guarantees that creation operations on D or its descendants will function
properly if they need to create objects of type T.

End

8.6.13 Syntax: Rename clauses
Rename =∆ rename Rename_list
Rename_list =∆ {Rename_pair "," …}*
Rename_pair =∆ Feature_name as Extended_feature_name

Informative text
The first component of a Rename_pair is just a Feature_name, the identifier for the feature; the
second part is a full Extended_feature_name, which may include an alias clause. Indeed:
• To identify the feature you are renaming, its Feature_name suffices.
• At the same time you are renaming the feature, you may give it a new operator or bracket

alias, or remove the alias if it had one.
Forms of feature adaptation other than renaming, in particular effecting and redefinition, do not
affect the Alias, if any, associated with a Feature_name.

End

8.6.14 Validity: Rename Clause rule Validity code: VHRC

A Rename_pair of the form old_name as new_name, appearing in the Rename subclause of the
Parent part for B in a class C, is valid if and only if it satisfies the following conditions:

1 old_name is the final name of a feature f of B.
2 old_name does not appear as the first element of any other Rename_pair in the same

Rename subclause.
3 new_name satisfies the Feature Name rule for C.
4 The Alias of new_name, if present, is alias-valid for the version of f in C.

Informative text
In condition 4, the “alias-valid” condition captures the signature properties allowing a query to have
an operator or bracket aliases. It was enforced when we wanted to give a feature an alias in the
first place and, naturally, we encounter it again when we give it an alias through renaming.

End

- 47 -

8.6.15 Semantics: Renaming principle
Renaming does not affect the semantics of an inherited feature.

Informative text
The “positive” semantics of renaming (as opposed to the negative observation captured by this
rule) follows from the definition of final name and extended final name of a feature below.

End

8.6.16 Definition: Final name, extended final name, final name set
Every feature f of a class C has an extended final name in C, an Extended_feature_name, and
a final name, a Feature_name, defined as follows:

1 The final name is the identifier of the extended final name.
2 If f is immediate in C, its extended final name is the Extended_feature_name under

which C declares it.
3 If f is inherited, f is obtained from a feature of a parent B of C. Let

extended_parent_name be (recursively) the extended final name of that feature in B,
and parent_name its final name of f in B. Then the extended final name of f in C is:

• If the Parent part for B in C contains a Rename_pair of the form rename parent_name as
new_name: new_name.

• Otherwise: extended_parent_name.
The final names of all the features of a class constitute the final name set of a class.

Informative text
Since an inherited feature may be obtained from two or more parent features, case 3 only makes
sense if they are all inherited under the same name. This will follow from the final definition of
“inherited feature” in the discussion of repeated inheritance.
The extended final name is an Extended_feature_name, possibly including an Alias part; the final
name is its identifier only, a Feature_name, without the alias. The recursive definition defines the
two together.

End

8.6.17 Definition: Inherited name
The inherited name of a feature obtained from a feature f of a parent B is the final name of f in B.

Informative text
In the rest of the language description, references to the “name” of a feature, if not further
qualified, always denote the final name.

End

8.6.18 Definition: Declaration for a feature
A Feature_declaration in a class C, listing a Feature_name fn, is a declaration for a feature f if
and only if fn is the final name of f in C.

Informative text
Although it may seem almost tautological, we need this definition so that we can talk about a
declaration “for” a feature f whether f is immediate — in which case fn is just the name given in its
declaration — or inherited, with possible renaming. This will be useful in particular when we look
at a redeclaration, which overrides a version inherited from a parent.

End

- 48 -

 8.7 Clients and exports

Informative text
Along with inheritance, the client relation is one of the basic mechanisms for structuring software.
In broad terms, a class C is a client of a type S — which is then a supplier of C — when it can
manipulate objects of type S and apply S’s features to them.
The simplest and most common way is for C to contain the declaration of an entity of type S.
Variants of the relation introduce similar dependencies through other mechanisms, in particular
generic parameters.
Although the original definitions introduce “client” in its various forms as a relation between a class
and a type, we’ll immediately extend it, by considering S’s base class, to a relation between
classes.

End

Informative text
It is useful to distinguish between several variants of the client relation: simple client, expanded
client and generic client relations. Each is studied below. The more general notion of client is the
union of these cases, according to the following definition.

End

8.7.1 Definition: Client relation between classes and types
A class C is a client of a type S if some ancestor of C is a simple client, an expanded client or a
generic client of S.

Informative text
Recall that the ancestors of C include C itself. The inclusion of C’s ancestors is necessary
because the dependencies caused by inherited features are just as significant as those caused
by the immediate features of C. Assume that an inherited routine r of C uses a local variable x of
type S; this means that C depends on S, even if the text of C does not mention S.

End

8.7.2 Definition: Client relation between classes
A class C is a client of a class B if and only if C is a client of a type whose base class is B.
The same convention applies to the simple client, expanded client and generic client relations.

8.7.3 Definition: Indirect client
A class A is an indirect client of a type S of base class B if there is a sequence of classes C1 =
A, C2, ..., Cn = B such that n > 2 and every Ci is a client of Ci+1 for 1 ≤ i < n.
The indirect forms of the simple client, expanded client and generic client relations are defined
similarly.

8.7.4 Definition: Supplier
A type or class S is a supplier of a class C if C is a client of S, with corresponding variants: simple,
expanded, generic, indirect.

8.7.5 Definition: Simple client
A class C is a simple client of a type S if, in C, S is the type of some entity or expression or the
Explicit_creation_type of a Creation_instruction, or is one of the Constraining_types of a formal
generic parameter of C, or is involved in the Type of a Non_object_call or of a Manifest_type.

Informative text
The constructs listed reflect the various ways in which a class may, by listing a type S in its text,
enable itself to use features of S on targets of type S.

- 49 -

There is no constraint on how the classes of a system may be simple clients of one another. In
particular, cycles are permitted: a class may be its own simple client, both directly according to
this definition and indirectly.

End

8.7.6 Definition: Expanded client
A class C is an expanded client of a type S if S is an expanded type and some attribute of C is
of type S.

8.7.7 Definition: Generic client, generic supplier
A class C is a generic client of a type S if for some generically derived type T of the form B […,
S, …] one of the following holds:

1 C is a client of T.
2 T is a parent type of an ancestor of C.

Informative text
Case 1 captures for example the use in C of an entity of type B [S] (with B having just one generic
parameter). Case 2 covers C inheriting directly or indirectly (remember that C is one of its own
ancestors) from B [S].

End

8.7.8 Definition: Client set of a Clients part
The client set of a Clients part is the set of descendants of every class of the universe whose
name it lists.
By convention, the client set of an absent Clients part includes all classes of the system.

Informative text
The descendants of a class include the class itself. The “convention” of this definition simplifies
the following definitions in the case of no Clients part, which should be treated as if there were a
Clients part listing just ANY, ancestor of all classes.
No validity rule prevents listing in a Clients part a name n that does not denote a class of the
universe. In this case — explicitly permitted by the phrasing of the definition — n does not denote
any class and hence has no descendants; it does not contribute to the client set.
This important convention is in line with the reuse focus of Eiffel and its application to
component-based development. You may develop a class C in a certain system, where it lists
some class A in a Clients part, to give A access to some of its features; then you reuse C in
another system that does not include A. You should not have to change C since no bad
consequence can result from listing A, as long as C does not itself use A as its supplier or
ancestor.

End

8.7.9 Syntax: Clients
Clients =∆ "{" Class_list "}"
Class_list =∆ {Class_name "," …}+

Informative text
There is no validity constraint on Clients part. In particular, it is valid for a Clients part both:
• To list a class that does not belong to the universe.
• To list a class twice.

End

- 50 -

8.7.10 Syntax: Export adaptation
New_exports =∆ export New_export_list
New_export_list =∆ {New_export_item ";" …}+

New_export_item =∆ Clients [Header_comment] Feature_set
Feature_set =∆ Feature_list | all
Feature_list =∆ {Feature_name "," …}+

8.7.11 Validity: Export List rule Validity code: VLEL

A New_exports clause appearing in class C in a Parent part for a parent B, of the form

export
{class_list1} feature_set1
...
{class_listn} feature_setn

is valid if and only if for every feature_seti (for i in the interval 1..n) that is a Feature_list (rather
than all):

1 Every elements of the list is the final name of a feature of C inherited from B.
2 No feature name appears more than once in any such list.

Informative text
To obtain the export status of a feature, we need to look at the Feature_clause which introduces
it if the feature is immediate, at the applicable New_exports clause, if any, if it is inherited, and at
the Feature_clause containing its redeclaration if it is inherited and redeclared. In a New_exports,
the keyword all means that the chosen status will apply to all the features inherited from the given
parent.
The following definitions and rules express these properties. They start by extending the notion of
“client set” from entire Clients parts to individual features.

End

8.7.12 Definition: Client set of a feature
The client set of a feature f of a class C, of final name fname, includes the following classes (for
all cases that match):

1 If f is introduced or redeclared in C: the client set of the Feature_clause of the declaration
for f in C.

2 If f is inherited: the union of the client sets (recursively) of all its precursors from
conforming parents.

3 If the Feature_set of one or more New_exports clauses of C includes fname or all, the
union of the client sets of their Clients parts.

Informative text
This definition is the principal rule for determining the export status of a feature. It has two
important properties:
• The different cases are cumulative rather than exclusive. For example a “redeclared” feature

(case 1) is also “inherited” (case 2) and the applicable Parent part may have a New_exports
(case 3).

• As a result of case 2, the client set can never diminish under conforming inheritance:
features can win new clients, but never lose one. This is necessary under polymorphism and
dynamic binding to avoid certain type of “catcalls” leading to run-time crashes.

End

- 51 -

8.7.13 Definition: Available for call, available
A feature f is available for call, or just available for short, to a class C or to a type based on C, if
and only if C belongs to the client set of f.

Informative text
In line with others in the present discussion, this definition introduces a notion about classes and
immediately generalizes it to types based on those classes.
The key validity constraint on calls, export validity, will express that a call a.f (…) can only be valid
if f is available to the type of a.
There is also a notion of “available for creation”, governing whether a Creation_call create a.f (…)
is valid. “Available” without further qualification means “available for call”.
There are three degrees of availability, as given by the following definition.

End

8.7.14 Definition: Exported, selectively available, secret
The export status of a feature of a class is one of the following:

1 The feature may be available to all classes. It is said to be exported, or generally
available.

2 The feature may be available to specific classes (other than NONE and ANY) only. In
that case it is also available to the descendants of all these classes. Such a feature is
said to be selectively available to the given classes and their descendants.

3 Otherwise the feature is available to no classes. It is then said to be secret. By
convention, a feature available only to NONE also belongs to this category.

Informative text
This is the fundamental terminology for information hiding, which determines when it is possible
to call a feature through a qualified call x.f. As special cases:
• A feature introduced by feature {NONE} is considered to belong to case 3 rather than 2.
• A feature introduced by feature {ANY}, or just feature, is available to all classes and so will be

considered to fall under case 1.
• A feature introduced by feature {A, B, C}, where none of {A, B, C} is ANY, falls under case 2.

A feature available to a class is also available to all the proper descendants of that class.

End

8.7.15 Definition: Secret, public
A property of a class text is secret if and only if it involves any of the following, describing
information on which client classes cannot rely to establish their correctness:

1 Any feature that is not available to the given client, unless this is overridden by the next
case.

2 Any feature that is not available for creation to the given client, unless this is overridden
by the previous case.

3 The body and rescue clause of any feature, except for the information that the feature
is external or Once and, in the last case, its once keys if any.

4 For a query without formal arguments, whether it is implemented as an attribute or a
function, except for the information that it is a constant attribute.

5 Any Assertion_clause that (recursively) includes secret information.
6 Any parent part for a non-conforming parent (and as a consequence the very presence

of that parent).
7 The information that a feature is frozen.

Any property of a class text that is not secret is public.

- 52 -

Informative text
Software developers must be able to use a class as supplier on the basis of public information
only.
A feature may be available for call, or for creation, or both (cases 1 and 2). If either of these
properties applies, the affected clients must know about the feature, even if they can use it in only
one of these two ways.
Whether a feature is external (case 3) or constant (case 4) determines whether it is possible to
use it in a Non_object_call and hence is public information.

End

8.7.16 Definition: Incremental contract view, short form
The incremental contract view of a class, also called its short form, is a text with the same
structure as the class but retaining only public properties.

Informative text
Eiffel environments usually provide tools that automatically produce the incremental contract view
of a class from the class text. This provides the principal form of software documentation: abstract
yet precise, and extracted from the program text rather than written and maintained separately.
The definition specifies the information that the incremental contract view must retain, but not its
exact display format, which typically will be close to Eiffel syntax.

End

8.7.17 Definition: Contract view, flat-short form
The contract view of a class, also called its flat-short form, is a text following the same
conventions as the incremental contract view form but extended to include information about
inherited as well as immediate features, the resulting combined preconditions and postconditions
and the unfolded form of the class invariant including inherited clauses.

Informative text
The contract view is the full interface information about a class, including everything that clients
need to know (but no more) to use it properly. The “combined forms” of preconditions and
postconditions take into account parents’ versions as possibly modified by require else and ensure
then clauses, and hence describing features’ contracts as they must appear to the clients. The
“unfolded form” of the class invariant includes clauses from parents. In all these, of course, we still
eliminate any clause that includes secret information, as with the incremental contract view.
The contract view is the principal means of documenting Eiffel software, in particular libraries of
reusable components. It provides the right mix of abstraction, clarity and precision, and excludes
implementation-dependent properties. Being produced automatically by software tools from the
actual text, it does not require extra effort on the part of software developers, and stands a much
better chance to remain accurate when the software changes.

End

 8.8 Routines

Informative text
Routines describe computations.
Syntactically, routines are one of the two kinds of feature of a class; the other kind is attributes,
which describe data fields associated with instances of the class. Since every Eiffel operation
applies to a specific object, a routine of a class describes a computation applicable to instances
of that class. When applied to an instance, a routine may query or update some or all fields of the
instance, corresponding to attributes of the class.

- 53 -

A routine is either a procedure, which does not return a result, or a function, which does. A routine
may further be declared as deferred, meaning that the class introducing it only gives its
specification, leaving it for descendants to provide implementations. A routine that is not deferred
is said to be effective.
An effective routine has a body, which describes the computation to be performed by the routine.
A body is a Compound, or sequence of instructions; each instruction is a step of the computation.
The present discussion explores the structure of routine declarations, ending with the list of
possible various forms of instructions.

End

8.8.1 Definition: Formal argument, actual argument
Entities declared in a routine to represent information passed by callers are the routine’s formal
arguments.
The corresponding expressions in a particular call to the routine are the call’s actual arguments.

Informative text
Rules on Call require the number of actual arguments to be the same as the number of formal
arguments, and the type of each actual argument to be compatible with (conform or convert to)
the type of the formal argument at the same position in the list.
A note on terminology: Eiffel always uses the term argument to refer to the arguments of a
routine. The word “parameter” is never used in this context, because it could create confusion with
the types that can parameterize classes, called generic parameters.

End

8.8.2 Syntax: Formal argument and entity declarations
Formal_arguments =∆ "(" Entity_declaration_list ")"
Entity_declaration_list =∆ {Entity_declaration_group ";" …}+

Entity_declaration_group =∆ Identifier_list Type_mark
Identifier_list =∆ {Identifier "," …}+

Informative text
As with other semicolons, those separating an Entity_declaration_group from the next are
optional. The style guidelines suggest including them for successive declarations on a line, as with
short formal argument lists, but omitting them between successive lines, as will local variable
declarations which are also covered by Entity_declaration_group.

End

8.8.3 Validity: Formal Argument rule Validity code: VRFA

Let fa be the Formal_arguments part of a routine r in a class C. Let formals be the concatenation
of every Identifier_list of every Entity_declaration_group in fa. Then fa is valid if and only if no
Identifier e appearing in formals is the final name of a feature of C.

Informative text
Another rule, given later, applies the same conditions to names of local variables. Permitting a
formal argument or local variable to bear the same name as a feature could only cause confusion
(even if we had a scoping rule removing any ambiguity by specifying that the local name overrides
the feature name) and serves no useful purpose.

End

- 54 -

8.8.4 Validity: Entity Declaration rule Validity code: VRED

Let el be an Entity_declaration_list. Let identifiers be the concatenation of every Identifier_list of
every Entity_declaration_group in el. Then el is valid if and only if no Identifier appears more than
once in the list identifiers.

8.8.5 Syntax: Routine bodies
Deferred =∆ deferred
Effective_routine =∆ Internal | External
Internal =∆ Routine_mark Compound
Routine_mark =∆ do | Once
Once =∆ once ["("Key_list ")"]
Key_list =∆ {Manifest_string "," …}+

8.8.6 Definition: Once routine, once procedure, once function
A once routine is an Internal routine r with a Routine_mark of the Once form.
If r is a procedure it is also a once procedure; if r is a function, it is also a once function.

8.8.7 Syntax: Local variable declarations
Local_declarations =∆ local [Entity_declaration_list]

8.8.8 Validity: Local Variable rule Validity code: VRLV

Let ld be the Local_declarations part of a routine r in a class C. Let locals be the concatenation of
every Identifier_list of every Entity_declaration_group in ld. Then ld is valid if and only if every
Identifier e in locals satisfies the following conditions:

1 No feature of C has e as its final name.
2 No formal argument of r has e as its Identifier.

Informative text
Most of the rules governing the validity and semantics of declared local variables also apply to a
special predefined entity: Result, which may only appear in a function or attribute, and denotes
the value to be returned by the function. The following definition of “local variable” reflects this
similarity.

End

8.8.9 Definition: Local variable
The local variables of a routine include all entities declared in its Local_declarations part, if any,
and, if it is a query, the predefined entity Result.

Informative text
Result can appear not only in the Compound of a function or variable attribute but also in the
optional Postcondition of a constant attribute, where it denotes the value of the attribute and allows
stating abstract properties of that value, for example after a redefinition. In this case execution
cannot change that value, but for simplicity we continue to call Result a local “variable” too
anyway.

End

8.8.10 Syntax: Instructions
Compound =∆ {Instruction ";" …}*
Instruction =∆ Creation_instruction | Call | Assignment | Assigner_call | Conditional | Multi_branch

| Loop | Debug | Precursor | Check | Retry

- 55 -

Informative text
A Compound is a possibly empty list of instructions, to be executed in the order given. In the
various parts of control structures, such as the branches of a Conditional or the body of a Loop,
the syntax never specifies Instruction but always Compound, so that you can include zero, one or
more instructions.
A Creation_instruction creates a new object, initializes its fields to default values, calls on it one
of the creation procedures of the class (if any), and attaches the object to an entity.
Call applies a routine to the object attached to a non-void expression. For the Call to yield an
instruction, the routine must be a procedure.
Assignment changes the value attached to a variable.
An Assigner_call is a procedure call written with an assignment-like syntax, as in x.a := b, but with
the semantics of a call, as just a notational abbreviation for x.set_a (b) where the declaration of a
specifies an assigner command set_a.
Conditional, Multi_branch, Loop and Compound describe complex instructions, or control
structures, made out of other instructions; to execute a control structure is to execute some or all
of its constituent instructions, according to a schedule specified by the control structure.
Debug, which may also be considered a control structure, is used for instructions that should only
be part of the system when you enable the debug compilation option.
Precursor enables you, in redefining a routine, to rely on its original implementation.
Check is used to express that certain assertions must hold at certain moments during run time.
Retry is used in conjunction with the exception handling mechanism.

End

 8.9 Correctness

Informative text
Eiffel software texts – classes and their routines – may be equipped with elements of formal
specification, called assertions, expressing correctness conditions.
Assertions play several roles: they help in the production of correct and robust software, yield
high-level documentation, provide debugging support, allow effective software testing, and serve
as a basis for exception handling. With advances in formal methods technology, they open the
way to proofs of software correctness.
Assertions are at the basis of the Design by Contract method of Eiffel software construction.

End

8.9.1 Syntax: Assertions
Precondition =∆ require [else] Assertion
Postcondition =∆ ensure [then] Assertion [Only]
Invariant =∆ invariant Assertion
Assertion =∆ {Assertion_clause ";" …}*
Assertion_clause =∆ [Tag_mark] Unlabeled_assertion_clause
Unlabeled_assertion_clause =∆ Boolean_expression | Comment
Tag_mark =∆ Tag ":"
Tag =∆ Identifier

8.9.2 Definition: Precondition, postcondition, invariant
The precondition and postcondition of a feature, or the invariant of a class, is the Assertion of,
respectively, the corresponding Precondition, Postcondition or Invariant if any, and otherwise the
assertion True.

- 56 -

Informative text
So in these three contexts we consider any absent assertion clause as the assertion True,
satisfied by every state of the computation. Then we can talk, under any circumstance, of “the
precondition of a feature” and “the invariant of a class” even if the clauses do not appear explicitly.

End

8.9.3 Syntax (non-production): Assertion Syntax rule
An Assertion without a Tag_mark may not begin with any of the following:

1 An opening parenthesis "(".
2 An opening bracket "[".
3 A non-keyword Unary operator that is also Binary

Informative text
This rule participates in the achievement of the general Semicolon Optionality rule. Without it, after
an Assertion_clause starting for example with the Identifier a, and continuing (case 2) with [x] it is
not immediately obvious whether this is the continuation of the same clause, using a [x] as the
application of a bracket feature to a, or a new clause that starts by mentioning the Manifest_tuple
[x]. From the context, the validity rules will exclude one of these possibilities, but a language
processing tool should be able to parse an Eiffel text without recourse to non-syntactic
information. A similar issue arises with an opening parenthesis (case 1) and also (case 3) if what
follows a is –b, which could express a subtraction from a in the same clause, or start a new clause
about the negated value of b. The Assertion Syntax rule avoids this.
The rule is not a significant restriction on expressiveness, since potential violations are rare and
will be flagged clearly in reference to the rule, and it is recommended practice anyway to use a
Tag_mark, which removes any ambiguity.

End

8.9.4 Definition: Specification, subspecification
Let pre and post be the precondition and postcondition of a feature rout. The specification of rout
is the pair of assertions <pre, post>.
A specification <pre', post'> is said to be a subspecification of <pre, post> if and only if pre
implies pre' and post' implies post.

8.9.5 Validity: Precondition Export rule Validity code: VAPE

A Precondition of a feature r of a class S is valid if and only if every feature f appearing in every
Assertion_clause of its unfolded form u satisfies the following two conditions for every class C to
which r is available:

1 If f appears as target of a call or Creation_expression or feature of a call in u or any of
its subexpressions, f is available to C.

2 If u or any of its subexpressions uses f as creation procedure of a Creation_expression,
f is available for creation to C.

Informative text
If (condition 1) r were available to a class B but its precondition involved a feature f not available
to B, r would be imposing to B a condition that B would not be able to check for itself; this would
amount to a secret clause in the contract, preventing the designer of B from guaranteeing the
correctness of calls.
The rule applies to the unfolded form of a precondition, which will be defined as the fully
reconstructed assertion, including conditions defined by ancestor versions of a feature in addition
to those explicitly mentioned in a redeclared version.

- 57 -

The unfolded form (by relying on the “Equivalent Dot Form” of the expressions involved) treats all
operators as denoting features; for example an occurrence of a > b in an assertion yields
a.greater (b) in the unfolded form, where greater is the name of a feature of alias ">". The
Precondition Export rule then requires, if the occurrence is in a Precondition, that this feature be
available to the current class.
Condition 2 place the same obligation on any feature f used in a creation expression create a.f
(…) appearing in the precondition (a rare but possible case). The requirement in this case is
“available for creation”.

End

8.9.6 Definition: Availability of an assertion clause
An Assertion_clause a of a routine Precondition or Postcondition is available to a class B if and
only if all the features involved in the Equivalent Dot Form of a are available to B.

Informative text
This notion is necessary to define interface forms of a class adapted to individual clients, such as
the incremental contract view (“short form”).

End

8.9.7 Syntax: “Old” postcondition expressions
Old =∆ old Expression

8.9.8 Validity: Old Expression rule Validity code: VAOX

An Old expression oe of the form old e is valid if and only if it satisfies the following conditions:
1 It appears in a Postcondition part post of a feature r.
2 It does not involve Result.

3 Replacing oe by e in post yields a valid Postcondition.

Informative text
The last condition simply states that old e is valid in a postcondition simply if e itself is. It may not,
for example, involve any local variables (although it might include Result were it not for condition
2), but may refer to features of the class and formal arguments of the routine.

End

8.9.9 Semantics: Old Expression Semantics, associated variable, associated exception mark
The effect of including an Old expression oe in a Postcondition of an effective feature f is
equivalent to adding to the Feature_body of f a fresh local variable av, called the associated vari-
able of oe and add at the beginning of the Compound of the Feature_body a fictitious instruction
that:

1 Evaluates oe.

2 If this evaluation triggers an exception, records this event in an associated exception
marker for oe.

3 Otherwise, assigns the value of oe to av.

Informative text
The recourse to a fictitious variable, fictitious instructions and a fictitious marker is in the style of
“unfolded forms” used throughout the language description. The reason for these techniques is
the somewhat peculiar nature of the Old expression, used at postcondition evaluation time, but
pre-computed (if assertion monitoring is on for postconditions) on entry to the feature.

- 58 -

The matter of exceptions is particularly delicate and justifies the use of “associated exception
markers”. If an Old expression’s evaluation triggers an exception, the time of that exception —
feature entry — is not the right moment to start handling the exception, because the postcondition
might not need the value. For example, a postcondition clause could read

((x /= 0) and (old x /= 0)) implies ((((1 / x) + (1 / (old x)))) = y)
If x is 0 on entry, old x /= 0 will be false on exit and hence the postcondition will hold. But there is
no way to know this when evaluating the various Old expressions, such as 1 / old x on entry. We
must evaluate this expression anyway, to be prepared for all possible cases. If x is zero, this may
cause an arithmetic overflow and trigger an exception. This exception should not be processed
immediately; instead it should be remembered — hence the associated exception marker — and
triggered only if the evaluation of the postcondition, on routine exit, attempts to evaluate the
associated variable; hence the following rule.
The “associated variable” is defined only for effective features, since a deferred feature has no
Feature_body. If an Old expression appears in the postcondition of a deferred feature, the rule will
apply to effectings in descendants through the “unfolded form” of the postconditions, which
includes inherited clauses.
Like any variable, the associated variable av of an Old expression raises a potential initialization
problem; but we need not require its type to be self-initializing since the above rule implies that ov
appears in a Certified Attachment Pattern that assigns it a value (the value of oe) prior to use.

End

8.9.10 Semantics: Associated Variable Semantics
As part of the evaluation of a postcondition clause, the evaluation of the associated variable of an
Old expression:

1 Triggers an exception of type OLD_EXCEPTION if an associated exception marker has
been recorded.

2 Otherwise, yields the value to which the variable has been set.

8.9.11 Syntax: “Only” postcondition clauses
Only =∆ only Feature_list

Informative text
The syntax of assertions indicates that an Only clause may only appear in a Postcondition of a
feature, after all ordinary assertion clauses.
Those other postcondition clauses let you specify how a feature may change specific properties
of the target object, as expressed by queries. You may also want — this is called the frame
problem — to restrict the scope of features by specifying which properties it may not change. You
can always do this through postcondition clauses q = old q, one for each applicable query q. This
is inconvenient, not only because there may be many such q to list but also, worse, because it
forces you to list them all even though evolution of the software may bring in some new queries,
which will not be listed. Inheritance makes matters even more delicate since such “frame”
requirements of parents should be passed on to heirs.
An Only clause addresses the issue by enabling you to list which queries a feature may affect,
with the implication that:
• Any query not listed is left unchanged by the routine.
• The constraints apply not only to the given version of the routine but also, as enforced by the

following rules, to redeclarations in descendants.

End

8.9.12 Definition: Unfolded feature list of an Only clause
The unfolded feature list of an Only clause appearing in a Postcondition of a feature f in a class
C is the Feature_list containing:

- 59 -

1 All the feature names appearing in its Feature_list.
2 If f is the redeclaration of one or more features, the final names in C of all the features

whose names appear (recursively) in the unfolded forms of their Only clauses if any.

Informative text
For an immediate feature (a feature introduced in C, not a redeclaration), the purpose of an Only
clause of the form

only a, b, c
is to state that f may only change the values of queries a, b, c.
In the case of a redeclaration, previous versions may have had their own Only clauses. Then:
• If there was already an Only clause in an ancestor A, the features listed, here a, b and c, must

be new features, not present in A. Otherwise specifying only a, b, c would either contradict the
Only clause of A if it did not include these features (thus ruling out any modification to them in
any descendant), or be redundant with it if it listed any one of them.

• The meaning of the Only clause is that f may only change a, b and c in addition to inherited
queries that earlier Only clauses allowed it to change.

End

8.9.13 Validity: Only Clause rule Validity code: VAON
An Only clause of unfolded feature list fl, appearing in a Postcondition of a feature of a class C, is
valid if and only if it satisfies the following conditions:

1 No Feature_name appears more than once in fl.
2 Every Feature_name in fl is the final name of a query of C, with no arguments.

Informative text
Other conditions, following from the syntax, is that an Only clause appears at the last element of
a Postcondition; in particular, you cannot have more than one Only clause in a postcondition.

End

8.9.14 Definition: Unfolded form of an Only clause
The unfolded form of an Only clause oc appearing in a Postcondition of a feature of a class C is
a sequence of Assertion_clause components of the following form, one for every argument-less
query q of C that does not appear in the unfolded feature list of oc:

q = (old q)

Informative text
This will make it possible to express the semantics of an Only clause through a sequence of
assertion clauses stating that the feature may change the value of no queries except those
explicitly listed.
Note the use of the equal sign: for a query q returning a reference, the Only clause states (by not
including q) that after execution of the enclosing feature the reference will be attached to the same
object as before. That object might, internally, have changed. You can still catch such changes —
if you want to rule them out — by excluding from the Only clause some other queries reflecting
properties of the contents of that object.

End

8.9.15 Definition: Invariant of a class
The invariant of a class C is an assertion obtained by concatenating the following assertions
(omitting any one which is absent or empty):

1 The invariants of all parents (determined recursively through the present rule), in the
order of the corresponding Parent clauses.

- 60 -

2 The Assertion in C’s own Invariant clause, if any.

8.9.16 Definition: Hoare triple notation (total correctness)

In definitions of correctness notions for Eiffel constructs, the notation {P} A {Q} (a mathematical
convention, not a part of Eiffel) expresses that any execution of the Instruction or Compound A
started in a state of the computation satisfying the assertion P will terminate in a state satisfying
the assertion Q.

8.9.17 Semantics: Class consistency

A class C is consistent if and only if it satisfies the following conditions:

1 For every creation procedure p of C:

{prep} dop {INVC and postp}

2 For every feature f of C exported generally or selectively:

{INVC and then pref} dor {INVC and then postf}

where INVC is the unfolded form of the invariant of C and, for any feature f, pref is the unfolded
form of the precondition of f, postf the unfolded form of its postcondition, and dof its body.

Informative text

Class consistency is one of the most important aspects of the correctness of a class: adequation
of routine implementations to the specification. The other aspects of correctness, studied below,
involve Check instructions, Loop instructions and Rescue clauses.

End

8.9.18 Syntax: Check instructions

Check =∆ check Assertion end

8.9.19 Definition: Check-correct

An effective routine r is check-correct if, for every Check instruction c in r, any execution of c (as
part of an execution of r) satisfies all its assertions.

8.9.20 Syntax: Variants

Variant =∆ variant [Tag_mark] Expression

8.9.21 Definition: Loop invariant and variant

The assertion introduced by the Invariant clause of a loop is called the invariant assertion of the
loop. The expression introduced by the Variant clause is called its variant expression.

8.9.22 Validity: Variant Expression rule Validity code: VAVE

A Variant is valid if and only if its variant expression is of type INTEGER or one of its sized variants.

8.9.23 Definition: Loop-correct

A routine of invariant INV, variant VAR, Initialization INIT, Exit condition EXIT and Loop_body
BODY is loop-correct if every loop it contains satisfies the following conditions:

1 {true} INIT {INV}

2 {true} INIT {VAR ≥ 0}

3 {INV and then not EXIT} BODY {INV}

4 {INV and then not EXIT and then (VAR = v)} BODY {0 ≤ VAR < v}

- 61 -

Informative text
Conditions 1 and 2 express that the initialization yields a state in which the invariant is satisfied
and the variant is non-negative. Conditions 3 and 4 express that the body, when executed in a
state where the invariant is satisfied but not the exit condition, will preserve the invariant and
decrease the variant, while keeping it non-negative. (v is an auxiliary variable used to refer to the
value of VAR before BODY’s execution.)

End

8.9.24 Definition: Exception-correct
A routine is exception-correct if any branch of the Rescue clause not terminating with a Retry
ensures the invariant.

8.9.25 Definition: Correctness (class)
A class is correct if and only if it is consistent and every routine of the class is check-correct,
loop-correct and exception-correct.

8.9.26 Definition: Local unfolded form of an assertion
The local unfolded form of an assertion a — a Boolean_expression — is the Equivalent Dot
Form of the expression that would be obtained by applying the following transformations to a in
order:

1 Replace any Only clause by its unfolded form.
2 Replace any Old expression by its associated variable.

Informative text
The unfolded form enables you to understand an assertion, possibly with many clauses, as a
single boolean expression. The use of and then to separate the clauses indicates that you may,
in a later clause, use an expression that is defined only if an earlier clause holds (has value true).
This unfolded form is “local” because it does not take into account any inherited assertion clauses.
This is the business of the full (non-local) unfolded form, introduced in the discussion of
inheritance.
The Equivalent Dot Form of an expression removes all operators and replaces them by explicit
call, turning for example a + b into a.plus (b). This puts the result in a simpler form used by later
rules.
If an Only clause is present, we replace it by its own unfolded form, a sequence of
Assertion_clause components of the form q = old q, so that we can treat it like other clauses for
the assertion’s local unfolded form.

End

8.9.27 Semantics: Assertion monitoring
The execution of an Eiffel system may evaluate, or monitor, specific kinds of assertion, and loop
variants, at specific stages:

1 Precondition of a routine r: on starting a call to r, after argument evaluation and prior to
executing any of the instructions in r’s body.

2 Postcondition of a routine r: on successful (not interrupted by an exception) completion
of a call to r, after executing any applicable instructions of r.

3 Invariant of a class C: on both start and termination of a qualified call to a routine of C.
4 Invariant of a loop: after execution of the Initialization, and after every execution (if any)

of the Loop_body.
5 Assertion in a Check instruction: on any execution of that instruction.
6 Variant of a loop: as with the loop invariant.

- 62 -

8.9.28 Semantics: Evaluation of an assertion
To evaluate an assertion consists of evaluating the boolean expression (“unfolded form” of the
assertion) obtained by combining with and then, in order, the boolean expressions appearing in
any non-comment Assertion_clause of the assertion.

8.9.29 Semantics: Assertion violation
An assertion violation is the occurrence at run time, as a result of assertion monitoring, of any
of the following:
• An assertion (in the strict sense of the term) evaluating to false.
• A loop variant found to be negative.
• A loop variant found, after the execution of a Loop_body, to be no less than in its previous

evaluation.

8.9.30 Semantics: Assertion semantics
In the absence of assertion violations, assertions have no effect on system execution other than
through their evaluation as a result of assertion monitoring.
An assertion violation causes an exception of type ASSERTION_VIOLATION or one of its
descendants.

8.9.31 Semantics: Assertion monitoring levels
An Eiffel implementation must provide facilities to enable or disable assertion monitoring
according to some combinations of the following criteria:
• Statically (at compile time) or dynamically (at run time).
• Through control information specified within the Eiffel text or through outside elements such

as a user interface or configuration files.
• For specific kinds as listed in the definition of assertion monitoring: routine preconditions,

routine postconditions, class invariants, loop invariants, Check instructions, loop variants.
• For specific classes, specific clusters, or the entire system.

The following combinations must be supported:
1 Statically disable all monitoring for the entire system.
2 Statically enable precondition monitoring for an entire system.
3 Statically enable precondition monitoring for specified classes.
4 Statically enable all assertion monitoring for an entire system.

 8.10 Feature adaptation

Informative text
A key attraction of the inheritance mechanism is that it lets you tune inherited features to the
context of the new class. This is known as feature adaptation. The present discussion covers the
principal mechanisms, leaving to a later one some important complements related to repeated
inheritance.

End

8.10.1 Definition: Redeclare, redeclaration
A class redeclares an inherited feature if it redefines or effects it.
A declaration for a feature f is a redeclaration of f if it is either a redefinition or an effecting of f.

Informative text
This definition relies on two others, appearing below, for the two cases: redefinition and effecting.

- 63 -

Be sure to distinguish redeclaration from redefinition, the first of these cases. Redeclaration is the
more general notion, redefinition one of its two cases; the other is effecting, which provides an
implementation for a feature that was deferred in the parent. In both cases, a redeclaration does
not introduce a new feature, but simply overrides the parent’s version of an inherited feature.

End

8.10.2 Definition: Unfolded form of an assertion
The unfolded form of an assertion a of local unfolded form ua in a class C is the following
Boolean_expression:

1 If a is the invariant of C and C has n parents for some n ≥ 1: up1 and … and upn and then
ua, where up1, … upn are (recursively) the unfolded forms of the invariants of these
parents, after application of any feature renaming specified by C’s corresponding Parent
clauses.

2 If a is the precondition of a redeclared feature f: the combined precondition for a.

3 If a is the postcondition of a redeclared feature f: the combined postcondition for a.

4 In all other cases: ua.

Informative text
The unfolded form of an assertion is the form that will define its semantics. It takes into account
not only the assertion as written in the class, but also any applicable property inherited from the
parent. The “local unfolded form” is the expression deduced from the assertion in the class itself;
for an invariant we “and then” it with the “and” of the parents, and for preconditions and
postconditions we use “combined forms”, defined next, to integrate the effect of require else and
ensure then clauses, to ensure that things will still work as expected in the context of
polymorphism and dynamic binding.
The earlier definitions enable us to talk about the “precondition of” and “postcondition “of” a feature
and the “invariant of” even in the absence of explicit clauses, by using True in such cases. This
explains in particular why case 1 can mention “the invariants of” the parents of C.

End

8.10.3 Definition: Assertion extensions
The Assertion of a Precondition starting with require else is a precondition extension.

The Assertion of a Postcondition starting with ensure then is a postcondition extension.

Informative text
These are the forms that routines can use to override inherited specifications while remaining
compatible with the original contracts for polymorphism and dynamic binding. require else makes
it possible to weaken a precondition, ensure then to strengthen a postcondition, under the exact
interpretation explained next.

End

8.10.4 Definition: Covariance-aware form of an assertion extension
The covariant-aware form of an assertion extension a is:

1 If the enclosing routine has one or more arguments x1, … xn redefined covariantly to
types U1, … Un: the assertion

({x1: U1} y1 and … and {xn: Un} yn) implies a’
where y1, … yn are fresh names and a’ is the result of substituting yi for each
corresponding xi in a.

2 Otherwise: a.

- 64 -

Informative text
A covariant redefinition may make some of the new clauses inapplicable to actual arguments of
the old type (leading to “catcalls”). The covariance-aware form avoids this by ignoring the clauses
that are not applicable. The rule on covariant redefinition avoid any bad consequences.

End

8.10.5 Definition: Combined precondition, postcondition
Consider a feature f redeclared in a class C. Let f1, … fn (n ≥ 1) be its versions in parents, pre1, …
pren the preconditions of these versions, and post1, … postn their postconditions.
Let pre’ be the covariant-aware form of the precondition extension of f if any, otherwise False, and
post ’ the covariant-aware form of the postcondition extension of f if any, otherwise True.
The combined precondition of f is the Assertion

(pre1 or… or pren) or else pre’
The combined postcondition of f is the Assertion

(old pre1 implies post1)
and … and
(old pren implies postn)
and then post’

Informative text
The informal rule is “perform an or of the preconditions and an and of the postconditions”. This
indeed the definition for “combined precondition”. For “combined postconditions” the informal rule
is sufficient in most cases, but occasionally it may be too strong because it requires the old
postconditions even in cases that do not satisfy the old preconditions, and hence only need the
new postcondition. The combined postcondition as defined reflects this property.

End

8.10.6 Definition: Inherited as effective, inherited as deferred
An inherited feature is inherited as effective if it has at least one effective precursor and the
corresponding Parent part does not undefine it.
Otherwise the feature is inherited as deferred.

8.10.7 Definition: Effect, effecting
A class effects an inherited feature f if an only if it inherits f as deferred and contains a declaration
for f.
Such a declaration is then known as an effecting of f

Informative text
Effecting a feature (making it effective, hence the terminology) consists of providing an
implementation for a feature that was inherited as deferred. No particular clause (such as
redefine) will appear in the Inheritance part: the new implementation will without ado subsume the
deferred form inherited from the parent.

End

8.10.8 Definition: Redefine, redefinition
A class redefines an inherited feature f if and only if it contains a declaration for f that is not an
effecting of f.
Such a declaration is then known as a redefinition of f

- 65 -

Informative text
Redefining a feature consists of providing a new implementation, specification or both. The
applicable Parent clause or clauses must specify redefine f (with f’s original name if the new class
renames f.)
Redefinition must keep the inherited status, deferred or effective, of f:
• It cannot turn a deferred feature into an effective one, as this would fall be an effecting.
• It may not turn an effective feature into a deferred one, as there is another mechanism

specifically for this purpose, undefinition. The Redeclaration rule enforces this property.
As defined earlier, the two cases, effecting and redefinition, are together called redeclaration.

End

8.10.9 Definition: Name clash
A class has a name clash if it inherits two or more features from different parents under the same
final name.

Informative text
Since final names include the identifier part only, aliases if any play no role in this definition.
Name clashes would usually render the class invalid. Only three cases may — as detailed by the
validity rules — make a name clash permissible:
• At most one of the clashing features is effective.
• The class redefines all the clashing features into a common version.
• The clashing features are really the same feature, inherited without redeclaration from a

common ancestor.

End

8.10.10 Syntax: Precursor
Precursor =∆ Precursor [Parent_qualification] [Actuals]
Parent_qualification =∆ "{" Class_name "}"

8.10.11 Definition: Relative unfolded form of a Precursor
In a class C, consider a Precursor specimen p appearing in the redefinition of a routine r inherited
from a parent class B. Its unfolded form relative to B is an Unqualified_call of the form r’ if p has
no Actuals, or r’ (args) if p has actual arguments args, where r’ is a fictitious feature name added,
with a frozen mark, as synonym for r in B.

8.10.12 Validity: Precursor rule Validity code: VDPR

A Precursor is valid if and only if it satisfies the following conditions:
1 It appears in the Feature_body of a Feature_declaration of a routine r.
2 If the Parent_qualification part is present, its Class_name is the name of a parent class

P of C.
3 Among the routines of C’s parents, limited to routines of P if condition 2 applies, exactly

one is an effective routine redefined by C into r. (The class to which this routine belongs
is called the applicable parent of the Precursor.)

4 The unfolded form relative to the applicable parent is, as an Unqualified_call,
argument-valid.

In addition:
5 It is valid as an Instruction if and only if r is a procedure, and as an Expression if and only

if r is a function.

- 66 -

Informative text
This constraint also serves, in condition 3, as a definition of the “applicable parent”: the parent
from which we reuse the implementation. Condition 4 relies on this notion.
Condition 1 states that the Precursor construct is only valid in a routine redefinition. In general the
language definition treats functions and attributes equally (Uniform Access principle), but here an
attribute would not be permissible, even with an Attribute body.
Because of our interpretation of a multiple declaration as a set of separate declarations, this
means that if Precursor appears in the body of a multiple declaration it applies separately to every
feature being redeclared. This is an unlikely case, and this rule makes it unlikely to be valid.
Condition 2 states that if you include a class name, as in Precursor {B}, then B must be the name
of one of the parents of the current class. The following condition makes this qualified form
compulsory in case of potential ambiguity, but even in the absence of ambiguity you may use it to
state the parent explicitly if you think this improves readability.
Condition 3 specifies when this explicit parent qualification is required. This is whenever an
ambiguity could arise because the redefinition applies to more than one effective parent version.
The phrasing takes care of all the cases in which this could happen, for example as a result of a
join.
Condition 4 simply expresses that we understand the Precursor specimen as a call to a frozen
version of the original routine; we must make sure that such a call would be valid, more precisely
“argument-valid”, the requirement applicable to such an Unqualified_call.
A Precursor will be used as either an Instruction or an Expression, in the same way as a call to
(respectively) a procedure or a function; indeed Precursor appears as one of the syntax variants
for both of these constructs. So in addition to being valid on its own, it must be valid in the
appropriate role. Condition 5 takes care of this.

End

8.10.13 Definition: Unfolded form of a Precursor
The unfolded form (absolute) of a valid Precursor is its unfolded form relative to its applicable
parent.

8.10.14 Semantics: Precursor semantics
The effect of a Precursor is the effect of its unfolded form.

8.10.15 Syntax: Redefinition
Redefine =∆ redefine Feature_list

8.10.16 Validity: Redefine Subclause rule Validity code: VDRS

A Redefine subclause appearing in a Parent part for a class B in a class C is valid if and only if
every Feature_name fname that it lists (in its Feature_list) satisfies the following conditions:

1 fname is the final name of a feature f of B.

2 f was not frozen in B, and was not a constant attribute.

3 fname appears only once in the Feature_list.

4 The Features part of C contains one Feature_declaration that is a redeclaration but not
an effecting of f.

5 If that redeclaration specifies a deferred feature, C inherits f as deferred.

8.10.17 Semantics: Redefinition semantics
The effect in a class C of redefining a feature f in a Parent part for A is that the version of f in C is,
rather than its version in A, the feature described by the applicable declaration in C.

- 67 -

Informative text
This new version will serve for any use of the feature in the class, its clients, its proper
descendants (barring further redeclarations), and even ancestors and their clients under dynamic
binding.

End

8.10.18 Syntax: Undefine clauses
Undefine =∆ undefine Feature_list

8.10.19 Validity: Undefine Subclause rule Validity code: VDUS
An Undefine subclause appearing in a Parent part for a class B in a class C is valid if and only if
every Feature_name fname that it lists (in its Feature_list) satisfies the following conditions:

1 fname is the final name of a feature f of B.
2 f was not frozen in B, and was not an attribute.
3 f was effective in B.
4 fname appears only once in the Feature_list.
5 Any redeclaration of f in C specifies a deferred feature.

8.10.20 Semantics: Undefinition semantics
The effect in a class C of undefining a feature f in an Inheritance part for A is to cause C to inherit
from A, rather than the version of f in A, a deferred form of that version.

8.10.21 Definition: Effective, deferred feature
A feature f of a class C is an effective feature of C if and only if it satisfies either of the following
conditions:

1 C contains a declaration for f, specifying it as either as an attribute or as a routine whose
Routine_body is of the Effective form (not the keyword deferred but beginning with do,
once or external).

2 f is an inherited feature, coming from a parent B of C where it is (recursively) effective,
and C does not undefine it.

f is deferred if and only if it is not effective.

Informative text
As a result of this definition, a feature is deferred in C not only if it is introduced or redefined in C
as deferred, but also if its precursor was deferred and C does not redeclare it effectively. In the
latter case, the feature is “inherited as deferred”.
The definition captures the semantics of deferred features and of their effecting. In case 1 it’s clear
that the feature is effective, since C itself declares it as either an attribute of a non-deferred
routine. In case 2 the feature is inherited; it was already effective in the parent, and C doesn’t
change that status.

End

8.10.22 Definition: Effecting
A redeclaration into an effective feature of a feature inherited as deferred is said to effect that
feature.

8.10.23 Deferred class property
A class that has at least one deferred feature must have a Class_header starting with the keyword
deferred. The class is then said to be deferred.

8.10.24 Effective class property
A class whose features, if any, are all effective, is effective unless its Class_header starts with the
keyword deferred.

- 68 -

8.10.25 Definition: Origin, seed
Every feature f of a class C has one or more features known as its seeds and one or more classes
known as its origins, as follows:

1 If f is immediate in C: f itself as seed; C as a origin.
2 If f is inherited: (recursively) all the seeds and origins of its precursors.

Informative text
The origin, a class, is “where the feature comes from”, and the seed is the version of the feature
from that origin. In the vast majority of cases this is all there is to know. With repeated inheritance
and “join”, a feature may result from the merging of two or more features, and hence may have
more than one seed and more than one origin. That’s what case 2 is about.

End

8.10.26 Validity: Redeclaration rule Validity code: VDRD
Let C be a class and g a feature of C. It is valid for g to be a redeclaration of a feature f inherited
from a parent B of C if and only if the following conditions are satisfied.

1 No effective feature of C other than f and g has the same final name.
2 The signature of g conforms to the signature of f.
3 The Precondition of g, if any, begins with require else (not just require), and its

Postcondition, if any, begins with ensure then (not just ensure).
4 If the redeclaration is a redefinition (rather than an effecting) the Redefine subclause of

the Parent part for B lists in its Feature_list the final name of f in B.
5 If f is inherited as effective, then g is also effective.
6 If f is an attribute, g is an attribute, f and g are both variable, and their types are either

both expanded or both non-expanded.
7 f and g have either both no alias or the same alias.
8 If both features are queries with associated assigner commands fp and gp, then gp is

the version of fp in C.

Informative text
Condition 1 prohibits name clashes between effective features. For g to be a redeclaration of f,
both features must have the same final name; but no other feature of the class may share that
name. This is the fundamental rule of no overloading.
No invalidity results, however, if f is deferred. Then if g is also deferred, the redeclaration is simply
a redefinition of a deferred feature by another (to change the signature or specification). If g is
effective, the redeclaration is an effecting of f. If g plays this role for more than one inherited f, it
both joins and effects these features: this is the case in which C kills several deferred birds with
one effective stone.
Condition 2 is the fundamental type compatibility rule: signature conformance. In the case of a
join, g may be the redeclaration of more than one f; then g’s signature must conform to all of the
precursors’ signatures.
Signature conformance permits covariant redefinition of both query results and routine arguments,
but for arguments you must make the new type detachable — ?U rather than just U — to prevent
“catcalls”.
Condition 3 requires adapting the assertions of a redeclared feature, as governed by rules given
earlier.
Condition 4 requires listing f in the appropriate Redefine subclause, but only for a redefinition, not
for an effecting. (We have a redefinition only if g and the inherited form of f are both deferred or
both effective.) If two or more features inherited as deferred are joined and then redefined
together, every one of them must appear in the Redefine subclause for the corresponding parent.

- 69 -

Condition 5 bars the use of redeclaration for turning an effective feature into a deferred one. This
is because a specific mechanism is available for that purpose: undefinition. It is possible to apply
both undefinition and redefinition to the same feature to make it deferred and at the same time
change its signature.
Condition 6 prohibits redeclaring a constant attribute, or redeclaring a variable attribute into a
function or constant attribute. It also precludes redeclaring a (variable) attribute of an expanded
type into one of reference type or conversely. You may, however, redeclare a function into an
attribute — variable or constant.
Condition 7 requires the features, if they have aliases, to have the same ones. If you want to
introduce an alias for an inherited feature, change an inherited alias, or remove it, redeclaration is
not the appropriate technique: you must rename the feature. Of course you can still redeclare it
as well.
Condition 8 applies to assigner commands. It is valid for a redeclaration to include an assigner
command if the precursor did not include one, or conversely; but if both versions of the query have
assigner commands, they must, for obvious reasons of consistency, be the same procedure in C.

End

8.10.27 Definition: Precursor (joined features)
A precursor of an inherited feature is a version of the feature in the parent from which it is
inherited.

8.10.28 Validity: Join rule Validity code: VDJR

It is valid for a class C to inherit two different features under the same final name under and only
under the following conditions:

1 After possible redeclaration in C, their signatures are identical.
2 They either have both no aliases or have the same alias.
3 If they both have assigner commands, the associated procedures have the same final

name in C.
4 If both are inherited as effective, C redefines both into a common version.

Informative text
The Join rule indicates that joined features must have exactly the same signature — argument
and result types.
What matters is the signature after possible redefinition or effecting. So in practice you may join
precursor features with different signatures: it suffices to redeclare them using a feature which (as
required by point 2 of the Redeclaration rule) must have a signature conforming to all of the
precursors’ signatures.
If the redeclaration describes an effective feature, this is the case of both joining and effecting a
set of inherited features. If the redeclaration describes a feature that is still deferred, it is a
redefinition, used to adapt the signature and possibly the specification. In this case, point 4 of the
Redeclaration rule requires every one of the precursors to appear in the Redefine subclause for
the corresponding parent.
In either case, nothing requires the precursors’ signatures to conform to each other, as long as
the signature of the redeclared version conforms to all of them. This means you may write a class
inheriting two deferred features of the form

f (p: P): T …
f (t: Q): U …

and redeclare them with
f (x: ? R): V …

provided R conforms to both P and Q and V to both T and U. No conformance is required between
the types appearing in the precursors’ signatures (P and Q, T and U).

- 70 -

The assumption that the features are “different” is important: they could in fact be the same
feature, appearing in two parents of C that have inherited it from a common ancestor, without any
intervening redeclaration. This would be a valid case of repeated inheritance; here the rule that
determines validity is the Repeated Inheritance Consistency constraint. The semantic
specification (sharing under the Repeated Inheritance rule) indicates that C will have just one
version of the feature.
Conditions 2 and 3 of the Join rule are consistency requirements on aliases and on assigner
commands. The condition on aliases is consistent with condition 7 of the Redeclaration rule, which
requires a redeclaration to keep the alias if any; it was noted in the comment to that rule that
redeclaration is not the appropriate way to add, change or remove an alias (you should use
renaming for that purpose); neither is join. The condition on assigner commands ensures that any
Assigner_call has the expected effect, even under dynamic binding on a target declared of a
parent type.

End

8.10.29 Semantics: Join Semantics rule
Joining two or more inherited features with the same final name, under the terms of the Join rule,
yields the feature resulting from their redeclaration if any, and otherwise defined as follows:

1 Its name is the final name of all its precursors.
2 Its signature is the precursors’ signature, which the Join rule requires to be the same for

all precursors after possible redeclaration.
3 Its precondition is the or of all the precursors’ combined preconditions.
4 Its postcondition is the and of all the precursors’ combined postconditions.
5 Its Header_comment is the concatenation of those of all precursors.
6 Its body is deferred if all the precursors are inherited as deferred, otherwise is the body

of the single effective precursor.
7 It is not obsolete (even if some of the precursors are obsolete).

Informative text
Point 5 leaves the concatenation order unspecified.
In point 7 (corresponding to a rare case) language processing tools should produce an
obsolescence message for the class performing the join, but the resulting feature is not itself
obsolete.

End

 8.11 Types

Informative text
Types describe the form and properties of objects that can be created during the execution of a
system. The type system lies at the heart of the object-oriented approach; the use of types to
declare all entities leads to more clear software texts and permits compilers to detect many
potential errors and inconsistencies before they can cause damage.

End

8.11.1 Syntax: Types
Type =∆ Class_or_tuple_type | Formal_generic_name | Anchored
Class_or_tuple_type =∆ Class_type | Tuple_type
Class_type =∆ [Attachment_mark] Class_name [Actual_generics]
Attachment_mark =∆ "?" | "!"
Anchored =∆ [Attachment_mark] like Anchor

- 71 -

Anchor =∆ Feature_name | Current

Informative text
The most common and versatile kind is Class_type, covering types described by a class name,
followed by actual generic parameters if the class is generic. The class name gives the type’s base
class. If the base class is expanded, the Class_type itself is an expanded type; if the base class
is non-expanded, the Class_type is a reference type.
An Attachment_mark ? indicates that the type is detachable: its values may be void — not
attached to an object. The ! mark indicates the reverse: the type is attached, meaning that its
values will always denote an object; language rules, in particular constraints on attachment,
guarantee this. No Attachment_mark means the same as !, to ensure that a type, by default, will
be attached.

End

8.11.2 Semantics: Direct instances and values of a type
The direct instances of a type T are the run-time objects resulting from: representing a manifest
constant, manifest tuple, Manifest_type, agent or Address expression of type T; applying a
creation operation to a target of type T; (recursively) cloning an existing direct instance of T.
The values of a type T are the possible run-time values of an entity or expression of type T.

8.11.3 Semantics: Instance of a type
The instances of a type TX are the direct instances of any type conforming to TX.

Informative text
Since every type conforms to itself, this is equivalent to stating that the instances of TX are the
direct instances of TX and, recursively, the instances of any other type conforming to TX.

End

8.11.4 Semantics: Instance principle
Any value of a type T is:
• If T is reference, either a reference to an instance of T or (unless T is attached) a void

reference.
• If T is expanded, an instance of T.

8.11.5 Definition: Instance, direct instance of a class
An instance of a class C is an instance of any type T based on C.
A direct instance of C is a direct instance of any type T based on C.

Informative text
For non-generic classes the difference between C and T is irrelevant, but for a generic class you
must remember that by itself the class does not fully determine the shape of its direct instances:
you need a type, which requires providing a set of actual generic parameters.

End

8.11.6 Base principle
Any type T proceeds, directly or indirectly, from a Class_or_tuple_type called its base type, and
an underlying class called its base class.
The base class of a type is also the base class of its base type.

Informative text
A Class_type is its own base type; an anchored type like anchor with anchor having base type U
also has U as its base type. For a formal generic parameter G in class C [G –> T] … the base type
is (in simple cases) the constraining type T, or ANY if the constraint is implicit.

- 72 -

The base class is the class providing the features applicable to instances of the type. If T is a
Class_type the connection to a class is direct: T is either the name of a non-generic class, such
as PARAGRAPH, or the name of a generic class followed by Actual_generics, such as LIST
[WINDOW]. In both cases the base class of T is the class whose name is used to obtain T, with
any Actual_generics removed: PARAGRAPH and LIST in the examples. For a Tuple_type, the
base class is a fictitious class TUPLE, providing the features applicable to all tuples.
For types not immediately obtained from a class we obtain the base class by going through base
type: for example T is an Anchored type of the form like anchor, and anchor is of type LIST
[WINDOW], then the base class of that type, LIST, is also the base class of T.

End

8.11.7 Base rule
The base type of any type is a Class_or_tuple_type, with no Attachment_mark.
The base class of any type other than a Class_or_tuple_type is (recursively) the base class of its
base type.
The direct instances of a type are those of its base type.

Informative text
Why are these notions important? Many of a type’s key properties (such as the features applicable
to the corresponding entities) are defined by its base class. Furthermore, class texts almost never
directly refer to classes: they refer to types based on these classes.

End

8.11.8 Validity: Class Type rule Validity code: VTCT
A Class_type is valid if and only if it satisfies the following two conditions:

1 Its Class_name is the name of a class in the surrounding universe.
2 If it has an Attachment_mark, that class is not expanded.

Informative text
The class given by condition 1 will be the type’s base class. Regarding condition 2, an expanded
type is always attached, so an Attachment_mark would not make sense in that case.

End

8.11.9 Semantics: Type Semantics rule
To define the semantics of a type T it suffices to specify:

1 Whether T is expanded or reference.
2 Whether T, if reference, is attached or detachable.
3 What is T’s base type.
4 If T is a Class_or_tuple_type, what are its base class and its type parameters if any.

8.11.10 Definition: Base class and base type of an expression
Any expression e has a base type and a base class, defined as the base type and base class of
the type of e.

8.11.11 Semantics: Non-generic class type semantics
A non-generic class C used as a type (of the Class_type category) has the same expansion status
as C (i.e. it is expanded if C is an expanded class, reference otherwise). It is its own base type
(after removal of any Attachment_mark) and base class.

8.11.12 Definition: Expanded type, reference type
A type T is expanded if and only if it is not a Formal_generic_name and the base class of its
deanchored form is an expanded class.

- 73 -

T is a reference type if it is neither a Formal_generic_name nor expanded.

Informative text
This definition characterizes every type as either reference or expanded, except for the case of a
Formal_generic_name, which stands for any type to be used as actual generic parameter in a
generic derivation: some derivations might use a reference type, others an expanded type.
Tuple types are, as a consequence of the definition, reference types.

End

8.11.13 Definition: Basic type
The basic types are BOOLEAN, CHARACTER and its sized variants, INTEGER and its sized
variants, REAL and its sized variants and POINTER.

Informative text
Like most other types, the basic types are defined by classes, found in the Kernel Library. In other
words they are not predefined, “magic” types, but fit in the normal class-based type system of
Eiffel.
Compilers typically know about them, so that they can generate code that performs arithmetic and
relational operations as fast as in lower-level languages where basic types are built-in. This is only
for efficient implementation: semantically, the basic types are just like other class types.

End

8.11.14 Definition: Anchor, anchored type, anchored entity
The anchor of an anchored type like anchor is the entity anchor. A declaration of an entity with
such a type is an anchored declaration, and the entity itself is an anchored entity.

Informative text
The anchor must be either an entity, or Current. If an entity, anchor must be the final name of a
feature of the enclosing class.

End

Informative text
The syntax permits x to be declared of type like anchor if anchor is itself anchored, of type like
other_anchor. Although most developments do not need such anchor chains, they turn out to be
occasionally useful for advanced applications. But then of course we must make sure that an
anchor chain is meaningful, by excluding cycles such as a declared as like b, b as like c, and c as
like a. The following definition helps.

End

8.11.15 Definition: Anchor set; cyclic anchor
The anchor set of a type T is the set of entities containing, for every anchored type like anchor
involved in T:
• anchor.
• (Recursively) the anchor set of the type of anchor.

An entity a of type T is a cyclic anchor if the anchor set of T includes a itself.

Informative text
The anchor set of LIST [like a, HASH_TABLE [like b, STRING]] is, according to this definition, the
set {a, b}.

- 74 -

Because of genericity, the cycles that make an anchor “cyclic” might occur not directly through the
anchors but through the types they involve, as with a of type LIST [like b] where b is of type like a.
Here we say that a type “involves” all the types appearing in its definition, as captured by the
following definition.

End

8.11.16 Definition: Types and classes involved in a type
The types involved in a type T are the following:
• T itself.
• If T is of the form a T’ where a is an Attachment_mark: (recursively) the types involved in T’.
• If T is a generically derived Class_type or a Tuple_type: all the types (recursively) involved in

any of its actual parameters.
The classes involved in T are the base classes of the types involved in T.

Informative text
A [B, C, LIST [ARRAY [D]]] involves itself as well as B, C, D, ARRAY [D] and LIST [ARRAY [D].
The notion of cyclic anchor captures this notion in full generality; the basic rule, stated next, will
be that if a is a cyclic anchor you may not use it as anchor: the type like a will be invalid.

End

8.11.17 Definition: Constant type
A type T is constant if every type involved in T is a Class_or_tuple_type.

Informative text
The restriction to Class_or_tuple_type excludes formal generic parameters and anchored types.
Constant types are the only ones permitted for constant attributes denoting manifest types.

End

8.11.18 Definition: Deanchored form of a type
The deanchored form of a type T in a class C is the type (Class_or_tuple_type or
Formal_generic) defined as follows:

1 If T is like Current: the current type of C.
2 If T is like anchor where the type AT of anchor is not anchored: AT.
3 If T is like anchor where the type AT of anchor is anchored but anchor is not a cyclic

anchor: (recursively) the deanchored form of AT in C.
4 If T is a AT, where a is an Attachment_mark: a DT, where DT is (recursively) the

deanchored form of AT deprived of its Attachment_mark if any.
5 If none of the previous cases applies: T.

Informative text
Although useful mostly for anchored types, the notion of “deanchored form” is, thanks to the
phrasing of the definition, applicable to any type. Informally, the deanchored form yields, for an
anchored type, what the type “really means”, in terms of its anchor’s type. It reflects the role of
anchoring as what programmers might call a macro mechanism, a notational convenience to
define types in terms of others.
Case 4 enables us to treat ? like anchor as a detachable type whether the type of anchor is
attached or detachable.

End

- 75 -

8.11.19 Validity: Anchored Type rule Validity code: VTAT

It is valid to use an anchored type AT of the form like anchor in a class C if and only if it satisfies
the following conditions:

1 anchor is either Current or the final name of a query of C.
2 anchor is not a cyclic anchor.
3 The deanchored form UT of AT is valid in C.

The base class and base type of AT are those of UT.

Informative text
An anchored type has no properties of its own; it stands as an abbreviation for its unfolded form.
You will not, for example, find special conformance rules for anchored type, but should simply
apply the usual conformance rules to its deanchored form.
Anchored declaration is essentially a syntactical device: you may always replace it by explicit
redefinition. But it is extremely useful in practice, avoiding much code duplication when you must
deal with a set of entities (attributes, function results, routine arguments) which should all follow
suit whenever a proper descendant redefines the type of one of them, to take advantage of the
descendant’s more specific context.

End

8.11.20 Definition: Attached, detachable
A type is detachable if its deanchored form is a Class_type declared with the ? Attachment_mark.
A type is attached if it is not detachable.

Informative text
By taking the “deanchored form”, we can apply the concepts of “attached” and “detachable” to an
anchored type like a, by just looking at the type of a and finding out whether it is attached or not.
As a consequence of this definition, an expanded type is attached.
As the following semantic definition indicates, the idea of declaring a type as attached is to
guarantee that its values will never be void.

End

8.11.21 Semantics: Attached type semantics
Every run-time value of an attached type is non-void (attached to an object).

Informative text
In contrast, values of a detachable type may be void.
These definitions rely on the run-time notion of a value being attached (to an object) or void. So
there is a distinction between the static property that an entity is attached (meaning that language
rules guarantee that its run-time values will never be void) or detachable, and the dynamic
property that, at some point during execution, its value will be attached or not. If there’s any risk
of confusion we may say “statically attached” for the entity, and “dynamically attached” for the
run-time property of its value.
The validity and semantic rules, in particular on attachment operations, ensure that attached types
indeed deserve this qualification, by initializing all the corresponding entities to attached values,
and protecting them in the rest of their lives from attachment to void.
From the above semantics, the ! mark appears useless since an absent Attachment_mark has the
same effect. The mark exists to ensure a smooth transition: since earlier versions of Eiffel did not
guarantee void-safety, types were detachable by default. To facilitate adaptation to current Eiffel
and avoid breaking existing code, compilers may offer a compatibility option (departing from the

- 76 -

Standard, of course) that treats the absence of an Attachment_mark as equivalent to ?. You can
then use ! to mark the types that you have moved to the attached world and adapt your software
at your own pace, class by class if you wish, to the new, void-safe convention.

End

8.11.22 Definition: Stand-alone type
A Type is stand-alone if and only if it involves neither any Anchored type nor any
Formal_generic_name.

Informative text
In general, the semantics of a type may be relative to the text of class in which the type appears:
if the type involves generic parameters or anchors, we can only understand it with respect to some
class context. A stand-alone type always makes sense — and always makes the same sense —
regardless of the context.
We restrict ourselves to stand-alone types when we want a solidly defined type that we can use
anywhere. This is the case in the validity rules enabling creation of a root object for a system, and
the definition of a once function.

End

 8.12 Genericity

Informative text
The types discussed so far were directly defined by classes. The genericity mechanism, still based
on classes, gives us a new level of flexibility through type parameterization. You may for
example define a class as LIST [G], yielding not just one type but many: LIST [INTEGER],
LIST [AIRPLANE] and so on, parameterized by G.
Parameterized classes such as LIST are known as generic classes; the resulting types, such as
LIST [INTEGER], are generically derived. “Genericity” is the mechanism making generic classes
and generic derivations possible.
Two forms of genericity are available: with unconstrained genericity, G represents an arbitrary
type; with constrained genericity, you can demand certain properties of the types represented by
G, enabling you to do more with G in the class text.

End

8.12.1 Syntax: Actual generic parameters
Actual_generics =∆ "[" Type_list "]"
Type_list =∆ {Type "," …}+

8.12.2 Syntax: Formal generic parameters
Formal_generics =∆ "[" Formal_generic_list "]"
Formal_generic_list =∆ {Formal_generic ","…}+

Formal_generic =∆ [frozen] Formal_generic_name [Constraint]
Formal_generic_name =∆ [?] Identifier

8.12.3 Validity: Formal Generic rule Validity code: VCFG

A Formal_generics part of a Class_declaration is valid if and only if every Formal_generic_name
G in its Formal_generic_list satisfies the following conditions:

1 G is different from the name of any class in the universe.
2 G is different from any other Formal_generic_name appearing in the same

Formal_generics_part.

- 77 -

Informative text
Adding the frozen qualification to a formal generic, as in D [frozen G] rather than just C [G], means
that conformance on the corresponding generically derived classes requires identical actual
parameters: whereas C [U] conforms to C [T] if U conforms to T, D [U] does not conform to D [T]
if U is not T.
Adding the ? mark to a Formal_generic_name, as in ? G, means that the class may declare
self-initializing variables (variables that will be initialized automatically on first use) of type G; this
requires that any actual generic parameter that is an attached type must also be self-initializing,
that is to say, make default_create from ANY available for creation.

End

8.12.4 Definition: Generic class; constrained, unconstrained
Any class declared with a Formal_generics part (constrained or not) is a generic class.
If a formal generic parameter of a generic class is declared with a Constraint, the parameter is
constrained; if not, it is unconstrained.
A generic class is itself constrained if it has at least one constrained parameter, unconstrained
otherwise.

Informative text
A generic class does not describe a type but a template for a set of possible types. To obtain an
actual type, you must provide an Actual_generics list, whose elements are themselves types. This
has a name too, per the following definition.

End

8.12.5 Definition: Generic derivation, non-generic type
The process of producing a type from a generic class by providing actual generic parameters is
generic derivation.
A type resulting from a generic derivation is a generically derived type, or just generic type.
A type that is not generically derived is a non-generic type.

Informative text
It is preferable to stay away from the term “generic instantiation” (sometimes used in place of
“generic derivation”) as it creates a risk of confusion with the normal meaning of “instantiation” in
object-oriented development: the run-time process of obtaining an object from a class.

End

8.12.6 Definition: Self-initializing formal
A Formal_generic_parameter is self-initializing if and only if its declaration includes the optional
? mark.

Informative text
This is related to the notion of self-initializing type: a type which makes default_create from ANY
available for creation. The rule will be that an actual generic parameter corresponding to a
self-initializing formal must itself, if attached, be a self-initializing type.

End

8.12.7 Definition: Constraint, constraining types of a Formal_generic
The constraint of a formal generic parameter is its Constraint part if present, and otherwise ANY.
Its constraining types are all the types listed in its Constraining_types if present, and otherwise
just ANY.

- 78 -

8.12.8 Syntax: Generic constraints
Constraint =∆ "–>" Constraining_types [Constraint_creators]
Constraining_types =∆ Single_constraint | Multiple_constraint
Single_constraint =∆ Type [Renaming]
Renaming =∆ Rename end
Multiple_constraint =∆ "{" Constraint_list "}"
Constraint_list =∆ {Single_constraint "," …}+

Constraint_creators =∆ create Feature_list end

8.12.9 Validity: Generic Constraint rule Validity code: VTGC
A Constraint part appearing in the Formal_generics part of a class C is valid if and only if it satisfies
the following conditions for every Single_constraint listing a type T in its Constraining_types:

1 T involves no anchored type.
2 If a Renaming clause rename rename_list end is present, a class definition of the form

class NEW inherit T rename rename_list end (preceded by deferred if the base class of
T is deferred) would be valid.

Informative text
There is no requirement here on the Constraint_creators part, although in most cases it will list
names (after Renaming) of creation procedures of the constraining types. The precise
requirement is captured by other rules.
Condition 2 implies that the features listed in the Constraint_creators are, after possible
Renaming, names of features of one or more of the constraining types, and that no clash remains
that would violated the rules on inheritance. In particular, you can use the Renaming either to
merge features if they come from the same seeds, or (the other way around) separate them.
If T is based on a deferred class the fictitious class NEW should be declared as deferred too,
otherwise it would be invalid if T has deferred features. On the other hand, NEW cannot be valid
if T is based on a frozen class; in this case it is indeed desirable to disallow the use of T as a
constraint, since the purpose of declaring a class frozen is to prevent inheritance from it

End

8.12.10 Definition: Constraining creation features
If G is a formal generic parameter of a class, the constraining creators of G are the features of
G’s Constraining_types, if any, corresponding after possible Renaming to the feature names listed
in the Constraining_creators if present.

Informative text
Constraining creators should be creation procedures, but not necessarily (as seen below) in the
constraining types themselves; only their instantiatable descendants are subject to this rule.

End

8.12.11 Validity: Generic Derivation rule Validity code: VTGD
Let C be a generic class. A Class_type CT having C as base class is valid if and only if it satisfies
the following conditions for every actual generic parameter T and every Single_constraint U
appearing in the constraint for the corresponding formal generic parameter G:

1 The number of Type components in CT’s Actual_generics list is the same as the number
of Formal_generic parameters in the Formal_generic_list of C’s declaration.

2 T conforms to the type obtained by applying to U the generic substitution of CT.
3 If C is expanded, CT is generic-creation-ready.
4 If G is a self-initializing formal and T is attached, then T is a self-initializing type.

- 79 -

Informative text
In the case of unconstrained generic parameters, only condition 1 applies, since the constraint in
that case is ANY, which trivially satisfies the other two conditions.
Condition 3 follows from the semantic rule permitting “lazy” creation of entities of expanded types
on first use, through default_create. Generic-creation-readiness (defined next) is a condition on
the actual generic parameters that makes such initialization safe if it may involve creation of
objects whose type is the corresponding formal parameters.
Condition 4 guarantees that if C relies, for some of its variables of type G, on automatic
initialization on first use, T provides it, if attached (remember that this includes the case of
expanded types), by making default_create from ANY available for creation. If T is detachable this
is not needed, since Void will be a suitable initialization value.

End

8.12.12 Definition: Generic-creation-ready type
A type is generic-creation-ready if and only if every actual generic parameter T of its deanchored
form satisfies the following conditions:

1 If the specification of the corresponding formal generic parameter includes a
Constraint_creators, the versions in T of the constraining creators for the corresponding
formal parameter are creation procedures, and T is (recursively) generic-creation-ready.

2 If T is expanded, it is (recursively) generic-creation-ready.

Informative text
Although phrased so that it is applicable to any type, the condition is only interesting for generically
derived types of the form C […, T, …]. Non-generically-derived types satisfy it trivially since there
is no applicable T.
The role of this condition is to make sure that if class C […, G , …] may cause a creation operation
on a target of type G — as permitted only if the class appears as C […, G –> CONST create cp1,
… end, …] — then the corresponding actual parameters, such as T, will support the given features
— the “constraining creators” — as creation procedures.
It might then appear that generic-creation-readiness is a validity requirement on any actual
generic parameter. But this would be more restrictive than we need. For example T might be a
deferred type; then it cannot have any creation procedures, but that’s still OK because we cannot
create instances of T, only of its effective descendants. Only if it is possible to create an actual
object of the type do we require generic-creation-readiness. Overall, we need
generic-creation-readiness only in specific cases, including:
• For the creation type of a creation operation: conditions 4 of the Creation Instruction rule and

3 of the Creation Expression rule.
• For a Parent in an Inheritance part: condition 6 of the Parent rule.
• For an expanded type: condition 3 of the just seen Generic Derivation rule.

End

8.12.13 Semantics: Generically derived class type semantics
A generically derived Class_type of the form C […], where C is a generic class, is expanded if C
is an expanded class, reference otherwise. It is its own base type, and its base class is C.

Informative text
So LINKED_LIST [POLYGON] is its own base type, and its base class is LINKED_LIST.

End

- 80 -

8.12.14 Definition: Base type of a single-constrained formal generic
The base type of a constrained Formal_generic_name G having as its constraining types a
Single_constraint listing a type T is:

1 If T is a Class_or_tuple_type: T.

2 Otherwise (T is a Formal_generic_name): the base type of T if it can be determined by
(recursively) case 1, otherwise ANY.

Informative text
The definition is never cyclic since the only recursive part is the use of case 1 from case 2.
Case 1 is the common one: for C [G –> T] we use as base type of G, in C, the base type of T. We
need case 2 to make sure that this definition is not cyclic, because we permit cases such as C [G,
H–> D [G]], and as a consequence cases such as C [G –> H, H–> G] or even C [G –> G] even
though they are not useful; both of these examples yield ANY as base types for the parameters.
As a result of the definition of “constraining types”, the base type of an unconstrained formal
generic, such as G in C [G], is also ANY.

End

8.12.15 Definition: Base type of an unconstrained formal generic
The base type of an unconstrained Formal_generic_name type is ANY.

8.12.16 Definition: Reference or expanded status of a formal generic
A Formal_generic_name represents a reference type or expanded type depending on the
corresponding status of the associated actual generic parameter in a particular generic derivation.

8.12.17 Definition: Current type
Within a class text, the current type is the type obtained from the current class by providing as
actual generic parameters, if required, the class’s own formal generic parameters.

Informative text
Clearly, the base class of the current type is always the current class.

End

8.12.18 Definition: Features of a type
The features of a type are the features of its base class.

Informative text
These are the features applicable to the type’s instances (which are also instances of its base
class).

End

8.12.19 Definition: Generic substitution
Every type T defines a mapping σ from names to types known as its generic substitution:

1 If T is generically derived, σ associates to every Formal_generic_name the
corresponding actual parameter.

2 Otherwise, σ is the identity substitution.

8.12.20 Definition: Generic Type Adaptation rule
The signature of an entity or feature f of a type T of base class C is the result of applying T’s
generic substitution to the signature of f in C.

- 81 -

Informative text
The signature include both the type of an entity or query, and the argument types for a routine; the
rule is applicable to both parts.

End

8.12.21 Definition: Generically constrained feature name
Consider a generic class C, a constrained Formal_generic_name G of C, a type T appearing as
one of the Constraining_types for G, and a feature f of name fname in the base class of T. The
generically constrained names of f for G in C are:

1 If one or more Single_constraint clauses for T include a Rename part with a clause
fname as ename, where the Feature_name part of ename (an Extended_feature_name)
is gname: all such gname.

2 Otherwise: just fname.

8.12.22 Validity: Multiple Constraints rule Validity code: VTMC
A feature of name fname is applicable in a class C to a target x whose type is a
Formal_generic_name G constrained by two or more types CONST1, CONST2,…, if and only if it
satisfies the following conditions:

1 At least one of the CONSTi has a feature available to C whose generically constrained
name for G in C is fname.

2 If this is the case for two or more of the CONSTi, all the corresponding features names,
after possible renaming through Renaming clauses in the constraints, are the same.

8.12.23 Definition: Base type of a multi-constraint formal generic type
The base type of a multiply constrained Formal_generic_name type is a type generically derived,
with the same actual parameters as the current class, from a fictitious class with none of the
optional parts except for Formal_generics and an Inheritance clause that lists all the constraining
types as parents and resolves any conflicts between potentially ambiguous features by renaming
them to new names not available to developers.

 8.13 Tuples

Informative text
Based on a bare-bones form of class — with no class names — tuple types provide a concise and
elegant solution to a number of issues:
• Writing functions with multiple results, ensuring complete symmetry with multiple arguments.
• Describing sequences of values of heterogeneous types, or “tuples”, such as [some_integer,

some_string, some_object], convenient for example as arguments to printing routines.
• Achieving the effect of routines with a variable number of arguments.
• Achieving the effect of generic classes with a variable number of generic parameters.
• Using simple classes, defined by a few attributes and the corresponding assigner commands

— similar to the “structures” or “records” of non-O-O languages, but in line with O-O principles
— without writing explicit class declarations.

• Making possible the agent mechanism through which you can handle routines as objects and
define higher-order routines.

End

8.13.1 Syntax: Tuple types
Tuple_type =∆ TUPLE [Tuple_parameter_list]
Tuple_parameter_list =∆ [frozen] "[" Tuple_parameters "]"
Tuple_parameters =∆ Type_list | Entity_declaration_list

- 82 -

Informative text
A frozen mark indicates, as for generic classes, that the actual parameters, and hence the types
of the tuple values, must match the exact types given, not just conform to it. Unlike with classes,
the mark applies to all parameters at once.

End

8.13.2 Syntax: Manifest tuples
Manifest_tuple =∆ "[" Expression_list "]"
Expression_list =∆ {Expression "," …}*

8.13.3 Definition: Type sequence of a tuple type
The type sequence of a tuple type is the sequence of types obtained by listing its parameters, if
any, in the order in which they appear, every labeled parameter being listed as many times as it
has labels.

Informative text
The type sequence for TUPLE is empty; the type sequence for TUPLE [INTEGER; REAL;
POLYGON] is INTEGER, REAL, POLYGON; the type sequence for TUPLE [i, j: INTEGER; r:
REAL; p: POLYGON] is INTEGER, INTEGER, REAL, POLYGON, where INTEGER appears
twice because of the two labels i, j.

End

8.13.4 Definition: Value sequences associated with a tuple type
The value sequences associated with a tuple type T are sequences of values, each of the type
appearing at the corresponding position in T’s type sequence.

Informative text
Parameter labels play no role in the semantics of tuples and their conformance properties. They
never intervene in tuple expressions (such as [25, –8.75, pol]). Their only use is to allow
name-based access to tuple fields, as your_tuple.label, guaranteeing statically the type of the
result.

End

 8.14 Conformance

Informative text
Conformance is the most important characteristic of the Eiffel type system: it determines when a
type may be used in lieu of another.
The most obvious use of conformance is to make assignment and argument passing type-safe:
for x of type T and y of type V, the instruction x := y, and the call some_routine (y) with x as formal
argument, will only be valid if V is compatible with T, meaning that it either conforms or converts
to T. Conformance also governs the validity of many other constructs, as discussed below.
Conformance, as the rest of the type system, relies on inheritance. The basic condition for V to
conform to T is straightforward:
• The base class of V must be a descendant of the base class of T.
• If V is a generically derived type, its actual generic parameters must conform to the

corresponding ones in T: B [Y] conforms to A [X] only if B conforms to A and Y to X.
• If T is expanded, inheritance is not involved: V can only be T itself.

A full understanding of conformance requires the formal rules explained below, which take into
account the details of the type system: constrained and unconstrained genericity, special rules for
predefined arithmetic types, tuple types, anchored types.

- 83 -

The following discussion introduces the various conformance rules of the language as
“definitions”. Although not validity constraints themselves, these rules play a central role in many
of the constraints, so that language processing tools such as compilers may need to refer to them
in their error messages. For that reason each rule has a validity code of the form VNCx.

End

8.14.1 Definition: Compatibility between types
A type is compatible with another if it either conforms or converts to it.

8.14.2 Definition: Compatibility between expressions
An expression b is compatible with an expression a if and only if b either conforms or converts
to a.

8.14.3 Definition: Expression conformance
An expression exp of type SOURCE conforms to an expression ent of type TARGET if and only
if they satisfy the following conditions:

1 SOURCE conforms to TARGET.
2 If TARGET is attached, so is SOURCE.
3 If SOURCE is expanded, its version of the function cloned from ANY is available to the

base class of TARGET.

Informative text
So conformance of expressions is more than conformance of their types. Both conditions 2 and 3
are essential. Condition 2 guarantees that execution will never attach a void value to an entity
declared of an attached type — a declaration intended precisely to rule out that possibility, so that
the entity can be used as target of calls. Condition 3 allows us, in the semantics of attachment, to
use a cloning operation when attaching an object with “copy semantics”, without causing
inconsistencies.
A later definition will state what it means for an expression b to convert to another a. As a special
case these properties also apply to entities.
Conformance and convertibility are exclusive of each other, so we study the two mechanisms
separately. The rest of the present discussion is devoted to conformance.

End

8.14.4 Validity: Signature conformance Validity code: VNCS

A signature t = [B1, … Bn], [S] conforms to a signature s = [A1, … An], [R] if and only if it satisfies
the following conditions:

1 Each of the two components of t has the same number of elements as the corresponding
component of s.

2 Each type in each of the two components of t conforms to the corresponding type in the
corresponding component of s.

3 Any Bi not identical to the corresponding Ai is detachable.

Informative text
For a signature to conform: the argument types must conform (for a routine); the two signatures
must both have a result type or both not have it (meaning they are both queries, or both
procedures); and if there are result types, they must conform.
Condition 3 adds a particular rule for “covariant redefinition” of arguments as defined next.

End

- 84 -

8.14.5 Definition: Covariant argument
In a redeclaration of a routine, a formal argument is covariant if its type differs from the type of
the corresponding argument in at least one of the parents’ versions.

Informative text
From the preceding signature conformance rule, the type of a covariant argument will have to be
declared as detachable: you cannot redefine f (x: T) into f (x: U) even if U conforms to T; you may,
however, redefine it to f (x: ?U). This forces the body of the redefined version, when applying to x
any feature of f, to ensure that the value is indeed attached to an instance of U by applying an
Object_test, for example in the form

if {x: U} y then y.feature_of_U else … end
This protects the program from catcalls — wrongful uses, of a redefined feature, through
polymorphism and dynamic binding, to an actual argument of the original, pre-covariant type.
The rule only applies to arguments, not results, which do not pose a risk of catcall.
This rule is the reason why the Feature Declaration rule requires that if any routine argument is of
an anchored type, that type must be detachable, since anchored declaration is a shorthand for
explicit covariance.

End

8.14.6 Validity: General conformance Validity code: VNCC

Let T and V be two types. V conforms to T if and only if one of the following conditions holds:
1 V and T are identical.
2 V conforms directly to T.
3 V is NONE and T is a detachable reference type.
4 V is B [Y1,… Yn] where B is a generic class, T is B [X1,… Xn], and for every Xi the

corresponding Yi is identical to Xi or, if the corresponding formal parameter doesn’t have
a Header_mark specifying frozen, conforms (recursively) to Xi.

5 T is a reference type and, for some type U (recursively), V conforms to U and U
conforms to T.

6 T or V or both are anchored types appearing in the same class C, and the deanchored
form of V in C (recursively) conforms to the deanchored form of T.

Informative text
Cases 1 and 2 are immediate: a type conforms to itself, and direct conformance is a case of
conformance.
Case 3 introduces the class NONE describing void values for references. You may assign such a
value to a variable of a reference type not declared as attached (as the role of such declarations
is precisely to exclude void values); an expanded target is also excluded since it requires an
object.
Case 4 covers the replacement of one or more generic parameters by conforming ones, keeping
the same base class: B [Y] conforms to B [X] if Y conforms to X. (This does not yet address
conformance to B [Y1, … Yn] of a type CT based on a class C different from B.) Also note that the
frozen specification is precisely intended to preclude conformance other than from the given type
to itself.
Case 5 is indirect conformance through an intermediate type U. Note the restriction that T be a
reference type; this excludes indirect conformance through an expanded type, as explained in
later discussions.
Finally, case 6 allows us to treat any anchored type, for conformance as for its other properties,
as an abbreviation — a “macro” in programmer terminology — for the type of its anchor.

- 85 -

Thanks to this definition of conformance in terms of direct conformance, the remainder of the
discussion of conformance only needs to define direct conformance rules for the various
categories of type.

End

8.14.7 Definition: Conformance path
A conformance path from a type U to a type T is a sequence of types T0, T1, … Tn (n ≥ 1) such
that T0 is U, Tn is T, and every Ti (for 0 ≤ i < n) conforms to Ti+1. This notion also applies to classes
by considering the associated current types.

8.14.8 Validity: Direct conformance: reference types Validity code: VNCN

A Class_type CT of base class C conforms directly to a reference type BT if and only if it satisfies
the following conditions:

1 Applying CT’s generic substitution to one of the conforming parents of C yields BT.

2 If BT is attached, so is CT.

Informative text
The restriction to a reference type in this rule applies only to the target of the conformance, BT.
The source, CT, may be expanded.
The basic condition, 1, is inheritance. To handle genericity it applies the “generic substitution”
associated with every type: for example with a class C [G, H] inheriting from D [G], the type C [T,
U] has a generic substitution associating T to G and U to H. So it conforms to the result of applying
that substitution to the Parent D [G]: the type D [T].
Condition 2 guarantees that we’ll never attach a value of a detachable type — possibly void — to
a target declared of an attached type; the purpose of such a declaration is to avoid this very case.
The other way around, an attached type may conform to a detachable one.
This rule is the foundation of the conformance mechanism, relying on the inheritance structure as
the condition governing attachments and redeclarations. The other rules cover refinements
(involving in particular genericity), iterations of the basic rule (as with “general conformance”) and
adaptations to special cases (such as expanded types).

End

8.14.9 Validity: Direct conformance: formal generic Validity code: VNCF

Let G be a formal generic parameter of a class C, which in the text of C may be used as a
Formal_generic_name type. Then:

1 No type conforms directly to G.

2 G conforms directly to every type listed in its constraint, and to no other type.

8.14.10 Validity: Direct conformance: expanded types Validity code: VNCE

No type conforms directly to an expanded type.

Informative text
From the definition of general conformance, an expanded type ET still conforms, of course, to
itself. ET may also conform to reference types as allowed by the corresponding rule (VNCN); the
corresponding assignments will use copy semantics. But no other type (except, per General
Conformance, for e of type ET, the type like e, an abbreviation for ET) conforms to ET.
This rule might seem to preclude mixed-type operations of the kind widely accepted for basic
types, such as f (3) where the routine f has a formal argument of type REAL, or
your_integer_64 := your_integer_16 with a target of type INTEGER_64 and a source of type

- 86 -

INTEGER_16. Such attachments, however, involve conversion from one type to another. What
makes them valid is not conformance but convertibility, which does support a broad range of
safe mixed-type assignments.

End

8.14.11 Validity: Direct conformance: tuple types Validity code: VNCT

A Tuple_type U, of type sequence us, conforms directly to a type T if and only if T satisfies the
following conditions:

1 T is a tuple type, of type sequence ts.
2 The length of us is greater than or equal to the length of ts.
3 For every element X of ts, the corresponding element of us is identical to X or, if X is not

specified frozen, conforms to X.
No type conforms directly to a tuple type except as implied by these conditions.

Informative text
Labels, if present, play no part in the conformance.

End

 8.15 Convertibility

Informative text
Complementing the conformance mechanism of the previous discussion, convertibility lets you
perform assignment and argument passing in cases where conformance does not hold but you
still want the operation to succeed after adapting the source value to the target type.

End

8.15.1 Definition: Conversion procedure, conversion type
A procedure whose name appears in a Converters clause is a conversion procedure.
A type listed in a Converters clause is a conversion type.

8.15.2 Definition: Conversion query, conversion feature
A query whose name appears in a Converters clause is a conversion query.
A feature that is either a conversion procedure or a conversion query is a conversion feature.

8.15.3 Validity: Conversion principle
No type may both conform and convert to another.

8.15.4 Validity: Conversion Asymmetry principle
No type T may convert to another through both a conversion procedure and a conversion query.

8.15.5 Validity: Conversion Non-Transitivity principle
That V converts to U and U to T does not imply that V converts to T.

8.15.6 Syntax: Converter clauses
Converters =∆ convert Converter_list
Converter_list =∆ {Converter ","…}+

Converter =∆ Conversion_procedure | Conversion_query
Conversion_procedure =∆ Feature_name "(" "{" Type_list "}" ")"
Conversion_query =∆ Feature_name ":" "{" Type_list "}"

- 87 -

8.15.7 Validity: Conversion Procedure rule Validity code: VNCP
A Conversion_procedure listing a Feature_name fn and appearing in a class C with current type
CT is valid if and only if it satisfies the following conditions, applicable to every type SOURCE
listed in its Type_list:

1 fn is the name of a creation procedure cp of C.
2 If C is not generic, SOURCE does not conform to CT.
3 If C is generic, SOURCE does not conform to the type obtained from CT by replacing

every formal generic parameter by its constraint.
4 SOURCE’s base class is different from the base class of any other conversion type

listed for a Conversion_procedure in the Converters clause of C.
5 The specification of the base class of SOURCE does not list a conversion query

specifying a type of base class C.
6 cp has exactly one formal argument, of a type ARG.
7 SOURCE conforms to ARG.

Informative text
Conditions 2 and 3 (the second one covering generic classes) express the crucial requirement,
ensuring the Conversion principle: no type that conforms to the current type may convert to it.
In many practical uses of conversion the target class CX is expanded; this is the case with
REAL_64, and with REAL_32, to which INTEGER also converts. Such cases satisfy condition 2
almost automatically since essentially no other type conforms to an expanded type. But the validity
of a conversion specification does not require the enclosing class to be expanded; all that
condition 2 states is that the conversion types must not conform to it (more precisely, to the current
type).

End

8.15.8 Validity: Conversion Query rule Validity code: VNCF
A Conversion_query listing a Feature_name fn and appearing in a class C with current type CT is
valid if and only if it satisfies the following conditions, applicable to every type TARGET listed in
its Type_list:

1 fn is the name of a query f of C.
2 If C is not generic, CT does not conform to TARGET.
3 If C is generic, the type obtained from CT by replacing every formal generic parameter

by its constraint does not conform to TARGET.
4 TARGET’s base class is different from the base class of any other conversion type listed

for a Conversion_query in the Converters clause of C.
5 The specification of the base class of TARGET does not list a conversion procedure

specifying a type of base class C.
6 f has no formal argument.
7 The result type of f conforms to TARGET.

Informative text
Condition 5 is redundant with condition 5 of the Conversion Procedure rule but is included anyway
for symmetry. In case of violation, a compiler may refer to either rule.

End

8.15.9 Definition: Converting to a class
A type T of base class CT converts to a class C if either:
• T appears as conversion type for a procedure in the Converters clause of C.

- 88 -

• A type based on C appears as conversion type for a query in the Converters clause of CT.

8.15.10 Definition: Converting to and from a type
A type U of base class D converts to a Class_type T of base class C if and only if either:

1 U is the result of applying the generic substitution of T to a conversion type for a
procedure cp appearing in the Converters clause of C.

2 T is the result of applying the generic substitution of U to a conversion type for a query
cq appearing in the Converters clause of D.

A Class_type T converts from a type U if and only if U converts to T.

8.15.11 Definition: Converting “through”
A type U that converts to a type T:

1 Converts to T through a procedure cp if case 1 of the definition of “converting to a type”
applies.

2 Converts to T through a query cq if case 2 of the definition applies.
These terms also apply to “converting from” specifications.

Informative text
From the definitions and validity rules, it’s clear that if U converts to T then it’s either — but not
both — “through a procedure” or “through a query”, and that exactly one routine, cp or f, meets
the criteria in each case.

End

8.15.12 Semantics: Conversion semantics
Given an expression e of type U and a variable x of type T, where U converts to T, the effect of a
conversion attachment of source e and target x is the same as the effect of either:

1 If U converts to T through a procedure cp: the creation instruction create x.cp (e).
2 If U converts to T through a query cq: the assignment x := e.cq.

Informative text
This is an “unfolded form” specification expressing the semantics of an operation (conversion
attachment) in terms of another: either a creation or a query call. Both of these operations involve
an attachment (argument passing or assignment) and so may trigger one other conversion.

End

8.15.13 Definition: Explicit conversion
The Kernel Library class TYPE [G] provides a function

adapted alias "[]" (x: G): G
which can be used for any type T and any expression exp of a type U compatible with T to produce
a T version of exp, written

{T} [exp]
If U converts to T, this expression denotes the result of converting exp to T, and is called an
explicit conversion.

Informative text
Explicit conversion involves no new language mechanism, simply a feature of a Kernel Library
class and the notion of bracket alias.
For example, assuming a tuple type that converts to DATE, you may use

{DATE} [[20, "April", 2005]]

- 89 -

The Basic_expression [20, "April", 2005] is a Manifest_tuple. Giving it — through the outermost
brackets — as argument to the adapted function of {DATE} turns it into an expression of type
DATE. This is permitted for example if class DATE specifies a conversion procedure from
TUPLE [INTEGER, STRING, INTEGER].

End

8.15.14 Validity: Expression convertibility Validity code: VNEC

An expression exp of type U converts to an entity ent of type T if and only if U converts to T
through a conversion feature conv satisfying either of the following two conditions:

1 conv is precondition-free.
2 exp statically satisfies the precondition.

8.15.15 Definition: Statically satisfied precondition
A feature precondition is statically satisfied if it satisfies any of the following conditions:

1 It applies to a boolean, character, integer or real expression involving only constants,
states that the expression equals a specific constant value or (in the last three cases)
belongs to a specified interval, and holds for that value or interval.

2 It applies to the type of an expression, states that it must be one of a specified set of
types, and holds for that type.

Informative text
The “constants” of the expression can be manifest constants, or they can be constant actual
arguments to a routine — possibly the unfolded form of an assignment, as in
of_type_NATURAL_8 := 1, whose semantics is that of create of_type_natural.from_INTEGER
(1). Without the notion of “statically satisfied precondition” such instructions would be invalid
because from_INTEGER in class NATURAL_8 has a precondition (not every integer is
representable as a NATURAL_8), and arbitrary preconditions are not permitted for conversion
features. This would condemn us to the tedium of writing {NATURAL_8} 1 and the like for every
such case, and would be regrettable since 1 is as a matter of fact acceptable as a NATURAL_8.
So the definition of expression convertibility permits a “statically satisfied” precondition, making
such cases valid.
It would be possible to generalize the definition by making permissible any precondition that can
be assessed statically. But this would leave too much initiative to individual compilers: a “smarter”
compiler might accept a precondition that another rejects, leading to incompatibilities. It was
judged preferable to limit the rule to the two cases known to be important in practice; if others
appear in the future, the rule will be extended.

End

8.15.16 Validity: Precondition-free routine Validity code: VNPF

A feature r of a class C is precondition-free if it is either:
1 Immediate in C, with either no Precondition clause or one consisting of a single

Assertion_clause (introduced by require) whose Boolean_expression is the constant
True.

2 Inherited, and such that every precursor of r is (recursively) precondition-free, or r is
redeclared in C with a Precondition consisting of a single Assertion_clause (introduced
by require else) whose Boolean_expression is the constant True.

Informative text
A feature is “immediate” if it is declared in the class itself. In the other case, “inherited” feature, it’s
OK if the feature had a precondition in the parent, but then the class must redeclare it with a clause
require else True. A simple require without the else is not permitted in this case.

- 90 -

A “precursor” of an inherited routine is its version in a parent; there may be more than one as a
result of feature merging and repeated inheritance.

End

Informative text
No specific validity rule limits our ability to include a convert mark in an Alias as long as it applies
to a feature with one argument and an Operator alias. Of course in an example such as
your_integer + your_real we expect the argument type AT, here REAL, to include a feature with
the given operator, here +, and the target type CT, here INTEGER, to convert to AT. But we don’t
require this of all types to which CT converts, because:
• This would have to be checked for every new type (since CT may convert to AT not only

through its own “from” specification but also through a “to” specification in AT).
• In any case, it would be too restrictive: INTEGER may well convert to a certain type AT for

which we don’t use target conversion.
Instead, the validity constraints will simply rule out individual calls that would require target
conversion if the proper conditions are not met. For example if REAL did not have a function
specifying alias "+" and accepting an integer argument, or if INTEGER did not convert to REAL,
the expression would be invalid.
Remarkably, there is no need for any special validity rule to enforce these properties. All we’ll need
is the definition of target-converted form of a binary expression in the discussion of
expressions. The target-converted form of x + y (or a similar expression for any other binary
operator) is x + y itself unless both of the following properties hold:
• The declaration of “+” for the type of x specifies convert.
• The type of y does not conform or convert to the type of the argument of the associated

function, here plus, so that the usual interpretation of the expression as shorthand for x.plus
(y) cannot possibly be valid. This is critical since we don’t want any ambiguity: either the usual
interpretation or the targeted conversion should be valid, but not both.

Under these conditions the targeted-converted form is ({TY} [x]) + y, using as first operand the
result of converting x to the type TY of y. Then:
• The target-converted form is only valid if TY has a feature with the “+” alias, and y is

acceptable as an argument of this call. The beauty of this is that we don’t need any new validity
rule: if any of this condition is not met, the normal validity rules on expressions (involving,
through the notion of Equivalent Dot Form, the rules on calls) will make it illegal.

• We don’t need any specific semantic rule either: the normal semantic rules, applied to the
target-converted form, yield exactly what we need.

End

 8.16 Repeated inheritance

Informative text
Inheritance may be multiple: a class may have any number of parents. A more restrictive solution
would limit the benefits of inheritance, so central to object-oriented software engineering.
Because of multiple inheritance, it is possible for a class to be a descendant of another in more
than one way. This case is known as repeated inheritance; it raises interesting issues and yields
useful techniques, which the following discussion reviews in detail.

End

8.16.1 Definition: Repeated inheritance, ancestor, descendant
Repeated inheritance occurs whenever (as a result of multiple inheritance) two or more of the
ancestors of a class D have a common parent A.
D is then called a repeated descendant of A, and A a repeated ancestor of D.

- 91 -

8.16.2 Semantics: Repeated Inheritance rule
Let D be a class and B1, … Bn (n ≥ 2) be parents of D based on classes having a common ancestor
A. Let f1, … fn be features of these respective parents, all having as one of their seeds the same
feature f of A. Then:

1 Any subset of these features inherited by D under the same final name in D yields a
single feature of D.

2 Any two of these features inherited under a different name yield two features of D.

Informative text
This is the basic rule allowing us to make sense and take advantage of inheritance, based on the
programmer-controlled naming policy: inheriting two features under the same name yields a
single feature, inheriting them under two different names yield two features.

End

8.16.3 Definition: Sharing, replication
A repeatedly inherited feature is shared if case 1 of the Repeated Inheritance rule applies, and
replicated if case 2 applies.

8.16.4 Validity: Call Replication rule Validity code: VMCR

It is valid for a feature f repeatedly inherited by a class D from an ancestor A, such that f is shared
under repeated inheritance and not redeclared, to include an unqualified call to a feature g of A or
(if f is an attribute) to be the target of an assignment whose source involves g if and only if g is,
along the corresponding inheritance paths, also shared.

Informative text
If g were duplicated, there would be no way to know which version f should call, or evaluate for
the assignment. The “selected” version, discussed below, is not necessarily the appropriate one.

End

8.16.5 Semantics: Replication Semantics rule
Let f and g be two features both repeatedly inherited by a class A and both replicated under the
Repeated Inheritance rule, with two respective sets of different names: f1 and f2, g1 and g2.
If the version of f in D is the original version from A and either contains an unqualified call to g or
(if f is an attribute) is the target of an assignment whose source involves g, the f1 version will use
g1 for that call or assignment, and the f2 version will use g2.

Informative text
This rule (which, unlike other semantic rules, clarifies a special case rather than giving the general
semantics of a construct) tells us how to interpret calls and assignments if two separate
replications have proceeded along distinct inheritance paths.

End

8.16.6 Syntax: Select clauses
Select =∆ select Feature_list

Informative text
The Select subclause serves to resolve any ambiguities that could arise, in dynamic binding on
polymorphic targets declared statically of a repeated ancestor’s type, when a feature from that
type has two different versions in the repeated descendant.

End

- 92 -

8.16.7 Validity: Select Subclause rule Validity code: VMSS

A Select subclause appearing in the parent part for a class B in a class D is valid if and only if, for
every Feature_name fname in its Feature_list, fname is the final name in D of a feature that has
two or more potential versions in D, and fname appears only once in the Feature_list.

Informative text
This rule restricts the use of Select to cases in which it is meaningful: two or more “potential
versions”, a term which also has its own precise definition. We will encounter next, in the
Repeated Inheritance Consistency constraint, the converse requirement that if there is such a
conflict a Select must be provided.

End

8.16.8 Definition: Version
A feature g from a class D is a version of a feature f from an ancestor of D if f and g have a seed
in common.

8.16.9 Definition: Multiple versions
A class D has n versions (n ≥ 2) of a feature f of an ancestor A if and only if n of its features, all
with different final names in D, are all versions of f.

8.16.10 Validity: Repeated Inheritance Consistency constraint Validity code: VMRC

It is valid for a class D to have two or more versions of a feature f of a proper ancestor A if and
only if it satisfies one of the following conditions:

1 There is at most one conformance path from D to A.
2 There are two or more conformance paths, and the Parent clause for exactly one of

them in D has a Select clause listing the name of the version of f from the corresponding
parent.

8.16.11 Definition: Dynamic binding version
For any feature f of a type T and any type U conforming to T, the dynamic binding version of f
in U is the feature g of U defined as follows:

1 If f has only one version in U, then g is that feature.
2 If f has two or more versions in U, then the Repeated Inheritance Consistency constraint

ensures that either exactly one conformance path exists from U to T, in which case g is
the version of f in U obtained along that path, or that a Select subclause name a version
of f, in which case g is that version.

8.16.12 Definition: Inherited features
Let D be a class. Let precursors be the list obtained by concatenating the lists of features of every
parent of D; this list may contain duplicates in the case of repeated inheritance. The list inherited
of inherited features of D is obtained from precursors as follows:

1 In the list precursors, for any set of two or more elements representing features that are
repeatedly inherited in D under the same name, so that the Repeated Inheritance rule
yields sharing, keep only one of these elements. The Repeated Inheritance Consistency
constraint (sharing case) indicates that these elements must all represent the same
feature, so that it does not matter which one is kept.

2 For every feature f in the resulting list, if D undefines f, replace f by a deferred feature
with the same signature, specification and header comment.

3 In the resulting list, for any set of deferred features with the same final name in D, keep
only one of these features, with assertions and header comment joined as per the Join
Semantics rule. (Keep the signature, which the Join rule requires to be the same for all
the features involved.)

- 93 -

4 In the resulting list, remove any deferred feature such that the list contains an effective
feature with the same final name. (This is the case in which a feature f, inherited as
effective, effects one or more deferred features: of the whole group, only f remains.)

5 All the features of the resulting list have different names; they are the inherited features
of D in their parent forms. From this list, produce a new one by replacing any feature that
D redeclares (through redefinition or effecting) with the result of the redeclaration, and
retaining any other feature as it is.

6 The result is the list inherited of inherited features of D.

8.16.13 Semantics: Join-Sharing Reconciliation rule
If a class inherits two or more features satisfying both the conditions of sharing under the
Repeated Inheritance rule and those of the Join rule, the applicable semantics is the Repeated
Inheritance rule.

8.16.14 Definition: Precursor
A precursor of an inherited feature of final name fname is any parent feature — appearing in the
list precursors obtained through case 1 of the definition of “Inherited features” — that the feature
mergings resulting from the subsequent cases reduce into a feature of name fname.

8.16.15 Validity: Feature Name rule Validity code: VMFN
It is valid for a feature f of a class C to have a certain final name if and only if it satisfies the
following conditions:

1 No other feature of C has that same feature name.
2 If f is shared under repeated inheritance, its precursors all have either no Alias or the

same alias.

Informative text
Condition 1 follows from other rules: the Feature Declaration rule, the Redeclaration rule and the
rules on repeated inheritance. It is convenient to state it as a separate condition, as it can help
produce clear error messages in some cases of violation.
Two feature names are “the same” if the lower-case version of their identifiers is the same.
The important notion in this condition is “other feature”, resulting from the above definition of
“inherited features”. When do we consider g to be a feature “other” than f? This is the case
whenever g has been declared or redeclared distinctly from f, unless the definition of inherited
features causes the features to be merged into just one feature of C. Such merging may only
happen as a result of sharing features under repeated inheritance, or of joining deferred features.
Also, remember that if C redeclares an inherited feature (possibly resulting from the joining of two
or more), this does not introduce any new (“other”) feature. This was explicitly stated by the
definition of “introducing” a feature.
Condition 2 complements these requirements by ensuring that sharing doesn’t inadvertently give
a feature more than one alias.
The Feature Name rule crowns the discussion of inheritance and feature adaptation by
unequivocally implementing the No Overloading Principle: no two features of a class may have
the same name. The only permissible case is when the name clash is apparent only, but in reality
the features involved are all the same feature under different guises, resulting from a join or from
sharing under repeated inheritance.

End

8.16.16 Validity: Name Clash rule Validity code: VMNC
The following properties govern the names of the features of a class C:

1 It is invalid for C to introduce two different features with the same name.
2 If C introduces a feature with the same name as a feature it inherits as effective, it must

rename the inherited feature.

- 94 -

3 If C inherits two features as effective from different parents and they have the same
name, the class must also (except under sharing for repeated inheritance) remove the
name clash through renaming.

Informative text
This is not a new constraint but a set of properties that follow from the Feature Name rule and
other rules. Instead of Eiffel’s customary “This is valid if and only if …” style, more directly useful
to the programmer since it doesn’t just tell us how to mess things up but also how to produce
guaranteeably valid software, the Name Clash rule is of the more discouraging form “You may not
validly write …”. It does, however, highlight frequently applicable consequences of the naming
policy, and compilers may take advantage of it to report naming errors.

End

 8.17 Control structures

Informative text
The previous discussions have described the “bones” of Eiffel software: the module and type
structure of systems. Here we begin studying the “meat”: the elements that govern the execution
of applications.
Control structures are the constructs used to schedule the run-time execution of instructions.
There are four of them: sequencing (compound), conditional, multi-branch choice and loop. A
complementary construct is the Debug instruction.
As made clear by the definition of “non-exception semantics” in the semantic rule for Compound,
which indirectly governs all control structures (since al instructions are directly or indirectly part of
a Compound), the default semantics assumes that none of the instructions executed as part of a
control structure triggers an exception. If an exception does occur, the normal flow of control is
interrupted, as described by the rules of exception handling in the discussion of this topic.

End

8.17.1 Semantics: Compound (non-exception) semantics
The effect of executing a Compound is:
• If it has zero instructions: to leave the state of the computation unchanged.
• If it has one or more instructions: to execute the first instruction of the Compound, then

(recursively) to execute the Compound obtained by removing the first instruction.
This specification, the non-exception semantics of Compound, assumes that no exception is
triggered. If the execution of any of the instructions triggers an exception, the Exception Semantics
rule takes effect for the rest of the Compound’s instructions.

Informative text
Less formally, this means executing the constituent instructions in the order in which they appear
in the Compound, each being started only when the previous one has been completed.
Note that a Compound can be empty, in which case its execution has no effect. This is useful for
examples when refactoring the branches of a Conditional: you might temporarily remove all the
instructions of the Else_part, but not the Else_part itself yet as you think it may be needed later.

End

8.17.2 Syntax: Conditionals
Conditional =∆ if Then_part_list [Else_part] end
Then_part_list =∆ {Then_part elseif …}+

Then_part =∆ Boolean_expression then Compound
Else_part =∆ else Compound

- 95 -

8.17.3 Definition: Secondary part
The secondary part of a Conditional possessing at least one elseif is the Conditional obtained by
removing the initial “if Then_part_list” and replacing the first elseif of the remainder by if.

8.17.4 Definition: Prevailing immediately
The execution of a Conditional starting with if condition1 is said to prevail immediately if
condition1 has value true.

8.17.5 Semantics: Conditional semantics
The effect of a Conditional is:
• If it prevails immediately: the effect of the first Compound in its Then_part_list.
• Otherwise, if it has at least one elseif: the effect (recursively) of its secondary part.
• Otherwise, if it has an Else part: the effect of the Compound in that Else part.
• Otherwise: no effect.

Informative text
Like the instruction studied next, the Conditional is a “multi-branch” choice instruction, thanks to
the presence of an arbitrary number of elseif clauses. These branches do not have equal rights,
however; their conditions are evaluated in the order of their appearance in the text, until one is
found to evaluate to true. If two or more conditions are true, the one selected will be the first in the
syntactical order of the clauses.

End

8.17.6 Definition: Inspect expression
The inspect expression of a Multi_branch is the expression appearing after the keyword inspect.

8.17.7 Syntax: Multi-branch instructions
Multi_branch =∆ inspect Expression [When_part_list] [Else_part] end
When_part_list =∆ When_part+

When_part =∆ when Choices then Compound
Choices =∆ {Choice "," …}+

Choice =∆ Constant | Manifest_type | Constant_interval | Type_interval
Constant_interval =∆ Constant ".." Constant
Type_interval =∆ Manifest_type ".." Manifest_type

8.17.8 Definition: Interval
An interval is a Constant_interval or Type_interval.

8.17.9 Definition: Unfolded form of a multi-branch
To obtain the unfolded form of a Multi_branch instruction, apply the following transformations in
the order given:

1 Replace every constant inspect value by its manifest value.
2 If the type T of the inspect expression is any sized variant of CHARACTER, STRING or

INTEGER, replace every inspect value v by {T} v.
3 Replace every interval by its unfolded form.

Informative text
Step 2 enables us, with an inspect expression of a type such as INTEGER_8, to use constants in
ordinary notation, such as 1, rather than the heavier {INTEGER_8} 1. Unfolded form constructs
this proper form for us. The rules on constants make this convention safe: a value that doesn’t
match the type, such as 1000 here, will cause a validity error.

End

- 96 -

8.17.10 Definition: Unfolded form of an interval
The unfolded form of an interval a..b is the following (possibly empty) list:

1 If a and b are constants, both of either a character type, a string type or an integer type,
and of manifest values va and vb: the list made up of all values i, if any, such that va ≤ i
≤ vb, using character, integer or lexicographical order respectively.

2 If a and b are both of type TYPE [T] for some T, and have manifest values va and vb:
the list containing every Manifest_type of the system conforming to vb and to which
va conforms.

3 If neither of the previous two cases apply: an empty list.

Informative text
The “manifest value” of a constant is the value that has been declared for it, ignoring any
Manifest_type: for example both 1 and {INTEGER_8} 1 have the manifest value 1.
The symbol .. is not a special symbol of the language but an alias for a feature of the Kernel
Library class PART_COMPARABLE, which for any partially or totally ordered set and yielding the
set of values between a lower and an upper bound. Here, the bounds must be constant.
A note for implementers: type intervals such as {U}..{T}, denoting all types conforming to T and
to which U conforms, may seem to raise difficult implementation issues: the set of types, which
the unfolded form seems to require that we compute, is potentially large; the validity (Multi-Branch
rule) requires that all types in the unfolded form be distinct, which seems to call for tricky
computations of intersections between multiple sets; and all this may seem hard to reconcile with
incremental compilation, since a type interval may include types from both our own software and
externally acquired libraries, raising the question of what happens on delivery of a new version of
such a library, possibly without source code. Closer examination removes these worries:
• There is no need actually to compute entire type intervals as defined by the unfolded form.

Listing {U}..{T} simply means, when examining a candidate type Z, finding out whether Z
conforms to T and U to Z.

• To ascertain that such a type interval does not intersect with another {Y}..{X}, the basic check
is that Y does not conform to T and U does not conform to X.

• If we add a new set of classes and hence types to a previously validated system, a new case
of intersection can only occur if either: a new type inherits from one of ours, a case that won’t
happen for a completely external set of reusable classes and, if it happens, should require
re-validating since existing Multi_branch instructions may be affected; or one of ours inherits
from a new type, which will happen only when we modify our software after receiving the
delivery, and again should require normal rechecking.

End

8.17.11 Validity: Interval rule Validity code: VOIN
An Interval is valid if and only if its unfolded form is not empty.

8.17.12 Definition: Inspect values of a multi-branch
The inspect values of a Multi_branch instruction are all the values listed in the Choices parts of
the instruction’s unfolded form.

Informative text
The set of inspect values may be infinite in the case of a string interval, but this poses no problem
for either programmers or compilers, meaning simply that matches will be determined through
lexicographical comparisons.

End

8.17.13 Validity: Multi-branch rule Validity code: VOMB
A Multi_branch instruction is valid if and only if its unfolded form satisfies the following conditions.

- 97 -

1 Inspect values are all valid.
2 Inspect values are all constants.
3 The manifest values of any two inspect values are different.
4 If the inspect expression is of type TYPE [T] for some type T, all inspect values are types.
5 If case 4 does not apply, the inspect expression is one of the sized variants of INTEGER,

CHARACTER or STRING.

8.17.14 Semantics: Matching branch
During execution, a matching branch of a Multi_branch is a When_part wp of its unfolded form,
satisfying either of the following for the value val of its inspect expression:

1 val ~ i, where i is one of the non-Manifest_type inspect values listed in wp.
2 val denotes a Manifest_type listed among the choices of wp.

Informative text
The Multi-branch rule is designed to ensure that in any execution there will be at most one
matching branch.
In case 1, we look for object equality, as expressed by ~. Strings, in particular, will be compared
according to the function is_equal of STRING. A void value, even if type-wise permitted by the
inspect expression, will never have a matching branch.
In case 2, we look for an exact type match, not just conformance. For conformance, we have type
intervals: to match types conforming to some T, use {NONE}..{T}; for types to which T conforms,
use {T}..{ANY}.

End

8.17.15 Semantics: Multi-Branch semantics
Executing a Multi_branch with a matching branch consists of executing the Compound following
the then in that branch. In the absence of matching branch:

1 If the Else_part is present, the effect of the Multi_branch is that of the Compound
appearing in its Else_part.

2 Otherwise the execution triggers an exception of type BAD_INSPECT_VALUE.

8.17.16 Syntax: Loops
Loop =∆ Initialization

[Invariant]
Exit_condition
Loop_body
[Variant]
end

Initialization =∆ from Compound
Exit_condition =∆ until Boolean_expression
Loop_body =∆ loop Compound

8.17.17 Semantics: Loop semantics
The effect of a Loop is the effect of executing the Compound of its Initialization, then its
Loop_body.
The effect of executing a Loop_body is:
• If the Boolean_expression of the Exit_condition evaluates to true: no effect (leave the state of

the computation unchanged).
• Otherwise: the effect of executing the Compound clause, followed (recursively) by the effect

of executing the Loop_body again in the resulting state.

- 98 -

8.17.18 Syntax: Debug instructions
Debug =∆ debug ["("Key_list ")"] Compound end

8.17.19 Semantics: Debug semantics
A language processing tool must provide an option that makes its possible to enable or disable
Debug instructions, both globally and for individual keys of a Key_list. Such an option may be
settable for an entire system, or for individual classes, or both.
Letter case is not significant for a debug key.
The effect of a Debug instruction depends on the mode that has been set for the current class:
• If the Debug option is on generally, or if the instruction includes a Key_list and the option is on

for at least one of the keys in the list, the effect of the Debug instruction is that of its
Compound.

• Otherwise the effect is that of a null instruction.

 8.18 Attributes

Informative text
Attributes are one of the two kinds of feature.
When, in the declaration of a class, you introduce an attribute of a certain type, you specify that,
for every instance of the class that may exist at execution time, there will be an associated value
of that type.
Attributes are of two kinds: variable and constant. The difference affects what may happen at run
time to the attribute’s values in instances of the class: for a variable attribute, the class may include
routines that, applied to a particular instance, will change the value; for a constant attribute, the
value is the same for every instance, and cannot be changed at run time.

End

8.18.1 Syntax: Attribute bodies
Attribute =∆ attribute Compound

Informative text
The Compound is empty in most usual cases, but it is required for an attribute of an attached type
(including the case of an expanded type) that does not provide default_create as a creation
procedure; it will then serve to initialize the corresponding field, on first use for any particular
object, if that use occurs prior to an explicit initialization. To set that first value, assign to Result in
the Compound.
Such a Compound is executed at most once on any particular object during a system execution.

End

8.18.2 Validity: Manifest Constant rule Validity code: VQMC

A declaration of a feature f introducing a manifest constant is valid if and only if the
Manifest_constant m used in the declaration matches the type T declared for f in one of the
following ways:

1 m is a Boolean_constant and T is BOOLEAN.
2 m is a Character_constant and T is one of the sized variants of CHARACTER for which

m is a valid value.
3 m is an Integer_constant and T is one of the sized variants of INTEGER for which m is

a valid value.
4 m is a Real_constant and T is one of the sized variants of REAL for which m is a valid

value.

- 99 -

5 m is a Manifest_string and T is one of the sized variants of STRING for which m is a valid
value.

6 m is a Manifest_type, of the form {Y} for some type Y, and T is TYPE [X] for some
constant type X to which Y conforms.

Informative text
The “valid values” are determined by each basic type’s semantics; for example 1000 is a valid
value for INTEGER_16 but not for INTEGER_8.

In case 6, we require the type listed in a Manifest_type {Y} to be constant, meaning that it does
not involve any formal generic parameter or anchored type, as these may represent different types
in different generic derivations or different descendants of the original class. This would not be
suitable for a constant attribute, which must have a single, well-defined value.

End

 8.19 Objects, values and entities

Informative text
The execution of an Eiffel system consists of creating, accessing and modifying objects.

The following presentation discusses the structure of objects and how they relate to the syntactical
constructs that denote objects in software texts: expressions. At run time, an expression may
take on various values; every value is either an object or a reference to an object.

Among expressions, entities play a particular role. An entity is an identifier (name in the software
text), meant at execution time to denote possible values. Some entities are read-only: the
execution can’t change their initial value. Others, called variables, can take on successive values
during execution as a result of such operations as creation and assignment.

The description of objects and their properties introduces the dynamic model of Eiffel software
execution: the run-time structures of the data manipulated by an Eiffel system.

End

8.19.1 Semantics: Type, generating type of an object; generator
Every run-time object is a direct instance of exactly one Class_or_tuple_type of the system, called
the generating type of the object, or just “the type of the object” if there is no ambiguity.

The base class of the generating type is called the object’s generating class, or generator for
short.

8.19.2 Definition: Reference, void, attached, attached to
A reference is a value that is either:

• Void, in which case it provides no more information.

• Attached, in which case it gives access to an object. The reference is said to be attached to
that object, and the object attached to the reference.

8.19.3 Semantics: Object principle
Every non-void value is either an object or a reference attached to an object.

8.19.4 Definition: Object semantics
Every run-time object has either copy semantics or reference semantics.

An object has copy semantics if and only if it is the result of executing a creation operation whose
creation target is of an expanded type, or of cloning such an object.

- 100 -

Informative text
This property determines the role of the object when used as source of an assignment: with copy
semantics, it will be copied onto the target; with reference semantics, a reference will be
reattached to it.

End

8.19.5 Definition: Non-basic class, non-basic type, field
Any class other than the basic types is said to be a non-basic class. Any type whose base class
is non-basic is a non-basic type, and its instances are non-basic objects.
A direct instance of a non-basic type is a sequence of zero or more values, called fields. There is
one field for every attribute of the type’s base class.

8.19.6 Definition: Subobject, composite object
Any expanded field of an object is a subobject of that object.
An object that has a non-basic subobject is said to be composite.

8.19.7 Definition: Entity, variable, read-only
An entity is an Identifier, or one of two reserved words (Current and Result), used in one of the
following roles:

1 Final name of an attribute of a class.
2 Local variable of a routine or Inline_agent, including Result for a query.
3 Formal argument of a routine or inline agent.
4 Object Test local.
5 Current, the predefined entity used to represent a reference to the current object (the

target of the latest not yet completed routine call).
Names of non-constant attributes and local variables are variable entities, also called just vari-
ables. Constant attributes, formal arguments, Object Test locals and Current are read-only
entities.

Informative text
Two kinds of operation, creation and reattachment, may modify the value of a variable (a
non-constant attribute, part of category 1, or local variable, category 2. In the other four cases —
constant attributes, formal arguments (3), Object Test locals (4) and Current (5) — you may not
directly modify the entities, hence the name read-only entity.
The term “constant entity” wouldn’t do, not so much because you can modify the corresponding
objects but because read-only entities (other than constant attributes) do change at run time: a
qualified call reattaches Current, and any routine call reattaches the formal arguments.
Result appearing in the Postcondition of a constant attribute cannot be changed at execution time,
but for simplicity is considered part of local variables in all cases anyway.

End

8.19.8 Syntax: Entities and variables
Entity =∆ Variable | Read_only
Variable =∆ Variable_attribute | Local
Variable_attribute =∆ Feature_name
Local =∆ Identifier | Result
Read_only =∆ Formal | Constant_attribute | Current
Formal =∆ Identifier
Constant_attribute =∆ Feature_name

- 101 -

8.19.9 Validity: Entity rule Validity code: VEEN
An occurrence of an entity e in the text of a class C (other than as the feature of a qualified call)
is valid if and only if it satisfies one of the following conditions:

1 e is Current.
2 e is the final name of an attribute of C.
3 e is the local variable Result, and the occurrence is in a Feature_body, Postcondition or

Rescue part of an Attribute_or_routine text for a query or an Inline_agent whose
signature includes a result type.

4 e is Result appearing in the Postcondition of a constant attribute’s declaration.
5 e is listed in the Identifier_list of an Entity_declaration_group in a Local_declarations part

of a feature or Inline_agent fa, and the occurrence is in a Local_declarations,
Feature_body or Rescue part for fa.

6 e is listed in the Identifier_list of an Entity_declaration_group in a Formal_arguments
part for a routine r, and the occurrence is in a declaration for r.

7 e is listed in the Identifier_list of an Entity_declaration_group in the Agent_arguments
part of an Agent a, and the occurrence is in the Agent_body of a.

8 e is the Object-Test Local of an Object_test, and the occurrence is in its scope.

Informative text
“Other than as feature of a qualified call” excludes from the rule any attribute, possibly of another
class, used as feature of a qualified call: in a.b the rule applies to a but not to b. The constraint on
b is the General Call rule, requiring b to be the name of a feature in D’s base class.

End

8.19.10 Validity: Variable rule Validity code: VEVA
A Variable entity v is valid if an only if it satisfies one of the following conditions:

1 v is the final name of a variable attribute of C.
2 v is the final name of a local variable of the immediately enclosing routine or agent.

8.19.11 Definition: Self-initializing types
A type is self-initializing if it is one of:

1 A detachable type.
2 A self-initializing formal.
3 An attached type (including expanded types and, as a special case of these, basic

types) whose creation procedures include a version of default_create from ANY.

Informative text
A self-initializing type enables us to define a default initialization value:
• Use Void for a detachable type (case 1, the easiest but also the least interesting)
• Execute a creation instruction with the applicable version of default_create for the most

interesting case: 3, attached types, including expanded types. This case also covers basic
types, which all have a default value given by the following rule.

A “self-initializing formal” (case 2) is a generic parameter, so we don’t exactly know which one of
these three semantics will apply; but we do require, through the Generic Derivation rule, that any
attached type used as actual generic parameter be self-initializing, meaning in this case that it will
provide default_create.
In the definition, the “creation procedures” of a type are the creation procedures of its base class
or, for a formal generic parameter, its “constraining creators”, the features listed as available for
creation in its constraining type.
The more directly useful notion is that of a self-initializing variable, appearing below.

- 102 -

The term “self-initializing” is justified by the following semantic rule, specifying the actual
initialization values for every self-initializing type.

End

8.19.12 Semantics: Default Initialization rule
Every self-initializing type T has a default initialization value as follows:

1 For a detachable type: a void reference.
2 For a self-initializing attached type: an object obtained by creating an instance of T

through default_create.
3 For a self-initializing formal: for every generic derivation, (recursively) the default

initialization value of the corresponding actual generic parameter.
4 For BOOLEAN: the boolean value false.
5 For a sized variant of CHARACTER: null character.
6 For a sized variant of INTEGER: integer zero.
7 For a sized variant of REAL: floating-point zero.
8 For POINTER: a null pointer.
9 For TYPED_POINTER: an object representing a null pointer.

Informative text
This rule is the reason why everyone loves self-initializing types: whenever execution catches an
entity that hasn’t been explicitly set, it can (and, thanks to the Entity Semantics rule, will) set it to
a well-defined default value. This idea gains extra flexibility, in the next definition, through the
notion of attributes with an explicit initialization.

End

8.19.13 Definition: Self-initializing variable
A variable is self-initializing if one of the following holds:

1 Its type is a self-initializing type.
2 It is an attribute declared with an Attribute part such that the entity Result is properly set

at the end of its Compound.

Informative text
If a variable is self-initializing, we don’t need to worry about finding it with an undefined value at
execution time: if it has not yet been the target of an attachment operation, automatic initialization
can take over and set it to a well-defined default value. That value is, in case 1, the default value
for its type, and in case 2 the result of the attribute’s own initialization. That initialization must
ensure that Result is “properly set” as defined next (partly recursively from the above definition) .

End

8.19.14 Definition: Evaluation position, precedes
An evaluation position is one of:
• In a Compound, one of its Instruction components.
• In an Assertion, one of its Assertion_clause components.
• In either case, a special end position.

A position p precedes a position q if they are both in the same Compound or Assertion, and either:
• p and q are both Instruction or Assertion_clause components, and p appears before q in the

corresponding list.
• q is the end position and p is not.

- 103 -

Informative text
This notion is needed to ensure that entities are properly set before use.
In a compound i1; i2; i3 we have four positions; i1 precedes i2, i3 and the end position, and so on.
The relation as defined only applies to first-level components of the compound: if i2 itself contains
a compound, for example if it is of the form if c then i4; i5 end, then i4 is not an evaluation position
of the outermost compound, and so has no “precedes” relation with any of i1, i2 and i3.

End

8.19.15 Definition: Setter instruction
A setter instruction is an assignment or creation instruction.
If x is a variable, a setter instruction is a setter for x if its assignment target or creation target is x.

8.19.16 Definition: Properly set variable
At an evaluation position ep in a class C, a variable x is properly set if one of the following
conditions holds:

1 x is self-initializing.
2 ep is an evaluation position of the Compound of a routine or Inline_agent of the Internal

form, one of whose instructions precedes ep and is a setter for x.
3 x is a variable attribute, and is (recursively) properly set at the end position of every

creation procedure of C.
4 ep is an evaluation position in a Compound that is part of an instruction ep’, itself

belonging to a Compound, and x is (recursively) properly set at position ep’.
5 ep is in a Postcondition of a routine or Inline_agent of the Internal form, and x is

(recursively) properly set at the end position of its Compound.
6 ep is Result in the Postcondition of a constant attribute.

Informative text
The key cases are 2, particularly useful for local variables but also applicable to attributes, and 3,
applicable to attributes when we cannot deduce proper initialization from the enclosing routine but
find that every creation procedure will take care of it. Case 4 accounts for nested compounds. For
assertions other than postconditions, which cannot use variables other than attributes, 3 is the
only applicable condition. The somewhat special case 6 is a consequence of our classification of
Result among local variables even in the Postcondition of a constant attribute.
As an artefact of the definition’s phrasing, every variable attribute is “properly set” in any effective
routine of a deferred class, since such a class has no creation procedures. This causes no
problem since a failure to set the attribute properly will be caught, in the validity rule below, for
versions of the routine in effective descendants.

End

8.19.17 Validity: Variable Initialization rule Validity code: VEVI
It is valid for an Expression, other than the target of an Assigner_call, to be also a Variable if it is
properly set at the evaluation position defined by the closest enclosing Instruction or
Assertion_clause.

Informative text
This is the fundamental requirement guaranteeing that the value will be defined if needed.
Because of the definition of “properly set”, this requirement is pessimistic: some examples might
be rejected even though a “smart” compiler might be able to prove, by more advanced control and
data flow analysis, that the value will always be defined. But then the same software might be
rejected by another compiler, less “smart” or simply using different criteria. On purpose, the
definition limits itself to basic schemes that all compilers can implement.

- 104 -

If one of your software elements is rejected because of this rule, it’s a sign that your algorithms
fail to initialize a certain variable before use, or at least that the proper initialization is not clear
enough. To correct the problem, you may:
• Add a version of default_create to the class, as creation procedure.
• Give the attribute a specific initialization through an explicit Attribute part that sets Result to

the appropriate value.

End

8.19.18 Definition: Variable setting and its value
A setting for a variable x is any one of the following run-time events, defining in each case the
value of the setting:

1 Execution of a setter for x. (Value: the object attached to x by the setter, or a void
reference if none.)

2 If x is a variable attribute with an Attribute part: evaluation of that part, implying execution
of its Compound. (Value: the object attached to Result at the end position of that
Compound, or a void reference if none.)

3 If the type T of x is self-initializing: assignment to x of T’s default initialization value.
(Value: that initialization value.)

Informative text
As a consequence of case 2, an attribute a that is self-initializing through an Attribute part ap is
not set until execution of ap has reached its end position. In particular, it is not invalid (although
definitely unusual and perhaps strange) for the instructions ap to use the value a: as with a
recursive call in a routine, this will start the computation again at the beginning of ap. For attributes
as for routines, this raises the risk of infinite recursion (perhaps higher for attributes since they
have no arguments) and it is the programmer’s responsibility to avoid this by ensuring that before
a recursive call the context will have sufficiently changed to ensure eventual termination. No
language rule can ensure this (in either the routine or attribute cases) since this would amount to
solving the “halting problem”, a provably impossible task.
Another consequence of the same observation is that if the execution of ap triggers an exception,
and hence does not reach its end position, any later attempt to access a will also restart the
execution of ap from the beginning. This might trigger the same exception, or succeed if the
conditions of the execution have changed.

End

8.19.19 Definition: Execution context
At any time during execution, the current execution context for a variable is the period elapsed
since:

1 For an attribute: the creation of the current object.
2 For a local variable: the start of execution of the current routine.

8.19.20 Semantics: Variable Semantics
The value produced by the run-time evaluation of a variable x is:

1 If the execution context has previously executed at least one setting for x: the value of
the latest such setting.

2 Otherwise, if the type T of x is self-initializing: assignment to x of T’s default initialization
value, causing a setting of x.

3 Otherwise, if x is a variable attribute with an Attribute part: evaluation of that part,
implying execution of its Compound and hence a setting for x.

4 Otherwise, if x is Result in the Postcondition of a constant attribute: the value of the
attribute.

- 105 -

Informative text
This rule is phrased so that the order of the first three cases is significant: if there’s already been
an assignment, no self-initialization is possible; and if T has a default value, the Attribute part won’t
be used.
The Variable Initialization rule ensures that one of these cases will apply, so that x will always have
a well-defined result for evaluation. This property was our main goal, and its achievement
concludes the discussion of variable semantics.

End

8.19.21 Semantics: Entity Semantics rule
Evaluating an entity yields a value as follows:

1 For Current: a value attached to the current object.
2 For a formal argument of a routine or Inline_agent: the value of the corresponding actual

at the time of the current call.
3 For a constant attribute: the value of the associated Manifest_constant as determined

by the Manifest Constant Semantics rule.
4 For an Object-Test Local: as determined by the Object-Test Local Semantics rule.
5 For a variable: as determined by the Variable Semantics rule.

Informative text
This rule concludes the semantics of entities by gathering all cases. It serves as one of the cases
of the semantics of expressions, since an entity can be used as one of the forms of Expression.
The Object-Test Local Semantics rule appears in the discussion of the Object_test construct.

End

 8.20 Creating objects

Informative text
The dynamic model, whose major properties were reviewed in the preceding presentations, is
highly flexible; your systems may create objects and attach them to entities at will, according to
the demands of their execution. The following discussion explores the two principal mechanisms
for producing new objects: the Creation_instruction and its less frequently encountered sister, the
Creation_expression.
A closely related mechanism — cloning — exists for duplicating objects. This will be studied
separately, with the mechanism for copying the contents of an object onto another.
The creation constructs offer considerable flexibility, allowing you to rely on language-defined
initialization mechanisms for all the instances of a class, but also to override these defaults with
your own conventions, to define any number of alternative initialization procedures, and to let each
creation instruction provide specific values for the initialization. You can even instantiate an entity
declared of a generic type — a non-trivial problem since, for x declared of type G in a class C [G],
we don’t know what actual type G denotes in any particular case, and how one creates and
initializes instances of that type.
In using all these facilities, you should never forget the methodological rule governing creation, as
expressed by the following principle.

End

8.20.1 Semantics: Creation principle
Any execution of a creation operation must produce an object that satisfies the invariant of its
generating class.

- 106 -

Informative text
Such is the theoretical role of creation: to make sure that any object we create starts its life in a
state satisfying the corresponding invariant. The various properties of creation, reviewed next, are
designed to ensure this principle.

End

8.20.2 Definition: Creation operation
A creation operation is a creation instruction or expression.

8.20.3 Validity: Creation Precondition rule Validity code: VGCP

A Precondition of a routine r is creation-valid if and only if its unfolded form uf satisfies the
following conditions:

1 The predefined entity Current does not appear in uf.
2 No Unqualified_call appears in uf.
3 Every feature whose final name appears in the uf is available to every class to which r

is available for creation.

Informative text
This definition is not itself a validity constraint, but is used by condition 5 of the Creation Clause
rule below; giving it a code as for a validity constraint enables compilers to provide a precise error
message in case of a violation.
Requiring preconditions to be creation-valid will ensure that a creation procedure doesn’t try to
access, in the object being created, fields whose properties are not guaranteed before
initialization.
The definition relies on the “unfolded form” of an assertion, which reduces it to a boolean
expression with clauses separated by and then. Because the unfolded form uses the Equivalent
Dot Form, condition 3 also governs the use of operators: with plus alias "+", the expression a + b
will be acceptable only if the feature plus is available for creation as stated.

End

8.20.4 Syntax: Creators parts
Creators =∆ Creation_clause+

Creation_clause =∆ create [Clients] [Header_comment] Creation_procedure_list
Creation_procedure_list =∆ {Creation_procedure ","…}+

Creation_procedure =∆ Feature_name

8.20.5 Definition: Unfolded Creators part of a class
The unfolded creators part of a class C is a Creators defined as:

1 If C has a Creators part c: c.
2 If C is deferred: an empty Creators part.
3 Otherwise, a Creators part built as follows, dc_name being the final name in C of its

version of default_create from ANY:
create

dc_name

Informative text
For generality the definition is applicable to any class, even though for a deferred class (case 2)
it would be invalid to include a Creators part. This causes no problem since the rules never refer
to a deferred class actually extended with its unfolded creators part.

- 107 -

Case 3 reflects the convention that an absent Creators part stands for create dc_name — normally
create default_create, but dc_name may be another name if the class or one of its proper
ancestors has renamed default_create.

End

8.20.6 Validity: Creation Clause rule Validity code: VGCC

A Creation_clause in the unfolded creators part of a class C is valid if and only if it satisfies the
following conditions, the last four for every Feature_name cp_name in the clause’s Feature_list:

1 C is effective.
2 cp_name appears only once in the Feature_list.
3 cp_name is the final name of some procedure cp of C.
4 cp is not a once routine.
5 The precondition of cp, if any, is creation-valid.

Informative text
As a result of conditions 1 and 4, a creation procedure may only be of the do form (the most
common case) or External.
The prohibition of once creation procedures in condition 4 is a consequence of the Creation
principle: with a once procedure, the first object created would satisfy the invariant (assuming the
creation procedure is correct), but subsequent creation instructions would not execute the call,
and hence would limit themselves to the default initializations, which might not ensure the
invariant.
As a corollary of condition 4, a class that has no explicit Creators part may not redefine
default_create into a once routine, or inherit default_create as a once routine from one of its
deferred parents. (Effective parents would themselves violate the condition and hence be invalid.)

End

8.20.7 Definition: Creation procedures of a class
The creation procedures of a class are all the features appearing in any Creation_clause of its
unfolded creators part.

Informative text
If there is an explicit Creators part, the creation procedures are the procedures listed there.
Otherwise there is only one creation procedure: the class’s version of default_create.
The following property is a consequence of the definitions of “unfolded creators part” and “creation
procedures of a class”.

End

8.20.8 Definition: Creation procedure property
An effective class has at least one creation procedure.

Informative text
Those explicitly listed if any, otherwise default_create.

End

8.20.9 Definition: Creation procedures of a type
The creation procedures of a type T are:

1 If T is a Formal_generic_name, the constraining creators for T.
2 Otherwise, the creation procedures of T’s base class.

- 108 -

Informative text
The definition of case 2 is not good enough for case 1, because in the scheme class D [G –>
CONST create cp1, cp2, … end] it would give us, as creation procedures of G, the creation
procedures of CONST, and what we want is something else: the set of procedures cp1, cp2, …
specifically listed after CONST — the “constraining creators for G”. These are indeed procedures
of CONST, but they are not necessarily creation procedures of CONST, especially since CONST
can be deferred. What matters is that they must be creation procedures in any instantiatable
descendant of CONST used as actual generic parameter for G.

End

8.20.10 Definition: Available for creation; general creation procedure
A creation procedure of a class C, listed in a Creation_clause cc of C’s unfolded creators part, is
available for creation to the descendants of the classes given in the Clients restriction of cc, if
present, and otherwise to all classes.

If there is no Clients restriction, the procedure is said to be a general creation procedure.

8.20.11 Syntax: Creation instructions
Creation_instruction =∆ create [Explicit_creation_type] Creation_call

Explicit_creation_type =∆ "{" Type "}"

Creation_call =∆ Variable [Explicit_creation_call]

Explicit_creation_call =∆ "." Unqualified_call

8.20.12 Definition: Creation target, creation type
The creation target (or just “target” if there is no ambiguity) of a Creation_instruction is the
Variable of its Creation_call.

The creation type of a creation instruction, denoting the type of the object to be created, is:

• The Explicit_creation_type appearing (between braces) in the instruction, if present.

• Otherwise, the type of the instruction’s target.

8.20.13 Semantics: Creation Type theorem
The creation type of a creation instruction is always effective.

8.20.14 Definition: Unfolded form of a creation instruction
Consider a Creation_instruction ci of creation type CT. The unfolded form of ci is a creation
instruction defined as:

1 If ci has an Explicit_creation_call, then ci itself.

2 Otherwise, a Creation_instruction obtained from ci by making the Creation_call explicit,
using as feature name the final name in CT of CT’s version of ANY’s default_create.

8.20.15 Validity: Creation Instruction rule Validity code: VGCI

A Creation_instruction of creation type CT, appearing in a class C, is valid if and only if it satisfies
the following conditions:

1 CT conforms to the target’s type.

2 The feature of the Creation_call of the instruction’s unfolded form is available for
creation to C.

3 That Creation_call is argument-valid.

4 CT is generic-creation-ready.

- 109 -

Informative text

In spite of its compactness, the Creation Instruction rule suffices in fact to capture all properties of
creation instructions thanks to the auxiliary definitions of “creation type”, “unfolded form” of both a
Creation_instruction and a Creators part, “available for creation” and others. The rule captures in
particular the following cases:
• The procedure-less form create x is valid only if CT’s version of default_create is available for

creation to C; this is because in this case the unfolded form of the instruction is create
x.dc_name, where dc_name is CT’s name for default_create. On CT’s side the condition
implies that there is either no Creators part (so that CT’s own unfolded form lists dc_name as
creation procedure), or that it has one making it available for creation to C (through a
Creation_clause with either no Clients specification or one that lists an ancestor of C).

• If CT is a Formal_generic_name, its creation procedures are those listed in the create
subclause after the constraint. So create x is valid if and only if the local version of
default_create is one of them, and create x.cp (…) only if cp is one of them.

• If CT is generically derived, and its base class needs to perform creation operations on targets
of some of the formal generic types, the last condition (generic-creation readiness) ensures
that the corresponding actual parameters are equipped with appropriate creation procedures.

The very brevity of this rule may make it less suitable for one of the applications of validity
constraints: enabling compilers to produce precise diagnostics in case of errors. For this reason
a complementary rule, conceptually redundant since it follows from the Creation Instruction rule,
but providing a more explicit view, appears next. It is stated in “only if” style rather than the usual
“if and only if” of other validity rules, since it limits itself to a set of necessary validity conditions.

End

8.20.16 Validity: Creation Instruction properties Validity code: VGCP

A Creation_instruction ci of creation type CT, appearing in a class C, is valid only if it satisfies the
following conditions, assuming CT is not a Formal_generic_name and calling BCT the base class
of CT and dc the version of ANY’s default_create in BCT:

1 BCT is an effective class.

2 If ci includes a Type part, the type it lists (which is CT) conforms to the type of the
instruction’s target.

3 If ci has no Creation_call, then BCT either has no Creators part or has one that lists dc
as one of the procedures available to C for creation.

4 If BCT has a Creators part which doesn’t list dc, then ci has a Creation_call.

5 If ci has a Creation_call whose feature f is not dc, then BCT has a Creators part which
lists f as one of the procedures available to C for creation.

6 If ci has a Creation_call, that call is argument-valid.

If CT is a Formal_generic_name, the instruction is valid only if it satisfies the following
conditions:

7 CT denotes a constrained generic parameter.

8 The Constraint for CT specifies one or more procedures as constraining creators.

9 If ci has no Creation_call, one of the constraining creators is the Constraint’s version of
default_create from ANY.

10 If ci has a Creation_call, one of the constraining creators is the feature of the
Creation_call.

- 110 -

Informative text
Compiler writers may refer, in error messages, to either these “Creation Instruction Properties” or
the earlier “Creation Instruction rule” of which they are consequences. For the language definition,
the official rule is the Creation Instruction rule, which provides a necessary and sufficient set
of validity conditions.

End

8.20.17 Semantics: Creation Instruction Semantics
The effect of a creation instruction of target x and creation type TC is the effect of the following
sequence of steps, in order:

1 If there is not enough memory available for a new direct instance of TC, trigger an
exception of type NO_MORE_MEMORY in the routine that attempted to execute the
instruction. The remaining steps do not apply in this case.

2 Create a new direct instance of TC, with reference semantics if CT is a reference type
and copy semantics if CT is an expanded type.

3 Call, on the resulting object, the feature of the Unqualified_call of the instruction’s
unfolded form.

4 Attach x to the object.

Informative text
The rules requires the effect described by this sequence of steps; it does not require that the
implementation literally carry out the steps. In particular, if the target is expanded and has already
been set to an object value, the implementation (in the absence of cycles in the client relation
between expanded classes) may not have to allocate new memory; instead, it may be able
simply to reuse the memory previously allocated to that object. (Because only expanded types
conform to an expanded type, no references may exist to the previous object, and hence it is not
necessary to preserve its value.) In that case, there will always at step 1 be “enough memory
available for a new direct instance” — the memory being reused — and so the exception cannot
happen.
One might expect, between steps 2 and 3, a step of default initialization of the fields of the new
object, since this is the intuitive semantics of the language: integers initialized to zero, detachable
references to void etc. There is no need, however, for such a step since the Variable Semantics
rule implies that an attribute or other variable, unless previously set by an explicit attachment, is
automatically set on first access. The rule implies for example that an integer field will be set to
zero. More generally, the semantics of the language guarantees that in every run-time
circumstance any object field and local variable, even if never explicitly assigned to yet, always
has a well-defined value when the computation needs it.
About step 3, remember that the notion of “unfolded form” allows us to consider that every creation
instruction has an Unqualified_call; in the procedure-less form create x, this is a call to
default_create.
Also note the order of steps: attachment to the target x is the last operation. Until then, x retains
its earlier value, void if x is a previously unattached reference.

End

8.20.18 Syntax: Creation expressions
Creation_expression =∆ create Explicit_creation_type [Explicit_creation_call]

8.20.19 Definition: Properties of a creation expression
The creation type and unfolded form of a creation expression are defined as for a creation
instruction.

- 111 -

8.20.20 Validity: Creation Expression rule Validity code: VGCE

A Creation_expression of creation type CT, appearing in a class C, is valid if and only if it satisfies
the following conditions:

1 The feature of the Creation_call of the expression’s unfolded form is available for
creation to C.

2 That Creation_call is argument-valid.

3 CT is generic-creation-ready.

8.20.21 Validity: Creation Expression Properties Validity code: VGCX

A Creation_expression ce of creation type CT, appearing in a class C, is valid only if it satisfies
the following conditions, assuming CT is not a Formal_generic_name and calling BCT the base
class of CT and dc the version of ANY’s default_create in BCT:

1 BCT is an effective class.

2 If ce has no Explicit_creation_call, then BCT either has no Creators part or has one that
lists dc as one of the procedures available to C for creation.

3 If BCT has a Creators part which doesn’t list dc, then ce has an Explicit_creation_call.

4 If ce has an Explicit_creation_call whose feature f is not dc, then BCT has a Creators
part which lists f as one of the procedures available to C for creation.

5 If ce has an Explicit_creation_call, that call is argument-valid.

If CT is a Formal_generic_name, the expression is valid only if it satisfies the following
conditions:

6 CT denotes a constrained generic parameter.

7 The Constraint for CT specifies one or more procedures as constraining creators.

8 If ce has no Creation_call, one of the constraining creators is the Constraint’s version of
default_create from ANY.

9 If ce has a Creation_call, one of the constraining creators is the feature of the
Creation_call.

Informative text
As with the corresponding “Creation Instruction Properties”, this is not an independent rule but a
set of properties following from previous constraints, expressed with more detailed requirements
that may be useful for error reporting by compilers.

End

8.20.22 Semantics: Creation Expression Semantics
The value of a creation expression of creation type TC is — except if step 1 below triggers an
exception, in which case the expression has no value — a value attached to a new object as can
be obtained through the following sequence of steps:

1 If there is not enough memory available for a new direct instance of TC, trigger an
exception of type NO_MORE_MEMORY in the routine that attempted to execute the
expression. In this case the expression has no value and the remaining steps do not
apply.

2 Create a new direct instance of TC, with reference semantics if CT is a reference type
and copy semantics if CT is an expanded type.

3 Call, on the resulting object, the feature of the Unqualified_call of the expression’s
unfolded form.

- 112 -

Informative text
The notes appearing after the Creation Instruction Semantics rule also apply here.

End

 8.21 Comparing and duplicating objects

Informative text
The just studied Creation instruction is the basic language mechanism for obtaining new objects
at run time; it produces fresh direct instances of a given class, initialized from scratch.
Sometimes you will need instead to copy the contents of an existing object onto those of another.
This is the copying operation.
A variant of copying is cloning, which produces a fresh object by duplicating an existing one.
For both copying and cloning, the default variants are “shallow”, affecting only one object, but
deep versions are available to duplicate an object structure recursively.
A closely related problem is that of comparing two objects for shallow or deep equality.
The copying, cloning and comparison operations rely on only one language construct (the object
equality operator ~) and are entirely defined through language constructs but through routines that
developer-defined classes inherit from the universal class ANY. This makes it possible, through
feature redefinitions, to adapt the semantics of copying, cloning and comparing objects to the
specific properties of any class.

End

8.21.1 Definition: Object comparison features from ANY
The features whose contract views appear below are provided by class ANY.

default_is_equal (other: ? like Current)
-- Is other attached to object field-by-field equal
-- to current object?

ensure
same_type: Result implies same_type (other)
symmetric: Result = ((other /= Void) and then other.default_is_equal (Current))
consistent: Result implies is_equal (other)

is_equal (other : ? like Current)
-- Is other attached to object considered equal
-- to current object?

ensure
same_type: Result implies same_type (other)
symmetric: Result = ((other /= Void) and then other.is_equal (Current))
consistent: default_is_equal (other) implies Result

The original version of is_equal in ANY has the same effect as default_is_equal.

Informative text
These are the two basic object comparison operations. The difference is that default_is_equal is
frozen, always returning the value of field-by-field identity comparison (for non-void other); any
class may, on the other hand, redefine is_equal, in accordance with the pre- and postcondition, to
reflect a more specific notion of equality.

- 113 -

Both functions accept a void argument and will in that case, as the header comment implies, return
False.

End

8.21.2 Syntax: Equality expressions
Equality =∆ Expression Comparison Expression
Comparison =∆ "=" | "/=" | "~" | "/~"

8.21.3 Semantics: Equality Expression Semantics
The Boolean_expression e ~ f has value true if and only if the values of e and f are both attached
and such that e.is_equal (f) holds.
The Boolean_expression e = f has value true if and only if the values of e and f are one of:

1 Both void.
2 Both attached to the same object with reference semantics.
3 Both attached to objects with copy semantics, and such that e ~ f holds.

Informative text
The form with ~ always denotes object equality. The form with = denotes reference equality if
applicable, otherwise object equality. Both rely, for object equality, on function is_equal — the
version that can be redefined locally in any class to account for a programmer-defined notion of
object equality adapted to the specific semantics of the class.

End

8.21.4 Semantics: Inequality Expression Semantics
The expression e /= f has value true if and only if e = f has value false.
The expression e /~ f has value true if and only if e ~ f has value false.

8.21.5 Definition: Copying and cloning features from ANY
The features whose contract views appear below are provided by class ANY as secret features.

copy (other: ? like Current)
-- Update current object using fields of object
-- attached to other, to yield equal objects.

require
exists: other /= Void
same_type: other.same_type (Current)

ensure
equal: is_equal (other)

frozen default_copy (other: ? like Current)
-- Update current object using fields of object
-- attached to other, to yield identical objects.

require
exists: other /= Void
same_type: other.same_type (Current)

ensure
equal: default_is_equal (other)

frozen cloned: like Current
-- New object equal to current object
-- (relies on copy)

- 114 -

ensure
equal: is_equal (Result)

frozen default_cloned: like Current
-- New object equal to current object
-- (relies on default_copy)

ensure
equal: default_is_equal (Result)

The original versions of copy and cloned in ANY have the same effect as default_copy and
default_cloned respectively.

Informative text
Procedure copy is called in the form x.copy (y) and overrides the fields of the object attached to
x. Function cloned is called as x.cloned and returns a new object, a “clone” of the object attached
to x. These features can be adapted to a specific notion of copying adapted to any class, as long
as they produce a result equal to the source, in the sense of the — also redefinable — function
is_equal. You only have to redefine copy, since cloned itself is frozen, with the guarantee that it
will follow any redefined version of copy; the semantics of cloned is to create a new object and
apply copy to it.
In contrast, default_copy and default_cloned, which produce field-by-field identical copies of an
object, are frozen and hence always yield the original semantics as defined in ANY.
All these features are secret in their original class ANY. The reason is that exporting copying
and cloning may violate the intended semantics of a class, and concretely its invariant. For
example the correctness of a class may rely on an invariant property such as
some_circumstance implies (some_attribute = Current)
stating that under some_circumstance (a boolean property) the field corresponding to
some_attribute is cyclic (refers to the current object itself). Copying or cloning an object will usually
not preserve such a property. The class should then definitely not export default_copy and
default_cloned, and should not export copy and cloned unless it redefines copy in accordance
with this invariant; such redefinition may not be possible or desirable. Because these features are
secret by default, software authors must decide, class by class, whether to re-export them.

End

8.21.6 Definition: Deep equality, copying and cloning
The feature is_deep_equal of class ANY makes it possible to compare object structures
recursively; the features , deep_copy and deep_cloned duplicate an object structure recursively.
Detailed descriptions are part of the ELKS specification.

Informative text
The default versions of the earlier features — default_is_equal, default_copy, default_cloned and
the original versions of their non-default variants — are “shallow”: they compare or copy only one
source object. The deep version recursively compare or copy entire object structures.

End

 8.22 Attaching values to entities

Informative text
At any instant of a system’s execution, every entity of the system has a certain attachment status:
it is either attached to a certain object, or void (attached to no object). Initially, all entities of
reference types are void; one of the effects of a Creation instruction is to attach its target to an
object.

- 115 -

The attachment status of an entity may change one or more times during system execution
through a attachment operations, in particular:
• The association of an actual argument of a routine to the corresponding formal argument at

the time of a call.
• The Assignment instruction, which may attach an entity to a new object, or remove the

attachment.
The validity and semantic properties of these two mechanisms are essentially the same; we study
them jointly here.

End

8.22.1 Definition: Reattachment, source, target
A reattachment operation is one of:

1 An Assignment x := y; then y is the attachment’s source and x its target.
2 The run-time association, during the execution of a routine call, of an actual argument

(the source) to the corresponding formal argument (the target).

Informative text
We group assignment and argument passing into the same category, reattachment, because their
validity and semantics are essentially the same:
• Validity in both cases is governed by the type system: the source must conform to the target’s

type, or at least convert to it. The Conversion principle guarantees that these two cases are
exclusive.

• The semantics in both cases is to attach the target to the value of the source or a copy of that
value.

End

8.22.2 Syntax: Assignments
Assignment =∆ Variable ":=" Expression

8.22.3 Validity: Assignment rule Validity code: VBAR
An Assignment is valid if and only if its source expression is compatible with its target entity.

Informative text
To be “compatible” means to conform or convert.
This also applies to actual-formal association: the actual argument in a call must conform or
convert to the formal argument. The applicable rule is argument validity, part of the general
discussion of call validity.

End

8.22.4 Semantics: Reattachment principle
After a reattachement to a target entity t of type TT, the object attached to t, if any, is of a type
conforming to TT.

8.22.5 Semantics: Attaching an entity, attached entity
Attaching an entity e to an object O is the operation ensuring that the value of e becomes
attached to O.

Informative text
Although it may seem tautological at first, this definition simply relates the two terms “attach”,
denoting an operation that can change an entity, and “attached to an object”, denoting the state
of such an entity — as determined by such operations. These are key concepts of the language
since:

- 116 -

• A reattachment operation (see next) may “attach” its target to a certain object as defined by
the semantic rule; a creation operation creates an object and similarly “attaches” its creation
target to that object.

• Evaluation of an entity, per the Entity Semantics rule, uses (partly directly, partly by depending
on the Variable Semantics rule and through it on the definition of “value of a variable setting”)
the object attached to that entity. This is only possible by ensuring, through other rules, that
prior to any such attempt on a specific entity there will have been operations to “attach” the
entity or make it void.

End

8.22.6 Semantics: Reattachment Semantics
The effect of a reattachment of source expression source and target entity target is the effect of
the first of the following steps whose condition applies:

1 If source converts to target: perform a conversion attachment from source to target.

2 If the value of source is a void reference: make target’s value void as well.

3 If the value of source is attached to an object with copy semantics: create a clone of that
object, if possible, and attach target to it.

4 If the value of source is attached to an object with reference semantics: attach target to
that object.

Informative text
As with other semantic rules describing the “effect” of a sequence of steps, only that effect counts,
not the exact means employed to achieve it. In particular, the creation of a clone in step 3 is — as
also noted in the discussion of creation — often avoidable in practice if the target is expanded and
already initialized, so that the instruction can reuse the memory of the previous object.
Case 1 indicates that a conversion, if applicable, overrides all other possibilities. In those other
cases, if follows from the Assignment rule that source must conform to target.
Case 2 is, from the validity rules, possible only if both target and source are declared of detachable
types.
In case 3, a “clone” of an object is obtained by application of the function cloned from ANY;
expression conformance ensures that cloned is available (exported) to the type of target;
otherwise, cloning could produce an inconsistent object.
The cloning might be impossible for lack of memory, in which case the semantics of the cloning
operation specifies triggering an exception, of type NO_MORE_MEMORY. As usual with
exceptions, the rest of case 3 does not then apply.
In case 4 we simply reattach a reference. Because of the validity rules (no reference type
conforms to an expanded type), the target must indeed be of an reference type.
This rule defines the effect of a construct through a sequence of cases, looking for the first one
that matches. As usual with semantic rules, this only specifies the result, but does not imply that
the implementation must try all of them in order.

End

8.22.7 Semantics: Assignment Semantics
The effect of a reassignment x := y is determined by the Reattachment Semantics rule, with source
y and target x.

Informative text
The other cases where Reattachment Semantics applies is actual-formal association, per step 5
of the General Call rule.

- 117 -

On the other hand, the semantics of Object_test, a construct which also allows a Read_only entity
to denote the same value as an expression, is simple enough that it does not need to refer to
reattachment.

End

8.22.8 Definition: Dynamic type
The dynamic type of an expression x, at some instant of execution, is the type of the object to
which x is attached, or NONE if x is void.

8.22.9 Definition: Polymorphic expression; dynamic type and class sets
An expression that has two or more possible dynamic types is said to be polymorphic.
The set of possible dynamic types for an expression x is called the dynamic type set of x. The
set of base classes of these types is called the dynamic class set of x.

8.22.10 Syntax: Assigner calls
Assigner_call =∆ Expression ":=" Expression

Informative text
The left-hand side is surprisingly general: any expression. The validity rule will constrain it to be
of a form that can be interpreted as a qualified call to a query, such as x.a, or x.f (i, j); but the
syntactic form can be different, using for example bracket syntax as in a [i, j] := x.
You could even use operator syntax, as in

a + b := c
assuming that, in the type of a, the function plus alias "+" has been defined with an assigner
command, maybe a procedure subtract. Then the left side a + b is just an abbreviation for the
query call

a.plus (b)
and the Assigner_call is just an abbreviation for the procedure call

a.subtract (c, b)

End

8.22.11 Validity: Assigner Call rule Validity code: VBAC

An Assigner_call of the form target := source, where target and source are expressions, is valid if
and only if it satisfies the following conditions:

1 source is compatible with target.
2 The Equivalent Dot Form of target is a qualified Object_call whose feature has an

assigner command.

8.22.12 Semantics: Assigner Call semantics
The effect of an Assigner_call target := source, where the Equivalent Dot Form of target is x.f or
x.f (args) and f has an assigner command p, is, respectively, x.p (source) or x.p (source, args).

Informative text
This confirms that the construct is just an abbreviation for a procedure call.

End

 8.23 Feature call

Informative text
In Eiffel’s model of computation, the fundamental way to do something with an object is to apply
to it an operation which — because the model is class-based, and behind every run-time object
lurks some class of the system’s text — must be a feature of the appropriate class.

- 118 -

This is feature call, one of the most important constructs in Eiffel’s object-oriented approach, and
the topic of the following discussions.

End

8.23.1 Validity: Call Use rule Validity code: VUCN

A Call of feature f denotes:

1 If f is a query (attribute or a function): an expression.

2 If f is a procedure: an instruction.

8.23.2 Syntax: Feature calls
Call =∆ Object_call | Non_object_call

Object_call =∆ [Target "."] Unqualified_call

Unqualified_call =∆ Feature_name [Actuals]

Target =∆ Local | Read_only | Call | Parenthesized_target

Parenthesized_target =∆ "(|" Expression "|)"

Non_object_call =∆ "{" Type "}" "." Unqualified_call

Informative text
A call is most commonly of the form a.b.… where a, b … are features, possibly with arguments.
Target allows a Call to apply to an explicit target object (rather then the current object); it can itself
be a Call, allowing multidot calls. Other possible targets are a local variable, a Read_only
(including formal arguments and Current) a “non-object call” (studied below), or a complex
expression written as a Parenthesized_target (|…|).

End

8.23.3 Syntax: Actual arguments
Actuals =∆ "(" Actual_list ")"

Actual_list =∆ {Expression "," …}+

8.23.4 Definition: Unqualified, qualified call
An Object_call is qualified if it has a Target, unqualified otherwise.

Informative text
In equivalent terms, a call is “unqualified” if and only if it consists of just an Unqualified_call
component.

The call f (a) is unqualified, x.f (a) is qualified.

Another equivalent definition, which does not explicitly refer to the syntax, is that a call is qualified
if it contains one or more dots, unqualified if it has no dots — counting only dots at the dot level,
not those that might appear in arguments; for example f (a.b) is unqualified.

End

8.23.5 Definition: Target of a call
Any Object_call has a target, defined as follows:

1 If it is qualified: its Target component.

2 If it is unqualified: Current.

- 119 -

Informative text
The target is an expression; in a (b, c).d the target is a (b, c) and in (| a (b, c) + x |).d the target
(case 1) is a (b, c) + x. In a multidot case the target includes the Call deprived of its last part, for
example x.f (args).g in x.f (args).g.h (args1).

End

8.23.6 Definition: Target type of a call
Any Call has a target type, defined as follows:

1 For an Object_call: the type of its target. (In the case of an Unqualified_call this is the
current type.)

2 For a Non_object_call having a type T as its Type part: T.

8.23.7 Definition: Feature of a call
For any Call the “feature of the call” is defined as follows:

1 For an Unqualified_call: its Feature_name.
2 For a qualified call or Non_object_call: (recursively) the feature of its Unqualified_call

part.

Informative text
Case 1 tells us that the feature of f (args) is f and the feature of g, an Unqualified_call to a feature
without arguments, is g.
The term is a slight abuse of language, since f and g are feature names rather than features. The
actual feature, deduced from the semantic rules given below and involving dynamic binding. is the
dynamic feature of the call.
It follows from case 2 that the feature of a qualified call x.f (args) is f. The recursive phrasing
addresses the multidot case: the feature of x.f (args).g.h (args1) is h.

End

8.23.8 Definition: Imported form of a Non_object_call
The imported form of a Non_object_call of Type T and feature f appearing in a class C is the
Unqualified_call built from the original Actuals if any and, as feature of the call, a fictitious new
feature added to C and consisting of the following elements:

1 A name different from those of other features of C .
2 A Declaration_body obtained from the Declaration_body of f by replacing every type by

its deanchored form, then applying the generic substitution of T.

Informative text
This definition in “unfolded” style allows us to view {T}.f (args) appearing in a class C as if it were
just f (args), an Unqualified_call, but appearing in C itself, assuming we had moved f over —
“imported” it — to C.
In item 2 we use the “deanchored form” of the argument types and result, since a type like a that
makes sense in T would be meaningless in C. As defined in the discussion of anchored types, the
deanchored version precisely removes all such local dependencies, making the type
understandable instead in any other context.

End

8.23.9 Validity: Non-Object Call rule Validity code: VUNO

A Non_object_call of Type T and feature fname in a class C is valid if and only if it satisfies the
following conditions:

1 fname is the final name of a feature f of T.

- 120 -

2 f is available to C.
3 f is either a constant attribute or an external feature whose assertions, if any, use neither

Current nor any unqualified calls.
4 The call’s imported form is a valid Unqualified_call.

Informative text
Condition 2 requires f to have a sufficient export status for use in C; there will be a similar
requirement for Object_call. Condition 3 is the restriction to constants and externals. Condition 4
takes care of the rest by relying on the rules for Unqualified_call.

End

8.23.10 Semantics: Non-Object Call Semantics
The effect of a Non_object_call is that of its imported form.

8.23.11 Validity: Export rule Validity code: VUEX

An Object_call appearing in a class C, with fname as the feature of the call, is export-valid for C
if and only if it satisfies the following conditions.

1 fname is the final name of a feature of the target type of the call.
2 If the call is qualified, that feature is available to C.

Informative text
For an unqualified call f or f (args), only condition 1 is applicable, requiring simply (since the target
type of an unqualified class is the current type) that f be a feature, immediate or inherited, of the
current class.
For a qualified call x.f with x of type T, possibly with arguments, condition 2 requires that the base
class of T make the feature available to C: export it either generally or selectively to C or one of
its ancestors. (Through the Non-Object Call rule this also governs the validity of a Non_object_call
{T}.f.)
As a consequence, s (…) might be permitted and x.s (…) invalid, even if x is Current. The
semantics of qualified and unqualified calls is indeed slightly different; in particular, with invariant
monitoring on, a qualified call will — even with Current as its target — check the class invariant,
but an unqualified call won’t.

End

8.23.12 Validity: Export Status principle
The export status of a feature f :
• Constrains all qualified calls x.f (…), including those in which the type of x is the current type,

or is Current itself.
• Does not constrain unqualified calls.

Informative text
This is a validity property, but it has no code since it is not a separate rule, just a restatement for
emphasis of condition 2 of the Export rule.

End

8.23.13 Validity: Argument rule Validity code: VUAR

An export-valid call of target type ST and feature fname appearing in a class C where it denotes
a feature sf is argument-valid if and only if it satisfies the following conditions:

1 The number of actual arguments is the same as the number of formal arguments
declared for sf.

- 121 -

2 Every actual argument of the call is compatible with the corresponding formal argument
of sf.

Informative text
Condition 2 is the fundamental type rule on argument passing, which allowed the discussion of
direct reattachment to treat Assignment and actual-formal association in the same way. An
expression is compatible with an entity if its type either conforms or converts to the entity’s type.

End

8.23.14 Validity: Target rule Validity code: VUTA

An Object_call is target-valid if and only if either:
1 It is unqualified.
2 Its target is an attached expression.

Informative text
Unqualified calls (case 1) are always target-valid since they are applied to the current object,
which by construction is not void.
For the target expression x to be “attached”, in case 2, means that the program text guarantees
— statically, that is to say through rules enforced by compilers — that x will never be void at run
time. This may be because x is an entity declared as attached (so that the validity rules ensure it
can never be attached a void value) or because the context of the call precludes voidness, as in
if x /= Void then x.f (…) end for a local variable x. The precise definition will cover all these cases.

End

8.23.15 Validity: Class-Level Call rule Validity code: VUCC

A call of target type ST is class-valid if and only if it is export-valid, argument-valid and
target-valid.

8.23.16 Definition: Void-Unsafe
A language processing tool may, as a temporary migration facility, provide an option that waives
the target validity requirement in class validity. Systems processed under such an option are
void-unsafe. Void-unsafe systems are not valid Eiffel systems.

8.23.17 Definition: Target Object
The target object of an execution of an Object_call is:

1 If the call is qualified: the object attached to its target.
2 If it is unqualified: the current object.

8.23.18 Semantics: Failed target evaluation of a void-unsafe system
In the execution of an (invalid) system compiled in void-unsafe mode through a language
processing tool offering such a migration option, an attempt to execute a call triggers, if it
evaluates the target to a void reference, an exception of type VOID_TARGET.

8.23.19 Definition: Dynamic feature of a call
Consider an execution of a call of feature fname and target object O. Let ST be its target type and
DT the type of O. The dynamic feature of the call is the dynamic binding version in DT of the
feature of name fname in ST.

Informative text
Behind the soundness of this definition stands a significant part of the validity machinery of the
language:
• The rules on reattachment imply that DT conforms to ST.

- 122 -

• The Export rule imply that fname is the name of a feature of ST (meaning a feature of the base
class of ST).

• As a consequence, this feature has a version in DT; it might have several, but the definition of
“dynamic binding version” removes any ambiguity.

Combining the last two semantic definitions enables the rest of the semantic discussion to take
for granted, for any execution of a qualified call, that we know both the target object and the
feature to execute. In other words, we’ve taken care of the two key parts of Object_call semantics,
although we still have to integrate a few details and special cases.

End

8.23.20 Definition: Freshness of a once routine call
During execution, a call whose feature is a once routine r is fresh if and only if every feature call
started so far satisfies any of the following conditions:

1 It did not use r as dynamic feature.

2 It was in a different thread, and r has the once key "THREAD".

3 Its target was not the current object, and r has the once key "OBJECT".

4 After it was started, a call was executed to one of the refreshing features of onces from
ANY, including among the keys to be refreshed at least one of the once keys of r.

8.23.21 Definition: Latest applicable target of a non-fresh call
The latest applicable target of a non-fresh call to a once function df to a target object O is last
value to which it was attached in the call to df most recently started on:

1 If df has the once key "OBJECT": O.

2 Otherwise, if df has the once key "OBJECT": any target in the current thread.

3 Otherwise: any target in any thread.

8.23.22 Semantics: Once Routine Execution Semantics
The effect of executing a once routine df on a target object O is:

1 If the call is fresh: that of a non-once call made of the same elements, as determined by
the Non-once Routine Execution rule.

2 If the call is not fresh and the last execution of f on the latest applicable target triggered
an exception: to trigger again an identical exception. The remaining cases do not then
apply.

3 If the call is not fresh and df is a procedure: no further effect.

4 If the call is not fresh and df is a function: to attach the local variable Result for df to the
reused target of the call.

Informative text
Case 2 is known as “once an once exception, always a once exception”. If a call to a once routine
yields an exception, then all subsequent calls for the same applicable target, which would normally
yield no further effect (for a procedure, case 3) or return the same value (for a function, case 4)
should follow the same general idea and, by re-triggering the exception, repeatedly tell the client
— if the client is repeatedly asking — that the requested effect or value is impossible to provide.
There is a little subtlety in the definition of “latest applicable target” as used in case 4. For a once
function that has already been evaluated (is not fresh), the specification does not state that
subsequent calls return the result of the first, but that they yield the value of the predefined entity
Result. Usually this is the same, since the first call returned its value through Result. But if the
function is recursive, a new call may start before the first one has terminated, so the “result of the
first call” would not be a meaningful notion. The specification states that in this case the recursive

- 123 -

call will return whatever value the first call has obtained so far for Result (starting with the default
initialization). A recursive once function is a bit bizarre, and of little apparent use, but no validity
constraint disallows it, and the semantics must cover all valid cases.

End

8.23.23 Semantics: Current object, current routine
At any time during the execution of a system there is a current object CO and a current routine
cr defined as follows:

1 At the start of the execution: CO is the root object and cr is the root procedure.
2 If cr executes a qualified call: the call’s target object becomes the new current object,

and its dynamic feature becomes the new current routine. When the qualified call
terminates, the earlier current object and routine resume their roles.

3 If cr executes an unqualified call: the current object remains the same, and the dynamic
feature of the call becomes the current routine for the duration of the call as in case 2.

4 If cr starts executing any construct whose semantics does not involve a call: the current
object and current routine remain the same.

8.23.24 Semantics: Current Semantics
The value of the predefined entity Current at any time during execution is the current object if the
current routine belongs to an expanded class, and a reference to the current object otherwise.

8.23.25 Semantics: Non-Once Routine Execution rule
The effect of executing a non-once routine df on a target object O is the effect of the following
sequence of steps:

1 If df has any local variables, including Result if df is a function, save their current values
if any call to df has been started but not yet terminated.

2 Execute the body of df.
3 If the values of any local variables have been saved in step 1, restore the variables to

their earlier values.

8.23.26 Semantics: General Call Semantics
The effect of an Object_call of feature sf is, in the absence of any exception, the effect of the
following sequence of steps:

1 Determine the target object O through the applicable definition.
2 Attach Current to O.
3 Determine the dynamic feature df of the call through the applicable definition.
4 For every actual argument a, if any, in the order listed: obtain the value v of a; then if the

type of a converts to the type of the corresponding formal in sf, replace v by the result
of the applicable conversion. Let arg_values be the resulting sequence of all such v.

5 Attach every formal argument of df to the corresponding element of arg_values by
applying the Reattachment Semantics rule.

6 If the call is qualified and class invariant monitoring is on, evaluate the class invariant of
O’s base type on O.

7 If precondition monitoring is on, evaluate the precondition of df.
8 If df is not an attribute, not a once routine and not external, apply the Non-Once Routine

Execution rule to O and df.
9 If df is a once routine, apply the Once Routine Execution rule to O and df.
10 If df is an external routine, execute that routine on the actual arguments given, if any,

according to the rules of the language in which it is written.
11 If df is a self-initializing attribute and has not yet been initialized, initialize it through the

Default Initialization rule.

- 124 -

12 If the call is qualified and class invariant monitoring is on, evaluate the class invariant of
O’s base type on O.

13 If postcondition monitoring is on, evaluate the postcondition of df.
An exception occurring during any of these steps causes the execution to skip the remaining parts
of this process and instead handle the exception according to the Exception Semantics rule.

8.23.27 Definition: Type of a Call used as expression
Consider a call denoting an expression. Its type with respect to a type CT of base class C is:

1 For an unqualified call, its feature f being a query of CT: the result type of the version of
f in C, adapted through the generic substitution of CT.

2 For a qualified call a.e of Target a: (recursively) the type of e with respect to the type of
a.

3 For a Non_object_call: (recursively) the type of its imported form.

8.23.28 Definition: Call Result
Consider a Call c whose feature is a query. An execution of c according to the General Call
Semantics yields a call result defined as follows, where O is the target object determined at step
1 of the rule and df the dynamic feature determined at step 3:

1 If df is a non-external, non-once function: the value attached to the local variable Result
of df at the end of step 2 of the Non-Once Execution rule.

2 If df is a once function: the value attached to Result as a result of the application of the
Once Execution rule.

3 If df is an attribute: the corresponding field in O.
4 If df is an external function: the result returned by the function according to the external

language’s rule.

8.23.29 Definition: Value of a call expression
The value of a Call c used as an expression is, at any run-time moment, the result of executing c.

 8.24 Eradicating void calls

Informative text
In the object-oriented style of programming the basic unit of computation is a qualified feature call

x.f (args)
which applies the feature f, with the given arguments args, to the object attached to x. But x can
be a reference, and that reference can be void. Then there is no object attached to x. An attempt
to execute the call would fail, triggering an exception.
If permitted to occur, void calls are a source of instability and crashes in object-oriented programs.
For other potential run-time accidents such as type mismatches, the compilation process spots
the errors and refuses to generate executable code until they’ve all been corrected. Can we do
the same for void calls?
Eiffel indeed provides a coordinated set of techniques that guarantee the absence of void calls at
execution time. The actual rules are specific conditions of more general validity constraints — in
particular on attachment and qualified calls — appearing elsewhere; in the following discussion
we look at them together from the viewpoint of ensuring their common goal: precluding void calls.
The basic idea is simple. Its the combination of three rules:
• A qualified call x.f (args) is target-valid — a required part of being plain valid — if the type of

x is attached, “Attached” is here a static property, deduced from the declaration of x (or, if it
is a complex expression, of its constituents).

• A reference type with a name in the usual form, T, is attached. To obtain a detachable type
— meaning that Void is a valid value — use ?T.

• The validity rules ensure that attached types — those without a ? — deserve their name: an
entity declared as x: T can never take on a void value at execution time. In particular, you may

- 125 -

not assign to x a detachable value, or if x is a formal argument to a routine you may not call it
with a detachable actual. (With a detachable target, the other way around, you are free to use
an attached or detachable source.)

End

8.24.1 Syntax: Object test
Object_test =∆ "{" Identifier ":" Type "}" Expression

Informative text
An Object_test of the form {x: T} exp, where exp is an expression, T is a type and x is a name
different from those of all entities of the enclosing context, is a boolean-valued expression; its
value is true if and only exp is attached to an instance of T (hence, non-void). In addition,
evaluating the expression has the effect of letting x denote that value of exp over the execution of
a neighboring part of the text known as the scope of the Object_test. For example, in if {x: T} exp
then c1 else c2 end the scope of the Object_test is the compound in the then part, c1. Within c1,
you may use x as a Read_only entity, knowing that it has the value exp had on evaluation of the
Object_test, that this value is of type T, and that it cannot be changed during the execution of c1.
The following rules define these notions precisely.

End

8.24.2 Definition: Object-Test Local
The Object-Test Local of an Object_test is its Identifier component.

8.24.3 Validity: Object Test rule Validity code: VUOT
An Object_test {x: T} exp is valid if and only if it satisfies the following conditions:

1 Its Object-Test Local x does not have the same lower name as any feature of the
enclosing class, or any formal argument or local variable of the enclosing routine and
Inline_agent if any.

2 Its type T is an attached type.

Informative text
Condition 2 reflects the intent of an Object_test: to test whether an expression is attached to an
instance of a given type. It would make no sense then to use a detachable type.

End

8.24.4 Definition: Conjunctive, disjunctive, implicative;
Term, semistrict term
Consider an Operator_expression e of boolean type, which after resolution of any ambiguities
through precedence rules can be expressed as a1 § a2 §… § an for n ≥ 1, where § represents
boolean operators and every ai, called a term, is itself a valid Boolean_expression. Then e is:
• Conjunctive if every § is either and or and then.
• Disjunctive if every § is either or or or else.
• Implicative if n = 2 and § is implies.

A term ai is semistrict if in the corresponding form it is followed by a semistrict operator
(respectively and then, or else, implies).

8.24.5 Definition: Scope of an Object-Test Local
The scope of the Object-Test Local of an Object_test ot includes any applicable program element
from the following:

1 If ot is a semistrict term of a conjunctive expression: any subsequent terms.
2 If ot is a term of an implicative expression: the next term.
3 If not ot is a semistrict term of a disjunctive expression e: any subsequent terms.

- 126 -

4 If ot is a term of a conjunctive expression serving as the Boolean_expression in the
Then_part in a Conditional: the corresponding Compound.

5 If not ot is a term of a disjunctive expression serving as the Boolean_expression in the
Then_part in a Conditional: any subsequent Then_part and Else_clause.

6 If not ot is a term of a disjunctive expression serving as the Exit_condition in a Loop: the
Loop_body.

7 If not ot is a term of a conjunctive expression used as Unlabeled_assertion_clause in a
Precondition: the subsequent components of the Attribute_or_routine.

8 If not ot is a term of a conjunctive expression used as Unlabeled_assertion_clause in a
Check: its Compound.

Informative text
The definition ensures that, for an Object_test {x: T} exp, we can rest assured that, throughout its
scope, x will never at run time have a void value, and hence can be used as the target of a call.

End

8.24.6 Semantics: Object Test semantics
The value of an Object_test {x: T} exp is true if the value of exp is attached to an instance of T,
false otherwise.

Informative text
In particular, if x is void (which is possible only if T is a detachable type), the result will be false.

End

8.24.7 Semantics: Object-Test Local semantics
For an Object_test {x: T} exp, the value of x, defined only over its scope, is the value of exp at the
time of the Object_test’s evaluation.

8.24.8 Definition: Read-only void test
A read-only void test is a Boolean_expression of one of the forms e = Void and e /= Void, where
e is a read-only entity.

8.24.9 Definition: Scope of a read-only void test
The scope of a read-only void test appearing in a class text, for e of type T, is the scope that the
Object-Test Local ot would have if the void test were replaced by:

1 For e = Void: {ot: T} e.
2 For e /= Void: not ({ot: T} e)

Informative text
This is useful if T is a detachable type, providing a simple way to generalize the notion of scope
to common schemes such as if e /= Void then …, where we know that e cannot be void in the
Then_part. Note that it is essential to limit ourselves to read-only entities; for a variable, or an
expression involving a variable, anything could happen to the value during the execution of the
scope even if e is initially not void.
Of course one could always write an Object_test instead, but the void test is a common and
convenient form, if only because it doesn’t require repeating the type T of e, so it will be important
to handle it as part of the Certified Attachment Patterns discussed next.

End

8.24.10 Definition: Certified Attachment Pattern
A Certified Attachment Pattern (or CAP) for an expression exp whose type is detachable is an
occurrence of exp in one of the following contexts:

- 127 -

1 exp is an Object-Test Local and the occurrence is in its scope.
2 exp is a read-only entity and the occurrence is in the scope of a void test involving exp.

Informative text
A CAP is a scheme that has been proved, or certified by sufficiently many competent people (or
computerized proof tools), to ensure that exp will never have a void run-time value in the covered
scope.
• The CAPs listed here are the most frequently useful and seem beyond doubt. Here too

compilers could be “smart” and find other cases making exp.f safe. The language
specification explicitly refrains, however, from accepting such supposed compiler
improvements: other than the risk of mistake in the absence of a public discussion, this would
result in some Eiffel texts being accepted by certain compilers and rejected by others. Instead,
a compiler that accepts a call to a detachable target that is not part of one of the official CAPs
listed above is non-conformant.

• The list of CAPs may grow in the future, as more analysis is applied to actual systems, leading
to the identification, and certification by human or automatic means, of safe patterns for using
targets of detachable types.

End

8.24.11 Definition: Attached expression
An expression exp of type T is attached if it satisfies any of the following conditions:

1 T is attached.
2 T is expanded.
3 exp appears in a Certified Attachment Pattern for exp.

Informative text
This is the principal result of this discussion: the condition under which an expression is
target-valid, that is to say, can be used as target of a call because its value is guaranteed never
to be void at any time of evaluation. It is in an Expanded type’s nature to abhor a void; attached
types are devised to avoid void too; and Certified Attachment Patterns catch a detachable variable
when it is provably not detached.

End

 8.25 Typing-related properties

Informative text
This Part does not define any new rules, only a few definitions that facilitate discussion of type
issues.

End

8.25.1 Definition: Catcall
A catcall is a run-time attempt to execute a Call, such that the feature of the call is not applicable
to the target of the call.

Informative text
The role of the type system is to ensure that a valid system can never, during its execution,
produce a catcall.
“Cat” is an abbreviation for “Changed Availability or Type”, two language mechanisms that, if not
properly controlled by the type system, could cause catcalls.

End

- 128 -

8.25.2 Validity: Descendant Argument rule Validity code: VUDA

Consider a call of target type ST and feature fname appearing in a class C. Let sf the feature of
final name fname in ST. Let DT be a type conforming to ST, and df the version of sf in D. The call
is descendant-argument-valid for DT if and only if it satisfies the following conditions:

1 The call is argument-valid.
2 Every actual argument conforms, after conversion to the corresponding formal

argument of sf if applicable, to the corresponding formal argument of df.

8.25.3 Validity: Single-level Call rule Validity code: VUSC

A call with target x is system-valid if for any element D of the dynamic class set of x it is
export-valid for D and descendant-argument-valid for D.

8.25.4 Definition: System-valid, valid
A call of target target is system-valid if and only if it is class-valid for target assumed to be of any
type of its dynamic type set.

Informative text
The goal of the various type mechanisms and rules of the language is to ensure that every call is
both class-valid and system-valid.

End

8.25.5 Definition: Dynamic type set
The dynamic type set of an expression e is the set of types of all objects that can become attached
to e during execution.

 8.26 Exception handling

Informative text
During the execution of an Eiffel system, various abnormal events may occur. A hardware or
operating system component may be unable to do its job; an arithmetic operation may result in
overflow; an improperly written software element may produce an unacceptable outcome.
Such events will usually trigger a signal, or exception, which interrupts the normal flow of
execution. If the system’s text does not include any provision for the exception, execution will
terminate. The system may, however, be programmed so as to handle exceptions, which means
that it will respond by executing specified actions and, if possible, resuming execution after
correcting the cause of the exception.

End

8.26.1 Definition: Failure, exception, trigger
Under certain circumstances, the execution or evaluation of a construct specimen may be unable
to proceed as defined by the construct’s semantics. It is then said to result in a failure.
If, during the execution of a routine, the execution of one of the components of the routine’s Body
fails, this prevents the routine’s execution from continuing the Body’s execution normally; such an
event is said to trigger an exception.

Informative text
Examples of exception causes include:
• Assertion violation (in an assertion monitoring mode).
• Failure of a called routine.
• Impossible operation, such as a Creation instruction attempted when not enough memory is

available, or an arithmetic operation which would cause an overflow or underflow in the
platform’s number system.

- 129 -

• Interruption signal sent by the machine for example after a user has hit the "break" key or the
window of the current process has been resized.

• An exception explicitly raised by the software itself.
Common exception types that do not arise in Eiffel, other than through mistakes in the definition
of the language as specified by the Standard, are “void calls” (attempts to execute a feature on a
void target) and “catcalls” (attempt to execute a feature on an unsuitable object).

End

8.26.2 Syntax: Rescue clauses
Rescue =∆ rescue Compound
Retry =∆ retry

8.26.3 Validity: Rescue clause rule Validity code: VXRC
It is valid for a Routine to include a Rescue clause if and only if its Feature_body is an
Effective_routine of the Internal form.

Informative text
An Internal body is one which begins with either do or once. The other possibilities are Deferred,
for which it would be improper to define an exception handler since the body does not specify an
algorithm, and an External body, where the algorithm is specified outside of the Eiffel system,
which then lacks the information it would need to handle exceptions.

End

8.26.4 Validity: Retry rule Validity code: VXRT
A Retry instruction is valid if and only if it appears in a Rescue clause.

Informative text
Because this constraint requires the Retry physically to appear within the Rescue clause, it is not
possible for a Rescue to call a procedure containing a Retry. In particular, a redefined version of
default_rescue (see next) may not contain a Retry.

8.26.5 Semantics: Default Rescue Original Semantics
Class ANY introduces a non-frozen procedure default_rescue with no argument and a null effect.

Informative text
As the following semantic rules indicate, an exception not handled by an explicit Rescue clause
will cause a call to default_rescue. Any class can redefine this procedure to implement a default
exception handling policy for routines of the class that do not have their own Rescue clauses.

End

8.26.6 Definition: Rescue block
Any Internal or Attribute feature f of a class C has a rescue block, a Compound defined as
follows, where rc is C’s version of ANY’s default_rescue:

1 If f has a Rescue clause: the Compound contained in that clause.
2 If r is not rc and has no Rescue clause: a Compound made of a single instruction: an

Unqualfied_call to rc.
3 If r is rc and has no Rescue clause: an empty Compound.

Informative text
The semantic rules rely on this definition to define the effect of an exception as if every routine had
a Rescue clause: either one written explicitly, or an implicit one calling default_rescue. To this
effect they refer not to rescue clauses but to rescue blocks.

- 130 -

Condition 3 avoids endless recursion in the case of default_rescue itself.

End

8.26.7 Semantics: Exception Semantics
An exception triggered during an execution of a feature f causes, if it is neither ignored nor
continued, the effect of the following sequence of events.

1 Attach the value of last_exception from ANY to a direct instance of a descendant of the
Kernel Library class EXCEPTION corresponding to the type of the exception.

2 Unlike in the non-exception semantics of Compound, do not execute the remaining
instructions of f.

3 If the recipient of the exception is f, execute the rescue block of f.
4 If case 3 applies and the rescue block executes a Retry, this terminates the processing

of the exception. Execution continues with a new execution of the Compound in the
Feature_body of f.

5 If neither case 3 nor case 4 applies (in particular in case 3 if the rescue block executes
to the end without executing a Retry), this terminates the processing of the current
exception and the current execution of f, causing a failure of that execution. If the
execution of f was caused by a call to f from another feature, trigger an exception of type
ROUTINE_FAILURE in the calling routine, to be handled (recursively) according to the
present rule. If there is no such calling feature, f is the root procedure; terminate its
execution as having failed.

Informative text
As usual in rules specifying the “effect” of an event in terms of a sequence of steps, all that counts
is that effect; it is not required that the execution carry out these exact steps, or carry them in this
exact order.
In step 1, the Retry will only re-execute the Feature_body of r, with all entities set to their current
value; it does not repeat argument passing and local variable initialization. This may be used to
ensure that the execution takes a different path on a new attempt.
In most cases, the “recipient” of the exception (case 3) is the current routine, f. For exception
occurring in special places, such as when evaluating an assertion, the next rule, Exception Cases,
tells us whether f or its caller is the “recipient”.
In the case of a Feature_body of the Once form, the above semantics only applies to the first call
to every applicable target, where a Retry may execute the body two or more times. If that first call
fails, triggering a routine failure exception, the applicable rule for subsequent calls is not the above
Exception Semantics (since the routine will not execute again) but the Once Routine Execution
Semantics, which specifies that any such calls must trigger the exception again.

End

8.26.8 Definition: Type of an exception
The type of a triggered exception is the generating type of the object to which the value of
last_exception is attached per step 1 of the Expression Semantics rule.

8.26.9 Semantics: Exception Cases
The triggering of an exception in a routine r called by a routine caller results in the setting of the
following properties, accessible through features of the exception class instance to which the
value of last_exception is attached, as per the following table, where:
• The Recipient is either f or caller.
• “Type” indicates the type of the exception (a descendant of EXCEPTION).
• If f is the root procedure, executed during the original system creation call, the value of caller

as given below does not apply.
Recipient Type

- 131 -

Exception during evaluation caller [Type of exception as triggered]
of invariant on entry
Invariant violation on entry caller INVARIANT_ENTRY_VIOLATION
Exception during evaluation caller [Type of exception as triggered]
of precondition
Exception during evaluation See Old Expression Semantics rule
of Old expression on entry
Precondition violation caller PRECONDITION_VIOLATION
Exception in body f [Type of exception as triggered]
Exception during evaluation f [Type of exception as triggered]
of invariant on exit
Invariant violation on exit f INVARIANT_EXIT_VIOLATION
Exception during evaluation f [Type of exception as triggered]
of postcondition on exit
Postcondition violation f POSTCONDITION_VIOLATION

Informative text
This rule specifies the precise effect of an exception occurring anywhere during execution
(including some rather extreme cases, such as the occurrence of an exception in the evaluation
of an assertion). Whether the “recipient” is f or caller determines whether the execution of the
current routine can be “retried”: per case 3 of the Exception Semantics rule, a Retry is applicable
only if the recipient is itself. Otherwise a ROUTINE_FAILURE will be triggered in the caller.
In the case of an Old expression, a special rule, given earlier, requires the exception to be
remembered, during evaluation of the expression on entry to the routine, for re-triggering during
evaluation of the postcondition on exit, but only if the expression turns out to be needed then.

End

8.26.10 Semantics: Exception Properties
The value of the query original of class EXCEPTION, applicable to last_exception, is an
EXCEPTION reference determined as follows after the triggering of an exception of type TEX:

1 If TEX does not conform to ROUTINE_FAILURE: a reference to the current
EXCEPTION object.

2 If TEX conforms to ROUTINE_FAILURE: the previous value of original.

Informative text
The reason for this query is that when a routine fails, because execution of a routine f has triggered
an exception and has not been able to handle it through a Retry, the consequence, per case 5 of
the Exception Semantics rule, is to trigger a new exception of type ROUTINE_FAILURE, to which
last_exception now becomes attached. Without a provision for original, the “real” source of the
exception would be lost, as ROUTINE_FAILURE exceptions get passed up the call chain.
Querying original makes it possible, for any other routine up that chain, to find out the Ur-exception
that truly started the full process.

End

8.26.11 Definition: Ignoring, continuing an exception
It is possible through routines of the Kernel Library class EXCEPTION, that exceptions of certain
types be:
• Ignored: lead to no change of non-exception semantics.
• Continued: lead to execution of a programmer-specified routine, then to continuation of the

execution according to non-exception semantics.

- 132 -

Informative text
The details of what types of exceptions can be ignored and continued, and how to achieve these
effects, belong to the specification of class EXCEPTION and its descendants.

End

 8.27 Agents, iteration and introspection

Informative text
Objects represent information equipped with operations. These are clearly defined concepts; no
one would mistake an operation for an object.
For some applications — graphics, numerical computation, iteration, writing contracts, building
development environments, “reflection” (a system’s ability to explore its own properties) — you
may find the operations so interesting that you will want to define objects to represent them, and
pass these objects around to software elements, which can use these objects to execute the
operations whenever they want. Because this separates the place of an operation’s definition from
the place of its execution, the definition can be incomplete, since you can provide any missing
details at the time of any particular execution.
You can create agent objects to describe such partially or completely specified computations.
Agents combine the power of higher-level functionals — operations acting on other operations —
with the safety of Eiffel’s static typing system.

End

8.27.1 Definition: Operands of a call
The operands of a call include its target (explicit in a qualified call, implicit in an unqualified call),
and its arguments if any.

8.27.2 Definition: Operand position
The target of a call has position 0. The i-th actual argument, for any applicable i, has position i.

8.27.3 Definition: Construction time, call time
The construction time of an agent object is the time of evaluation of the agent expression
defining it.
Its call time is when a call to its associated operation is executed.

8.27.4 Syntactical forms for a call agent
A call agent is of the form

agent agent_body
where agent_body is a Call, qualified (as in x.r (…)) or unqualified (as in f (…)) with the following
possible variants:
• You may replace any argument by a question mark ?, making the argument open.
• You may replace the target, by {TYPE} where TYPE is the name of a type, making the target

open.
• You may remove the argument list (…) altogether, making all arguments open.

Informative text
This is not a formal syntax definition, but a summary of the available forms permitted by the syntax
and validity rules that follow.

End

8.27.5 Syntax: Agents
Agent =∆ Call_agent | Inline_agent
Call_agent =∆ agent Call_agent_body

- 133 -

Inline_agent =∆ agent [Formal_arguments] [Type_mark] [Attribute_or_routine] [Agent_actuals]

8.27.6 Syntax: Call agent bodies
Call_agent_body =∆ Agent_qualified | Agent_unqualified
Agent_qualified =∆ Agent_target ". " Agent_unqualified
Agent_unqualified =∆ Feature_name [Agent_actuals]
Agent_target =∆ Entity | Parenthesized | Manifest_type
Agent_actuals =∆ "(" Agent_actual_list ")"
Agent_actual_list =∆ {Agent_actual "," …}*
Agent_actual =∆ Expression | Placeholder
Placeholder =∆ "?"

8.27.7 Definition: Target type of an agent call
The target type of a Call_agent is:

1 If there is no Agent_target, the current type.
2 If there is an Agent_target and it is an Entity or Parenthesized, its type.
3 If there is an Agent_target and it is a Manifest_type, the type that it lists (in braces).

8.27.8 Validity: Call Agent rule Validity code: VPCA
A Call_agent involving a Feature_name fn, appearing in a class C, with target type T0, is valid if
and only if it satisfies the following conditions:

1 fn is the name of a feature f of T0.
2 If there is an Agent_target, f is export-valid for T0 in C.
3 If the Agent_actuals part is present, the number of elements in its Agent_actual_list is

equal to the number of formals of f.
4 Any Agent_actual of the Actual kind is of a type conforming to the type of the

corresponding formal in f.

8.27.9 Definition: Associated feature of an inline agent
Every inline agent ia of a class C has an associated feature, defined as a fictitious routine of C,
such that:

1 The name of f is chosen not to conflict with any other feature name in C and its
descendants.

2 The formal arguments of f are those of ia.
3 f is secret (available for call to no class).
4 The Routine of f is defined by the Routine part of ia.
5 f is a function if ia has a Type_mark (its return type being given by the Type in that

Type_mark), a procedure otherwise.

8.27.10 Validity: Inline Agent rule Validity code: VPIA
An Inline_agent a of associated feature f, is valid in the text of a class C if and only if it satisfies
the following conditions:

1 f, if added to C, would be valid.
2 f is not deferred.

8.27.11 Validity: Inline Agent Requirements Validity code: VPIR
An Inline_agent a must satisfy the following conditions:

1 No formal argument or local variable of a has the same name as a feature of the
enclosing class.

2 Every entity appearing in the Routine part of a is the name of one of: a formal argument
of a; a local variable of a; a feature of the enclosing class; Current.

- 134 -

3 The Feature_body of a’s Routine is not of the Deferred form.

Informative text
These conditions are stated as another validity rule permitting compilers to issue more
understandable error messages. It is not in the usual “if and only if” form (since the preceding rule,
the more official one, takes care of this), but the requirements given cover the most obvious
possible errors.

End

8.27.12 Definition: Call-agent equivalent of an inline agent
An inline agent ia with n formal arguments (n ≥ 0) has a call-agent equivalent defined as the
Call_agent

agent f (?, ?, …, ?, a1, a2, …, am)
using n question marks, where a1, a2, …, am (m ≥ 0) are the formal arguments and local variables
of the enclosing routine (if any) and any enclosing agents, and f is the associated feature of ia. (If
both n and m are 0, the Call_agent is just agent f.)

8.27.13 Semantics: Semantics of inline agents
The semantic properties of an inline agent are those of its call-agent equivalent.

8.27.14 Definition: Use of Result in an inline function agent
In an agent of the Inline_routine form denoting a function, the local variable Result denotes the
result of the agent itself.

8.27.15 Definition: Open and closed operands
The open operands of a Call_agent include:

1 Any Agent_actual that is a Placeholder.
2 The Agent_target if it is present and is a Manifest_type.

The closed operands include all non-open operands.

8.27.16 Definition: Open and closed operand positions
The open operand positions of a Feature_agent are the operand positions of its open operands,
and the closed operand positions those of its closed operands.

8.27.17 Definition: Type of an agent expression
Consider a Call_agent a, whose associated feature f has a generating type T0. Let i1, …, im (m
≥ 0) be its open operand positions, if any, and let Ti1, .., Tim be the types of f’s formals at positions
i1, …, im (taking Ti1 to be T0 if i1 = 0).
The type of d is:
• PROCEDURE [T0, TUPLE [Ti1, .., Tim]] if f is a procedure;
• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if f is a function of result type R other than BOOLEAN.
• PREDICATE [T0, TUPLE [Ti1, .., Tim]] if f is a function of result type BOOLEAN.

8.27.18 Definition: Agent Expression semantics
The value of an agent expression a at a certain construction time yields a reference to an instance
D0 of the type of a, containing information identifying:
• The associated feature of a.
• Its open operand positions.
• The values of its closed operands at the time of evaluation.

8.27.19 Definition: Effect of executing call on an agent
Let D0 be an agent object with associated feature f and open positions i1, …, im (m ≥ 0). The
information in D0 enables a call to the procedure call, executed at any call time posterior to D0’s

- 135 -

construction time, with target D0 and (if required) actual arguments ai1, .., aim, to perform the
following:
• Produce the same effect as a call to f, using the closed operands at the closed operand

positions and ai1, .., aim, evaluated at call time, at the open operand positions.
• In addition, if f is a function, setting the value of the query last_result for D0 to the result

returned by such a call.

 8.28 Expressions

Informative text
Through the various forms of Expression, software texts can include denotations of run-time
values — objects and references.
Previous discussions have already introduced some of the available variants of the construct:
Formal, Local, Call, Old, Manifest_tuple, Agent. The present one gives the full list of permissible
expressions and the precise form of all but one of the remaining categories: operator expressions,
equality and locals. The last category, constants, has its own separate presentation, just after this
one.

End

8.28.1 Syntax: Expressions
Expression=∆ Basic_expression | Special_expression
Basic_expression=∆ Read_only | Local | Call | Precursor | Equality | Parenthesized | Old |

Operator_expression | Bracket_expression | Creation_expression
Special_expression=∆ Manifest_constant | Manifest_tuple | Agent | Object_test | Once_string |

Address
Parenthesized =∆ "(" Expression ")"
Address =∆ "$" Variable
Once_string =∆ once Manifest_string
Boolean_expression =∆ Basic_expression | Boolean_constant | Object_test

8.28.2 Definition: Subexpression, operand
The subexpressions of an expression e are e itself and (recursively) all the following
expressions:

1 For a Parenthesized (a) or a Parenthesized_target (|a |): the subexpressions of a.
2 For an Equality or Binary_expression a § b, where § is an operator: the subexpressions

of a and of b.
3 For a Unary_expression ◊ a, where ◊ is an operator: the subexpressions of a.
4 For a Call or Precursor expression: the subexpressions of the Actuals part, if any, of its

Unqualified_part
5 For an Agent: the subexpression of its Agent_actuals if any.
6 For a qualified call: the subexpressions of its target.
7 For a Bracket_expression f [a1, … an]: the subexpressions of f and those of all of a1, …

an.
8 For an Old expression old a: a.
9 For a Manifest_tuple [a1, … an]: the subexpressions of all of a1, … an.

In cases 2 and 3, the operands of e are a and (in case 2) b.

8.28.3 Semantics: Parenthesized Expression Semantics
If e is an expression, the value of the Parenthesized (e) is the value of e.

- 136 -

8.28.4 Syntax: Operator expressions
Operator_expression =∆ Unary_expression | Binary_expression
Unary_expression =∆ Unary Expression
Binary_expression =∆ Expression Binary Expression

8.28.5 Operator precedence levels
13 . (Dot notation, in qualified and non-object calls)
12 old (In postconditions)

not + – Used as unary
All free unary operators

11 All free binary operators.
10 ^ (Used as binary: power)
9 ∗ / // \\ (As binary: multiplicative arithmetic operators)
8 + – Used as binary
7 .. (To define an interval)
6 = /= ~ /~ < > <= >=(As binary: relational operators)
5 and and then

(Conjunctive boolean operators)
4 or or else xor

(Disjunctive boolean operators)
3 implies (Implicative boolean operator)
2 [] (Manifest tuple delimiter)
1 ; (Optional semicolon between

an Assertion_clause and the next)

Informative text
This precedence table includes the operators that may appear in an Operator_expression, the
equality and inequality symbols used in Equality expressions, as well as other symbols and
keywords which also occur in expressions and hence require disambiguating: the semicolon in its
role as separator for Assertion_clause; the old operator which may appear in an Old expression
as part of a Postcondition; the dot . of dot notation, which binds tighter than any other operator.
The operators listed include both standard operators and predefined operators (=, /=, ~, /~). For a
free operator, you cannot set the precedence: all free unaries appear at one level, and all free
binaries at another level.

End

8.28.6 Definition: Parenthesized Form of an expression
The parenthesized form of an expression is the result of rewriting every subexpression of one of
the forms below, where § and ‡ are different binary operators, ◊ and ♣ different unary operators,
and a, b, c arbitrary operands, as follows:

1 For a § b § c where § is not the power operator ^: (a § b) § c (left associativity).
2 For a ^ b ^ c : a ^ (b ^ c) (right associativity).
3 For a § b ‡ c: (a § b) ‡ c if the precedence of ‡ is lower than the precedence of § or the

same, and a § (b ‡ c) otherwise.
4 For ◊ ♣ a: ◊ (♣ a)
5 For ◊ a § b: (◊ a) § b
6 For a § ◊ b: a § (◊ b)
7 For a subexpression e to which none of the previous patterns applies: e unchanged.

- 137 -

8.28.7 Definition: Target-converted form of a binary expression
The target-converted form of a Binary_expression x § y, where the one-argument feature of alias
§ in the base class of x has the Feature_name f, is:

1 If the declaration of f includes a convert mark and the type TY of y is not compatible with
the type of the formal argument of f: ({TY} [x]) § y.

2 Otherwise: the original expression, x § y.

Informative text
({TY} [x]) denotes x converted to type TY. This definition allows us, if the feature from x’s type TX
cannot accept a TY argument but has explicitly been specified, through the convert mark, to allow
for target conversion, and TY does include the appropriate feature accepting a TX argument, to
use that feature instead.
The archetypal example is your_integer + your_real which, with the appropriate convert mark in
the "+" feature in INTEGER, we can interpret as ({REAL} [your_integer]) + your_real, where "+"
represents the plus feature from REAL.

End

8.28.8 Validity: Operator Expression rule Validity code: VWOE
A Unary_expression § x or Binary_expression x § y, for some operator §, is valid if and only if it
satisfies the following conditions:

1 A feature of the base class of x is declared as alias "§".
2 The expression’s Equivalent Dot Form is a valid Call.

8.28.9 Semantics: Expression Semantics (strict case)
The value of an Expression, other than a Binary_expression whose Binary is semistrict, is the
value of its Equivalent Dot Form.

Informative text
This semantic rule and the preceding validity constraint make it possible to forego any specific
semantics for operator expressions (except in one special case) and define the value of any
expression through other semantic rules of the language, in particular the rules for calls and
entities.
This applies in particular to arithmetic and relational operators (for which the feature declarations
are in basic classes such as INTEGER and REAL) and to boolean operators (class BOOLEAN):
in principle, although not necessary as implemented by compilers, a + b is just a feature call like
any other.
The excluded case — covered by a separate rule — is that of a binary expression using one of
the three semistrict operators: and then, or else, implies. This is because the value of an
expression such as a and then b is not entirely defined by its Equivalent Dot Form
a.conjuncted_semistrict (b), which needs to evaluate b, whereas the and then form explicitly
ignores b when a has value False, as the value of the whole expression is False even if b does
not have a defined value, a case which should not be treated as an error.

End

8.28.10 Definition: Semistrict operators
A semistrict operator is any one of the three operators and then, or else and implies, applied to
operands of type BOOLEAN.

8.28.11 Semantics: Operator Expression Semantics (semistrict cases)
For a and b of type BOOLEAN:
• The value of a and then b is: if a has value false, then false; otherwise the value of b.
• The value of a or else b is: if a has value true, then true; otherwise the value of b.

- 138 -

• The value of a implies b is: if a has value false, then true; otherwise the value of b.

Informative text
The semantics of other kinds of expression, and Eiffel constructs in general, is compositional:
the value of an expression with subexpressions a and b, for example a + b (where a and b may
themselves be complex expressions), is defined in terms of the values of a and b, obtained from
the same set of semantic rules, and of the connecting operators, here +. Among expressions,
those involving semistrict operators are the only exception to this general style. The above rule is
not strictly compositional since it tells us that in certain cases of evaluating an expression involving
b we should not consider the value of b. It’s not just that we may ignore the value of b in some
cases — which would also be true of a and b (strict) when a is false — but that we must ignore it
lest it prevents us from evaluating the expression as a whole.
It’s this lack of full compositionality that makes the above rule more operational than the semantic
specification of other kinds of expression. Their usual form is “the value of an expression of the
form X is Y”, where Y only refers to values of subexpressions of X. Such rules normally don’t
mention order of execution. They respect compositionality and leave compilers free to choose any
operand evaluation order, in particular for performance. Here, however, order matters: the final
requirement of the rule requires that the computation first evaluate a. We need this operational
style to reflect the special nature of nonstrict operators, letting us sometimes get a value for an
expression whose second operand does not have any.

End

8.28.12 Syntax: Bracket expressions
Bracket_expression =∆ Bracket_target "[" Actuals "]"
Bracket_target =∆ Target | Once_string | Manifest_constant | Manifest_tuple

Informative text
Target covers every kind of expression that can be used as target of a call, including simple
variants like Local variables and formal arguments, as well as Call, representing the application
of a query to a target that may itself be the result of applying calls.

End

8.28.13 Validity: Bracket Expression rule Validity code: VWBR

A Bracket_expression x [i] is valid if and only if it satisfies the following conditions:
1 A feature of the base class of x is declared as alias "[]".
2 The expression’s Equivalent Dot Form is a valid Call.

8.28.14 Definition: Equivalent Dot Form of an expression
Any Expression e has an Equivalent Dot Form, not involving (in any of its subexpressions) any
Bracket_expression or Operator_expression, and defined as follows, where C denotes the base
class of x, pe denotes the Parenthesized Form of e, and x’, y’, c’ denote the Equivalent Dot Forms
(obtained recursively) of x, y, c:

1 If pe is a Unary_expression § x: x’.f, where f is the Feature_name of the no-argument
feature of alias § in C.

2 If pe is a Binary_expression of target-converted form x § y: x’.f (y’) where f is the
Feature_name of the one-argument feature of alias § in C.

3 If pe is a Bracket_expression x [y]: x’.f (y’) where f is the Feature_name of the feature
declared as alias "[]" in C.

4 If pe has no subexpression other than itself: pe.
5 In all other cases: (recursively) the result of replacing every subexpression of e by its

Equivalent Dot Form.

- 139 -

8.28.15 Validity: Boolean Expression rule Validity code: VWBE

A Basic_expression is valid as a Boolean_expression if and only if it is of type BOOLEAN.

8.28.16 Validity: Identifier rule Validity code: VWID

An Identifier appearing in an expression in a class C, other than as the feature of an Object_call
or qualified Call, must be the name of a feature of C, or a local variable of the enclosing routine or
inline agent if any, or a formal argument of the enclosing routine or inline agent if any, or the
Object-Test Local of an Object_test.

Informative text
The restriction “other than as the feature of an Object_call or qualified Call” excludes an identifier
appearing immediately after a dot to denote a feature being called on a target object: in a + b.c
(d), the rule applies to a, b (target of a Call) and d (actual argument), but not to c (feature of a
qualified Call). For c the relevant constraint is the Call rule, which among other conditions requires
c to be a feature of the base class of b’s type.
The Identifier rule is not a full "if and only if" rule; in fact it is conceptually superfluous since it
follows from earlier, more complete constraints. Language processing tools may find it convenient
as a simple criterion for detecting the most common case of invalid Identifier in expression.

End

8.28.17 Definition: Type of an expression
The type of an Expression e is:

1 For the predefined Read_only Current: the current type.
2 For a routine’s Formal argument : the type declared for e.
3 For an Object-Test local: its declared type.
4 For Result, appearing in the text of a query f: the result type of f.
5 For a Local variable other than Result: the type declared for e.
6 For a Call: the type of e as determined by the Expression Call Type definition with

respect to the current type.
7 For a Precursor: (recursively) the type of its unfolded form.
8 For an Equality: BOOLEAN.
9 For a Parenthesized (f): (recursively) the type of f.
10 For old f: (recursively) the type of f.
11 For an Operator_expression or Bracket_expression: (recursively) the type of the

Equivalent Dot Form of e.
12 For a Manifest_constant: as given by the definition of the type of a manifest constant.
13 For a Manifest_tuple [a1, … an] (n ≥ 0): TUPLE [T1, … Tn] where each Ti is (recursively)

the type of ai.
14 For an Agent: as given by the definition of the type of an agent expression.
15 For an Object_test: BOOLEAN.
16 For a Once_string: STRING.
17 For an Address $v: TYPED_POINTER [T] where T is (recursively) the type of v.

Informative text
Case 6, which refers to a definition given in the discussion of calls, also determines case 11,
operator and bracket expressions.

End

- 140 -

 8.29 Constants

Informative text
Expressions, just studied, include the special case of constants, whose values cannot directly be
changed by execution-time actions. This discussion goes through the various kinds. Particular
attention will be devoted to the various forms, single- and multi-line, of string constant.
Along with constants proper, we will study two notations for “manifest” objects given by the list of
their items: manifest tuples and manifest arrays, both using the syntax [item1, … itemn].

End

8.29.1 Syntax: Constants
Constant =∆ Manifest_constant | Constant_attribute
Constant_attribute =∆ Feature_name

8.29.2 Validity: Constant Attribute rule Validity code: VWCA

A Constant_attribute appearing in a class C is valid if and only if its Feature_name is the final
name of a constant attribute of C.

8.29.3 Syntax: Manifest constants
Manifest_constant =∆ [Manifest_type] Manifest_value
Manifest_type =∆ "{" Type "}"
Manifest_value =∆ Boolean_constant |

Character_constant |
Integer_constant |
Real_constant |
Manifest_string |
Manifest_type

Sign =∆ "+" | "–"
Integer_constant =∆ [Sign] Integer
Character_constant =∆ " '" Character " '"
Boolean_constant =∆ True | False
Real_constant =∆ [Sign] Real

8.29.4 Syntax (non-production): Sign Syntax rule
If present, the Sign of an Integer_constant or Real_constant must immediately precede the
associated Integer or Real, with no intervening tokens or components (such as breaks or
comments).

8.29.5 Syntax (non-production): Character Syntax rule
The quotes of a Character_constant must immediately precede and follow the Character, with no
intervening tokens or components (such as breaks or comments).

Informative text
In general, breaks or comment lines may appear between components prescribed by a BNF-E
production, making the last two rules necessary to complement the grammar: for signed
constants, you must write –5, not – 5 etc. This helps avoid confusion with operators in arithmetic
expressions, which may of course be followed by spaces, as in a – b. Similarly, you must write
a character constant as 'A’, not ' A ’.
To avoid any confusion about the syntax of Character_constant, it is important to note that a
character code such as %N (New Line) constitutes a single Character token.

End

- 141 -

8.29.6 Definition: Type of a manifest constant
The type of a Manifest_constant of Manifest_value mv is:

1 For {T} mv, with the optional Manifest_type present: T. The remaining cases assume this
optional component is absent, and only involve mv.

2 If mv is a Boolean_constant: BOOLEAN.
3 If mv is a Character_constant: CHARACTER.
4 If mv is an Integer_constant: INTEGER.
5 If mv is a Real_constant: REAL.
6 If mv is a Manifest_string: STRING.
7 If mv is a Manifest_type {T}: TYPE [T].

Informative text
As a consequence of cases 3 to 6, the type of a character, string or numeric constant is never one
of the sized variants but always the fundamental underlying type (CHARACTER, INTEGER,
REAL, STRING). Language mechanisms are designed so that you can use such constants
without hassle — for example, without explicit conversions — even in connection with specific
variants. For example:
• You can assign an integer constant such as 10 to a target of a type such as INTEGER_8 as

long as it fits (as enforced by validity rules).
• You can use such a constant for discrimination in a Multi_branch even if the expression being

discriminated is of a specific sized variant; here too the compatibility is enforced statically by
the validity rules.

Case 7 involves the Kernel Library class TYPE.

End

8.29.7 Validity: Manifest-Type Qualifier rule Validity code: VWMQ

It is valid for a Manifest_constant to be of the form {T} v (with the optional Manifest_type qualifier
present) if and only if the type U of v (as determined by cases 2 to 7 of the definition of the type of
a manifest constant) is one of CHARACTER, STRING, INTEGER and REAL, and T is one of the
sized variants of U.

Informative text
The rule states no restriction on the value, even though an example such as {INTEGER_8} 256 is
clearly invalid, since 256 is not representable as an INTEGER_8. The Manifest Constant rule
addresses this.

End

8.29.8 Semantics: Manifest Constant Semantics
The value of a Manifest_constant c listing a Manifest_value v is:

1 If c is of the form {T} v (with the optional Manifest_type qualifier present): the value of
type T denoted by v.

2 Otherwise (c is just v): the value denoted by v.

8.29.9 Definition: Manifest value of a constant
The manifest value of a constant is:

1 If it is a Manifest_constant: its value.
2 If it is a constant attribute: (recursively) the manifest value of the Manifest_constant

listed in its declaration.

- 142 -

Informative text
As the following syntax indicates, there are two ways to write a manifest string:
• A Basic_manifest_string, the most common case, is a sequence of characters in double

quotes, as in "This text". Some of the characters may be special character codes, such as %N
representing a new line. This variant is useful for such frequent applications as object names,
texts of simple messages to be displayed, labels of buttons and other user interface elements,
generally using fairly short and simple sequences of characters. You may write the string over
several lines by ending an interrupted line with a percent character % and starting the next
one, after possible blanks and tabs, by the same character.

• A Verbatim_string is a sequence of lines to be taken exactly as they are (hence the name),
bracketed by "{ at the end of the line that precedes the sequence and }" at the beginning of
the line (or "[and "] to left-align the lines). No special character codes apply. This is useful for
embedding multi-line texts; applications include description entries of Notes clauses, inline C
code, SQL or XML queries to be passed to some external program.

End

8.29.10 Syntax: Manifest strings
Manifest_string =∆ Basic_manifest_string | Verbatim_string
Basic_manifest_string =∆ ' " ' String_content ' " '
String_content =∆ {Simple_string Line_wrapping_part …}+

Verbatim_string =∆ Verbatim_string_opener Line_sequence Verbatim_string_closer
Verbatim_string_opener =∆ ' " ' [Simple_string] Open_bracket
Verbatim_string_closer =∆ Close_bracket [Simple_string] ' " '
Open_bracket =∆ "[" | "{"
Close_bracket =∆ "]" | "}"

Informative text
In the “basic” case, most examples of String_content involve just one Simple_string (a sequence
of printable characters, with no new lines). For generality, however, String_content is defined as
a repetition, with successive Simple_string components separated by Line_wrapping_part to
allow writing a string on several lines. Details below.
In the “verbatim” case, Line_sequence is a lexical construct denoting a sequence of lines with
arbitrary text. The reason for the Verbatim_string_opener and the Verbatim_string_closer is to
provide an escape sequence for an extreme case (a Line_sequence that begins with]"), but most
of the time the opener is just "[or "{ and the closer]" or "}. The difference between brackets and
braces is that with "{ … }" the Line_sequence is kept exactly as is, whereas with "[…]" the lines
are left-aligned (stripped of any common initial blanks and tabs). Details below.

End

8.29.11 Syntax (non-production): Line sequence
A specimen of Line_sequence is a sequence of one or more Simple_string components, each
separated from the next by a single New_line.

8.29.12 Syntax (non-production): Manifest String rule
In addition to the properties specified by the grammar, every Manifest_string must satisfy the
following properties:

1 The Simple_string components of its Line_sequence may not include a double quote
character except as part of the character code %" (denoting a double quote).

2 A Verbatim_string_opener or Verbatim_string_closer may not contain any break
character.

- 143 -

Informative text
Like other “non-production” syntax rules, the last two rules capture simple syntax requirements
not expressible through BNF-E productions.
Because a Line_sequence is made of simple strings separated by a single New_line in each case,
a line in a Verbatim_string that looks like a comment is not a comment but a substring of the
Verbatim_string.

End

8.29.13 Definition: Line_wrapping_part
A Line_wrapping_part is a sequence of characters consisting of the following, in order: % (percent
character); zero or more blanks or tabs; New_line; zero or more blanks or tabs; % again.

Informative text
This construct requires such a definition since it can’t be specified through a context-free syntax
formalism such as BNF-E.
The use of Line_wrapping_part as separator between a Simple_string and the next in a
Basic_manifest_string allows you to split a string across lines, with a % at the end of an
interrupting line and another one at the beginning of the resuming line. The definition allows blanks
and tabs before the final % of a Line_wrapping_part although they will not contribute to the
contents of the string. This makes it possible to apply to the Basic_manifest_string the same
indentation as to the neighboring elements. The definition also permits blanks and tabs after the
initial % of a Line_wrapping_part, partly for symmetry and partly because it doesn’t seem justified
to raise an error just because the compiler has detected such invisible but probably harmless
characters.

End

8.29.14 Semantics: Manifest string semantics
The value of a Basic_manifest_string is the sequence of characters that it includes, in the order
given, excluding any line wrapping parts, and with any character code replaced by the
corresponding character.

8.29.15 Validity: Verbatim String rule Validity code: VWVS

A Verbatim_string is valid if and only if it satisfies the following conditions, where α is the (possibly
empty) Simple_string appearing in its Verbatim_string_opener:

1 The Close_bracket is] if the Open_bracket is [, and } if the Open_bracket is {.
2 Every character in α is printable, and not a double quote ".
3 If α is not empty, the string’s Verbatim_string_closer includes a Simple_string identical

to α.

8.29.16 Semantics: Verbatim string semantics
The value of a Line_sequence is the string obtained by concatenating the characters of its
successive lines, with a “new line” character inserted between any adjacent ones.
The value of a Verbatim_string using braces { } as Open_bracket and Close_bracket is the value
of its Line_sequence.
The value of a Verbatim_string using braces [] as Open_bracket and Close_bracket is the value
of the left-aligned form of its Line_sequence.

Informative text
This semantic definition is platform-independent: even if an environment has its own way of
separating lines (such as two characters, carriage return %R and new line %N, on Windows) or
represents each line as a separate element in a sequence (as in older operating systems still used

- 144 -

on mainframes), the semantics yields a single string — a single character sequence — where
each successive group of characters, each representing a line of the original, is separated from
the next one by a single %N.

End

8.29.17 Definition: Prefix, longest break prefix, left-aligned form
A prefix of a string s is a string p of some length n (n ≥ 0) such that the first n characters of s are
the corresponding characters of p.
The longest break prefix of a sequence of strings ls is the longest string bp containing no
characters other than spaces and tabs, such that bp is a prefix of every string in ls. (The longest
break prefix is always defined, although it may be an empty string.)
The left-aligned form of a sequence of strings ls is the sequence of strings obtained from the
corresponding strings in ls by removing the first n characters, where n is the length of the longest
break prefix of ls (n ≥ 0).

 8.30 Basic types

Informative text
The term “basic type” covers a number of expanded class types describing elementary values:
booleans, characters, integers, reals, machine-level addresses. The corresponding classes —
BOOLEAN; CHARACTER, INTEGER, REAL and variants specifying explicit sizes; POINTER —
are part of ELKS, the Eiffel Library Kernel Standard.
The following presentation explains the general concepts behind the design and use of these
classes.

End

8.30.1 Definition: Basic types and their sized variants
A basic type is any of the types defined by the following ELKS classes:
• BOOLEAN.
• CHARACTER, CHARACTER_8, CHARACTER_32, together called the “sized variants of

CHARACTER”.
• INTEGER, INTEGER_8, INTEGER_16, INTEGER_32, INTEGER_64, NATURAL,

NATURAL_8, NATURAL_16, NATURAL_32, NATURAL_64, together called the “sized
variants of INTEGER”.

• REAL, REAL_32, REAL_64, together called the “sized variants of REAL”.
• POINTER.

8.30.2 Definition: Sized variants of STRING
The sized variants of STRING are STRING, STRING_8 and STRING_32.

8.30.3 Semantics: Boolean value semantics
Class BOOLEAN covers the two truth values.
The reserved words True and False denote the corresponding constants.

8.30.4 Semantics: Character types
The reference class CHARACTER_GENERAL describes properties of characters independently
of the character code.
The expanded class CHARACTER_32 describes Unicode characters; the expanded class
CHARACTER_8 describes 8-bit (ASCII-like) characters.
The expanded class CHARACTER describes characters with a length and encoding settable
through a compilation option. The recommended default is Unicode.

- 145 -

8.30.5 Semantics: Integer types
The reference class INTEGER_GENERAL describes integers, signed or not, of arbitrary length.
The expanded classes INTEGER_xx, for xx = 8, 16, 32 or 64, describe signed integers stored on
xx bits. The expanded classes NATURAL_xx, for xx = 8, 16, 32 or 64, describe unsigned integers
stored on xx bits.

The expanded classes INTEGER and NATURAL describe integers, respectively signed and
unsigned, with a length settable through a compilation option. The recommended default is 64 bits
in both cases.

8.30.6 Semantics: Floating-point types
The reference class REAL_GENERAL describes floating-point numbers with arbitrary precision.
The expanded classes REAL_xx, for xx = 32 or 64, describe IEEE floating-point numbers with xx
bits of precision.

The expanded class REAL describes floating-point numbers with a precision settable through a
compilation option. The recommended default is 64 bits.

8.30.7 Semantics: Address semantics
The expanded class POINTER describes addresses of Eiffel features or expressions, intended for
transmission to non-Eiffel routines.

 8.31 Interfacing with C, C++ and other environments

Informative text
Object technology as realized in Eiffel is about combining components. Not all of these
components are necessarily written in the same language; in particular, as organizations move to
Eiffel, they will want to reuse their existing investment in components from other languages, and
make their Eiffel systems interoperate with non-Eiffel software.
Eiffel is a “pure” O-O language, not a hybrid between object principles and earlier approaches
such as C, and at the same time an open framework for combining software written in various
languages. These two properties might appear contradictory, as if consistent use of object
technology meant closing oneself off from the rest of the programming world. But it’s exactly the
reverse: a hybrid approach, trying to be O-O as well as something completely different, cannot
succeed at both since the concepts are too distant. Eiffel instead strives, by providing a coherent
object framework — with such principles as Uniform Access, Command-Query Separation, Single
Choice, Open-Closed and Design by Contract — to be a component combinator capable of
assembling software bricks of many different kinds.
The following presentation describes how Eiffel systems can integrate components from other
languages and environments.

End

8.31.1 Syntax: External routines
External =∆ external External_language [External_name]

External_language =∆ Unregistered_language | Registered_language

Unregistered_language =∆ Manifest_string

External_name =∆ alias Manifest_string

Informative text
The External clause is the mechanism that enables Eiffel to interface with other environments and
serve as a “component combinator” for software reuse and particularly for taking advantage of
legacy code.

- 146 -

By default the mechanism assumes that the external routine has the same name as the Eiffel
routine. If this is not the case, use an External_name of the form alias "ext_name". The name
appears as a Manifest_string, in quotes, not an identifier, because external languages may have
different naming conventions; for example an underscore may begin a feature name in C but not
in Eiffel, and some languages are case-sensitive for identifiers whereas Eiffel is not.
Instead of calling a pre-existing foreign routine, it is possible to include inline C or C++ code; the
alias clause will host that code, which can access Eiffel objects through the arguments of the
external routine.
The language name (External_language) can be an Unregistered_language: a string in quotes
such as "Cobol". Since the content of the string is arbitrary, there is no guarantee that a particular
Eiffel environment will support the corresponding language interface. This is the reason for the
other variant, Registered_language: every Eiffel compiler must support the language names "C",
"C++" and dll. Details of the specific mechanisms for every such Registered_language appear
below.
Some of the validity rules below include a provision, unheard of in other parts of the language
specification, allowing Eiffel language processing tools to rely on non-Eiffel tools to enforce some
conditions. A typical example is a rule that requires an external name to denote a suitable foreign
function; often, this can only be ascertained by a compiler for the foreign language. Such rules
should be part of the specification, but we can’t impose their enforcement on an Eiffel compiler
without asking it also to become a compiler of C, C++ etc.; hence this special tolerance.
The general semantics of executing external calls appeared as part of the general semantics of
calls. The semantic rules of the present discussion address specific cases, in particular inline C
and C++.

End

8.31.2 Validity: Address rule Validity code: VZAR
An Address is valid if and only if its Address_mark is of a reference type.

Informative text
An expanded type would not make sense here as its values have copy rather than reference
semantics.

End

8.31.3 Address Type rule
An argument of the Address form is of type POINTER.

8.31.4 Semantics: Address semantics
The value of an Address expression is a POINTER enabling foreign software to access the
associated Variable.

Informative text
The manipulations that the foreign software can perform on the corresponding pointer depend on
the foreign programming language. It is the implementation’s responsibility to ensure that such
manipulations do not violate Eiffel semantic properties.

End

8.31.5 Syntax: Registered languages
Registered_language=∆ C_external | C++_external | DLL_external

8.31.6 Syntax: External signatures
External_signature =∆ signature [External_argument_types] [: External_type]
External_argument_types =∆ "(" External_type_list ")"
External_type_list =∆ {External_type "," …}*

- 147 -

External_type =∆ Identifier

8.31.7 Validity: External Signature rule Validity code: VZES

An External_signature in the declaration of an external routine r is valid if and only if it satisfies the
following conditions:

1 Its External_type_list contains the same number of elements as r has formal arguments.
2 The final optional component (: External_type) if present if and only if r is a function.

A language processing tool may delegate enforcement of these requirements to non-Eiffel tools
on the chosen platform.

Informative text
The rule does not prescribe any particular relationship between the argument and result types
declared for the Eiffel routine and the names appearing in the External_type_list and the final
External_type if any, since the precise correspondence depends on foreign language properties
beyond the scope of Eiffel rules.
The specification of a non-external routine never includes C-style empty parenthesization: for a
declaration or call of a routine without arguments you write r, not r (). The syntax of
External_argument_types, however, permits () for compatibility with other languages’
conventions.
The last part of the rule allows Eiffel tools to rely on non-Eiffel tools if it is not possible, from within
Eiffel, to check the properties of external routines. This provision also applies to several of the
following rules.

End

8.31.8 Semantics: External signature semantics
An External_signature specifies that the associated external routine:
• Expects arguments of number and types as given by the External_argument_types if present,

and no arguments otherwise.
• Returns a result of the External_type appearing after the colon, if present, and otherwise no

result.

8.31.9 Syntax: External file use
External_file_use =∆ use External_file_list
External_file_list =∆ {External_file "," …}*
External_file =∆ External_user_file | External_system_file
External_user_file =∆ ' " ' Simple_string ' " '
External_system_file =∆ "<"Simple_string ">"

Informative text
As the syntax indicates, you may specify as many external files as you like, preceded by use and
separated by commas. You may specify two kinds of files:
• “System” files, used only in a C context, appear between angle brackets < > and refer to

specific locations in the C library installation.
• The name of a “user” file appears between double quotes, as in "/path/user/her_include.h",

and will be passed on literally to the operating system. Do not forget, when using double
quotes, that this is all part of an Eiffel Manifest_string: you must either code them as %" or,
more conveniently, write the string as a Verbatim_string, the first line preceded by "[and the
last line followed by]".

End

- 148 -

8.31.10 Validity: External File rule Validity code: VZEF

An External_file is valid if and only if its Simple_string satisfies the following conditions:
1 When interpreted as a file name according to the conventions of the underlying platform,

it denotes a file.
2 The file is accessible for reading.
3 The file’s content satisfies the rules of the applicable foreign language.

A language processing tool may delegate enforcement of these conditions to non-Eiffel tools on
the chosen platform.

Informative text
Condition 3 means for example that if you pass an include file to a C function the content must be
C code suitable for inclusion by a C “include” directive. Such a requirement may be beyond the
competence of an Eiffel compiler, hence the final qualification enabling Eiffel tools to rely, for
example, on compilation errors produced by a C compiler.
The “conventions of the underlying platforms” cited in condition 1 govern the rules on file names
(in particular the interpretation of path delimiters such as / and \ on Unix and Windows) and, for an
External_system_file name of the form <some_file.h>, the places in the file system where
some_file.h is to be found.

End

8.31.11 Semantics: External file semantics
An External_file_use in an external routine declaration specifies that foreign language tools, to
process the routine (for example to compile its original code), require access to the listed files.

8.31.12 Syntax: C externals
C_external =∆ ’' " ' C

’[inline]
[External_signature] [External_file_use]
' " '

Informative text
The C_external mechanism makes it possible, from Eiffel, to use the mechanisms of C. The
syntax covers two basic schemes:
• You may rely on an existing C function. You will not, in this case, use inline. If the C function’s

name is different from the lower name of the Eiffel routine, specify it in the alias
(External_name) clause; otherwise you may just omit that clause.

• You may also write C code within the Eiffel routine, putting that code in the alias clause and
specifying inline.

In the second case the C code can directly manipulate the routine’s formal arguments and,
through them, Eiffel objects. The primary application (rather than writing complex processing in C
code in an Eiffel class, which would make little sense) is to provide access to existing C libraries
without having to write and maintain any new C files even if some “glue code” is necessary, for
example to perform type adaptations. Such code, which should remain short and simple, will be
directly included and maintained in the Eiffel classes providing the interface to the legacy code.
The alias part is a Manifest_string of one of the two available forms:
• It may begin and end with a double quote "; then any double quote character appearing in it

must be preceded by a percent sign, as %"; line separations are marked by the special code
for “new line”, %N.

• If the text extends over more than one line, it is more convenient to use a Verbatim_string: a
sequence of lines to be taken exactly as they are, preceded by "[at the end of a line and
followed by]" at the beginning of a line.

- 149 -

In this Manifest_string, you may refer to any formal argument a of the external routine through the
notation $a (a dollar sign immediately followed by the name of the argument). For a you may use
either upper or lower case, lower being the recommended style as usual.

End

8.31.13 Validity: C external rule Validity code: VZCC

A C_external for the declaration of an external routine r is valid if and only if it satisfies the following
conditions:

1 At least one of the optional inline and External_signature components is present.
2 If the inline part is present, the external routine includes an External_name component,

of the form alias C_text.
3 If case 2 applies, then for any occurrence in C_text of an Identifier a immediately

preceded by a dollar sign $ the lower name of a is the lower name of a formal argument
of r.

8.31.14 Semantics: C Inline semantics
In an external routine er of the inline form, an External_name of the form alias C_text denotes the
algorithm defined, according to the semantics of the C language, by a C function that has:
• As its signature, the signature specified by er.
• As its body, C_text after replacement of every occurrence of $a, where the lower name of a is

the lower name of one of the formal arguments of er, by a.

8.31.15 Syntax: C++ externals
C++_external =∆ ' " ' C++

inline
[External_signature]
[External_file_use]
' " '

Informative text
As in the C case, you may directly write C++ code which can access the external routine’s
argument and hence Eiffel objects. Such code can, among other operations, create and delete
C++ objects using C++ constructors and destructors.
Unlike in the C case, this inline facility is the only possibility: you cannot rely on an existing
function. The reason is that C++ functions — if not “static” — require a target object, like Eiffel
routines. By directly writing appropriate inline C++ code, you will take care of providing the target
object whenever required.

End

8.31.16 Validity: C++ external rule Validity code: VZC+

A C++_external part for the declaration of an external routine r is valid if and only if it satisfies the
following conditions:

1 The external routine includes an External_name component, of the form alias C++_text.
2 For any occurrence in C++_text of an Identifier a immediately preceded by a dollar sign

$, the lower name of a is the lower name of a formal argument of r.

8.31.17 Semantics: C++ Inline semantics
In an external routine er of the C++_external form, an External_name of the form alias C++_text
denotes the algorithm defined, according to the semantics of the C++ language, by a C++ function
that has:
• As its signature, the signature specified by er.

- 150 -

• As its body, C++_text after replacement of every occurrence of $a, where the lower name of
a is the lower name of one of the formal arguments of er, by a.

8.31.18 Syntax: DLL externals
DLL_external =∆ ' " ' dll

[windows]
DLL_identifier
[Blanks_or_tabs DLL_index]
[External_signature]
[External_file_use]
' " '

DLL_identifier =∆ Simple_string
DLL_index =∆ Integer

Informative text
Through a DLL_external you may define an Eiffel routine whose execution calls an external
mechanism from a Dynamic Link Library, not loaded until first use.
The mechanism assumes a dynamic loading facility, such as exist on modern platforms; it is
specified to work with any such platform.

End

8.31.19 Validity: External DLL rule Validity code: VZDL

A DLL_external of DLL_identifier i is valid if and only if it satisfies the following conditions:
1 When interpreted as a file name according to the conventions of the underlying platform,

i denotes a file.
2 The file is accessible for reading.
3 The file’s content denotes a dynamically loadable module.

8.31.20 Semantics: External DLL semantics
The routine to be executed (after loading if necessary) in a call to a DLL_external is the
dynamically loadable routine from the file specified by the DLL_identifier and, within that file, by
its name and the DLL_index if present.

 8.32 Lexical components

Informative text
The previous discussions have covered the syntax, validity and semantics of software systems.
At the most basic level, the texts of these systems are made of lexical components, playing for
Eiffel classes the role that words and punctuation play for the sentences of human language. All
construct descriptions relied on lexical components — identifiers, reserved words, special
symbols … — but their structure has not been formally defined yet. It is time now to cover this
aspect of the language, affecting its most elementary components.

End

8.32.1 Syntax (non-production): Character, character set
An Eiffel text is a sequence of characters. Characters are either:
• All 32-bit, corresponding to Unicode and to the Eiffel type CHARACTER_32.
• All 8-bit, corresponding to 8-bit extended ASCII and to the Eiffel type CHARACTER_8.

Compilers and other language processing tools must offer an option to select one character set
from these two. The same or another option determines whether the type CHARACTER is
equivalent to CHARACTER_32 or CHARACTER_8.

- 151 -

Informative text
In manifest strings and character constants, characters can be coded either directly, as a
single-key entry, or through a multiple-key character code such as %N (denoting new-line) or %/
59/. The details appear below.

End

8.32.2 Definition: Letter, alpha_betic, numeric, alpha_numeric, printable
A letter is any character belonging to one of the following categories:

1 Any of the following fifty-two, each a lower-case or upper-case element of the Roman
alphabet:

abcdefghijklmnopqrst u v w x y z
ABCDEFGHIJKLMNOPQRSTUVWXYZ

2 If the underlying character set is 8-bit extended ASCII, the characters of codes 192 to
255 in that set.

3 If the underlying character set is Unicode, all characters defined as letters in that set.

An alpha_betic character is a letter or an underscore _.

A numeric character is one of the ten characters 0 1 2 3 4 5 6 7 8 9.

An alpha_numeric character is alpha_betic or numeric.

A printable character is any of the characters listed as printable in the definition of the character
set (Unicode or extended ASCII).

Informative text
In common English usage, “alphabetic” and “alphanumeric” characters do not include the
underscore. The spellings “alpha_betic” and “alpha_numeric” are a reminder that we accept
underscores in both identifiers, as in your_variable, and numeric constants, as in 8_961_226.
“Printable” characters exclude such special characters as new line and backspace.
Case 2 of the definition of “letter” refers to the 8-bit extended ASCII character set. Only the 7-bit
ASCII character set is universally defined; the 8-bit extension has variants corresponding to
alphabets used in various countries. Codes 192 to 255 generally cover letters equipped with
diacritical marks (accents, umlauts, cedilla). As a result, if you use an 8-bit letter not in the 7-bit
character set, for example to define an identifier with a diacritical mark, it may — without any effect
on its Eiffel semantics — display differently depending on the “locale” settings of your computer.

End

8.32.3 Definition: Break character, break
A break character is one of the following characters:

• Blank (also known as space).

• Tab.

• New Line (also known as Line Feed).

A break is a sequence of one or more break characters that is not part of a Character_constant,
of a Manifest_string or of a Simple_string component of a Comment.

8.32.4 Semantics: Break semantics
Breaks serve a purely syntactical role, to separate tokens. The effect of a break is independent of
its makeup (its precise use of spaces, tabs and newlines). In particular, the separation of a class
text into lines has no effect on its semantics.

- 152 -

Informative text
Because the above definition of “break” excludes break characters appearing in
Character_constant, Manifest_string and Comment components, the semantics of these
constructs may take such break characters into account.

End

8.32.5 Definition: Expected, free comment
A comment is expected if it appears in a construct as part of the style guidelines for that construct.
Otherwise it is free.

8.32.6 Syntax (non-production): “Blanks or tabs”, new line
A specimen of Blanks_or_tabs is any non-empty sequence of characters, each of which is a blank
or a tab.
A specimen of New_line is a New Line.

8.32.7 Syntax: Comments
Comment =∆ "– –" {Simple_string Comment_break …}*
Comment_break =∆ New_line [Blanks_or_tabs] "– –"

Informative text
This syntax implies that two or more successive comment lines, with nothing other than new lines
to separate them, form a single comment.

End

8.32.8 Syntax (non-production): Free Comment rule
It is permitted to include a free comment between any two successive components of a specimen
of a construct defined by a BNF-E production, except if excluded by specific syntax rules.

Informative text
An example of construct whose specimens may not include comments is Line_sequence, defined
not by a BNF-E production but by another “non-production” syntax rule: no comments may appear
between the successive lines of such a sequence — or, as a consequence, of a Verbatim_string.
Similarly, the Alias Syntax rule excludes any characters — and hence comments — between an
Alias_name and its enclosing quotes.

End

8.32.9 Header comment rule
A feature Header_comment is an abbreviation for a Note clause of the form

note
what: Explanation

where Explanation is a Verbatim_string with [and] as Open_bracket and Close_bracket and a
Line_sequence made up of the successive lines (Simple_string) of the comment, each deprived
of its first characters up to and including the first two consecutive dash characters, and of the
space immediately following them if any.

Informative text
Per the syntax, a comment is a succession of Simple_string components, each prefixed by "--"
itself optionally preceded, in the second and subsequent lines if any, by a Blank_or_tabs. To make
up the Verbatim_string we remove the Blank_or_tabs and dashes; we also remove one

- 153 -

immediately following space, to account for the common practice of separating the dashes from
the actual comment text, as in

-- A comment.

End

8.32.10 Definition: Symbol, word
A symbol is either a special symbol of the language, such as the semicolon ‘‘;’’ and the ‘‘.’’ of dot
notation, or a standard operator such as ‘‘+’’ and ‘‘∗’’.
A word is any token that is not a symbol. Examples of words include identifiers, keywords, free
operators and non-symbol operators such as or else.

8.32.11 Syntax (non-production): Break rule
It is permitted to write two adjacent tokens without an intervening break if and only if they satisfy
one of the following conditions:

1 One is a word and the other is a symbol.
2 They are both symbols, and their concatenation is not a symbol.

Informative text
Without this rule, adjacent words not separated by a break — as in ifxthen — or adjacent symbols
would be ambiguous.

End

8.32.12 Semantics: Letter Case rule
Letter case is significant for the following constructs: Character_constant, Manifest_string,
Comment.
For all other constructs, letter case is not significant: changing a letter to its lower-case or
upper-case counterpart does not affect the semantics of a specimen of the construct.

8.32.13 Definition: Reserved word, keyword
The following names are reserved words of the language.
agent alias all and as assign attribute
check class convert create Current debug deferred
do else elseif end ensure expanded export
external False feature from frozen if implies
inherit inspect invariant like local loop not
note obsolete old once only or Precursor
redefine rename require rescue Result retry select
separate then True TUPLE undefine until variant
Void when xor
The reserved words that serve as purely syntactical markers, not carrying a direct semantic value,
are called keywords; they appear in the above list in all lower-case letters.

Informative text
The non-keyword reserved words, such as True, have a semantics of their own (True denotes one
of the two boolean values).
The Letter Case rule applies to reserved words, so the decision to write keywords in all lower case
is simply a style guideline. Non-keyword reserved words are most closely related to constants
and, like constants, have — in the recommended style — a single upper-case letter, the first;
TUPLE is most closely related to types and is all upper-case.

End

- 154 -

8.32.14 Syntax (non-production): Double Reserved Word rule
The reserved words and then and or else are each made of two components separated by one or
more blanks (but no other break characters). Every other reserved word is a sequence of letters
with no intervening break character.

8.32.15 Definition: Special symbol
A special symbol is any of the following character sequences:

–– : ; , ? ! ' " $. –> :=
= /= ~ /~ () (| |) [] { }

8.32.16 Syntax (non-production): Identifier
An Identifier is a sequence of one or more alpha_numeric characters of which the first is a letter.

8.32.17 Validity: Identifier rule Validity code: VIID

An Identifier is valid if and only if it is not one of the language’s reserved words.

8.32.18 Definition: Predefined operator
A predefined operator is one of:

= /= ~ /~

Informative text
These operators — all “special symbols” — appear in Equality expressions. Their semantics,
reference or object equality or inequality, is defined by the language (although you can adapt the
effect of ~ and /~ since they follow redefinitions of is_equal). As a consequence you may not use
them as Alias for your own features.

End

8.32.19 Definition: Standard operator
A standard unary operator is one of:

+ –

A standard binary operator is any one of the following one- or two-character symbols:

+ – * / ^ < >

<= >= // \\ ..
Informative text

All the standard operators appear as Operator aliases for numeric and relational features of the
Kernel Library, for example less_than alias "<" in INTEGER and many other classes. You may
also use them as Alias in your own classes.

End

8.32.20 Definition: Operator symbol
An operator symbol is any non-alpha_numeric printable character that satisfies any of the
following properties:

1 It does not appear in any of the special symbols.

2 It appears in any of the standard (unary or binary) operators but is neither a dot . nor an
equal sign =.

3 It is a tilde ~, percent %, question mark ?, or exclamation mark !.

- 155 -

Informative text
Condition 1 avoids ambiguities with special symbols such as quotes. Conditions 2 and 3 override
it when needed: we do for example accept as operator symbols +, a standard operator, and \ which
appears in a standard operator — but not a dot or an equal sign, which have a set meaning.

End

8.32.21 Definition: Free operator
A free operator is sequence of one or more characters satisfying the following properties:

1 It is not a special symbol, standard operator or predefined operator.
2 Every character in the sequence is an operator symbol.
3 Every subsequence that is not a standard operator or predefined operator is distinct

from all special symbols.
A Free_unary is a free operator that is distinct from all standard unary operators.
A Free_binary is a free operator that is distinct from all standard binary operators.

Informative text
Condition 3 gives us maximum flexibility without ambiguity; for example:
• You may not use ––– as an operator because, its subsequence –– clashes with the special

symbol introducing comments.
• You may similarly not use –– because the full sequence (which of course is a subsequence

too) could still be interpreted as making the rest of the line a comment.
• You may, however, use a single –, or define a free operator such as –* which does not cause

any such confusion.
• You may not use ?, !, = or ~, but you may use operators containing these characters, for

example !=.
• You may use a percent character % by itself or in connection with other operator symbols. No

confusion is possible with character codes such as %B and %/123/. (If you use a percent
character in an Alias specification, its occurrences in the Alias_name string must be written as
%% according to the normal rules for special characters in strings. For example you may
define a feature remainder alias "%%" to indicate that it has % as an Operator alias. But any
use of the operator outside of such a string is written just %, for example in the expression a
% b which in this case would be a shorthand for a.remainder (b).)

Alpha_numeric characters are not permitted. For example, you may not use +b as an operator:
otherwise a+b could be understood as consisting of one identifier and one operator.

End

8.32.22 Syntax: Syntax (non-production): Manifest character
A manifest character — specimen of construct Character — is one of the following:

1 Any key associated with a printable character, except for the percent key %.
2 The sequence %k, where k is a one-key code taken from the list of special characters.
3 The sequence %/code/, where code is an unsigned integer in any of the available forms

— decimal, binary, octal, hexadecimal — corresponding to a valid character code in the
chosen character set.

Informative text
Form 1 accepts any character on your keyboard, provided it matches the character set you have
selected (Unicode or extended ASCII), with the exception of the percent, used as special marker
for the other two cases.

- 156 -

Form 2 lets you use predefined percent codes, such as %B for backspace, for the most commonly
needed special characters. The set of supported codes follows.
Form 3 allows you to denote any Unicode or Extended ASCII character by its integer code; for
example %/59/ represents a semicolon (the character of code 59). Since listings for character
codes — for example in Unicode documentation — often give them in base 16, you may use the
0xNNN convention for hexadecimal integers: the semicolon example can also be expressed as
%/0x3B/, where 3B is the hexadecimal code for 59.
Since the three cases define all the possibilities, a percent sign is illegal in a context expecting a
Character unless immediately followed by one of the keys of the following table or by /code/ where
code is a legal character code. For example %? is illegal (no such special character); so is %0x/
FFFFFF/ (not in the Unicode range).

End

8.32.23 Special characters and their codes
Character Code Mnemonic name
@ %A At-sign
BS %B Backspace
^ %C Circumflex
$ %D Dollar
FF %F Form feed
\ %H BackslasH
~ %L TiLde
NL (LF) %N Newline
` %Q BackQuote
CR %R Carriage Return
%S Sharp
HT %T Horizontal Tab
NUL %U NUll
| %V Vertical bar
% %% Percent
' %' Single quote
" %" Double quote
[%(Opening bracket
] %) Closing bracket
{ %< Opening brace
} %> Closing brace

Informative text
A few of these codes, such as the last four, are present on many keyboards, but sometimes
preempted to represent letters with diacritical marks; using %(rather than [guarantees that you
always get a bracket.

End

8.32.24 Syntax (non-production): Percent variants
The percent forms of Character are available for the manifest characters of a Character_constant
and of the Simple_string components of a Manifest_string, but not for any other token.

- 157 -

Informative text
The characters “of” such a constant do not include the single ' or double " quotes, which you must
enter as themselves.

End

8.32.25 Semantics: Manifest character semantics
The value of a Character is:

1 If it is a printable character c other than %: c.

2 If it is of the form %k for a one-key code k: the corresponding character as given by the
table of special characters.

3 If it is of the form %/code/: the character of code code in the chosen character set.

8.32.26 Syntax (non-production): String, simple string
A string — specimen of construct String — is a sequence of zero or more manifest characters.

A simple string — specimen of Simple_string — is a String consisting of at most one line (that is
to say, containing no embedded new-line manifest character).

8.32.27 Semantics: String semantics
The value of a String or Simple_string is the sequence of the values of its characters.

8.32.28 Syntax: Integers
Integer =∆ [Integer_base] Digit_sequence

Integer_base =∆ "0" Integer_base_letter

Integer_base_letter =∆ "b" | "c" | "x" | "B" | "C" | "X"

Digit_sequence =∆ Digit+

Digit =∆ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" |
"A" | "B" | "C" | "D" | "E" | "F" | "_"

Informative text
To introduce an integer base, use the digit 0 (zero) followed by a letter denoting the base: b for
binary, c for octal, x for hexadecimal. Per the Letter Case rule the upper-case versions of these
letters are permitted, although lower-case is the recommended style.
Similarly, you may write the hexadecimal digits of the last two lines in lower or upper case. Here
upper case is the recommended style, as in 0xA5.

End

8.32.29 Validity: Integer rule Validity code: VIIN

An Integer is valid if and only if it satisfies the following conditions:

1 It contains no breaks.

2 Neither the first nor the last Digit of the Digit_sequence is an underscore “_”.

3 If there is no Integer_base (decimal integer), every Digit is either one of the decimal
digits 0 to 9 (zero to nine) or an underscore.

4 If there is an Integer_base of the form 0b or 0B (binary integer), every Digit is either 0, 1
or an underscore.

5 If there is an Integer_base of the form 0c or 0C (octal integer), every Digit is either one
of the octal digits 0 to 7 or an underscore.

- 158 -

Informative text

The rule has no requirement for the hexadecimal case, which accepts all the digits permitted by
the syntax.
Integer is a purely lexical construct and does not include provision for a sign; the construct
Integer_constant denotes possibly signed integers.

End

8.32.30 Semantics: Integer semantics
The value of an Integer is the integer constant denoted in ordinary mathematical notation by the
Digit_sequence, without its underscores if any, in the corresponding base: binary if the Integer
starts with 0b or 0B, octal if it starts with 0c or 0C, hexadecimal if it starts with 0x or 0X, decimal
otherwise.

Informative text

This definition always yields a well-defined mathematical value, regardless of the number of digits.
It is only at the level of Integer_constant that the value may be flagged as invalid, for example
{NATURAL_8} 256, or 999 … 999 with too many digits to be representable as either an
INTEGER_32 or an INTEGER_64.
The semantics ignores any underscores, which only serve to separate groups of digits for clarity.
With decimal digits, the recommended style, if you include underscores, is to use groups of three
from the right.

End

8.32.31 Syntax (non-production): Real number

A real — specimen of Real — is made of the following elements, in the order given:

• An optional decimal Integer, giving the integral part.

• A required ‘‘. ’’ (dot).

• An optional decimal Integer, giving the fractional part.

• An optional exponent, which is the letter e or E followed by an optional Sign (+ or –) and a
decimal Integer.

No intervening character (blank or otherwise) is permitted between these elements. The integral
and fractional parts may not both be absent.

Informative text

As with integers, you may use underscores to group the digits for readability. The recommended
style uses groups of three in both the integral and decimal parts, as in 45_093_373.567_21. If you
include an exponent, E, rather than e, is the recommended form.

End

8.32.32 Semantics: Real semantics
The value of a Real is the real number that would be expressed in ordinary mathematical notation
as i.f 10e, where i is the integral part, f the fractional part and e the exponent (or, in each case,
zero if the corresponding part is absent).

	ECMA-367
	Eiffel Analysis, Design and Programming Language

	Standard
	ECMA-367
	Eiffel Analysis, Design and Programming Language

	1.1 Overview
	1.2 “The Standard”
	1.3 Aspects covered
	1.4 Aspects not covered
	2.1 Definition
	2.2 Compatibility and non-default options
	2.3 Departure from the Standard
	3.1 Earlier Eiffel language specifications
	3.2 Eiffel Kernel Library
	3.3 Floating point number representation
	3.4 Character set: Unicode
	3.5 Character set: ASCII
	3.6 Phonetic alphabet
	5.1 Standard elements
	5.2 Normative elements
	5.3 Rules on definitions
	5.4 Use of defined terms
	5.5 Unfolded forms
	5.6 Language description
	5.7 Validity: “if and only if” rules
	6.1 Name of the language
	6.2 Pronunciation
	7.1 Design principles
	7.2 Object-oriented design
	7.3 Classes
	7.4 Types
	7.5 Assertions
	7.6 Exceptions
	7.7 Genericity
	7.8 Inheritance
	7.9 Polymorphism and dynamic binding
	7.10 Combining genericity and inheritance
	7.11 Deferred classes
	7.12 Tuples and agents
	7.13 Type- and void-safety
	7.14 Putting a system together
	8.2 Syntax, validity and semantics
	8.2.1 Definition: Syntax, BNF-E
	8.2.2 Definition: Component, construct, specimen
	8.2.3 Construct Specimen convention
	8.2.4 Construct Name convention
	8.2.5 Definition: Terminal, non-terminal, token
	8.2.6 Definition: Production
	8.2.7 Kinds of production
	8.2.8 Definition: Aggregate production
	8.2.9 Definition: Choice production
	8.2.10 Definition: Repetition production, separator
	8.2.11 Basic syntax description rule
	8.2.12 Definition: Non-production syntax rule
	8.2.13 Textual conventions
	8.2.14 Definition: Validity constraint
	8.2.15 Definition: Valid
	8.2.16 Validity: General Validity rule
	8.2.17 Definition: Semantics
	8.2.18 Definition: Execution terminology
	8.2.20 Definition: Upper name, lower name
	8.2.21 Syntax (non-production): Semicolon Optionality rule

	8.3 The architecture of Eiffel software
	8.3.1 Definition: Cluster, subcluster, contains directly
	8.3.2 Definition: Terminal cluster, internal cluster
	8.3.3 Definition: Universe
	8.3.4 Validity: Class Name rule
	8.3.6 Definition: System, root type name, root procedure name
	8.3.7 Definition: Type dependency
	8.3.8 Validity: Root Type rule
	8.3.9 Validity: Root Procedure rule
	8.3.10 Definition: Root type, root procedure, root class

	8.4 Classes
	8.4.1 Definition: Current class
	8.4.6 Validity: Class Header rule
	8.4.7 Definition: Deferred class, effective class

	8.5 Features
	8.5.1 Definition: Inherited, immediate; origin; redeclaration; introduce
	8.5.3 Feature categories: overview
	8.5.7 Validity: Feature Body rule
	8.5.8 Definition: Variable attribute
	8.5.9 Definition: Constant attribute
	8.5.10 Definition: Routine, function, procedure
	8.5.11 Definition: Command, query
	8.5.12 Definition: Signature, argument signature of a feature
	8.5.13 Feature principle
	8.5.15 Syntax (non-production): Alias Syntax rule
	8.5.16 Definition: Operator feature, bracket feature
	8.5.17 Definition: Identifier of a feature name
	8.5.19 Definition: Same feature name, same operator, same alias
	8.5.21 Validity: Assigner Command rule
	8.5.22 Definition: Synonym
	8.5.23 Definition: Unfolded form of a possibly multiple declaration
	8.5.24 Validity: Feature Declaration rule
	8.5.25 Validity: Alias Validity rule

	8.6 The inheritance relation
	8.6.2 Definition: Parent part for a type, for a class
	8.6.3 Definition: Multiple, single inheritance
	8.6.4 Validity: Class ANY rule
	8.6.5 Validity: Universal Conformance principle
	8.6.6 Definition: Unfolded Inheritance Part of a class
	8.6.7 Definition: Inherit, heir, parent
	8.6.8 Definition: Conforming, non-conforming parent
	8.6.9 Definition: Ancestor types of a type, of a class
	8.6.10 Definition: Ancestor, descendant
	8.6.11 Definition: Proper ancestor, proper descendant
	8.6.12 Validity: Parent rule
	8.6.14 Validity: Rename Clause rule
	8.6.16 Definition: Final name, extended final name, final name set
	8.6.17 Definition: Inherited name
	8.6.18 Definition: Declaration for a feature

	8.7 Clients and exports
	8.7.1 Definition: Client relation between classes and types
	8.7.2 Definition: Client relation between classes
	8.7.3 Definition: Indirect client
	8.7.4 Definition: Supplier
	8.7.5 Definition: Simple client
	8.7.6 Definition: Expanded client
	8.7.7 Definition: Generic client, generic supplier
	8.7.8 Definition: Client set of a Clients part
	8.7.11 Validity: Export List rule
	8.7.12 Definition: Client set of a feature
	8.7.13 Definition: Available for call, available
	8.7.14 Definition: Exported, selectively available, secret
	8.7.15 Definition: Secret, public
	8.7.16 Definition: Incremental contract view, short form
	8.7.17 Definition: Contract view, flat-short form

	8.8 Routines
	8.8.1 Definition: Formal argument, actual argument
	8.8.3 Validity: Formal Argument rule
	8.8.4 Validity: Entity Declaration rule
	8.8.6 Definition: Once routine, once procedure, once function
	8.8.8 Validity: Local Variable rule
	8.8.9 Definition: Local variable

	8.9 Correctness
	8.9.2 Definition: Precondition, postcondition, invariant
	8.9.3 Syntax (non-production): Assertion Syntax rule
	8.9.4 Definition: Specification, subspecification
	8.9.5 Validity: Precondition Export rule
	8.9.6 Definition: Availability of an assertion clause
	8.9.8 Validity: Old Expression rule
	8.9.12 Definition: Unfolded feature list of an Only clause
	8.9.13 Validity: Only Clause rule
	8.9.14 Definition: Unfolded form of an Only clause
	8.9.15 Definition: Invariant of a class
	8.9.16 Definition: Hoare triple notation (total correctness)
	8.9.19 Definition: Check-correct
	8.9.21 Definition: Loop invariant and variant
	8.9.22 Validity: Variant Expression rule
	8.9.23 Definition: Loop-correct
	8.9.24 Definition: Exception-correct
	8.9.25 Definition: Correctness (class)
	8.9.26 Definition: Local unfolded form of an assertion

	8.10 Feature adaptation
	8.10.1 Definition: Redeclare, redeclaration
	8.10.2 Definition: Unfolded form of an assertion
	8.10.3 Definition: Assertion extensions
	8.10.4 Definition: Covariance-aware form of an assertion extension
	8.10.5 Definition: Combined precondition, postcondition
	8.10.6 Definition: Inherited as effective, inherited as deferred
	8.10.7 Definition: Effect, effecting
	8.10.8 Definition: Redefine, redefinition
	8.10.9 Definition: Name clash
	8.10.11 Definition: Relative unfolded form of a Precursor
	8.10.12 Validity: Precursor rule
	8.10.13 Definition: Unfolded form of a Precursor
	8.10.16 Validity: Redefine Subclause rule
	8.10.19 Validity: Undefine Subclause rule
	8.10.21 Definition: Effective, deferred feature
	8.10.22 Definition: Effecting
	8.10.23 Deferred class property
	8.10.24 Effective class property
	8.10.25 Definition: Origin, seed
	8.10.26 Validity: Redeclaration rule
	8.10.27 Definition: Precursor (joined features)
	8.10.28 Validity: Join rule

	8.11 Types
	8.11.5 Definition: Instance, direct instance of a class
	8.11.6 Base principle
	8.11.7 Base rule
	8.11.8 Validity: Class Type rule
	8.11.10 Definition: Base class and base type of an expression
	8.11.12 Definition: Expanded type, reference type
	8.11.13 Definition: Basic type
	8.11.14 Definition: Anchor, anchored type, anchored entity
	8.11.15 Definition: Anchor set; cyclic anchor
	8.11.16 Definition: Types and classes involved in a type
	8.11.17 Definition: Constant type
	8.11.18 Definition: Deanchored form of a type
	8.11.19 Validity: Anchored Type rule
	8.11.20 Definition: Attached, detachable
	8.11.22 Definition: Stand-alone type

	8.12 Genericity
	8.12.3 Validity: Formal Generic rule
	8.12.4 Definition: Generic class; constrained, unconstrained
	8.12.5 Definition: Generic derivation, non-generic type
	8.12.6 Definition: Self-initializing formal
	8.12.7 Definition: Constraint, constraining types of a Formal_generic
	8.12.9 Validity: Generic Constraint rule
	8.12.10 Definition: Constraining creation features
	8.12.11 Validity: Generic Derivation rule
	8.12.12 Definition: Generic-creation-ready type
	8.12.14 Definition: Base type of a single-constrained formal generic
	8.12.15 Definition: Base type of an unconstrained formal generic
	8.12.16 Definition: Reference or expanded status of a formal generic
	8.12.17 Definition: Current type
	8.12.18 Definition: Features of a type
	8.12.19 Definition: Generic substitution
	8.12.20 Definition: Generic Type Adaptation rule
	8.12.21 Definition: Generically constrained feature name
	8.12.22 Validity: Multiple Constraints rule
	8.12.23 Definition: Base type of a multi-constraint formal generic type

	8.13 Tuples
	8.13.3 Definition: Type sequence of a tuple type
	8.13.4 Definition: Value sequences associated with a tuple type

	8.14 Conformance
	8.14.1 Definition: Compatibility between types
	8.14.2 Definition: Compatibility between expressions
	8.14.3 Definition: Expression conformance
	8.14.4 Validity: Signature conformance
	8.14.5 Definition: Covariant argument
	8.14.6 Validity: General conformance
	8.14.7 Definition: Conformance path
	8.14.8 Validity: Direct conformance: reference types
	8.14.9 Validity: Direct conformance: formal generic
	8.14.10 Validity: Direct conformance: expanded types
	8.14.11 Validity: Direct conformance: tuple types

	8.15 Convertibility
	8.15.1 Definition: Conversion procedure, conversion type
	8.15.2 Definition: Conversion query, conversion feature
	8.15.7 Validity: Conversion Procedure rule
	8.15.8 Validity: Conversion Query rule
	8.15.9 Definition: Converting to a class
	8.15.10 Definition: Converting to and from a type
	8.15.11 Definition: Converting “through”
	8.15.13 Definition: Explicit conversion
	8.15.14 Validity: Expression convertibility
	8.15.15 Definition: Statically satisfied precondition
	8.15.16 Validity: Precondition-free routine

	8.16 Repeated inheritance
	8.16.1 Definition: Repeated inheritance, ancestor, descendant
	8.16.3 Definition: Sharing, replication
	8.16.4 Validity: Call Replication rule
	8.16.7 Validity: Select Subclause rule
	8.16.8 Definition: Version
	8.16.9 Definition: Multiple versions
	8.16.10 Validity: Repeated Inheritance Consistency constraint
	8.16.11 Definition: Dynamic binding version
	8.16.12 Definition: Inherited features
	8.16.14 Definition: Precursor
	8.16.15 Validity: Feature Name rule
	8.16.16 Validity: Name Clash rule

	8.17 Control structures
	8.17.3 Definition: Secondary part
	8.17.4 Definition: Prevailing immediately
	8.17.6 Definition: Inspect expression
	8.17.8 Definition: Interval
	8.17.9 Definition: Unfolded form of a multi-branch
	8.17.10 Definition: Unfolded form of an interval
	8.17.11 Validity: Interval rule
	8.17.12 Definition: Inspect values of a multi-branch
	8.17.13 Validity: Multi-branch rule

	8.18 Attributes
	8.18.2 Validity: Manifest Constant rule

	8.19 Objects, values and entities
	8.19.2 Definition: Reference, void, attached, attached to
	8.19.4 Definition: Object semantics
	8.19.5 Definition: Non-basic class, non-basic type, field
	8.19.6 Definition: Subobject, composite object
	8.19.7 Definition: Entity, variable, read-only
	8.19.9 Validity: Entity rule
	8.19.10 Validity: Variable rule
	8.19.11 Definition: Self-initializing types
	8.19.13 Definition: Self-initializing variable
	8.19.14 Definition: Evaluation position, precedes
	8.19.15 Definition: Setter instruction
	8.19.16 Definition: Properly set variable
	8.19.17 Validity: Variable Initialization rule
	8.19.18 Definition: Variable setting and its value
	8.19.19 Definition: Execution context

	8.20 Creating objects
	8.20.2 Definition: Creation operation
	8.20.3 Validity: Creation Precondition rule
	8.20.5 Definition: Unfolded Creators part of a class
	8.20.6 Validity: Creation Clause rule
	8.20.7 Definition: Creation procedures of a class
	8.20.8 Definition: Creation procedure property
	8.20.9 Definition: Creation procedures of a type
	8.20.10 Definition: Available for creation; general creation procedure
	8.20.12 Definition: Creation target, creation type
	8.20.14 Definition: Unfolded form of a creation instruction
	8.20.15 Validity: Creation Instruction rule
	8.20.16 Validity: Creation Instruction properties
	8.20.19 Definition: Properties of a creation expression
	8.20.20 Validity: Creation Expression rule
	8.20.21 Validity: Creation Expression Properties

	8.21 Comparing and duplicating objects
	8.21.1 Definition: Object comparison features from ANY
	8.21.5 Definition: Copying and cloning features from ANY
	8.21.6 Definition: Deep equality, copying and cloning

	8.22 Attaching values to entities
	8.22.1 Definition: Reattachment, source, target
	8.22.3 Validity: Assignment rule
	8.22.8 Definition: Dynamic type
	8.22.9 Definition: Polymorphic expression; dynamic type and class sets
	8.22.11 Validity: Assigner Call rule

	8.23 Feature call
	8.23.1 Validity: Call Use rule
	8.23.4 Definition: Unqualified, qualified call
	8.23.5 Definition: Target of a call
	8.23.6 Definition: Target type of a call
	8.23.7 Definition: Feature of a call
	8.23.8 Definition: Imported form of a Non_object_call
	8.23.9 Validity: Non-Object Call rule
	8.23.11 Validity: Export rule
	8.23.13 Validity: Argument rule
	8.23.14 Validity: Target rule
	8.23.15 Validity: Class-Level Call rule
	8.23.16 Definition: Void-Unsafe
	8.23.17 Definition: Target Object
	8.23.19 Definition: Dynamic feature of a call
	8.23.20 Definition: Freshness of a once routine call
	8.23.21 Definition: Latest applicable target of a non-fresh call
	8.23.27 Definition: Type of a Call used as expression
	8.23.28 Definition: Call Result
	8.23.29 Definition: Value of a call expression

	8.24 Eradicating void calls
	8.24.2 Definition: Object-Test Local
	8.24.3 Validity: Object Test rule
	8.24.4 Definition: Conjunctive, disjunctive, implicative; Term, semistrict term
	8.24.5 Definition: Scope of an Object-Test Local
	8.24.8 Definition: Read-only void test
	8.24.9 Definition: Scope of a read-only void test
	8.24.10 Definition: Certified Attachment Pattern
	8.24.11 Definition: Attached expression

	8.25 Typing-related properties
	8.25.1 Definition: Catcall
	8.25.2 Validity: Descendant Argument rule
	8.25.3 Validity: Single-level Call rule
	8.25.4 Definition: System-valid, valid
	8.25.5 Definition: Dynamic type set

	8.26 Exception handling
	8.26.1 Definition: Failure, exception, trigger
	8.26.3 Validity: Rescue clause rule
	8.26.4 Validity: Retry rule
	8.26.6 Definition: Rescue block
	8.26.8 Definition: Type of an exception
	8.26.11 Definition: Ignoring, continuing an exception

	8.27 Agents, iteration and introspection
	8.27.1 Definition: Operands of a call
	8.27.2 Definition: Operand position
	8.27.3 Definition: Construction time, call time
	8.27.4 Syntactical forms for a call agent
	8.27.7 Definition: Target type of an agent call
	8.27.8 Validity: Call Agent rule
	8.27.9 Definition: Associated feature of an inline agent
	8.27.10 Validity: Inline Agent rule
	8.27.11 Validity: Inline Agent Requirements
	8.27.12 Definition: Call-agent equivalent of an inline agent
	8.27.14 Definition: Use of Result in an inline function agent
	8.27.15 Definition: Open and closed operands
	8.27.16 Definition: Open and closed operand positions
	8.27.17 Definition: Type of an agent expression
	8.27.18 Definition: Agent Expression semantics
	8.27.19 Definition: Effect of executing call on an agent

	8.28 Expressions
	8.28.2 Definition: Subexpression, operand
	8.28.5 Operator precedence levels
	8.28.6 Definition: Parenthesized Form of an expression
	8.28.7 Definition: Target-converted form of a binary expression
	8.28.8 Validity: Operator Expression rule
	8.28.10 Definition: Semistrict operators
	8.28.13 Validity: Bracket Expression rule
	8.28.14 Definition: Equivalent Dot Form of an expression
	8.28.15 Validity: Boolean Expression rule
	8.28.16 Validity: Identifier rule
	8.28.17 Definition: Type of an expression

	8.29 Constants
	8.29.2 Validity: Constant Attribute rule
	8.29.4 Syntax (non-production): Sign Syntax rule
	8.29.5 Syntax (non-production): Character Syntax rule
	8.29.6 Definition: Type of a manifest constant
	8.29.7 Validity: Manifest-Type Qualifier rule
	8.29.9 Definition: Manifest value of a constant
	8.29.11 Syntax (non-production): Line sequence
	8.29.12 Syntax (non-production): Manifest String rule
	8.29.13 Definition: Line_wrapping_part
	8.29.15 Validity: Verbatim String rule
	8.29.17 Definition: Prefix, longest break prefix, left-aligned form

	8.30 Basic types
	8.30.1 Definition: Basic types and their sized variants
	8.30.2 Definition: Sized variants of STRING

	8.31 Interfacing with C, C++ and other environments
	8.31.2 Validity: Address rule
	8.31.3 Address Type rule
	8.31.7 Validity: External Signature rule
	8.31.10 Validity: External File rule
	8.31.13 Validity: C external rule
	8.31.16 Validity: C++ external rule
	8.31.19 Validity: External DLL rule

	8.32 Lexical components
	8.32.1 Syntax (non-production): Character, character set
	8.32.2 Definition: Letter, alpha_betic, numeric, alpha_numeric, printable
	8.32.3 Definition: Break character, break
	8.32.5 Definition: Expected, free comment
	8.32.6 Syntax (non-production): “Blanks or tabs”, new line
	8.32.8 Syntax (non-production): Free Comment rule
	8.32.9 Header comment rule
	8.32.10 Definition: Symbol, word
	8.32.11 Syntax (non-production): Break rule
	8.32.13 Definition: Reserved word, keyword
	8.32.14 Syntax (non-production): Double Reserved Word rule
	8.32.15 Definition: Special symbol
	8.32.16 Syntax (non-production): Identifier
	8.32.17 Validity: Identifier rule
	8.32.18 Definition: Predefined operator
	8.32.19 Definition: Standard operator
	8.32.20 Definition: Operator symbol
	8.32.21 Definition: Free operator
	8.32.23 Special characters and their codes
	8.32.24 Syntax (non-production): Percent variants
	8.32.26 Syntax (non-production): String, simple string
	8.32.29 Validity: Integer rule
	8.32.31 Syntax (non-production): Real number

