| INTERNATIONAL

aniafrti ECMA-372
T oo v s

Rue du Rhone 114 CH-1204 Geneva T:.+41 22 849 6000 F: +41 22 849 6001

sechma

Ecma International

Standard
ECMA-372

15* Edition / December 2005

Rue du Rhéne 114

C++/CLI Language
Specification

CH-1204 Geneva T/IF: +41 22 849 6000/01

www.ecma-international.org

Table of Contents

Table of Contents

e d o]0 [UTox (o] o (NSRS xii
IO ol o] o -SSR 1
Y Ofo] g1 0] @ 4 1T o1 RSP RRRRRO 2
I N o] g o Y=l o1 (L] o= PR 3
LD L {1 T ([0 OO RO URRORROPRO 4
5. NOTAtiONAl CONVENTIONS.eiitiiitiiciece ettt e et e et e st e e ebe e sbe e sbeesbaesabesabestbeenbeenbeebeearee e 7
6. ACronymMs and abbIEVIATIONSc.cccviiiiii i e e e te e s be et et e ste e e neeeneeereenree e 8
A €T o LT = Vo (= Tod]] o TSR 9
8. LANQUAGE OVEIVIBW......euiiiitiitiite etttk b ettt bbb bbbt bbbt e ettt b b 10
8.1 GEttING STATLEA ..veevvieitieieieiii ettt ettt et e et e et e e bt e et e s taestbesebeesbeesseessaesssessseasseasseesseesseesssenssessseessenssens 10
B2 T PES ettt ettt ettt ettt ettt ettt bt e e bt e bt e e et e e bt e e e bt e e bt e e ea bt e e bt e e sabeeebaeeeabeesbaeesares 10
8.2.1 Fundamental types and the CLI..........c.ooouiiiiiiiiiii ettt e b e e eeaee s 12
B.2.2 CONVETSIONS ..eeeiuvvviieitieeeeeetteeeeeeeeeeeetteeeeeeaaeeesessaeeeseasaeeesessaeeeeessaeeesssseeessassaeeessssreessssreesssrreeessrres 13

8. 2.3 CLI AITAY LYPES uvveeeurrerreeeeiieeieeeeieeette ettt esteeetaeesnseessaeeasteesnsaeaasseesnseesnseeesnseesseeesnsessnseesanseesnseenn 13
8.2.4 Type SyStemM UNITICATIONeeeuieriieeiieeieeie ettt ettt ettt e st e st e e teebe e bt ebeesbeesaeesseesanesnseens 13
8.2.5 Pointers, handles, and NULL..............oooiiiiiiiiiiiiie e e e e aaaanee s 14

FIRC I 1 2111 1<) (1 ¢~ SRS 16
8.4 Automatic MEMOTY MANAZEIMNENIL.ecrveerueeruierieeteerteesteeseesuteeeeeseenseesseesstesnsesseesseesseesssesnsesnsesnseenses 17

B S X PTESSIONS ...c.uviieiiieiitieetteeetee ettt estteeetteessseeesseeeasseeesseeeasseeassaeassseeasseeassseesssaeanssaessssesssaesnsseenssassnsseenssen 18
IR P 115311 1) 115 U 19
8.7 DICLEGALES ...evveeuveeiieieeeiee et et et et et et e seee et e esbe e bt e teesseessseasbean s e e s s e et e e R aeeRaeasbeanbeens e e seeseennbeanseenseenses 19
8.8 NAIVE AN TET CLASSES .uvvvveeiiiiieetieieeee et e e e e et e e e e e e et eeeeeeesseeaaaeeeeesseessnraaeeseeeeaans 20

IR T O 5 17 21 B £ =) (6 TSR 20
8.8.2 INILONLY FIEIAS ..e.veiieiiiiieeiieie ettt st st e et ebe e e e seessaessseesseenseensaessaessaessnennseans 21
B3 FUNCHIONS.eeiiieiieeeeeeeeee ettt e e e e e ettt e e e e e seaaaae et eeeesssanaaaaeeeeesssasnnstaseeeesssssnnnraaneeeas 21
B84 PIrOPEITICS .eeeuvveeerieeiieeitee ettt eeiteeette ettt e eveeestbeessbeeestaeessseesasaeesssaeassaeessseassseeassseesssasessseeasseesssesnssees 21
LIRS T T D<) 1 =SOSR 23
8.8.6 STALIC OPETALOTS ...euvveeuiieiieiiertieeiieete et et e bt eteesteesteesatesateeaseanseeseesseesseasnsesnseenseenseenseenseesseesanesnsenns 24
8.8.7 INSTANCE CONSIITUCTOTS. . .uuvuvriiiiieiiiiiiiiteeeeeeeereeeeeeeereeeeeeeeeeeeeeeereeeeeaeeeeereereeseererarrrreerrerrreereererrrerererereree 25
8.8.8 Destructors and fINALIZEISoocvviiiiiiiiiicic ettt e e e e e et e e e eanaees 25
8.8.9 StALIC CONSIIUCTIOTSuvvieieiereieeeeteee e ettt eeeeereeeeeereeeeeetaeeeeeetaeeeeenareeeeenareeseetreeeeesreeeeesreeseenareeeeesreas 26
LRI KU 641 4155 w17 1 Lo SRR 27

8.9 VALUE CLASSES ...veeiieeiieeeieeie ettt ettt e e e ettt e e et e e e eaaaeeseaaeeeeeateessetsseesennaeesesnnaeeesannreeesennreeeean 28

LI L 1<) Lol OO 28
LI O = 1015 s TP RPPPPPRPRPRRRRE 30
8.12 Namespaces and aSSEIMDIIEScccviiiiiiiiiiieeiiiectie ettt e eiee et eeteeesebeesbeeestaeeseseeessaeessseessseesssseensnes 30
813 VETSIONING ...evvieirieirietieiiesteeteereeseeteesteestaeesbeesseesseessasssessseasseasseesseesssessseasseasseesssesseesssesssessseessenssens 31

oI B NN 5 4 L0111 <SRRI 32
I I € 15115 (o7 SRR 33
8.15.1 Creating and CONSUMING ZENETICSvevvierurerrerreareerreesseesseesseesssesssesseesseessesssessssesssesssesssesssessseans 33
B.15.2 CONSIIAINTSocvvviiieiiieeeereee e ettt eer e e e e e e e e e e e eeaaeeeeeeareeeeesareeeeeetseeeeerareeseesreeeeensreeeeenreas 34
8.15.3 GENETIC TUNCHIONS ...vvvveiiiiieeeeeeiee ettt ettt e e e e e e e a et e e e e e e e sesaaaeeeeeessssansareeeesesaennnraaneeeas 35

0. LEXICAI STFUCTUNE.....oeeieee ettt et e e et e e st e e e ebe e e ebbe e e beeeebeeebeeestbeeesteeesateeanns 37
L B 0] S o TSRO 37

L B O 0 (< 11 1< ¢SRS 37

0. 1.2 KEYWOTAS ...eevvieeieeiieeiiteieeteesteesttesitessteeste e be e saesssessseanseesseensaessaesssessseasseesseessaesssesssesssesssesssennsennsees 38

il

C++/CLI Language Specification

L B N 5 1<) 1 OSSPSR 39
9.1.4 Operators and PUNCLUALOTSc.eccveerreereeriiereesreereereeseeseesseesseessaesseesssesssesssessseesseessassssessesssesnsens 40
O T T Tl o] TolT o £SO SUSPURSPR 41
TO. T ASSEIMDIIES.uviiiiiiiiiie ettt ettt e et e e e te e et e e tb e e e tee e tbeesabeeesseesssesensaeasseeansaeansaeensseeasseeensseenanes 41
10.2 APPLICAtION ©NEIY POINL....eiiitiiiiiiieiiieeiieeiteeeteeeteeesteeeteeesebeesseeesseessseesssaeessseeasseeessseessseessseessseessses 41
10.3 Importing types from aSSEMDIIES.........cccuiiviiiiiiieere et eeeees e steeresbeebeebeeseesbeestaesesesssesssessseesseesses 41
10.4 RESEIVEA NAIMESecuvieuvieiieieieiieeieeieesteesteesttestessseesseesseessaesssessseasseasseessaessaesseesssesssesssesssesssesssesnseensens 42
JO.5 MEIMDETSeeuviieiiie ettt et ettt e e vt e et e e stveeeateeeeabeeeateeeaseeeabeeesseassseeensseesssesansaeenssaesnsaeesseeasseeensseenases 43
10.5.1 Value Class MEMDETS.......ccc.uiiiiiiiiiiiciiieciee et eetee et e eete st e et e e sbeeetaeessbeessaaeessseessseeessessssseensses 43
10.5.2 DEle@ate MEMDETS.......ccuvereviiieeiieiieesieeseestestesteeteeseeseesseesssesssessseasseesseesseesseesssesssesssessseenseensees 43
1O.6 MEMDET ACCESS ...uvvieeriieiiieitieeeieeeeiteeeteeeteeeseteeeteeessaeesesesesseessseasseseasseesasesasseeasseeansaeesseeassesesseessses 43
10.6.1 Declared aCCeSSIDILILYieiviieciiieeiieeiie et eciee ettt etee e e et e e staeesareeeteeesebeessseeeseseeesesennneensnes 43
LA Vi s T Lo 3| o J S 44
I o T o] o[ty OO POV R PR ORI PPN 48
11.1 Conditional INCIUSION.ceviiiiiiiieieerteereesee e sre ettt e e e e e steesteestaessaeesseesseesseesseesssesssesssessseenseenses 48
11.2 Predefined MAaCIO NAMES..........cccviiiiiieiieeciee ettt e etee ettt e e teeeteeesabeeebeeestaeesebeeensaeessseeenseesaseeensseenanes 48
I 1Y/ o T SRR 49
L2.1 VUG £YPCS ettt ettt ettt et ettt e st e st et et et e b tesbtesaeesebeeateenteeseesseesseeseesneesnteenseenseenseas 50
12.1.1 FUNAAMENLAL EFPES ...eieirieiiiiiciiee ettt ettt e et e et e e e teeetteeesbeeestseessseeesssaesssesessseessseenssesansseensses 50
12.2 CIASS LYPES c.vveeurienrrenteeiteseeesteeteeteesseesseesseesseesssessseasseasseesseessaesssesssessssasseessessseessessseesssesssesssenseesseensens 51
12.2.1 VAIUE CIASSES ...uuviiiiiiiiiieciie ettt ettt ettt et e et e e et e e e bt eeabeeeabaeetaeesaresessseeesseeenseeessesenseensnes 51
12.2.2 RET ClASSES....uiiiiiiiieiiiecite ettt ettt e ettt e e et e e s bt e e e beeestbeessbeeestaeessaeessaeessseessseesssseessesensseensses 51
12.2.3 INEETTACE CLASSES ..ovvvetieiiiierieiieiiesieesteestestestveesbeesbe e te e taessaeesbeesseesseesseesseesssesssesssesssesssenssenssensees 51
12.2.4 DICLEGALE LYP@S ...vieurierierieeriieiieettesteesteesteesresereasseesseesseesseesssesssessseasseessaesseesseesssesssesssesssesssennseensens 51
L B Tod 1 1103) 0 1< OSSP 52
G TR A 74 o 1< PR 52
12.3.2 POINLET LYPES weeuvrereririieiieriierieesresteeteeseeseesseesseessseasseesseeseesseesssesssesssesssesssesssessssesssesssessesnsesnsees 52
12.3.3 HANALE LYPES weouvrieiieiiieieeiteeite ettt ettt ettt e sttt e et e e e bt e s bt e saeesatesateenbeebeesseesseesstesaseenseenseenseas 52
12.3.4 NNUILEYPC ettt ettt ettt et ettt et e bt e st esee s st enseeseeseenseeseenseeseensasseenteneensesseenseseeneenes 53
12.3.5 RETCIENCE LY PES e urieiiiiieiiieiieiie et et esteesttesereeereesbeesseesseessaessseasseesseassaeseesssesssessseassesssenssenssenssees 53
12.3.6 INLETIOT POINEETS. ... eeteetietiesiieeiieete et esteeettestteeuteeabeebeesseesseessteenteenseenseenseesseesneesnsesstesnsesnseenseenseas 54
12.3.7 PINNINGZ POINEETS ..eeuvviieirieiieeeitieeiteeestteesseeeseeessseessseessseessesessseesssseessseesssssesssesssssssssssesssesssssesssses 55
12.3.8 INALIVE QITAYS ..eeuuveeeeieeeiiieeieeesteeeteeeseteesseesseeessseesssseessseesssesassseesssseessseessseeasssesssseesnsssessseesssseensses 57
12.4 TOP-1eVE] tYPE VISIDIIILY ...eovviiieiiiiieieeiiecieesite ettt ettt st e st e s be e e este e saesseessnesssesnseenseensens 57
L3, VAKTADIES ...ttt 58
L (e A L OSSP 58
13.1.1 Standard CONVETSIONScccvviiruieeetieeiriesteeesteesteeestreesseeeseeessseessseessseessseeesssesssssessseasssessssseessses 58

L 0 B B4 o) (113 () PR 59
13.1.3 REference INItIAIIZETSccviiieeiieieeieesieseesteeteete et e seesseesteestaessseesseesseesseeseesssesssesssesssennseeses 60
13.1.4 TEMPOTATY ODJECLS .uvieutietieriieeiieeie et et e st e stte et e et ebe et esbee s st e steesatesaseeaseebeesseesseesntesneeenseenseenseas 60
13.2 File-scope and namespace-ScoPe Variablesccceiciieeriieriiieiiie e ciee ettt evee e e eree e seve e 60
13.3 DiIrect INTHALZALIONc.vveieiiiieiieeieeie et eseesteste e et et e e e et e staessaessaeesseesseesseesseesseesssesssesssennsesnseenses 60
O 0] 01V] 0] LTSS P TP P PP PR PSP PPPRPPIN 62
14.1 CONVETSION SCQUETICES ...euvverererereerreereesseesseesseesssessseasseesseesseessessssssssessssssseessessseessessseesssesssesssesssesssesssens 62
14.2 Standard COMVEISIONSeeiiiieitireitieeitieeetteeeteeesteeestteeeereeessseesseeeeseeessseeesesasssesssesensseensseeassesesseesnses 62
14.2.1 HANAIE CONMVEISIONScvvieitieeiieeetieesiteeeteeesteeesseeesteeessseeasesessseessseessseessesssssessssssessseesssesasssesssses 62
14.2.2 POINLET CONMVEISIONS....ccuvietierteeriresteaseesseesseesseesssesseaseesseessessssesssessssassesssessseesssssssssssesssesssesssesssens 63
14.2.3 LVAIUC CONVETSIONSuvvieiiriieiiieitieeitteesteeesteeesteeesteeessteeessseesseeessseesssesessseessesessssesnssesssesensseessses 64
14.2.4 INteZIal PrOMOLIONSviiiiiieiiieeetieeetteeeteeeeteeesibeeebeeestbeesseeessseessseessseeasssaesssessssseessseesssesssseessses 64
14.2.5 String TIteral CONVETSIONSccveevieriieriieriiesresreereeteesseesseesseesseesssessseasseesseesseesseesssesssesssesssesssesssees 65
14.2.6 BOXING COMVETSIONS. ...ccuveetierieerereraeateeseesseesseesseesssessseeseesseesseessesssssassesssesssesssessssesssesssesssesssesssees 66

v

Table of Contents

14.3 IMPLICIE CONVEISIONS ..vvieuvieiieieieeteeieesteesteesttestesreasseasseesseesseesssesssessseassesssessseesssesssesssesssesssesssesssesssens 66
14.3.1 Implicit constant eXPresSiON CONVETSIONSecuvieveerreerseersrerresseesseesseessaesseessaessesssesssesssessseessesssees 66
14.3.2 User-defined impliCit CONMVETSIONSc..eruerteriiriiiiniieienieniteie sttt ettt sttt s te e ebe s enee 66
14.3.3 B00lean EQUIVAIEIICEcccvviviieiiiiiiicie ettt ettt st stae s aaeesbeesbeebaessaessbesssessseessaesnens 66

14.4 EXPIICIE CONVETISIONSveeuvieiieriierireeieeteesteesteesttesssessseasseesseesseessaesssessssassesssessseessessssesssesssesssesssessseessens 67

14.5 User-defiNed CONVETISIONScccuvieiiieiiieeiiieeeieeeeteeeetteeereeeetteesaeeseteeeseseesaseeesseeseseeensaeessseesssesensseenanes 67
14.5. 1 CONSLIUCEOTS ..cuttieieiuieeiieettesteestteette et e bt et e et e e sbeesueeeaeeeaeeeabe e beesbeesheesaeesateeabeebeenseeaneesaeeenteenseensean 67
14.5.2 EXplicit CONVErSION fUNCHONSviiviiiieriieiieireetieeteeteeieeseesresereesseesseesseesseesssesssesssesssesssesssesssees 67
14.5.3 Static cONVETSION fUNCHIOMNSc..eeiirtieieieetteteete ettt ettt sttt ettt ettt et b et e sbeeseeneenbesaeenee 67

14.6 Parameter array CONMVETSIONS.uieiuieerireerreeeteeesreesseeesseeessseesseeassseessesassesessseesssesessssesssessseesssseessses 67

14.7 NAMING CONVENMEIONSutetieiierteeueeteesteteettetesteeatesteeseeteeseeseaseenseaseeseenseaseeneeaseeneeaseeseensensesseensenseeneenes 68

15, EXPIESSIONS ...tttk bbbt h bk bbbt h R bR bbbt b et b bbb 70

15.1 FUNCLION MEIMDETSeiuiiiieieeeeeteie ettt ettt ettt teste et e e eae et e stessee s e eseenee st eneensesseenseseeeneenseeneenes 70

15.2 PriMAry @XPIESSIONS. . ..veeveerererererteeteeteesseesseesseesssesssessseesseesseesseessessssssssesssessseessesssessssesssesssessseessesssens 71

15.3 POSHIIX @XPIESSIONSvviiuiiieiiieeiieestieetteesiteeeteeestteestbeeestaeessseessseeesssaeassesessseessseeassseessseesseessseessseensses 71
15.3.1 Subscripting and INAEXEA ACCESS.......ccviiriiiriierieiieireereereereereesreesseesraesresssessseesseesseesseesseessesssees 72
15.3.2 FUNCHION CALL ...ttt ettt et et b et e e sbe et e e bt et e b eaeenee 72
15.3.3 Explicit type conversion (functional NOtation)...........c.cerveerierierieiireiieee et 72
15.3.4 Class IMEINIDET QCCESS. . cuuueureiutieutteiteenttertiesttesiteeateebe e bt esbeesbeesbeeeueeeateemteebeesbeesbeesseesmtesatesnteenseenseas 73
15.3.5 Increment and dECTEIMENLccuiitirierierieeieete ettt ettt sttt et et sb et e sttt etesbe et et e besaeenee 73
15.3.6 DYNAIMIC CASL..cuutiiuiieiiieiietiesite sttt ete et et e st esttesatesabeebeenseesbeesstesseesatesaseenseeaseesneesasesntesnsesnseanseensens 73
15.3.7 TyPe 1dentifiCAtIONccuviiiiiieiieeciie ettt etee ettt e et eesebeeetaeestbeeesbaeessseesssseesneessesessseensnes 74
15.3.8 SEALIC CASE ..ottt ettt st ettt et e bt e s bt sbe e sat e sat e e bbbt e bt sbe e et et eaeen 75
15.3.9 REINEEIPICE CASE ..eeuvievieriiereieiieeieesieesteesttestesetessteesseesseesseessaesseesssesssessseesseesseesseesssesssesssesssennseessees 76
15.3. 10 COMSE CASE..uvtiiiiiuiiieeeiiieee ettt e e et ee e ettt e e eetteeeetteeeeasesaeeeasssaeeeassseeesassssaesasssasesassseesssssseesssssseasnnnes 76
LT D T N (o T SRR 76

15.4 UNATY ©XPIESSIONS ...vieuvieuvierieerererreateeseesseesseesssessseassessseesseesseesssesssessseassesssesssesssessssesssesssesssesssessseensens 77
I5.4.1 UNATY OPETALOTS. .. .eiitietietierieerite et et et et e st e st sat e et eae e bt esbeesaeesaeesateeateebeenbeesaeesatesueeemeeenseenneen 77
15.4.2 Increment and dECTEMENLc..eiiuiiiiiiiiiit ettt ettt et esaeesate st st e bt enteeneeeeeas 79
LT B /<70 SRR 80
I5.4.4 NEW ..ueitieieeie ettt ettt et ettt et et e e st e be et e essebeessenseeseesse s e essenseeseensenseassenseessensesseensensesseensenseeseenns 80
I5.4.5 DIBLELE ...ttt ettt ettt et e b e bt bt e e h et e a et et e e bt e ebe e ehe e bt e ehteeaeeeateenteeaean 80
15.4.6 THE GCNEW OPETALOT.....c.vieviesieerereereereeteesteestreseseasseesseesseesseesssesssessseasseesseesseesssssssesssesssesssessesssens 81
15.4.7 THe thrOW ©XPIESSIONuviivieiierierieertreraesresreasseeseesseessaesssesssessseesseessaessessseesssessseassesssesssenssesssens 81

15.5 Explicit type conversion (Cast NOLALION)ccueeuieiierieeriientienttesteeteeteeteesteesteesseesstesneeenseeneeenseenseas 81

15.6 AQQItIVE OPETATOTSevieeiiieciiieeiieesteeeteeeiteeebeeetreestbeeesteeessseessseaassseessseeassssesssaeassaeessseessesasseesssseensses 82
15.6.1 Delegate COMDINALIONevcveeiierieerieesiesreeteeteeteeseesseessaesssesssessseasseesseesseesseesssesssesssessseenseessees 82
15.6.2 Delegate TEMOVALcocuiiiiiiiiiiie ettt ettt ettt st e et e te e beesaeesatesnseeabesneeenteenseenneas 82
15.6.3 String CONCALENALION.ecciuvierrieeetieeitieeitteesteeestteesbeeeseeessreeasseeessseessseeesssaessesesssessseesssesassseessses 82

15.7 SHIft OPEIALOTS ..ecvvieiieiiiiiieeiieete ettt et et e st eeaesebeesbeesbeesse e saessaessbeasseasseesseesseessaesssasssessessseasseessenssens 83

15.8 Relational OPEIALOTS.......eivieieeiieiieieesteestesiteeteeteeste e seesseessaesssesssessseesseesseesseesseesssesssesssesssesssenseensens 83
15.8.1 Handle eqUality OPETALOLScccveeererierrieeiieeiteeeieeestteeereeestreessseeessseessseessseaesssessssssessseesssesasssesssses 83
15.8.2 Delegate eqUality OPEIALOTS......cc.iivvieriierierierreereereesseesseesseesseesssesssesseesseesseesssesssesssesssessesssesssees 84
15.8.3 SHINE CQUAIILYecuvieiieiiesie ettt ettt et e st e st e et et et e e teesseessbeesseesseessaesseesssesssesssesssesssennsennses 85

15.9 LOZICAl AIND OPETALOTeiuiiiiiieiieeieeteesieeeteeeiteete et et ete e beesteesatesseesateenseenseeseesseesnsesnsesnsesnseenseenseas 85

15.10 LOZICAL OR OPCTATOTuvieeiieeiieeciiieeieeeiteeeteeetee e tteesreeestseessseasseeessseesssaeasseessseesssesensseessseeesseensses 85

15.11 CONAItIONAL OPEIALOTveevieieieeeieeteeteesteesteesresreeebeesreesseesstesseesssessseasseesseasseesseesssesssesssesssenssessenssees 85

15.12 ASSIGNIMENE OPETALOTSvveeeeeuiienieeteerteerieestteeteeteeteeseeseesseesstesasessseenseeseesseesseesseesnsesnsesnsesnseenseensees 85

15.13 CONSLANT EXPIESSIONS .uvvieeerireirierrieestreesreeeteeessseesseeassseesseesssesassseesssessssssesssessssssessssessssesssessssseessses 86

15.14 Property and eVENt TEWIILE TULESccueeiieiieiieere et eteeteseesteereereesseesteestaestaestaesssessseassessseesseesses 86

Y r= =T 0 4[] o £ TSRO P TP T PP TR URTPRPRPRPRTO 89

16.1 SEleCtion STALEITIEIILSeeiuertieietietieieet et e sttt ce ettt e ettt et e s st et e steeseenee et e eneesseeneesesseeneenseseeensenseeneenes 89

16.1.1 The SWItCh STALEIMENL.......ccviiiiiiiiiii ettt ettt et et eeeb e eteeesebeeebeeesabeeeseeeeseeesesesneensnes 89

C++/CLI Language Specification

A LS =110 B P2 10 00 1 0 L SR 89
16.2.1 The fOr €aCh StAtEMENLc.vviiiiiiiieeeeieee ettt eee e e et e e e et eeeeeaaeeeeeeareeesesaaeeeseeareeeeennes 89
16.3 JUMP SEALEIMIENTS. ...ceeuiieiitieiiieeiite ettt ettt ettt ettt e sttt e bt e e sab e e s bt e e sabeesabteeabbeesabeeebeeebteenateesabeeesares 91
16.3.1 The Break StAtEIMENTccoivuvviiiiieiieeeieeee et ettt ettt e e ettt e e eette e e s esrtaeeseesteeeseesaeeesseneeessrnreeessnnes 91
16.3.2 The CONTINUE StATEIMENTvvvieieiriieeecieeeecereeeeeeteeeeeeteeeeeeeteeeeeeteeeeeenteeeeeesneeeeeseeeeeesreesennreeeeennes 91
16.3.3 The return STATEIMEITeeveiiiiiiiieieieeeee et e et e e e e e e e et reeeeeeesesaaaeereeeesssssnnreeeeessssannenes 91
16.3.4 The ZOt0 STALEIMENLc.viieiiieiiieeiieeeteeeite et eeetteeetteeeteeesebeeesbaeessbeessseeesseesaseeesseesnseessesesseensses 91
16.4 TRE Y DIOCK .. eiitiiieiieiiietiecee ettt ettt e b e eb e e b e es e e bt e saaestaeasbeesbeesseesseasssesssesssessseesseessansses 91
A N - 10 1T 0 Lo T T O TR P PP UPR PP 93
17.1 RESEIVEA NAMESPACES ...eevveerererieieeieesieesieesteestesseaseasseesseeseesssesssessssassesssessseessessseesssesssesssesssesssesssens 93
S T 1 (o1 (T LSRR 94
18.1 <cstdarg>-style variable-argument LiStS............ccveeuieriierierierieiie sttt eeeenseennees 94
18.2 INAIME LOOKUD ...eiueieiiteiieeie ettt ettt ettt ettt s et et e e et e e sbeesbeeenteeabesaseenbeeseesseenneesnsesnseenseenseas 94
18.3 OVETIOAd TESOIULION ...ttt e e e e et e e e e e s et aaeeeeeeeseensnaaeeeeeessesnnaraseeeeas 94
RO T 0 L] e 2V) - S PSSR 94
18.5 IMpOrting Native TUNCLIONS.........eiiieiiieiieitiesieeeie ettt te sttt ete e te e teesteesaeesnbesabesneesnseenseenseas 96
18.6 NON-MEMDET TUNCHONSeeeiiiiiiiiiiiiiec ettt eeee et e e e e e ee et e e e e e e e seaaaaeeeeeeesssasaaareeeessesnsarerereeas 97
TR AN g L0111 == 97
R O P T T =T o [0 W g 1T g] 0 1=] SRR 98
19.1 Class AETINITIONSveeieeureieeeireieeeeieee et e e et e e et e e eeeaeeeeeeaaeeeeeeaaeeeeenaareeeeessreseenssreeeeensreeseesreeeeanrees 98
19.1.1 ClaSS IOGITIETS .coooiiieeieeeeieee ettt e e ettt e e e e e et eeeeeeessesnaaeaeeeeessessnsareeeeeesesannnnnes 99
19.2 ReSErved MEMDET NAIMIEScooviiiiiiiiiee ettt eeeeeee et e e e e e e e eeaaeeeeeeeesssssaaeeeeeeessenararrreeessnsnssraeneees 100
19.2.1 Member names 1eserved fOr PrOPEITIES......c.vcvvieriercrerreerierrieseeseestesreesreeseesseesseessnesssessesssenns 100
19.2.2 Member names reSErved FOI EVENTScccuviiiiiiiiiiieiieie et eeereee e e e e e e eanree s 101
19.2.3 Member names reserved fOr fUNCHONSooiiiiiiiiieiiee et e e e e e s nanes 101
19.2.4 Possible collision with reserved property and event NAmMES............ccveeeveevreereervesrencreeseesseesseens 102
RS D 172111 10 o <) ¢ DRSSO 103
ISR 0 o Vx5 (o) s TR 103
19.4.1 OVEITIAE TUNCHIONS ...evvvvviieieiieeiiieieeee ettt e ettt e e e e e e et e et e eeeseeesaaaaeeeeeeseessaaaeeeeeeessennnnes 104
19.4.2 Sealed fUNCHON MOAITIETiiiiieiiiiiciiiie ettt e eeatae e e eaaae e s eeataeeseeaaaeesennareeeas 107
19.4.3 Abstract function MOAITIETuvvviiiiiiiiiieiiiie ettt e e e e e e e eaae e e e e e e s sennnanes 107
19.4.4 New funCtion MOGIIIEToooiiiiiiiiiie et e e e e e e e e e e e eaaaaaeeeeessennnanes 108
19,5 PrOPEILICS ..cuvveuiveeiiieeteeteesteesttesttesteesbeesbe e teesttessbeasseessaessaessaesssessseasseasseasseesssesssassseassesssansseesseesssessseans 109
19.5.1 Qualified names of properties and EVENLSccuercverirrrreerieeriereesteseesreereeseesseesseesseessnessseans 110
19.5.2 Static and INSTANCE PrOPETLIES.eeruierieetreiteertiertierteeteeteeteesteesteesatesaaeeseenseeseesseesseesssesanesnseens 111
19.5.3 ACCESSOT TUINCHIONS ...vvviveieiee ettt e ettt e e e et e e e e e e et eeeeeeseeesaaaaeeeeeeseensaraeeeesessennnnes 111
19.5.4 Virtual, sealed, abstract, and override accesSOr fUNCLIONSooceuvevivieeiiiiiiiiieeeeeeeeeeiieeeeeeeeeeens 113
19.5.5 Trivial SCAlAr PIOPETLIES ...cveeruirreiieiieeieeieertteetieeite et et et e bt e teesteesatesaaesabeebe e seesseesseasseesanesnsenns 114

| RSO AT oL 115
19.6.1 Static and INSTANCE EVENLSceivvviiiiiiiieeieiieeeeeeieeeeeeteeeeeeaaeesesaeeesessareessessreesssseeesesaressssnnreeens 116
19.6.2 ACCESSOT TUNCHIONSuvviiiiiieiieecieie ettt e et eete e e eete e e eeaee e e eeaeeeeeenareeeeenareeseensreseensaeeseensnreeean 116
19.6.3 Virtual, sealed, abstract, and override accessor fUNCtIONScccvvveviieiiiiiiiiieieeeeeeeieeeeee e 117
19.6.4 TTIVIAL EVENLS ..ovvvviiiiieieiie ettt e ettt e e ettt e e ettt e s eateeesesaeeesessaeeesesssaeesesnaeesssnsasessanereeean 117
19.6.5 EVENT INVOCALIONccvvvieeeereeeeeeiieeeeeeieeeeeeteeeeeeteeeeeeaeeeeeeaseeseeaneeseesneeseenssseseessseeseensnreseennnresenn 117
19.7 StALIC OPETALOTS ..uvveeeeeutieiieteenteesttestteeteete e bt esteesseessteesteanseenseenseesseesseesaseeaseenseenseeseenseenseesseesanesnsenns 117
19.7.1 Homogenizing the candidate overload Set.........ccceeviiiciiiiiiiicieeie e 119
19.7.2 Operators 0N NandIes...........cccvvivieiieiieciieie ettt ereereere e teestaessbeesbeesseesseessaesseesssessseans 119
19.7.3 Increment and deCTEMENt OPETALOTSecveerveeruieriieriieeieeieeieesteesteeseeseteebeebeeseenseesseesseesnnesneeans 120
19.7.4 OPerator SYNRESIS.....cccviiiiiieiieeeiie et eteeerteeeteeestreeeree e taeesbeeesaeessseeessseessseeessseessseenssessssseenes 123
19.7.5 NaMING CONVENLIONSvveerreerrierererreereesseesseessresseeseesseesseesssessseesseesssssssssssessseesseessessssssssssssessseans 123
19.8 INON-SLALIC OPETALOTS.ueeeuveerierieerieeriresreeteeseeteesseessaessseasseasseesseessaesseesssesssessseesseesseessesssesssessssesssenns 126
19.9 INSTANCE CONSTITCTOTS ...vvvvreieriieiieieisiiiessataeitsesesssessesaaaaeeaaaeaaaa———————————————snnnannsssananssansssssssssssssssssnsssnnnnnen 126
19.10 StAtIC COMSIITCTONS .eeiivvviieiereeeeietreeeeetreeeeertreeeeeteeeeeeareeeeeareeseeareesesareessssaeeesssstreesensseesssssreeessnreees 127

vi

Table of Contents

L B 5113 1 5 A] U LRSS RRRRO 128
19.12 INTONLY FIELAS.vieiiiiieiie ettt ettt e et e e e e taesteessaessseasseesseesseensaesseessaesssennseans 129
19.12.1 Using static initonly fields for COnStants..........c.ccoeeeiererieiininiiininieeeeeeeeeeeee e 130
19.12.2 Versioning of literal fields and static initonly fields...........cccceeveeriieriiieiiienieierieree e, 130
19.13 Destructors and fINALIZETSocoviviiiiiiii et e e e e e e et e e e eaneas 130
LRSI R T B B 1GTS] 5 (o110 RPN 131
JO.13.2 FINALIZETS ..uvveiieeeeeeeeeeeee ettt e e ettt e e e e e et e e e s seesaataeeeeeessseraaaeeeeeeessennanes 131
20, NGLIVE CIASSES .. .eeiveeitieitie ittt ettt ettt et e e e e be e e be e s beesbe e et e e e bbeeabeesbeebeesbeesbeesasesabesbeessbeenbeenbeeteeareens 133
20,1 FUNCLIONS .ciiiiiteieeeee ettt ettt e e e e ee et e e e e s e eeaataeeeeeessesaaaaaeeeeessssansataseeesesssasssaereeeeseessnnnnnnes 133
2002 PrOPETTIES ..evveeuiieiieeeieeeteete et eteesteesstesstessseasseesseessaessaesssessseasseasseasseessaesssesssessseassesnseesseessessseenssennsenns 133
200.3 StALIC OPEIALOTS ..euveeutietieriiesiieeteeteesteesttestteestesuteenteaneeenseaseasseesseesatesnseanseenseenseeseesstenseeseesseesnsesnsenns 133
20.4 DICICGALESveeeueiieeirieeiieesieeeeiteestteesteeesteeesebeestteetseesssesasseesssaesssaeesssaesssaeansseeassaeassseensseeassaeesseesnseenn 133
20,5 FTIEIAS ..ottt e e e e ettt e e et e e e et e e e s eatbeeeseraaeeeeentaeeesaaaeesssnteeesenntaeeseenteeeeeines 133
20,0 EVEILS ..oeoiiiiiiieeeeee ettt e et e e e e e e e e e ee e ————aae e e e e e e ————aaaaeeeaan—raraaaeeeeanaans 134
L R 11 1 U< SRR 134
20.8 Initonly and Hteral fIEldS.......c.ccvuiiviiiriieieieiece et s re v e e be et e e saeessaesreestaesraesnneens 134
20.9 STALIC CONSITUCLOLS ...uvviiiiiurieeeeetreieeeeteeeeeeteeeeeeteeeeeeaeeeeeetaeeeeessseeesessaeeseensaeeeeensseeeeessreeeenseeesesnseeeeennes 134
A) o] I TIPSO 135
21.1 Ref Class dETINITIONSccuvviiieeiiiieieeieie ettt ettt eetee e e et e e e eetaeeeeeetaeeeeeaaeeseeseeesennseeeseeseeeeennes 135
21.1.1 Ref class base SPECITICATIONc.ueeciiieiiiieiiieeiieecieecieeeeteesteeeteeesibeesreeetbeesereeestaeessseeassessnsneenes 135
21.2 ReT ClaSS IMEIMIDEISvviiiieeiiieiceiiiie ettt ee e ettt e e et e e s et e e s etaeeeeeaaeeesenteeesssnreeesssnteeessnnes 135
21.2.1 Variable INITALIZETSccvveiieireee ettt et eete e eear e e e eeateeeeeeareeeeeaeeeeeareeeeennrens 135
213 FUNCLIONS .iiiieiieeee ettt e ettt e e e e e e ettt e e e e s eeaaaaaaeeeeeesseanansaseeeeeessassasaseeeeesssansaesaeeeseessnnnnnnes 136
B B s (o) 15 4 5 O SEUUPRRUPSR 136
A B R AT 11 R 136
21,6 StAIC OPETALOTS ..euvieutietieriieeiieeteeteesteesttestteaseesuteenteanteenseenseasseesseesasesaseenseeaseenseeseesseenseeseesseesnsesnsenns 137
21.7 NON-StALIC OPETALOTS. ... ueeierieeeirieetieeitreerteeeetteestteesseeesseessseesssesasssaessseeassseesssseassssessseessseesssesssssessssees 137
21.8 INStANCE COMSIIUCTIOTS ...uuverreeeiieieieeetteeeeeeeeeeeetateeeeeeeeeeeesareeeeeeeeeenasnreeeseeeeanssssereeeeesseasssrereeeeeesnnnrnes 137
21.9 SHAtIC CONSIIUCTOTvvvieiiierieeeeetteeeeeetteeeeeetteeeeeeteeeeeeetaeeeeeetaeeeeessseeeeensseeseensaeeeeensseeseensseeeensseeeserseeeeennes 137
B B (O 5 1< - 5 =) (G TSRS 137
21,11 INTEONLY FICLAS...ecvviiiieiieiiecie ettt eb et e e e e s taestaestbeesbeesbeesseessaesseassaesseesssesssenssenns 137
21.12 Destructors and fINALIZETSooeviiiiiiiiee ettt eete e e e e e eetaee e e eetaeeeeetreeeeeseeeseereeeeennes 137
2113 DRIEGALES ...veeeeeuieeieeieesieeeite et e et et et et et e e stte s et e s atesateeate e te e seeeseeeseeenteenseenseenbeebeenseebeesheesnaeeaseens 137
22. VAIUB CIASSES ...vve e ittt ettt ettt et e e et e e sttt e e e b e e et e e st e e e sabe e e beeeabeeesabeeeabbeesabeeaabeeesabesestbeesnbeesateas 138
22.1 Value Class AefINITIONS.uvvviiiiiiiiiiiiiieieee ettt e e e e eeeeee e e e e e e e eeaaeeeeeeeessssasasaeeeeesssssnsaseeeeesessannnees 138
22.1.1 Value class base SPECITICAtION.........eiecuiiiiiieiiieeiieeeiee et esteeereeeeeesbeesreeeereessbeessbeeessesessneenes 138
22.2 ValUe Class MEIMDEISvviiieiieieeeeieee ettt eetee e e et e e e et e e eetaeeeeetaeeeeeteeeeeeseeeeeereeeeennes 138
22.3 Ref class and value Class dIffErENCES.ooiiivieiiiiiie et e e e e e 139
A T W 11 1<) 4 L2 4 (o1 PPN 139
22.3.2 DEAUIL VAIUES ..ottt e et e et e e e eaar e e s e sate e e s eeaaa e e s e arareeeeanaeas 139
22.3.3 MEAniNg OF thiSc.eeicieeiiieiieiierierie sttt et e st e ste et e esteesteestaesssessseesseesseesssesssessaesseesssenssenns 139
22.3.4 Destructors and fINALIZETSooovvureiiiiiiieieeeeee et e e e e e et e e e e e e e eeraeeeeeeeeeans 139
22.4 SIMPILE VAIUE CLASSES ...uviiiiieeiiiieiie ettt et e st e s teeessbeesteeesbeesssaesssseessseeanseeenseensneens 140
A I O] 1115 41 (0110 ¢ SO SRRt 140
220 OPETALOTS ...vveeneveeeiiienitee ettt eeitteette e sttt esteeeauteesabte ettt esabeeeabteesabeesabaeeaabeesabeeenbteesabeeebeeenaseesabeesneeesareean 140
B T Y=o I 1Y/ LT 141
Y O I I U -\ T PSP O U T VR UPTPPPT 142
24,1 CLI QITAY TYPES tetenutteetiteititeeiteeeite e st te ettt e et te ettt e sate e e bt e e subeesabeesbteesabeeabbeesateesabaeesabeanabeesabeesneeesareean 142
24.1.1 The SYSIEM:IATITAY TYPEC .eeeerieirieeiiieeiiie ettt esteeeteeestteesseesseeessseessesassseessseessseeessseesssessnssesssseeanes 142
24.2 CLI QITAY CIEATION. ..c.uietieitiesreereereeteeteesteesseessresssessseasseasseesseesseesssesssesssessseesseessessssessesssessssessessenns 143
24.3 CLI aITAY ClEIMENE ACCESS. . eevverureereririetieteeteerteerrestesseasseesseesseesseesssesssesssesssesssessseessassseessessssesssenns 143

vii

C++/CLI Language Specification

24,4 CLI QITAY INEIMIDETScuvieivieiiieeireereeteeteeteesteesttesssessseasseasseesseesseesseesssesssesssessseessessssesssessessseesssesssenns 144
24.5 CLI QITAY COVATIANCEveevverrreeereereeteeteeseesseesssesssessseasseesseessessseessessssesssessessseessessseessssssessseesssesssenns 144
24,6 CLI aITaY INTHAIZETS. ..c..iiitieiiiieie ettt ettt ettt ettt e st e st esaae st e e be e beebeesseesseesseesaeesnsennseens 144
25, INEEITACES. ...ttt b h bbbttt 146
25.1 INterface defiNItiONSeoiuieiiiiieieieie ettt ettt ettt et et e b e bt e sbeesbeesbeesateeareens 146
25.1.1 Interface base SPECITICALION.......ccviivierierieeiicti et tete et ees e steesteesaesebeesbeesbeesseeseessaessaesseessnensseans 146
25.2 INLETTACE MEIMIDETSc.veiieniiiieieiteeie sttt sb ettt et e e bt et e bt et et e s bt et e s bt ese et e bt eaeeteeneenees 146
25. 2.1 FUNCHONS. ...cuvviiiiieeeiieeeiee ettt ettt e et e et e e et e e etbeeeabeeetaeesaseeenbaeesssaesssesensseessseeansesenssesansseens 147
25.2.2 PIOPEILICS ..eeeuvvreerieeiieesiteeeteeestteesteeeteeeseseessseeassseesssesassseessseeassseessseessseessssessssesesseessssessssesssssennes 147
25.2.3 EVENLS ...ttt ettt ettt et sttt et b e bt sa et ettt et e b e sheesheesareea 147
25.2.4 DEICGEALEScoueeeeeeeeie ettt ettt et ettt et e st esat e ettt et e e te e sht e e st e e beebe e bt e bt e shteeteeteesaeeeabeenreens 148
25.2.5 MOIMDET ACCESS . ..eeutteueteteettentieetie et et ettt e bt esbeesbtesateeateeabe e bt e bt e bt eaueesateemteenbeanbeenbeesbeesabesareans 148
25.2.6 Destructors and fiNAlIZEISceouererieieiieiere ettt sttt ee e 148
25.3 Interface iMPleMENTALIONScccvereiereiieieeriieriestesteeteeseeseesteeseeessaesssessseesseesseesseessaesssesseesssensenns 148

P S = 11 1T PR UR PP 150
26.1 ENUM AETINITIONS ...eiiiiiiiiiiiiiie et ettt eciee ettt ettt e et eeetteestbeeetaeesebeeesseeessseeenseeesssesanseesssesesseesareeas 150
26.1.1 ENum Dase SPECTTICATION ..c.uviiiiieeiiieiiieeiieeciteeeiee et e et e sreeeebeesebeeeteeeeveesssaeesseessseeansessssneenes 151
26.1.2 Initial enUMETatOr VAIUES.......c.ciuieieiiitieieie ettt sttt ettt st et e e et eneeeneenees 151
26.1.3 CLI enum values and OPETatiOnS...........cccverveereereerireeieeesieeseesieeseesssessesseesseesseessaessassssesssesssenns 151
26.2 The System::FI1ags attribULEccciiieiiiiiiiie ettt ettt e seb e e e be e e stbe e sabeeesbeeeneseessneeas 151
B B L 1= Ta T USSR 153
27.1 Dele@ate defINItIONScccuiieeiiieiiieiiieecteeeieeeite ettt e et e estreesbeestaeesebeessbeeesbeessseeassseessseesssesesseessseeas 153
27.2 Delegate INStANTIATIONccuveiveereereeieesteestestesresreeseesseesseesseesseesssessseassessseesseessessssesssesseesssesssenssenns 155
27.3 DEle@Ate INVOCATION ...ecuveeiieriiereieeieeteeteeteesteesteesseesstessseasseesseesseesseesssesssesssessseessessseesseessessseesssenssenns 156
28. Exceptions and exception NANAIINGcoooiiiiiii et 157
28.1 ComMMON EXCEPLION CLASSES ... eeuiieiiieiietieiietiertte ettt ettt et et e st e s ate et e e be e beesbeesaeesstesnsesseesaeesaseens 157
28.2 EXCEPLION SPECITICALIONSeeeeiieeiiieeiieeciie ettt estee et eeeriteesveeeteeesebeessbeeessseessseeessseessseessssesssesssssesssseens 158
29, ATEFIDULTES ...t b bbb bbbttt 159
20,1 AITDULE ClASSES. . .etiutietieitieitie ettt ettt ettt ettt ettt et e bt e s bt e s aeesateeabeembeembe e bee bt enbeenbeesbeesatesaneans 159
20.1.1 AITDULE USAZE . .veevveereerieerriesiesereeteareereeseesseesseesssessseasseasseesseesseesssesssesssesssesssesssesssessssssssesssenns 159
29.1.2 Positional and named Parameters...........c.eeeueerieereerirriieeie et esieeeeeeteeteeteesteeseeesseesneeeteeseereeas 160
20.1.3 AttrIDULE PATAMELIET LY PES..uveeirieeiirerrieerieesiteeesteeesreeesseeessseesseeessseessseessseeessseessseesssseesssessssseanes 161
29.2 ArIDULE SPECITICALION ...eeviiiiiiieiieie et eteeit et e et e et eeb e e e e e e steesebessaessseesseesseesseesssesssesseesssesssenssenns 161
29.3 AUTIDULE TNSEATICES ...veveeueitieiieteeiiete ettt et et et e bt ss e et e s bt eat e bt ea e e st e ebeeatenteseeensesbeestente bt eaeenseeneenees 165
29.3.1 Compilation of an attrIDULEcc.eeiiiiiieiieieerieere ettt ettt et ettt e bt eseeesaeesaeesareens 165
29.3.2 Run-time retrieval of an attribute INSTANCE.c.eeviieiiiiiiiieiieee ettt 166
29.4 RESETVEA AHTTDULESeeuiitieiieiieiieie sttt ettt sb ettt et e e bt et e st e st et e sbe et e sbesbeente bt satenteeneenees 166
29.4.1 The AttributeUsage attriDULE..........couereriiririeieieeteeete ettt 166
29.4.2 The ObSOIEte attriDULE.....cccueeitieitiiiiiiie ettt ettt sttt ettt be e s bt e saeesaeeeas 166
29.4.3 The Conditional QtITDULEcceeruieeieiertieiere ettt ettt e sttt e besaeeeesaeeneenaeeneenees 167
29.4.4 SECUTILY ALIIDULES ...eevieiieriiesieeieeieesteeseesteesttesereesteesseeseessaesseesssesssesssensseesseesssesssesseessessssenssenns 167
29.5 Attributes fOr INtEIOPEIALIONccvvieriiieciiieiieecteeette ettt e eteeeteeeeteesbeeetaeessbeessseeessseessseesssesassesssseeas 167
29.5.1 Interoperation with other CLI-based 1anguages..........c..ccveveeriierierireniinriereesieesreeseeseeseneseneens 167
29.5.2 Interoperation With NAtiVE COAEiivviiriieriiiiiiiii ittt sre et ereesee e e seeesreessnessneans 167

B0, TOMIPIALES ...t b b bt bR bttt b e 168
30.1 Template deClarations.cceeiererieriertietet ettt ettt ettt ettt et e bt et et s b et e st e st eaesaeeneens 168
30.2 Template SPECIAlIZAtIONccueiriiiiieiiecieeie ettt ettt ettt e st e st e e teebe et e e bt e satesteesseesaeesaseens 168
30.3 ALTIDULES ...ttt ettt ettt e et e e te e bt e st et e e st e e e ea e e ae e teen e et e ebeen e e bt en e e te st entenneeneeeeeneennan 168
30.4 TYPE ACAUCHIONeevvieiiieiieriieeie ettt et e et e e esteestaessaeesseesseessaesssesssessseansaesseessaessaesseesssensseans 169
30.4.1 Template argument deAUCLION.........cecueerierieeieeie ettt ettt ettt ettt e be bt esbeesaeeeneesaeeeas 169

viii

Table of Contents

Bl GBINBIICS ...ttt bbb h bR E e E Rt h bbbt 170
31.1 GENETIC AECIATATIONS ...ueeiiiieiiietiette sttt ettt ettt ettt ettt e e et e bt e sbeesaeesatesabeembe e bt esbeebeesbeesaeesaneans 170
31,11 TYPE PATAMELETS ..ccuvvreerieeiieeireeeteeesteesreeeeeeesseesseeessseesseeesssaesssesassseessseesssseesssessssessssseensseeenes 171
31.1.2 Referencing a generic tyPe DY NAMIEcecuieiuieriierieiiieeie et et et esteesieeseeeteeeeeeeeseeesteesaeesneeeas 172
31.1.3 The INSEANCE LYPC .ouvvreeerieeiieeiiieette ettt eeteeeteeeseteeetaeestbeeeseeesssaessseeassseessseeassseesssaessseeenssessnseeanes 172
31.1.4 Base classes and INEITACEScc.eeriiriiriiiiiiieeieeeerte ettt sttt ettt et 173
31.1.5 Class MCIMDETSeeueeiieiieiitietesteet ettt et ettt et et e e bt ebte b e sbe et et e eae et e sbe et e nteeseenbesbesneeneeeneenees 173
31.1.6 StatiC MEIMDEIS......ccviiiiiiieiiie ettt ettt e et e e et e et e e s beeeeteeesaveeetsseseseeensseesaseeensseessesensseeeseeanns 174
B 1.7 OPETALOLS...cuvieiiieeiiieeiieeeteeeteeeseteeesteeestaeaesseeesssaeassssessaesssaeesssaeassssassseesssseessseessseesssesesssesssssenns 175
31.1.8 MemDbEr OVEIIOAAING ... cecviiieiiieieeieeeieete ettt ettt e st e seeste s beesbeeseesseesssesssessseensaessaessnenssenns 175
31.1.9 MEeMDET OVEITIAINGeevieiieiiieetieie et ettt ettt et e st e st e e te e be e bt e saeesntesnseenseenseenseesteesanesnsenns 176
311,10 NESEEA LY PCS ceeuvrreieriieitiieetteeiteeetteestteesteeesteeessseeeseeessseeasesessseeassseesseessseeessseessseesssesessseesssseanes 176
31.2 CONSIIUCTEA LYPES 1eevvrevriierieiieiiesiiestestesteereeteesseesstessaessseasseesseesseessaesssesssessseasseesseesseesssesssesssesssenns 177
31.2.1 Open and closed CONSIIUCTEA tYPES ...uvrrvierrieriierierieetiereeieerteeseesresreereeseesseesseessnessseessesssenns 178
31.2.2 TYPE AIGUIMEILS.eeeeuiiieeeiiiieeeiiieeeeriiteeeetreeeeantteeesssreeeeassseeesansseeesassseessassseeesassseeesssseeessnsseeesnn 178
31.2.3 Base classes and INEITACEScc.eeriiriiiiiiiiiiieieetertet ettt sttt ettt s s 179
31.2.4 Class MCIMDETSeeueeteeiieeiteetenteettete st et et et e et e e bt et e s bt ebte b e ebe et eabeeatensesbeemtenbesseentesbesnteneeeneenees 179
31.2.5 ACCESSIDILIEY . ..eeutietieeie ettt ettt et ettt et e s h e et e et e et e bt e be e teenteesabeenreens 180
31.3 GENETIC fUNCIONS. ... tteutietieitie ettt ettt ettt ettt e bt e b e sb et ea e e et e e bt e sbeesaeeeateeabeenbeebeaneeebeesbeesatesaneans 180
31.3.1 Function signature MatChing TULESc.cecvveriierieriieiieieeieeriee e ere et esieeseesaesreeereesaesansneans 181
31.3.2 TYPE AEAUCHION ...eiiiieiieiie ettt ettt ettt ettt e bt e s atesateembeenseenseesbeesteesanesnseens 182
31,4 CONSIAINTS ...ttt ettt ettt et e et e e et e bt e bt e bt e sb e e eaeeeateeab e e bt e ebeesaeeeabeembeenbeeeeanbeenbeenbeesaeesaseans 184
31.4.1 SatiSTYING CONSIIAINES ..e.vviitriiiieriesieeiiesteereeteesteesteestteseseeseeseesseesssesssessseassesssessssesssessessssensseans 185
31.4.2 Member [00KUP 0N tYPE PATAIMEGLETS.vvervrerrrrreeieeriieseesaeeteereesseesseessressseesseessaesseesseesssesssenns 187
31.4.3 Type parameters and DOXINEZcccverirriiieiiieiiteriierite st eie et et e sitestesbeebeesbeesseesneeenseeeesareeas 188
31.4.4 Conversions inVOlVING tyPe PATAMELETScveerreerieerreereeireesseeseesresiseaseesseesseesssesssesssesssesssenns 189
32. Standard C and CH HDFATIES.cviiiiii et 190
B3L CLI TIDFAIIES ...ttt b bbbt b et 191
33.1 CUSLOM MOGITIELS ...eeetieniietie ettt b e s bttt et e e bt e st e e saeeeabeeabeebe e bt e sstebeesbeesaeesaneens 191
33.1.1 Signature MATCRINGoovciiieiiieeiie ettt e et e et e et e et eessteeessseeessaeesseesseesnseeenns 191
33.1.2 MOAIeq VS. INOAOPL. .. ceeueieiietieitieeiie ettt te st te st e te et esteesaeesateeabeebeesseesaeesnseenseenseesseesseesaeesnsenas 192
33.1.3 MOQIICT SYMEAX ...eeiuviieitiieiiieeiiieeetee ettt esiteeeteeesebeesbeeestbeessseeessseessseeassseessseeassseesssaesssesenssessseeees 192
33.1.4 Types having multiple custom MOAIFIETS.......c.cccveriierieiiiiiieie ettt beebeereens 193
33.1.5 Standard custom MOGITIELSceoueruirieriiiiieieit ettt sttt et 194
33.2 Standard AttITDULESccuviiiiiieitiee ettt et e et e e ta e e et e e eteeeeebeeebaeetbeesabeeebeeensseeanbeeeraeanes 199
33.2.1 NAtIVECPPCIASS ..eeeviieiiieeiieeiieeeiee ettt eeteeeteeeseveesteeestaeesseeesseessseeassseessseeassseessseesssesessseessseaes 199
B4, IMIBLATALA ...ttt h bbb E e bR b bttt b e Rt bbb n s 200
34.1 BASIC COMCEPLS .veevvrerrieruresireireateeteesseesttesssessseasseasseasseesseesssesssesssessseessessssesssesssesssesssesssesssessseessessenns 200
34.1.1 Importing types from aSSEMDIIESccveriiiiiiiieiieieesee ettt e sreere e e seessaesrseensessseans 200
3.2 TYPES ettt ettt ettt ettt ettt ettt et e ettt e at e e bt e e h bt e e a bt e e bte e sa bt e e bt e e bte e e be e e bt e e e a bt e e bt e e eabeeenbaeenabeesbaeenes 200
34.2.1 RETCIEICE L PCS . ueecuriiiiiieiiieeiteeetteestteesteeetteesbeeetbeestbeeetaeessseeessseesseeassseessseesnsasessesenssessssseanes 200
34.2.2 INLETIOT POINEETS.veevieererereeteereesseesteessresseaseeseesseesssessseasseesseesseesssesssesssesssesssessssessesssessssenssenns 201
34.2.3 PINNING POINLETSveeuieeiieriieriieeteeteesteesttestteeteeteeteesseesseesasesnseeseesseesseesnsesnseenseenseesseesseesssesnsenns 201
34.2.4 NALIVE QITAYS ..eevveeerererireeeireeesreesseeesseessesasseeesssesassssessssesssesesssessssssassssessssesssssessseesssesssssessssseenns 202
R Y3 F:1 o) T TR 202
34.3.1 File-scope and namespace-SCOPE VAIIADIES........cc.eecvieerieriierieriieniesteeie et eteesieeseeesenesssessseesseens 202
34,4 CONVEISIONS ...vveeeerieeeieeeteeeiteeeeteeeetteeetseestesessseesseeassseasesasssaasseassseeeassaesssssansssesssessnsesasseesssesanseeanes 202
34.4.1 String lteral CONVETSIONSccviervierrieiieereereeteesteesteeseesresseeseesseesseesssesssessseessesssessssessessssenssenns 202
34.4.2 BOXING COMVETSIONS. ...ccuveeteertrerreareesseesseesseesssesseesseessaessessssessesssessseesssesssesssesssesssesssesssessssenssenns 202
34.4.3 CONVErSION fUNCHIONSocoviiiiiiieeiie et ecieeeeite e et e eetteesreeeeteeesebeeebeeeeaeeseseeesaseesaseeesesensseesseeanes 203
34,5 EXPICSSIONSuvieeutieeiereeetteestreeaseeessseessseeasesessseessseasssasassesassssassseesssssessseesssssesssesssssessessssssesssessssseanes 203
34.5.1 Class MEIMDET ACCESS. . cueeuvrrieueertersierterteeterueaseeeeaseetesseeseanseaseeneeaseeneeasesseenseaseeneensesseeneenseaneenees 203

X

C++/CLI Language Specification

34.5.2 DYNAIMIC CASL.ritriirierieriierieesteereesteesteesttessseaseaseesseesseessssssseasseessessssesssesssessseessessssssseessessssesssenns 204
R R I T} Ll ot 1] AU 204
R 30 0 o115 (o) s SRR 204
34.6.1 NAME LOOKUPvviiiiiiiiiiieitiesie ettt et et e eresbeebe e bt esteesesessbeasseesseesssesssessseesseesseesssesseessessssenssenns 204
34.6.2 PATAIMEIET AITAYS. . cceuveeeueeeieteerteeeetteesttesatteesteesateeessseeaseeaasseesseeessseesnseesasseesnseesnseessseessnseessseesnns 204
34.6.3 IMporting NAtiVe fUNCHIONSeervieriieriieeie ettt ettt ettt et e st e et e ebe e bt e sbeesseesneesntesaeesnneeas 205
34.6.4 NON-MEMDET TUNCHIONScooiiiiiiiiiiieie ettt e e e e e et e e e e e e e eeaaaaeeeeeesesesssaaeeeeessannnnes 206
34,7 Classes anNd IMEIMIDEISccoivviiiiieiiiee ettt e e ettt e e e ettt e e e et e e e e eareeseeteeeseertreesssraresessreeesenres 206
R B B O BT« 1] 1 0 15T) 0 SRR 206
34.77.2 IMIEINDET ACCESS....ceiieuuueeeeeeeeeeeeiiteeeeeeeeeeeeiateeeeeeeeeessaareeeeessssassrtareeeeessesaasseseesesssasssseeesesesssanrnnes 208
34.7.3 DAta INEIMDETSovvveiiiiieiee ettt ettt e e e et e e e e eaaeeeeeeataeeeesataeeeseraaesessnsaressaseesssnsareessnsreeeenn 209

R g B 3V Uo7 5 (o) 1 1= F OO 210
34.77.5 PIOPEITIES ..eeuevietietieiiesite ettt ettt et e et e et e s ate e bt e bt e bt e sseesateeaseente e seesseesasesaseenseenseanseenseesseesasennseans 213
BA.T.60 EVEINLS....oiiiiuiiiiiieeeiie oottt ettt ettt e e et e e ettt e e ettt e e et e e et ee e ettt te s e ateeesaataresaaaaeeean 215
34.77.7 SEAtIC OPETALOTS ..eeuvveuvieererereeteesreesteesteessresseasseeseeseesssesssessseesseesseesssesssesssessseessessssessesssessssenssenns 217
34.7.8 NON-SALIC OPETALOTS ...eeuveeeirruieeutieteesteestiestteateeteesteesseesseesaeesnseenseeseesseesseesnsesnsesnseenseesseesssesnsenns 218
34.7.9 INSTANCE CONMSTITCIONS . . uuuuuueiiieeeieeeeee e et nansnsssssnsnsnsnsnsnsnsnsnnnsnssssssnnnnnnnnns 219
34.77.10 StAtiC COMSIIUCIOTS . uuuvvviiieeeeieeiereeeeeeeeeeeeareeeeeeeeeeessareeeeeeeeeesssareeeseeeeeassrereeeeeeseeassreneeeesesannrnnns 220
R B W 51155 ¢ B 1 o SO 220
34.7.12 INTEONLY FIELAS ...veeeeviiiiiieciie ettt ettt e et e s b e e e ta e et e e estbeessseeensaeesseeesseesnsneenes 220
34.7.13 Destructors and fINALIZETScccuviiiiviiiiiiiiiee ettt et e e eete e e eeaeeesesnaeeesernaeeesenaeesssnneeeeas 221
348 INALIVE CLASSES ..eiiiieveeeeeireee e e ettt e ettt e e e et e e e et e e e eeae e e e eeaeeeeeeateeeeeeaseeeeesareeeeenareeesentneeeeenareeeeenreas 228
34,9 RET CIASSES ettt ettt e e e e ettt e e e e e e e e et e e e e ea e —— et e e e e e e aa———areeeeeseeaaraaareeas 230
34,10 VAU CLASSES wuvvveieiiiieieeeeieee ettt e e e e e et e e e e e e et eeeeeessassaaeeeeeeessenataneeeeesseennreeaeees 230
R S B B O 9 I £ USSR 231
R B e o 111 TR RRRTR 232
BA 13 EIIUITIS ¢ttt ettt ettt e ettt e e ettt e e ettt e e ettt e e s eaaa e e e s eabteeesesaseeseaateeesebbeeesaaaeeeseaaeeeeanraeas 233
R B) B o] (<7 2t USRS 234
34,15 EXCOPLIONS ..uvveeiieerieiieieesitesteste et esteesteesssessseesseesseessaesssessseasseasseessaesseesssesssesssesssennseessessseesssenssenns 235
34160 ATITIDULES ..ottt e e e e e e et e e e e e e e s e e et e e e eeeeesaa e aaeeeeee s e e e rtaareeeeeeeeanraaareeas 236
R B R 111 o) USRS 239
RO B € 1T (o1 RSO 239
ANNEX AL GEAIMIMAL ...oiiiitiii ettt e ettt e s et et e s et e e e s abteeesaabeeeesabbeeeaaabbeeesanseeeesassbeeesastaeeesansbeeesanses 240
AT KEYWOTAS ...ttt sttt ettt et e et e s teessaessseesseesseesse e saessaessseasseasseesseenseessaesssesssenssennseenses 240
A2 LeXICAl COMVEITIONSeeiiiiiieiiiiiieeeeeeeeeeeee et e e e e e eet et e ee e e e e e e e eeeeeesssssaaaaeeeeeessasnssssaseeesessnnesseeeeesssnns 240
A3 BASIC COMCEPLS ..veieirieiiiieiiieiiieesieesteeeeteeestteessseeesteessseessesessseesssasassseesssesassssesseeassseensseesssesesssessssens 243
AL EXPICSSIONSvveeieeerieetienteeteesteeseteesseaseessaesseesseesssessseasseanseesseesssessseasseassessseessessseesssesseesssesssenssennseessees 244
ALS STATCIMEITS....ooiiiiiiiiie e 247
YOI B L Te] Fo 215 o) o 1R 248
AT DECIATALOTS ... vvveieeeetieee ettt ettt e et e e et e e ettt e e e e aae e e e eaaeeeeeaaeeessaaeeesssaeeessaseeeseteeessnnseeesssnteeessnnes 250
ALB CLASSES vvveeieueeieeeeeteeee et eeeee et e et e e et et e e et e e e eaa e e e e et e e e e e aaaeeeaaa e e e eaaraee e e aaaeeeaaraeeeenrreeeanrreeaan 252
ALD PrOPErties QNd VOISeeiuiiiiciiiieiieeiie et e eteeesiteesreeeteeestveessbeeeseseessseesssesesseessseeessseessseesssesssssessssees 253
ALTO DEIIVEA CLASSES ..ooiivrviiiieiiiee ettt ettt e et e ettt e e esat e e e s eaaeeesetaeesseaaeeesentseessnnseeessanteeeesanes 254
A.11 Special MEMDET fUNCHONS.eiciiiiiesiierieesiesteete et et eeesteeseesresseesseesseessaessaesssesssesssesssesssenseesees 254
ALT2 OVEIIOAINE ...ttt ettt ettt ettt et e b e ae e s bt e satesateenteenteesaeesaeesnsesseesnseenseenseenseas 255
AT DRIEZALESeeieiiieiiieeiie ettt ettt e ettt e et e et e et e e e bt e e tbeeesbeeasbaeessbeeanbaeetbeeanseeentbeesbeeantaeenreenrraean 255
AL TG TOMPIALES. ... eeieeiiiieiieeie et esee st eete et e et e e bt e bt e beestaestbeasseasseasseessaesssessseasseasseasseasseesseassaesseesssesssessseans 255
J N B I € L 1<) o (o RO 256
A.16 EXCeption RANAIINGcccuviiiiiiiiiieciic ettt ettt e et e e st eeteeesabeeestaeessseesssaessseeensseesnseeas 257
F N AN s 5'q 10111 SRRt 257
AL 18 PreproCesSSING QITECHIVESvvvvieiieriieriieriieeieeteeiteesteesteesstessresssesseasseesseesseesseesssesssesssesssesssesssessseessens 258
ANNEX B. VeI IADIE COUR ...ttt ettt s e et e e ette e st te e e ette e eneeeenes 260
ANNeX C. Documentation COMMENTSooviiiiie ettt ettt ettt et e et e e s rbe e e eteeeebaeesabe e e eraeeeneeeenns 261

Table of Contents

LR B 012 (T L8 T 510 s TSRS 261
C.2 ReCOMMENAEA tAZSeevieevieiieiiesiieeiecteeie ettt et e st e eebe e e esbeesseestaesssessseasseanseesseesssesseesseesssenssenns 262
2] S ittt ettt ettt ettt et ab e bt e st et e Rt en b e st ent e bt e Rt eabeertenb et e st ensenseessenseaneentas 262
C.2.2 SCOAC ...ttt e b e b e s bt s at e et e bt e e bt e s ht e sttt e bt en et e bt e s beeshaesateea 263
(O BN € 1111 o) (>RSP 263
2.4 EXCEPLIOM ...iiiieettettesite ettt eite et e bt e eteeetteeate e bt e bt e bt asaeesateenseenseenseesseesnsesaseenseenseeseenseesseesasesnsenns 263
L3 TR 1] USSP 264
O IR o) - RSP 265
O R T 1 11 1 >SRN 265
C.2.8 SPATAMIET ...ttt et e e st e e et e e bt e e e bee e tbeessbeeessseesssaeassseessseessseeensseeanseeanes 265
C.2.9 <POIIMISSIONvieuvietiesireeereateereesseesttessressseasseeseesssasssessseasseesseesseesssesssesssesssessssesssesseessessssenssenns 266
C.2.10 STEIMATKS™iiiiiiieiieieeete et et e e e steesteseteasbeebeesseesssesssesnseensaessaesssessseansesnseesseessensaesseesssenssenns 266
O B B <135y 1 1< USSR 267
2,12 8B ..ttt ettt ettt ettt et e h e b e h e a bttt et e e bt e bt e eh et e at e e bt e bt e bt e bt e eheeeaeeente e beenbeesatesateen 267
2013 SSEEALSO™ ..ttt ettt ettt a ettt ettt s h et h e e a e bt e h et e bt et et bt et e bt et et neenees 267
C.2.14 SSUIMIMATY™ ..eiiiieeiiiteeiiee ettt ettt ettt e st e ettt e eabeesbt e e ateeeabteesubeesabeeeabteesabeesbeeesabeesabeesnbeeesabeeanns 268
C.2.15 EYPEPATAINTeieeiieeiiiieeiieeeieeesiveeeteeestteesteeesebeessseeesseessseeessaessseeassseessseessssaesssaeasseessssessseeaes 268
C.2.16 <typeparamIer™cccociiiiiiiiicie ettt ste ettt et e stae s aeeabeesbe e bt e saessbeasbeessaesaestaesebenrreans 269
G217 SVAIUCS ..ttt ettt ettt s b et b e e h et b e et e st b et bt e nt e bt sat et neenees 269

C.3 Processing the documentation fileccccueiiiiiiiiiiiii et sb e e e enes 269
C.3.1 ID StrNG fOIMAL.......eeiiiiiieiieieeieseeete e ereebe e e esteestbesebeesbeesbeesseesssesssesssessseasseessaessaessessssensseans 269
C.3.2 1D StrING EXAMPLES ..eeuvveereieririeeiierieeseesiesteeteeseesseesseesseessseasseesseesseesssesssesssessseesseessaessessssesssenns 270

O N (W €11 o) (<P PSPRTRPRRPO 273
CA.1 G SOUICE COAR.....uuianiiiiiiiiieiie ettt ettt et ettt e b e bt e sat e st e e bt e beesb e e s bt e sateeabeembeenbeenbeenbeesaeesaneens 273
C.4.2 ReSUIING XML ..ociiiiiiiiiciiicie ettt ere ettt te et estb e s b e esbe e baestsesssessseesseasseessaesseesseesssensseans 276
ANNEX D. NON-NOIrMAtiVE FETEIEINCES ..ot 279
ANNex E. CLI Naming QUIEIINESooiiiiiieee e 280
ANNEX F. FULUIE GIFBCTIONS.cviiteiiitieiiteiet ettt bbbttt 281
ol B X PTESSIONS. . tiieutiieiiieetie ettt e eite et e e st e e eteeeeebeeestaeeebeeesseeesssaeassaeasssaesssesassseessaeasssaessseensseessseeassesssseenn 281
F.1.1 Class MEMDET ACCESS ..vvevueerrreiveeriarieteesieesttestresseasseeseesseesseesssesssesssessseessessssesssssssesssesssssssesssenns 281
F.1.2 Type 1dentifiCatiOn........ceoeeriierieeieeie ettt ettt et ettt e st e st e st e et embeenbeeseesseesaeesanesnsenns 281
F.1.3 POINter tyPe POTTADIIILYoeeeuviiiiiieiieectie ettt et et sve e e veeesebeessbeeestaeesssaeessaeessseenssesensneenes 281

FL2 SEATEIMENES ..ttt ettt et et e bt e bt e s bt e s bt s at e et e bt et e e beesbeesaeesareens 281
F.2.1 The checked and unchecked Statementsc.cccveciierienieniie e eaens 281

F L3 CIaSSCS ..ttt ettt et ettt e et e et e e tb e e e be e e tb e e et beeetaeeatbeeebaeetbeeaebeeenteeeatbeeareeenreeearaeas 281
F.3.1 Delegating CONSLITCTOLScccuiiiiiieiiieetieeeteeeiteeestteesteeestseessseeeseeessseessseessseeessseesssesessseesssesssseeees 281

F 3.2 PrOPEILIES .ouvieuiieiieiiieeie et et ettt ettt e ettt e bt esteesteesteessaessseasseesseessaesaesssessseanseansaensaesaesseesssenssenns 283

L G B BT LTSRN 283
F.3.4 Unsupported CLS-recommended OPEIatorsS..........cuieivieririeeriieerrieeiieesiieesveeeveeessseesseessseeesseenns 283
F.3.5 Operators true and falSe..........cccveviievieiieiiieiiecieeie ettt e eesbe b e eereesbeeba e saesraestaesenessreans 284

Fi4 GONETIC LYPOS . eeuviiiiieiiieiiesieesiteeteete et et e ete et e taesteestaesssessseasseesseesseessaesssesssessseansennseensaesaesssesssenssenns 284
F.5 Custom MOGITIETS «..ce.ieiuieiieeie ettt et ettt b e bt at e et et e e bt e bt e sbeesbeesaeesaneens 284
S B (50 3112 TS TSRS 284

FLiB ATITIDULES ..ttt h ettt e a et e h et e bt e et et e s bt e et e s bt en s e bt eat et eneentes 284
ANNEX G. POrtaDIlIty ISSUBSottt ne et sneeneeneeenes 285
G.1 UNdefined DERAVIOTeiiiiiiiiiiicieeieesite ettt ettt st e e e e staestaesasessseassaesseesssesseesseessnensseans 285
G.2 Implementation-defined DERAVIOT.........cciiiiiiiiiiieee et 285
G.3 UNSPECIIEd DENAVIOTeiviiiiiieiiiiiiesiiectte ettt ettt str e aeesv e et e e teestaestbeesbeasseasseesssessserseesseesssessseans 285

F AN] =t o TR 1o - S 286

xi

C++/CLI Language Specification

Introduction

This Standard is based on a submission from Microsoft. It describes a technology, called C++/CLI, which is
a binding between the Standard C++ programming language and the Common Language Infrastructure
(CLI). That submission evolved from another Microsoft project, Managed Extensions for C++, the first
widely distributed implementation of which was released by Microsoft in July 2000, as part of its .NET
Framework initiative. The first widely distributed beta implementation of C++/CLI was released by
Microsoft in July 2004.

Ecma Technical Committee 39 (TC39) Task Group 5 (TGS) was formed in October 2003, to produce a
standard for C++/CLI. (Another Task Group, TG3, was formed in September 2000 to produce a standard for
a library and execution environment called Common Language Infrastructure. The current version of that
standard is ECMA-335, 3rd edition, June 2005. CLI is based on a subset of the .NET Framework.)

The goals used in the design of C++/CLI were as follows:

e Provide an elegant and uniform syntax and semantics that give a natural feel for C++
programmers.

e Provide first-class support for CLI features (e.g., properties, events, garbage collection, and
generics) for all types including existing Standard C++ classes.

e Provide first-class support for Standard C++ features (e.g., deterministic destruction, templates)
for all types including CLI classes.

e Preserve the meaning of existing Standard C++ programs by specifying pure extensions
wherever possible.

The development of this standard started in December 2003.

It is expected there will be future revisions to this standard, primarily to add new functionality.

X1l

Scope

1. Scope

This Standard specifies requirements for implementations of the C++/CLI binding. The first such
requirement is that they implement the binding, and so this Standard also defines C++/CLI. Other
requirements and relaxations of the first requirement appear at various places within this Standard.

C++/CLI is an extension of the C++ programming language as described in ISO/IEC 14882:2003,
Programming languages — C++. In addition to the facilities provided by C++, C++/CLI provides additional
keywords, classes, exceptions, namespaces, and library facilities, as well as garbage collection.

C++/CLI Language Specification

2. Conformance

Clause §1.4, “Implementation compliance”, of the C++ Standard applies to this Standard.

Normative references

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Standard. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below.
For undated references, the latest edition of the normative document referred to applies. Members of ISO
and IEC maintain registers of currently valid International Standards.

ECMA-335, 3rd edition, June 2005, Common Language Infrastructure (CLI), all Partitions and the
accompanying library XML.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.
ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

ISO/TEC 14882:2003, Programming languages — C++. [Note: Revision of the C++ Standard is currently
underway, and changes proposed in that revision will affect future versions of this C++/CLI standard. For an
example, see §9.1.1. end note]

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

This Standard supports the same version of Unicode as the CLI standard.

C++/CLI Language Specification

4. Definitions

For the purposes of this Standard, the following definitions apply. Other terms are defined where they appear
in italic type or on the left side of a syntax rule. Terms explicitly defined in this Standard are not to be
presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this Standard are to be
interpreted according to the C++ Standard, ISO/IEC 14882:2003.

application — Refers to an assembly that has an entry point. When an application is run, a new application
domain is created. Several different instantiations of an application can exist on the same machine at the
same time, and each has its own application domain.

application domain — An entity that enables application isolation by acting as a container for application
state. An application domain acts as a container and boundary for the types defined in the application and the
class libraries it uses. A type loaded into one application domain is distinct from the same type loaded into
another application domain, and objects on the CLI heap are not directly shared between application
domains. Each application domain has its own copy of static variables for these types, and a static
constructor for a type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of application domains.

assembly — Refers to one or more files that are output by the compiler as a result of program compilation.
An assembly is a configured set of loadable code modules and other resources that together implement a unit
of functionality. An assembly can contain types, the executable code used to implement these types, and
references to other assemblies. The physical representation of an assembly is defined by the CLI Standard
(§3). Essentially, an assembly is the output of the compiler. An assembly that has an entry point is called an
application. (See also “metadata”.)

attribute — A characteristic of a type and/or its members that contains descriptive information. While the
most common attributes are predefined, and have a specific encoding in the metadata associated with them,
user-defined attributes can also be added to the metadata.

boxing — An explicit or implicit conversion from any value class type V to type VA, in which a V box is
allocated on the CLI heap, and the value is copied into that box. (See also “unboxing”.)

CIL — Common Intermediate Language, the instruction set of the Virtual Execution System. This
instruction set is defined in Partition III of the CLI Standard (§3).

CLI array — A CLI-specific array. A Standard C++-style array is referred to as a native array or, more
simply, array, whenever the distinction is needed. A CLI array differs from a native array in that the former
is allocated on the CLI heap, and can have a rank other than one.

CLS compliance — The Common Language Specification (CLS) defines language interoperability rules,
which apply only to items that are visible outside of their defining assembly. CLS compliance is described in
Partition I of the CLI Standard (§3).

definition, out-of-class — A synonym for what Standard C++ calls a “non-inline definition”.

delegate — A ref class such that an instance of it can encapsulate one or more functions. Given a delegate
instance and an appropriate set of arguments, one can invoke all of that delegate instance’s functions with
that set of arguments.

event — A member that enables a class or a CLI object to provide notifications.
field — A synonym for what Standard C++ calls a “data member”.

function, abstract — A synonym for what Standard C++ calls a “pure virtual function”.

Definitions

garbage collection — The process by which memory allocated from the CLI heap is automatically
reclaimed on the CLI heap.

gc-lvalue — An expression that refers to an entity that might be allocated on the CLI heap. (See also
“Ivalue”.)

handle — A handle is called an “object reference” in the CLI specification. For any CLI class type T, the
declaration TA h declares a handle h to type T, where the object to which h is capable of pointing resides on
the CLI heap. A handle tracks, is rebindable, and can point to a whole object only. (See also “type,
reference, tracking”.)

heap, CLI — The storage area (accessed by gcnew) that is under the control of the garbage collector of the
Virtual Execution System as specified in the CLI. (See also “heap, native™.)

heap, native — The storage area (accessed by new) as defined in the C++ Standard (§18.4). (See also “heap,
CLI”.)

instance — An instance of a type.
Ivalue — This has the same meaning as that defined in the C++ Standard (§3.10). (See also “gc-lvalue”.)

metadata — Data that describes and references the types defined by the Common Type System (CTS).
Metadata is stored in a way that is independent of any particular programming language. Thus, metadata
provides a common interchange mechanism for use between tools that manipulate programs (such as
compilers and debuggers) as well as between these tools and the Virtual Execution System.

pinning — The process of (temporarily) keeping constant the location of an object that resides on the CLI
heap, so that object’s address can be taken with that address remaining constant.

property — A member that defines a named value and the functions that access that value. A property
definition defines the accessing contracts on that value. Hence, the property definition specifies the
accessing functions that exist and their respective function contracts.

rebinding —The act of making a handle or pointer refer to the same or another object on the CLI heap.
rvalue — This has the same meaning as that defined in the C++ Standard (§3.10).

tracking — The act of keeping track of the location of an object that resides on the CLI heap; this is
necessary because such objects can move during their lifetime (unlike objects on the native heap, which
never move). Tracking is maintained by the Virtual Execution System during garbage collection. Tracking is
an inherent property of handles and tracking references.

type, boxed — See “type, value class, boxed”.
type, class, any — Any CLI or native class type.
type, class, CLI class — A ref class type, a value class type, or an interface class type.

type, class, interface — A type that declares a set of virtual members that an implementing class shall
define. An interface class type is a CLI type.

type, class, native — An ordinary Standard C++ class (declared using class, struct, or union).

type, class, ref — A type that can contain fields, function members, and nested types. A ref class type is a
CLI type.

type, class, value — A type that can contain fields, function members, and nested types. Instances of a value
class type are values. Since they directly contain their data, no heap allocation is necessary. A value class
type is a CLI type.

type, class, value, boxed — A boxed value class is an instance of a value class on the CLI heap. For a value
class Vv, a boxed value class is always of the form VA,

type, class, value, simple — The subset of value class types that can be embedded in a native class type and
allocated with the new operator.

C++/CLI Language Specification

type, fundamental — The arithmetic types as defined by the C++ Standard (§3.9.1), and that each have a
corresponding value class type provided by the implementation. (These include boo1, char, and wchar_t,
but exclude enumerations.)

type, handle — Longhand for “handle”.

type, pointer, native — The pointer types as defined by the C++ Standard (§8.3.1). (Unlike a handle, a
native pointer doesn’t track, since objects on the native heap never move.)

type, reference, native — The reference types as defined by the C++ Standard (§8.3.2).

type, reference, tracking — A reference that can keep track of an object on the CLI heap when that object
is moved by the garbage collector. For any type T, the declaration T% r declares a tracking reference r to
type T. (See also “handle”.)

unboxing — An explicit conversion from type System: :ObjectA to any value class type, from type
System: :valueTypeA to any value class type, from VA (the boxed form of a value class type) to V (the
value class type), or from any interface class type handle to any value class type that implements that
interface class. (See also “boxing”.)

Virtual Execution System (VES) — This system implements and enforces the Common Type System
(CTS) model. The VES is responsible for loading and running programs written for the CLI. It provides the
services needed to execute CIL and data, using the metadata to connect separately generated modules
together at runtime. For example, given an address inside the code for a function, it must be able to locate
the metadata describing that function. It must also be able to walk the stack, handle exceptions, and store and
retrieve security information. The VES is also known as the “Execution Engine”.

Notational conventions

5. Notational conventions

Various pieces of text from the C++ Standard appear verbatim in this standard. The C++ Standard is
augmented by this C++/CLI Standard, with additions indicated by underlining, and deletions indicated using
strike-through. For example:

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (§13.5/6) is augmented to allow static member functions:

A static member or a non-member operator function shall eitherbe-a-non-static-member
funetion-or-be-a-non-memberfunetion-and have at least one parameter whose type is a class, a
reference to a class, a handle to a class, an enumeration, a reference to an enumeration, or a
handle to an enumeration.

Unless otherwise noted, the following names are used as shorthand to refer to a type of their corresponding
kind:

e T for interface class

e N for native type

e R for ref class

e S for simple value class
e V for value class

The CLI has its own set of naming conventions, some of which differ from established C++ programming
practice. The CLI conventions have been used throughout this Standard; see Annex E.

Many source code examples use facilities provided by the CLI namespace System; however, that
namespace is not explicitly referenced. Instead, there is an implied using namespace System; at the
beginning of each of those examples. Similarly, examples using cout also assume that the iostream
header has been included and there is an implied using namespace std; at the beginning of each of
those examples.

In a number of examples, C++/CLI source code is shown with corresponding metadata. For expository
purposes, a specific mapping between primitive C++ types and metadata types is assumed; however, that
mapping need not be used by a conforming implementation. For example, type int is shown to map to
System: : Int32 (which, in metadata, is referred to as int32). In the examples, C++/CLI source code is
written in a constant-width font, and the corresponding metadata it written in the same font, but with a grey-
shaded background. For example,

public ref struct D : B {
ref class R { .. };

.class public auto ansi D extends B {
! .class auto ansi nested public R extends [mscorlib]System.object { .. }

C++/CLI Language Specification

6. Acronyms and abbreviations

This clause is informative

The following acronyms and abbreviations are used throughout this Standard:
IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers

ISO — the International Organization for Standardization

The following terms are defined in the CLI standard.

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CIL — Common Intermediate Language
CLI — Common Language Infrastructure
CLS — Common Language Specification
CTS — Common Type System

VES — Virtual Execution System

End of informative text

General description

7. General description

This Standard is intended for implementers, academics, and application programmers. As such, it contains a
considerable amount of explanatory material that, strictly speaking, is not necessary in a formal language
specification.

This standard is divided into the following subdivisions:
1. Front matter (clauses 1-7);
2. Language overview (clause 8);
3. The language syntax, constraints, semantics, and library (clauses 9-32);
4. Metadata generation (clauses 33—34);
5. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.

Rational provides explantory material as to why something is or is not in this standard. Annexes provide
additional information and summarize the information contained in this Standard.

Clauses 1-5, 7, and 9-34 form a normative part of this standard; Introduction, clauses 6 and 8, annexes,
notes, examples, rationale, and the index, are informative.

Except for whole clauses or annexes that are identified as being informative, informative text that is
contained within normative text is indicated in the following ways:

1. [Example: code fragment, possibly with some narrative ... end example]
2. [Note: narrative ... end note]

3. [Rationale: narrative ... end rationale]

C++/CLI Language Specification

8. Language overview

This clause is informative.

This specification is a superset of Standard C++. This clause describes the essential features of this
specification. While later clauses describe rules and exceptions in detail, this clause strives for clarity and
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the
language that will facilitate the writing of early programs and the reading of later clauses.

8.1 Getting started
The canonical “hello, world” program can be written as follows:

int main() {
System: :Console: :wWriteLine("hello, world");

The source code for a C++/CLI program is typically stored in one or more text files with a file extension of
.Ccpp, as in hello. cpp. Using a command-line compiler (called c1, for example), such a program can be
compiled with a command line like

c1l hello.cpp

which produces an application named helTo. exe. The output produced by this application when it is run
is:

hello, world
where the WriteL1ine function automatically adds a terminating newline.

The CLI library is organized into a number of namespaces, the most commonly used being System. That
namespace contains a ref class called Console, which provides a family of functions for performing
console I/0. One of these functions is WriteL1ine, which when given a string, writes that string plus a
trailing newline to the console. (Examples from this point on assume that the namespace System has been
the subject of a using-declaration.)

8.2 Types

Value class types differ from handle types in that variables of value class types directly contain their data,
whereas variables of the handle types store handles to objects. With handle types, it is possible for two
variables to reference the same CLI object, and thus possible for operations on one variable to affect the
object referenced by the other variable. With value classes, the variables each have their own copy of the
data, and it is not possible for operations on one to affect the other.

The example

ref class Classl {
pubTic:
int value;
Class1() {
value = 0;

}

1

int main() {
int vall

int val2 =
val2 = 123;

10

Language overview

ClasslA refl gcnew Classl;
ClasslA ref2 refl;
ref2->value = 123;

console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

3
shows this difference. The output produced is

values: 0, 123
Refs: 123, 123

The assignment to the local variable vall does not affect the local variable val2 because both local
variables have primitive types (which are also value class types), and each local variable of a primitive type
has its own storage. In contrast, the assignment ref2->value = 123; affects the CLI object that both
refl and ref2 reference.

The lines

Console::writeLine("values: {0}, {1}", vall, val2);
console::writeLine("Refs: {0}, {1}", refl->value, ref2->value);

deserve further comment, as they demonstrate some of the string formatting behavior of

Console: :WriteL1ine, which, in fact, takes a variable number of arguments. The first argument is a
string, which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing
argument with {0} referring to the second argument, {1} referring to the third argument, and so on. Before
the output is sent to the console, each placeholder is replaced with the formatted value of its corresponding
argument.

Developers can define new value class types through enum and value class definitions.

The following code shows an example of each kind of type definition. Later clauses describe type definitions
in detail.

pubTic enum class Color {
Red, Blue, Green

;
public value struct Point {
int X, y;
;
public interface class IBase {
void FQ;

;
public interface class IDerived : IBase {
void GO ;

public ref class A {
protected:

virtual void HQ {
console::writeLine("A.H");

3
3
public ref class B : A, IDerived {
public:
virtual void FQ) {
Console::WriteLine("B::F, implementation of IBase::F");

virtual void G() {] .)
Console::writeLine("B::G, implementation of IDerived::G");

11

C++/CLI Language Specification

protected:])
virtual void H() override {)
Console::writeLine("B::H, override of A::H");

};
public delegate void MyDelegate();

Types like Color, Point, and IBase above, which are not defined inside other types (i.e., they are top-
level types), can have a type visibility specifier of either pubTic or private. The use of public in this
context indicates that the type is visible outside its parent assembly. Conversely, private indicates that the
type is not visible outside its parent assembly. The default visibility for a top-level type is private.

8.2.1 Fundamental types and the CLI

Each of the fundamental types has a corresponding value class type provided by the implementation; the
correspondence is implementation-defined. For example, one implementation might specify that int has the
corresponding type System: : Int32, while another specifies it has the corresponding type

System: :Int64. Using the keyword name has the usual Standard C++ meaning, while the corresponding
CLI name indicates a particular CLI platform type. [Example: int specifies the implementation-defined
“natural” integer type, whereas Int32 specifies an integer type that is exactly 32 bits on any CLI platform.
end example]

The table below lists the fundamental types and their corresponding CLI-provided type in one
implementation. For consistency, the examples in this Standard use the values in this table without
continually re-stating “implementation-defined”.

Corresponding CLI

Type Description Value class type

bool Boolean type; a bool value is either true or false | System::Boolean
System: : SByte

char 8-bit signed/unsigned integral type (with modopt for
IsSignUnspecifiedByte)

signed char 8-bit signed integral type System: :SByte

unsigned char 8-bit unsigned integral type System: :Byte

short 16-bit signed integral type System::Intl6

unsigned short 16-bit unsigned integral type System: :UIntl6

int 32-bit signed integral type System: :Int32

unsigned int System: :UInt32

32-bit unsigned integral type

System::Int32

Tong 32-bit signed integral type (with modopt IsLong)

System::UInt32

unsigned long

32-bit unsigned integral type

(with modopt IsLong)

long Tong int

64-bit signed integral type

System::Int64

unsigned long Tong int

64-bit unsigned integral type

System: :Uint64

float Single-precision floating point type System::Single
double Double-precision floating point type System: :Double
System: :Double (with

Tong double Extra-precision floating point type

modopt IsLong)

wchar_t A 16-bit Unicode code unit System: :Char

Although they are not fundamental types, three other types provided in the CLI library are worth
mentioning. They are:

12

Language overview

e System::0Object, which is the ultimate base type of all value and handle types
e System::String, a sequence of Unicode code units
e System::Decimal, a precise decimal type with at least 28 significant digits

C++/CLI has no keyword type names that can correspond to these.

8.2.2 Conversions

A number of new kinds of conversion have been defined. These include handle and parameter array
conversion, among others.

8.2.3 CLI array types

A CLI array differs from a native array (C++ Standard §8.3.4) in that the former is allocated on the CLI
heap, and can have a rank other than one. The rank determines the number of indices associated with each
array element. The rank of a CLI array is also referred to as the dimensions of the CLI array. A CLI array
with a rank of one is called a single-dimensional CLI array, and a CLI array with a rank greater than one is
called a multi-dimensional CLI array.

Throughout this Standard, the term CLI array is used to mean an array in the CLI. A C++-style array is
referred to as a native array or, more simply, array, whenever the distinction is needed.

A CLI array type is declared using a built-in pseudo-template ref class having the following declaration:

namespace cli {)
template<typename T, int rank = 1>
ref class array : System::Array {

}

An example of using this pseudo-template is:

int main() {
array<int>A arrlb = gcnew array<int>(4) {10, 42, 30, 123};
Console::write("The {0} elements are:", arrlbD->Length);
for each (int i in arrlD) {
Cconsole::write("{0,3}", 1);

Console::writeLine();
array<int, 3>A arr3D = gcnew array<int, 3>(10, 20, 30);

}

The output produced is:

The 4 elements are: 10 42 30 12
Handle arrlD can be made to refer to any one-dimensional array of int. It currently refers to one
containing four int elements. The read-only property Array: : Length contains the element count. Handle

arr3D can be made to refer to any three-dimensional array of int. It currently refers to one of size
10x20x30, all of whose elements have the default value for int; that is, zero.

8.2.4 Type system unification

C++/CLI provides a “unified type system”. All value and handle types derive from the type
System: :0Object. It is possible to call instance functions on any value, even values of fundamental types
such as int. The example

int main(Q) {
Console::writeLine((3).ToString());

calls the instance function ToString from type System: : Int32 on an integer literal, resulting in the
string ““3” being output. (Note that the seemingly redundant grouping parentheses around the literal 3, are
not redundant; they are needed to get the tokens “3” and “.” instead of “3.”.)

The example

13

C++/CLI Language Specification

int ma1n() {

int i = 123;
ObjectA o = 1i; // boxing
int j = safe cast<1nt>(o), // unboxing

is more interesting. An int value can be converted to System: :ObjectA and back again to int. This
example shows both boxing and unboxing. When a variable of a value class type needs to be converted to a
handle type, a System: :Object box is allocated to hold the value, and the value is copied into the box.
Unboxing is just the opposite. When a System: :0bject box handle is cast back to its original value class
type, the value is copied out of the box and into the appropriate storage location.

This type system unification provides value classes with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’t need int values to act like CLI objects, int values are
simply 32-bit values. For programs that need int values to behave like CLI objects, this capability is
available on demand. This ability to treat instances of value class types as CLI objects bridges the gap
between value classes and ref classes that exists in most languages. For example, a Stack class can provide
Push and Pop functions that take and return ObjectA values.

public ref class stack {

public:

ObjectA Pop() { .. }
void Push(objectA o) { ..}

Because C++/CLI has a unified type system, the Stack class can be used with elements of any type,
including value class types like int.

8.2.5 Pointers, handles, and null

Standard C++ supports pointer types and null pointer constants. C++/CLI adds handle types and null values.
To help integrate handles, and to have a universal null, C++/CLI defines the keyword nul1ptr. This
keyword represents a literal having the null type. nul1ptr is referred to as the null value constant. (No
instances of the null type can ever be created, and the only way to obtain a null value constant is via this
keyword.)

The definition of null pointer constant (which Standard C++ requires to be a compile-time expression that

evaluates to zero) is augmented to include nul1ptr. The null value constant can be implicitly converted to

any pointer or handle type, in which case it becomes a null pointer value or null value, respectively. This

allows nuTTptr to be used in relational, equality, conditional, and assignment expressions, among others.
ObjectA objl = nullptr; // handle objl has the null value

StringA strl - nullptr; // handle strl has the null value
if (objl == 0); // false (0 is boxed, the two handles differ)

if (objl == 0L); // false
if (objl == nullptr); // true
char* pcl = nullptr; // pcl is the null pointer value
if (pcl == 0); // true as zero is a nu11 po1nter value
if (pcl == 0L); // true “
if (pcl == nullptr); // true as nullptr is a null pointer constant
int nl = 0;
nl = nu11ptr // error, no implicit conversion to int
if (n1 == 0); // true, performs integer comparison
if (nl == OL), // “ “ “
if (n1 == nullptr); // error, no implicit conversion to int
if (nullptr); // error
if (nullptr == 0); // error, no implicit conversion to int
if (nullptr == 0L); // “ “ “
nullptr = 0; // error, nullptr is not an lvalue
nullptr + 2; // error, nullptr can’t take part in arithmetic

14

Language overview

g(nullptr, nullptr);
g(nullptr, 0);
g(0, nullptr);

void h(ObjectA, 1int);
void h(char*, ObjectA);

error, ambiguous (1, 2 possible)
calls g(objectA, int)
error, ambiguous (1, 2 possible)

ObjectA obj2 = 0; // obj2 is a handle to a boxed zero
ObjectA obj3 = OL; // obj3 “ “ “
StringA str2 = 0; // error, no conversion from int to StringA
StringA str3 = OL; // “ “ “ “
char* pc2 = 0; // pc2 is the null pointer value
char® pc3 = OL; // pc3 “ “ “
ObjectA obj4 = expr ? nullptr : nullptr; // obj4 is the null value
ObjectA obj5 = expr ? 0 : nullptr; // error, no composite type
char* pc4 = expr ? nullptr : nullptr; // pc4 is the null pointer value
char* pc5 = expr ? 0 : nullptr; // error, no composite type
int n2 = expr ? nullptr : nullptr; // error, no implicit conversion to
int
int n3 = expr ? 0 : nullptr; // error, no composite type
sizeof(nullptr); // error, the null type has no size, per se
typeid(nullptr); // error
throw nullptr; // error
void f(ObjectA); // 1
void f(StringA); // 2
void f(char*); // 3
void f(int); // 4
f(nullptr); // error, ambiguous (1, 2, 3 possible)
f(0); // calls f(int)
void g(ObjectA, ObjectA); // 1
void g(ObjectA, char¥*); // 2
void g(ObjectA, 1int); // 3

//

//

//

h(nullptr, nullptr); // calls h(char*, ObjectA);
h(nullptr, 2); // calls h(ObjectA, int);
template<typename T> void k(T t);

k(0); // specializes k, T = int

k(nullptr); // error, can’t instantiate null type
k((objectA)nullptr); // specializes k, T = ObjectA
k<int*>(nullptr); // specializes k, T = int*

Since objects allocated on the native heap do not move, pointers and references to such objects need not
track an object’s location. However, objects on the CLI heap can move, so they require tracking. As such,
native pointers and references are not sufficient for dealing with them. To track objects on the CLI heap,
C++/CLI defines handles (using the punctuator A) and tracking references (using the punctuator %).

N* pn = new N; // allocate on native heap

N& rn = *pn; // bind ordinary reference to native object
RA hr = gcnew R; // allocate on CLI heap

R% rr = *hr; // bind tracking reference to gc-lvalue

In general, the punctuator % is to A as the punctuator & is to *.

Just as Standard C++ has a unary & operator, C++/CLI provides a unary % operator. While &t yields a T* or
an interior_ptr<T> (see below), %t yields a TA.

Rvalues and lvalues continue to have the same meaning as with Standard C++, with the following rules
applying:

e An entity declared with type T*, a native pointer to T, points to an lvalue.

e Applying unary * to an entity declared with type T*, dereferencing a T*, yields an Ivalue.

e An entity declared with type T&, a native reference to T, is an lvalue.

e The expression &lvalue yields a T*.

15

C++/CLI Language Specification

e The expression %lvalue yields a TA,

A gc-Ivalue is an expression that refers to an object that might be on the CLI heap, or to a value member
contained within such an object. The following rules apply to gc-lvalues:

e Standard conversions exist from “cv-qualified lvalue of type T” to “cv-qualified gc-lvalue of
type T,” and from “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.”

e An entity declared with type TA, a handle to T, points to a gc-lvalue.

e Applying unary * to an entity declared with type TA, dereferencing a TA, yields a gc-lvalue.
e An entity declared with type T%, a tracking reference to T, is a gc-lvalue.

o The expression &gc-lvalue yields an interior_ptr<T> (see below).

e The expression %gc-lvalue yields a TA.

The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An interior
pointer (which is defined using interior_ptr) is a pointer that is updated in this manner.

8.3 Parameters
A parameter array is a type-safe alternative to parameter lists that end with an ellipsis.

A parameter array is declared with a leading . . . punctuator, followed by a CLI array type. There can be
only one parameter array for a given function, and it shall always be the last parameter specified. The type of
a parameter array is always a single-dimensional CLI array type. A caller can either pass a single argument
of this CLI array type, or any number of arguments of the element type of this CLI array type. For instance,
the example
void F(... array<int>A args) {
Console::WriteLine("# of arguments: {0}", args->Length);
for (int i = 0; 1 < args->Length; i++)
Console::writeLine("\targs[{0}] = {1}", i, args[il);

3
int main() {
FQO s
F(1);
F(1, 2);
F(1, 2, 3);
; F(gcnew array<int> {1, 2, 3, 4});

shows a function F that takes a variable number of int arguments, and several invocations of this function.
The output is:

of arguments: 0
of arguments: 1

args[0] =1

of arguments: 2
args[0] =1
args[1l] = 2

of arguments: 3
args[0] =1
args[1l] = 2
args[2] = 3

of arguments: 4
args[0] =1
args[1l] = 2
args[2] = 3
args[3] = 4

By declaring the parameter array to be a CLI array of type System: :ObjectA, the parameters can be
heterogeneous; for example:

16

Language overview

void G(... array<ObjectA>A args) { .. }
G(10, “Hello”, 1.23, ‘X’); // arguments 1, 3, and 4 are boxed

A number of examples presented in this Standard use the WriteLine function of the ConsoTle class. The
argument substitution behavior of this function, as exhibited in the example

inta=1, b =
console: Wr1teL1ne("a = {0}, b = {1}", a, b);

is accomplished using a parameter array. The Console class provides several overloaded versions of the
writeL1ine function to handle the common cases in which a small number of arguments are passed, and
one general-purpose version that uses a parameter array, as follows:

namespace System {
public ref class Object { .. };
public ref class string { .. };
public ref class Console {
public:
static void writeLine(StringA s) { .. }
static void writeLine(StringA s, ObjectA a) { .. }
static void writeLine(StringA s, ObjectA a, ob]ectA b) {.
stagic ¥oid writeLine(StringA s, ObjectA a, ObjectA b, ObjectA c)

static void writeLine(StringA s, ... array<ObjectA>A args) { .. }

}

The CLI library specification shows library functions using C# syntax, in which case, the C# keyword
params indicates a parameter array. For example, the declaration of the final WriteLine function above is
written in C#, as follows:

public static void writeLine(string s, params object[] args)

8.4 Automatic memory management
The example

public ref class Stack {
pubTic:
Sstack() {
first = nullptr;

property bool IsEmpty {
bool get() {
return (first == nullptr);

}

ObjectA Pop() {
if (first == nullptr)
] thEow gcnew Exception("Can't Pop from an empty Stack.™);
else
ObjectA temp = first->value;
first = first->Next;
return temp;

}

void Push(ObjectA o) {
first = gcnew Node(o, first);

17

C++/CLI Language Specification

ref struct Node {
NodeA Next;
ObjectA value;
Node(ObjectA value) {
Next = nullptr;
value = value;

}

Node(ObjectA value, NodeA next) {
Next = next;
value = value;

3
B E
private:
NodeA first;
shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
function and are garbage-collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed
from the Stack, the associated Node instance becomes eligible for garbage collection.

The example

int main(Q) {
StackA s = gcnew Stack;
for (int i = 0; i < 105 i++)
s->Push(i);
s = nullptr;
}
shows code that uses the Stack class. A Stack is created and initialized with 10 elements, and then the
handle to it is assigned the value nul1ptr. Once the variable s is assigned the null value, the Stack and the
associated 10 Node instances become eligible for garbage collection. The garbage collector is permitted to
clean up immediately, but is not required to do so.

The garbage collector underlying C++/CLI can work by moving objects on the CLI heap around in memory,
but this motion is invisible to most C++/CLI developers. For developers who are generally content with
automatic memory management, but sometimes need fine-grained control or that extra bit of performance,
C++/CLI provides the ability to pin objects on the CLI heap, to prevent temporarily the garbage collector
from moving them. For example,

void f(int* p) { *p = 100; }

int main(Q) {

array<int>A arr = gcnew array<int>(100);

pin_ptr<int> pinp = &arr[0]; // pin arr’s Tlocation
f(pinp); // change arr[0]’s value

8.5 Expressions
C++/CLI augments the C++ Standard with respect to operators. For example:

e The addition of delegates requires the use of the function-call operator to invoke the functions
encapsulated by a delegate.

o A new use of typeid has been added. For example, Int32: : typeid results in a handle to a
CLI object of type System: : Type that describes the CLI type Int32.

e The cast operators are augmented to accommodate handle types.
e The safe_cast operator has been added.
o The operator gcnew has been added. This allocates memory from the CLI heap.

e The binary + and - operators are augmented to accommodate delegate addition and removal,
respectively.

18

Language overview

e Simple assignment is augmented to accommodate properties and events as the left operand.

e Compound assignment operators are synthesized from the corresponding binary operator
(§19.7.4).

8.6 Statements

A new statement, for each, has been added. This statement enumerates the elements of a collection,
executing a block for each element of that collection. For example:
void display(array<int>A args) {
for each (int i1 in args)
console::WriteLine(i);

}

A type is said to be a collection type if it implements the System: :ColTlections: :IEnumerable
interface or implements some collection pattern by meeting a number of criteria.

8.7 Delegates

Delegates enable scenarios that Standard C++ programmers typically address with function adapters from
the Standard C++ Library.

A delegate definition implicitly defines a class that is derived from the class System: :Delegate. A
delegate instance encapsulates one or more functions in an invocation list, each member of which is referred
to as a callable entity. For instance functions, a callable entity is an instance and a member function on that
instance. For static functions or global- or namespace-scope functions, a callable entity is just a member,
global-, or namespace-scope function, respectively. Given a delegate instance and an appropriate set of
arguments, one can invoke all of that delegate instance’s callable entities with that set of arguments.

Consider the following example:
delegate void MyFunction(int value); // define a delegate type
public ref struct A {])]
static void F(int i) { Console::writeLine("F:{0}", i); }
public ref struct B {]])
void G(int i) { console::writeLine("G:{0}", 1i); }
The static function A: : F and the instance function B: : G both have the same parameter types and return type
as MyFunction, so they can be encapsulated by a delegate of that type. Note that even though both
functions are public, their accessibility is irrelevant when considering their compatibility with MyFunction.
Such functions can also be defined in the same or different classes, as the programmer sees fit.

int main(Q) {

MyFunctionA d; // create a delegate reference
3(= gcnew MyFunction(&A: :F); // invocation list is A::F
10);

BA b = gcnew B;)
d += gcnew MyFunction(b, &B::G); // invocation list is A::F B::G

d(20);
d += gcnew MyFunction(&A::F); // invocation list is A::F B::G A::F
d(30);
g(—=)gcnew MyFunction(b, &B::G); // invocation 1ist is A::F A::F
40) ;

19

C++/CLI Language Specification

:10

120

:20

:30

:30

:30

140

140

The constructor for a delegate needs two arguments when it is bound to a non-static member function: the
first is a handle to an instance of a ref class, and the second designates the non-static member function within
that ref class’s type, using the syntax of a pointer to member. The constructor for a delegate needs only one

argument when it is bound to a static function, or a global- or namespace-scope function; the argument
designates that function, using the syntax of a pointer to member or pointer to function, as appropriate.

T TmoOTOT

The invocation lists of two compatible delegates can be combined via the += operator, as shown. In
addition, callable entities can be removed from an invocation list via the -= operator, as shown. However,
an invocation list cannot be changed once it has been created. Specifically, these operators create new
invocation lists.

Once a delegate instance has been initialized, it is possible to indirectly call the functions it encapsulates just
as if they were called directly (in the same order in which they were added to the delegate's invocation list),
except the delegate instance’s name is used instead. The value (if any) returned by the delegate call is that
returned by the final function in that delegate's invocation list. If a delegate instance is null and an attempt is
made to call the “encapsulated” functions, an exception of type Nul1ReferenceException results.

8.8 Native and ref classes

8.8.1 Literal fields

A literal field is a field that represents a compile-time constant rvalue. The value of a literal field is
permitted to depend on the value of other literal fields within the same program as long as they have been
previously defined. The example

ref class X {
Titeral int A = 1;
public:

Titeral int B A+ 1;

ref class Y {

pubTic:
Titeral double C = X::B * 5.6;

)
shows two classes that, between them, define three literal fields, two of which are public while the other is
private.

Even though literal fields are accessed like static members, a literal field is not static and its definition
neither requires nor allows the keyword static. Literal fields can be accessed through the class, as in
int main() {

cout << "B " << X::B << "\n";
cout << "C " << Y:i:iC << "\n";

which produces the following output:

B =2
c =11.2

Literal fields are only permitted in ref, value, and interface classes.

20

Language overview

8.8.2 Initonly fields

The initonly identifier declares a field that is an Ivalue only within the ctor-initializer and the body of an
instance constructor, or within a static constructor, and thereafter is an rvalue. Such a field is called an
initonly field. For example:

public ref class Data {
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
// read in the value of the coefficients from some source

coefficientl = ..; // ok
) coefficient2 = ..; // ok
public:
static void FO {
coefficientl = ..; // error
coefficient2 = ..; // error

}
s
Assignments to an initonly field can only occur as part of its definition, or in an instance constructor or static
constructor in the same class. (A static initonly field can be assigned to in a static constructor, and a non-
static initonly field can be assigned to in an instance constructor.)

Initonly fields are only permitted in ref and value classes.

8.8.3 Functions

Member functions in CLI class types are defined and used just as in Standard C++. However, C++/CLI does
have some differences in this regard. For example:

e The const and volatile qualifiers are not permitted on instance member functions.

o The function modifier override and override specifiers provide the ability to indicate explicit
overriding and named overriding (§8.8.10.1).

e Marking a virtual member function as sealed prohibits that function from being overridden in
a derived class.

e The function modifier abstract provides an alternate way to declare an abstract function.

e The function modifier new allows the function to which it applies to hide the base class function
of the same name, parameter-type-list, and cv-qualification. Such a hiding function does not
override any base class function, even if the hiding function is declared virtual.

o Type-safe variable-length argument lists are supported via parameter arrays.

8.8.4 Properties

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and
indexed. A scalar property enables field-like access to a class or CLI object. Examples of scalar properties
include the length of a string, the size of a font, the caption of a window, and the name of a customer. An
indexed property enables array-like access to a CLI object. An example of an index property is a bit-array
class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing CLI arrays and
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessor functions that specify the statements to be executed when their values are read or written.

Properties are defined with property definitions. The first part of a property definition looks quite similar to a
field definition. The second part includes a get accessor function and/or a set accessor function. Properties
that can be both read and written include both get and set accessor functions. In the example below, the
Point class defines two read-write properties, X and Y.

21

C++/CLI Language Specification

public value class Point {
int Xor;
int Yor;

public:
property int X {
int get() { return Xor; }
void set(int value) { Xor = value; }

property int Y {
int get() { return Yor; }
void set(int value) { Yor = value; }

Point(int x, int y) {

Move(x, Y);

void Move(int x, int y) { // absolute move
X = X;
Y =Y;

h

void Translate(int x, int y) { // relative move
X += X;
Y += y;

1

The get accessor function is called when the property’s value is read; the set accessor function is called when
the property’s value is written.

The definition of properties is relatively straightforward, but the real value of properties is seen when they
are used. For example, the X and Y properties can be read and written as though they were fields. In the
example above, the properties are used to implement data hiding within the class itself. The following
application code (directly and indirectly) also uses these properties:

Point pl; // set to (0,0)
pl.Xx = 10; // set to (10,0)
pl.y = 5; // set to (10,5)
pl.Move(5, 7); // move to (5,7)
Point p2(9, 1); // set to (9,1)

p2.Translate(-4, 12); // move 4 left and 12 up, to (5,13)
For a trivial property declaration such as

property StringA Name;
the compiler automatically provides the default implementations of the accessor functions.

A default-indexed property allows array-like access directly on an instance. [Note: Other languages refer to
default-indexed properties as “indexers”. end note]

As an example, consider a Stack class. The designer of this class might want to expose array-like access so
that it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop
operations. That is, class Stack is implemented as a linked list, but it also provides the convenience of array
access.

Default-indexed property definitions are similar to property definitions, with the main differences being that
default-indexed properties are nameless and that they include indexing parameters. The indexing parameters
are provided between square brackets. The example

22

Language overview

public ref class Sstack {
public:
ref struct Node {
NodeA Next;
ObjectA value;
Node(ObjectA value) : Next(nullptr), value(value) {}
Node(ObjectA value, NodeA next) {
Next = next;
value = value;

3

};

private:

NodeA first;

NodeA GetNode(int index) {
NodeA temp = first;
while (index > 0) {

temp = temp->Next;
index--;

return temp;

}
bool validIndex(int index) { .. }

public:
property ObjectA default[int] { // default-indexed property
ObjectA get(int index) {
if (!validindex(index))
] throw gcnew Exception("Index out of range.");
else
return GetNode(index)->value;

void set(int index, ObjectA value) {
if (!validindex(index))
] throw gcnew Exception("Index out of range.");
else
) GetNode(index)->value = value;
3

objectA pPop() { .. }
void Push(ObjectAr o) { .. }

-

int main() {
StackA s = gcnew Stack;

s->Push(1);

s->Push(2);

s->Push(3);

s[0] = 33; // The top item now refers to 33 instead of 3
s[1] = 22; // The middle item now refers to 22 instead of 2
s[2] = 11; // The bottom item now refers to 11 instead of 1

3
shows a default-indexed property for the Stack class.

[Note: A more efficient implementation of Stack would make use of generics. end note]

8.8.5 Events

An event is a member that enables a class or CLI object to provide notifications. A class defines an event by
providing an event declaration (which resembles a field declaration, though with an added event identifier)
and an optional set of event accessor functions. The type of this declaration must be a handle to a delegate

type (§8.7).

In the example

23

C++/CLI Language Specification

public delegate void EventHandler(ObjectA sender, EventArgsA e);
public ref class Button {
pubTic:
event EventHandlerA Click;
the Button class defines a C11 ck event of type EventHandler. The C11ick member is only used on the
left-hand side of the += and —= operators, or with the function-call operator (in which case, all the functions

in the event's delegate list are called). The += operator adds a handler for the event, and the -= operator
removes a handler for the event. The example

public ref class Forml {
ButtonA Buttonl;

void Buttonl _Click(ObjectA sender, EventArgsA e) {
console::writeLine("Buttonl was clicked!");

pubTic:
Forml() {
Buttonl = gcnew Button;
// Add Buttonl_Click as an event handler for Buttonl’s Click event
Buttonl->Click += gcnew EventHandler(this, &Forml::Buttonl_cClick);

void Disconnect() {
Buttonl->Click -= gcnew EventHandler(this, &Forml::Buttonl_Click);

3
s
shows a class, Forml, that adds Buttonl_CT1ick as an event handler for Buttonl’s C11ick event. In the
Disconnect function, that event handler is removed
Programmers who wants more control can get it by explicitly providing add and remove accessor functions.
For example, the Button class could be rewritten as follows:

public ref class Button {
EventHandlerA handler;

pubTic:
event EventHandlerA Click {
void add(EventHandlerA e) { handler += e; }
; void remove(EventHandlerA e) { handler -= e; }
’ .

This change has no effect on client code, but it allows the Button class more implementation flexibility. For
example, the event handler for C11 ck need not be represented by a field.

For a trivial event declaration such as
event EventHandlerA Click;

the compiler automatically provides the default implementations of the accessor functions.

8.8.6 Static operators

In addition to Standard C++ operator overloading, C++/CLI provides the ability to define operators that are
static and/or take parameters of " type.
The following example shows part of an integer vector class:

public ref class Intvector {
array<int>A values;

pubTic:

property int Length { // property
int get() { return values->Length; }

24

//

1

Language overview

property int default[int] { // default-indexed property
int get(int index) { return values[index];
void set(int index, int value) { values[index] = value; }

IntVector(int length);
IntvVector(int Tength, int value);

unary - (negation)
static IntvectorA operator-(IntvVectorA iv) {
IntVectorA temp = gcnew Intvector(iv->Length);
for (int i 0; i < iv->Length; ++i) {
temp[i] -iv[i];

return temp;

static IntVectorA operator+(IntVectorA {iv, int val) {
IntVectorA temp = gchew IntvVector(iv->Length);
for (int i = 0; i < iv->Length; ++i) {
temp[i] iv[i] + val;

return temp;

static IntvectorA operator+(int val, IntvectorA iv) {
return iv + val;

int main() {

}

IntVectorA vl
IntVectorA iv2
ivl = -2 + 1iv2
iv2 = -ivl;

gcnew IntVector(4); // 4 elements with value 0
gcnew IntVector(7, 2); // 7 elements with value 2

+ 01

8.8.7 Instance constructors

Unlike Standard C++, C++/CLI supports static constructors (§8.8.9). As such, this specification refers to
constructors as defined by the C++ Standard as being instance constructors.

8.8.8 Destructors and finalizers

In Standard C++, cleanup code has traditionally been encapsulated by the destructor. While this approach
provides a convenient and powerful way to abstract resources, resource leaks can occur if the destructor is
not called. By having a garbage collector, C++/CLI provides a mechanism to write cleanup code that can be
executed instead when an object is no longer referenced. As a result, a ref class can have two special
member functions responsible for cleaning up resources held by an instance of that type: a destructor and a

finalizer.

Destructor: The destructor provides deterministic cleanup and ends the lifetime of the object.
As in Standard C++, the destructor cleans up the bases and members of an object in the reverse
order of the completion of their constructor. Within each ref class, in order, the destructor
executes the user-written code, calls the destructors for each embedded member of the class, and
calls the destructor for each base class. The main advantage of a destructor is that it is called at
deterministic points in the program, which has the advantage of freeing resources earlier than if
one waited for garbage collection.

Finalizer: The finalizer provides non-deterministic cleanup. A finalizer is a “last-chance”
function that is executed during garbage collection, typically on an object whose destructor was
not executed. Finalizers are particularly useful to ensure resources that are represented by data
members having value types (such as native pointers referring to allocation from the native
heap) are cleaned up even if the destructor is not executed. The finalizer executes sometime

25

C++/CLI Language Specification

after the garbage collector determines there are no active references to the object. (There can be
a performance penalty for having a finalizer.)

A ref class whose instances own resources should always have a destructor. A class that has a finalizer
should always have a destructor as well, to enable deterministic cleanup and early resource release.
However, a class that has a destructor need not necessarily have a finalizer.

ref struct R {
~RO { .. } // destructor, but no finalizer

A ref class whose instances have resources represented by value types (such as a pointer) should have a
finalizer. (There may be a performance penalty for introducing a finalizer to a class that does not already
have some finalizable ancestor class. As such, a well-designed class hierarchy will limit resources
represented by value types to the leaves of the class hierarchy.) A ref class whose instances have no value
types representing resources can still have a destructor, but should not have a finalizer.

ref struct R {

~RO { .. } // destructor
RO { .. } // finalizer

C++/CLI implements the destructor and finalizer semantics in any ref class T by using the CLI dispose
pattern, which makes use of five functions (Dispose(), Dispose(bool), Finalize(Q),
_identifier(“~T”) (), and __identifier(“!T”)), all of whose definitions are generated by the
compiler, as required. These cleanup mechanisms are hidden from the C++/CLI programmer. In C++/CLI,
the proper way to do cleanup is to place all of the cleanup code in the destructor and finalizer, as follows:

o The finalizer should clean up any resources that are represented by value types.

e The destructor should do the maximal cleanup possible. To facilitate this, the programmer
should call the finalizer from the destructor and write any other cleanup code in the destructor.
A destructor can safely access the state of ref classes with references from the object, whereas a
finalizer cannot.

For ref classes, both the finalizer and destructor must be written so they can be executed multiple times and
on objects that have not been fully constructed.

8.8.9 Static constructors

A static constructor is a ref or value class static member function that implements the actions required to
initialize the static members of a class, rather than the instance members of that class. Static constructors
cannot have parameters, they must be private, and they cannot be called explicitly. The static constructor for
a class is called automatically by the runtime. [Note: A static constructor is required to be private to prevent
the static constructor from being invoked more than once. end note]

The example

public ref class Data {
private:
initonly static double coefficientl;
initonly static double coefficient2;
static Data() {
/ read in the value of the coefficients from some source
coefficientl .-
coefficient2)

¥,
public:
-

shows a Data class with a static constructor that initializes two initonly static fields.

26

Language overview

8.8.10 Inheritance

When using ref classes, C++/CLI supports single inheritance of ref classes only. However, multiple
inheritance of interfaces is permitted.

8.8.10.1 Function overriding

In Standard C++, given a derived class with a function having the same name, parameter-type-list, and cv-
qualification as a virtual function in a base class, the derived class function always overrides the one in the
base class, even if the derived class function is not declared virtual.
struct B {]
virtual void f(Q);
virtual void gQ);

sfruct D : B {
virtual void fQO; // D::f overrides B::f
void gQ; // D::g overrides B::g
We refer to this as implicit overriding. (As the virtual specifier on D: : f is optional, the presence of
virtual there really isn’t an indication of explicit overriding.) Since implicit overriding gets in the way of
versioning (§8.13), implicit overriding must be diagnosed by a C++/CLI compiler.

C++/CLI supports two virtual function-overriding features not available in Standard C++. These features are
available in ref class types. They are explicit overriding and named overriding.

Explicit overriding: In C++/CLl1, it is possible to state that

1. A derived class function explicitly overrides a base class virtual function having the same name,
parameter-type-list, and cv-qualification, by using the function modifier override, with the
program being ill-formed if no such base class virtual function exists; and

2. A derived class function explicitly does not override a base class virtual function having the same
name, parameter-type-list, and cv-qualification, by using the function modifier new.
ref struct B {
virtual void F(Q) {}
virtual void GQ) {}
ref struct D : B {

virtual void F(O) override {} // D::F overrides B::F
virtual void G() new {} // D::G doesn’t override B::G, it hides it

D: : F must be virtual, and must be marked as such. On the other hand, D: : G doesn't have to be virtual, and if
it isn't, it shouldn't be marked as such.

Named overriding: Instead of using the override modifier, we can achieve the same thing by using an
override-specifier, which involves naming the function we are overriding. This approach also allows us to
override a function having a different name, provided the parameter lists are the same.

ref struct B {
virtual void FQO {}

’
interface struct I {
virtual void GQ);

)
ref struct D : B,

I {
virtual void X() =

B::F, I::G {} // D::X overrides B::F and I::G
;
The use of virtual in all function declarations having an override-specifier is mandatory.

Explicit and named overriding can be combined, as follows:

27

C++/CLI Language Specification

ref struct B {
virtual void F() {}
virtual void GQ) {}
ref struct D : B {
virtual void F() override = B::G {}
A function can only be overridden once in any given class. Therefore, if an implicit or explicit override does
the same thing as a named override, the program is ill-formed.
ref struct B {

virtual void FO {}

virtual void GQ) {}

ref struct D : B {
virtual void F() override = B::F {} // Error: B::F is overridden twice
virtual void G() override {} // B::G is overridden
virtual void HQ = B::G {} // Error: B::G is overridden twice

[Note: If a base class is dependent on a template type parameter, a named override of a virtual function from
that base class does not happen until the point of instantiation. In the following
template<typename T>

ref struct R : T {
virtual void FOO = T::G6 {}

T::Gis a dependent name. end note]

8.9 Value classes

Value classes are similar to ref classes in that the former represent data structures that can contain fields and
function members. However, unlike ref classes, value classes do not require heap allocation. A variable of a
value class directly contains the data of the value class, whereas a variable of a ref class contains a handle to
the data.

Value classes are particularly useful for small data structures that have value semantics. Complex numbers,
points in a coordinate system, or key-value pairs in a dictionary are all good examples of value classes. Key
to these data structures is that they have few fields, they do not require the use of inheritance or referential
identity, and they can be conveniently implemented using value semantics where assignment copies the
value instead of the reference.

The primitive types—such as int, double, and bool—are, in fact, all value class types. It is possible to use
value class types and operator overloading to implement new “primitive” types.

value struct Point {

int x, Vy;

Point(int x, int y) {
this->x = x;
this->y = y;

1

8.10 Interfaces

An interface defines a contract. A class that implements an interface must adhere to its contract by
implementing all of the functions, properties, and events that interface declares.

The example
delegate void EventHandler(ObjectA sender, EventArgsA e);

28

Language overview

interface class IExample {
void F(int value);
property bool P { bool get(); }
property double default[int] {
double get(int);
void set(int, double);

event EventHandlerA E;
35
shows an interface that contains a function F, a read-only scalar property P, a default-indexed property, and
an event E, all of which are implicitly public.

Interfaces are implemented using inheritance syntax.
interface class 11 { void FQ; }; // F 1is implicitly virtual abstract
ref struct R1 : I1 { virtual void FQO { /* implement I1l::F */ } };

An interface can require implementation of one or more other interfaces. For example

interface class IControl {
void Paint();

’
interface class ITextBox : IControl {
void SetText(StringA text);

;
interface class IListBox : IControl {
void SetItems(array<StringA>A items);

;
interface class IComboBox : ITextBox, IListBox {};
A class that implements IComboBox must also implement ITextBox, IListBox, and IControl.

Classes can implement multiple interfaces. In the example
interface class IDataBound {
void Bind(BinderA b);
puB}jc ref class EditBox : Control, IControl, IDataBound {
public:
virtual void Paint() { .. }
virtual void Bind(BinderA b) { .. }

the class EditBox derives from the ref class Control and implements both IControl and IDataBound.

In the previous example, interface functions were implicitly implemented. C++/CLI provides an alternative
way of implementing these functions that allows the implementing class to avoid having these members be
public. Interface functions can be explicitly implemented using the named overriding syntax shown in
§8.8.10.1. For example, the Ed1i tBox class could instead be implemented by providing IControl: :Paint
and IDataBound: :Bind functions.

public ref class EditBox : IControl, IDataBound {

private:

virtual void Paint() = IControl::Paint { .. }
virtual void Bind(BinderA b) = IDataBound::Bind { .. }

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented.

int main(Q) {)
EditBoxA editbox = gcnew EditBox;

editbox->Paint(); ~// error: Paint 1is private
IControlA control = editbox;)]))
control->Paint(); // calls EditBox’s Paint implementation

29

C++/CLI Language Specification

8.11 Enums

Standard C++ already supports enumerated types. However, C++/CLI provides some interesting extensions
to this facility. For example:

e Anenum can be declared public or private, so its visibility outside its parent assembly can be
controlled.

e The underlying type for an enum can be specified.
e An enum type and/or its enumerators can have attributes.

e A new syntax is available for defining enums that are strongly typed and thus do not have
integral promotions.

8.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on a few system-provided
classes such as System: :ConsoTe. It is far more common, however, for real-world applications to consist
of several different pieces, each compiled separately. For example, a corporate application might depend on
several different components, including some developed internally and some purchased from independent
software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical
organizational system. Namespaces are used both as an “internal” organization system for a program, and as
an “external” organization system—a way of presenting program elements that are exposed to other
programs.

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable
code used to implement these types, and references to other assemblies.

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program
presented earlier, and splits it into two pieces: a class library that contains a function that displays the
greeting, and a console application that calls that function.

The class library will contain a single class named DisplayMessage. For example:

// DisplayHelloLibrary.cpp
namespace MyLibrary {
public ref struct DisplayMessage {
static void Display() {
console::writeLine("hello, world");

}
1
}

The next step is to write a console application that uses the DisplayMessage class; for example:

// HelloApp.cpp
#using <DisplayHelloLibrary.d11>
int main(Q) {
MyLibrary::DisplayMessage: :Display(Q);

No headers need to be included when using CLI library classes and functions. Instead, library assemblies are
referenced via #us1ing directives, with the assembly name enclosed in <...>, as shown. The code written
can be compiled into a class library containing the class DisplayMessage and an application containing
the function main. The details of this compilation step might differ based on the compiler or tool being used.
A command-line compiler might enable compilation of a class library and an application that uses that
library with the following command-line invocations:

cl /LD DisplayHelloLibrary.cpp
c1 HelTloApp.cpp

which produce a class library named DisplayHelTloLibrary.d11 and an application named
HelloApp.exe.

30

Language overview

8.13 Versioning

Versioning is the process of evolution of a component over time in a compatible manner. A new version of a
component is source-compatible with a previous version if code that depends on the previous version can,
when recompiled, work with the new version. In contrast, a new version of a component is binary-
compatible if an application that depended on the old version can, without recompilation, work with the new
version.

Consider the situation of a base class author who ships a class named Base. In the first version, Base
contains no function F. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base on which it depends, is released to customers, who deploy to
numerous clients and servers.

public ref struct Base { // version 1

-

public ref struct Derived : Base {
virtual void FQ) { _
console::WriteLine("Derived::F");

};

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it
its own function F.
public ref struct Base { // version 2

virtual void FQ) {. // added in version 2
console::wWriteLine("Base::F");

1

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t
possible simply to add a function then a base class could never evolve.) Unfortunately, the new F in Base
makes the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely,
since when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override
Base’s F, then it must adhere to the contract specified by Base—a contract that was unspecified when
Derived was written. In some cases, this is impossible. For example, Base’s F might require that overrides
of it always call the base. Derived’s F could not possibly adhere to such a contract.

C++/CLI addresses this versioning problem by allowing developers to state their intent clearly. In the
original code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is
intended as a new function rather than an override of a base function, since no base function named F exists.

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F
to override Base’s F, or to hide it. By default, the compiler makes Derived’s F override Base’s F.
However, this course of action does not duplicate the semantics for the case in which Derived is not
recompiled.

If Derived’s F is semantically unrelated to Base’s F, then Derived’s author can express this intent by
using the function modifier new in the declaration of F.

public ref struct Base { // version 2
virtual void FQO { // added in version 2
Cconsole::writeLine("Base::F");

1

public ref struct Derived : Base { // version 2a: new
virtual void F() new { _
console::writeLine("Derived::F");

};

31

C++/CLI Language Specification

On the other hand, Derived’s author might investigate further, and decide that Derived’s F should
override Base’s F. This intent can be specified explicitly by using the function modifier override, as
shown below.

public ref struct Base { // version 2

virtual void FQ { // added in version 2
console::wWriteLine("Base::F");

1

public ref struct Derived : Base { // version 2b: override
virtual void F() override {
Base::F();
console::writeLine("Derived::F");

1

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding
the name collision. Although this change would break source and binary compatibility for Derived, the
importance of this compatibility varies depending on the scenario. If Derived is not exposed to other
programs, then changing the name of F is likely a good idea, as it would improve the readability of the
program—there would no longer be any confusion about the meaning of F.

8.14 Attributes

Standard C++ has certain declarative elements. For example, the accessibility of a function in a class can be
specified by declaring it publ1ic, protected, or private. C++/CLI generalizes this capability, so that
programmers can invent new kinds of declarative information, attach this declarative information to various
program entities, and retrieve this declarative information at run-time. Programs specify this additional
declarative information by defining and using attributes.

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements
such as classes and functions, enabling developers to provide a mapping from program elements to
documentation for them. The example
[AttributeUsage(AttributeTargets::Al1)]
public ref class HelpAttribute : Attribute {
StringA url;
public:]]
HelpAttribute(SstringA url) {
; this->url = url;

StringA Topic;

property StringA url {
StringA get() { return url; }

3

defines an attribute class named HelpAttribute that has one positional parameter (StringA url) and
one named parameter (StringA Topic). Positional parameters are defined by the formal parameters for
public instance constructors of the attribute class, and named parameters are defined by public non-static
read-write fields and properties of the attribute class. For convenience, usage of an attribute name when
applying an attribute is allowed to drop the Attribute suffix from the name.

The example

[Help("http://www.mycompany.com/../Classl.htm")]

public ref class Classl {

public:
[Help("http://www.mycompany.com/../Classl.htm", Topic = "F")]
void FO {}

shows several uses of the attribute He1p.

32

Language overview

Attribute information for a given program element can be retrieved at run-time by using reflection support.
The example
int main(Q) {
TypeA type = Classl::typeid;
array<ObjectA>A arr =
type->GetCustomAttributes(HelpAttribute: :typeid, true);
if (arr->Length == 0)
] Co?so1e::WriteLine(“C1assl has no Help attribute.");
else
HelpAttributeA ha = (HelpAttributeA) arr[0];
Console::writeLine("url = {0}, Topic = {1}", ha->Url, ha->Topic);

}

checks to see if Class1 has a He'l p attribute, and writes out the associated Topic and Ur1 values if that
attribute is present.

8.15 Generics

Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow
parameterized types. Generics differ from templates in that generics are instantiated by the Virtual Execution
System (VES) at runtime rather than by the compiler at compile-time. A generic definition must be a ref
class, value class, interface class, delegate, or function.

8.15.1 Creating and consuming generics

Below, we create a Stack generic class definition where we specify a type parameter, ItemType, using
the same notation as with templates, except that the keyword generic is used instead of template. This
type parameter acts as a placeholder until an actual type is specified at use.
generic<typename ItemType>
public ref class Stack {
array<ItemType>A 1tems;
public: i
Sstack(int size) {)
items = gcnew array<ItemType>(size);

void Push(ItemType data) { .. }
ItemType Pop() { .. }

When we use the generic class definition Stack, we specify the actual type to be used by the generic class.
In this case, we instruct the Stack to use an int type by specifying it as a type argument using the angle
brackets after the name:

Stack<int>A s = gcnew Stack<int>(5);

In so doing, we have created a new constructed type, Stack<int>, for which every ItemType inside the
definition of Stack is replaced with the supplied type argument int.

If we wanted to store items other than an int into a Stack, we would have to create a different constructed
type from Stack, specifying a new type argument. Suppose we had a simple Customer type and we
wanted to use a Stack to store it. To do so, we simply use the Customer class as the type argument to
Stack and easily reuse our code:

Stack<CustomerA>A s = gcnew Stack<CustomerA>(10);

s->Push(gcnew Customer) ;
CustomerA ¢ = s->Pop();

Of course, once we’ve created a Stack with a Customer type as its type argument, we are now limited to
storing only Customer objects (or objects of a class derived from Customer). Like templates, generics
provide strong typing.

33

C++/CLI Language Specification

Generic type definitions can have any number of type parameters. Suppose we created a simple
Dictionary generic class definition that stored values alongside keys. We could define a generic version
of a Dictionary by declaring two type parameters, as follows:
generic<typename KeyType, typename ElementType>
public ref class Dictionary {
pubTic:
void Add(KeyType key, ElementType val) { .. }
property ElementType default[KeyType] { // indexed property

ElementType get(KeyType key) { .
void set(KeyType key, E1ementType value) { .. }

3

When we use Dictionary, we need to supply two type arguments within the angle brackets. Then when
we call the Add function or use the indexed property, the compiler checks that we supplied the right types:
Dictionary<StringA, CustomerA>A dict
= gcnew Dictionary<StringA, CustomerAs;

dict->Add("Peter", gcnew Customer);
CustomerA c = dict["Peter"];

8.15.2 Constraints

In many cases, we will want to do more than just store data based on a given type parameter. Often, we will
also want to use members of the type parameter to execute statements within our generic type definition. For
example, suppose in the Add function of our Dictionary we wanted to compare items using the
CompareTo function of the supplied key, as follows:

generic<typename KeyType, typename ElementType>

public ref class Dictionary {

public:
void Add(KeyType key, ElementType val) {

if (key->CompareTo(val) < 0) { .. } // compile-time error

3

}s
Unfortunately, at compile-time the type parameter KeyType is, as expected, generic. As written, the
compiler will assume that only the operations available to System: :0Object, such as calls to the function
ToString, are available on the variable key of type KeyType. As a result, the compiler will issue a
diagnostic because the CompareTo function would not be found. However, we can cast the key variable to a
type that does contain a CompareTo function, such as an IComparabTe interface, allowing the program to
compile:

generic<typename KeyType, typename ElementType>

public ref class Dictionary {

pubTic:
void Add(KeyType key, ElementType val) {

if (static_cast<IComparableA>(key)->CompareTo(val) < 0) { .. }

3
3
However, if we now construct a type from Dictionary and supply a key type argument which does not
implement IComparable, we will encounter a run-time error (in this case, a
System: :InvalidCastException). Since one of the objectives of generics is to provide strong typing
and to reduce the need for casts, a more elegant solution is needed.

We can supply an optional list of constraints for each type parameter. A constraint indicates a requirement
that a type must fulfill in order to be accepted as a type argument. (For example, it might have to implement
a given interface or be derived from a given base class.) A constraint is declared using the word where,
followed by a type parameter and colon (:), followed by a comma-separated list of class or interface types.

34

Language overview

In order to satisfy our need to use the CompareTo function inside Dictionary, we can impose a constraint
on KeyType, requiring any type passed as the first argument to Dictionary to implement IComparable,
as follows:

generic<typename KeyType, typename ElementType>

where KeyType : IComparable
pub1jc ref class Dictionary {

public
vo1d Add(KeyType key, ElementType val) {

if (key->CompareTo(val) < 0) { .. }

}
}s
When compiled, this code will now be checked to ensure that each time we construct a Dictionary type
we are passing a first type argument that implements IComparable. Further, we no longer have to
explicitly cast variable key to an IComparabTe interface before calling the CompareTo function

Constraints are most useful when they are used in the context of defining a framework, i.e., a collection of
related classes, where it is advantageous to ensure that a number of types support some common signatures
and/or base types. Constraints can be used to help define “generic algorithms” that plug together
functionality provided by different types. This can also be achieved by subclassing and runtime
polymorphism, but static, constrained polymorphism can, in many cases, result in more efficient code, more
flexible specifications of generic algorithms, and more errors being caught at compile-time rather than run-
time. However, constraints need to be used with care and taste. Types that do not implement the constraints
will not easily be usable in conjunction with generic code.

For any given type parameter, we can specify any number of interfaces as constraints, but no more than one
base class. Each constrained type parameter has a separate where clause. In the example below, the
KeyType type parameter has two interface constraints, while the ETlementType type parameter has one
class constraint:
generic<typename KeyType, typename ElementType>
where KeyType : IComparable, IEnumerable

where ElementType : Customer
public ref class Dictionary {

public
vo1d Add(KeyType key, ElementType val) {

if (key->CompareTo(val) < 0) { .. }

}
1

8.15.3 Generic functions

In some cases, a type parameter is not needed for an entire class, but only when calling a particular function.
Often, this occurs when creating a function that takes a generic type as a parameter. For example, when
using the Stack described earlier, we might often find ourselves pushing multiple values in a row onto a
stack, and decide to write a function to do so in a single call.

We do this by writing a generic function. Like a generic class definition, a generic function is preceded by
the keyword generic and a list of type parameters enclosed in angle brackets. As in a template function,
the type parameters of a generic function can be used within the parameter list, return type, and body of the
function. A generic PushMultipTe function might look like this:

generic<typename StackType, typename ItemType>
where ItemType : StackType

void PushMultiple(stack<StackType>A s, ... array<ItemType>A values) {
for each (ItemType v in values)
s->Push(v);
}

35

C++/CLI Language Specification

Using this generic function, we can now push multiple items onto a Stack of any kind. Furthermore,
because a constraint exists, the compiler type checking will ensure that the pushed items have the correct
type for the kind of Stack being used. When calling a generic function, we place type arguments to the
function in angle brackets; for example:

Stack<int>A s = gcnew Stack<int>(5);

PushMultiple<int,int>(s, 1, 2, 3, 4);
The call to this function supplies the desired StackType and ItemType as type arguments to the function.
In many cases, however, the compiler can deduce the correct type argument from the other arguments passed
to the function, using a process called type deduction. In the example above, since the first regular argument
is of type Stack<1int>, and the subsequent arguments are of type int, the compiler can reason that the type
parameter must also be int. Thus, the generic PushMuTtipTe function can be called without specifying the
type parameter, as follows:

Stack<int>A s = gcnew Stack<int>(5);
Pushmultiple(s, 1, 2, 3, 4);

End of informative text.

36

Lexical structure

0. Lexical structure

9.1 Tokens

9.1.1 Identifiers

Certain places in the Standard C++ grammar do not allow identifiers. However, C++/CLI allows a defined
set of identifiers to exist in those places, with these identifiers having special meaning. [Note: Such
identifiers are colloquially referred to as context-sensitive keywords; nonetheless, they are identifiers. end
note] The identifiers that carry special meaning in certain contexts are:

abstract delegate event finally generic in
initonly internal Titeral override property sealed
where

When referred to in the grammar, these identifiers are used explicitly rather than using the identifier
grammar production. Ensuring that the identifier is meaningful is a semantic check rather than a syntax
check. An identifier is considered a keyword in a given context if and only if there is no valid parse if the
token is taken as an identifier. That is, if it can be an identifier, it iS an identifier.

Some naming patterns are reserved for function names in certain contexts (§19.2, §19.7.5).

When the token generiic is found, it has special meaning if and only if it is not preceded by the token : : or
typename, and is followed by the token < and then either of the keywords class or typename. [Note: In
rare cases, a valid Standard C++ program could contain the token sequence generic followed by <
followed by class, where generic should be interpreted as a type name. For example:
template<typename T> struct generic {
typedef int I;

class X {};
generic<class X> x1;
generic<class X()> x2;

In such cases, use typename to indicate that the occurrence of generiic is a type name:

typename generic<class X> x1;
typename generic<class X()> x2;

or, in these particular cases, an alternative would be to remove the keyword class (that is, to not use the
elaborated-type-specifier), for example:

generic<X> x1;
generic<X()> x2;

end note]

The grammar productions for elaborated-type-specifier (C++ Standard §7.1.5.3, §14.6, and §A.6) that
mention typename are augmented as follows, to make nested-name-specifier optional in the first of the two
applicable productions:

elaborated-type-specifier:
attributes,y class-key ::on nested-name-specifieryy, identifier
attributesyy: class-key ::qn nested-name-specifieryy, template,,: template-id
attributesyy: enum-key ::qy nested-name-specifierqy identifier
attributes,,y typename ::qy nested-name-specifieryy identifier
attributesy,y typename ::qy nested-name-specifier templateq, template-id

37

C++/CLI Language Specification

[Note: Revision of the C++ Standard is currently underway, and changes proposed in that revision alter this
production. end note]

attributes is described in §29.
The C++ Standard (§14.6/3) is augmented, as follows:

An gualified-ididentifier that refers to a type and in which the nested-name-specifier depends on a
template-parameter (14.6.2) shall be prefixed by the keyword typename to indicate that the
gualified-ididentifier denotes a type, forming an elaborated-type-specifier (7.1.5.3).

and §14.6/5 is deleted:

[Note: The presence of typename lets the programmer disambiguate otherwise ambiguous cases such as the
token sequence property :: X x;.The declaration property :: X x; declares a member variable
named x of type property: :X, as it does in Standard C++. The token sequence property typename

11 X x; declares a property named x of type : : X. end note]

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast fails to find the name, and
the name is not followed by a left angle bracket (<), the name is interpreted as though it were qualified with
c11:: and the lookup succeeds, finding the name in namespace : : c11.

When name lookup for any of array, interior_ptr, pin_ptr, or safe_cast succeeds and finds the
name in namespace : : 11, the name is not a normal identifier, but has special meaning as described in this
Standard.

Tokens that are not identifiers can be used as identifiers. This is achieved via __identifier(T), where T
shall be an identifier, a keyword, or a string-literal. The string-literal form is reserved for use by
C++/CLI implementations. It is unspecified whether this replacement takes place before or after translation
phase 4. [Note: Therefore, this construct should not be used in place of the first or only identifier in a
#def1ine preprocessing directive. end note] [Example:

__identifier(totalCost)

__identifier(delete)
__identifier("<Special Name #3>")

end example]

9.1.2 Keywords
The list of keywords in the C++ Standard (§2.11) is augmented by the following:

enumiiclass enunmiistruct foriteach gcnew
interfaceiiclass interfaceiistruct nullptr refiiclass
reF"struct valueiiclass valueiistruct

The symbol 1s used in the grammar to signify that white-space appears within the keyword. Any white
space that appears in the program text after translation phase 1 is permitted in the position signified by the
2 symbol. It is unspecified whether white space generated by comments, documentation comments, and
macro invocations is permitted in the position signified by the #: symbol. Following translation phase 4, a
keyword with 3 will be a single token. [Note: The :: symbol is only used in the grammar of the language.

38

Lexical structure

Examples will include white-space as is required in a well-formed program. end note] [Note: Keywords that
include the 3 symbol can be produced by macros, but are never considered to be macro names. end note]

Translation phase 4 in the C++ Standard (§2.1/4) is augmented as follows:

Preprocessing directives are exeentedparsed and stored. Then, in the translation unit and in each
macro replacement-list, starting with the first token, each pair of adjacent tokens tokenl and token2
is successively considered, and if tokenlfﬁféfétokenZ is a keyword, then tokenl and token?2 are replaced
with the single token token1:token2. and-Then macro invocations are expanded. ...

In some places in the grammar, certain identifiers have special meaning, but are not keywords. [Note: For
example, within a virtual function declaration, the identifiers abstract and sealed have special meaning.
Ordinary user-defined identifiers are never permitted in these locations, so this use does not conflict with a
use of these words as identifiers. For a complete list of these special identifiers, see §9.1.1. end note]

9.1.3 Literals
The grammar for literal in the C++ Standard (§2.13) is augmented as follows:

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
null-literal

9.1.3.1 Integer literals

To accommodate the addition of the types Tong long int and unsigned long long int, the
grammar for integer-suffix in the C++ Standard (§2.13.1) is augmented as follows:

integer-suffix:
unsigned-suffix long-suffixyp
unsigned-suffix long-long-suffiXep
long-suffix unsigned-suffixop
long-long-suffix unsigned-suffixop

long-long suffix: one of
1 L

The C++ Standard (§2.13.1/2) is augmented as follows:

The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no
suffix, it has the ﬁrst of these types in which its Value can be represented int, 'Iong int,long
long ints v . If it is octal or
hexadecimal and has no sufﬁx it has the first of these types in Wthh its Value can be represented:
int, unsigned int, Tong int, unsigned Tong int,long long int,unsigned long
long int. If it is suffixed by u or U, its type is the first of these types in which its value can be
represented: unsigned int,unsigned long int,unsigned long long int. Ifitis decimal
and is suffixed by 1 or L, its type is the first of these types in which its value can be represented:
Tong 1int, unsighned—teng—intlong long int. Ifitis octal or hexadecimal and is suffixed by
1 or L, its type is the first of these types in which its value can be represented: Tong int,
unsigned long int,Tong Tong int,unsigned Tong Tong 1int. Ifitis suffixed by ul, Tu,
uL, Lu, UT, Tu, UL, or LU, its type is the first of these types in which its value can be represented:
unsigned long 1int,unsigned long long int. Ifitis decimal and is suffixed by 11 or LL,
its type is Tong long int. Ifit is octal or hexadecimal and is suffixed by 11 or LL, its type is the
first of these types in which its value can be represented: Tong long int, unsigned long

long int. Ifit is suffixed by both u or U and 11 or LL, its type is unsigned long long int.

39

C++/CLI Language Specification

To accommodate the addition of extended integer types, the C++ Standard (§2.13.1/3) is augmented as
follows:

If an integer constant cannot be represented by any type in its list and an extended integer type can
represent its value, then it has an extended integer type. If all of the types in the list for the constant
are signed, the extended integer type shall be signed. If all of the types in the list for the constant are
unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned
types, the extended integer type may be signed or unsigned. A program is ill-formed if one of its
translation units contains an integer literal that cannot be represented by any of the allowed types.

9.1.3.2 The null literal

null-literal:
nullptr

The null-literal is the keyword nul1ptr, whose type is the null type (§12.3.4). nullptr represents the
null value constant and is unique. This literal is not an lvalue.

The null value constant can be converted to any handle type, with the result being a null handle. The null
value constant can also be converted to any pointer type, with the result being a null pointer.

9.1.3.3 String literals
The C++ Standard (§2.13.4/1) is augmented as follows:

. An ordinary string literal has type <narrow-string-literal-type>. This type cannot be named in the
lan,quage but it can be converted implicitly to either System: : StringA or array of n const
char‘ as descrlbed in 814 2.5. iaffay—e#n—eens{—eh&riaﬂd—ssaﬁestefag&dﬁmﬂmﬂé%—wher%n

23 : : - ... A wide
string literal has type <W1de strmg hteral type> Thls type cannot be named in the language but it
can be converted implicitly to either System: : StringA or array of n const wchar_t, as

descnbed in &14 2.5. ia&ayeﬁn%ens{—weha;ti&nd—hasﬁw&es%emg&dwa&eﬂ—ﬂmnﬁﬁhe

9.1.4 Operators and punctuators

C++/CLI requires that template and generic constructs such as List<L1ist<int>> be permitted, where >>
is treated as two tokens instead of one. This requires augmentations to a number of places in the
C++ Standard, as specified in this subclause and the subclauses §15.3, §30.1, and §30.2.

The C++ Standard (§2.1/1), translation phase 7, is augmented by adding the following text just prior to the
existing note:

[Note: The process of analyzing and translating the tokens may occasionally result in one token
being replaced by a sequence of other tokens (14.2). end note]

40

Basic concepts

10. Basic concepts

10.1 Assemblies

The CLI defines an assembly as a configured set of loadable code modules and resources that together
implement a unit of functionality. A C++/CLI program recognizes an assembly by the name of the file
containing the assembly manifest. An assembly manifest describes all the constituent parts of the assembly
such as the name of the assembly in metadata, other files that contribute to the assembly, and any hash codes
that validate constituent parts.

An assembly can be an application or a library. An application has an application entry point, whereas a
library does not.

10.2 Application entry point

In addition to the two definitions of the main function allowed in Standard C++ (see §3.6.1), C++/CLI
allows the following definition:

int main(array<System::StringA>A args) { /* ... */ }

The value of args shall be a CLI array that represents the arguments to the program, where index 0 contains
the first argument. If no arguments were passed to the program, args shall be a zero-length array; args
shall never be null. The array passed to main is generated by the CLI runtime. [Note: Application entry
points are described in §15.4.1.2 of the CLI Standard. end note]

10.3 Importing types from assemblies

Each type definition resides in some assembly, and an assembly can contain one or more types. The CLI
Standard defines many types, each of which is defined in one of the three following assemblies: mscorlib.dll,
System.dll, and System.Xml.dll. An application programmer can create any number of other assemblies, as
needed.

A #us1ing directive makes types from an assembly available in a source file; that is, it imports types from
the metadata, and does not cause any types to be defined in the current translation unit. This directive has the
following forms, which are equivalent:

#using < assembly-name >
#using " assembly-name "

[Note: Despite its appearance, #using is not a preprocessing directive. end note]

The types in assembly mscorlib.dll shall be implicitly imported by the compiler. [Example:

#using <mscorlib.d11> // redundant
#using <System.dl11> // needed for Socket
#using <System.Xml.d11> // needed for XmlTextReader

int main() {
System: :Text::StringBuilderA streld;
System: :Net::Sockets::SocketA soc;
System: :Xml: :XmlTextReaderA xtr;

Each type has a namespace, a parent assembly, and a parent library; all three characteristics are separate and
unrelated. For example, the type Socket is in the namespace System: :Net: : Sockets, the assembly
System.dll, and the Networking library. end example]

For metadata details, see §34.1.1.

41

C++/CLI Language Specification

When a #using directive imports a type from an assembly, that type continues to belong to that assembly
regardless of the number of other assemblies into which it is imported. On the other hand, when a #incTude
preprocessing directive brings in a header containing a type definition, it brings in source code, which, when
compiled, defines that type in the current translation unit.

When #using an assembly, if an imported type has a function with a signature that contains a modopt
(§33.1) not defined by this Standard or one that has been used in a manner not defined by this Standard (for
instance, using IsSignunspecifiedByte (§33.1.5.7) on something other than a System: :Byte or
System: : SByte), the following rules apply:

e Ifno other signature in the type is the same when ignoring the modopt, the compiler shall use
the signature as if the modopt did not exist. Then if the function is virtual, any overriding
function shall repeat the modopt.

e If when ignoring the modopt the function’s signature is the same as another function’s signature
in the type, the compiler shall ignore the function with the unknown modopt, treating that
function as if it did not exist.

e Ifthere are two or more signatures with unknown modopts, and no signatures without modopts,
all of the functions are ignored.

When #using an assembly, any value class type that has the NativeCppClass attribute (§33.2.1, 34.8), is
treated as a native class, as described below. (If a type other than a value class has this attribute applied to it,
the attribute is ignored and the type is treated as though the attribute had not been present.)

e A value class brought in from another assembly via #using is a forward declaration for that
type.

e Ifa definition of the class is in source code, it is treated as the same class as that being brought it
if the following criteria are met:

0 The source code definition has the same name as the encoding that came from #us1ing.
0 The size of the source code definition is identical to the size in the encoding.
0 The visibility of the two need not be the same.

Being treated as "the same" means the following:

o Whenever the type from another assembly is used, the type defined in source code (in the
current assembly) can be substituted. This is not a conversion.

o Whenever type information is needed for instructions such as call, the type used will match the
function being called, but the type being supplied can be substituted by an object of the
matching type in the current assembly.

e Whenever type information must be introduced in the current assembly (i.e., function parameter
metadata), the type used shall be the type from the current assembly.

e The only exception is virtual overriding in a ref class. The signature of the virtual function shall
match the original. Thus if the signature includes a native type, any function overriding it shall
use the same type in its encoding.

All access to the native type using non-virtual functions shall be with functions from the current assembly.
Member functions shall be private to each assembly.

When #using an assembly, if that assembly cannot be found or it is found but has an invalid format
according to the CLI Standard, the compiler shall behave as if a corresponding #error directive was
encountered.

10.4 Reserved names

There are certain functions that a programmer can never write in C++/CLI, but which may need to be
imported from metadata created by translators of other languages. [Example: This can happen when a name

42

Basic concepts

is reserved and cannot be written by the programmer; for example, Finalize, Dispose, or any of the
operator function names. end example]

#using can import types with names that cannot be authored in C++/CLI. A C++/CLI programmer can use
such a name in an expression when the reserved name does not have the meaning C++/CLI gives it.
[Example: If a function named Finalize does not override the Finalize method from

System: :0bject, a C++/CLI programmer can call the function Finalize without using the ! T syntax
(§19.13.2).

A second example involves the following C# class:

public class C : IDisposable {
void IDisposable.Dispose() {}
public void Dispose() {}

the function C: :Dispose can be called from C++/CLI when #using that C# class because C: :Dispose
does not implement the IDisposable: :Dispose function or override any function that does implement
IDisposable: :Dispose.

A third example is when an imported class has an implicit and explicit conversion operator that do the same
thing. In this case, the compiler should just fall back to allowing the developer to write op_ImpTlicit or
op_ExpTicit. end example]

See also __identifier (§9.1.1).

10.5 Members

10.5.1 Value class members

The members of a value class are the members declared in that value class, and the members inherited from
the value class’s direct base class System: :ValueType and the indirect base class System: :Object.

The members of a fundamental type are the members of the corresponding value class type provided by the
implementation (§12.1). [Example: The members of signed char are the members of the
System: : SByte value class. end example]

10.5.2 Delegate members

The members of a delegate are the members inherited from class System: :Delegate, a public instance
constructor, and the public methods BeginInvoke, EndInvoke, and Invoke (§34.14).

10.6 Member access

10.6.1 Declared accessibility

In the C++ Standard (§10), an access-specifier is used to define member access control. This grammar is
augmented to accommodate the notion of assemblies, as follows:

access-specifier:
private
protected
public
internal
protected public
pubTlic protected
private protected
protected private

In the C++ Standard (§11/1), member access control for each access-specifier is defined. To accommodate
the addition of assemblies, the list of definitions is augmented, as follows:

A member of a class can be

43

C++/CLI Language Specification

e private; that is, its name can be used only by members and friends of the class in which it is
declared._This is referred to as private access.

e protected; that is, its name can be used only by members and friends of the class in which it
is declared, and by members and friends of classes derived from this class (see 11.5). The parent
assembly of derived classes does not affect protected access. This is referred to as family access.

e public; thatis, its name can be used anywhere without access restriction. This is referred to as
public access.

e internal: that is, its name can be used in its parent assembly. This is referred to as assembly
access.

e public protectedor protected public; thatis, its name can be used in its parent
assembly or by types derived from the containing class. This is referred to as family or assembly
access.

e private protectedor protected private; that is, its name can be used only by types
derived from the containing class within its parent assembly. This is referred to as family and
assembly access.

[Note: For access-specifiers containing two keywords, the more restrictive of the two applies outside the
parent assembly while the less restrictive of the two applies within the parent assembly. end note]

An overriding name is allowed to have a different accessibility than the name it is overriding. An ordering is
applied to distinguish between greater accessibility. Given the two accessibilities A and B, A has narrower
access than B if A permits less access than A within the assembly and outside the assembly. A has wider
access than B if A permits more access than A within the assembly and outside the assembly. Narrowing and
widening of accessibilities implies a total ordering of accessibilities. For example, protected is wider than
private, protected is narrower than pubTic, protected private is narrower than public
protected, and no ordering exists between internal and protected. [Note: In general, widening and
narrowing accessibility is not CLS compliant. end note] When no ordering exsts between two accessibilities,
one shall not be used to override the other.

When requirements are placed on wider or narrower accessibility, only the directly associated access
specifier is considered. While accessiblity to a class member or type is determined by first checking
accessibility of the enclosing entity, widening and narrowing rules do not consider the enclosing entity.
[Example: The following code is valid.

public ref struct B {

ref struct NB {
virtual void FQ;

3

private ref class D : B {
ref class ND : B::NB {
public:
virtual void F() override;

};

The overriding virtual function F in ND cannot have narrower accessibility than the virtual function F in NB.
Since NB: : F has public accessibility, ND: : F must also have public accessibility. Both D and ND having
private accessibility do not affect the narrowing rules. end example]

For metadata details, see §34.7.2.

10.7 Name lookup
The CLI (Partition I, §8.10.4) supports two different approaches to name lookup in base classes:

o Ifaderived member is marked hide-by-name, then functions in the base class with the same
name are not visible in the derived class. This approach is referred to as hidebyname.

44

Basic concepts

o If a derived member is marked hide-by-name-and-signature, then functions in the base class
with the same name and signature are not visible in the derived class. This approach is referred
to as hidebysig.

Implementation of the distinction between these two forms of hiding is provided entirely by source language
compilers and the reflection library; it has no direct impact on the VES itself.

[Note: As in Standard C++, during lookup, whether the functions in a candidate set are static, virtual, or non-
virtual, has no effect on overload resolution. end note]

The C++ Standard requires hidebyname lookup. As such, member functions of native classes use
hidebyname lookup. [Example: Given the following program:

struct B {
void F(int i) { .. }

struct D : B {
void F(StringAh d) { .. }

int ma1n() {

d F(100) ;

the function F(StringA) is found, it's incompatible, and results in an error. end example]

On the other hand, member functions of ref classes, value classes, interface classes, and delegates use
hidebysig lookup. [Example: Given the following program:

ref struct B {
void F(int i) { .. }

ref struct D : B {
void F(stringA d) { .. }

int ma1n() {

d F(100); ;

the function F(int) is called. end example]
If lookup for a name begins in a class, base interfaces are ignored.

If lookup for a name begins in an interface, when lookup proceeds to the bases of that interface, it shall
continue searching for names in those interfaces.

The C++ Standard (§3.4/1) states:

The access rules (clause 11) are considered only once name lookup and function overload resolution
(if applicable) have succeeded.

In C++/CLI, that rule applies only to native classes. Otherwise, for CLI class types, inaccessible functions
are not visible to name lookup. [Note: In Standard C++, a private name can hide names in a base class,
whereas, in a CLI class type, a private name cannot hide names in a base class. end note]

[Note: In hidebyname, name lookup stops as soon as the name is found in a scope. In hidebysig, lookup
continues unless the signature also matches. end note]

For qualified name lookup, lookup begins in the scope specified. If that scope uses hidebysig rules, then
lookup uses hidebysig rules to find all names in the specified scope and other scopes. [Example: an
expression such as expr->R: : F, if R is a hidebysig class, lookup begins in R. Normal hidebysig rules apply,
and thus a name set including names found in base classes of R is possible. end example]

45

C++/CLI Language Specification

Because hidebysig rules can create ambiguities between functions in a base class and a function in a derived
class, the overload resolution rules are augmented to prefer functions in a derived class. [Note: Overload
resolution is the same for candidate overload sets produced by hidebyname and hidebysig lookup. This can
lead to ambiguity. end note]

In C++/CLI, functions in derived classes are preferred. To accomplish this, the C++ Standard (§13.3.3) is
augmented, as follows:

Given these definitions, a viable function F1 is defined to be a better function than another viable
function F2 if for all arguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
then

— F1 is a member of a more derived class than F2 and neither F1 nor F2 are conversion functions,
or if not that,

— for some argument j, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

[Note: With that rule, the program below will print “f1oat”. end note]

[Example:

ref struct B {

void F(doubTle) { Console::writeLine("double™); }
ref struct D : B {

void F(float) { Console::WriteLine("float"); }

int main() {

D d;
d.F(3.14);

The conversions from (DA, double) to (BA, double) and (DA, float) are equally ranked. Thus,
with no additional rules the call would be ambiguous. end example]

If lookup in a class finds an entity that is not a function, lookup does not continue in the base classes. If
lookup originated in a derived class, and the lookup set already contains a function, the entity in the base
class is not included in the name set. (For the purpose of lookup, properties and events are treated as fields.)
[Example:

ref struct A {))

void F(ObjectA) { Console::writeLine("A::F"); }
ref struct B : A {
int F;

ref struct C : B { _ _
void F(SstringA) { Console::WriteLine("C::F"); }

int main(Q) {
C c;
c.F(4); // error

No function F will be found because when lookup starts in C, it finds a function, then stops in B because a
field with the same name exists. The same would happen if B: : F were a property or event. end example]

A function scope is always hidebyname. As such, if lookup finds a name in function scope, it does not
continue looking further. [Example:

46

Basic concepts

ref struct R {
void F(ObjectA) { cConsole::WriteLine("R::F(ObjectA)"); }

void FQO {
extern void F(StringA);
F(4); // error
console::writeLine("R::FQO");

3
3
int main() {

R r;
r.rFQ;
}

void F(StringA) { Console::WriteLine("::F(StringA)"); }

The program is ill-formed because the argument 4 cannot be converted to StringA, which is the only viable
function that lookup finds. end example]

A program that contains the definitions of two or more generic types with the same name and different arity
(§31) in the same namespace, is ill-formed. However, a C++/CLI program can import such types from other
assemblies with #us1ing. When this happens, the ambiguity shall be resolved by counting the number of
type arguments.

47

C++/CLI Language Specification

11. Preprocessor

11.1 Conditional inclusion

To accommodate the addition of the types Tong long int and unsigned long long int, and
extended integer types, the C++ Standard (§16.1/4) is augmented, as follows:

The resulting tokens comprise the controlling constant expression which is evaluated according to
the rules of 5.19 using arithmetic that has at least the ranges specified in 18.2, except that +nt-and
unsigned—int all signed and unsigned integer types act as if they have the same representation as,
respectively, the largest signed integer type or unsigned integer type.

11.2 Predefined macro names

In addition to the macros specified in the C++ Standard (§16.8), the following macro name shall be defined
by the implementation:

__cplusplus_c1i The name __cplusplus_cTi is defined to the value 200509L when compiling a
C++/CLI translation unit. [Note: It is intended that future versions of this standard will replace the value of
this macro with a greater value. end note]

The value of this predefined macro remains constant throughout the translation unit.

If this pre-defined macro name is the subject of a #define or a #undef preprocessing directive, the
behavior is implementation-defined.

48

12. Types

Types

All values in C++/CLI have a type. Types are grouped into seven categories as described in the following

table.
Type Category Type Subcategory
Native Class PO.D
Union
Boxed Value Type
Ref Class Delegate
CLI Array
Fundamental Type
Enum
Value Type Pointer
Value Class
Interface
Native Array
Handle
Reference Native Reference
Tracking Reference

Ref class types, value class types, and interface types are collectively known as CLI class types.
The C++ Standard (§3.9/10) definition for scalar types is augmented, as follows:

Arithmetic types (3.9.1), enumeration types, handle types, pointer types, and pointer to member
types (3.9.2), and cv-qualified versions of these types (3.9.3) are collectively called scalar types.

The C++ Standard (§7.1.5) definition for type-specifier is augmented, as follows:

type-specifier:

simple-type-specifier

class-specifier
enum-specifier

elaborated-type-specifier

cv-qualifier

delegate-specifier

To accommodate the addition of the types Tong long int and unsigned long long int, the
C++ Standard (§7.1.5.2/Table 7) is augmented by the following rows:

Specifier(s)

Type

Tong Tlong

"signed long long int"

signed Tong Tong

"signed long long int"

Tong long int

"signed long long int"

signed Tong long int

"signed Tong long int"

unsigned long long

"unsigned long Tong int"

unsigned long Tong int

"unsigned long Tong int"

49

C++/CLI Language Specification

12.1 Value types

Value types consist of the fundamental types, enums, pointers, and value classes. [Note: Standard C++
distinguishes between class types and non-class types; in C++/CLI, the fundamental types and enums have
characteristics of both (see §12.1.1). All value types, with the exception of pointers, have the ability to be
boxed through a boxing conversion (§14.2.6). end note]

Fundamental types are those that are “built-into” the language and have keywords associated with them.
Enums are declared with the enum, enum class, or enum struct keywords. Pointers are declared using
the asterisk in a declarator. Value classes are declared with the value class or value struct keywords.

12.1.1 Fundamental types

To accommodate the addition of the types Tong long int and unsigned long long 1int, and
extended integer types, Standard C++ (§3.9.1) is augmented, as follows:

§3.9.1/2: "There are fourfive standard signed integer types: “signed char”, “short int”,
“int”, and-“long int”,and “long long 1int”. In this list, each type provides at least as
much storage as those preceding it in the list. Plain ints have the natural size suggested by the
architecture of the execution environment; the other signed integer types are provided to meet
special needs. There may also be implementation-defined extended signed integer types. The
standard and extended signed integer types are collectively called signed integer types."

§3.9.1/3: "For each of the standard signed integer types, there exists a corresponding (but
different) standard unsigned integer type: “unsigned char”, “unsigned short int”,
“unsigned int”, and‘“unsigned long int”,and “unsigned long long int”, each of
which occupies the same amount of storage and has the same alignment requirements (3.9) as
the corresponding signed integer type; that is, each signed integer type has the same object
representation as its corresponding unsigned integer type. Likewise, for each of the extended
signed integer types there exists a corresponding extended unsigned integer type with the same
amount of storage and alignment requirements. The standard and extended unsigned integer
types are collectively called unsigned integer types. The range of nonnegative values of a signed
integer type is a subrange of the corresponding unsigned integer type, and the value
representation of each corresponding signed/unsigned type shall be the same. The standard
signed integer types and standard unsigned integer types are collectively called the standard
integer types, and the extended signed integer types and extended unsigned integer types are
collectively called the extended integer types."

§3.9.1, footnote 43): Therefore, enumerations (7.2) are not integral; however, enumerations can

be promoted to intunsigned—inttongerunsighed—long; integral types as specified
in4.5."

For all fundamental types (not just character types), all bits of the object representation
participate in the value representation.

An object of type char shall have exactly 8 bits.

The value of an object having a signed integer type shall be stored using twos-complement
representation.

The fundamental types map to corresponding value class types provided by the implementation, as follows:

signed char mapsto System: :SByte.
unsigned char mapsto System: :Byte.

If a plain char is signed, char maps to System: : SByte; otherwise, it maps to
System: :Byte.

For all other fundamental types, the mapping is implementation-defined.

The representation of the boo1 value false shall be all-bits-zero.

50

Types

In the C++ Standard, fundamental types are not considered class types; however, C++/CLI introduces class
members to all fundamental types as every fundamental type shall map to a CLI class determined by the
implementation. In C++/CLI, when a member selection operator is applied to an expression of fundamental
type, or the scope resolution operator is applied to that fundamental type’s keyword or typedef, in the scope
of the expression containing the member selection operator or scope resolution operator, that fundamental
type is treated as a class type. [Note: If a fundamental type is represented by more than one keyword, such as
unsigned 1int, the scope resolution operator shall be applied to a typedef or the CLI class name to access
static members. end note] As soon as the member selection operator or the scope resolution operator are
used, C++/CLI uses the fundamental type’s equivalent value class to resolve members. As member access
and scope resolution are not allowed on fundamental types in the C++ Standard, all scenarios that
distinguish between class and non-class types in the C++ Standard will always consider fundamental types
as non-classes.

[Example: In the following example, the scope resolution operator applied to the keyword int results in
looking for the name Parse in the associated CLI value class type. The member selection operator applied
to the expression x with type int results in looking for the name ToString in the associated CLI value
class type.

int x = int::Parse("42");
StringA s = x.ToString();

end example]

12.2 Class types
Ref class types, value class types, interface types, and delegate types shall not be declared at block scope.

12.2.1 Value classes

[Note: A value class is a data structure that can contain fields, function members, and nested types. Unlike
other class types, value classes do not support user-defined destructors, finalizers, default constructors, copy
constructors, or copy assignment operators. Value classes are designed to allow the CLI execution engine to
efficiently copy value class objects.

All value class types implicitly inherit from the class System: :valueType, which, in turn, inherits from
class System: :Object. System: :valueType is not itself a value class type. Rather, it is a ref class type,
from which all value class types are automatically derived.

Value classes are described in §22. end note]

12.2.2 Ref classes

[Note: A ref class defines a data structure that can contain fields, function members (functions, properties,
events, operators, instance constructors, destructors, finalizers, and static constructors), and nested types. Ref
classes support inheritance. Instances of ref classes are created using new-expressions (§15.4.6).

Ref classes are described in §21. end note]

12.2.3 Interface classes

[Note: An interface defines a contract. A ref or value class that implements an interface shall adhere to its
contract. An interface can inherit from multiple base interfaces, and a ref or value class can implement
multiple interfaces.

Interface classes are described in §25. end note]

12.2.4 Delegate types

[Note: A delegate is a data structure that refers to one or more functions, and for instance functions, it also
refers to their corresponding instances.

Delegate types are described in §27. end note]

51

C++/CLI Language Specification

12.3 Declarator types
The C++ Standard (§8.3.5/3) is augmented, as follows:

The resulting list of transformed parameter types and the presence or absence of the ellipsis is the
function’s parameter-type-list.

12.3.1 Raw types
A raw type is a class or fundamental type. [Note: This excludes "handle to" and "pointer to" types. end note]

12.3.2 Pointer types
It is possible to declare a pointer to a function that takes a parameter array (§18.4). [Example:

void F(double, ... array<int>A);
void (*p)(double, ... array<int>A) = &F;

end example]

A native pointer cannot point to a CLI heap-based object unless that object has been pinned (§12.3.7).

12.3.3 Handle types

For any CLI class type T, the declaration TA h declares a handle h to type T, where the object to which h is
capable of pointing resides on the CLI heap. A handle tracks, is rebindable, and can point to a whole CLI
heap-based object only. [Note: In general, handles are to the gc heap as pointers are to the native heap. end
note]

The default initial value of a handle shall be nul1ptr.

Objects of CLI class type are allocated on the CLI heap via gcnew, and such objects are referred to by
handles. [Example:

RA rl
RA r2

gcnew R; // allocate an object on the CLI heap
rl; // handles rl and r2 refer to the same object

end example]

If an object allocated using gcnew is never destroyed (using delete or by an explicit destructor call), that
object’s destructor will never be run; however, the garbage collector will reclaim the object’s memory, and
the object’s finalizer (§19.13), if one exists, will be run. [Example:

// allocate an object on the CLI heap
RA r3 = gcnew R;
// the object will be garbage-collected and
// finalized, but its destructor will not be run
end example]

Unlike pointers, handles track; that is, a handle’s value can change as the CLI heap-based object to which it
refers is moved by the garbage collector. This has the following implications:

e A handle cannot be converted to and from void*. (A handle can, however, be converted to and
from ObjectA.) [Note: There is no voidA. end note]

¢ A handle cannot be converted to and from an integral type. (A handle cannot be hidden from the
garbage collector.)

e Handles cannot be ordered.
e A handle can only point to a whole CLI heap-based object.

[Example:

52

Types

RA r4 = gchew R;

ObjectA o = r4; // ok

RA r5 = dynamic_cast<RA>(0); // ok, r4 and r5 point to the same object
long 1 = reinterpret_cast<long>(r5); // error, can’t convert to integer
RA r6 = reinterpret_cast<RA>(1); // error, can’t convert from integer
std::set<RA> s; // error, RA’s can’t be compared with less

end example]

All handles to the same CLI heap-based object compare equal, even if that object is moved by the garbage
collector.

A handle can have any storage duration.

The representation of a handle with value nul1T1ptr shall be all-bits-zero.

12.3.4 Null type

The null type is a special type that exists solely to support the null-literal, nul1ptr (also referred to as the
null value constant). No instances of this type can be created; the only way to obtain a value of this type is
via the nu1Tptr literal, whose type is the null type.

12.3.5 Reference types

A native reference can bind to any lvalue.

As an object on the CLI heap can be moved by the garbage collector, its location must be tracked. As such, a
reference to such an object is called a tracking reference (%), and it can bind to any gc-lvalue. Whenever an
object is definitively not on the CLI heap (as is the case if the object is an instance of a native class, a
pinning pointer, or an interior pointer), the instance is an Ivalue. [Note: As such, a native class does not need
a copy assignment operator or copy constructor that takes gc-lvalues. An N% can be passed to these functions
safely, since instances of native class types are never allocated on the CLI heap. An N% is an lvalue to begin
with, so taking the address of an N% results in a native pointer, not an interior pointer. end note] [Note:
Because there is a standard conversion from lvalue to gc-lvalue, a tracking reference can therefore bind to
any gc-lvalue or lvalue. end note]

For any type T, the declaration T% r declares a tracking reference r to type T. [Example:

RA h = gcnew R; // allocate on CLI heap

R% r = *h; // bind tracking reference to ref class object
void F(V% r);

F(*gcnew V) ; // bind tracking reference to value class object

end example]

A tracking reference can refer to an instance of a ref class type, a cv-qualified value class type, a cv-
qualified handle type, a cv-qualified native class type, or a cv-qualified native pointer. A program containing
tracking references that refer to other types is ill-formed.

Like a native reference, a tracking reference is not rebindable; once set, its value cannot be changed.

A program containing a tracking reference that has storage duration other than automatic is ill-formed. (This
precludes having a tracking reference as a data member.) [Note: This limitation directly reflects that of the
CLI, because, in general, tracking references are implemented in terms of CLI managed pointers. end note]

Given an instance v of a value type V, v cannot be used as the object of a reference initialization if the
reference is to a base class of V. (That is, v cannot reference bind to System: :Object%, to

System: :valueType%, or to any reference to an interface that vV implements.) [Rationale: The reason for
this is that such a reference binding would require boxing, yet binding a reference to a boxed value rather
than to the original value defeats the purpose of reference binding. end rationale]

For metadata details, see §34.2.1.

53

C++/CLI Language Specification

12.3.6 Interior pointers

The garbage collector is permitted to move objects that reside on the CLI heap. In order for a pointer to refer
correctly to such an object, the runtime needs to update that pointer to the object’s new location. An interior
pointer (declared using interior_ptr) is a pointer that is updated in this manner.

For metadata details, see §34.2.2.

12.3.6.1 Definitions

The compiler processes an interior pointer as follows:
e The compiler performs a lookup in the current context for the name interior_ptr.

e If the name refers unambiguously to : : c1i::interior_ptr, or the name is not found, then
the expression is processed by the compiler according to the following grammar, and interpreted
according to the rules specified herein.

interior_ptr < type-id >

An interior pointer shall have an implicit or explicit auto storage-class-specifier. An interior pointer can be
used as a parameter and return type.

An interior pointer shall not be a class member or a base class.

The default initial value for an interior pointer shall be nul1ptr.

12.3.6.2 Target type restrictions

In the expression interior_ptr<T>, the target type T shall be a cv-qualified value class type, a cv-
qualified handle type, a cv-qualified native class type, or a cv-qualified native pointer. A program containing
other target types is ill-formed. [Example:

OK
OK
error, String is a ref class
OK; is a handle to ref class
error, not a native pointer
OK

interior_ptr<int> pl;
interior_ptr<int*> p2 = nullptr;
interior_ptr<System::String> p3;
interior_ptr<System: :StringA> p4;
interior_ptr<interior_ptr<int>> p5;
interior_ptr<intA> p6 = nullptr;

R R RN
NN

end example]

12.3.6.3 Operations

An interior pointer can be involved in the same set of operations as native pointers, as defined by the C++
Standard. [Note: This includes comparison and pointer arithmetic. end note]

12.3.6.4 Data access

An interior pointer exhibits the usual pointer semantics for data access:

e Operator -> is used to access a member of a CLI heap-based object pointed to by an interior
pointer;

e Operator * is used to dereference an interior pointer.

[Example:
value struct v {
int data;
’
V Vv;

interior_ptr<v> pv = &v;
pv->data = 42;
interior_ptr<int> pi = &v.data;
assert(*pi == 42);

54

Types

end example]
Taking the address of an interior pointer yields a native pointer.

Interior pointers can point to objects inside the CLI heap. As such, taking the address of an object pointed to
by an interior pointer yields an interior pointer that cannot be converted to T*.

[Example:
value struct v {
int data;
V V;
interior_ptr<v> pv = &v;
V¥*® p = &pv;] // error]
interior_ptr<v>* pi = &pv; // OK, pv is on the stack and so is an lvalue
int* p2 = &(pv->data); // error)
int* p3 = &(v.data); // OK, v is on the stack, v.data is an Tvalue

end example]

12.3.6.5 The this pointer

In the body of a non-static member-function of a value class V, th1is is an rvalue expression of type
interior_ptr<V>, whose value is the address of the CLI heap-based object for which the function is
called.

[Example:
value struct Vv {
int data;
void fQO;
void v::fQ {
interior_ptr<v> pvl = this; // OK
V¥ pv2 = this; // error

end example]

12.3.7 Pinning pointers

Ordinarily, the garbage collector is permitted to move objects that reside on the CLI heap. However, such
movement can be blocked temporarily, on a per object basis. A pinning pointer (declared using pin_ptr) is
a pointer that prevents the garbage collector from moving the CLI heap-based object to which that pointer
points. This makes it possible for code not under the control of the runtime to manipulate memory within the
bounds of the CLI heap without corrupting that heap.

Although a pinning pointer can be initialized from an interior pointer, the value of a pinning pointer is never
changed by the runtime.

A pinning pointer can point to an object anywhere in memory; it need not point to an object on the CLI heap.

For metadata details, see §34.2.3.

12.3.7.1 Definitions

The compiler processes a pinning pointer as follows:
e The compiler performs a lookup in the current context for the name pin_ptr.

e Ifthe name refers unambiguously to : : c11 : :pin_ptr, or the name is not found, then the
expression is processed by the compiler according to the following grammar, and interpreted
according to the rules specified herein.

pin_ptr < type-id >

55

C++/CLI Language Specification

A pinning pointer is an interior pointer that is a handle to type type-specifier; it is a type-id.

A pinning pointer shall have an implicit or explicit auto storage-class-specifier. A pinning pointer shall not
be used as a parameter type or return type.

[Note: As a pinning pointer is an interior pointer, the default initial value for a pinning pointer is nulTptr.
(§12.3.6.1) end note]

12.3.7.2 Target type restrictions

The target type restrictions for pinning pointers are the same as for interior pointers (§12.3.6.2).

12.3.7.3 Operations

The operations that can be formed on pinning pointers are the same as for interior pointers (§12.3.6.3) except
that a pinning pointer cannot be the target of a cast.

12.3.7.4 Data access

With two exceptions, pinning pointers follow the same data access semantic as interior pointers (§12.3.6.4).
Since a pinning pointer points to an unmovable object inside the CLI heap, pin_ptr<T> can be converted
to T*. Dereferencing a pinning pointer yields an lvalue. [Example:

value struct Vv {

int data;
void fQ;
void v::f() {
int* pi;
interior_ptr<v> ipv = this;
pi = &(ipv->data); // error
pin_ptr<v> ppv = this;
pi = &(ppv->data); // OK
V¥ pv;,
pv = ipv; // error
pv = ppv; // OK
b
\VARVA:
pin_ptr<v> pv = &v;
\ p = &pv, // error
int* pi = &pv->data; // OK

end example]

12.3.7.5 Duration of pinning

As soon as a pinning pointer is initialized or assigned the address of a CLI heap-based object, that object is
guaranteed to remain at its location. If the pinning pointer is then made to point to another CLI heap-based
object, that object is guaranteed to remain at its location, and the object previously pointed to is no longer
pinned by that pointer, allowing it to be moved. If a pinning pointer is assigned the value nul1ptr, the
object previously pointed to (if any) is no longer considered pinned

When the block in which a pinning pointer is defined exits, any CLI heap-based object pointed to by that
pinning pointer is no longer considered pinned by that pinning pointer; however, it might still be pinned by
another pinning pointer.

With the exception of the functionality provided by the class
System: :Runtime: :InteropServices: :GCHandle, if no pinning pointer points to a CLI heap-based
object, it is not safe to assume that object is pinned.

[Example:

56

Types

ref struct R {
int data;

RA r = gcnew R;

pin_ptr<int> ppi = &r->data; // object referenced by r is pinned
}

// ppi’s parent block has exited, so object is free to move

end example]

12.3.8 Native arrays

A program that contains a native array of elements having CLI class type or handle type, is ill-formed.
[Note: Allowing elements of such types would make the array type a mixed type (§23). end note]

A native array type is local to its parent assembly (i.e., it is internal), and that type is not verifiable. Thus,
a virtual function taking a native array type as a parameter cannot be overridden from another assembly.

For metadata details, see §34.2.4.

12.4 Top-level type visibility

A non-nested class, interface, delegate, or enum definition can optionally specify the visibility of the class,
interface, delegate, or enum:

top-level-visibility:
pubTic
private

The pub1i c top-level-visibility specifier indicates that the non-nested class, interface, delegate, or enum is
visible outside its parent assembly. Conversely, the private top-level-visibility specifier indicates that the
class, interface, delegate, or enum is not visible outside its parent assembly. However, private types are
visible within their parent assembly. The default visibility for a class, interface, delegate, or enum is
private. [Example:

public class visibleClass {}; // visible outside the assembly
private class InternalcClass {}; // visible only within the assembly

end example]

Those class, interface, delegate, or enum definitions nested within another type definition have the
accessibility specified within that type. The use of a top-level-visibility modifier on a nested type definition
causes the program to be ill-formed.

57

C++/CLI Language Specification

13. Variables

This part of this clause is informative.

In Standard C++, the term variable is used to designate a named object (C++ Standard §3/4, "Basic
concepts"):

A name is a use of an identifier (2.10) that denotes an entity or label (6.6.4, 6.1). A variable is
introduced by the declaration of an object. The variable's name denotes the object.

In Standard C++, the term object refers to a region of data storage. (C++ Standard §1.8/1, "The C++ object
model "):

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object
is a region of storage. [Note: A function is not an object, regardless of whether or not it occupies
storage in the way that objects do.]

The term CLI object refers to any instance of CLI class type. The term native object refers to an instance of a
native class.

End of informative text.

13.1 gc-lvalues

In Standard C++, every expression is either an Ivalue or rvalue. In C++/CLI, an expression can also be a gc-
Ivalue, which refers to an object that might be tracked by the garbage collector. Except where noted below,
expectations for Ivalues and rvalues based on Standard C++, are unchanged. In C++/CLI, every expression
is either an lvalue, a gc-lvalue, or rvalue.

Some built-in operators yield gc-lvalues. [Example: If E is an expression of type "handle to type", then *E is
a gc-lvalue. As the function int% () ; yields a ge-lvalue, the call £() is a ge-lvalue. end example]

Some operators produce results that depend on whether the operand is an lvalue or gc-lvalue. [Example: One
such operator is unary &. end example]

The result of calling a function returning a tracking reference, is a gc-lvalue, unless the tracking reference
refers to a native class.

Whenever an Ivalue appears in a context where a gc-lvalue is expected, the lvalue is converted to a gc-
lvalue. Likewise, whenever a gc-lvalue appears in a context where an rvalue is expected, the gc-lvalue is
converted to an rvalue.

Reference initialization and temporaries shall have semantics that make allowance for gc-lvalues, as well as
lvalues and rvalues.

Like an lvalue, a gc-lvalue can have any complete type, the void type, or an incomplete type.
Like with an lvalue, to modify an object, a gc-lvalue for that object shall be used.
A program that attempts to modify an object through a nonmodifiable gc-lvalue is ill-formed.

The list of restrictions in the C++ Standard (§3.10/15) for accessing the stored value of an object through an
lvalue also applies to gc-lvalues.

13.1.1 Standard conversions
The C++ Standard (§4.1) is augmented by the following:

58

Variables

Any lvalue can be converted to a gc-lvalue. A gc-lvalue can convert to an rvalue in exactly the same
cases as a conversion from Ivalue to an rvalue. A program that necessitates any other lvalue to gc-
Ivalue or gc-lvalue to rvalue conversion is ill-formed.

13.1.2 Expressions
The C++ Standard (§5/6) is augmented by the following:

If an expression initially has the type “reference to T (8.3.2, 8.5.3), the type is adjusted to “T” prior
to any further analysis, the expression designates the object or function denoted by the reference,
and the expression is an lvalue. If an expression initially has the type “tracking reference to T”, the
type is adjusted to “T” prior to any further analysis, the expression designates the object or function
denoted by the reference, and the expression is a gc-lvalue.

In general, in any context in which this clause determines the result of an expression is an lvalue because the
resulting entity is a function, variable, or data member, it is an lvalue only if the entity is a function, or it is a
variable or data member that is not on the CLI heap. If the entity is a variable or data member that is, or
could be, on the CLI heap, the result is a gc-lvalue. This applies to cases mentioned in the C++ Standard,
§5.1/4, §5.1/7, and §5.1/8. An entity of an expression might not always be on the CLI heap, but it might be.
[Example: A member function of a value class referring to a data member of that value class shall assume
that the class is allocated on the CLI heap, and is, therefore, a gc-lvalue. end example]

The C++ Standard (§5.2.2/10) is augmented as follows:

A function call is an lvalue if and only if the result type is a native reference. A function call is a gc-
lvalue if and only if the result type is a tracking reference.

The C++ Standard (§5.2.5/4) is augmented as follows:

— If E2 is a member enumerator, and the type of E2 is T, the expression E1. E2 ispet-antvalue-an
rvalue. The type of EL.E2 is T.

The following rules have been added to the requirements of the C++ Standard (§5.2.5/4):

— If E2 is a static data member of a ref class or value class, and the type of E2 is T, then E1.E2 is a
gc-lvalue: the expression designates the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member, the expression designates the named member of the object
designated by the first expression. If E1 is a gc-lvalue, then E1.E2 is a gc-lvalue.

The C++ Standard (§5.2.6/1) is augmented as follows:

... The operand shall be a modifiable gc-lvalue. ...
The C++ Standard (§5.3.1/1) is augmented as follows:

The unary * operator performs indirection: the expression to which it is applied shall be a pointer or
handle to an object type, or a pointer to a function type.-ane+The result of applying indirection to a
pointer is an lvalue referring to the object or function to which the expression points. The result of
applying indirection to a handle is a ge-lvalue referring to the object. If the type of the expression is
“pointer to T,” the type of the result is “T.” If the type of the expression is “TA,” the type of the
result is “T.” [Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The
lvalue thus obtained can be used in limited ways (to initialize a reference, for example); this lvalue
shall not be converted to an rvalue, see 4.1.]

The C++ Standard (§5.3.1/2) is augmented as follows:

The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue, gc-
lvalue, or a qualified-id. If the operand is an lvalue, given the type of the expression is “T”, the
result is an rvalue and its type is “pointer to T.” If the operand is a gc-lvalue, given the type of the
expression is “T”, the result is an rvalue and its type is “interior_ptr to T.”lnthe first-case,ifthe
i 5 i 2 In particular, the address of an
object of type “cv T” is “pointer to cv T,” with the same cv-qualifiers. For a qualified-id, if the

59

C++/CLI Language Specification

member is a static member of type “T”, the type of the result is plain “pointer to T.” If the member
is a nonstatic member of class C of type T, the type of the result is “pointer to member of class C of
type T.”

The C++ Standard (§5.3.2/1) is augmented as follows:
.. The operand shall be a modifiable gc-lvalue. ...
The primary list in the C++ Standard (§5.16/3) is augmented by the following:

— If E2 is a gc-lvalue, E1 can be converted to match E2 if E1 can be implicitly converted to the type
“tracking reference to T2”, subject to the constraint that in the conversion the reference shall bind

directly to E1.
The C++ Standard (§5.16/4) is augmented by the following:

If the second and third operands are lvalues and have the same type, the result is of that type and is
an lvalue. If the second and third operands are gc-lvalues and have the same type, the result is of that
type and is a gc-lvalue.

The C++ Standard (§5.17/1) is augmented as follows:

There are several assignment operators, all of which group right-to-left. All require a modifiable gc-
lvalue or Ivalue as their left operand, and the type of an assignment expression is that of its left
operand. The result of the assignment operation is the value stored in the left operand after the
assignment has taken place;-theresult-is-antvalue. The result of an assignment operator is an Ivalue
if the left operand was an lvalue. Likewise, the result of an assignment operator is a gc-lvalue if the
left operand was a ge-lvalue.

The C++ Standard (§5.18/1) is augmented by the following:

The type and value of the result are the type and value of the right operand; the result is an lvalue if
its right operand is. The result is a gc-lvalue if its right operand is a gc-lvalue.

13.1.3 Reference initializers
The C++ Standard (§8.5.3) is augmented by the following:
A native reference cannot bind to a gc-lvalue. If a native reference is bound to an rvalue, a

temporary of the initializer expression shall be created (as described in Standard C++ §8.5.3/5). The
temporary shall be allocated in memory not under control of the CLI heap.

A tracking reference can bind to an Ivalue or a gc-lvalue. Unlike native references, a tracking
reference need not be const to bind to an rvalue. That is, int% r = 42; is well-formed. Binding of
tracking references otherwise follows the same rules as native references.

A native reference expression is always considered an lvalue. A tracking reference expression is
always considered a gc-lvalue, except when the tracking reference refers to a native class, in which
case, it is an lvalue.

13.1.4 Temporary objects
The C++ Standard (§12.2) is augmented by the following:

A temporary object is an rvalue, which shall not be allocated on the native heap.

13.2 File-scope and namespace-scope variables
For metadata details, see §34.3.1.

13.3 Direct initialization

Direct initialization in the C++ Standard (§8.5) occurs in new expressions, static_cast expressions,
functional notation type conversions, and base and member initializers. Direct initialization considers both

60

Variables

constructors and user-defined conversion functions. C++/CLI makes a distinction amongst these different
forms of direct initialization for CLI class types and limits usage of constructors and conversion functions to
specific cases.

If the initialization is taking place in a new expression and the destination type is a CLI class
type, only constructors of the destination type are considered. [Note: Such a new expression, will
only use the gcnew form of the grammar. end note] The C++ Standard (§8.5/14) is augmented
for this case to remove any reference to conversion functions.

If the initialization is taking place in a static_cast expression and the destination type is a
CLI class type, only conversion functions of both the source type and destination type are
considered. The C++ Standard (§8.5/14) is augmented for this case to remove any reference to
constructors.

If the initialization is taking place in a functional notation type conversion and the destination
type is a CLI class type, only constructors of the destination type are considered. The C++
Standard (§8.5/14) is augmented for this case to remove any reference to conversion functions.
This is further described in §15.3.3.

If the initialization is taking place in base or member initializer and the destination type is a CLI
class type, only constructors of the destination type are considered. The C++ Standard (§8.5/14)
is augmented for this case to remove any reference to conversion functions.

61

C++/CLI Language Specification

14. Conversions

14.1 Conversion sequences
To accommodate the addition of boxing conversions and parameter array conversions, §13.3.3.2 of the
C++ Standard is augmented, as follows:

When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

e astandard conversion sequence (13.3.3.1.1) is a better conversion sequence than a boxing
conversion sequence, a user-defined conversion sequence, a parameter array conversion
sequence, or an ellipsis conversion sequence, and

e aboxing conversion sequence is a better conversion sequence than a user-defined conversion
sequence, a parameter array conversion sequence, or an ellipsis conversion sequence, and

e auser-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than a
parameter array conversion sequence or an ellipsis conversion sequence (13.3.3.1.3).

e a parameter array conversion sequence is a better conversion sequence than an ellipsis
conversion sequence (13.3.3.1.3).

14.2 Standard conversions

The standard conversions in the C++ Standard apply to C++/CLI. C++/CLI has the following standard
conversions as well.

14.2.1 Handle conversions

A handle conversion is similar to a pointer conversion as defined in the C++ Standard (§4.10). To
accommodate the addition of handle conversions, Table 9, "conversions", in the C++ Standard, §13.3.3.1.1,
"Standard conversion sequences", is augmented by the addition of a "Handle conversion" row, as shown

in §18.3.

An rvalue of type “handle to cv D,” where D is a type, can be converted to an rvalue of type “handle to cv B,”
where B is a base class of D. The result of the conversion is a handle to the same object.

Since the type vo1idA is ill-formed, there is no handle conversion to it.

A handle to a type array<SA, n> has a handle conversion to a handle to type array<TA, n> provided SA
has a handle conversion to TA and n (the rank of both CLI arrays) is the same. Such a conversion is better
than a conversion from type array<SA,n> to System: :ArrayA. This relationship is known as array
covariance. Because array covariance can allow a variable to refer to a base class of the array’s element
type, assignments to elements of handle type arrays include a run-time check performed by the CLI (see CLI
Partion 111, §4.26 and §4.27). The run-time check ensures that the value being assigned to the array element
is of a permitted type. Array covariance specifically does not extend to CLI arrays of value types. For
example, no conversion permits an array<int> to be treated as array<ObjectA>.

A handle can be used as the first operand of a conditional operator.

The null value constant can be converted to any handle type; the result is a handle with null value of that
type, and is distinguishable from every other value that is a handle to an CLI heap-based object. To support
this, the C++ Standard is augmented, as follows:

§4/2: [Note: ... — When used in the condition of an if statement or iteration statement (6.4, 6.5). If
the condition is a handle, and conversion from the handle to boo1 is not possible, the destination

62

Conversions

type is the handle type; otherwise, the destination type is bool. If the condition is not a handle type,
the destination type is boo1. ... end note]

§5.16/1: The first expression is implicitly converted to boo1 (clause 4). If that conversion is ill-
formed and the expression is a handle type or a type given by a generic type parameter not
constrained by the value class constraint, the expression is tested for the null value, returning true if
not null and false if it is null. Otherwise, if the conversion to bool is ill-formed and the expression is
not a handle type or a type given by a generic type parameter not constrained by the value class
constraint, the program is ill-formed.

§6.4/4: The value of a condition that is an initialized declaration in a statement other than a switch
statement is the value of the declared variable implicitly converted to type boo1. H-that-conversion

3 . * HSae HAA o ~The value of a condition that
1s an expression is the value of the expression, implicitly converted to bool for statements other than
switch. If that conversion is ill-formed and the expression is a handle type or a type given by a
generic type parameter not constrained by the value class constraint, the expression is tested for the
null value, returning true if not null and false if it is null. Otherwise, if the conversion to bool is ill-
formed and the expression is not a handle type or a type given by a generic type parameter not
constrained by the value class constraint, the program is ill-formed. [Note: If there is no conversion
to bool and the declared variable or expression is not a handle type, a conversion to a handle type is
not considered. end note.]

§6.5.2/1: The expression is implicitly converted to bool; if that is not possible, and the expression is
a handle type or a type given by a generic type parameter not constrained by the value class
constraint, it is tested for null. If there is no conversion to bool, and the expression is not a handle
type or a type given by a generic type parameter not constrained by the value class constraint, the
program is ill-formed.

14.2.1.1 Ranking handle conversions

Of the additional standard conversion C++/CLI adds, only handle conversions can require further ranking to
determine whether one conversion is better than another. In addition to the rules in the C++ Standard
§13.3.3.2/4, the following rules apply:

e Ifclass B is derived directly or indirectly from class A and class C is derived directly or
indirectly from B,

0 Conversion of CA to BA is better than conversion of CA to AA.

0 Conversion of BA to AA is better than conversion of CA to AA.

14.2.2 Pointer conversions
The definition of null pointer constant in the C++ Standard (§4.10/1) is augmented, as follows:

“A null pointer constant is either an integral constant expression rvalue of integer type that evaluates
to zero, or the null value constant nul Iptr.”

[Note: The implication of this is that the null value constant can be converted to any pointer type. end note]
The following conversion rules apply to interior pointers:

Conversion from interior_ptr<T1>to interior_ptr<T2> is allowed if and only if conversion from
T1* to T2* is allowed;

In conversions between types where exactly one type is interior_ptr<T1>, the interior pointer behaves
exactly as if it were “pointer to cv T1”, with two exceptions:

63

C++/CLI Language Specification

e Conversion to any other type “pointer to cv T1” is not allowed. In particular, conversion from
interior_ptr<T> to T* is not allowed.

e Conversion from the null pointer constant to interior_ptr<T> is not allowed, but conversion
from the null value constant is allowed.
[Example:

array<int>A arr = gcnew array<int>(100);
interior_ptr<int> ipi = &arr[0];

int* p = ipi; // error; no conversion from interior to non-
interior
int k = 10;
ipi = &k; // OK; k is an auto variable
ipi = 0; // error; must use nullptr instead
ipi = nullptr; // OK

; //

//

mr =B,

if Gpi) { .}
end example]
The following conversion rules apply to pinning pointers:

Conversion from pin_ptr<T1>to pin_ptr<T2> is allowed if and only if conversion from T1* to T2* is
allowed;

In conversions between types where exactly one type is cv pin_ptr<T>, the pinning pointer behaves
exactly as if it were “pointer to cv T”, with the exception that conversion from a null pointer constant to
pin_ptr<T> is not allowed, but conversion from the null value constant is allowed. [Note: In particular,
conversion from pin_ptr<T> to T* is allowed as a standard conversion. end note]

[Example:

array<int>A arr = gcnew array<int>(100);
pin_ptr<int> ppi = &arr[0];

int* p = ppi; // OK

int k = 10;

ppi = &k; // OK; k is an auto variable

ppi = 0; // error; must use nullptr instead
ppi = nullptr; // OK

pin_ptr<int> ppi2 = p; // OK
end example]

14.2.3 Lvalue conversions

There is a standard conversion for each of the following: “cv-qualified Ivalue of type T” to “cv-qualified gc-
lvalue of type T,” and “cv-qualified gc-lvalue of type T” to “cv-qualified rvalue of type T.” If a cv-qualified
lvalue would not convert to an rvalue in a given context, it is ill-formed for a gc-lvalue to convert to an
rvalue. [Rationale: Conversion from a gc-lvalue to an rvalue when binding a native reference to an integer
on the CLI heap results in loss of type safety. end rationale]

14.2.4 Integral promotions

To accommodate the addition of extended integer types, the C++ Standard (§4.5/1) is is augmented, as
follows:

An rvalue of type €har;-sighed—char,unsignedchar,shert—int-erunsigned short

At an integer type whose integer conversion rank (4.13) is less than the rank of int and
unsigned 1int can be converted to an rvalue of type int if int can represent all the values of the
source type; otherwise, the source rvalue can be converted to an rvalue of type unsigned int.

and the C++ Standard is augmented by the following new clause, 4.13:

4.13 Integer conversion rank

Every integer type has an integer conversion rank defined as follows:

64

Conversions

* No two signed integer types shall have the same rank, even if they have the same representation.

* The rank of a signed integer type shall be greater than the rank of any signed integer type with less
precision.
* The rank of Tong long int shall be greater than the rank of Tong int, which shall be greater

than the rank of int, which shall be greater than the rank of short 1int, which shall be greater
than the rank of signed char.

* The rank of any unsigned integer type shall equal the rank of the corresponding signed integer
type, if any.

* The rank of any standard integer type shall be greater than the rank of any extended integer type
with the same width.

* The rank of char shall equal the rank of signed char and unsigned char.

* The rank of boo1 shall be less than the rank of all other standard integer types.

¢ The rank of any enumerated type shall equal the rank of its underlying type (7.2).

* The rank of any extended signed integer type relative to another extended signed integer type with
the same precision is implementation-defined, but still subject to the other rules for determining the
integer conversion rank.

e For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has greater rank
than T3, then T1 has greater rank than T3.

[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the
usual arithmetic conversions (5).]

To accommodate the addition of the types Tong long int and unsigned long long int, the
C++ Standard (§4.5/2) is augmented, as follows:

“An rvalue of type wchar_t (3.9.1) or System: :Char can be converted to an rvalue of the first of
the following types that can represent all the values of its underlying type: int, unsigned int,
long, er-unsigned Tong, Tong Tong int,orunsigned long Tong int. Anrvalue of an
enumeration type (7.2) can be converted to an rvalue of the first of the following types that can
represent all the values of the enumeration (i.e., the values in the range bmin to bpax as described in
7.2): int, unsigned int, Tong, erunsigned long, Tong long int,orunsigned long

long int.”

14.2.5 String literal conversions

An rvalue of type <narrow-string-literal-type> can be converted to one of two types: System: : StringA or
“array of n const char”. When a <narrow-string-literal-type> is converted to System: : StringA, the
result is treated as a CLI string literal (§34.4.1). When a <narrow-string-literal-type> is converted to an
array, N is the size of the string (as defined in the C++ Standard, §2.13.4/5), the array has static storage
duration, and the array is initialized with the given characters. A conversion from <narrow-string-literal-
type> to System: : StringA is better than a conversion from <narrow-string-literal-type> to “array of n
const char”.

An rvalue of type <wide-string-literal-type> can be converted to one of two types: System: :StringA or
“array of n const wchar_t”. When a <wide-string-literal-type> is converted to System: : StringA, the
result is treated as a CLI string literal (§34.4.1). When a <wide-string-literal-type> is converted to an array, n
is the size of the string (as defined in the C++ Standard, §2.13.4/5), the array has static storage duration, and
the array is initialized with the given characters. A conversion from <wide-string-literal-type> to

System: :StringA is better than a conversion from <wide-string-literal-type> to “array of n const
wchar_t”.

For conversion in the presence of the subscript operator, see §15.3.1; for the unary * operator, see §15.4.1.2;
for the binary -> operator, see §15.3.4; and with the binary + operator, see §15.6.3.

65

C++/CLI Language Specification

Consider the case in which a function, whose parameter-declaration-clause terminates with an ellipsis, is
called with a string literal as the argument that corresponds to the ellipsis. If the string literal is a narrow
string literal, it is converted to an array of n char; if it is a wide string literal, it is converted to an array of
nwchar_t.

14.2.6 Boxing conversions

A boxing conversion involves the creation of a new object on the CLI heap. A boxing conversion shall be
applied only to instances of value types, with the exception of pointers. For any given value type V, the
conversion results in a VA. [Note: Boxing in some other CLI-based languages goes directly from V to
ObjectA. This can be achieved in C++/CLI via a boxing conversion followed by a handle conversion. end
note] Although the value type expression can be cv-qualified, the resulting boxed value type is not.

To accommodate the addition of boxing conversions, Table 9, "conversions", in the C++ Standard,
§13.3.3.1.1, "Standard conversion sequences", is augmented by the addition of a "Boxing conversion" row,
as shown in §18.3. [Example: Note that the positioning of the boxing conversion in that table means that
given a choice between a “narrowing” conversion and boxing, boxing is preferred. Given the following,

void F(float f) {
console::writeLine("F(float)");

void F(ObjectA o) {
Console::writeLine("F(ObjectA)");

int main(QQ {
F(3.14);
the output is "F(ObjectA)". end example]
A boxing conversion cannot be rewritten by the user; it is reserved to the implementation.

A boxing conversion follows the exact same sequence of operations as user-defined conversions (C++
Standard §13.3.3.1.2). Boxing conversions are considered before user-defined conversions, and a boxing
conversion sequence never invokes a user-defined conversion. In other words, given a choice between
applying a boxing conversion or a user-defined conversion, the boxing conversion is selected. Thus,
§13.3.3.2 of the C++ Standard is augmented, as shown in §14.1 .

[Note: One can write a user-defined conversion operator that performs the same conversion as a boxing
conversion. Although the compiler would not call this user-defined conversion in boxing contexts, the
programmer could call the user -defined conversion using explicit operator function syntax. end note]

For metadata details, see §34.4.2.

14.3 Implicit conversions

14.3.1 Implicit constant expression conversions

The following implicit constant expression conversions are permitted:
e The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.

14.3.2 User-defined implicit conversions

14.3.3 Boolean Equivalence

Whether or not booT1 maps to System: : Boolean, an rvalue of type booT can be converted to an rvalue of
type System: :Boolean, and an rvalue of type System: : Boolean can be converted to an rvalue of type
bool.

66

Conversions

14.4 Explicit conversions

The following explicit conversions are permitted:
e The null value constant can be converted to any pointer type.

e The null value constant can be converted to any handle type.

14.5 User-defined conversions

Generic conversion functions are allowed. [Note: However, the need to check generic constraints after
overload resolution makes it difficult to write a generic conversion that is useful. A template conversion
function will usually be more useful. end note]

14.5.1 Constructors

Although the exp11i cit keyword is permitted on a constructor in a ref class or value class, it has no effect.
Constructors in these classes are never used for conversions or casts (see §13.3).

14.5.2 Explicit conversion functions

C++/CLI allows the exp1icit keyword on conversion functions. Thus, C++ Standard §7.1.2 is augmented,
as follows:

“The exp1icit specifier shall be used only in declarations of constructors within a class
declaration, or on declarations of conversion functions within a class declaration; see 12.3.1 and
12.3.2.”

A conversion function that is declared with the exp 11 cit keyword is known as an explicit conversion
function. A conversion function that is declared without the exp 11 cit keyword (i.e., every conversion
function in Standard C++) is known as an implicit conversion function.

Like an explicit constructor, an explicit conversion function can only be invoked by direct-initialization
syntax (C++ Standard §8.5) and casts (C++ Standard §5.2.9, §5.4).

A type shall not contain an implicit conversion function and an explicit conversion function that perform the
same conversion. Only one of these is allowed.

It is possible to write a class that has both an explicit converting constructor and a conversion function that
can perform the same conversion. In this case, the explicit conversion function is preferred.

14.5.3 Static conversion functions

C++/CLI allows conversion functions, both implicit and explicit, to be static. Conversion functions shall
not have namespace scope. A static conversion function shall take only one parameter, which is the type to
convert from (a non-static member conversion function shall have no parameters). Neither static nor non-
static conversion functions shall specify return types.

Either the source type (parameter type) or the target type (type-specifier-seq) is required to be T, TA, T&, T%,
TA%, or TA&, where T is the type of the containing class. (T* is not allowed because conversions are not
looked up through pointers.)

Implicit conversions can now be found in more than one place: the scope of the type of the source
expression and the scope of all potential target types. If overload resolution results in a set of conversion
functions (and possibly converting constructors) that can perform the same conversion, the program is
ambiguous and ill-formed.

14.6 Parameter array conversions

The parameter array conversion sequence occurs when overload resolution chooses a function that takes a
parameter array as its last argument. Such overloads are preferred to C-style variable-argument functions,
and are not preferred to any other overloads.

67

C++/CLI Language Specification

A parameter array overload is chosen by overload resolution. For the purpose of overload resolution, the
compiler creates signatures for the parameter array functions by replacing the parameter array argument with
n arguments of the CLI array’s element type, where n matches the number of arguments in the function call.
These synthesized signatures have higher cost than other non-synthesized signatures, and they have lower
cost than functions whose parameter-declaration-clause terminates with an ellipsis. [Note: This is similar to
the tiebreaker rules for template functions and non-template functions in the C++ Standard (§13.3.3). end
note]

For example, for the function call f(varl, var2, .., varm, vall, val2, .., valn)
void f(T1 argl, T2 arg2, .., Tm argm, ... array<T>A arr)

is replaced with
void f(T1 argl, T2 arg2, .., Tm argm, T tl1, T t2, .., T tn)
Overload resolution is performed with the set containing the synthesized signatures according to the rules of

Standard C++. If overload resolution selects a C-style variable-argument conversion, it means that none of
the synthesized signatures was chosen.

If overload resolution selects one of the synthesized signatures, the conversion sequences needed for each
argument to satisfy the call is performed. For the synthesized parameter array arguments, the compiler
constructs a CLI array of length n and initializes it with the converted values. Then the function call is made
with the constructed parameter array.

[Note: User-defined conversions are better than parameter array conversions.

ref class A {};
ref class B {
public:
static operator AA(BA b) { return gcnew A; }

void F(... array<BA>A arr) { Console::WriteLine("array<BA>A"); }
void F(AA a) { console::writeLine("AA"); }

int main(Q) {
BA b = gcnew B;
) F(b);

The program prints “A””. end note]

14.7 Naming conventions

During compilation, the name of the conversion function is the C++ identifier used in source code for that
function. For example, the conversion function from A to B could be the static member function of either A
or B, operator B(A), or the instance function of A, operator B().[Example:

pubTic value struct Decimal {

gtatjc operator Decimal(int value);
static explicit operator double(bDecimal value);

explicit operator float(Q);
end example]

A program that declares or defines a member function within a ref class, value class, or interface class using
the names op_Implicit or op_Explicit, isill-formed. A program shall not directly refer to these names.

Operator functions are either CLS-compliant or C++-dependent.
A conversion function is CLS-compliant when all of the following conditions occur:

e The conversion function is a static member of a ref class or a value class.

68

Conversions

e Ifavalue class is a parameter or a target value of the conversion function, the value class shall
not be passed by reference nor passed by pointer or handle.

o Ifarefclassis a parameter or a target value of the operator function, the ref class shall be passed
by handle. The handle shall not be passed by reference.

If a conversion function does not match these criteria, it is C++-dependent.

69

C++/CLI Language Specification

15. Expressions

To accommodate the addition of the types Tong long int and unsigned long long int, and
extended integer types, the C++ Standard (§5/9) is augmented as follows:

Many binary operators that expect operands of arithmetic or enumeration type cause conversions
and yield result types in a similar way. The purpose is to yield a common type, which is also the
type of the result. This pattern is called the usual arithmetic conversions, which are defined as
follows:

— If either operand is of type Tong doube, the other shall be converted to Tong doubTe.
— Otherwise, if either operand is doubTe, the other shall be converted to double.

— Otherwise, if either operand is f1oat, the other shall be converted to float.

— Otherwise, the integer promotions are performed on both operands. Then the following rules are

applied to the promoted operands:

— If both operands have the same type, then no further conversion is needed.

— Otherwise, if both operands have signed integer types or both have unsigned integer types, the
operand with the type of lesser integer conversion rank is converted to the type of the operand with

greater rank.
— Otherwise, if the operand that has unsigned integer type has rank greater or equal to the rank of

the type of the other operand, then the operand with signed integer type is converted to the type of
the operand with unsigned integer type.

— Otherwise, if the type of the operand with signed integer type can represent all of the values of
the type of the operand with unsigned integer type, then the operand with unsigned integer type is
converted to the type of the operand with signed integer type.

— Otherwise, both operands are converted to the unsigned integer type corresponding to the type of
the operand with signed integer type.

15.1 Function members
The following function member kinds are added to those defined by Standard C++:

e Properties (both scalar and default-indexed)

e Events

The statements contained in these function members are executed through function member invocations. The
actual syntax for writing a function member invocation depends on the particular function member category.

70

Expressions

Invocations of default-indexed properties employ overload resolution to determine which of a candidate set
of function members to invoke.

[Note: The following table summarizes the processing that takes place in constructs involving these three
categories of function members that can be explicitly invoked. In the table, e, X, y, and vaTlue indicate
expressions classified as variables or values, E is an event, and P is the simple name of a property.

Construct Example Description
Property access P P::get()
perty P = value P::set(value)
E += value E::add(value)
Event access
E -= value E::remove(value)
) el[x, y] e.default::get(x, y)
Default-indexed property access e[x, y] = value |e.default::set(x, y, value)

end note]

15.2 Primary expressions

To accommodate the addition of properties, the “Primary expressions” subclause of the C++ Standard (§5.1)
is augmented, as follows:

“A static property or event is not associated with any instance of a class, and a program is ill-formed
if it refers to this in the accessor functions of a static property or event.”

“An instance property or event is associated with a specific instance of a class, and that instance can
refer to this in the accessor functions of that instance property or event.”

15.3 Postfix expressions

To accommodate the addition of default-indexed properties and CLI arrays (which are accessed using
subscript-like expressions), the C++ Standard grammar (§5.2) for postfix-expression is augmented, as
follows:

postfix-expression:
primary-expression
postfix-expression [expression-list]
postfix-expression (expression-listo,:)
simple-type-specifier (expression-list,)
typename ::q nested-name-specifier identifier (expression-list,,)
typename ::qy nested-name-specifier templateq, template-id (expression-listyy)
postfix-expression . templatey, id-expression
postfix-expression -> template,, id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)
typenamegy ::o Nested-name-specifier identifier :: typeid
typenameyy ::o Nested-name-specifier template,, template-id :: typeid

The C++ Standard production

postfix-expression [expression]

71

C++/CLI Language Specification

is augmented to
postfix-expression [expression-list]

to accommodate indexed access (§15.3.1) and CLI array element access (§24.3). As a result, commas in
square-bracketed expressions are not operators and instead are list separators.

To allow constructs such as List<List<int>>, where >> is treated as two tokens instead of one, the
C++ Standard (§5.2/2) is augmented by the following new paragraph:

[Note: The > token following the type-id in a const_cast, dynamic_cast, reinterpret_cast,
safe_cast, or static_cast may be the product of replacing a >> token by two consecutive
> tokens (14.2). end note]

15.3.1 Subscripting and indexed access

The subscripting operator [] can represent the built-in subscripting operator (C++ Standard §5.2.1), a call of
an overloaded operator[] (C++ Standard §13.5.5), or a use of an indexed property. Overload resolution
is used to determine which applies. As in the C++ Standard, if neither operand is a class or enum or a
handle to a class, overload resolution is not needed and the built-in operator is selected.

For any given instance of a ref class, subscripting can be applied to that instance and to a handle to that
instance, with the same result.

The argument list for the overload resolution is the left operand plus the list of expressions of the expression-
list. [Note: in Standard C++, the syntactic term inside the [] is an expression, which means that X[, 3] is
a valid subscripting operation whose subscript is a comma-expression (in other words, it's effectively X[j]).
In C++/CLI, a top-level comma inside [] is considered a list separator and not an operator, so X[1,]]
would only match an indexed property taking two arguments. If one wants a top-level comma operator, one
must write it inside parentheses, e.g., X[(i,j)]. This is true even when X does not have class type or
handle to class type. end note]

A CLI class type shall not have both a default-indexed property and an operator[].When subscript is
applied to a string literal, that literal is converted to an "array of n const char" or "array of n const
wchar_t", as appropriate. The following built-in operator functions exist:
const char& operator[](<narrow-string-Tliteral-type>, 7nteger-type);
const wchar_t& operator[](<wide-string-1literal-type>, 7'nte‘c|]er— type);

const char& operator[](7nteger-type, <narrow-string-Titeral-type>);
const wchar_t& operator[](7nteger-type, <wide-string-Titeral-type>);

where integer-type is any integer type.

15.3.2 Function call

The C++ Standard (§5.2.2/1) states, “A function call is a postfix expression followed by parentheses
containing a possibly empty, comma-separated list of expressions, which constitute the arguments to the
function.”

C++/CLI contains support for delegates (§27). As such, the postfix expression can be a delegate type, in
which case, the whole expression is a delegate invocation (§27.3), and the argument list is passed to each
function encapsulated by the delegate.

15.3.3 Explicit type conversion (functional notation)

Function-style casts of ref classes and value classes do not invoke conversions; these are calls to constructors
only. If a corresponding constructor does not exist, the program is ill-formed. [Example:

72

Expressions

value class C {};
value class E {

pubTic:
operator c() { return cQ; 1}

void F(C o) {}
int main() {

E e;
F(c(e)); // error - no constructor of C matches parameter

end example]

15.3.4 Class member access
To accommodate the use of handles with ->, the text in Standard C++ (§5.2.5/2) is augmented, as follows:

“For the second option (arrow) the type of the first expression (the pointer expression) shall be
“handle to class object” (of a complete type) or “pointer to class object” (of a complete type).”

The text in Standard C++ (§5.2.5/3) is amended, as follows:

“If E1 has the type "pointer to class X," then the expression E1->E2 is converted to the equivalent
form (*(E1)).E2. If E1 has the type "handle to class X", and X has an operator-> the expression
E1->E2 is evaluated as (*(E1)) .operator->(E2). Otherwise, if E1 has the type "handle to class
X" and X does not have an operator->, then the expression E1->E2 is converted to the equivalent
form (*(E1)).E2.”

and footnote 59 is augmented, as follows:

“59) Note that if E1 has the type “pointer to class X”, then (* (E1)) is an lvalue. If E1 has the type
“handle to class X”, then (*(E1)) is a gc-lvalue.”

If a program accesses an instance of a value type directly using the arrow operator, it is ill-formed. [Note:
Applying the arrow operator to an instance of a value type does not box that value. However, certain
accesses to such an instance using the dot operator require boxing. See the metadata details in §34.5.1. end
note]

When a string literal is the left-hand operand to the binary operator->, that literal is converted to
System: :StringA.

15.3.5 Increment and decrement
See §19.7.3.

15.3.6 Dynamic cast

For the expression dynamic_cast<T>(e), in addition to the rules specified by the C++ Standard (§5.2.7),
the following also applies:

If T is a tracking reference type, e shall be a gc-Ivalue of a complete class type, and the result is a gc-lvalue
of the type referred to by T.

T can be a handle type, and in such cases e shall be an rvalue of a handle to complete class type, and the
result is an rvalue of type T.

If the value of e is a null value and T is handle type, the result is the null value of type T.

If T is “handle to cvl B” and e has type “handle to cv2 D” such that B is a base class of D, the result is a
handle to B such that it refers to the same CLI heap-based object as e. The cv-qualification for cv1 shall be
the same as or greater than that for cv2. Otherwise, a runtime check is required. If the runtime check cannot
succeed, the program is ill-formed.

73

C++/CLI Language Specification

If T is either a handle or a pointer to any type other than a native class, and the cast fails, the result is the null
value or the required result type. If T is a reference to any type other than a native class and the cast fails,
then the expression throws System: : InvalidCastException. When T is a native class, the rules of
Standard C++ §5.2.7/9 apply.

For metadata details, see §34.5.2.

15.3.7 Type identification

C++/CLI adds a new use of the typeid keyword, whereby a given type name can be followed by
::typeidto get a System: : TypeA for the given type name. This construct is referred to here as a typeid
Type expression (which is unrelated to Standard C++'s typeid expression). To accommodate this, the

C++ Standard grammar production for postfix-expression (§5.2 and §A.4) is augmented (§15.3).

In the C++ Standard (§14.6.2.2/4), the "Expressions of the following forms" list is augmented to include the
new typeid Type expression forms of postfix-expression (§15.3).

The result of a typeid Type expression is an lvalue of static type System: : TypeA. There is only one
System: : Type object for any given type. [Note: This means that for any type T, T: : typeid ==
T::typeid is always true. end note] As this form is a compile-time expression, it can be used as an
argument to an attribute constructor.

The type name in the typeid Type expression shall be a raw type (§12.3.1) or a pointer to a raw type.

The type in a typeid Type expression can be any handle RA provided that type is referred to via a typedef.
The result of such an expression is the same as applying typeid directly to type R. The type R% is handled the
same way.

Each fundamental type is a distinct type; however, different fundamental types can map to the same CLI
type. As such, the typeid operator shall produce the same Type handle for each fundamental type that
maps to the same CLI type, regardless of whether optional or required modifiers (§33.1) are otherwise
required to distinguish those fundamental types. [Example: In an implementation in which int and Tong
both map to System: :Int32, both int: :typeidand Tong: : typeid result in a TypeA describing
System: :Int32. end example]

[Note: The practice of using a lock on T: : typeid to guard static members of a type T is discouraged, as it
can lead to deadlock. end note]

The typeid Type expression provides convenient syntactic access to the functionality of the

System: :Type: :GetType() library function. Whereas GetType () shall be called on an CLI heap-based
object of the given type, : : typeid can be applied to a type directly, and consequently does not require a
CLI heap-based object to be created. [Example:

using namespace System::Reflection;
ref class X { .. };

Console::WriteLine(X::typeid); // does not require an object
XA pX = gchew X;
TypeA pType = pX->GetType(); // GetType requires an object

Console::WriteLine(pType);

console::writeLine(Int32::typeid);
Console::WriteLine(array<Int32>::typeid);
Console::WriteLine(void::typeid);

TypeA t = String::typeid;
Console::writeLine(t->BaseType);

array<MethodInfoA>A functions = t->GetMethods();
for each (MethodInfoA mi in functions)
console::wWriteLine(mi);

The output produced is:

74

Expressions

X

X
System.Int32
System.Int32[]
System.void
System.Object

gystem.CharEnumerator GetEnumerator()
System.Type GetType()

end example]

The : : typeid operator can be applied to a type parameter or to a constructed type: the result is a CLI heap-
based object of type System: : Type that represents the runtime type of the type parameter or constructed
type. Outside of the body of a generic type definition, the : : typeid operator shall not be applied to the
bare name of that type. [Example:

generic<typename T>
ref class X {

public:
static void FQ {
TypeA t1 = T::typeid; // okay
TypeA t2 = X<T>::typeid; // okay
) TypeA t3 = X::typeid; // okay
};
int main(QQ {
TypeA t4 = 1int::typeid; // okay
TypeA t5 = X<int>::typeid; // okay
TypeA t6 = X::typeid; // error

Clearly, the initialization of t6 is in error. However, that of t3 is not, as the use of X is really an implicit use
of X<T> (§31.1.2). end example]
The : : typeid operator can be used in an argument to an attribute constructor call. [Example:

[AttributeUsage(AttributeTargets::Al11)]
public ref struct XAttribute : Attribute {
XAttribute(TypeA t) {}

[X(int::typeid)]
public ref class R {};

end example]

Standard C++'s native typeid can be applied to expression or type-id. Native typeid shall not be used with
types that are ref classes, interface classes, handles, value classes other than fundamental types, enums of
any kind, or pointers. Thus, any program that contains a native typeid with expression or type-id having any
of these types, is ill-formed.

15.3.8 Static cast

The rules specified by the C++ Standard (§5.2.9) apply. For the expression, static_cast<T>(e), the
following also applies.

A static cast can invoke a user-defined conversion function as described in the C++ Standard (§5.2.9/2). All
of the following are considered: explicit conversion functions, implicit conversion functions, explicit
converting constructors, and implicit converting constructors.

[Note: Non-native types do not have converting constructors. end note]
The cast expression discussed in the C++ Standard (§5.2.9/3) is also allowed on tracking references.

The conversion discussed in the C++ Standard (§5.2.9/7) is allowed for both native and CLI enumerations.

75

C++/CLI Language Specification

An rvalue of type “handle to cvl B”, where B is a type, can be converted to an rvalue of type “handle to cv2
D”, where D is a class derived from B, if a valid standard conversion from “handle to D” to “handle to B”
exists (§14.2.1), and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. The null value
is converted to the null value of the destination type.

15.3.9 Reinterpret cast

The rules of specified by the C++ Standard (§5.2.10) apply. A reinterpret cast expression that attempts to
cast from or to a handle type is ill-formed.

A reinterpret cast will never invoke a boxing conversion sequence.

15.3.10 Const cast

The rules specified by the C++ Standard (§5.2.11) apply. For the expression, const_cast<T>(v), the
following also applies.

Where the C++ Standard discusses the application of const_cast to pointers, the rules shall also apply to
handles.

An lvalue of type T1 can be explicitly converted to an Ivalue of type T2 using the cast const_cast<T2%>
if a pointer or handle to T1 can be explicitly converted to the type pointer or handle to T2 using a
const_cast. The result of a reference const_cast refers to the original object.

A null value is converted to the null value of the destination type. A program in which v in the const cast
expression is the nul1ptr literal is ill-formed.

A const cast shall never invoke a boxing conversion sequence.

15.3.11 Safe cast

A safe cast performs the optimal cast for frameworks programming. The compiler processes a safe_cast
expression as follows:

e The compiler performs a lookup in the current context for the name safe_cast.

e If the name refers unambiguously to : :c11i::safe_cast, or the name is not found, then the
expression is processed by the compiler according to the following grammar, and interpreted
according to the rules specified herein.

safe_cast < type-id > (expression)

The result of the expression safe_cast<T>(Vv) is the result of converting the expression v to type T. If T is
a tracking reference type, the result is a gc-lvalue; otherwise, the result is an rvalue. Types shall not be
defined in a safe_cast. The safe_cast operator shall not cast away constness. The type T and the type
of v shall not be a native class, a pointer, a pointer-to-member, a native reference, or an indirection to a
native class, pointer, or pointer-to-member. [Note: Except for the cases just mentioned, a safe_cast in
which the target type or the type of the expression is anything else is always verifiable. An explicit type
conversion—also known as a C-style cast—always defaults to safe cast behavior when the arguments allow
the generation of verifiable code for the conversion. end note]

An expression e can be explicitly converted to a type T using a safe_cast of the form safe_cast<T>(e)
if the declaration “T t(e);” is well-formed, for some invented temporary variable t. The effect of such an
explicit conversion is the same as performing the declaration and initialization and then using the temporary
variable as the result of the conversion. The result is a gc-lvalue if T is a tracking reference type, and an
rvalue otherwise. The expression e is used as a gc-lvalue if and only if the initialization uses it as a gc-
lvalue.

Otherwise, the safe_cast shall perform one of the conversions listed below. No other conversion shall be
performed explicitly using safe_cast.

The inverse of any standard conversion sequence, other than the lvalue-to-rvalue, array-to-pointer, function-
to-pointer, pointer conversions, pointer-to-member conversions, and Boolean conversion, can be performed

76

Expressions

explicitly using safe_cast. Such a safe_cast is subject to the restriction that the explicit conversion
does not cast away constness, and the following addition rules for specific cases:

A value of integral or enumeration type can be explicitly converted to an enumeration type. The
value is unchanged if the original value is within the range of the enumeration values.
Otherwise, the resulting enumeration value is unspecified.

If T is “handle to cvl D”, and the type of v is “handle to cv2 B”, cv1 shall have the same cv-
qualification as, or greater cv-qualification than, cv2, and a run-time check is applied to
determine that D inherits from B. (For metadata and result details, see §34.5.1.) A

System: :InvalidCastException is thrown if the conversion fails. In the handle case, if the
value of v is a null value, the result is the null value of type T. If the conversion cannot succeed
at runtime, the program is ill-formed. [Example: if two ref classes A and B are unrelated, and the
program uses safe_cast<AA>(b) where b has type BA, the dynamic check cannot succeed.
end example]

If T is “tracking reference to cvl D”, and the type of v is “cv2 B”, c¢v1 shall have the same cv-
qualification as, or greater cv-qualification than, cv2, and a run-time check is applied to
determine that D inherits from B. (For metadata and result details, see §34.5.1.) A

System: :InvalidCastException is thrown if the conversion fails. If the conversion cannot
succeed at runtime, the program is ill-formed.

An rvalue of type “handle to cvl R” can be converted to an lvalue of type V, where V is a value
type. R shall be System: :Object, System: :vValueType, or an interface that V implements. If
V is an enumeration type, R can also be System: : Enum. (For metadata and result details,

see §34.5.1.) A System: :InvalidCastException is thrown if the conversion fails. This
conversion sequence is called unboxing. [Note: safe_cast is the only cast that can result in
unboxing. end note]

15.4 Unary expressions

15.4.1 Unary operators

15.4.1.1 Unary &

When applied to an lvalue of type T, & yields a T* (see Standard C++ §5.3.1/2). When applied to a gc-lvalue
of type T, & yields an interior_ptr<T> (§12.3.6).

A program that attempts to apply the built-in unary & operator to an instance of a ref class type, a literal
field, or to a property, or to an initonly field outside of the class’s constructor, is ill-formed.

A program that attempts to take the address of a member function of a non-native class in any context other
than in the creation of a delegate, is ill-formed. There is no pointer-to-member representation for members of
non-native classes. [Example:

delegate void D(int 1i);
ref struct R {

};

static void M1(int a) { }
void M2(int b) { }
virtual void M3(int c) { }

int main(Q) {

}

RA r = gchew R;

DA d;

d gcnew D(&R::M1);

d gcnew D(r, &R::M2);
d += gcnew D(r, &R::M3);

end example]

For details on the metadata for delegate creation, see §34.14.

77

C++/CLI Language Specification

15.4.1.2 Unary *

The C++ Standard (§5.3.1/1) is augmented to allow for indirection on handles. Specifically, the following
text:

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to
an object type, or a pointer to a function type and the result is an lvalue referring to the object or
function to which the expression points. If the type of the expression is “pointer to T,” the type of
the result is “T.”

has been replaced with:

The unary * operator performs indirection: the expression to which it is applied shall be one of the
following:

o If'the expression is a pointer to an object type or a pointer to a function type, then the result is an
lvalue referring to the object or function to which the expression points. If the type of the
expression is “pointer to T,” the type of the result is “T.”

e Ifthe expression is a handle to an object, then the result is a gc-lvalue referring to the object to
which the expression points. If the type of the expression is “handle to T.” the type of the result
1s “T.”

Dereferencing a TA yields a ge-lvalue of type T.

When operator¥ is applied to a string literal, that literal is converted to an "array of n const char" or
"array of n const wchar_t", as appropriate. The following built-in operator functions exist:

const char& operator*(<narrow-string-literal-type>);
const wchar_t& operator*(<wide-string-literal-type>);

[Note: Because user-defined operators can work on handles, when a ref or value class has a user defined
instance unary operator *, dereferencing a handle to such a class will invoke the user defined operator rather
than actually dereferencing the handle. This is because all instance operators work on the class type as well
as on a handle to the class (Standard C++ §19.7.1). For example:
ref struct R {
int operator*() {
Console::wWriteLine("R::operator*");
return 42;

};
int main(Q) {
RA rla = gcnew R;
int x = *rla; // calls operator*()
R rlb;
X = *rlb; // calls operator*()

As this may be surprising to programmers, a quality implementation should warn when a ref class or value
class has an instance operator *. The preferred alternative to such an operator is a pair of static operators, so
that the operand is clearly stated to be either the class type or a handle to the class type, as follows:
ref struct R {
static int operator*(RA r) {
Cconsole::writeLine("R::operator*(RA)");
return 42;

static int operator*(R% r) {
Console::WriteLine("R::operator*(R%)");
return 42;

78

Expressions

int main() {
RA r2a = gcnew R;
int x = *r2a; // calls operator*(RA)

R r2b;
x = *r2b; // calls operator#*(R%)

end note]

15.4.1.3 Unary %

The result of the unary % operator is a handle to its operand, which, ordinarily, shall be a gc-lvalue.
However, if the operand is an instance of a value class, the operand can be an rvalue. If the type of the
expression is “T”, and T is not a value class, the result is an rvalue and its type is “handle to T.” In
particular, the result of getting a handle of an object of type “cv T” is “handle to cv T,” with the same cv-
qualifiers. If T is a value class, the expression invokes the boxing conversion sequence (which allows loss of
cv-qualification), which results in an rvalue. [Example:

ref class R {};

value class v {};
void f(System::0bjectAr o) {}

void g {
R r;
f(%r);
V Vv;
f(%V); // v is boxed

end example]

[Note: All handles to the same CLI heap-based object compare equal. For value classes, because % is a
boxing operation, multiple applications of % results in handles that do not compare equal. end note]

A program that applies the unary % operator to a native class type is ill-formed.

15.4.1.4 Unary »

No such operator exists. [Rationale: As a result, there is asymmetry between %/A and &*, in that unary * is
used to dereference both * and A. However, allowing a single syntax to be used in the latter case permits the
writing of agnostic templates and generics. In any event, adding this operator would provide no new
semantics, and would preclude the addition of such an operator later on, with new semantics. end rationale]

15.4.1.5 Logical negation
The C++ Standard (§5.3.1/8) is augmented as follows:

The operand of the logical negation operator ! is implicitly converted to boo1 (clause 4); its value is true if
the converted operand is false and false otherwise. If the implicit conversion to booT is ill-formed and
the operand is a handle type or a type given by a generic type parameter not constrained by the value class
constraint, the value is true if the handle is null and false if the handle is not null. The type of the result is
booT. [Example:

ref class R { .. };

RA r = .
if (r)

// handle 1is null
else

// handle is non-null

end example]

15.4.2 Increment and decrement
See §19.7.3.

79

C++/CLI Language Specification

15.4.3 Sizeof
The C++ Standard (§5.3.3/1) is augmented, as follows:

The sizeof operator shall not be applied to an expression that has function or incomplete type, or
to an enumeration type before all its enumerators have been declared, or to the parenthesized name
of such types, or to an lvalue that designates a bit-field, or to an expression that has null type, or to a
handle, or to a tracking reference, or to a ref class. sizeof(char), sizeof(signed char) and
sizeof(unsigned char) are 1; theresult-of sizeofapplied-to-any-other fundamental-type
3-9is-implementation-defined. [Note: in particular, sizeof (bool)_, —and

sizeof(wchar_t), sizeof(short int), sizeof(int),sizeof(long int), sizeof(long
Jong int),sizeof(float), sizeof(double). and sizeof(long double) are
implementation-defined. end note]

C++ Standard (§5.3.3/2) is augmented by the addition of the following:

When applied to a value class type, handle type, or generic type parameter, the result is not a
compile-time constant expression. [Note: The definition of value class types excludes fundamental
types and pointers, thus sizeof expressions on fundamental types and pointers are still compile-time
constant expressions. end note]

When applied to a ref class type or interface type, the program is ill-formed.

Due to requirements imposed by the CLI Standard, size_t shall be at least a 4-byte, unsigned integer.

15.4.4 New

A program is ill-formed if it attempts to allocate memory using new for an object of CLI class type other
than a simple value class (§22.4).

15.4.5 Delete

The C++ Standard (§5.3.5/1) is augmented to allow for deletion of objects allocated on the CLI heap, as
follows:

The operand shall have a pointer type, a handle type, or a class type having a single conversion
function (12.3.2) to a pointer type.

In the first alternative (delete object), the value of the operand of delete shall be a pointer or handle
to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object

(clause 10).

If the delete-expression calls the implementation deallocation function (3.7.3.2), and if the operand
of the delete expression is not the null pointer constant, the deallocation function will deallocate the
storage referenced by the pointer or handle thus rendering the pointer or handle invalid.

The array form of deTete shall not be used on a handle type.

Inside of a generic, if an object’s type is a generic type parameter, delete can be used to invoke that
object’s destructor. If the generic parameter type is constrained to the System: : IDisposabTe interface,
the delete expression evaluates to a call through that interface on the object. If the generic parameter type is
not constrained to the System: : IDisposable interface, the object is converted to

System: :IDisposableA using dynamic cast and the call is made through the converted object if the
handle is not null. [Note: In the latter case, the conversion may require boxing if the generic type parameter
can be a value type. Other than the negligible performance overhead of boxing and the ensuing dynamic cast
to IDisposabTleA, calling the destructor on the boxed object will have no semantic impact on the program,
as destructors on value types don't do anything (they cannot be defined by users). end note]

80

Expressions

15.4.6 The gcnew operator

The gcnew operator is similar to the new operator, except that the former creates an object on the CLI heap.
The type of the result of the gcnew operator is a handle to the type of the object allocated. In out-of-memory
situations, gcnew throws System: : OoutOfMemoryException.

There is no array form of gcnew. There is no placement form of gcnew. The gcnew operator cannot be
overloaded or replaced. There is no class-specific form of gcnew.

A program is ill-formed if it attempts to allocate memory for an object of native class type using gcnew.

In the C++ Standard (§5.3.4), a new-expression is used to allocate memory for an object at runtime. This
grammar is augmented to accommodate the addition of the gcnew operator, as follows:

new-expression:
Iiopt New new-placementy,; new-type-id new-initializeryp
Iiopt New new-placementy; (type-id) new-initializeryy
gcnew type-specifier-seq new-initializeryy array-initgp
In the gcnew case, the type of the object being allocated shall not be an abstract class type, nor shall it be
incomplete. array-init shall only be used when creating a CLI array (see §24.2). [Note: The gcnew operator
applied to a value class creates a boxed value. end note]

The gcnew operator is used to create an instance of a delegate. For more information, see §27.2.

15.4.7 The throw expression

As control passes from a throw-expression to a handler, finally-clauses, if any, are invoked for all try-block
or function-try-blocks entered since the try-block or function-try-block containing the handler was entered.
The finally-clauses are invoked in the reverse order of the invocation of their parent try-block or function-
try-blocks.

The automatic destruction of objects in any given try-block or function-try-block required by the
C++ Standard (15.2) takes place prior to the invocation of any finally-clause associated with that try-block or
function-try-block.

For an example, see §16.4

If an object is thrown by handle (regardless of the kind of class to which the handle refers), the exception
handling mechanism used shall be that defined by the CLI. (This includes boxed value types.) Otherwise, the
Standard C++ mechanism shall be used.

Almost all types of objects can be thrown; exceptions to this rule are ref classes and value classes being
thrown by value or by reference. It is always permitted to throw an object by handle. Other than stated in this
Standard, the set of types that shall not be thrown using the CLI mechanism is the same as that for Standard
C++.

A program that attempts to throw nul1ptr is ill-formed.

15.5 Explicit type conversion (cast notation)
The rules in the C++ Standard (§5.4/5) is augmented for C++/CLI by including safe casts before static casts.

e aconst_cast
e asafe_cast

e asafe_cast followed by a const_cast

e astatic_cast
e astatic_cast followed by a const_cast

e areinterpret_cast

81

C++/CLI Language Specification

e areinterpret_cast followed by a const_cast

[Note: Standard C++ programs remain unchanged by this, as safe casts are ill-formed when either the
expression type or target type is a native class. end note]

If both the type of the argument and the type being converted to are not a native class, a pointer, a pointer-to-
member, a native reference, or an indirection to a native class, pointer, or pointer-to-member, then an
explicit type conversion shall not use static_cast or reinterpret_cast. [Note: When arguments
involve CLI class types, explicit type conversions always produce verifiable results. This enables
programmers to use explicit type conversion syntax as the most suitable alternative for another language's
cast notation. end note]

15.6 Additive operators

15.6.1 Delegate combination
Every delegate type provides the following predefined operator, where D is the delegate type:

static DA operator +(DA x, DA y);
The binary + operator performs delegate combination when both operands are of the same delegate type D.
The result of the operator is the result of calling System: :Delegate: :Combine(x,y), and casting the
result to DA. [Note: For examples of delegate combination, see §15.6.1 and §27.1. Since

System: :Delegate is not itself a delegate type, operator+ is not defined for it. The behavior when
either operand is nul1ptr is described in §27.1. end note]

15.6.2 Delegate removal
Every delegate type provides the following predefined operator, where D is the delegate type:
static DA operator —(DA x, DA y);

The binary - operator performs delegate removal when both operands are of the same delegate type D. The
result of the operator is the result of calling System: :Delegate: :Remove(x,Yy), and casting the result
to DA.

[Note: the += and -= operator are defined via assignment operator synthesis (§19.7.4). The behavior when
operand y is nulTptr is described in §27.1. end note]

[Example:

delegate void D(int x);

ref struct Test {
static void M1(int i) { .. }
static void M2(int i) { .. }

int main() {

DA cdl = gcnew D(&Test::M1);
DA cd2 = gcnew D(&Test::M2);
DA cd3 = cdl + cd2;

cd3 -= cdil;

cd3 += cdl;

) cd3 = cd3 - (cdl + cd2);

end example]

15.6.3 String concatenation

When the binary operator+ is applied to a string literal, that literal is converted to System: : StringA. As
a result, when a value having any integral type is added to a string literal, string concatenation results. [Note:
This change in behavior from Standard C++ is intentional. end note]

The following built-in operator functions exist:

82

Expressions

System: :StringA operator+(<narrow-string-1literal-type>, 7nteger-type);
System: :StringA operator+(<wide-string-1literal-type>, 7nteger-type);
System: :StringA operator+(7nteger-type, <narrow-string-1literal-type>);
System: :StringA operator+(7nteger-type, <wide-string-Iliteral-type>);

where integer-type is any integer type. When one of the operands to the binary + operator is a
System: :StringA, string concatenation results. If the other operand does not also have type
System: :StringA, its value is converted to that type by calling its ToString function. The following
built-in operator functions exist:
System::StringA operator+(System::StringA, System::StringA);
System::StringA operator+(System::StringA, System::ObjectA);
System: :StringA operator+(System::0ObjectA, System::StringA);
[Example:
PointA p = gcnew Point(5,6);
StringA s = "C++" + L"/cLI"; // s => "C++/CLI"
s 3 + " apples”; // s => "3 apples”
s "p is " + p; // s = "p is (5,6)"

n n

end example]

These three built-in functions can be hidden by user-defined versions. [Example: The program
StringA operator+(StringA 1, StringA r) { return 1; }

int main() {
Console::writeLine("ABC" + "DEF");

prints "ABC". end example]

A program containing an expression of the form strlit - intexp, where strlit is a string literal and intexp is
any integer expression, is ill-formed.

15.7 Shift operators

To accommodate the addition of the types Tong long int and unsigned long long int, the
C++ Standard (§5.8/2) is augmented, as follows:

The value of E1 << E2 is E1 (interpreted as a bit pattern) left-shifted E2 bit positions; vacated bits
are zero-filled. If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity 2
raised to the power E2, reduced modulo ULLONG_MAX+1 if E1 has type unsigned long long
int, ULONG_MAX+1 if E1 has type unsigned Tong, UINT_MAX+1 otherwise. [Note: the constants
ULLONG_MAX, ULONG_MAX, and UINT_MAX are defined in the header <c1imits>). end note]

15.8 Relational operators

15.8.1 Handle equality operators
Every ref class type and value class type C implicitly provides the following predefined equality operators:

bool operator ==(CA x, CA y);
bool operator !=(CA x, CA y);

The implicity provided handle equality operators are used only if overload resolution finds no applicable
equality operators (user-defined or otherwise defined in this specification). [Example: Delegates and
System: : String have equality operators defined already. If overload resolution selects one of those
operators, the implicitly defined handle equality operators are not applicable. end example]

There are special rules for determining when a handle equality operator is applicable. For an equality-
expression with operands of type AA and BA, define A as follows:

e If Ais a generic type parameter known to be a ref class, let Ag be the effective base class of A.

83

C++/CLI Language Specification

e Otherwise, if A is an interface type, a ref class type, a value type other than pointers, or the null
type, let Ag be the same as A.

e Otherwise, no implicit handle equality operator is applicable.
Now define A; as follows:

e If Ao is an interface type, a delegate type, System: :Delegate, or System: :String, let A; be
System: :0Object.

e Otherwise, if Ag is a CLI array type, let A; be System: :Array.

e Otherwise, Ao is the null type, a ref class type, or a value type other than pointer, and let A; be
the same as Ao.

Define Bo and B; in the same manner. Now determine if any implicit handle equality operators are applicable
as follows:

e Ifboth of the types A and B are the null type, then overload resolution is not performed and the
result is constant true for operator==and false for operator!=.

e Otherwise, if there is no identity or handle conversion from AgA to BoA or no identity or handle
conversion from By to Ao, then no implicit handle equality operator is applicable.

e Otherwise, if there is an identity or handle conversion from A;A to B1A, then the implicit handle
operator for B1 is applicable.

e Otherwise, if there is a handle conversion from B1A to A;A, then the implicit handle operator for
A1 is applicable.

e Otherwise, no implicit handle equality operator is applicable.
If the operands to an equality-expression are not handles, no implicit handle equality operator is applicable.
[Note: The rules here have the following implications:

e The implicit handle equality operators cannot be used to compare types that are known to be
different. For example, two types A and B that derive from System::Object could never be
successfully compared for identify. Similarly, if A is a ref class and B is an interface that A does
not implement, then no implicit handle equality operator applies.

e The implicit handle equality operators do not permit value class operands to be campared
without a user-defined equality operator.

e The implicit handle equality operators never cause boxing conversions to occur for an operand.
Such a conversion would be meaningless.

end note]

When overload resolution rules select an equality operator other than the implicit handle equality operator,
selection of an implicit handle equality operator can be forced by explicitly casting one or both operands to
System: :ObjectA.

15.8.2 Delegate equality operators
Every delegate type implicitly provides the following predefined comparison operators:

bool operator ==(DelegateA x, DelegateA y);
bool operator !=(DelegateA x, DelegateA y);

These are implemented in terms of System: :Delegate: :Equals. If the two operands are of different
delegate types, the expression is ill-formed. [Rationale: Two different delegate types can never successfully
result in equality. Overload resolution can promote both delegate types to System::Delegate postponing
equality failure to run-time. end rationale]

84

Expressions

15.8.3 String equality

Equality of System: : String handles is defined by System: : String: :operator==and
System::String::operator!=,

15.9 Logical AND operator
The C++ Standard (§5.14/1) is augmented as follows:

The && operator groups left-to-right. The operands are both implicitly converted to type booT
(clause 4). If that conversion is ill-formed and the operand is a handle type or a type given by a
generic type parameter not constrained by the value class constraint, the operand is tested for the
null value, returning true if not null and false if it is null. Otherwise, if the conversion to booT is
ill-formed and the operand is not a handle type or a type given by a generic type parameter not
constrained by the value class constraint, the program is ill-formed. The result is true if both
operands are true and false otherwise. Unlike &, && guarantees left-to-right evaluation: the
second operand is not evaluated if the first operand is false.

15.10 Logical OR operator
The C++ Standard (§5.15/1) is augmented as follows:

The | | operator groups left-to-right. The operands are both implicitly converted to boo1 (clause 4).
If that conversion is ill-formed and the operand is a handle type or a type given by a generic type
parameter not constrained by the value class constraint, the operand is tested for the null value,
returning true if not null and false if it is null. Otherwise, if the conversion to boo1 is ill-formed
and the operand is not a handle type or a type given by a generic type parameter not constrained by
the value class constraint, the program is ill-formed. It returns true if either of its operands is true
and false otherwise. Unlike |, | | guarantees left-to-right evaluation; moreover, the second
operand is not evaluated if the first operand evaluates to true.

15.11 Conditional operator
With regard to expressions of the following forms
? p : nullptr

e
e ? nullptr : p
e ? h : nullptr
e ? nullptr : h

where e is an expression that can be implicitly converted to boo1, p has pointer type, and h has handle type,
the C++ Standard (§5.16/6) is augmented to

The second and third operands have pointer type, or one has pointer type and the other is a null
pointer constant or null value constant; pointer conversions and qualification conversions are
performed to bring them to their composite pointer type. The result is of the composite pointer type.
If either the second or the third operands have a handle type, and the other operand is the null value
constant, the result is of the handle type.

15.12 Assignment operators

In the expression E1 op= E2, E1 can be a property, because after synthesis that expression is treated as E1 =
E1op E2.

A program that attempts to use the result of an assignment expression of the form E1 = E2 in which Elis a
property, isill-formed. [Note: The type of the result of such an expression is the type of E1, and since the
set accessor function for the property has type void, the result has type void. end note]

For information about the synthesis of compound assignment operators see (§19.7.4). Property and event
rewrite rules are covered in §15.14.

The left operand of an assignment shall be an lvalue or a gc-lvalue.

85

C++/CLI Language Specification

15.13 Constant expressions

The C++ Standard (§5.19/2) provides a list of “Other expressions [that] are considered constant-expressions
only for the purpose of non-local static object initialization.” That list is augmented by the addition of the
following:

e the null value constant.

A literal field can be used in any context that permits a literal of the same type. As such, a literal field can be
present in a compile-time constant expression.

To accommodate the addition of literal fields, the C++ Standard is augmented by the addition of the
following after §5.19/3:

A literal constant expression includes arithmetic constant expression, string literals of type
System: :StringA, and the null value constant nullptr.

String concatenation expressions that use only literal values can be evalutated by the compiler and are
therefore considered compile-time expressions. [Example:

#define X 42

ref struct R { _ ‘ _
Titeral stringA Truth = "The meaning of life is

end example]

+ X;

When a static const variable is brought into scope through #us1ing, the compiler cannot treat it as a literal
value. Thus, it cannot be used in contexts in which a literal is needed (such as a template non-type argument
or native array size). However, when a static const variable is brought in via #include, the Standard C++
rules as to whether it can be used as a literal, are followed.

15.14 Property and event rewrite rules

For the purposes of lookup, properties are treated as class data members. The evaluation of an expression
involving one or more properties requires that expression to be rewritten using the accessor functions
(§19.5.3) for those properties.

Before a property expression is rewritten using accessor functions, operator synthesis rules (§19.7.4) shall be
applied to that expression. (As a result, the property rewrite process will never encounter a compound
assignment operator.)

Consider the expression E1 @ E2, in which @ represents a binary operator. If E2 is a property, it shall be
rewritten as a call to that property's get accessor function, before further evaluation. If E1 is a property, then
if @ is the simple assignment operator, the expression shall be rewritten as a call to the property's set
accessor function; otherwise, E1 shall be rewritten as a call to the property's get accessor function..

If the expression E evaluates to a property and E is not an operand to a binary operator, E shall be rewritten
as a call to that property's get accessor function.

Rewrites for property expressions are different for scalar and indexed properties. If P is a scalar property

(§19.5):
e The property get rewrite shall be P: :get().

o The property set rewrite shall be P: : set (expression), where expression corresponds to the
right-hand side of a simple assignment operator expression.

If E is an indexed property (§19.5), it has the general form P [expression-list].
e The property get rewrite shall be P: : get (expression-list).

e The property set rewrite shall be P: : set (expression-list, expression), where expression
corresponds to the right-hand side of a simple assignment operator expression.

86

Expressions

[Example: Given that P, Q, and R are scalar properties, the expression
P+=Q * IR

is converted by operator synthesis to
P=P+Q* IR

which is then rewritten as
P::set(P::get() + Q::get() * !R::get())

In addition, given that A, B, and C are indexed properties, the expression
A[i] = B[j,k] + c[1,m,n]

is rewritten as
A::set(i, B::get(j,k) + C::get(1,m,n))

end example]

The rewrite rules for the prefix and postfix ++ and -- operators are discussed in §19.7.3.

If lookup finds multiple properties by the same name in a class, an expression of the form P [expression-list]
shall always be interpreted as an indexed property access (even if the number of arguments does not match
any existing property). If the only property found is a scalar property, the rewrite rule used shall be that for a
scalar property get, and the subscript operator shall be applied to the result of that property get.

[Example: In the following example, the class R has only one property by the name P. Since it is a scalar
property, the subscript operator is applied to the result of the property.
ref struct R {
property StringA P { StringA get() { .. } }
int main(Q) {

RA r = gchew R;
wchar_t ¢ = r->P[0]; // calls string's default-indexed property

In the next example, R has two properties by the name X. Thus, all subscripts to X are interpreted as indexed
properties. Because no set function exists that matches the overload of the rewrite, the following code is ill-
formed.

ref class R {
array<int>A MyArray;

pubTic:
R { MyArray = gcnew array<int>(10); }

property array<int>A X {
array<int>A get() { return MyArray; }

property int X[int] {
int get(int i) { return i*i; }

3
};
int main() {
R r;
r.x[[2] = 1; // error - no R::X::set(int,int) exists

int y = r.X[2]; // calls R::X::get(int)

end example]

After property expressions are rewritten, the resulting expression is reevaluated using existing rules. At that
time, it is possible that overload resolution will fail to find an acceptable function, in which case, the
program is ill-formed. [Example: An indexed property is rewritten yet no property access method takes the

87

C++/CLI Language Specification

required number of arguments. If a property only has a get accessor function, yet an expression involving
that property is rewritten as a property set, lookup will fail to find a set accessor function. end example]

Before being rewritten, properties act like fields. As such, when lookup finds a property or field name, it
does not look further in the base classes for more property names, even if the class is a hidebysig class
(§10.7). However, after being rewritten, the accessor functions for a property do follow the same rules as
other functions for hidebysig lookup.

When the left operand of a compound assignment operator is an event, operator synthesis shall not be
applied.

Given the expression E1 (@ E2, in which @ represents a binary operator, if E1 is an event, the event is
rewritten with the following rules:

o If @ is +=, the expression is rewritten as an event add, E1: :add(E2).
o If @ is -=, the expression is rewritten as an event remove, E1: : remove (E2).
Otherwise, the program is ill-formed.

Given the expression E (expression-list), if E is an event, the expression is rewritten as an event raise,
E::raise(expression-list).

All other usages of an event in an expression are ill-formed.

[Example: Given that V is an event and D is a delegate, the expression V. += D is rewritten as V: :add (D),
the expression V. -= D is rewritten as V: : remove (D), the expression V(this, e) is rewritten as
V::raise(this, e).endexample]

After an event expression is rewritten, it is reevaluated using existing rules. At that time, it is possible that
overload resolution will fail to find an acceptable function, in which case, the program is ill-formed.
[Example: A delegate cannot be added to an event if they have different delegate types. end example]

88

Statements

16. Statements

Unless stated otherwise in this clause, all existing statements are supported and behave as specified in the
C++ Standard (§6).

16.1 Selection statements

16.1.1 The switch statement

A program is ill-formed if it uses a swi tch statement to transfer control in to a finally-clause.

16.2 lteration statements

In addition to the three iteration statements specified by Standard C++ (§6.5), the iteration-statement
production is augmented to include the for each statement.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement condition,y, ; expressiony,) statement
foriieach (type-specifier-seq declarator in assignment-expression) statement

16.2.1 The for each statement

The for each statement enumerates the elements of a collection, executing the statement for each element
of that collection.

Together, the type-specifier-seq and declarator declare the iteration variable of the statement. This iteration
variable corresponds to a local variable with a scope that extends over statement. During execution of a for
each statement, the iteration variable represents the collection element for which an iteration is currently
being performed.

The type of assignment-expression shall be a collection type (as defined below), and it shall be possible to
convert from the element type of the collection to the type of the iteration variable using safe_cast. If
assignment-expression has the value nul1ptr, a System: :Nul1ReferenceException is thrown.

A type is said to be a collection type if it implements the System: :ColTlections: :IEnumerable
interface, or implements System: :Collections::Generic: :IEnumerable interface, or implements
the collection pattern by meeting all of the following criteria:

Expression Return Type Assertion/NotePre/Post-Condition
e = c.GetEnumerator() E E is the enumerator type.
e = c->GetEnumerator()
e.MoveNext() True if the current instance was

A value that can be used asa | successfully advanced to the next
e->MoveNext () condition (see §14.2.1) element; false if the current instance

has passed the end of the collection.

e.Current - .

rvalue, Ivalue, or ge-lvalue This is the element type of the

that is an element of the

- X collection type.
e->Current collection yp

89

C++/CLI Language Specification

where c is a collection of object convertible to type T, and e is an enumerator that can be used for iteration
over a collection.

A type that implements TEnumerabe is also a collection type, even if it doesn't satisfy the conditions
above. (This is possible if it implements IEnumerab’e via explicit interface member implementations.)

The System: :Array type (§24.1.1) is a collection type, and since all CLI array types derive from
System: :Array, any CLI array type expression is permitted in a for each statement. For single-
dimensional CLI arrays, the for each statement enumerators traverses the CLI array elements in
increasing order, starting with index 0 and ending with index Length - 1. For multi-dimensional CLI
arrays, elements are traversed such that the indices of the rightmost dimension are increased first, then the
next left dimension, and so on to the left.

A for each statement of the form
for each (T d in <collection-expr>) statement

in which <collection-expr> is a collection of T, is executed as if it were written as follows if
GetEnumerator returns a handle:

{
<enumeration-type>A\ e;
try {
e = <collection-expr>.GetEnumerator();
while(e->MoveNext())
T d = safe_cast<T>(e->Current);
! statement
} finally {
delete e;
ks
h

where e is a non-user-accessible temporary and <enumeration-type> is the type of the object returned by the
GetEnumerator function. If GetEnumerator returns a pointer, the execution is the same as the handle
case except e is declared as a pointer. If GetEnumerator does not return a pointer or handle, the statement
is executed as if it were writtern as follows:

{
<enumeration-type> e = <collection-expr>.GetEnumerator(Q);
while(e.MoveNext())
T d = safe_cast<T>(e.Current);
statement
}

[Example: The following program pushes the values 0 through 9 onto an integer stack and then uses a for
each loop to display the values in top-to-bottom order.

int main(Q) {
Stack<int>A s = gcnew Stack<int>;
for (int i = 0; 1 < 10; ++1)
s->Push(i);
for each (int i 1in s)
console::write("{0O} ", 1);
console::writeLine(Q);

The output produced is:
9876543210

A CLI array is an instance of a collection type, so it too can be used with for each:

int main(Q) {
array<double>A values = {1.2, 2.3, 3.4, 4.5};
for each (double value in values)
console::WriteLine(value);

90

Statements

The output produced is:
1.2 2.3 3.4 4.5

end example]

16.3 Jump statements

16.3.1 The break statement
A program is ill-formed if it uses a break statement to transfer control out of a finally-clause.

16.3.2 The continue statement
A program is ill-formed if it uses a continue statement to transfer control out of a finally-clause.

16.3.3 The return statement
A program is ill-formed if it has a return statement in a finally-clause.

16.3.4 The goto statement

A program is ill-formed if it uses a goto statement to transfer control in to or out of a finally-clause.

16.4 The try block

In the grammar specified by Standard C++ (§15), the try-block and function-try-block productions are
augmented to include an optional finally-clause, as follows:

try-block:
try compound-statement handler-seq
try compound-statement finally-clause
try compound-statement handler-seq finally-clause

function-try-block:
try ctor-initializerey: function-body handler-seq
try ctor-initializery,; function-body finally-clause
try ctor-initializerey function-body handler-seq finally-clause

finally-clause:
finally compound-statement

The statements in a finally-clause are always executed when control leaves the associated try-block's or
function-try-block's compound-statement. This is true whether the control transfer occurs as a result of
normal execution, as a result of executing a break, continue, goto, or return statement, or as a result of
propagating an exception out of that try-block's or function-try-block's compound-statement.

If an exception is thrown during execution of the statements in a finally-clause, the exception is propagated
to the next enclosing try-block or function-try-block. If another exception was in the process of being
propagated, that exception is lost.

[Example:

class MyException {};
void f1(Q);
void f2Q);

int main() {
try {
f10;
catch (const MyException& re) {

3
}

91

C++/CLI Language Specification

void f1() {
try {
; f20;
finally {

}
}

void 20 {
if (..) throw MyException();

If the call to T2 returns normally, the finally block is executed after f1's try block terminates. If the call to
f2 results in an exception, the finally block is executed before main's catch block gets control. end example]

[Note: A program is ill-formed if it:

e uses abreak or continue, or goto statement to transfer control out of a finally-clause.

e hasa return statement in a finally-clause.

e uses goto or switch statement to transfer control into a finally-clause.

end note]

92

Namespaces

17. Namespaces

C++/CLI has no additional namespace features beyond those provided by Standard C++.

17.1 Reserved namespaces

The namespace c11 is reserved. The only elements permitted in this namespace shall be those defined by the

language specification. [Example: These include array (§24.1), interior_ptr (§12.3.6.1), pin_ptr
(§12.3.7.1), and safe_cast (§15.3.11). end example] A program that attempts to add a declaration to the

namespace c11 is ill-formed.

A program can employ a using-directive for the namespace c11, or have a using-declaration for an entity in
that namespace.

A conforming implementation shall correctly consume assemblies containing public names that start with
the C++/CLI-equivalent prefix : :c11 : :. [Note: Such names might be produced from C#, for example. end

note]

93

C++/CLI Language Specification

18. Functions

18.1 <cstdarg>-style variable-argument lists

If a function whose parameter-declaration-clause terminates with an ellipsis, is called with nu1Tptr as any
argument that corresponds to the ellipsis, the program is ill-formed. [Note: The type of nul1ptr is not
directly expressible in the language, yet the <cstdarg> machinery requires expressible types, so it can
extract the arguments from the variable-argument list passed. end note] [Example:

void f(const char* pc, ...) {}

int main() {
f(nullptr); // valid
f("abc", nullptr); // ill1-formed
f("abc", 10, nullptr); // ill-formed

end example]

18.2 Name lookup
For metadata details, see §34.6.1.

18.3 Overload resolution

To accommodate string literal conversion, boxing conversion, Boolean, and handle conversion, Table 9,
"conversions", in the C++ Standard, §13.3.3.1.1, "Standard conversion sequences", is augmented by the
addition of some new rows, as indicated by shading below:

Conversion Category Rank Subclause
No'con\./ersion requir'ed Identity

String literal conversion

Lvalue-to-rYalue conversion . Exact Match 4.1
Array-to-pointer conversion Lvalue Transformation 4.2
Function-to-pointer conversion 4.3
Quahﬁcatlon. conversions Qualification Adjustment 4.4
Boolean equivalence

Integral promotions 4.5
Floating point promotion Promotion Promotion 4.6
Boxing conversion

Integral conversions 4.7
Floating point conversions 4.8
Floating-integral conversions 4.9
Pointer conversions Conversion Conversion 4.10
Pointer to member conversions 4.11
Handle conversions

Boolean conversions 4.12

18.4 Parameter arrays

Standard C++ supports variable-length argument lists for both member and non-member functions; however,
the approach used is not type-safe. C++/CLI adds a type-safe way using parameter arrays. A parameter
array is defined as follows:

94

Functions

parameter-array:
attributes,y ... parameter-declaration

A parameter-array consists of an optional set of attributes (§29), an ellipsis punctuator, and a parameter-
declaration. A parameter array declares a single parameter of the given CLI array type. The CLI array type
of a parameter array shall be a single-dimensional CLI array type (§24.1). In a function invocation, a
parameter array permits either a single argument of the given CLI array type to be specified, or it permits
zero or more arguments of the CLI array element type to be specified. The program is ill-formed if the
parameter-declaration contains a default argument. [Example:

void f(... array<ObjectA>A p);
int main(Q {

03
f(nullptr);
f(1,.2);
f(nullptr, nullptr);
f(gcnew array<ObjectA>(1));
) f(gcnew array<ObjectA>(1l), gchew array<ObjectA>(2));

end example]

[Example:
void F1(... array<StringA>A Tist) {
for (int i =0 ; i < list->Length ; i++)
console::write("{0} ", Tist[il);
Console::writeLine();

void F2(... array<ObjectA>A Tist) {
for each (ObjectA element in Tist)
Console::write("{0} ", element);
console::writeLine();

int main(Q)
Fl(lllll’ ll2ll’ ll3ll),
F2(1, L'a"', "test");
array<StringA>A myarray
= gcnew array<StringA> {"a", "b", "c" };
. Fl(myarray);

The output produced is as follows:

123
1 a test
abc

end example]

When a function with a parameter array is invoked, the invocation is processed as if a new-expression
(§15.4.6) with an array-init (§24.6) was inserted around the list of arguments corresponding to the parameter
array.

When there are zero arguments given for the parameter array, a zero-length CLI array shall be passed.
[Example: Given the declaration
void F(int x, int y, ... array<ObjectA>A args);

the following invocations of the function

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

95

C++/CLI Language Specification

F(10, 20, nullptr);
F(10, 20, gcnew array<System::0bjectA> {30, 40});
F(10, 20, gcnew array<System::0ObjectA> {1, "hello" 3.01);

end example]

Parameter array parameters can be passed to functions that take non-parameter CLI array arguments of the
corresponding type. [Example:

void f(array<int>A pArray); // not a parameter array
void g(double value, ... array<int>A p)
f(p); // ok

end example]

An argument of type array can be passed to a function having a parameter array parameter, without
invoking a parameter array conversion sequence. [Note: An array argument that can be converted to the
parameter array’s type without a parameter array conversion, as happens in a handle conversion, will not
prefer the parameter array conversion sequence. end note]

When a function with a parameter array is included in the candidate set for overload resolution, two function
signatures are included. Given a function signature Tx F(T1, T2, .., ... array<Te>), the exact form
replaces the parameter array parameter with a normal array parameter (T F(T1, T2, .., array<Te>),
and the expanded form replaces the parameter array parameter with a series of parameters of the array's
element type (T F(T1, T2, .., Te1i, Te2, .., Ten)). The number of parameters in the exanded form
matches the number of arguments to the function invocation. Both signatures are included before the
elimination of viable functions. If the expanded form is selected by overload resolution, a parameter array
conversion sequence is used to call the function.

For metadata details, see §34.6.2.

18.5 Importing native functions

Functions defined in native code in one assembly can be invoked from another assembly by using the
D11ImportAttribute (from namespace System: :Runtime: :InteropServices) on the declaration of
a global or namespace scope function declaration or on a static member function of a ref class or value class.
Such function declarations shall not also be definitions. This attribute shall not be applied to an instance
member function. This attribute provides the name of the native code assembly, the name of the function
within that assembly, the calling convention to be used to call the native code function, and the character set
used for string marshaling. [Example:

// MyCLib.h))

using namespace System::Runtime::InteropServices;

[DT1Import("MyCLib.d11", callingConvention =

CalTlingConvention::stdcall, EntryPoint="Hypot")]
extern "C" double Hypotenuse(double sl1, double s2);

// MyCLibApp.cpp
#include "MyCLib.h"

int main(Q) {
Console::wWriteLine("Hypotenuse = {0}", Hypotenuse(3, 4));

In this case, the function named Hypot resides in the shared library MyCLib.dll. This name is mapped to
that of the program element to which the attribute is applied; namely, to Hypotenuse. A calling convention
is specified, as appropriate.

The way in which the Hypot function is written, is implementation-defined. Here is a version written for
one implementation:

96

Functions

// MyCLib.c
#include <math.h>
T_dec1spec(d11export) double __stdcall Hypot(double sidel, double side2)

return sqrt((sidel * sidel) + (side2 * side2));

In the following example, the Standard C library function strcmp is imported and StringA-to-char®
conversion occurs on the arguments by virtue of the MarshalAsAttribute attribute (from namespace
System: :Runtime: :InteropServices):

using namespace System::Runtime::InteropServices;
[DT1Import("msvcrt.d11", callingConvention = CallingConvention::Cdecl)]
extern "C" int strcmp([MarshalAs(UnmanagedType: :LPStr)]

System: :StringA sl,

[MarshaTlAs(UnmanagedType: :LPStr)] System::StringA s2);

int main() {
StringA strl "red";
StringA str2 "RED";
Console::writeLine("Compare: {0}", strcmp(strl, str2));

end example]
For metadata details, see §34.6.3.

18.6 Non-member functions

[Note: Non-member functions are treated by the CLI as members of some unspecified class; however, in
C++/CLI source code, such functions cannot be qualified explicitly with that class name. end note]

For metadata details, see §34.6.4.

18.7 Attributes

function-definitions (§19.4) and function declarations resulting from either a simple-declaration or the first
production of member-declaration can have attributes.

The simple-declaration production is augmented as follows to allow attributes on function declarations and
global variables:

simple-declaration:
attributes,, decl-specifier-seqqp init-declarator-listoy ;

97

C++/CLI Language Specification

19. Classes and members

This clause specifies the features of a class that are new in C++/CLI. However, not all of these features are
available to all classes. The class-related features that are supported by native classes (§20), ref classes
(§21), value classes (§22), and interfaces (§25), are specified in the clauses that define those types. [Note: A
summary of that support is shown in the following table:

Feature Native class Ref class Value class Interface
Assignment operator X X

Class modifier X X X

Copy constructor X X

Default constructor X X

Delegate definitions X X X X
Destructor X X X
Events X X X
Finalizer X

Function modifiers X X X n/a
Initonly field X X X
Literal field X X X
Member of delegate type X X

Override specifier X X X n/a
Parameter arrays X X X X
Properties X X X
Reserved member names X X X
Static constructor X X X
Static operators X X X X

end note]

19.1 Class definitions

In the C++ Standard (§9), a class-specifier is used to define a class. This grammar is augmented to
accommodate the addition of public and private classes, as follows:

class-specifier:
attributes,,: top-level-visibility,,: class-head { member-specificationg,: }

attributes is described in §29, top-level-visibility is described in §12.4.
class-head (§9) is augmented to support class modifiers (§19.1.1):

class-head:
class-key identifieryy class-modifiersy,: base-clauseqy
class-key nested-name-specifier identifier class-modifiersy, base-clauseqy
class-key nested-name-specifiery,; template-id class-modifiersy, base-clauseqy

class-key (§9) is augmented to support ref classes (§21), value classes (§22), and interface classes (§25):

98

Classes and members

class-key:
class

struct

To accommodate the addition of initonly and literal fields, delegates, events, generics, and properties, the
syntactic class member-declaration in the C++ Standard (§9.2) is augmented, as follows:

member-declaration:
attributes,y; initonly-or-literaly, decl-specifier-seqo,: member-declarator-listoy: ;
function-definition ; op
I 1opt Nested-name-specifier template,, unqualified-id ;
using-declaration
template-declaration
generic-declaration
delegate-specifier
event-definition
property-definition

initonly-or-literal:
initonly
Titeral

Attributes are described in §29, initonly fields in §19.12, literal fields in §19.11, generics in §31, delegates in
§27, events in §19.6, and properties in §19.5.

For metadata details, see §34.7.1.

19.1.1 Class modifiers

To accommodate the addition of sealed and abstract classes, the grammar for class-head in the C++
Standard (§9) is augmented to include an optional sequence of class modifiers, as follows:

class-modifiers:
class-modifiersyy, class-modifier

class-modifier:
abstract
sealed

If the same modifier appears multiple times in a class-modifiers, the program is ill-formed.

[Note: abstract and sealed can be used together; that is, they are not mutually exclusive. As non-
member functions are not CLS-compliant, a substitute is to use an abstract sealed class, which can contain
static member functions. This is the utility class pattern. end note]

A class that is both abstract and sealed shall not have a base-clause, instance constructors, or instance
members; it shall have only static members, nested types, literal fields, and typedefs.

The abstract and sealed modifiers are discussed in §19.1.1.1 and §19.1.1.2, respectively.

19.1.1.1 Abstract classes

An abstract class follows the rules of Standard C++ for abstract classes (§10.4); however, a class definition
containing the abstract class modifier need not contain any abstract functions. [Example:

99

C++/CLI Language Specification

struct B abstract {
void fO { }

struct D : B { };

int main() {
; // error: B is abstract
) D d; // ok

end example]

A ref class that contains any abstract functions (including accessor functions) shall be explicitly declared
abstract.

For metadata details, see §34.7.1.1.

19.1.1.2 Sealed classes

The sealed modifier is used to prevent derivation from a class. The program is ill-formed if a sealed class
is specified as the base class of another class. [Example:

struct B sealed {

struct D : B { // error, cannot derive from a sealed class

end example]

Whether or not a class is sealed has no effect on whether or not any of its member functions are, themselves,
sealed.

[Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain
runtime optimizations. In particular, because a sealed class is known never to have any derived classes, it is
possible to transform virtual function member invocations on sealed class instances into non-virtual
invocations. end note]

For metadata details, see §34.7.1.2.

19.2 Reserved member names

To facilitate the underlying C++/CLI runtime implementation, for each CLI class type member definition
that is a property or event, the implementation shall reserve several names based on the kind of the member
definition (§19.2.1, §19.2.2). A program is ill-formed if it contains a class that declares a property or event,
and a member whose name matches any of that property or event's reserved names.

During lookup, the reserved names are invisible.
[Note: The reservation of these names serves several purposes:

e To allow other languages to interoperate using an ordinary identifier as a function name for get
or set access.

e Partition I of the CLI standard requires these names for CLS-producer languages.
end note]

In order to accommodate the CLI notion of finalizers, several names are reserved in CLI class types for
functions (§19.2.3).

19.2.1 Member names reserved for properties
For a scalar or named indexed property P (§19.5), the following names are reserved:

get_P
set_P

100

Classes and members

Both names are reserved, even if the scalar or named indexed property is read-only or write-only.

[Example:

ref struct A {
property int P {
int get() { return 123; }

};
ref struct B : A {
int get_P() { // error
return 456;
h
};

end example]

For a CLI class that has a default-indexed property (§19.5), the following names are reserved:

get_Item
set_TItem

Both names are reserved, even if the default-indexed property is read-only or write-only.

The default name suffix, Item, of a default-indexed property can be changed by applying the
DefaultMemberAttribute (from namespace System: :Reflection) to that property's parent type. All
default-indexed properties in a class shall have the same underlying name. Once a default-indexed property's
name has been changed in this ways, it shall not be changed in any class derived from that property's parent
type. If two interface classes declare a default-indexed property, and each specifies a different name via this
attribute, a program is ill-formed if it declares a type that implements both interfaces.

Alternatively, the program can change the default name suffix by applying the

System: :Runtime: :CompilerServices: :IndexerNameAttribute to all default-indexed properties
within a class. The resulting metadata will replace IndexerNameAttribute with
DefaultMemberAttribute (see §34.7.5). A program is ill-formed if it uses both the
IndexerNameAttribute and DefaultMemberAttribute to specify the default name suffix for the
same member. Similarly, a program is ill-formed if two default-indexed properties in the same class use
IndexerNameAttribute to specify different underlying names; all default-indexed properties in a class
shall have the same IndexerNameAttribute applied. [Rationale: C++/CLI supports
IndexerNameAttribute because that is the approach used by several other languages, and it supports
DefaultMemberAttribute because that is what is actually emitted in metadata. end rationale]

For metadata details, see §34.7.5.

19.2.2 Member names reserved for events

For an event E (§19.6), the following names are reserved:

add_E
remove_E
raise_E

19.2.3 Member names reserved for functions

For CLI class types, the following function name and parameter list combinations are reserved (where T is
any ref class name):

Dispose()
Dispose(booTl)
Finalize()
__ddentifier(“~T")
__ddentifier(“!'7T") QO

101

C++/CLI Language Specification

19.2.4 Possible collision with reserved property and event names

The reserved name patterns for any given property or event are reserved only in the class defining that
property or event.

[Note: The program

ref struct B { _ _
int get_X() { Console::writeLine("B::get_X"); return 1; }

ref struct D : B {
property int X {])
int get() { Console::writeLine("D::X::get"); return 2; }
3

int main() {

D d;
d.get_XxQ;

prints “B: :get_X".

If a property or event is virtual and no base class has a virtual property or event of the same name, the
underlying accessor functions generated for the property are introducing functions. That is, they will not
override functions from the base class. The program

ref struct B {))
virtual int get_X() { Console::writeLine("B::get_X"); return 1; }

ref struct D : B {

virtual property int X {

) int get() { Console::writeLine("D::X::get"); return 2; }
};
int main(Q {

D d;
d.get_XxQ;

prints “B: :get_X”". The only way to override B: : get_X when deriving from D is to use a named override.
end note]
If a function other than a property or event accessor in a derived class overrides a virtual accessor function
from the base class, the program is ill-formed. These functions shall be marked with the new function
modifier. This is true even if the name of the accessor function in the base class does not use the canonical
get_X, set_X, add_X, remove_X, or raise_X names (which can only happen when #using an assembly
that was generated in a language other than C++/CLI). [Example:

ref struct B {

virtual property int X {)
int get() { Console::writeLine("B::X::get"); return 1; }

1

ref struct D : B { _ _
virtual int get_X() new { Console::WriteLine("D::get_X"); return 2; }

int main() {

D d;
d.get_XxQ;

Without the new function modifier applied to D: : get_X, the program is ill-formed. end example]

102

Classes and members

19.3 Data members

A ref or value class type can have the attribute StructLayoutAttribute (in namespace

System: :Runtime: :InteropServices). This attribute can be used to specify the layout of a data
structure, the alignment, the size, and the marshalling of strings. An instance data member can have the
attribute FieldoffsetAttribute (in namespace System: :Runtime: :InteropServices), which
controls the exact placement of that member. (For more information on this attribute, refer to the CLI
Standard.) [Example:

using namespace System::Runtime::InteropServices;

[structLayout(LayoutKind::Explicit)]
public value class S1 {

[Fieldoffset(0)] int v;

[Fieldoffset(4)] unsigned char c;

[Fieldoffset(8)] int w;
[structLayout(LayoutKind: :Sequential, Pack=4)]
public value class S2 {

int v;

unsigned char c;

int w;
[structLayout(LayoutKind::Explicit, Size=12, CharSet=CharSet::Unicode)]
public ref class s3 {

[Fieldoffset(0)] int* pi;

[Fieldoffset(0)] unsigned int ptrvalue;

/7 S3 is intended to behave 1like a union and should be treated as such
end example]

Data members can have applied to them the attribute MarshalAsAttribute (in namespace
System: :Runtime: :InteropServices). For more information on this attribute, see §18.5.

For metadata details, see §34.7.3.

19.4 Functions

To allow attributes on a function definition, the Standard C++ grammar for function-definition (§8.4) is
augmented, as follows:

function-definition:
attributesy,: decl-specifier-seqe,: declarator function-modifiers,, override-specifier,
ctor-initializery, function-body
attributes,, decl-specifier-seqq, declarator function-modifiersy, override-specifierqy
function-try-block

The addition of overriding specifiers and function modifiers requires augmentations to the Standard C++
grammar for function-definition and to one of the productions of member-declarator. [Note: The two new
optional syntax productions, function-modifier and override-specifier, appear in that order, after exception-
specification, but before function-body or function-try-block. end note]

To allow attributes, function modifiers, and an override specifier on a function declaration that is not a
definition, one of the productions for the Standard C++ grammar for member-declarator (§9.2) is
augmented, as follows:

member-declarator:
declarator function-modifiersy, override-specifieryp
declarator constant-initializerqy
identifiery,y : constant-expression

function-modifiers:
function-modifiersy,: function-modifier

103

C++/CLI Language Specification

function-modifier:
abstract
new
override
sealed

The set of attributes on a function declaration that is not a definition shall be a subset of the set of attributes
on the corresponding function definition. Attributes are described in §29.

function-modifiers are discussed in the following subclauses: abstract in §19.4.3, new in §19.4.4,
overridein §19.4.1, and sealed in §19.4.2. override-specifier is discussed in §19.4.1.

A member function declaration containing any of the function-modifiers abstract, override, or sealed,
or an override-specifier, shall explicitly be declared virtual. [Rationale: A major goal of this new syntax
is to let the programmer state his intent, by making overriding more explicit, and by reducing silent
overriding. The virtual keyword is required on all virtual functions, except in the one case where
backwards compatibility with Standard C++ allows the virtual keyword to be optional. end rationale]

If a function contains both abstract and sealed modifiers, or it contains both new and override
modifiers, it is ill-formed.

An out-of-class member function definition shall not contain a function-modifier or an override-specifier.

If a destructor or finalizer (§19.13) contains an override-specifier, or a new or sealed function-modifier, the
program is ill-formed.

The Standard C++ grammar for parameter-declaration-clause (§8.3.5) is augmented to include support for
passing parameter arrays, as follows:

parameter-declaration-clause:
parameter-declaration-listop: . . . opt
parameter-declaration-list ,
parameter-array
parameter-declaration-list , parameter-array

There shall be only one parameter array for a given function or instance constructor, and it shall always be
the last parameter specified.

Parameter arrays are discussed in §18.4.

For metadata details, see §34.7.4.

19.4.1 Override functions

The Standard C++ grammar for direct-declarator is augmented to allow the function modifier override as
well as override specifiers.

override-specifier:
= overridden-name-list
pure-specifier

overridden-name-list:
id-expression
overridden-name-list , id-expression

In Standard C++, given a derived class with a function that has the same name, parameter-type-list, and cv-
qualification of a virtual function in a base class, the derived class function always overrides the one in the
base class, even if the derived class function is not declared vi rtual. This is known as implicit overriding.
A program containing an implicitly overridden function in ref classes and value classes is ill-formed. [Note:
A programmer can eliminate the diagnostic by using explicit or named overriding, as described below. end
note]

104

Classes and members

With the addition of the function modifier override and override specifiers, C++/CLI provides the ability
to indicate explicit overriding and named overriding, respectively.

If either the function-modifier override or an override-specifier is present in the derived class function
declaration, no implicit overriding takes place. [Example:

ref struct B {

virtual void FQ {}

virtual void F(int i) {}
ref struct D1: B {

virtual void F() override {} // explicitly overrides B::F()
ref struct D2: B {

virtual void F() override {} /
virtual void G(int i) = B::F {} /

/ explicitly overrides B::F()
/ named override of B::F(int)

ref struct D3: B {
virtual void F() new = B::F {} // named override of B::F()
end example]

[Note: A member function declaration containing the function-modifier override or an override-specifier
shall explicitly be declared virtual (§19.2.4). end note]

An override-specifier contains a comma-separated list of names designating the virtual functions from one
or more direct or indirect base classes that are to be overridden.

An id-expression that designates an overridden name shall designate a single function to be overridden.
Lookup for the name given in the id-expression starts in the containing class. [Note: If the id-expression is
an unqualified name, and the containing class has a function by the same name the program is ill-formed. It
is not possible to override a function within the same class. end note] Further qualification is necessary if
the base class name is ambiguous. That function shall have the same parameter-type-list and cv-qualification
as the overriding function, and the return types of the two functions shall be the same.

[Example:
interface class I {
void FQ;
ref struct B {
virtual void FQ)

-
—

ref struct D : B, I

virtual void c’-i() B::F, I::F { .. } // override B::F and I::F

Both B: : F and I::F must be listed separately. If the named override used just F, two names are found.
Named overrides must designate a single function. end example]

[Note: The same overriding behavior can sometimes be achieved in different ways. For example, given a
base class A with a virtual function f, an overriding function might have an override-specifier of A: : f, have
no override specifier or override function modifier, have the function-modifier overr-ide, or a
combination of the two, as in override = A::f. All override A::f.end note]

The name of the overriding function need not be the same as that being overridden.

A derived class shall not override the same virtual function more than once. If an implicit or explicit
override does the same thing as a named override, the program is ill-formed. [Example:

interface struct I {
void FQ;

105

C++/CLI Language Specification

ref struct B {
virtual void FQ)
virtual void GQ)

At
(ST

ref struct D : B, I {
virtual void G() = B::
virtual void FQO {

-}
r, would override B::F and I::F, but
is already overridden by G.

'—'ho

s
end example]
A class is ill-formed if it has multiple functions with the same name, parameter-type-list, and cv-
qualification even if they override different inherited virtual functions. [Example:

ref struct D : B, I
virtual void F()
virtual void FQ)

I~

B::F { .. } // ok
F

I::F { ..} // error, duplicate declaration
end example]

A function can both hide and override at the same time: [Example:

interface struct I {
void FQ;

ref struct B {
virtual void FOO { .. }
ref struct D : B, I {
virtual void F() new = I::F { .. }
The presence of the new function modifier (§19.4.4) indicates that D: : F does not override any method F
from its base class or interface. The named override then goes on to say that D: : F actually overrides just one
function, I::F.end example]

[Note: An override-specifier does not introduce that name into the class. end note][Example:

interface struct I {
virtual void vQ;
ref struct R {
virtual void w() {}
ref struct S : R, I

virtual void FQ) I::V, R::w {}

ref struct T : s {
virtual void GQ)
virtual void HQO

v {}
w {}

void Test(SA s) { // s could refer to an S, T, or something else

s—>WQ); // ok, virtual call

s->R::WQ; // nonvirtual call to R::w

s->S::wWQ); // nonvirtual call to R::w

s->S::FQ); // ok (classes derived from S might need to do this,

// and there’s no ambiguity in this case)

}

int main() {
Test(gcnew S);
Test(gcnew T);

end example]

106

Classes and members

When matching signatures for the purpose of overriding virtual functions in generic ref classes (§31.1), or
implementing a function from an interface, the constraints on the type parameters are not considered. The
constraints for the type parameters can differ. [Example: The following program

public interface struct P {};

public interface struct Q {%

public ref class PQ : P, Q j;

generic<typename T>
where T : P
public ref struct B {
virtual void F(T) { Console::WriteLine("B::F"); }
L
generic<typename T>
where T : P, Q

public ref struct D : B<T> { _)
virtual void F(T) override { console::WriteLine("D::F"); }

int main(Q {
B<PQA>A b = gcnew D<PQA>;
b->F(gcnew PQ);

prints “D: : F”. Because D<T>A has a handle conversion to B<T>A only if T is the same, it is not type safe
when the overriding virtual function has covariant parameters to the function it is overriding (it’s only type
safe to override with contravariant parameters), as the parameters will be the same. end example]

For metadata details, see §34.7.4.1.

19.4.2 Sealed function modifier

A virtual member function marked with the function-modifier sealed cannot be overridden in a derived
class. [Example:
ref struct B {

virtual int f() sealed;
virtual int g() sealed;

ref struct

B {
virtual 1nt f(), // error: cannot override a sealed function
virtual int g() new; // okay: does not override B::g

end example]
[Note: A member function declaration containing the function-modifier sealed shall explicitly be declared

virtual. end note] If there is no virtual function to implicitly override in the base class, the derived
class introduces the virtual function and seals it.

Whether or not any member functions of a class are sealed has no effect on whether or not that class itself is
sealed.

An implicit, explicit, or (in a CLI class type, a) named override can succeed as long as there is a non-sealed
virtual function in at least one of the bases. [Example: Consider the case in which A: : f is sealed, but B: : £
is not. If C inherits from A and B, and tries to implement f, it will succeed, but will only override B: : f. end
example]

For metadata details, see §34.7.4.2.

19.4.3 Abstract function modifier

Standard C++ permits virtual member functions to be declared abstract by using a pure-specifier. C++/CLI
provides an alternate approach via the function-modifier abstract. The two approaches are equivalent;

107

C++/CLI Language Specification

using both together is well-formed, but redundant. [Example: A class shape can declare an abstract function
draw in any of the following ways:
virtual void draw() = 0; // Standard C++ style

virtual void draw() abstract; // function-modifier style
virtual void draw() abstract = 0; // okay, but redundant

end example]

[Note: A member function declaration containing the function-modifier abstract shall be declared
virtual. end note]

For metadata details, see §34.7.4.3.

For metadata implications on the parent class for both abstract functions, see §34.7.1.1.

19.4.4 New function modifier

A function need not be declared virtual to have the new function modifier. If a function is declared
virtual and has the new function modifier, that function does not override another function. However, for
CLI class types, it can override another function with a named override. A function that is not declared
virtual and is marked with the new function modifier does not become virtual and does not implicitly
override any function.

[Example:

ref struct B {
virtual void

i id F() { Console::writeLine("B::F"); }
virtual void G() { Console::writeLine("B::G");

_ }
ref struct D : B {

virtual void F() new { Console::writeLine("D::F"); }
int main() {

BA b = gcnew D;

b->F(Q);

b->GQO;

The output produced is
B::F
B::G
In the following example, hiding and overriding occur together:

ref struct B {
virtual void FQO {}

interface class I {
void FQO;

ref struct b : B, I {
virtual void F() new = I::F {}

The presence of the new function modifier indicates that D: : F does not override any method F from its base
classes. The named override (§19.4.1) then goes on to say that D: : F actually overrides just one function,
I::F. The netresult is that I::F is overridden, but B: : F is not.

end example]
Static functions can use the new modifier to hide an inherited member. [Example:

ref class B {
public:
virtual void FO { .. }

108

Classes and members

ref class D : B {
public:
static void FO) new { .. }

end example]
For metadata details, see §34.7.4.4.

19.5 Properties

A property is a member that behaves as if it were a field. There are two kinds of properties: scalar and
indexed. A scalar property enables field-like access to a class object. Examples of scalar properties include
the length of a string, the size of a font, the caption of a window, and the name of a customer. An indexed
property enables array-like access to a CLI heap-based object (but not a class). An example of an index
property is a bit-array class.

Properties are an evolutionary extension of fields—both are named members with associated types, and the
syntax for accessing scalar fields and scalar properties is the same, as is that for accessing CLI arrays and
indexed properties. However, unlike fields, properties do not denote storage locations. Instead, properties
have accessor functions that specify the statements to be executed when their values are read or written.

Properties are defined using property-definitions:

property-definition:
attributesy,: property-modifiersy,: property type-specifier-seq declarator property-
indexesgpt
{ accessor-specification 3}
attributes,, property-modifiersq,; property type-specifier-seq declarator ;

property-modifiers:
property-modifiersy, property-modifier

property-modifier:
static
virtual

property-indexes:
[property-index-parameter-list]

property-index-parameter-list:
type-id
property-index-parameter-list , type-id

A property-definition can include a set of attributes (§29), property-modifiers (§19.5.2, §19.5.4), and
property-indexes.

A property-definition that does not contain a property-indexes is a scalar property, while a property-
definition that contains a property-indexes is an indexed property.

A property-definition for a scalar property, that ends with a semicolon (as opposed to a brace-delimited
accessor-specification) defines a trivial scalar property (§19.5.5). [Note: There is no such thing as a trivial
indexed property. end note]

Property definitions are subject to the same rules as function declarations with regard to valid combinations
of modifiers, with the one exception being that the static modifier shall not be applied to a default-
indexed property definition. (Default-indexed properties are introduced later in this subclause.)

When a property-definition includes the property-modifiers static or virtual, those modifiers actually
apply to all of the property’s accessor functions. Writing these same modifiers in those accessor functions as
well is permitted, but redundant.

The type-specifier-seq and the declarator of a scalar property definition specifies the type of the scalar
property introduced by the definition, and the declarator specifies the name of the scalar property. The type-

109

C++/CLI Language Specification

specifier-seq and the declarator of an indexed property definition specifies the element type of the indexed
property introduced by the definition. [Note: Certain property types (such as pointer to function and pointer
to array) cannot be written directly in a property definition; they shall first be written as a typedef, with the
type synonym then used in the property definition. end note] The type of a scalar property and the element
type of an indexed property shall be a type permitted as a parameter to a function. [Note: Because a native
array is not allowed as a function parameter, it is not allowed as the type of a property either. end note]

The identifier in declarator specifies the name of the property. For an indexed property, if default is used
instead of identifier, that property is a default-indexed property. Otherwise, that property is a named
indexed property.

The accessor-specification declares the accessor functions (§19.5.3) of the property. The accessor functions
specify the executable statements associated with reading and writing the property. An accessor function,
qualified with the property name, is considered a member of the class. For a default-indexed property, the
parent property name is default. As such, the full names of the accessor functions for this indexed
property are default: :get and default: :set.

A property accessor function can be bound to a suitably typed delegate. Overloading of indexed properties
on different property-index-parameter-lists is allowed. A class that contains an indexed property can contain
a scalar property by the same name.

The presence of a property in a class does not make that class a non-POD.
A property having a type that is a reference type is not CLS-compliant.

A property expression is an lvalue or gc-lvalue if its get accessor function returns an Ivalue or gc-lvalue,
respectively; otherwise, it is an rvalue.

For metadata details, see §34.7.5.

19.5.1 Qualified names of properties and events

Qualified names in C++/CLI can include properties and events. To accommodate this, the C++ grammar is
augmented as follows:

property-or-event-name:
identifier
default

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
! class-name
template-id
generic-id
default

class-or-namespace-name:
class-name
namespace-name
property-or-event-name

If the nested-name-specifier of a qualified-id nominates a property or event, the name specified after the
nested-name-specifier is an accessor function and is looked up in the scope of the property or event.

The default keyword shall be used in a declarator only when declaring a default-indexed property. The
default keyword shall be used in an expression only when a postfix-expression is evaluating a default-
indexed property. [Note: Because the grammar allows the default keyword in places where an identifier is
allowed for variable names and function names, these rules restrict usage of default to use in a default-
indexed property. end note]

110

Classes and members

If the definition of an accessor function is lexically outside its property or event definition, the accessor
function name shall be qualified by its property or event using the : : operator. Otherwise, the rules for
declaring and defining accessor functions of properties and events are the same as those for member
functions of classes.

19.5.2 Static and instance properties

When a property definition includes a static modifier, the property is said to be a static property. [Note:
A default-indexed property cannot be static. end note] When no static modifier is present, the property is
said to be an instance property. All accessor functions in a static property are static, and all accessor
functions in an instance property are instance accessor functions. [Example:

ref struct C {

static property CA MyStat1cProperty { .. } // static property
property int default[int] { .. }; // instance property

end example]

[Note: Like a field, when a static property is referenced using the form E: : M, E shall denote a type that has a
property M. When an instance property is referenced using the form E .M, E shall denote an instance having a
property M. When an instance property is referenced through a pointer or handle, the form E->M is used. end
note]

19.5.3 Accessor functions

The accessor-specification of a property specifies the executable statements associated with reading and
writing that property.

accessor-specification:
accessor-declaration accessor-specificationgy
access-specifier : accessor-specificationgy

accessor-declaration:
attributes,, decl-specifier-seqq,e member-declarator-listyy:
function-definition

Attributes are described in §29; functions definitions in §19.4.

The rules for rewriting property and event expressions into accessor function expressions are covered
in §15.14.

A property shall have at least one accessor function. The name of a property accessor function shall be either
get (which makes it the get accessor function) or set (which makes it the set accessor function). A
property shall have no more than one get accessor function and no more than one set accessor function. An
accessor function of a property can be defined inline with the property definition, or out-of-class.

A program is ill-formed if it contains an accessor function that is cv-qualified or whose final or only
parameter is a parameter array.

If an accessor function is not declared abstract, it shall be defined.

The get accessor function of a scalar property takes no parameters and its return type shall match exactly the
type of the property, type-specifier-seq. For an indexed property, the types of the parameters of the get
accessor function shall correspond exactly to the types of the property’s property-indexes.

The set accessor function of a scalar property has one parameter only, and its type shall match exactly the
type of the property, type-specifier-seq. For an indexed property, the parameters of the set accessor function
shall correspond exactly to the types of the property’s property-indexes, followed by a final parameter,
whose type shall correspond exactly to the type of the property, type-specifier-seq. The return type of the set
accessor function for both scalar and indexed properties shall be void.

Based on the presence or absence of the get and set accessor functions, a property is classified as follows:

111

C++/CLI Language Specification

e A property that includes both a get accessor function and a set accessor function is said to be a
read-write property.

e A property that has only a get accessor function is said to be a read-only property.
e A property that has only a set accessor function is said to be a write-only property.

Like all class members, a property has an explicit or implicit access-specifier. Either or both of a property’s
accessor functions can also have an access-specifier, which shall specify a narrower access than the
property’s accessibility for that accessor function. An access-specifier on an accessor function specifies
access for that accessor function only; it has no effect on the accessibility of members in the parent class
subsequent to the parent property. The accessibility following the property is the same as the accessibility
before the property.

[Example: In the example

public ref class Button : Control {
private: _
StringA caption;

pubTic:
property StringA Caption {
StringA get()
return caption;

void set(StringA value) {

if (caption != value) {
caption = value;
Repaint();

3
3
s
the Button control declares a public Caption property. This property does nothing more than return the
string stored in a field except when the property is set, in which case, the control is repainted when a new
value is supplied.

Given the Button class above, the following is an example of use of the Caption property:

ButtonA okButton = gcnew Button;]
okButton->Caption = "OK"; // Invokes set accessor function
StringA s = okButton->Caption; // Invokes get accessor function

Here, the set accessor function is invoked by assigning a value to the property, and the get accessor function
is invoked by referencing the property in an expression. end example]

[Note: Exposing state through properties is not necessarily less efficient than exposing fields directly. In
particular, accesses to a property are the same as calling that property’s accessor functions. When
appropriate, an implementation can inline these function calls. Using properties is a good mechanism for
maintaining binary compatibility over several versions of a class. end note]

Accessor functions can be defined inline or out-of-class. [Example:
public ref class Point {

private:
int x;
int y;
public:
property int X {
int get() { return x; } // inline definition
void set(int value); // declaration only

112

Classes and members

property int Y {
int get(); // declaration only
void set(int value) { y = value; } // inline definition

‘s "
void Point::X::set(int value) { x = value; }
int Point::Y::get() { return y; }

end example]

19.5.4 Virtual, sealed, abstract, and override accessor functions

An accessor function that is sealed shall also be declared virtual. The sealed modifier prevents a
derived class from overriding the accessor function.

An accessor function having the abstract modifier is abstract and follows the same rules as an abstract
function of the containing class. An accessor function that is abstract shall also be declared virtual.

[Example:

ref struct B abstract { o
property StringA Name { // Name is virtual
virtual StringA get() abstract;

1

ref struct D : B { _
property StringA Name { // Name is now sealed
virtual StringA get() override sealed { .. }

3
end example]

Any properties defined in an interface are implicitly abstract. However, those properties can redundantly
contain the virtual and/or abstract modifiers, and a pure-specifier. [Example:
interface class X {) o
property int Size; // (implicit) abstract property
property StringA Name {
virtual StringA get() abstract = 0;

// “virtual”, “abstract” and “= 0”
// are permitted but are redundant

};
end example]

A property definition that includes the abstract modifier as well as an override modifier or an override-
specifier, specifies that the property is abstract and overrides a base property.

[Note: Abstract property definitions are only permitted in abstract classes (§19.1.1.1). end note]

The accessor functions of an inherited virtual property can be overridden in a derived class by including a
virtual property definition where the accessor functions specify an override modifier or an override-
specifier (§19.4.1). This is known as an overriding property definition. With respect to overriding, accessor
functions behave in the same manner as member functions. [Example:

ref struct B {

property int Count {
virtual int get() { .. }

};
ref struct D : B {
property int Count {]
virtual int get() override { .. }

1

113

C++/CLI Language Specification

end example]

An accessor function can override accessor functions in other properties; it can also override non-accessor
functions. [Example:
ref struct B {
property int Count {

virtual int get() { .. }
virtual void set(1nt va1) {1}

virtual int GetCount() { .. }
ref struct D : B {
property int MyCount {
) virtual int get() = B::GetCount { .. }
};
end example]

An overriding property definition shall have the same or wider accessibility and exactly the same type and
name as the inherited property. If the inherited property is a read-only or write-only property, the overriding
property shall be a read-only or write-only property, respectively, or a read-write property. If the inherited
property is a read-write property, the overriding property shall be a read-write property.

A trivial scalar property shall not override another property.

Except for differences in definition and invocation syntax, virtual, sealed, override, and abstract accessor
functions behave exactly like virtual, sealed, override, and abstract functions, respectively. Specifically, the
rules described in the C++ Standard (§10.3) and §19.4.2, §19.4.1, and §19.4.3 of this Standard apply as if
accessor functions were functions of a corresponding form.

[Example: In the example

ref class R abstract {

int y;
pubTic:
virtual property int X {
int get() { .. }

virtual property int Y {
int get() { .
void set(1nt va1ue) { ..}

virtual property int z {
int get() abstract;
void set(int value) abstract;

}
};

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.

19.5.5 Trivial scalar properties
A trivial scalar property is defined by a property-definition ending with a semicolon (as opposed to a brace-
delimited accessor-specification). [Example:

ref struct s {
property int P;
end example]

A trivial scalar property is read-write and has implicitly defined accessor functions. The implied access-
specifier for these accessor functions is the same as for the parent property. Private backing storage for a
trivial scalar property shall be allocated automatically, with the name of that storage being one that is

114

Classes and members

reserved to the implementation. The implicitly defined set accessor function shall have no visible behavior
other than to set the private backing storage to the value provided. The implicitly defined get accessor
function shall have no visible behavior other than to return the value of the private backing storage.

A trivial scalar property can be static or virtual.

The type of a trivial scalar property shall not be a reference type, nor shall it be cv-qualified.

19.6 Events

An event is a member that enables a class object to provide notifications. Clients can add a delegate to an
event, so that the object or class will invoke that delegate. Events are declared using event-definitions:

event-definition:
attributes,,: event-modifiersy event event-type identifier
{ accessor-specification 3}
attributesy,: event-modifiersyy event event-type identifier ;

event-modifiers:
event-modifiersy, event-modifier

event-modifier:
static
virtual

event-type:
I iopt Nested-name-specifieryy type-name Agy
: ot Nested-name-specifiery,; template template-id A

An event-definition can include a set of attributes (§29) and event-modifiers (§19.6.1, §19.6.3). The event-
type of an event definition shall be a delegate type, which shall be at least as accessible as the event itself.
The handle to the delegate is known as the event type. identifier designates the name of the event.

When an event-definition includes the event-modifiers static or virtual, those modifiers actually apply
to all of the event’s accessor functions. Writing these same modifiers in those accessor functions as well is
permitted, but redundant.

The accessor-specification declares the accessor functions (§19.6.2) of the event. The accessor functions
specify the executable statements associated with adding handlers to, and removing handlers from, the event,
as well as raising that event.

[Note: The A in the first production of event-type is optional to allow for type-name's being a typedef name.
end note]

An event-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification)
defines a trivial event (§19.6.4). The three accessor functions for a trivial event are supplied automatically
by the compiler along with a private backing store. An event-definition ending with a brace-delimited
accessor-specification defines a non-trivial event.
[Example: The following example shows how event handlers are attached to instances of the Button class:

public delegate void EventHandler(ObjectA sender, EventArgsA e);

public ref struct MyButton : Control {

event EventHandlerA Click;
s

public ref class LoginDialog : Form {
MyButtonA OkButton;
MyButtonA CancelButton;

115

C++/CLI Language Specification

public:

LoginDialog() {
OkButton = gcnew MyButton();
okButton->Click +=

gcnew EventHandler(this, &LoginDialog::0kButtonClick);

CancelButton = gcnew MyButton();
CancelButton->Click +=

) gcnew EventHandler(this, &LoginDialog::CancelButtonClick);

void okButtonClick(ObjectA sender, EventArgsA e) {
// Handle OkButton->Click event

void CancelButtonClick(ObjectA sender, EventArgsA e) {
// Handle CancelButton->Click event

1

Here, the LoginD1ialog constructor creates two MyButton instances and attaches event handlers to the
C11ick events. end example]

An event accessor function can be bound to a suitably typed delegate.

If the add and remove accessor functions access storage for the delegate, to be thread-safe, they should each
hold an exclusive lock on the containing object for an instance event, or the type object for a static event.
Such a lock can be obtained by applying the attribute
MethodImpl(MethodImplOptions::Synchronized) to the add and remove accessor functions.

For metadata details, see §34.7.6.

19.6.1 Static and instance events

When an event declaration includes a stat1ic modifier, the event is said to be a static event. When no
static modifier is present, the event is said to be an instance event.

19.6.2 Accessor functions

The accessor-specification for an event specifies the executable statements associated with adding handlers
to, and removing handlers from, the event, as well as raising that event.

The accessor-specification for an event shall contain no more than the three following accessor functions:
e one for a function called add, which is referred to as the add accessor function,
e one for a function called raise, which is referred to as the raise accessor function, and
e one for a function called remove, which is referred to as the remove accessor function.

A non-trivial event shall contain both an add accessor function and a remove accessor function. If that event
has no raise accessor function, one is not supplied automatically by the compiler.

A program is ill-formed if it contains an event having only an add accessor function or a remove accessor
function, but not both.

The add accessor function and remove accessor function shall each take one parameter, of the event type,
and their return type shall be void.

The parameter list of a raise accessor function shall correspond exactly to the parameter list of the delegate
event-type, and its return type shall be the return type of the delegate event-type.

[Note: Trivial events are generally better to use because use of the non-trivial form requires consideration of
thread safety. end note]

When an event is invoked, the raise accessor function is called.

[Example:
using namespace System::Runtime::CompilerServices;

116

Classes and members

public delegate void EventHandler(ObjectA sender, EventArgsA e);

public ref class Button : Control {
EventHandlerA action;
public:
event EventHandlerA Click {
[MethodImp1(MethodImploptions: :Synchronized)]
void add(EventHandlerA d) { .. }

[MethodImp1 (MethodImplOptions: :Synchronized)]
void remove(EventHandlerA d) { .. }

) void raise(ObjectA sender, EventArgsA e) { .. }
};

end example]

19.6.3 Virtual, sealed, abstract, and override accessor functions

An accessor function having the abstract modifier is abstract and virtual; no implementation is provided.
Instead, non-abstract derived classes are required to provide their own implementation for the accessor
functions by overriding the event. An accessor function that is abstract shall also be declared virtual.

An event accessor function that includes both the abstract and override modifiers specifies that the
access function is abstract and overrides a base event accessor function.

The accessor functions of an inherited virtual event can be overridden in a derived class by including an
event declaration of the same name. This is known as an overriding event declaration. An overriding event
declaration does not declare a new event. Instead, it simply specializes the implementations of the accessor
functions of an existing virtual event.

Declaring an accessor function to be sealed prevents a derived class from overriding the accessor function.

The semantics of virtual, sealed, override, and abstract accessor functions is the same as that for virtual,
sealed, override and abstract functions.

19.6.4 Trivial events

A trivial event is defined by an event-definition ending with a semicolon (as opposed to a brace-delimited
accessor-specification). [Example:

ref struct s {
event SomeDelegateTypeA E;

end example]

If no event handlers have been added, the field contains nul1ptr. The name of any private backing storage
allocated for a trivial event shall be one that is reserved to the implementation.

Raising a trivial event when no event handlers have been added returns the default value of the event
delegate’s return type; no exception is thrown.

19.6.5 Event invocation

Events having a programmer-supplied or compiler-generated raise accessor function can be invoked using
function call syntax. Specifically, an event E can be invoked using E (delegate-argument-list) , which results
in the raise accessor function’s being called with delegate-argument-list as its argument list. Explicit calls to
the raise accessor are permitted.

Events without a raise accessor function cannot be invoked using function call syntax. Instead, the delegate’s
Invoke function shall be called directly.

19.7 Static operators

To support the definition of operators in ref classes, C++/CLI allows for static operator functions.

117

C++/CLI Language Specification

The rules for operators remain largely unchanged from Standard C++; however, the following rule in
Standard C++ (§13.5/6) is augmented to allow static member functions:

“A static member or a non-member operator function shall eitherbe-a-noen-static-memberfunetion-or
be-a-nen-member-funetion-and have at least one parameter whose type is a native class, a reference
to a native class, a CLI class, a reference to a CLI class, a handle to a CLI class, an enumeration, a
reference to an enumeration, or a handle to an enumeration.”

The requirements of non-member operator functions apply to static operator functions.
The following rule in Standard C++ (§13.5.1/1) is relaxed to allow static member functions:

“A prefix unary operator shall be implemented by a non-static member function with no parameters
or a non-member function with one parameter, or a static member function with one parameter.”

The following rule in Standard C++ (§13.5.2/1) is relaxed to allow static member functions:

“A binary operator shall be implemented either by a non-static member function with one parameter
or by a non-member function with two parameters, or a static member function with two

parameters.”
However, operators required by Standard C++ to be instance functions shall continue to be instance

functions. [Note: Standard C++ specifies that these operators are: assignment operators (§13.5.3),
operator() (§13.5.4), operator[] (§13.5.5), and operator-> (§13.5.6). end note]

[Example:
public ref class Intvector {

public:
static IntvectorA operator+(IntvVectorA iv, int 1i);
static IntVectorA operator+(int i, IntVectorA iv);
static IntvectorA operator+(IntVectorA ivl, IntvVectorA iv2);
static IntvVectorA operator-(IntVectorA 1iv);
static IntVectorA operator++(IntvectorA 1iv);

-
end example]

Static unary operators within a class T shall take one parameter, of type T, TA, T%, T&, TA%, or TA&. A static
binary operator within a class T shall take two parameters, at least one of which shall have the type T, TA,
T%, T&, TA%, or TA&. In either case, if T is a generic class, the parameter that satisfies the above rules shall
have exactly the same type as the enclosing class. [Example:

generic <typename T1l, typename Ul>
ref struct GR {

static bool operator!(GRA); // OK
static bool operator!(GR<T1,T1>A); // error
static bool operator!(GR<int,int>A); // error
generic <class T2, class U2>

static bool operator! (GR<T2,U2>A); // error
generic <class T2, class uU2>

static bool operator!(GR<U2,T2>A); // error
generic <class T2, class uU2>

static bool operator! (GR<T2,T2>A); // error

b
end example]
For metadata details, see §34.7.7.

118

Classes and members

19.7.1 Homogenizing the candidate overload set

Standard C++ (§13.3.1/2) describes how all member functions are considered to have an implicit object
parameter for the purpose of overload resolution. C++/CLI expands upon this notion by creating two
signatures for every member operator function in which the difference between the two signatures is the type
of the implicit object parameter. For a type T, the type of the implicit object parameter in the first signature
is T%, whereas the type for the second signature is TA. These signatures exist only for the purpose of
overload resolution, and both signatures refer to the one member operator function from which these
signatures were created.

[Rationale: This allows operator functions to be called using variables that have the raw type (§12.3.1) and
using variables that are handles to the raw type. (This is necessary to compare operator overloads where the
candidate set includes member functions and operator functions from global or namespace scope.) end
rationale]

[Example:
ref class R {
int X, Y;
pubTic:

R(int x, int y) : X(X), Y(y) {}

RA operator+(RA param) { _
return gcnew R(this->X + param->X, this->Y + param->Y);

virtual StringA ToString() override {
return String::Format("({0},{1})", X, Y);

};

int main(Q) {
RA hr = gcnew R(2, 2); // handle to raw type R
R r(10, 10); // raw type R

Console::writeLineChr + hr);
console::writeLine(r + hr);

end example]

19.7.2 Operators on handles

Unlike pointers, some user-defined operators can be applied to handles. For example, the addition of an
integer to a handle does not attempt to add an offset to the handle (as is done with pointer arithmetic); rather,
lookup for a user-defined operator is performed. The Standard C++ operator lookup rules are modified in the
following ways:

Standard C++ (§13.5.1/1) is augmented, as follows:

“Thus, for any prefix unary operator @ for type T, @x can be interpreted as either x->operator@()
if x is a handle, x.operator@() if x is not a handle, T: :operator@(x), or operator@(x).”

Standard C++ (§13.5.2/1) is augmented, as follows:

“Thus for any binary operator @ for type T, x@y can be interpreted as either x->operator@(y) if x

is a handle, x.operator@(y) if x is not a handle, T: : operator@(x,y), or operator@(x,y).”

[Note: In C++/CLI, equality operators for handles behave as if they were compiler-generated or user-defined
operators. end note]

The rules in Standard C++ (§13.5.3/1) continue to apply—an assignment operator shall be an instance
function. An assignment to a handle never invokes the user-defined assignment operator.

In Standard C++ (§13.5.4/1), although function call operators continue to be allowed only as instance
functions, the text is augmented, as follows:

119

C++/CLI Language Specification

“Thus, a call x(argl, ...) isinterpreted as x->operator() (argl, ...) ifxisahandle, or
x.operator() (argl, .. .) if x is not a handle, for a class object x of type T if

T::operator() (T1l, T2, T3) exists and if the operator is selected as the best match function by
the overload resolution mechanism.”

In Standard C++ (§13.5.5/1), although subscript operators continue to be allowed only as instance functions,
the text is augmented, as follows:

“Thus, a subscripting expression X [y] is interpreted as x->operator[] (y) if x is a handle, or
x.operator[] (y) if x is not a handle, for a class object x of type T if T: :operator[](T1)
exists and if the operator is selected as the best match function by the overload resolution
mechanism.”

In Standard C++ (§13.5.6), the member access operator is allowed on handles; the text is augmented, as
follows:

“An expression x->m is interpreted as (x->operator->())->mif x is a handle, or
(x.operator->())->mif x is not a handle, for a class object x of type Tif T: :operator->()
exists and if the operator is selected as the best match function by the overload resolution
mechanism.”

[Note: Like a pointer, if no matching member access operator exists, x->y is defined as (*x) .y. end note]
[Rationale: The member access operator is supported on handles to provide parity with the unary
dereference operator. If a class were to define both operators, there would be no way of accessing members
of that class. As a result, the class member access operator is allowed to be a static member function to
explicitly allow or disallow class member access through a handle. end rationale]

In addition to non-static member functions as described aboved, operator-> in CLI class types can be a
static member function taking one parameter. For a static operator-> in a class R, the parameter shall be R,
RA, R% or a more cv-qualified alternative.

In addition to the rewrite of the expression x->m provided above, x->m is interpreted as T: :operator-
>(x)->m for a class object x of type T if a static operator-> function exists in T and if the operator is
selected as the best match function by the overload resolution mechanism.

[Note: The increment and decrement operators described in Standard C++ (§13.5.7), have significant
differences from the CLS increment and decrement operators. (See §19.7.3 for details.) end note]

19.7.3 Increment and decrement operators

In C++/CLI, the static operators operator++ and operator-- behave as both postfix and prefix
operators. Neither of these static operators shall be declared with the dormant int parameter described by
Standard C++ (§13.5.7).

For the expressions x++ and x--, where the postfix operator is non-static, the following processing occurs:
e If x is classified as a property or indexed access:

0 The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

0 The get accessor function of x is invoked and the return value is saved.

0 The selected operator is invoked with the saved value of x as its argument and the literal O
as the argument to select the postfix operator overload.

0 The set accessor function of x is invoked with the value returned by the operator as its only
or final argument.

0 The saved value of x is the result of the expression.
e Otherwise:

0 The operator is processed as specified by Standard C++.

120

Classes and members

For the expressions ++x and --x, where the prefix operator is non-static, the following processing occurs:

o Ifxis classified as a property or indexed access:

(0]

(0]

The expression x is evaluated and the results are used in subsequent get and set accessor
function calls.

The get accessor function of x is invoked.

The selected operator is invoked with the result of the get accessor function of x as its
argument, and the return value is saved.

The set accessor function of x is invoked with the saved value from the operator invocation
as its only or final argument.

The saved value from the operator invocation is the result of the expression.

e Otherwise:

(0]

The operator is processed as specified by Standard C++.

For the expressions x++ and x--, where the operator is static, the following processing occurs:

e If x is classified as a property or indexed access, the expression is evaluated in the same manner
as if the operator were a non-static postfix operator with the exception that no dormant zero
argument is passed to the static operator function.

e Otherwise:

O O O O

(0]

x is evaluated.

The value of x is saved.

The selected operator is invoked with the value of x as its only argument.

The value returned by the operator is assigned in the location given by the evaluation of x.

The saved value of x becomes the result of the expression.

For the expression ++x or --x, where the operator is static, the following processing occurs:

e If x is classified as a property or indexed access, the expression is evaluated in the same manner
as if the operator were a non-static prefix operator.

e Otherwise:

(0]

(0]

(0]

(0]

X is evaluated.
The selected operator is invoked with the value of x as its only argument.
The value returned by the operator is assigned in the location given by the evaluation of x.

x becomes the result of the expression.

[Example: The following example shows an implementation and subsequent usage of operator++ for an
integer vector class:

121

C++/CLI Language Specification

public ref class Intvector {
public:

IntvVector(int vectorLength, int initvalue) { .. }
property int Length { .. }
property int default[int] { .. }
static IntvVectorA operator++(IntvVectorA 1iv) {
IntVectorA temp = gcnew IntvVector(iv->Length, 0);
for (int i 0; i < iv->Length; ++i) {
temp[i] iv[i]l + 1;

return temp;

1

int main() {
IntVectorA ivl = gcnew IntVector(3,7);
IntVectorA iv2;
console::writeLine("ivl: {0}", ivl);

iv2 = ivl++;
// equivalent to:
// IntvVectorA __temp = ivl;
// ivl IntVector::operator++(ivl);
// iv2 __temp;

console::writeLine("ivl: {0}", ivl);
console::writeLine("iv2: {0}", iv2);

iv2 = ++ivl;

// equivalent to:

// ivl = IntvVector::operator++(ivl);

// iv2 = ivl;
console::writeLine("ivl: {0}", ivl);
console::writeLine("iv2: {0}", iv2);

The output produced is

ivl: [7:7:7]
jvl: [8:8:8]
iv2: [7:7:7]
ivl: [9:9:9]
iv2: [9:9:9]

Unlike traditional operator versions in Standard C++, this operator need not, and, in fact, should not, modify
the value of its operand directly. end example]

If the return type of a static operator++ or operator-- function cannot be assigned to the type on which
the operator is invoked, the program is ill-formed. [Example:

value struct v {
static VA operator++(VA v) {
Console::writeLine("V::operator++");
return v;

static operator V (VA v) {
Console::writeLine("V::operator V'");
return *v;

3
3
int main(QQ {

V v; // needs the conversion operator
+4V;

VA v2 = gcnew V;)
++V2; // does not need the conversion operator

122

Classes and members

Without the implicit conversion operator from VA to V, there is no way to assign a boxed value type to a
plain value type. Thus, when ++v is rewritten as v = V::operator++(v), the assignment is diagnosed. In
the case of ++v2, v2 is a handle to V, so no conversion is needed; it compiles as is. end example]

19.7.4 Operator synthesis

The compound assignment operators (+=, -=, *=, /=, %=, >>=, <<=, A=, &=, and | =) are synthesized from
other operators. For the expression x @= y (where @ denotes one of the operators listed above): If lookup
for operator@= succeeds, the rules specified so far are applied. Otherwise, the expression x @= vy is
rewritten as X = X @ vy (in which case, §5.17/7 of the C++ Standard requires that "The behavior of an
expression of the form E1 op= E2 is equivalent to E1 = E1 op E2 except that E1 is evaluated only
once."), and the transformed expression is interpreted with the rules specified so far.

If no overload for operator@= applies after overload resolution or synthesis, the program is ill-formed.

Synthesis shall not occur for operators defined inside native classes.

[Example:
public ref class Intvector {

pubﬁic:

gtatjc IntvectorA operator+(IntvectorA iv, int i) { .. }

static IntVectorA operator+(IntVectorA 1ivl, IntvectorA iv2) { ..}
IntvectorA ivl = gcnew Intvector(10);
ivl += 20; // synthesized as ivl
ivl += ivl; // synthesized as ivl

ivl + 20
ivl + vl

end example]

If the left operand of a compound assignment operator is a property, operator synthesis shall always be used
to rewrite the expression even if the type of the property has an existing compound assignment operator.

19.7.5 Naming conventions

During compilation, the name of any operator function is the C++ identifier used in source code for that
function. For example, the addition operator’s identifier is operator+. However, in metadata, that function
will have a different name, of the form op_xxx. All operator function names having this form and listed in
tables throughout this subclause are reserved in certain cases for use in metadata; specifically, a program that
declares or defines in a CLI class type a member function having any of these names is ill-formed.

The CLS identifies a set of operators upon which CLS consumer and producer language representatives have
agreed. The set of CLS-compliant operators (§19.7.5.1) overlaps with the set of operators supported by
Standard C++ (see Partition I, §10.3, of the CLI Standard). The C++ operators that do not overlap with the
CLS-compliant operators are known as C++-dependent operators (§19.7.5.4).

19.7.5.1 CLS-compliant operators

An operator is CLS-compliant when all of the following conditions occur:

1. The operator function is one listed in either Table 19-1: CLS-Compliant Unary Operators or Table
19-2: CLS-Compliant Binary Operators.

2. The operator function is a static member of a ref class or a value class.

3. [Ifavalue class is a parameter or a return value of the operator function, the value class is not passed
by reference nor passed by pointer or handle.

4. Ifarefclass is a parameter or a return value of the operator function, the ref class is passed or
returned by handle. The handle shall not be passed or returned by reference.

If the above criteria are not met, the operator function is C++-dependent (§19.7.5.4).

123

C++/CLI Language Specification

Table 19-1: CLS-Compliant Unary Operators

Metadata Function Name

C++ Operator Function Name

op_Addressof operatoré&
op_LogicalNot operator!
op_OnesComplement operator~
op_PointerDereference operator*
op_UnaryNegation operator-
op_UnaryPlus operator+

Table 19-2: CLS-Compliant Binary Operators

Metadata Function Name

C++ Operator Function Name

op_Addition operator+
op_BitwiseAnd operatoré&
op_Bitwiseor operator|
op_Comma operator,
op_Decrement operator--
op_Division operator/
op_Equality operator==
op_Exclusiveor operatorA
op_GreaterThan operator>
op_GreaterThanOrequal operator>=
op_Increment operator++
op_Inequality operator!=
op_Leftshift operator<<
op_LessThan operator<
op_LessThanOrequal operator<=
op_LogicalAand operator&&
op_Logicalor operator| |
op_Modulus operator%
op_Multiply operator*
op_Rightshift operator>>
op_Subtraction operator-

19.7.5.2 Non-C++ operators

The CLS provides names for several operators that Standard C++ does not support. [Note: Compilers for
other languages might not be tolerant to functions with these names. It is recommended that a C++/CLI
implementation issue a compatibility diagnostic if a user-defined function is given one of these names listed

in Annex F. end note]

Metadata Function Name

C++ Operator Function Name

op_False

none

op_True

none

19.7.5.3 Assignment operators

Given that CLI assignment operators take a parameter by value and return a result by value, with regard to
these operators, the CLS recommendations are incompatible with C++. As C++ requires assignment
operators to be instance functions, a C++/CLI implementation is not required to generate or consume CLS
assignment operators (listed in Table 19-3: CLS-Recommended Assignment Operators). As such, user-
defined functions with names from Table 19-3: CLS-Recommended Assignment Operators are not given

special treatment.

Table 19-3: CLS-Recommended Assignment Operators

124

Metadata Function Name

C++ Operator Function Name

Op_Assign

No equivalent

op_uUnsignedRightshiftAssignment

No equivalent

op_RightshiftAssignment

No equivalent

op_MultipTlicationAssignment

No equivalent

op_SubtractionAssignment

No equivalent

op_ExclusiveOrAssignment

No equivalent

op_LeftsShiftAssignment

No equivalent

op_ModulusAssignment

No equivalent

op_AdditionAssignment

No equivalent

op_B1itwiseAndAssignment

No equivalent

op_BitwiseOrAssignment

No equivalent

op_DivisionAssignment

No equivalent

19.7.5.4 C++-dependent operators

Classes and members

If an operator function does not match the criteria for a CLS-compliant operator (§19.7.5.1), the operator is
C++-dependent. Table 19-4: C++-Dependent Unary Operators and Table 19-5: C++-Dependent Binary

Operators identify these functions. (Even though these metadata names are not CLS-compliant, all but two
of them are recommended by the CLS. The two exceptions are op_FunctionCall and op_Subscript.)

Table 19-4: C++-Dependent Unary Operators

Metadata Function Name

C++ Operator Function Name

op_Addressof operatoré&
op_LogicalNot operator!
op_OnesComplement operator~
op_Pointerbereference operator*
op_UnaryNegation operator-
op_UnaryPlus operator+

Table 19-5: C++-Dependent Binary Operators

Metadata Function Name

C++ Operator Function Name

op_Addition operator+
op_AdditionAssignment operator+=
Op_Assign operator=
op_BitwiseAnd operatoré&
op_B1itwiseAndAssignment operator&=
Oop_Bitwiseor operator|
op_BitwiseOrAssignment operator|=
op_Comma operator,
op_Decrement operator--
op_Division operator/
op_DivisionAssignment operator/=
op_Equality operator==
op_ExclusiveOr operatorA
op_ExclusiveOrAssignment operatorA=
op_Functioncall operator()
op_GreaterThan operator>
op_GreaterThanorequal operator>=
op_Increment operator++

125

C++/CLI Language Specification

op_Inequality operator!=
op_Leftshift operator<<
op_LeftsShiftAssignment operator<<=
op_LessThan operator<
op_LessThanOrequal operator<=
op_LogicalAand operator&&
op_Logicalor operator| |
op_MemberSelection operator->
op_Modulus operator%
op_ModulusAssignment operator%=
op_MultipTlicationAssignment operator¥*=
op_Multiply operator*
op_PointerToMemberSelection operator->*
op_Rightshift operator>>
op_RightsShiftAssignment operator>>=
op_Subscript operator[]
op_Subtraction operator-
op_SubtractionAssignment operator-=

19.8 Non-static operators

Although C++/CLI supports Standard C++'s non-static and global operators, these operator functions are not
CLS-compliant (§19.7.5.1). Such operators are discussed in various contexts in §19.7 and its subclauses;
specifically: Homogenizing the candidate overload set (§19.7.1), operators on handles (§19.7.2), increment
and decrement operators (§19.7.3), operator synthesis (§19.7.4), and naming conventions (§19.7.5).

[Note: Type visibility (§12.4) only applies to top-level types, not to top-level functions. As such, a global
operator function cannot be seen outside its parent assembly. However, an operator implemented as a non-
static member function can be seen outside its parent assembly. end note]

Operators new and delete shall not be overloaded for CLI class types.
For metadata details, see §34.7.8.

19.9 Instance constructors

Since C++/CLI has added the notion of a static constructor, all uses of the term “constructor” in the C++
Standard refer to what C++/CLI refers to as instance constructor.

Construction for native classes in C++ specifies that the behaviors of calling virtual functions from an
object's constructor results in a call to the virtual function in the class under construction or one of its bases,
but not a deriving type (see §12.7 of Standard C++). The behavior of a virtual function call from a
constructor of a ref class always calls the virtual function applicable from the most derived class.

A constructor of a ref class executes in the following order:
1. Initialize all members of the class in declaration order.
2. Call the base class’s constructor.
3. Run the body of the user-written constructor.

If an exception takes place during the initialization of the class members, the destructor of each fully
constructed member shall be called in reverse declaration order, and the finalizer of the class shall be called
if it exists.

If an exception takes place during the base class’s constructor, the destructor of each member shall be called
in reverse declaration order, and the finalizer of the class shall be called, if it exists.

If an exception takes place in the body of the user-written constructor, the base class is destroyed in the same
manner as the Dispose(true) function invokes destruction of the base class (see §34.7.13.7). After

126

Classes and members

cleaning up the base class, the destructor of each member shall be called in reverse declaration order, and the
finalizer of the class shall be called if it exists.

For metadata details, see §34.7.9.

19.10 Static constructors

A static constructor is a function member that implements the actions required to initialize the static data
members of a ref or value class. A static constructor is declared just like an instance constructor in
Standard C++ (§8.4), except that the former is specified with the storage class static.

A static constructor shall not have a ctor-initializer.
Static constructors are not inherited, and cannot be called directly.
The static constructor for a class is executed as specified in the CLI standard, Partition II.

If a class contains any static fields (including initonly fields) with initializers, those fields are initialized
immediately prior to the static constructor’s being executed and in the order in which they are declared.

[Example: The code

ref struct A {
static AQ {
cout << "Init A" << “\n”;

static void FQ
cout << "A::F" << “\n”;

3

ref struct B : A {
static B {
cout << "Init B" << “\n”;

static void FO {
cout << "B::F" << “\n”;

};

int main(Q)
A :FQO;
B::FO;

shall produce one of the following outputs:
Init A Init A InitB

A:iF Init B Init A
Init B A::F A::F
B::F B::F B::F

because A's static constructor shall be run before accessing any static members of A, and B's static
constructor shall be run before accessing any static members of B, and A: : F is called before B: : F. end
example]

A static constructor can be defined outside its parent class using the same syntax for a corresponding out-of-
class instance constructor, except that a static prefix shall also be present. [Example:

ref class R {

public:
static RQ; // static constructor declaration
RO; // instance constructor declaration
R(Gint) { .. } // inline instance constructor definition

’
static R::RQ) { .. } // out-of-class static constructor definition
R::RO { .. } // out-of-class instance constructor definition

end example]

127

C++/CLI Language Specification

[Note: In Standard C++, an out-of-class constructor definition is not permitted to have internal linkage; that
is, it is not permitted to be declared static. end note]

A static constructor shall have an access-specifier of private.

If a ref or value class has no user-defined static constructor, a default static constructor is implicitly defined.
It performs the set of initializations that would be performed by a user-written static constructor for that
class with an empty function body.

For metadata details, see §34.7.10.

19.11 Literal fields

A literal field is a named compile-time constant rvalue having the type of the literal field and having the
value of its initializer. To accommodate the addition of literal fields, one of the productions of the syntactic
class member-declaration in the C++ Standard (§9.2) is augmented so a member declaration can contain the
initonly-or-literal identifier 1iteral (§19.1).

Each member-declarator in the member-declarator-list of a literal field declaration shall contain a constant-
initializer.

Even though literal fields are accessed like static members, a literal field definition shall not contain the
keyword static.

Whenever a compiler comes across a valid usage of a literal field, the compiler shall replace that usage with
the value associated with that literal field.

A literal field shall have a scalar type. [Note: This includes handle types. end note] However, the decl-
specifier-seq in the member-declaration shall not contain a cv-qualifier. The constant-expression in the
constant-initializer shall yield a value of the target type or a value of a type that can be converted to the
target type by a standard conversion sequence.

[Note: A constant-expression is an expression that can be fully evaluated at compile-time. Since the only
way to create a non-null value of a handle type other than System: : StringA is to apply the gchew
operator, and since that operator is not permitted in a constant-expression, the only possible value for literal
fields of handle type other than System: : StringA is nul1ptr. end note]

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in a
literal field declaration, or when the value cannot be computed at compile-time by a constant-expression, an
initonly field (§19.12) can be used instead.

Literal fields are permitted to depend on other literal fields within the same program as long as the
dependencies are not of a circular nature.

[Example:

ref struct X {
Titeral double PI = 3.1415926;
Titeral int MIN = -5, MAX = 5;
Titeral int COUNT = MAX - MIN + 1;
Titeral int Size = 10;
enum class color {red, white, blue};
Titeral color DefaultColor = Color::red;

1

int main(QQ {
double radius;
cout << "Enter a radius: ";
cin >> radius;
cout << "Area = " << X::PI * radius * radius << "\n";

static double d = X::PI;
for (int i = X::MIN; i <= X::MAX; ++i) { .. }
) float f[X::Sizel;

end example]

128

Classes and members

For a discussion of versioning and literal fields, see §19.12.2.

For metadata details, see §34.7.11.

19.12 Initonly fields

To accommodate the addition of initonly fields, one of the productions of the syntactic class member-
declaration in the C++ Standard (§9.2) is augmented so a member declaration can contain the initonly-or-
literal identifier initonly (§19.1), thereby making that member an initonly field.

Initialization of an initonly field shall occur only as part of its definition. Assignments (via an assignment
operator or a postfix or prefix increment or decrement operator) to any initonly field shall occur only in an
instance constructor or static constructor in that field's class. [Note: Of course, such assignment could be
done via a constructor’s ctor-initializer. end note] Initialization of, and assignments to, initonly fields are
permitted only in the following contexts:

e For static initonly fields, in the constant-initializer of an initonly field's member-declarator.

e For an instance field, in the instance constructors of the class containing the initonly field
definition; for a static field, in the static constructor of the class containing the initonly field
definition.

A program that attempts to assign to an initonly field in any other context, or that attempts to take that field's
address or to bind it to a reference in any context, is ill-formed.

The type of an initonly field shall not be a ref class.

[Example:
public ref class R {

initonly static int svarl = 1;// 0Ok
initonly static int svar2; // Error; must be initialized here, or
// assigned to in the static constructor
initonly static int svar3; // 0Ok, assigned to in the static
constructor
initonly int mvarl = 1; // Error, initializer requires static

initonly int mvar2;
initonly int mvar3;

pubTic:
static RQO{
svar3 = 3;
svarl = 4; // Ok: but overwrites the value 1
smf2(0);

static void smfl() {))
svar3 = 5; // Error; not in a static constructor

static void smf2() {

svar2 = 5; // Error; not in a static constructor
RO : mvar2(2) { // Ok

mvar3 = 3; // ok

mf1Q);

void mf1() { } .
mvar3 = 5; // Error; not in an instance constructor

void mf20) {])
mvar2 = 5; // Error; not in an instance constructor

}s
end example]

129

C++/CLI Language Specification

As one static initonly field can be explicitly initialized using the value of another, such fields are initialized
in their lexical source order, prior to the execution of any code in the static constructor.

For metadata details, see §34.7.12.

19.12.1 Using static initonly fields for constants

A static initonly field is useful when a symbolic name for a constant value is desired, but when the
type of the value is not permitted in a 17 teral declaration, or when the value cannot be computed at
compile-time.

19.12.2 Versioning of literal fields and static initonly fields

Literal fields and initonly fields have different binary versioning semantics. When an expression references a
literal field, the value of that member is obtained at compile-time, but when an expression references an
initonly field, the value of that member is not obtained until run-time. [Example: Consider an application
with the following source:

namespace Programl {)
public ref struct Utils

static_initonly int X = 1;
Titeral int Y = 1;
)
}

namespace Program?2 {
int main(Q {
Console::wWriteLine(Programl::Utils::X);
Console::wWriteLine(Programl::Utils::Y);

}

The Programl and Program2 namespaces denote two source files that are compiled separately, each
generating its own assembly. Because Programl: :Uti1s: : X is declared as a static initonly field, the value
output by Console: :WriteLine is not known at compile-time, but, rather, is obtained at run-time. Thus, if
the value of X is changed and Programl is recompiled, Console: :WriteLine will output the new value
even if Program?2 isn’t recompiled. However, because Y is a literal field, the value of Y is obtained at the
time Program?2 is compiled, and remains unaffected by changes in Programl until Program?2 is
recompiled. end example]

19.13 Destructors and finalizers

Any native class or ref class can have a user-defined destructor. Such destructors are run at the times
specified by the C++ Standard:

e An object of any type allocated on the stack is destroyed when that object goes out of scope.
e An object of any type allocated in static storage is destroyed during program termination.

e An object that is allocated on the native heap using new, is destroyed when a delete is
performed on a pointer to that object.

e An object that is allocated on the CLI heap using gcnew, is destroyed when a deTete is
performed on a handle to that object.

e An object that is a member of another object is destroyed as part of the destruction of the
enclosing object.

For the purposes of destruction, the native and CLI heaps are treated the same. The only difference between
the two heaps is the automation and timing of memory reclamation. In the case of the native heap, memory
is reclaimed manually at the same time as the deTete, while in the case of the CLI heap, memory is
reclaimed automatically during garbage collection whether or not there was a delete. In addition, objects
on the CLI heap are finalized, if a finalizer exists.

130

Classes and members

For metadata details, see §34.7.13.

19.13.1 Destructors
A destructor in a ref class is defined as in Standard C++ (12.4).

A ref class has a destructor if one is defined directly, or if one is generated by the compiler, with the latter
occurring if the class has one or more embedded data members whose types implement the
System: : IDisposable interface.

The access-specifier of a destructor in a ref class is ignored.
The destructor of a ref class can optionally be declared virtual; however, doing so has no effect.
A ref class destructor shall not have any function-modifiers (§19.4), nor shall it be declared static.
Destruction of a ref class object begins when:

e That object has automatic storage duration and it goes out of scope.

e That object is embedded as a member of an enclosing class, and the enclosing class’s destructor
executes.

o That object is an already constructed member of a class during whose construction an uncaught
exception occurred.

e The delete keyword is applied to a handle that refers to that object. [Note: If the handle has a
value of nul1ptr, destruction begins; however, it does nothing. end note]

e The destructor function is explicitly called on that object by the programmer. (This includes the
case in which the destructor function for a particular base class is called using a qualified name.)

For an object that has completed construction (no exception was thrown from the constructor), destruction
always begins by calling through the System: : IDisposabTe: :Dispose function. (See §19.9 for
behavior of destructor calls from a constructor throwing an exception.) Accessing members of a ref class
object after destruction is ill-formed, but no diagnostic is required. [Note: Behavior of member access of a
ref class after destruction is under the control of the ref class author. The author should document whether
members are usable after destruction. end note]

Like constructors, virtual function calls in a destructor of a ref class result in a call to the applicable virtual
function from the perspective of the most derived class of the object.

For metadata details, see §34.7.13.2.

19.13.2 Finalizers

As well as providing Standard C++-style deterministic cleanup via destructors, C++/CLI provides a
mechanism for non-deterministic cleanup when an instance of a ref class is no longer referenced. This
mechanism is called a finalizer.

A special declarator syntax using an optional function-specifier followed by ! followed by the finalizer’s
class name followed by an empty parameter list is used to declare the finalizer in a ref class definition. In
such a declaration, the ! followed by the finalizer’s class name can be enclosed in optional parentheses; such
parentheses are ignored. A typedef-name shall not be used as the class-name following the ! in the
declarator for a finalizer declaration.

A finalizer is used to finalize objects of its class type. A finalizer has no parameters, and no return type can
be specified for it (not even void). The address of a finalizer shall not be taken. A finalizer shall not have
any function-modifiers (§19.4), nor shall it be declared static or virtual. A finalizer can be invoked for
aconst,volatile, or const volatile object. A finalizer shall not be declared const, volatile, or
const volatile. const and volatiTe semantics are not applied on an object being finalized. They
stop being in effect when the finalizer for the most derived object starts.

The access-specifier of a finalizer in a ref class is ignored.

131

C++/CLI Language Specification

Any ref class can have a user-defined finalizer. The finalizer is executed zero or more times by the garbage
collector, as specified by the CLI.

A finalizer function in any ref class T shall only be called from another function within that same class. A
call to a finalizer shall not result in the execution of the finalizer of the base class.

For metadata details, see §34.7.13.3.

132

Native classes

20. Native classes

The visibility of a non-nested native class can optionally be specified via a top-level-visibility (§12.4).
A native class can optionally have a class-modifiers (§19.1.1).

A native class shall not contain members whose types are non-simple value types, ref classes, or interface
classes. [Note: Allowing members of such types would make the parent type a mixed type (§23). end note]

A native class can contain nested ref class, value class, and interface class definitions.
A native class shall not be a generic class.

For metadata details, see §34.8.

20.1 Functions

A virtual member function declaration in a native class can contain:
e the function-modifier sealed (§19.4.2).
o the function-modifier abstract (§19.4.3).

Member functions in a native class can optionally have a parameter-array (§18.4) in their parameter-
declaration-clause.

Member functions in a native class can be generic (§31.3). However, a program containing a native class
having a virtual generic member function is ill-formed.

[Note: Member functions of a native class use hidebyname lookup (§10.7). end note]

20.2 Properties

A program is ill-formed if it contains a property in a native class.

20.3 Static operators

A program is ill-formed if it contains a static operator in a native class.

20.4 Delegates

A program is ill-formed if it contains in a native class, a delegate-specifier (§27.1) or a field having a
delegate type.

20.5 Friends

Native classes are the only class kind that can declare other classes and functions as friends. While CLI class
types cannot declare friends, CLI class types can be friends of native classes. Generic functions, generic CLI
class types, and CLI class templates can all be friends.

Friend declarations can declare the entity that is a friend before it is defined. [Example: In the following
code:

133

C++/CLI Language Specification

class N {
eneric<class T>
riend ref class R;

/:‘: . 7':/
s

generic<class T>
ref struct R {

The generic ref class R is declared as a friend of the native class N before R is defined. The implementation
of R has friendship access to N. end example]

20.6 Events

A program is ill-formed if it contains an event in a native class.

20.7 Finalizer

A program is ill-formed if it contains a finalizer in a native class.

20.8 Initonly and literal fields

A program is ill-formed if it contains an initonly or literal field in a native class.

20.9 Static constructors

A program is ill-formed if it contains a static constructor in a native class.

134

Ref classes

21. Ref classes

Like a native class, a ref class can contain fields, function members, and nested types. However, unlike a
native class, a ref class can take full advantage of the CLI's features, including garbage-collection.

21.1 Ref class definitions
A ref class is a class defined with the class-key ref class or ref struct.

A ref class definition and ref struct definition differ in the default accessibility of members; by
default, the members of a ref class are private, while those of a ref struct are public.

A ref class definition can include a set of attributes (§29), top-level-visibility (§12.4), class-modifiers
(§19.1.1), and base-clause (§21.1.1).

A ref class definition can be nested inside a native class definition; however, a native class definition shall
not be nested inside a ref class definition.

For metadata details, see §34.7.1.

21.1.1 Ref class base specification

A ref class definition can include a base-clause specification, which defines the direct base class of the ref
class, and the interfaces implemented by that ref class.

If a base-specifier contains an access-specifier, that access-specifier shall be pubTi c. If a base-specifier
does not contain an access-specifier, the access-specifier is implicitly pub1ic, even if the ref class is
defined with the ref class keyword.

A ref class type shall have at most one class as its direct base, and that class type shall be a ref class type. If
no direct base class is specified, the direct base class is System: :Object.

The direct base class of a ref class type shall not be a native class, a sealed ref class, or any of the
following types: System::Array, System: :Delegate, System: :Enum, or System: :vValueType.

The direct base class of a ref class type shall be at least as accessible as the ref class type itself.

If a ref class definition contains one or more base-specifiers that specify interface types, the ref class is said
to implement those interface types. (Interface implementations are discussed further in §25.3.)

21.2 Ref class members

The members of a ref class consist of all the members introduced by its member-specification and the
members inherited from the direct base class.

A ref class shall not contain members whose types are native array or native class. [Note: Allowing members
of such types would make the parent type a mixed type (§23). end note]

A ref class shall not contain members that are bit-fields.

A ref class shall not declare friends.

A ref class shall not contain any access declarations.

Some ref class member declarations, member accesses, and member function calls require special handling

during metadata generation. For more information, see §34.9.

21.2.1 Variable initializers
The definition of zero-initialize in the C++ Standard (§8.5/5) is augmented, as follows:

135

C++/CLI Language Specification

To zero-initialize an object of type T means:

e if T is a handle type, the object is set to the value of the null value constant converted to T;

o if T is a scalar type other than a handle type, the object is set to the value of 0 (zero) converted to
T;

The default initial value as described in the C++ Standard (§8.5/9) is augmented, as follows:

If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class
type (or array thereof), the object shall be default-initialized; if the object is of const-qualified type,
the underlying class type shall have a user-declared default constructor. If no initializer is specified
for a handle, the handle shall be zero-initialized. Otherwise, if no initializer is specified for a
nonstatic object, the object and its subobjects, if any, have an indeterminate initial value; if the
object or any of its subobjects are of const-qualified type, the program is ill-formed.

[Rationale: Handles must always have a valid value, as they are used as roots by the garbage collector. If a
handle had an invalid value, the runtime could fail. Thus, a handle that has not been initialized is always
zeroed to prevent runtime failure. end rationale]

Like Standard C++ references, tracking references shall always be initialized.

The default value of a ref class instance is that value type fields are set to their default value and all handle
type fields are set to nulTptr.

21.3 Functions

A virtual member function declaration in a ref class can contain:
o the function-modifier abstract (§19.4.3).
o the function-modifier new (§19.4.4).
o the function-modifier override, or an override-specifier, or both (§19.4.1).
o the function-modifier sealed (§19.4.2).

Virtual function overrides in ref classes shall not have covariant return types. [Rationale: This is a restriction
imposed by the CLI. end rationale]

A member function of a ref class shall not have a cv-qualifier-seq.

Member functions in a ref class can optionally have a parameter-array (§18.4) in their parameter-
declaration-clause.

[Note: For each ref class, the implementation reserves several names (§19.2.3). end note]
Member functions of a ref class shall not contain local classes.

[Note: Member functions of a ref class use hidebysig lookup (§10.7). end note]

21.4 Properties
Ref classes support properties (§19.5).

[Note: For each property definition, the implementation reserves several names (§19.2.1). end note]

21.5 Events
Ref classes support events (§19.6).

[Note: For each event definition, the implementation reserves several names (§19.2.2). end note]

136

Ref classes

21.6 Static operators
Ref classes support static operators (§19.7).

21.7 Non-static operators

By default, a ref class does not have a copy assignment operator. If one is needed, it shall be defined
explicitly.

21.8 Instance constructors

By default, a ref class does not have a copy constructor. If one is needed, it shall be defined explicitly.

21.9 Static constructor

Ref classes support static constructors (§19.10).

A static constructor for a ref class or a value class is executed before the first reference to any static member
within that class occurs.

21.10 Literal fields
Ref classes support literal fields (§19.11).

21.11 Initonly fields
Ref classes support initonly fields (§19.12).

21.12 Destructors and finalizers

A ref class can contain definitions for a destructor and a finalizer (§19.13).

21.13 Delegates
Ref classes support delegate-specifiers (§27.1).

A ref class is permitted to contain a field having a delegate type.

137

C++/CLI Language Specification

22. Value classes

Like other classes, a value class can contain fields, function members, and nested types. Value classes are
designed to enable efficient and fast copying of data without requiring memory indirections to access value
type objects. As a result, using value classes to represent data reduces the impact on the garbage collector
and makes value classes unsuitable for managing resources.

Like all value types, an instance of a value class can be boxed (§14.2.6).

[Note: As described in §12.2.1, the fundamental types provided by C++/CLI, such as int, double, and
boo1, correspond to value class types. Value classes and operator overloading can be used to implement
new “primitive” types. end note]

22.1 Value class definitions
A value class is a class defined with the class-key value class orvalue struct.

A value class definition and value struct definition differ in the default accessibility of members; by
default, the members of a value class are private, while those of a value struct are public.

A value class definition can include a set of attributes (§29), top-level-visibility (§12.4), class-modifiers
(§19.1.1), and base-clause (§22.1.1).

All value classes are implicitly sealed (so the explicit use of this modifier in this context is redundant).

A value class definition can be nested inside a native class definition; however, a native class definition shall
not be nested inside a value class definition.

For metadata details, see §34.7.1.

22.1.1 Value class base specification

A value class definition can include a base-clause specification, which defines only the interfaces
implemented by that value class. All value class types have System: : ValueType as their base class.

If a base-specifier contains an access-specifier, that access-specifier shall be pubTi c. If a base-specifier
does not contain an access-specifier, the access-specifier is implicitly pub1i c, even if the value class is
defined with the value class keyword.

If a value class definition contains one or more base-specifiers, the value class is said to implement those
interface types. (Interface implementations are discussed further in §25.3.)

22.2 Value class members

The members of a value class include all the members introduced by its member-specification and the
members inherited from the type System: :ValueType.

A member function of a value class shall not have a cv-qualifier-seq.

A value class shall not contain members whose types are native array or native class. [Note: Allowing
members of such types would make the parent type a mixed type (§23). end note]

A value class shall not contain members that are bit-fields.
A value class shall not declare friends.
A value class shall not contain any access declarations.

A value class shall not contain a default constructor, a copy constructor, or an assignment operator.

138

Value classes

All value classes are copyable. Except for the differences noted in §22.3, the descriptions of class members
provided in §21.2 through §21.11, and §21.13 apply to value class members as well.

[Note: Member functions of a value class use hidebysig lookup (§10.7). end note]
Member functions of a value class shall not contain local classes.

Some value class member declarations, member accesses, and member function calls require special
handling during metadata generation. For more information, see §34.9.

22.3 Ref class and value class differences

22.3.1 Inheritance

All value class types implicitly inherit from System: :ValueType, which, in turn, inherits from class
System: :0bject. Although a value class declaration can specify a list of implemented interfaces, it shall
not specify a base class.

Value class types are sealed.

[Note: Although inheritance isn’t supported for value class types, members having an access specifier of
protected, protected private, or protected public are permitted. However, a quality
implementation might issue a warning in such cases. end note]

22.3.2 Default values

The default value of a value class corresponds to the value returned by the default constructor. Unlike a ref
class, a value struct is not permitted to declare a parameterless instance constructor. Instead, every value
class implicitly has a parameterless instance constructor, which always returns the value that results from
setting all value type fields to their default value and all handle type fields to nul1ptr.

[Note: Value classes should be designed to consider the default initialization state a valid state. In the
following code

value class KeyvaluePair {
StringA key;
StringA value;
pubTic:
KeyvaluePair(stringA key, StringA value) {
if (key == nullptr || value == nullptr)
throw gcnew ArgumentException();
this->key = key;
) this->value = value;
};
the user-defined instance constructor protects against null values only where it is explicitly called. In cases
where a KeyvaluePair variable is subject to default value initialization, the key and value fields will be

null, and the value class should be prepared to handle this state. end note]

22.3.3 Meaning of this

Within an instance constructor or instance function member of a ref class T, this is treated as an rvalue of
type TA. Within an instance constructor or instance function member of a value class V, th1is is treated as an
rvalue of type interior_ptr<v>. [Note: Unlike in a native class, this is not const-qualified, per se. end
note]

22.3.4 Destructors and finalizers

A value class having a destructor or finalizer (§19.13) is ill-formed. [Note: Value classes never manage
resources, thus destructors and finalizers in value classes are not necessary to clean-up resources. Value
types can represent resources, in which case the class containing such a value type should have a finalizer

139

C++/CLI Language Specification

and destructor. For example, a value class can represent a file descriptor. The class that uses a file descriptor
as a member is responsible for closing the file using the appropriate API. end note]

22.4 Simple value classes

A simple value class is a value class that has no members that need to be tracked by the garbage collector. A
simple value class includes the following types and no others:

e A value class that has no instance fields.

e A value class where all instance fields have one of the following types: fundamental types,
enums, pointers, or another simple value class.

An instance of a simple value class can be created with the new operator, and native classes can have
members of simple value class type.

22.5 Constructors

A value class having a default constructor or a copy constructor is ill-formed. The default construction
semantics of a value class are to a representation where all members are zeroed bytes. The copy construction
semantics of a value class are always to bitwise copy all members of the value class.

Otherwise, a value class can have instance constructors (§19.9) and a static constructor (§19.10).

22.6 Operators

A value class having a copy assignment operator is ill-formed. The copy semantics for value classes are
always to bitwise copy all members of the value class.

140

Mixed types

23. Mixed types

This clause is reserved for possible future use.

A mixed type is a native class, ref class, or native array that requires object members, either by declaration or
by inheritance, to be allocated on both the CLI heap and some other part of memory.

Examples of mixed types are:

e A native class containing a member whose type is a non-simple value type, a ref class type, or
interface class type.

e A native array of elements whose type is a value type other than a fundamental type, or a ref
class type.

e A refclass or value class containing a member whose type is a native class or native array.

A program that defines or declares a mixed type is ill-formed.

141

C++/CLI Language Specification

24. CLI arrays

An array is a data structure that contains a number of variables, which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

A CLI array differs from a native array (§8.3.4) in that the former is allocated on the CLI heap, and can have
a rank other than one. The rank determines the number of indices associated with each CLI array element.
The rank of a CLI array is also referred to as the dimensions of the CLI array. A CLI array with a rank of
one is called a single-dimensional CLI array, and a CLI array with a rank greater than one is called a multi-
dimensional CLI array.

Throughout this Standard, the term CLI array is used to mean an array in C++/CLI. A C++-style array is
referred to as a native array or, more simply, array, whenever the distinction is needed.

Each dimension of a CLI array has an associated length, which is an integral number greater than or equal to
zero. The dimension lengths are not part of the type of the CLI array, but, rather, are established when an
instance of the CLI array type is created at run-time. The length of a dimension determines the valid range of
indices for that dimension: For a dimension of length N, indices can range from 0 to N — 1, inclusive. The
total number of elements in a CLI array is the product of the lengths of each dimension in the CLI array. If
one or more of the dimensions of a CLI array has a length of zero, the CLI array is said to be empty.

The element type of a CLI array can be any value type or handle type, including another CLI array type.
For metadata details, see §34.11.

24.1 CLI array types
A CLI array type is allowed in the grammar where a type-specifier is expected and is processed as follows:

e The compiler performs a lookup in the current context for the name array.

e Ifthe name refers unambiguously to : : c11 : :array, or the name is not found, then the
expression is processed by the compiler according to one of the following two grammars, and
interpreted according to the rules specified herein.

array < type-id >
array < type-id , constant-expression >

The type-id in both forms specifies the element type of the array. If the first form is used, the array rank is
one. If the second form is used, the constant-expression is the rank and shall have an integral type and a
value of one or greater.

A CLI array shall always be accessed through a handle; it is ill-formed to pass a CLI array by value or to
return one by value. The element type of a CLI array shall be a handle or a value type. [Note: Specifically,
the element type of a CLI array cannot require copy construction as CLI arrays do not have copy
constructors or copy assignment operators. end note]

All CLI array types are sealed.

24.1.1 The System::Array type

The System: :Array type is the abstract base type of all CLI array types. An implicit handle conversion
(§14.2.1) exists from any CLI array type to System: : ArrayA, and an explicit handle conversion (§14.2.1)
exists from System: :Array to any CLI array type. Note that System: :Array is not itself a CLI array
type. Rather, it is a ref class type from which all CLI array types are derived.

142

CLI arrays

24.2 CLI array creation

CLI array instances are created by new-expressions containing gchew (§15.4.6) or by local variable
declarations that include an initializer-clause. Array instances can also be created implicitly by calling a
function that requires parameter array conversion (§14.6).

When creating a CLI array, the type-specifier-seq of the gcnew form of the new-expression shall be an array
type as specified in §24.1, and shall be followed by a new-initializer, array-init, or both.

o If followed only by a new-initializer, the expression-list of the new-initializer shall have the
same number of arguments as the CLI array’s rank. Each expression in the expression list shall
be of an integral type or of a type that can be implicitly converted to an integral type. The value
of each expression determines the length of the corresponding dimension in the newly allocated
array instance. The dimension shall be non-negative, and it is ill-formed to have a constant-
expression that evaluates to a negative value in the expression list.

o If followed by both a new-initializer and an array-init, each expression in the new-initializer
shall be a constant expression and the dimension lengths specified by the expression list shall be
greater than or equal than those of the array initializer.

e If followed only by an array-init, the rank of the specified array type shall match that of the
array initializer. The individual dimension lengths are inferred from the number of elements in
each of the corresponding nesting levels of the array initializer.

[Example: The following two expressions are equivalent.

gchew array<int,2> {{0, 1}, {2, 33}, {4, 5}};
gcnew array<int,2>(3,2) {{0, 1}, {2, 3}, {4, 5}};

end example]
Array initializers are described further in §24.6.

When a CLI array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. [Note: In other words, it is not possible to change the rank of
an existing CLI array instance, nor is it possible to resize its dimensions. end note]

A CLI array instance is always of an array type. The System: :Array type is an abstract type that cannot be
instantiated.

Elements of CLI arrays created by new-expressions are always initialized to their default value.

24.3 CLI array element access

CLI array elements are accessed using postfix-expressions (§15.3) of the form A[I1, Iz, .., In], where A
is an expression having a CLI array type, and each Ix is an expression of integral type or a type that can be
implicitly converted to an integral type. Instances of such expressions are referred to here as CLI array
element accesses.

The result of a CLI array element access is a variable, namely the CLI array element selected by the indices.
[Note: Like all expression lists enclosed by square brackets, the commas are not treated as operators (see
§15.3). The behavior of Standard C++ can be obtained by using parentheses around an expression using
commas. end note] [Example:

array<int>A arraylD = gcnew array<int>(10);

array<int, 3>A array3D = gcnew array<int, 3>(10, 20, 30);
arraylb[1l] = array3Dp[1,2,3];

int i = 0;
arraylD[3] = array3D[i++,1,++i]; // unspecified evaluation order

In the last line, the order of evaluation of expressions in an expression list is not strictly specified by
Standard C++. Thus, expressions that result in side-effects can change the meaning of another expression’s
evaluation. end example]

143

C++/CLI Language Specification

The elements of a CLI array can be enumerated using a for each statement (§16.2.1).

24.4 CLI array members
Every CLI array type inherits the members declared by the type System: :Array.

24.5 CLI array covariance

Array covariance is described in §14.2.1.

[Note: CLI arrays must always be accessed through handles and cannot be passed by value or reference. As
such, array covariance only applies to handles. end note]

24.6 CLI array initializers

Array initializers can be specified for variable declarations with the initializer-clause grammar, and in
gcnew expressions with the array-init grammar.

array-init:
{ initializer-list o5 }

{3

An array initializer consists of either assignment-expressions, or nested initializer-clauses, enclosed by “{”
and “}” tokens and separated by “,” tokens. Nested initializer-clauses occur only in the case of multi-
dimensional arrays.

The context in which an array initializer is used determines the length of each dimension of the array being
initialized. When used in a gcnew expression, if the expression includes a new-initializer, the dimension
lengths are known from the new-initializer. In all other cases, the dimensions are deduced from the array
initializer. The array’s element type and rank are always known from the type immediately preceding the
array-init in a gcnew expression, or from the declarator type preceding the initializer-clause in a variable
declaration.

When an array initializer is used for a variable declaration, it is shorthand for initializing the array with a
gcnew expression. [Example: The following are equivalent declarations.

array<int>A al = { 0, 2, 4, 8 };
array<int>A a2 = gcnew array<int> { 0, 2, 4, 8 };

end example]

For a single-dimensional array, the array initializer shall consist of a sequence of expressions that are
convertible to the element type of the array. The expressions initialize the array elements in increasing order,
starting with the element at index zero. If the length of the array is not already known, the length is the
number of expressions in the array initializer. Otherwise, if the length is known, the number of expressions
shall not be greater than the length. If the number of expressions is less than the length, then each element
not initialized by the array initializer shall be initialized to the default value. [Example: The following array
initializers
array<int>A a

gcnew array<int> { 0, 2, 4, 8 };
array<int>A b

gcnew array<int>(4) { 0, 2 };

both create array<int> instances with length 4 and then initialize the instances with the following values:
al0] = 0; a[l] = 2; a[2] = 4; a[3] = 8;
b[0] = 0; b[1] = 2;

The elements indexed at b[2] and b[3] are initialized to their default value, which is zero for int. end
example]

For a multi-dimensional array, the array initializer is a nested list. The levels of nesting shall not exceed the
dimensions of the array. The outermost nesting level corresponds to the leftmost dimension, and each level
of nesting corresponds to the next dimension moving rightwards. Only the innermost list corresponding to
the rightmost dimension shall have expressions convertible to the element type of the array.

144

CLI arrays

e Ifthe lengths of the array dimensions are known, the number of nested lists for all but the right
most dimension and expression for the rightmost dimension shall not exceed the corresponding
dimension’s length.

e If the lengths of the array dimensions are not known, the rightmost dimension is determined by
the innermost list at the correct nesting level with the greatest number of expressions. The length
of remaining dimensions are likewise determined by counting the greatest number of nested lists
at the corresponding nesting level. If the array initializer does not have a list nested as deep as
the rank of the array, the dimensions without lists each have length OXCOFFEE.

If the number of nested lists or expressions is fewer than than the corresponding dimension’s length, then
each element not explicitly initialized in that dimension shall be initialized to the default value. [Example:
The following array initializers

array<int,2>A a
array<int,2>A b
array<int,2>A ¢

{};
{11, {3, {2,311}
gcnew array<int, 2>(2 2 { {11} 1};

each create two dimensional arrays corresponding to the following array creation expressions.

array<int,2>A a gcnew array<int,2>(0, OXCOFFEE);
array<int,2>A b gcnew array<int,2>(3, 2);
array<int,2>A c gcnew array<int,2>(2, 2);

The first dimension of array a has length zero, so it has no elements. Array b is initialized with the following
values:

b[0,0] = 1; b[2,0] = 2; b[2,1] = 3;

The elements indexed at b[0,1], b[1,0], and b[1,1] are initialized to their default value. Array c is
initialized with the following value:

c[0,0] = 1;

The elements indexed at c[0,1], c[1,0], and c[1, 1] are initialized to their default value. end example]

145

C++/CLI Language Specification

25. Interfaces

An interface defines a contract to which an implementing class agrees. This contract consists of a set of
virtual members that an implementing class shall define, and the agreement is called an interface
implementation. An interface can also require an implementing class to implement other interfaces. A class
can implement multiple interfaces.

An interface does not provide a definition for any of its instance members.

25.1 Interface definitions
An interface class is a class defined with the class-key interface class orinterface struct(§19.1).

Aninterface classand interface struct definition are equivalent. The default accessibility of
members within an interface is public, and that accessibility cannot be changed.

An interface class definition can include a set of attributes (§29), top-level-visibility (§12.4), and base-clause
(§21.1.1). An interface class definition shall not include class-modifiers.

An interface class definition can be nested inside a native class definition; however, a native class definition
shall not be nested inside an interface class definition.

For metadata details, see §34.12.

25.1.1 Interface base specification

An interface class definition can include a base-clause specification, which defines the explicit base
interfaces of the interface being defined.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. That is, the set
of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base
interfaces, and so on.

An interface inherits all members of its base interfaces.

A type that implements an interface also implicitly implements all that interface’s base interfaces.

25.2 Interface members

The members of an interface are the members inherited from its base interfaces, and the members declared
by the interface itself.

An interface definition can declare zero or more members. The members of an interface shall be static data
members, instance or static functions, a static constructor, instance or static properties, instance or static
events, operator functions, or nested types of any kind. An interface shall not contain instance data members,
instance constructors, or a finalizer.

All interface members have public access. Providing an explicit public access specifier is redundant but
permitted; no other access specifiers shall be used on interface member declarations.

All instance members declared in an interface are implicitly abstract. However, those members can
redundantly contain the virtual and abstract modifiers or the virtual modifier and a pure-specifier.
[Example:
interface class I {] o
property int Size { .. } // (Cimplicit) abstract property
virtual void F() abstract = 0; // “virtual”, “abstract” and “= 0”
// permitted but are redundant
s

146

Interfaces

end example]
An interface class shall not declare friends.

Classes that implement an interface shall supply the definitions for all instance members of that interface.
An interface shall provide a definition for all of its static members.

Some interface class member declarations, member accesses, and member function calls require special
handling during metadata generation. For more information, see §34.9.

25.2.1 Functions
An interface instance function declaration shall not be a function definition.

If the function is declared virtual, it shall also be declared abstract, and vice versa.
Interface instance functions are implicitly abstract.
A member function of an interface shall not have a cv-qualifier-seq.

Member functions in an interface class can optionally have a parameter-array (§18.4) in their parameter-
declaration-clause.

[Note: For each interface class, the implementation reserves several names (§19.2.3). end note]

[Note: Member functions of an interface class use hidebysig lookup (§10.7). end note]

25.2.2 Properties
Interface classes support properties (§19.5).

The accessor functions of an interface property definition correspond to the accessor functions of a class
property definition (§19.5.3), except that in an interface the instance accessor functions shall be declarations
that are not definitions. Thus, the accessor functions simply indicate whether the property is read-write, read-
only, or write-only.

[Example:

interface class I {
property int Size { int get(); void set(int value); }
property bool default[int] { bool get(int);
) void set(int k, bool value); }
end example]

A property-definition ending with a semicolon (as opposed to a brace-delimited accessor-specification)
declares a trivial scalar property (§19.5.5). Such an instance declaration declares an abstract virtual property
with get and set accessor functions.

An accessor function with an inline definition in an interface is ill-formed.

[Note: For each property definition, the implementation reserves several names (§19.2.1). end note]

25.2.3 Events

Interface classes support events (§19.6).

The accessor functions of an interface event declaration correspond to the accessor functions of a class event
definition (§19.6.2), except that the instance accessor functions shall be function declarations that are not
function definitions.

As events in interfaces cannot have a raise accessor function (because everything in an interface is pub1ic),
such events cannot be invoked using function call syntax.

[Note: For each event definition, the implementation reserves several names (§19.2.2). end note]

147

C++/CLI Language Specification

25.2.4 Delegates
Interface classes support delegate-specifiers (§27.1).

25.2.5 Member access

For details on lookup for interface members, see §10.7.

25.2.6 Destructors and finalizers

An interface class is permitted to declare a destructor (§19.13). However, an interface class shall not declare
a finalizer (§19.13).

For metadata details, see §34.7.13.2 and §34.7.13.3.

25.3 Interface implementations

Interfaces can be implemented by classes. To indicate that a class implements an interface, the interface
identifier is included in the base class list of the class. [Example:

interface class ICloneable {
ObjectA Clone();

interface class IComparable {
int CompareTo(ObjectA other);

ref class ListEntry : ICloneable, IComparable {
public:

virtual ObjectA Clone() { .. }

virtual int CompareTo(ObjectA other) { .. }

end example]

An interface in the base class list is always and implicitly inherited pub1ic. The pub1ic keyword is
allowed but not required as a base-class access specifier for an interface. A program is ill-formed if it
contains the private, protected, or virtual keywords as base class specifiers for an interface.

A class that inherits an interface also implicitly implements all of the interface’s base interfaces. This is true
even if the class does not explicitly list all base interfaces in the base class list. [Example:

interface class IControl {
void Paint();

interface class ITextBox : IControl {
void SetText(StringA text);
ref class TextBox : ITextBox {
pubTic:
virtual void Paint() { .. }
virtual void SetText(StringA text) { .. }

;
Here, class TextBox implements both IControl and ITextBox. end example]

As interface functions are implemented rather than overridden, the virtual function overriding rules in ref
classes are orthogonal to the interface implementation rules.

A class implements an interface if a base class already implements the interface, and if that base class does
not, the class shall implement all of the functions in the interface. For a class R that is implementing an
interface I with a function IF, the function F, implements the interface if the following criteria are met:

e F uses the named overriding syntax to directly name I::IF, and if not that,

e The signature of F is the same as IF and F is public.

148

Interfaces

If no function in R meets the criteria to implement IF, F can be a public virtual function from a base class
of R.

If F is not marked virtual, it does not implement the interface function.

The function F can be abstract.

R can introduce a (virtual or non-virtual) function with the same name as IF that does not implement IF.
[Note: This happens in the case where another function uses the named overriding syntax. end note]

[Example:
public interface struct 11 {
void FQ;
public interface struct 12 : 11 {

void GQO);

void KQ);
public ref struct B {

virtual void KO { .. }
public ref struct D : B, I2 {

virtual void FO) { .. } // implements I1l::F
virtual void HO = 12::G { .. } ;? implements I2::G
/

virtual void GO new { .. } a new G
I2::K implemented by B::K

};
public ref struct E abstract : Il {
virtual void F() abstract;

end example]

A ref class or value class that inherits from an interface is required to implement every function from the
interface. This is called implementing the interface. A class that does not implement the interfaces it inherits
from is ill-formed. [Note: Interface functions are implemented, not overridden. Thus, a class that does not
implement an interface does not implicitly become abstract as if an abstract function from a base class were
not overridden. end note]

149

C++/CLI Language Specification

26. Enums

An enum type is a distinct type with named constants. C++/CLI supports two kinds of enum types: native
enums that are compatible with Standard C++ enums, and CLI enums, which are preferred for frameworks
programming. Native and CLI enum types are collectively referred to as enum types.

Enumerations as defined by the C++ Standard (§7.2) continue to have exactly the same meaning. In
C++/CLI, native enums have extensions to allow the following: public or private visibility, declaration of the
underlying type, and the placement of attributes on the enumeration and/or its enumerators.

CLI enums are like native enums except that the names of the former’s enumerators are only found by
looking in the scope of the named CLI enum, and that integral promotion as defined by the C++ Standard
(§4.5) does not apply to a CLI enum.

[Example: The code
public enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds};

defines a publicly visible native enum type named Suit with enumerators Hearts, Spades, Clubs, and
Diamonds, whose values are 1, 2, 3, and 4, respectively. The underlying type for Suit is short int.

The code
enum class Direction { North, South = 10, East, west = 20 };

defines a CLI enum type named D1 rection with enumerators North, South, East, and West, whose
values are 0, 10, 11, and 20, respectively. By default, the underlying type for Directionis int. end
example]

All native and CLI enum types implicitly derive from System: : Enum.

For metadata details, see §34.13.

26.1 Enum definitions
The enum-specifier production in the C++ Standard (§7.2) is augmented, as follows:

enum-specifier:
attributes,y: top-level-visibility,,: enum-key identifiery,: enum-basegp
{ enumerator-listy, }

enum-key:
enum
enum::
enum::

An enum-specifier shall contain an enum-key of enum (in which case, it defines a native enum), or either of
enum class or enum struct (in which case, it defines a CLI enum). It can optionally include a set of
attributes (§29), top-level-visibility (§12.4), enum-base (§26.1.1), and enumerator-list.

An enum class and enum struct definition are equivalent.

A program is ill-formed if it contains a top-level-visibility in an enum-specifier that is nested inside another
type.

Multiple definitions of a given CLI enum, residing in separately compiled source files that are used in the
same program, shall be identical.

When an enum-specifier uses the enum keyword, the enum name and each enumerator declared by that
enum-specifier are declared in the scope that immediately contains that enum-specifier. When an enum-

150

Enums

specifier uses the enum class or enum struct keyword, the enum name is declared in the scope that
immediately contains that enum-specifier, while each enumerator declared by that enum-specifier is declared
inside of the scope of the enum itself. These names obey the scope rules defined for all names.

A program is ill-formed if it contains an enum with an enumerator called value__. [Note: This name is
reserved by use in metadata generation. end note]

A CLI enum definition shall not omit identifier. [Note: An enumerator of a CLI enum can only be accessed
via its parent enum’s name. As such, a nameless CLI enum is useless. end note]

26.1.1 Enum base specification

As in Standard C++, each enum type has a corresponding underlying type, which shall be able to represent
all the enumerator values defined in the enumeration. However, unlike Standard C++, C++/CLI allows that
underlying type to be specified, via an enum-base:

enum-base:
type-specifier-seq

The underlying type of an enum type can be explicitly declared as one of the following types:

System: :Boolean, System: :Byte, System: : SByte, System: :Intl6, System: :UIntl6,

System: :Int32, System: :UInt32, System: :Int64, and System: :UInt64, or any primitive type that
maps to one of these types.

If no underlying type is given for a native enum, the rules specified in the C++ Standard (§7.2) apply. If no
underlying type is given for a CLI enum, the underlying type is int.

26.1.2 Initial enumerator values

Each enumerator in an enum type whose enum-base is booT, shall be explicitly initialized. If an enum type's
enum-base is any integral type other than boo1, the values assigned to enumerators are either explicit or
implicit, as defined by the C++ Standard.

26.1.3 CLI enum values and operations

Each CLI enum type defines a distinct type; an explicit enumeration conversion is required to convert
between a CLI enum type and an integral type, or between two CLI enum types. The set of values that a CLI
enum type can take on is not limited by its enum members. In particular, any value of the underlying type of
a CLI enum can be cast to the CLI enum type, and is a distinct valid value of that CLI enum type.

CLI enumerators have the type of their containing enum type (except within other enumerator initializers).
The value of an enumerator declared in enum type E with associated value v is static_cast<E>(v).

The following operators can be used on values of CLI enum types: ==, !=, <, >, <=, >=,+, -, A, &, |, ~, ++,
--, sizeof.

26.2 The System::Flags attribute

When applied to a CLI enum type, this attribute changes the way in which some of the methods of the base
type (System: : Enum) behave; in particular, when an instance of such an enum type is used to hold multiple
values as bit fields. [Example: Given the following:

[FTags] public enum class StatusBits {A =1, B =2, C = 4};

StatusBits sb = StatusBits::B;
Console::writeLine("sb = {0}", sh);

sb = StatusBits::A | StatusBits::B | StatusBits::C;
console::writeLine("sb = {0}", sb);

the output is

sb
sb

However, when the attribute is removed, the output is

B
A, B, C

151

C++/CLI Language Specification

sb = B
sbh =7

as the behavior of Enum: : ToStr1ing has changed. end example]

152

Delegates

27. Delegates

A delegate definition defines a class that is derived from the class System: :Delegate. A delegate instance
encapsulates one or more member functions in an invocation list, each of which is referred to as a callable
entity. For instance functions, a callable entity consists of an instance and a member function on that
instance. For static functions, a callable entity consists of just a member function.

Given a delegate instance and an appropriate set of arguments, one can invoke all of that delegate instance’s
functions with that set of arguments.

[Note: Unlike a pointer to member function, a delegate instance can be bound to members of arbitrary
classes, as long as the function signatures are compatible (§27.1) with the delegate’s type. This makes
delegates suited for “anonymous” invocation. end note]

For metadata details, see §34.14.

27.1 Delegate definitions
A delegate-specifier is a type-specifier (§12) that defines a new delegate type.

delegate-specifier:
attributes,y: top-level-visibility,,: delegate type-specifier-seq declarator ;

A delegate-specifier can include a set of attributes (§29). A non-nested delegate can optionally specify the
visibility of the class by using a top-level-visibility of pub1ic or private (§12.4).

Together, type-specifier-seq and declarator constitute the delegate's type, and shall have the form of a
function declaration without a cv-qualifier-seq or exception-specification. The name of the function in the
function declaration is the delegate's type name. The optional parameter-declaration-clause specifies the
parameters of the delegate, and it corresponds to that of a function, except that for a delegate, no parameter
shall consist of an ellipsis. The return type of the function declaration indicates the return type of the
delegate.

Except the type of the delegate itself, types shall not be defined in a delegate-specifier.
A function and a delegate type are compatible if both of the following are true:

o They have the same number of parameters, with the same types, in the same order, with the
same parameter modifiers.

e Their return types are the same.

Delegate types are name equivalent, not structurally equivalent. Specifically, two different delegate types
that have the same parameter lists and return type are considered different delegate types. [Example:

delegate int D1(int i, double d);

ref struct A {
static int M1(int a, double b) { .. }
ref struct B {
delegate int D2(int c, double d);
static int M2(Cint f, double g) { .. }
static void M3(int k, double 1) { .. }
static int M4(Cint @) { .. }
static void M5Cint g) { .. }

153

C++/CLI Language Specification

D1A d1;

dl = gcnew D1(&A::M1); // ok

dl += gcnew D1(&B::M2); // ok

dl += gcnew D1(&B::M3); // error; types are not compatible
dl += gcnew D1(&B::M4); // error; types are not compatible
dl += gcnew D1(&B::M5); // error; types are not compatible

B::D2A d2;

d2 = gcnew B::D2(&A::M1); // ok

d2 += gcnew B::D2(&B::M2); // ok

d2 += gcnew B::D2(&B::M3); // error; types are not compatible
d2 += gcnew B::D2(&B::M4); // error; types are not compatible
d2 += gcnew B::D2(&B::M5); // error; types are not compatible
dl = d2; // error; different types

end example]

The only way to define a delegate type is via a delegate-specifier. A delegate type is a class type that is
derived from System: :Delegate. Delegate types are implicitly sealed, so it is not permissible to derive
any type from a delegate type. It is also not permissible to derive a non-delegate class type from
System: :Delegate. [Note: System: :Delegate is not itself a delegate type; it is, however, a ref class
type from which all delegate types are derived. end note]

C++/CLI provides syntax for delegate instantiation and invocation. Except for instantiation, any operation
that can be applied to a class or class instance can also be applied to a delegate class or instance,
respectively. In particular, it is possible to access members of the System: :Delegate type via the usual
member access syntax.

The set of functions encapsulated by a delegate instance is called an invocation list. When a delegate
instance is created (§27.2) from a single function, it encapsulates that function, and its invocation list
contains only one entry. However, when two non-nul1ptr delegate instances are combined, their
invocation lists are concatenated—in the order left operand then right operand—to form a new invocation
list, which contains two or more entries.

Delegates are combined using the binary + (§15.6.1) and += operators (§15.12). A delegate can be removed
from an invocation list, using the binary - (§15.6.2) and -= operators (§15.12). Delegates can be compared
for equality (§15.8.2).

An invocation list can never contain a sole or embedded entry that encapsulates nul1ptr. Any attempt to
combine a non-nulTptr delegate with a nul1ptr delegate, or vice versa, results in the handle to the non-
nullptr delegate's being returned; no new invocation list is created. Any attempt to remove a null1ptr
delegate from a non-nuTTptr delegate, results in the handle to the non-nu11ptr delegate's being returned;
no new invocation list is created.

Once it has been created, an invocation list cannot be changed. Combination and removal operations
involving two non-nul1ptr delegates result in the creation of new invocation lists. An invocation list can
never be empty; either it contains at least one entry, or the list doesn’t exist.

An invocation list can contain duplicate entries, in which case, invocation of that list results in a duplicate
entry's being called once per occurrence.

When a list of entries is removed from an invocation list, the first occurrence of the former list found in the
latter list is the one removed. If no such list is found, the result is the list being searched.

[Example: The following example shows the instantiation of a number of delegates, and their corresponding
invocation lists:

delegate void D(int x);

ref struct Test {

static void M1(int i) { .. }
static void M2(int i) { .. }

154

Delegates

int main(Q) {

DA cdl = gcnew D(&Test::M1); // M1
DA cd2 = gcnew D(&Test::M2); // M2
DA cd3 = cdl + cd2; // ML + M2
DA cd4 = cd3 - cdl; // M2

}
end example]

27.2 Delegate instantiation

Each delegate type shall have two constructors, as follows:

e A constructor taking one argument, del-con-argl, to create a delegate from a static member
function or a global- or namespace-scope function. Here del-con-argl shall be the address of a
static member function or a global- or namespace-scope function that is compatible with the
type of the delegate being instantiated.

e A constructor taking two arguments, del-con-arg2 and del-con-arg3, respectively. This is used
to create a delegate from an instance function. Here, del-con-arg2 shall be a reference to a CLI
class instance, and del-con-arg3 shall be the address of an instance function directly defined in
that instance’s type.

[Example:

delegate void D(int x);
ref struct Test {
static void M1(int i) { ..}
void M2(int i) { .. }
int main() {
DA cdl = gcnew D(&Test::M1); // static function

TestA t = gcnew Test;))
DA cd2 = gcnew D(t, &Test::M2); // instance function

end example]

Once instantiated, delegate instances always refer to the same target CLI class instance and function. [Note:
Remember, when two delegates are combined, or one is removed from another, a new delegate results with
its own invocation list; the invocation lists of the delegates combined or removed remain unchanged. end
note]

When a delegate is created from a function name, the formal parameter list and return type of the delegate
determine which of the overloaded functions to select. [Example: In the example
delegate double DoubleFunc(double x);

ref struct A {
static float Square(float x) {
return x * X;

static double Square(double x) {
return x * X;
h
};
int main() {
DoubTeFuncA f = gcnew DoubleFunc(&A::Square);

the variable f is initialized with a delegate that refers to the second Square function because that function
exactly matches the formal parameter list and return type of DoubleFunc. Had the second Square function
not been present, the program would have been ill-formed. end example]

155

C++/CLI Language Specification

27.3 Delegate invocation

Given deTegate void D(), the function call D() is shorthand for the call D->Invoke(). Invocation of a
delegate has the semantics specified for the Invoke member in the CLI Standard. [Note: Here is a summary
of what that standard requires:

When a delegate instance whose invocation list contains one entry, is invoked, it invokes the one
function with the same arguments it was given, and returns the same value as the referred to
function. If an exception occurs during the invocation of such a delegate, and that exception is not
caught within the function that was invoked, the search for an exception catch clause continues in
the function that called the delegate, as if that function had directly called the function to which that
delegate referred.

Invocation of a delegate instance, whose invocation list contains multiple entries, proceeds by
invoking each of the functions in the invocation list, synchronously, in order. Each function so
called is passed the same set of arguments as was given to the delegate instance. If such a delegate
invocation includes parameters passed by non-const address, reference, or handle, each function
invocation will occur with the address, reference, or handle to the same variable; changes to that
variable by one function in the invocation list will be visible to functions further down the
invocation list. If the delegate invocation includes a return value, its final value will come from the
invocation of the last delegate in the list. If an exception occurs during processing of the invocation
of such a delegate, and that exception is not caught within the function that was invoked, the search
for an exception catch clause continues in the function that called the delegate, and any functions
further down the invocation list are not invoked.

end note]

Attempting to invoke a delegate instance whose value is nulTptr results in an exception of type
System: :NullReferenceException.

156

Exceptions and exception handling

28. Exceptions and exception handling

Although the programming model for exception handling in C++/CLI is unified, there are fundamentally
two kinds of exception handling:

o That defined by Standard C++ that involves copy construction of the thrown exception object as
the stack unwinds, and

e the CLI exception model that always throws and catches by handle.
For metadata details, see §34.15.

28.1 Common exception classes

The following exceptions are thrown by certain C++/CLI operations.

Exception Name Description

Thrown when the result of division operations

System: :ArithmeticException)
cannot be represented in the result type.

Thrown when the element type in an array

System: :ArrayTypeMismatch .
y yiyp operation does not match the operand.

Thrown when an attempt to divide an integral value

System: :DivideByZeroException
by zero occurs.

Thrown when the internal state of the execution
System: :ExecutionEngineException engine is corrupted, which can only happen with
unverifiable code.

Thrown when an attempt to index a CLI array via

System: : IndexOutOfRangeException . ; .
y g P an index that is outside the bounds of the CLI array.

Thrown when an explicit conversion from a base

System: :InvalidCastException
type or interface to a derived type fails at run time.

Thrown when the just-in-time compiler cannot find
System: :MissingFieldException a field in metadata. This indicates a versioning
problem between assemblies.

Thrown when the just-in-time compiler cannot find
a function, constructor, property accessor, or event
accessor. This indicates a versioning problem
between assemblies.

System: :MissingMethodException

System: :Nul1ReferenceException Thrown when a null-valued handle is dereferenced.

Thrown when an attempt to allocate memory (via

System: :OutOfMemoryException X
y y P gcnew) fails.

System: :0OverflowException Thrown when an arithmetic operation overflows.

Thrown when system security does not grant

System: :SecurityException . .
permission to call a function.

Thrown when the execution stack has insufficient

System: :StackoverflowException X X
memory to continue execution.

Thrown when a static constructor throws an

System: :TypeInitializationException . . .
exception, yet no catch clauses exists to catch it.

System: : TypeLoadException Thrown when the execution engine cannot find a

157

C++/CLI Language Specification

type in metadata. This indicates a versioning
problem between assemblies.

28.2 Exception specifications

A program is ill-formed if it contains an exception specification on any member function of a CLI class type
or on any generic function.

158

Attributes

29. Attributes

The CLI enables programmers to invent new kinds of declarative information, called custom attributes, or
more simply, attributes. Programmers can then attach attributes to various program entities, and retrieve
attribute information in a run-time environment. [Note: For instance, a framework might define a
HelpAttribute attribute that can be placed on certain program elements (such as classes and functions) to
provide a mapping from those program elements to their documentation. end note]

Attributes are defined through the declaration of attribute classes (§29.1), which can have positional and
named parameters (§29.1.2). Attributes are attached to entities in a C++ program using attribute
specifications (§29.2), and can be retrieved at run-time as attribute instances (§29.3).

For metadata details, see §34.16.

29.1 Attribute classes

A class that derives from the abstract ref class System: : Attribute, whether directly or indirectly, is an
attribute class. The declaration of an attribute class defines a new kind of attribute that can be placed on a
declaration. [Note: By convention, attribute classes are named with a suffix of Attribute. Uses of an
attribute can either include or omit this suffix. end note]

A generic class declaration (§31.1) shall not use System: :Attribute as a direct or indirect base class.

29.1.1 Attribute usage

The attribute System: :AttributeUsageAttribute (§29.4.1) is used to describe how an attribute class
can be used. [Note: When the name of an attribute type ends in the suffix Attribute, the suffix can be
omitted when it is being used in an attribute and there is no other attribute having the name without the
suffix. end note]

AttributeUsage has a positional parameter (§29.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. [Example: The example

[AttributeUsage(AttributeTargets::Class | AttributeTargets::Interface)]
public ref class SimpleAttribute : Attribute {};

defines an attribute class named SimpTleAttribute that can be placed on ref class and interface class
definitions only. The example

[simple] ref class Classl { .. };
[simple] interface class Interfacel { .3}

shows several uses of the SimpTe attribute. Although this attribute is defined with the name
SimpleAttribute, when this attribute is used, the Attribute suffix can be omitted, resulting in the short
name Simple. Thus, the example above is semantically equivalent to the following

[SimpleAttribute] ref class Classl { .. };
[SimpleAttribute] interface class Interfacel { .. };

end example]

AttributeUsage has a named parameter (§29.1.2), called A1TowMuTt1ipTle, which indicates whether the
attribute can be specified more than once for a given entity. If A1TowMuTtipTe for an attribute class is true,
then that class is a multi-use attribute class, and can be specified more than once on an entity. If
AllowMultipTe for an attribute class is false or it is unspecified, then that class is a single-use attribute
class, and shall not be specified more than once on an entity.

[Example: The example

159

C++/CLI Language Specification

[AttributeUsage(AttributeTargets::Class, AllowMultiple = true)]
public ref class AuthorAttribute : Attribute {

StringA name;
public:

AuthorAttribute(StringA name) : name(name) { }

property StringA Name { StringA get() { return name;} }

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kern1ghan") Author("Dennis Ritchie")]
ref class Classl { .

shows a class definition with two uses of the Author attribute. end example]

AttributeUsage has another named parameter (§29.1.2), called Inherited, which indicates whether the
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class
is false then that attribute is not inherited. If it is unspecified, its default value is true.

An attribute class R not having an AttributeUsage attribute attached to it, as in

ref class R : Attribute { .. };

is equivalent to the following:

[AttributeUsage(AttributeTargets::All, AllowMultiple = false)]
ref class R : Attribute { .. };

29.1.2 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public instance constructor
for an attribute class defines a valid sequence of positional parameters for that attribute class. Each non-
static public read-write field and property for an attribute class defines a named parameter for the attribute
class. Both accessors of a property need to be public for the property to define a named parameter.

[Example: The example

[AttributeUsage(AttributeTargets::Class)]
public ref class HelpAttribute : Attribute {

pubTic:
HelpAttribute(stringA url) { // uUrl 1is a positional parameter
-
property StringA Topic { // Topic is a named parameter

StringA get() { .. }
void set(StringA value) { .. }

property StringA Url { stringA get() { .. } }
defines an attribute class named HeTpAttribute that has one positional parameter (StringA Url) and
one named parameter (StringA Topic). Although it is non-static and public, the property Ur1 does not
define a named parameter, since it is not read-write.

This attribute class might be used as follows:

[Help("http://www.mycompany.com/../Classl.htm")]
ref class Classl {

[Help("http://www.mycompany.com/../Misc.htm", Topic ="Class2")]
ref class Class2 {

end example]

Neither a type parameter (§31.1.1) nor an open constructed type (§31.2.1) shall be an argument to the
constructor of a custom attribute.

160

Attributes

29.1.3 Attribute parameter types

Attribute parameter types are the types of positional and named parameters for an attribute class. These
shall be any of the following:

e One of the following types: System: :Boolean, System: :Byte, System: : SByte,
System: :Char, System: :Intl6, System::Int32, System: :Int64, System::Single,
and System: :DoubTe, or any native type that corresponds to one of these types.

e The type System: : StringA.
e The type System: :ObjectA.
e The type System: : TypeA.

e An enum class type, provided it has public accessibility and the types in which it is nested (if
any) also have public accessibility.

e Single-dimensional : :c11: :arrays of the above types.

29.2 Attribute specification

Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a
piece of additional declarative information that is specified for a declaration. Attributes can be specified at
file scope (to specify attributes on the containing assembly) and for accessor-declaration (§19.5.3), class-
specifier (§19.1), delegate specifier (§27.1), elaborated-type-specifier, enum-specifier (§26.1), an
enumerator's identifier, event-definition (§19.6), function-definition, generic-parameter (§31.1.1), member-
declaration (§19.1), parameter-array (§18.4), parameter-declaration, property-definition (§19.5), and
simple-declaration.

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes are specified in
such a list, and the order in which sections attached to the same program entity are arranged, is not
significant. For instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are equivalent.

attributes:
attribute-sections

attribute-sections:
attribute-sections,,, attribute-section

attribute-section:
[attribute-target-specifiero,; attribute-list]

attribute-target-specifier:
attribute-target

attribute-target:
assembly
class
constructor
delegate
enum
event
field
interface
method
parameter
property
returnvalue
struct

161

C++/CLI Language Specification

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-arguments,p

attribute-name:
type-name

attribute-arguments:
(positional-argument-listo;e)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
assignment-expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The
positional arguments (if any) precede the named arguments. A positional argument consists of an attribute-
argument-expression; a named argument consists of a name, followed by an equal sign, followed by an
attribute-argument-expression, which, together, are constrained by the same rules as simple assignment. The
order of named arguments is not significant.

[Note: In the CLI, functions are called methods, so the target specifier for a function is method. end note]

The attribute-name identifies an attribute class. type-name shall refer to an attribute class. [Example: The
example

ref class Classl {};
[classl] ref class class2 {}; // Error

results in an ill-formed program because it attempts to use Class1 as an attribute class when Class1 is not
an attribute class. end example]

The standardized attribute-target names are assembly, class, constructor, delegate, enum, event,
field, interface, method, parameter, property, returnvalue, and struct. These target names
shall be used only in the following contexts:

e assembly — an assembly, in which case, attribute-section shall be followed by a semicolon.
[Example: [assembly:cLSCompTliant(true)]; end example]

e class —arefclass.

e constructor — a constructor.

e delegate — a delegate.

e enum— an enum (native or CLI).

e event—anevent.

162

Attributes

field — a field. A trivial event or trivial property can also have an attribute with this target.
interface — an interface class.

method — a destructor, finalizer, function, operator, property get and set accessors, and event
add, remove, and raise accessors. A trivial event or trivial property can also have an attribute
with this target.

parameter — a parameter in a constructor, function, operator, or property or event accessor.
property — a property.
returnvalue — a delegate, method, operator, and property get accessor.

struct — a value class.

When an attribute is placed at file scope, an attribute-target of assemb1y is required.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. In all other locations, a reasonable default is
applied, but an attribute-target-specifier can be used to affirm or override the default in certain ambiguous
cases (or just to affirm the default in non-ambiguous cases). Thus, typically, attribute-target-specifiers can
be omitted. The potentially ambiguous contexts are resolved as follows:

An attribute specified on a delegate declaration can apply either to the delegate being declared
or to its return value. In the absence of an attribute-target-specifier, the attribute applies to the
delegate. The presence of the de1egate attribute-target-specifier indicates that the attribute
applies to the delegate; the presence of the returnvalue attribute-target-specifier indicates
that the attribute applies to the return value.

An attribute specified on a function declaration can apply either to the function being declared
or to its return value. In the absence of an attribute-target-specifier, the attribute applies to the
function. The presence of the method attribute-target-specifier indicates that the attribute
applies to the function; the presence of the returnvalue attribute-target-specifier indicates
that the attribute applies to the return value.

An attribute specified on an operator declaration can apply either to the operator being declared
or to its return value. In the absence of an attribute-target-specifier, the attribute applies to the
operator. The presence of the method attribute-target-specifier indicates that the attribute
applies to the operator; the presence of the returnvalue attribute-target-specifier indicates
that the attribute applies to the return value.

An attribute specified on a trivial property declaration can apply to the property being declared,
to the associated field (if the property is not abstract), or to the associated set and get accessor
functions. In the absence of an attribute-target-specifier, the attribute applies to the property
declaration. The presence of the property attribute-target-specifier indicates that the attribute
applies to the property; the presence of the field attribute-target-specifier indicates that the
attribute applies to the field; and the presence of the method attribute-target-specifier indicates
that the attribute applies to the accessor functions.

An attribute specified on a trivial event declaration can apply to the event being declared, to the
associated field (if the event is not abstract), or to the associated add and remove functions. In
the absence of an attribute-target-specifier, the attribute applies to the event declaration. The
presence of the event attribute-target-specifier indicates that the attribute applies to the event;
the presence of the field attribute-target-specifier indicates that the attribute applies to the
field; and the presence of the method attribute-target-specifier indicates that the attribute
applies to the functions.

An implementation can accept other attribute target specifiers, the purpose of which is unspecified.
However, an implementation that does not recognize such a target, shall issue a diagnostic.

163

C++/CLI Language Specification

By convention, attribute classes are named with a suffix of Attribute. An attribute-name can either
include or omit this suffix. When attempting to resolve an attribute reference from which the suffix has been
omitted, if an attribute class is found both with and without this suffix, an ambiguity is present, and the
program is ill-formed. [Example: The example

[AttributeUsage(AttributeTargets::Al11)]
public ref class X : Attribute {};

[AttributeUsage(AttributeTargets::Al1)]
public ref class XAttribute : Attribute {};

[X] // error: ambiguity
ref class Classl {};
[XAttribute] // refers to XAttribute

ref class Class2 {};

shows two attribute classes named X and XAttribute. The attribute reference [X] is ambiguous, since it
could refer to either X or XAttribute. The attribute reference [XAttribute] is not ambiguous (although
it would be if there was an attribute class named XAttributeAttribute!). If the declaration for class X is
removed, then both attributes refer to the attribute class named XAttribute, as follows:

[AttributeUsage(AttributeTargets::Al11)]
public ref class XAttribute : Attribute {};

[X] // refers to XAttribute
ref class Classl {};
[XAttribute] // refers to XAttribute

ref class Class2 {};
end example]

A program is ill-formed if it uses a single-use attribute class more than once on the same entity. [Example:
The example

[AttributeUsage(AttributeTargets::Class)]
public ref class HelpStringAttribute : Attribute {
StringA value;
public:
HelpStringAttribute(StringA value) {
this->value = value;

property StringA value { SstringA get() { .. } }
[Helpstring("Description of Classl")]

[Helpstring("Another description of Classl")] // error
public ref class Classl {};

results in the programs’ being ill-formed because it attempts to use HelpString, which is a single-use
attribute class, more than once on the declaration of Class1. end example]

An expression E is an attribute-argument-expression if all of the following statements are true:
e The type of E is an attribute parameter type (§29.1.3).
e At compile-time, the value of E can be resolved to one of the following:
O A constant value.
O A System::TypeA object.
O A one-dimensional : : c17: :array of attribute-argument-expressions.

[Example:

164

Attributes

[AttributeUsage(AttributeTargets::Class)]
public ref class MyAttribute : Attribute {
pubTic:
property int Pl {
int get() { .. }
void set(int value) { .. }

property TypeA P2 {
TypeA get() { .. }
void set(TypeA value) { .. }

property ObjectA P3 {
ObjectA get() { .. }
void set(ObjectA value) { .. }

b
};
[My(P1 = 1234, P3 = gcnew array<int>{1l, 3, 5}, P2 = float::typeid)]
ref class MyClass {};
end example]

The set of attributes applying to a type or function shall be specified on the definition of that type or
function. A declaration of that type or function that is not also a definition shall have either the same
attribute set or no attributes. [Example: Given two attribute types, XAttribute and YAttribute, which
can be applied to classes and functions:

ref class R;

[X]ref class R;

[Y]lref class R;

[X][Y]lref class R;

[X]LY]lref class R {
[X] void FQ;

ok, no 1ist

error, partial list
error, partial list
ok, whole Tist
definition, whole 1ist
error, partial list

NN
NN

[X]1[Y] void R::FO {} // definition, whole 1ist
end example]

29.3 Attribute instances

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the
attribute class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following subclauses.

29.3.1 Compilation of an attribute

The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

e Follow the compile-time processing steps for compiling a new-expression of the form gcnew
T(P). These steps cither result in the program being ill-formed, or determine an instance
constructor on T that can be invoked at run-time. Let us call this instance constructor C.

e [f C does not have public accessibility, then the program is ill-formed.
e For each named-argument Arg in N:
0 Let Name be the identifier of the named-argument Arg.

O Name shall identify a non-static read-write public field or property on T. If T has no such
field or property, then the program is ill-formed.

165

C++/CLI Language Specification

e Keep the following information for run-time instantiation of the attribute: the attribute class T,
the instance constructor C on T, the positional-argument-list P and the named-argument-list N.

29.3.2 Run-time retrieval of an attribute instance
This is governed by the CLI standard.

29.4 Reserved attributes
The following attributes affect the language, as stated:

e System::AttributeUsageAttribute (§29.4.1), which is used to describe the ways in
which an attribute class can be used.

e System::0ObsoleteAttribute (§29.4.2), which is used to mark a member as obsolete.

e System::Security::Permissions::SecurityAttribute and attributes derived from it
(§29.4.4), which is used to invoke declarative security features of the CLI.

29.4.1 The AttributeUsage attribute

The attribute System: :AttributeUsage is used to describe the manner in which the attribute class can be
used, including whether it can be applied more than once to a program element, and whether it is inherited
by classes derived from the class in which the attribute is applied.

A ref class that is decorated with the AttributeUsage attribute shall derive from System: :Attribute,
either directly or indirectly. Otherwise, the program is ill-formed.

The constructor for class AttributeUsageAttribute takes an argument of type
System: :AttributeTargets. This enum class type has a number of enumerators defined, several of
which need further explanation:

e (Class indicates that the attribute can be applied to a ref class.
e Enum indicates that the attribute can be applied to a native or CLI enum.
e Field indicates that the attribute can be applied to a data member of a CLI class type.
e Interface indicates that the attribute can be applied to an interface class.
e Method indicates that the attribute can be applied to a function of a CLI class type.
e Struct indicates that the attribute can be applied to a value class.
[Note: For an example of using this attribute, see §29.1.1. end note]

For more information on this type, refer to Partition IV of the CLI Standard.

29.4.2 The Obsolete attribute
The attribute ObsoTete is used to mark types and members of types that should no longer be used.

If a program uses a type or member that is decorated with the Obsolete attribute, then the compiler shall
issue a diagnostic in order to alert the developer, so the offending code can be fixed. Specifically, the
compiler shall behave as if a corresponding #error directive was encountered if no error parameter (the
second parameter) is provided, or if the error parameter is provided and has the value false. The program
is ill-formed if the error parameter is specified and has the value true.

[Example: In the example

[ObsoTlete("This class is obsolete; use class B instead", true)]
ref struct A {
void FO {}

166

Attributes

ref struct B {
void FO {}

int main(Q) {
AA a = gchew AQ); // diagnostic
a->FQ);

the class A is decorated with the Obsolete attribute. Each use of A in main results in a diagnostic that
includes the specified message, “This class is obsolete; use class B instead.” end example]

For more information on this type, refer to Partition IV of the CLI Standard.

29.4.3 The Conditional attribute

The CLI standard defines the attribute Conditional. This attribute allows languages targeting the CLI to
provide the ability to enable the definition of conditional methods and conditional attribute classes.
C++/CLI does not provide this ability; although attributes of this type are accepted, they have no affect on
code generation or execution.

29.4.4 Security attributes

Security attributes derive from System: :Security::Permissions::SecurityAttribute and shall
only be applied to types, functions, and assemblies. All constructors of security attributes shall take
System::Security::Permissions::SecurityAction (see §22.11 of the CLI Standard) as the first
parameter.

Security attributes associate additional semantics with usage of an assembly, type, or function depending on
the SecurityAction in the first parameter of the attributes constructor.

Semantics of security attributes are provided by the execution engine. A compiler optimization shall
preserve these semantics. For instance, if the compiler inlines a function with a security attribute, the
compiler shall ensure the equivalent action is invoked by the calling function or at the point that the function
is inlined.

29.5 Attributes for interoperation

29.5.1 Interoperation with other CLI-based languages

29.5.1.1 The DefaultMember attribute

The attribute System: :Reflection: :DefaultMemberAttribute is used to provide the underlying
name to the default-indexed property. The attribute is placed on the class, and all overloads of a default-
indexed property share the same name.

29.5.1.2 The MethodimplOption attribute
This attribute is discussed in §19.6, §19.6.2, and §34.7.4.5.

29.5.2 Interoperation with native code
See the discussion of the attribute type D11Import in §18.5.

167

C++/CLI Language Specification

30. Templates

The template syntax is the same for all types, including CLI class types. Templates on CLI class types can
be partially specialized, fully specialized, and non-type parameters of any type (subject to all the constant-
expression and type rules in the C++ Standard) can be used, with the same semantics as specified by the
C++ Standard.

Templates are fully resolved and compiled at compile time, and reside in their own assemblies.

Within an assembly, templates are implicitly instantiated only for the uses of that template within the
assembly.

For metadata details, see §34.17.

30.1 Template declarations

In addition to the template declarations allowed by Standard C++, C++/CLI allows ref class templates, value
class templates, and interface templates. Delegate templates and enum class templates are ill-formed.

To allow constructs such as List<List<int>>, where >> is treated as two tokens instead of one, the
C++ Standard (§14/1) is augmented by the addition of the following text just after the grammar rules:

[Note: The > token following the template-parameter-list of a template-declaration may be the
product of replacing a >> token by two consecutive > tokens (14.2). end note]

The C++ Standard (§14.1/1) is augmented by the addition of the following text just after the grammar rules:

[Note: The > token following the template-parameter-list of a type-parameter may be the product
of replacing a >> token by two consecutive > tokens (14.2). end note]

30.2 Template specialization

To allow constructs such as List<L1ist<int>>, where >> is treated as two tokens instead of one, the
C++ Standard (§14.2/3) is augmented by the addition of the following text after the last normative sentence
in, but before the example:

Similarly, the first non-nested >> is treated as two consecutive but distinct > tokens, the first of
which is taken as the end of the template-argument-list and completes the template-id. [Note: The
second > token produced by this replacement rule may terminate an enclosing template-id construct
or it may be part of a different construct (e.g., a cast). end note]

The example of §14.2/3 is replaced by the following:

template<int i> class X { /* ... */ %}

X< 1>2 > x1; // Syntax error.

X<(1>2)> x2: // Okay.

template<class T> class Y { /* ... */ };
Y<X<1>> X3; // Okay, same as "Y<X<1>> x3;".

Y<X<6>>1>> x4: // Syntax error. Instead, write "Y<X<(6>>1)>> x4:;".

30.3 Attributes

Classes within templates can have attributes, with those attributes being written after the template parameter
list and before the class-key. A template parameter is allowed as an attribute, and also as an argument to an
attribute. [Example:

template<typename T>

[cLSsCompTiant(false)]
ref class R { };

168

Templates

end example]

Functions within templates can have attributes, with those attributes being written after the template
parameter list and before the function definition. [Example:

template <typename T>
[cLsCompTiant(false)]
void f(const T& t) { .. }

end example]

30.4 Type deduction

There is no ordering among the punctuators %, A, &, and *.

If a template parameter is deduced to have the null type (§12.3.4), the program is ill-formed.

30.4.1 Template argument deduction

To accommodate the conversion of <narrow-string-literal-type> and <wide-string-literal-type> to

System: :StringA, the list in the C++ Standard (§14.8.2.1/2) is augmented to include the following:
— If A is <narrow-string-literal-type>, the type "array of n const char" is used in place of A for
type deduction.
— If A is <wide-string-literal-type>, the type "array of n const wchar_t" is used in place of A for
type deduction.

169

C++/CLI Language Specification

31. Generics

Generic types and functions are a set of features—collectively called generics—defined by the CLI to allow
parameterized types. Generics differ from Standard C++’s templates in that generics are instantiated by the
Virtual Execution System (VES) at runtime rather than by the compiler at compile-time.

A generic declaration defines one or more type parameters for a declaration of a ref class, value class,
interface class, delegate, or function. To instantiate a generic type or function from a generic declaration,
type arguments that correspond to that generic declaration’s type parameters shall be supplied. The set of
type arguments that is permitted for any given type parameter can be restricted via the use of one or more
constraints.

The arity of a generic type is the number of type parameters declared explicitly for that type. As such, the
arity of a nested type does not include the type parameters introduced by the parent type.

For metadata details, see §34.18.

31.1 Generic declarations

To accommodate the addition of generics, the grammar for declaration in the C++ Standard (§7) is
augmented, as follows:

declaration:
block-declaration
function-definition
template-declaration
generic-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

A generic declaration is defined as follows:

generic-declaration:
generic < generic-parameter-list > constraint-clause-list,, declaration

generic-parameter-list:
generic-parameter
generic-parameter-list , generic-parameter

Type parameters are defined via a generic-parameter-list, which is a sequence of one or more generic-
parameters (§31.1.1). Constraints are defined via a constraint-clause-list (§31.4).

If the declaration of a generic-declaration is other than a ref class, value class, interface class, delegate, or
function (excluding constructors, destructors, and finalizers), the program is ill-formed.

A program is ill-formed if it declares a property or event as a generic. The accessor functions of a property
or event shall not be generic.

A generic-declaration is a declaration. A generic-declaration is also a definition if its declaration defines a
ref class, a value class, an interface class, a delegate, or a function.

A generic-declaration shall appear only at a namespace scope or class scope declaration.

Except for generic non-member functions, generic declarations that are also definitions can have public or
private assembly visibility (§10.6.1).

170

Generics

A generic type shall not have the same name as any other generic type, template, class, delegate, function,
object, enumeration, enumerator, namespace, or type in the same scope (C++ Standard 3.3), except as
specified in 14.5.4 of the C++ Standard. Except that a generic function can be overloaded either by non-
generic functions with the same name or by other generic functions with the same name, a generic name
declared in namespace scope or in class scope shall be unique in that scope.

Generic type declarations follow the same rules as non-generic type declarations except where noted.
Generic type declarations can be nested inside non-generic type declarations. Generic types can be nested in
native classes.

Generic functions are discussed further in (§31.3).

C++/CLI permits importing from another assembly multiple generic types declared in the same scope to
have the same name, provided each has a different number of generic parameters. [Example:

ref class R { .. };

generic<typename T>
public ref class R { .. };

generic<typename T, typename U>
public ref class R { .. };

end example]

using-declarations shall not be used to make generics from different scopes visible in a given scope, even if
the generics differ in arity. Similarly, if generics from different scopes are found by a lookup because of
using-directives, the lookup is ambiguous.

Generics cannot be explicitly or partially specialized. [Note: As generics do not allow for specialization,
there is no need for disambiguating names with the typename and template keywords. end note]

A generic function or a generic CLI class can be a friend of a native class. All specializations of a generic
shall be made a friend; if any specialization of a generic is excluded from friendship, the program is ill-
formed. [Note: As friendship is only permitted for native classes, and native classes cannot be generics, it is
not possible for a generic to grant friendship to another class or function. end note].

31.1.1 Type parameters

A type parameter is defined in one of the following ways:

generic-parameter:
attributes,y class identifier
attributes,y typename identifier

There is no semantic difference between class and typename in a generic-parameter. A generic-
parameter can optionally have one or more attributes (§29).

A generic-parameter defines its identifier to be a type-name.

The scope of a generic-parameter extends from its point of declaration until the end of the declaration to
which its generic-parameter-list applies.

[Note: Unlike templates, generics has no equivalent to a non-type template-parameter or a template
template-parameter. Neither does generics support default generic-parameters; instead, generic type
overloading is used. end note]

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound to
a run-time type that was specified by supplying a type argument to the generic type declaration. Thus, the
type of a variable declared with a type parameter will, at run-time, be a closed constructed type (§31.2). The
run-time execution of all statements and expressions involving type parameters uses the actual type that was
supplied as the type argument for that parameter.

The literal nuTTptr cannot be converted to a type given by a generic type parameter, except if the type
parameter is known to be a handle type. However, a default constructor expression can be used instead to get

171

C++/CLI Language Specification

a null value for a generic type parameter. In addition, a value with a type given by a generic type parameter
can be compared with nul1ptr using == and ! = unless the type parameter has the value type constraint
(§31.4) [Example:

generic<typename T, typename U>
where U : ref class
ref class R {
void FQO {
Tt TO; // t is initialized to default value
nullptr; // u can be initialized with nullptr,
// because it has the ref class constraint

uu

Jx oL %/
}
1

end example]

Any type used as a generic type parameter shall have linkage.

31.1.2 Referencing a generic type by name

Like templates in Standard C++, within the body of a generic type G<T> any usage of the name (that is
neither qualified nor a generic-id) of that type G (otherwise known as the instance type) is assumed to refer
to the current instantiation. [Example:

generic<typename T>
ref class R {

public:
RO {3} // ok: means R<T>
void f(RA); // ok: means R<T>
'R gQ; // error

end example]

Outside its declaration, a generic type is referenced using a constructed type (§31.2). [Example: Given the
following,

generic<typename T>
ref class List {};

generic<typename U>
void fQO {
List<U>A 11 = gcnew List<U>;
List<int>A 12 = gcnew List<int>;
List<List<StringA>A>A 13 = gcnew List<List<StringA>A>;

some examples of constructed types are List<U>, List<int>, and List<List<StringA>A>. A
constructed type that uses one or more type parameters, such as List<U>, is an open constructed type
(§31.2.1). A constructed type that uses no type parameters, such as List<int>, is called a closed
constructed type (§31.2.1). end example]

31.1.3 The instance type

Each type declaration has an associated constructed type, the instance type. For a generic type declaration,
the instance type is formed by creating a constructed type (§31.2) from the type declaration, with each of the
supplied type arguments being the corresponding type parameter. Since the instance type uses the type
parameters, it can only be used where the type parameters are in scope; that is, inside the type declaration.
Inside the declaration of a ref class, this is a handle to the instance type. Inside the declaration of a value
class, this is an interior pointer to the instance type. For non-generic types, the instance type is simply the
declared type. [Example: The following shows several class definitions along with their instance types:

172

Generics

generic<typename T>

ref class A { // instance type: A<T>
ref class B {}; // instance type: A<T>::B
generic<typename U>

; ref class C {}; // instance type: A<T>::C<U>

class D {}; // instance type: D
end example]

31.1.4 Base classes and interfaces
The base class and interfaces of a generic type declaration shall not be a type parameter, though they can be
a constructed type using a type parameter. [Example:

ref class Bl {};

generic<typename T>
ref class B2 {};

generic<typename T>

interface class I1 {};

generic<typename T>

ref class R1 : T {}; // error

generic<typename T>
ref class R2 : Bl {}; // ok

generic<typename T>
ref class R3 : B2<int>, Il<int> {}; // ok (closed constructed types)

generic<typename T>
ref class R4 : B2<T>, Il<T> {}; // ok (open constructed types)

end example]
A generic class definition shall not use System: :Attribute as a direct or indirect base class.

A generic class definition shall not have an indirect base class that is a template parameter.

31.1.5 Class members

All members of a generic type can use type parameters from any enclosing type, either directly or as part of
a constructed type. When a particular closed constructed type (§31.1.2) is used at run-time, each use of a
type parameter is replaced with the actual type argument supplied to the constructed type.

Properties, events, constructors, destructors, and finalizers shall not themselves have explicit type parameters
(although they can occur in generic classes, and use the type parameters from an enclosing class).

When the type of a member is a type parameter, the declaration of that member shall use that type
parameter’s name without any pointer, reference, or handle declarators. Member access on a member whose
type is a type parameter shall use the -> operator. [Example:
interface class I1 {
void FQ;
s
generic<typename T>
where T : Il
ref class A {
T t; // no *, &, %, or A declarator allowed
public:
void F() {}

void G() {
t->F(); // -> must be used, not

173

C++/CLI Language Specification

end example]

[Note: The compiler only generates one definition for a generic class in metadata. Generics allow value
classes as generic type parameters. Textual substitution of a value class parameter would lead to an ill-
formed program as the -> operator is not allowed for member access. As the VES is responsible for
instantiations of generics, textual substitution is the wrong way of thinking about generic instantiation. end
note]

As a member whose type is a parameter type will be a value class, or a handle to a ref class, interface class,
delegate, or CLI array, the destructor of a generic class will not invoke the destructor on such a member.

Within a generic class definition, access to inherited protected instance members is permitted through an
instance of any open constructed class type constructed from that generic class. [Example: In the following
code

generic<typename T>
ref class B {
protected:

T X;
};
generic<typename T>
ref class D : B<T> {

static void FO {
D<T>A dt = gchew D<T>;

dt->x = TQ; // Ok
D<int>A di = gcnew D<int>;

di->x = 123; // error
D<StringA>A ds = gcnew D<StringA>;
ds->x = "test"; // error

}
s
the first assignment to X is permitted because it takes place through an instance of an open constructed class
types constructed from the generic type. However, the second and third assignments are prohibited because
they take place through an instance of a closed constructed class type. When accessing members of a closed
constructed generic, even within the generic definition, the access rules shall treat that class as an unrelated
entity. end example]

Static operators are discussed in (§31.1.7), other static members are discussed in (§31.1.6), nested types are
discussed in (§31.1.10), and generic functions, in general, are discussed in (§31.3).

31.1.6 Static members

A static data member in a generic class definition is shared amongst all instances of the same closed
constructed type (§31.1.2), but is not shared amongst instances of different closed constructed types. These
rules apply regardless of whether the type of the static data member involves any type parameters or not.

A static constructor in a generic class is used to initialize static data members and to perform other
initialization for each different closed constructed type that is created from that generic class definition. The
type parameters of the generic type declaration are in scope, and can be used, within the body of the static
constructor.

A new closed constructed class type is initialized the first time that either:
e An instance of the closed constructed type is created.
e Any of the static members of the closed constructed type are referenced.

To initialize a new closed constructed class type, first a new set of static data members for that particular
closed constructed type is created. Each of the static data members is initialized to its default value. Next,
the static data members’ initializers are executed for those static fields. Finally, the static constructor is
executed. [Example:

174

Generics

generic<typename T>
ref class C {
static int count = 0;
public:
static cO {
console::writeLine(<C<T>>::typeid);

cO {

count++;

static property int Count {
int get() { return count; }

};
int main(Q) {

C<int>A x1 = gcnew C<int>;
console::WriteLine(C<int>::Count);

C<double>A x2 = gcnew C<double>;
Console::WriteLine(C<double>::Count);
console::WriteLine(C<int>::Count);

C<int>A x3 = gcnew C<int>;
console::WriteLine(C<double>::Count);

console::WriteLine(C<int>::Count);

}

The output produced is:
C 1[system.Int32]
1

C 1[Ssystem.Double]

N R

end example]

Static operators are discussed in §31.1.7.

31.1.7 Operators

Generic class definitions can define operators and conversion functions, following the same rules as non-
generic class definitions. The instance type (§31.1.3) of the class definition shall be used in the declaration
of operators in accordance with the rules for operators in §19.7 or conversion functions in §14.5.3. The
parameter that is not constrained by these rules can be a generic type parameter.

[Example: The following shows some examples of valid operator declarations in a generic class:

generic <typename T>
public ref struct R
{

static RA operator ++(RA operand) { ..}
static int_operator *(RA opl, T op2) { .. }
static explicit operator RA(T value) { .. }

end example]

31.1.8 Member overloading

Functions, instance constructors, and static operators within a generic class definition can be overloaded;
however, this can lead to an ambiguity for some closed constructed types. [Example:

175

C++/CLI Language Specification

generic<typename T1l, typename T2>
ref class X {
pubTic:
void F(T1, 12) { }
void F(T2, T1) { }
void F(int, StringA) { }
int main(QQ {
X<int, double>A x1

gcnew X<int, double>;

x1->F(10, 20.5); // okay

X<double, int>A x2 = gcnew X<double, int>;

x2->F(20.5, 10); // okay

X<int, int>A x3 = gchew X<int, int>;

x3->F(10, 20); // error, ambiguous
X<int, StringA>A x4 = gcnew X<int, StringA>;

x4->F(10, "abc"); // error, ambiguous

}

end example]

A generic class is allowed to have this potential ambiguity; however, a program is ill-formed if it uses a
constructed type to create such an ambiguity.

31.1.9 Member overriding

Function members in generic classes can override function members in base classes, as usual. If the base
class is a non-generic type or a closed constructed type, then any overriding function member cannot have
constituent types that involve type parameters. However, if the base class is an open constructed type, then
an overriding function member can use type parameters in its declaration. When determining the overridden
base member, the members of the base classes shall be determined by substituting type arguments, as
described in §31.2.4. Once the members of the base classes are determined, the rules for overriding are the
same as for non-generic classes. [Example:

generic<typename T>
ref class C abstract {
pubTic:
virtual T FO { .. }
virtual c<T>A GO { .. }
virtual void H(C<T>A x) { .. }
ref class D : C<StringA> {
pubTic:
virtual StringA F(Q) override { .. } //
virtual C<StringA>A G() override { .. } //
virtual void H(C<int>A x) override { .. }
C<StringA>

~OO
NARX

Error, should be

generic<typename T, typename U>
ref class E : C<U> {

public:
virtual U FQ) override { .. } // Ok
virtual C<U>A G() override { .. } // 0ok
virtual void H(C<T>A x) override { .. } // Error, should be C<U>

end example]

31.1.10 Nested types

A generic class definition can contain nested type declarations, except that a generic class definition shall
not contain a native class. The type parameters of the enclosing class can be used within the nested types. A
nested type declaration can contain additional type parameters that apply only to the nested type. A generic
type can be nested within a non-generic type.

176

Generics

Every type declaration contained within a generic class definition is implicitly a generic type declaration.
When writing a reference to a type nested within a generic type, the containing constructed type, including
its type arguments, shall be named. However, from within the outer class, the nested type can be used
without qualification; the instance type of the outer class can be implicitly used when constructing the nested
type. [Example: The following example shows three different correct ways to refer to a constructed type
created from Inner; the first two are equivalent:
generic<typename T>
ref struct outer {
generic<typename U>
ref_class Inner {
public:]
static void F(T t, u u) { }

static void F(T t) {

outer<T>::Inner<StringA>::F(t, "abc™); // These two statements
have

Inner<StringA>::F(t, "abc"); // the same effect

outer<int>::Inner<StringA>::F(3, "abc"); // This type is different
};

end example]

A type parameter in a nested type can hide a member or type parameter declared in the outer type. [Example:

generic<typename T>
ref class outer {
generic<typename T> // valid, hides oOuter’s T
ref class Inner {
T t; // Refers to Inner’s T

};
1

end example]

A program having a generic type nested within a class template is ill-formed.

31.2 Constructed types

A generic type declaration is used as a blueprint to form many different types, by way of applying type
arguments (§31.2.1). A type that is named with at least one type argument is called a constructed type. A
constructed type can be open or closed, as we shall see in §31.2.1.

To accommodate the addition of generics, the grammar for unqualified-id in the C++ Standard (§5.1) is
augmented, as follows by adding generic-id:

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
! class-name
template-id
generic-id
default

A constructed type is referred to by a generic-id:

generic-id:

generic-name < generic-argument-list >
generic-name:

identifier

operator-function-id

177

C++/CLI Language Specification

generic-argument-list is discussed in (§31.2.2).

31.2.1 Open and closed constructed types

All types can be classified as either open constructed types or closed constructed types. An open
constructed type is a type that involves type parameters. More specifically:

e A type parameter defines an open constructed type.

o A CLI array type is an open constructed type if and only if its element type is an open
constructed type.

e A constructed type is an open constructed type if and only if one or more of its type arguments
is an open constructed type. A constructed nested type is an open constructed type if and only if
one or more of its type arguments (§31.2.2) or the type arguments of its containing type(s) is an
open constructed type.

A closed constructed type is a type that is not an open constructed type.

[Example: Given the following,

generic<typename T>
ref class List {};

generic<typename U>
void fO {

List<U>A 11 = gcnew List<U>;

List<int>A 12 = gcnew List<int>;

List<List<StringA>A>A 13 = gcnew List<List<StringA>A>;

List<U>, List<int>, and List<List<StringA>A> are examples of constructed types, where L1ist<U>
is an open constructed type, and List<int> and List<List<StringA>A> are closed constructed types.
end example]

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed constructed types, and open constructed types occur
only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other closed
constructed types. Since an open constructed type does not exist at run-time, there are no static variables
associated with an open constructed type. Two closed constructed types are the same type if they are
constructed from the same type declaration, and their corresponding type arguments are the same type.

A constructed type has the same accessibility as its least accessible type argument.

31.2.2 Type arguments

A generic type or function is instantiated from a generic declaration by specifying type arguments that
correspond to that generic declaration’s type parameters. Type arguments are specified via a generic-
argument-list:

generic-argument-list:
generic-argument
generic-argument-list , generic-argument

generic-argument:
type-id

The arguments for an instantiation of a generic class shall always be explicitly specified. The arguments for
an instantiation of a generic function (§31.3) can either be specified explicitly, or they can be determined by
type deduction.

178

Generics

A generic-argument shall be a constructed type that is a value class, a handle to a ref class, a handle to a
delegate, a handle to an interface, a handle to a CLI array, or it shall be a type parameter from an enclosing
generic. [Note: It is not possible to use a native class, a pointer, a reference, a handle to a value class, a
boxed value type, or a ref class by value as a generic argument. end note]

Each generic-argument shall satisfy any constraints (§31.4) on the corresponding type parameter.

31.2.3 Base classes and interfaces

A constructed class type has a direct base class. If the generic class definition does not specify a base class,
the base class is System: :Object. If a base class is specified in the generic class definition, the base class
of the constructed type is obtained by substituting, for each generic-parameter in the base class definition,
the corresponding generic-argument of the constructed type. [Example: Given the generic class definitions

generic<typename T, typename U>
ref class B { .. };

generic<typename T>
ref class D : B<StringA, array<T>> { .. };

the base class of the constructed type D<int> would be B<StringA, array<int>>.end example]

Similarly, constructed ref class, value class, and interface types have a set of explicit base interfaces. The
explicit base interfaces are formed by taking the explicit base interface definitions on the generic type
declaration, and substituting, for each generic-parameter in the base interface definition, the corresponding
generic-argument of the constructed type.

The set of all base classes and base interfaces for a type is formed, as usual, by recursively getting the base
classes and interfaces of the immediate base classes and interfaces. [Example: For example, given the
generic class definitions:

ref class A { .. };

generic<typename T>
ref class B : A { .. };

generic<typename T>
ref class C : B<IComparable<T>A> { .. };

generic<typename T>
ref class D : C<array<T>> { .. };

the base classes of D<int> are C<array<int>>, B<IComparable<array<int>A>>, A and
System: :0bject. end example]

31.2.4 Class members

The non-inherited members of a constructed type are obtained by substituting, for each generic-parameter in
the member declaration, the corresponding generic-argument of the constructed type. The substitution
process is based on the semantic meaning of type declarations, and is not simply textual substitution
(§31.1.5).

[Example: Given the generic class definition

generic<typename T, typename U>
ref class X {
array<T>A a;
void G(int i, T t, X<U,T> gt);
property U P { U get(); void set(U value); }
int H(double d);
the constructed type X<int, bool> has the following members:

array<int>A a;

void G(int i, int t, X<int,bool>A gt);

property bool P { bool get(); void set(bool value); }
int H(double d);

179

C++/CLI Language Specification

end example]

The inherited members of a constructed type are obtained in a similar way. First, all the members of the
immediate base class are determined. If the base class is itself a constructed type, this might involve a
recursive application of the current rule. Then, each of the inherited members is transformed by substituting,
for each generic-parameter in the member declaration, the corresponding generic-argument of the
constructed type. [Example:
generic<typename U>
ref class B {
pubTic:]
U F(Tong index);
generic<typename T>
ref class D : B<array<T>A> {
public:)
T G(StringA s);

In the above example, the constructed type D<int> has a non-inherited member int G(StringA s)
obtained by substituting the type argument 1int for the type parameter T. D<int> also has an inherited
member from the class definition B. This inherited member is determined by first determining the members
of the constructed type B<array<T>A> by substituting array<T>A for U, yielding array<T>A F(long
index). Then, the type argument int is substituted for the type parameter T, yielding the inherited member
array<int>A F(long index). end example]

31.2.5 Accessibility

A constructed type C<T1, ..., TN> is accessible when all its parts C, T1, ..., TN are accessible. For instance,
if the generic type name C is pub1i c and all of the generic-arguments T1, ..., TN are accessible as public,
then the constructed type is accessible as pub11 c, but if either the type name C or any of the generic-
arguments has accessibility private then the accessibility of the constructed type is private. If one
generic-argument has accessibility protected, and another has accessibility private protected, then
the constructed type is accessible only in this class and its subclasses in this assembly.

The accessibility domain for a constructed type is the most restrictive access of the open type and its type
arguments. Accessibility rules for instantiations of generics are the same as for templates.

31.3 Generic functions

Member functions and non-member functions can be declared generic (§31.1). When a generic function is
declared inside a ref class, value class, or interface definition, the enclosing type can itself be either generic
or non-generic. If a generic function is declared inside a generic type declaration, the body of the function
can refer to both the type parameters of the function, and the type parameters of the containing declaration.
Not all generic type parameters to a generic function need appear as a parameter type or return type of that
function. [Example:

generic<typename T>
void f1(T);

ref class Cl1 {
generic<typename T, typename U>
T f2(1 t) {
U u;

}

generic<typename T>
T f2(T);

180

Generics

generic<typename T1>

ref class c2 {
generic<typename T2>
void f3(Tl, array<T2>A);

end example]

Types not used as a parameter type to a generic function cannot be deduced. Types that cannot be deduced
for function templates cannot be deduced for generic functions.

When used with a generic function, static, extern, and in11ne have the same meaning as when used
with a non-generic function in the same context.

When the type of a parameter or variable is a type parameter, the declaration of that parameter or variable
shall use that type parameter’s name without any pointer, native reference, or handle declarators. [Note: A
parameter or variable type is permitted to be a tracking reference to a type parameter. end note] Member
access on a parameter or variable whose type is a type parameter shall use the -> operator. [Example:
interface class I1 {
void FQ);
}s
generic<typename T>
where T : Il
void H(T t1) { // no *, &, or A declarator allowed
T t 2 = t 1 ; 13 [[13 13
tl->F(Q); // -> must be used, not
t2—>F() ; // [[[

end example]
Type parameters can be used in the type of a parameter array.

A generic function can be bound to a suitably typed delegate.

31.3.1 Function signature matching rules

For the purposes of signature comparisons in function overloading, any constraint-clause-lists are ignored,
as are the names of the function’s generic-parameters; however, the number of generic type parameters is
relevant. [Example:

ref class A {};
ref class B {};

interface class IX {
generic<typename T>
where T : A
void F1(T t);
generic<typename T>
where T : B
void F1(T t); // error, constraints are ignored

generic<typename T>

T F2(T t, int 1);

generic<typename U>

void F2(U u, 1int i); // error, parameter names and return
// type are 1ignored

void F3(int x); // no type parameters

generic<typename T>

void F3(int Xx); // okay, different type parameter count
generic<typename T, typename U>

void F3(int x); // okay, different type parameter count
generic<typename U, typename T>

void F3(int x); // error, type parameter names are ignored

181

C++/CLI Language Specification

end example]

Functions can be overloaded; however, this can lead to an ambiguity for certain calls. [Example:

generic<typename T1l, typename T2>
void F(T1, 12) { }

generic<typename T1l, typename T2>
void F(T2, T1) { }

int main(Q) {
F<int, double>(10, 20.5); // okay
F<double, int>(20.5, 10); // okay
F<int, int>(10, 20); // error, ambiguous

end example]

Although a program is permitted to have generic function declarations that could lead to such ambiguities,
that program is ill-formed if it uses function calls to create such an ambiguity.

Generic functions can be declared abstract, virtual, and override. The signature matching rules
described above are used when matching functions for overriding or interface implementation. When a
generic function overrides a generic function declared in a base class, or implements a function in a base
interface, the constraints given for each function type parameter shall be the same in both declarations.
[Example:

ref struct B abstract {

generic<typename T, typename U>
virtual T F(T t, U u) abstract;

generic<typename T>
_where T : IComparable
virtual T G(T t) abstract;

ref struct D : B {

generic<typename X, typename Y>
virtual X F(X x, Y y) override; // Okay

generic<typename T>))]

virtual T G(T t) override; // error, constraint mismatch
The override of F is valid because type parameter names are permitted to differ. The override of G is invalid
because the given type parameter constraints (in this case none) do not match those of the function being
overridden. end example]

31.3.2 Type deduction

A call to a generic function can explicitly specify a type argument list via a generic-id, or it can omit that
type argument list using a generic-name only and rely on type deduction to determine the type arguments.
[Example:

ref struct X {
generic<typename T>
static void F(T t) {
console::wWriteLine("one");

generic<typename T>
static void F(T t1, T t2) {
Console::writeLine("two");

generic<typename T>
static void F(T tl, int t2) {
console::writeLine("three');

182

Generics

int main() {

X::F<int>(1); // explicit, prints "one"
X::F(1); // deduced, prints "one"
X::F<double>(5.0, 6.0); // explicit, prints "two"
X::F(5.0, 6.0); // deduced, prints "two"
X: :F<double>(5.0, 3); // explicit, prints "three"
X::F(5.0, 3); // deduced, prints "three"
X::F<1nt>(1 2); // error, ambiguous

X::F(1, 2); // error, ambiguous
X::F<doub1e>(1 2); // explicit, prints "three"

3

end example] [Example:
interface class IX {};
ref class R : IX {};

generic<typename T>
void f(T) {}

void g(RA hR) {
f<IXA>(hR); // T is specified to be IX
f(hr); // T is deduced to be R

end example]

Type deduction allows a more convenient syntax to be used for calling a generic function, and allows the
programmer to avoid specifying redundant type information.

In a generic function, if the type of the corresponding argument of the call is either <narrow-string-literal-
type> or <wide-string-literal-type>, the deduced type, P, is System: : StringA. [Note: Type deduction on a
string literal for a function template results in an array of characters instead of System: : StringA. end
note] Otherwise, type deduction within generics is handled like type deduction within templates

(C++ Standard §14.8.2).

If the generic function was declared with a parameter array, then type deduction is first performed against
the function using its exact signature. If type deduction succeeds, and the resultant function is applicable,
then the function is eligible for overload resolution in its normal form. Otherwise, type deduction is
performed against the function in its expanded form.

An instance of a delegate can be created that refers to a generic function declaration. The type arguments
used when invoking a generic function through a delegate are determined when the delegate is instantiated.
The type arguments for a generic delegate can be deduced when invoking the delegate in the same manner as
type deduction for invoking a generic function. If type deduction is used, the parameter types of the delegate
are used as argument types in the deduction process. The return type of the delegate is not used for
deduction. [Example: The following example shows both ways of supplying a type argument to a delegate
instantiation expression:

delegate int D(StringA s, int i);
delegate int EQ);

ref class X {
public:
generic<typename T>
static T F(StringA s, T t);

generic<typename T>
static T GQ;

int main(QQ {
DA dl1 = gcnew D(X::F<int>);// okay, type argument given explicitly
DA d2 = gcnhew D(X::F); // okay, int deduced as type argument
EA el = gcnew E(X::G<int>);// okay, type argument given explicitly
) EA e2 = gcnew E(X::G); // error, cannot deduce from return type

183

C++/CLI Language Specification

end example]

A non-generic delegate type can be instantiated using a generic function. It is also possible to create an
instance of a constructed delegate type using a generic function. In all cases, type arguments are given or
deduced when the delegate instance is created, and a type-argument-list shall not be supplied when that
delegate is invoked.

31.4 Constraints

The set of type arguments that is permitted for any given type parameter in a generic type or function
declaration can be restricted via the use of one or more constraints. Such constraints are specified via a
constraint-clause-list:

constraint-clause-list:
constraint-clause-list,,r constraint-clause

constraint-clause:
where identifier : constraint-item-list

constaint-item-list:
constraint-item
constraint-item-list , constraint-item

constraint-item:
type-id
refiiclass
refiistruct
valueiiclass
valueiistruct
gcnew ()

Each constraint-clause consists of the token where, followed by an identifier that shall be the name of a
type parameter in the generic type declaration to which this constraint-clause applies, followed by a colon
and the list of constraints for that type parameter. There shall be no more than one constraint-clause for each
type parameter in any generic declaration, and the constraint-clauses can be listed in any order. The token
where is not a keyword.

Generic constraints for generic functions are checked after overload resolution. Constraints do not influence
overload resolution.

[Note: Because value class and value struct are turned into a single token early in the phases of
translation, the following code unambiguously has the value class constraint on T:

generic<typename T>
where T : value class

vV F(T t) {.}

It is not possible to create a constraint on a type named value followed by a function that uses an
elaborated-type-specifier for a native class as a return type. end note]

If the type specified by type-id is a ref class type, it is a class constraint. A class constraint shall not be
sealed. A constraint-item-list shall contain no more than one class constraint.

If the type specified by type-id is an interface class type, it is an interface constraint. The same interface
type shall not be specified more than once in a given constraint-clause.

If the type specified by type-id is a generic type parameter, it is a naked type parameter constraint. The
same naked type parameter shall not be specified more than once in a given constraint-clause. A program is
ill-formed if a type parameter results in a constraint upon itself, either directly or indirectly. None of the
constraints specified by a naked type parameter shall conflict with other constraints given in a constraint-
clause. For example, a constraint list shall not have a class constraint and a naked type parameter constraint
that itself has a class constraint.

184

Generics

A class or interface constraint can involve any of the type parameters of the associated type or function
declaration as part of a constructed type, and can involve the type being declared.

Any class or interface type specified as a type parameter constraint shall be at least as accessible as the
generic type or function being declared.

If the type specified by type-id is anything else, the program is ill-formed.

[Example: The following are examples of constraints:

generic<typename T>
interface class IComparable {
int CompareTo(T value);

generic<typename T>

interface class IKeyProvider {
T GetKey();

generic<typename T>

where T : IPrintable
ref class Printer { .. };

generic<typename T>
where T : IComparable<T>
ref class SortedList { .. };

generic<typename K, typename V>

where K : IComparable<Kk>

where VvV : IPrintable, IKeyProvider<kK>
ref class Dictionary { .. };

end example]

If a type parameter has no constraints associated with it then it is implicitly constrained by
System: :0bject. [Note: having a type parameter constrained in this manner severely limits what you can
do with the type within the body of the generic. end note]

Generic constraint-items shall not have an elaborated-type-specifier.

Constraints on generic type parameters do not have influence on the ordering or on overload resolution. The
rules for partial ordering of function templates apply to generic functions.

A program that attempts to explicitly specialize a generic function using function template, is ill-formed.

31.4.1 Satisfying constraints

Whenever a constructed type or generic function is referenced, the supplied type arguments are checked
against the type parameter constraints declared on the generic type or function. For each where clause, the
type argument A that corresponds to the named type parameter is checked against each constraint as follows:

o If'the constraint is a class type, an interface type, or a type parameter, let C represent that
constraint with the supplied type arguments substituted for any type parameters that appear in
the constraint. To satisfy the constraint, it shall be the case that an object of type A is convertible
to an object of type C by one of the following:

O An identity conversion
0 A handle conversion
0 A boxing conversion

[Example:

185

C++/CLI Language Specification

interface class I {};
ref class ¢ : I {};
value class Vv : I {};

generic<typename T>
where T : I
ref class R {};

R<IFA> rl; // satisfies constraint with identity conversion
R<CA> r2; // satisfies constraint with handle conversion
R<V> r3; // satisfies constraint with boxing conversion

generic<typename U>
where U : T
ref class Q {
R<U> r4; // satisfies constraint, the synthesized type for
// U has valid conversions to T's constraint

end example]

o If'the constraint is the ref class constraint, the type A shall satisfy one of the following:

(0]

(0]

A is a handle type.

A is a type parameter that satisfies the ref class constraint (either directly or transitively
because it is constrained by another type parameter that satisfies the ref class constraint).

o If'the constraint is the value class constraint, the type A shall satisfy one of the following:

(0]

A is a value type other than a pointer and is not the generic System: :NulTlable type.
[Note: Note that System: :valueType and System: : Enum are reference types so they do
not satisfy this constraint. end note]

A is a type parameter having the value type constraint (either directly or transitively because
it is constrained by another type parameter that has the value type constraint).

e Ifthe constraint is the constructor constraint gchew(), the type argument A shall not be abstract
and shall have a public default constructor. This is satisfied if one of the following is true:

(0]

O O O o

A is a value type, since all value types have a public default constructor.

A is a type parameter having the value type constraint.

A is a class that is not abstract, A contains an explicitly declared public default constructor.
A is not abstract and has a default constructor.

A is a type parameter having the constructor constraint (either directly or transitively
because it is constrained by another type parameter that satisfies the constructor constraint).

A program is ill-formed if it contains a generic type one or more of whose type parameters’ constraints are
not satisfied by the given type arguments.

Since type parameters are not inherited, constraints are never inherited either. [Example: In the code below,
D shall specify a constraint on its type parameter T, so that T satisfies the constraint imposed by the base
class B<T>. In contrast, class E need not specify a constraint, because L1st<T> implements IEnumerable

for any T.

generic<typename T>
where T: IEnumerab1e
ref class B { .

generic<typename T>
where T: IEnumerable
ref class D : B<T> { .. };

generic<typename T>
ref class E : B<List<T>A> { .. };

186

Generics

end example]

31.4.2 Member lookup on type parameters

Templates wait to perform lookup with a type parameter until the type parameter is replaced by a type
argument. Generics perform lookup at the point of defining the generic rather than the point of
specialization. The results of lookup involving a type given by a type parameter T depends on the
constraints, if any, specified for T. Lookup replaces the type of the generic type parameter T with a type as
specified by one of the following cases:

L.

If T has a naked type parameter constraint N, then a type is synthesized for N according to constraints
and the rules one two through six below. If the synthesized type for N would satisty all other
constraints of T, then the type synthesized for N replaces T. Otherwise, all the constraints of N are
added to the constraints of T and type is synthesized according to rules two through six below.

If T has no constraints or only the constructor constraint, System: :Object replaces T. If lookup
selects the constructor, the type is created by calling System: :Activator: :CreateInstance.

If T has the value class constraint, then a value class V is synthesized with the following
characteristics. V replaces T for the purpose of lookup.

e If T has any interface constraints, V provides an implementation for each interface. If lookup and
overload resolution selects one of these functions, the constraint is met by the interface function
implemented by the synthesized function.

If T has the ref class constraint, then a ref class R is synthesized with the following characteristics. R
replaces T for the purpose of lookup.

e IfT has any interface constraints, R provides an implementation for each interface. If lookup and
overload resolution selects one of these functions, the constraint is met by the interface function
implemented by the synthesized function.

e If T has the constructor constraint, R provides a public constructor with no parameters. If lookup
selects this synthesized constructor, the type is created by calling
System: :Activator::CreateInstance.

If T has a base class constraint B, and if B would satisfy all other constraints of T, then B replaces T.
Otherwise, a ref class R immediately deriving from B is synthesized with the following
characteristics. R replaces T for the purpose of lookup.

e IfT has any interface constraints, R provides an implementation for each interface function that
would not already be satisfied by deriving from B. If lookup and overload resolution selects one
of the synthesized functions, the constraint is met by the interface function implemented by the
synthesized function. [Note: if a base class constraint and an interface constraint has the same
function signature, such that the base class function could implement the interface function, the
call to that function through the generic type parameter is made through the base class
constraint. end note]

e If T has the constructor constraint, R provides a public constructor with no parameters. If lookup
selects this synthesized constructor, the type is created by calling
System: :Activator::CreateInstance.

If T has neither a ref class constraint, a value class constraint, nor a base class constraint, a class
type RV that is both a ref class and a value class is synthesized with the following characteristics.
(Such a hybrid class can be synthesized by doing lookup twice using both a ref class and value class
and ensuring that the result matches.)

e If T has any interface constraints, RV provides an implementation for each interface. If lookup
and overload resolution selects one of these functions, the constraint is met by the interface
function implemented by the synthesized function.

187

C++/CLI Language Specification

e If T has the constructor constraint, the ref class represented by RV provides a public constructor
with no parameters. If lookup selects this synthesized constructor, the type is created by calling
System: :Activator::CreateInstance

[Example: Consider the following code:

interface class IMethod {
void FQ;

ref struct R : IMethod {
virtual void G() = IMethod::F {
console::writeLine("R::G");

void FQ {
console::writeLine("R::F");

1

generic<typename X>

where X : IMethod

void G1(X x) {
x->FQ);

generic<typename X>

where X : R, IMethod

void G2(X x) {
x->F(Q);

template<typename X>
void T(X x)
x->F(Q);

int main(Q {
RA r = gchew R;
G1(r);
G2(r);
T(r);

The program prints the following output.

R::G
R::F
R::F

G1’s type parameter only has one interface constraint, so a synthesized type is created with the function F
that implements the constraint. Thus the call to F in the body of G1 is through the interface. G2’s type
parameter has both a base class constraint and an interface constraint. The base class already implements the
interface, and thus X is replaced with the R within the body of G2 for the purpose of lookup. end example]

31.4.3 Type parameters and boxing

When a value class type overrides a virtual method inherited from System: :0bject (such as Equals,
GetHashCode, or ToString), invocation of the virtual function through an instance of the value class type
doesn’t cause boxing to occur. This is true even when the value class is used as a type parameter and the
invocation occurs through an instance of the type parameter type.

Boxing never implicitly occurs when accessing a member on a constrained type parameter. For example,
suppose an interface ICounter contains a function Increment which can be used to modify a value. If
ICounter isused as a constraint, the implementation of the Increment function is called with a reference
to the variable that Increment was called on, never a boxed copy.

188

Generics

31.4.4 Conversions involving type parameters
The conversions that are allowed on a type parameter T depend on the constraints specified for T.

For a generic type or function that have both class and interface constraints, type conversions defined in a
class constraint are always preferred over those in an interface constraint.

189

C++/CLI Language Specification

32. Standard C and C++ libraries

Except for those requirements described elsewhere in this Standard, the interaction between the CLI library
and the Standard C and C++ libraries is unspecified.

190

CLI libraries

33. CLI libraries

33.1 Custom modifiers

Implementations of Standard C++ distinguish between different signatures by using name mangling;
however, not only is this a language-specific solution, the mangling scheme used varies from one
implementation to the next. As such, this approach is not viable in C++/CLI, where interoperability between
different C++ implementations is required, and interoperability between different languages is desired.
Custom modifiers address this issue.

Custom modifiers (CLI Standard, Partition II, “Types and signatures”), defined in ILAsm using modreq
(“required modifier”) and modopt (“optional modifier”), are similar to custom attributes except that custom
attributes are attached to a declaration, while custom modifiers are part of that declaration’s signature. Each
custom modifer associates a type reference with an item in the signature. Two signatures that differ only by
the addition of a custom modifier (required or optional) shall not be considered to match. Signature
matching is discussed further in §33.1.1. Custom modifiers have no other effect on the operation of the VES.

33.1.1 Signature matching
Consider the following class definition:

public ref class X {
public:
static void F(Cint* pl) { .. }
static void F(const int* p2) { .. }
private:
static int* p3;
static const int* p4;
The signatures of these four members are recorded in metadata as follows:
.method public static void F(int32* p1) .. { .. }
.method public static void F(int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)* p2) .. { .. }
.field private static int32* p3
.field private static int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)* p4

[Note: Within the CLI context, the fully qualified name of a type uses dot (.) separators, while within a
C++ context, a double colon (: :) is used instead. end note]

Clearly, the two signatures for F differ, allowing these declarations as overloads.

Calls to these functions, and the corresponding code they generate, are as follows:

int* ql = nullptr;
X::F(ql);

call void X::F(int32%)

const int* g2 = nullptr;
X::F(g2);

call void X::F(int32)))
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)*)

The correct function is called by using an exactly matching signature in the call instruction. (If no
matching signature is found at runtime, an exception of type System: :MissingMethodException is
thrown.)

Accesses to the data members are matched in a similar fashion:

191

C++/CLI Language Specification

static void F(int* pl) {
p3 = pl;
p4 = pl;

h
.method public static void F(int32* pl) .. {

Tdarg.0

stsfld int32* X::p3

Tdarg.0

stsfld int32
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)* X::p4

-

static void F(const int* p2) {
p4 = p2;

.method public static void F(int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)* p2) .. {

Tdarg.O
stsfld int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst)*
X::p4

.

The fields are accessed using an exactly matching signature in the stsf1d instruction. (If no matching
signature is found at runtime, an exception of type System: :MissingFieldException is thrown.)

33.1.2 modreqg vs. modopt

The distinction between required and optional modifiers is important to tools (such as compilers) that deal
with metadata. A required modifier indicates that there is a special semantic to the modified item, which
shall not be ignored, while an optional modifier can simply be ignored. For example, volatile-qualified
data members shall be marked with the IsvolatiTe modreq. The presence of this modifier cannot be
ignored, as all accesses of such members shall involve the use of the volatile. prefixed instruction (see
§33.1.5.9 for an example). On the other hand, the const qualifier can be modelled with a modopt since a
const-qualified data member or a parameter that is a pointer to a const-qualified object, requires no
special treatment.

The CLI itself treats required and optional modifiers in the same manner.

33.1.3 Modifier syntax

The following grammar is a subset of that defined by the CLI Standard for fields and methods. For
expository purposes, this extract has been significantly simplified. (For the complete, non-simplified,
version, refer to Partition II of the CLI Standard.)

Field:
.field Type Id
Method:
.method Type MethodName (Parameters) { MethodBody }
Parameters:
[Param [, Param]*]
Param:
Type [Id]

192

CLI libraries

Type:
int32
Type
Type []
Type modreq ([AssemblyName] NamespaceName . Id)
Type modopt ([AssemblyName] NamespaceName . Id)

The Id in Field refers to the name of the data member. The Id in Param refers to the name of the optional
function parameter; this name is not part of that function’s signature. The Id in Type for a modopt and
modreq refers to the name of the custom modifier type. This type shall be a non-nested ref class having
public visibility. [Note: Typically, a modifier class is sealed and has no public members. end note]
[Example: Here are some data and function member definitions, and the metadata produced for each of their
declarations:
public ref class X {
int f1;
const int f2;
const int* f3;
const int** f4;
const int* const* f5;
array<int>A f6;
array<int*>A f7;
const array<int>A f8;
array<const int>A f9;
const int* FO { .. }
) void F(int x, const int* y, array<int>A z) { ..}
.field private int32 f1

.field private int32
modopt([mscorlib]System.Runtime.CompilerServices.IsConst) f2

.field private int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)* f3

.field private int32)))
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)** f4

.field private int32)))
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)*
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)* f5

.field private int32[] f6
.field private int32*[] f7

.field private int32[]
modopt([mscorlib]System.Runtime.CompilerServices.IsConst) f8

.field private int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsConst)[] f9

.method private instance int32))
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)*

FO .. { ..}

.method private instance void F(int32 x,
int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst)*
y, int32[] z) .. { .. }

end example]

33.1.4 Types having multiple custom modifiers
A Type can contain multiple modreqs and/or modopts. [Example:

public ref class X {
const volatile int m;

193

C++/CLI Language Specification

.field private int32))))
modreq([mscorlib]System.Runtime.CompilerServices.Isvolatile)
modopt([mscorlib]System.Runtime.CompilerServices.IsConst) m

end example]

33.1.5 Standard custom modifiers

With the exception of IsVolatile (which is defined by the CLI Standard), all of the modifiers documented
in this subclause are C++/CLI-specific.

These modifier types are sealed, they are derived from System: :0Object, their public key is [00 00 00 00
00 00 00 00 04 00 00 00 00 00 00 00], they have the attribute CLSComp1iantAttribute(true), they
belong to the library Runtimelnfrastructure, they reside in the namespace

System: :Runtime: :CompilerServices, and they are part of the assembly mscorlib.

33.1.5.1 IsBoxed

[Note: This modreq type is not required by this Standard; however, at least one implementation provides it to
support the handle type punctuator A when used with value types.

Description:

This type is used in the signature of any data member to indicate that member is a handle to a value type. It
is also used in a function signature to indicate a return type and parameters that are handles to value types.
When emitted, this type shall be immediately preceded by class [mscorlib]System.valueType and
modopt (v), in that order, where V is the value type name.

public value class Vv {};
public ref class C {};

public ref class X {

int* ml;
intA m2;
VA m3;
CA m4;
public:

void F(int* x) { .. }

void F(intA x) { .. }

const signed charA F(VA v, cA c) { .. }
.field private int32* ml

.field private class [mscorlib]system.valueType
modopt([mscorlib]System.Int32)
modreq([mscorlib]System.Runtime.CompilerServices.IsBoxed) m2

.field private class [mscorlib]system.valueType modopt(V)
modreq([mscorlib]System.Runtime.CompilerServices.IsBoxed) m3

.field private class C m4
.method public instance void F(int32* x) .. { .. }

.method public instance void F(class [mscorlib]System.valueType
modopt([mscorlib]System.Int32)
modreq([mscorlib]System.Runtime.CompilerServices.IsBoxed) x) .. { .. }

.method public instance class [mscorlib]System.valueType
modopt([mscorlib]System.Runtime.CompilerServices.IsConst)
modopt([mscorlib]System.SByte)
modreq([mscorlib]System.Runtime.CompilerServices.IsBoxed)
F(class [mscorlib]System.valueType modopt (V)
modreq([mscorlib]System.Runtime.CompilerServices.IsBoxed) v,
class c o) .. { ..}

In the case of m2, the signature indicates that the field is a handle to type System: :vValueType. The
particular kind of value type is then indicated by the value-type special modopt that follows,
[mscorlib]System.Int32; thatis, type int. Similarly, in the case of m3, this value-type special modopt

194

CLI libraries

is the user-defined type V. The second and third overloads of F also use value-type special modopts, namely
[mscorlib]System.Int32 and [mscorlib]System.SByte, to indicate int and signed char,
respectively . As suggested by this example, a value-type special modopt can be any value type. As such, C
does not result in modopt generation, as that type is a ref type, not a value type. end note]

33.1.5.2 IsByValue
This modreq type supports the passing of objects of a ref class type by value.
Description:

This type is used in the signature of a function. However, it is not used to indicate that a ref class value is
returned by a function; for that, see IsUdtReturn (§33.1.5.8). [Example:

public ref struct R {
static void F(R r) { .. }

.class public .. R {

.method public static void F(class R modopt(
[mscorlib]System.Runtime.CompilerServices.IsByvalue) r) .. { .. }

end example]

33.1.5.3 IsConst

This modopt type supports the const qualifier.

Description:

This type can be used in the signature of any data member or function.

Numerous examples of the use of this modifier are shown in §33.1.1, §33.1.3, and §33.1.4.

33.1.5.4 IsExplicitlyDereferenced
This modopt type supports the use of interior pointers and pinning pointers.
Description:

This type can be used in the signature of any function or local variable. [Example:

public ref struct X {
void F(interior_ptr<int> x) { .. }
void F(interior_ptr<unsigned char> x) { .. }

.method .. void F(int32& modopt(
[m?cor}ib]System.Runtime.CompﬂerServices.IsEpoc1't1yDereferenced) X)

.method .. F(unsigned int8& modopt(
[m?cor}ib]System.Runtime.Comp11erServ1ces.IsExp11cit1yDereferenced) X)

end example]

33.1.5.5 IsImplicitlyDereferenced
This modopt type supports the reference type punctuators & and %.
Description:

This type is used in the signature of any data member to indicate that member is a reference. It is also used
in a function signature to indicate parameters that are passed by reference or that that function returns by
reference. [Example:

195

C++/CLI Language Specification

ref class X {
int* ml;
int& m2;
public:
void F(int* x) { .. }
void F(int& x) { }
void F(X% x) {. }
) int& GO { .. }
.field private int32* ml

.field private int32* modopt(
[mscorlib]System.Runtime.CompilerServices.IsImplicitlyDereferenced) m2

.method .. void F(int32* x) .. { .. }

.method .. void F(int32* modopt(
[m?corlib]System.Runtime.Comp11erServ1ces.IsImp1icit1yDereferenced) X)

.method .. void F(class X modreq([mscorlib]
System.Runtime.CompilerServices.IsImplicitlyDereferenced) x) .. { .. }

.method .. int32* modopt([mscorlib]
System.Runtime.CompilerServices.IsImplicitlybereferenced) GQ .. { .. }

end example]

33.1.5.6 IsLong

[Note: This modopt type is not part of this Standard; however, it is used by at least one implementation for
two unrelated purposes: supporting the types Tong int and unsigned Tong int as synonyms for int
and unsigned 1int, respectively, and supporting the type Tong doubTe as a synonym for double

Description:

IsLong can be used in the signature of any data member or function.

public ref class X {
int i;
Tong int 11i;
double d;
Tong double 1d;
pubTlic:
unsigned int F(unsigned int* pu) { . }
unsigned long int F(unsigned long int* pul) { ..}

doubTe F(double* pd) { .. }
Tong double F(long double® pld) { .. }

.field private int32 i

.field private int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsLong) 1i

.field private float64 d

.field private float64
modopt ([mscorlib]System.Runtime.CompilerServices.IsLong) 1d

.method .. unsigned int32 F(unsigned int32* pu) .. { .. }

.method .. unsigned int32
modopt ([mscorlib]System.Runtime.CompilerServices.IsLong)
F(Cunsigned int32
mo?opt§[mscor1ib]5ystem.Runtime.Compi1erServices.IsLong)* pul)

.method .. float64 F(float64* pd) .. { .. }

196

CLI libraries

.method .. float64)
modopt ([mscorlib]System.Runtime.CompilerServices.IsLong)
F%j}oat%4 mgdopt([mscor]ib]System.Runtime.Comp11erServ1ces.IsLong)*
p R

end note]

33.1.5.7 IsSignUnspecifiedByte
This modopt type supports plain char’s being a type separate from signed char and unsigned char

Description:
This type can be used in the signature of any data member or function. [Example:

public ref class x {
char c;
signed char sc;
unsigned char uc;

public:
char* F(char* pl1) { .. }
char* F(signed char* p2) { .. }
char* F(unsigned char* p2) { .. }

The code generated from an implementation in which a plain char is signed, as as follows:

.field private int8 modopt())) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte) c

.field private int8 sc
.field private unsigned int8 uc

.method .. int8 modopt())) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*

F(int8 modopt())) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)* pl)

.method .. int8 modopt())) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*

F(int8* p2) .. { .. }

.method .. int8 modopt())) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*

FCunsigned int8* p2) .. { .. }
while that generated from an implementation in which a plain char is unsigned, is shown below:

.field private unsigned int8 modopt()) o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte) c

.field private int8 sc
.field private unsigned int8 uc

.method .. unsigned int8 modopt(
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*
F(unsigned int8 modopt(
[m?corlib]System.Runtime.Comp11erServ1ces.IsSignUnspecifiedByte)* pl)

.method .. unsigned int8 modopt(o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*
FCunsigned int8* p2) .. { .. }

.method .. unsigned int8 modopt(o
[mscorlib]System.Runtime.CompilerServices.IsSignUnspecifiedByte)*
F(unsigned int8* p2) .. { .. }

end example]

197

C++/CLI Language Specification

33.1.5.8 IsUdtReturn
This modreq type supports the returning of objects of a ref class type by value.

Description:

This type is used in the signature of a function. However, it is not used to indicate a ref class value that is
passed to a function; for that, see IsByvalue (§33.1.5.2). [Example:

public ref struct R {
RO { ..}
R(R% r) { ..}
RFO { ..}
.method .. void modreq([mscorlib]
System.Runtime.CompilerServices.IsudtReturn) F(class R& A_1) .. { .. }

end example]

33.1.5.9 IsVolatile

This modreq type supports the volatile qualifier. (Although Isvolatile is part of the CLI Standard, for
convenience, it is documented here as well.)

Description:
This type can be used in the signature of any data member or function.

volatile-qualified data member, local variable, and parameter declarations shall be marked with this
modreq. Furthermore, each access to such a member, variable, or parameter shall also be marked with this
modreq.

Any compiler that imports metadata having signature items that contain the volatile modreq is required to
use volatile. prefixed instructions when accessing memory locations that are volatile-qualified.
[Example:

public ref class x {
volatile int* pl;

public:
void F(volatile 1int* p2, int* p3)
*pl = 1;
*p2 = 2;
*p3 = 3;
pl = 0;
}
};

.field private int32
modreq([mscorlib]System.Runtime.CompilerServices.Isvolatile)* pl

.method .. void F(int32
modreq([mscorlib]System.Runtime.CompilerServices.Isvolatile)* p2,
int32* p3) .. {

Tdarg.0

1df1d int32 modreq([mscorlib]
System.Runtime.CompilerServices.Isvolatile)* x::pl

Tdc.i4.1

volatile. // prefix instruction needed when dereferencing pl

stind.i4

ldarg.1
T1dc.14.2
volatile. // prefix instruction needed when dereferencing p2
stind.i4

ldarg.2
Tdc.i4.3
stind.i4 // no prefix instruction needed when dereferencing p3

198

CLI libraries

Tdarg.0
Tdc.i4.0
stfld int32 modreq([mscorlib]
System.Runtime.CompilerServices.Isvolatile)* x::pl
/ no prefix instruction needed; not dereferencing pl
ret

}

Note that given the declaration volatile int* pl, plisnotitself volatile-qualified; however, *p1l is.
end example]

33.2 Standard attributes
A conforming C++/CLI implementation shall provide the attribute types described below:

33.2.1 NativeCppClass

Each native class is encoded in metadata as a value class marked with the attribute NativeCppcClass,
which is defined as follows:
[System: :AttributeUsage(System: :AttributeTargets::Struct,Inherited=true)]
public ref class NativeCppClassAttribute sealed : System::Attribute {
public:]
NativeCppClassAttribute (O { /* .. */ }

This type has the following characteristics: Its public key is [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00
00], it has the attribute CLSCompTiantAttribute(true), it belongs to the library RuntimeInfrastructure,

it resides in the namespace System: :Runtime: :CompilerServices, and it is part of the assembly
mscorlib.

199

C++/CLI Language Specification

34. Metadata

This clause is intended to introduce metadata generation; however, the coverage is not exhaustive. For a
definitive description of that topic, refer to the CLI standard, especially Partition II.

34.1 Basic concepts

34.1.1 Importing types from assemblies
Ordinarily, when types are referred to in metadata, they are fully qualified using the following form:

[assembly-name] namespace-name . type-name

Exceptions are C++/CLI fundamental type names (which are synonyms for CLI built-in type names) and
synonyms for CLI built-in type names used directly. [Example:

#using <mscorlib.d11> // redundant
#using <System.dl11> // needed for socket
#using <System.Xml.d11> // needed for XmlTextReader

int main(Q {
System: :Text::StringBuilderA streld;
System: :Net::Sockets: :SocketA soc;
System: :Xml: :XmlTextReaderA xtr;

int i; // a synonym for System::Int32;
// which 1is equivalent to int32

System: :Int64 j; // equivalent to int64

System: :StringA str; // " " string

System: :ObjectA obj; // " " object

3
.method .. main() .. {

.locals ([0] class [mscorlib]System.Text.StringBuilder V_0,
1] class [System.Xml]System.Xml.XmlTextReader V_1,
[2] class [System]System.Net.Sockets.Socket Vv_2,
[3] int32 Vv_3,

4] int64 Vv_4,

5] string V_5,

6] object V_6)

/e
| S | N | -

i
end example]

34.2 Types

34.2.1 Reference types

A tracking reference to a ref class or interface class type shall be emitted into metadata as that type with the
modopt IsImplicitlyDereferenced (§33.1.5.5). A tracking reference to a value class type shall be
emitted into metadata as a managed pointer to type without that modopt. [Example:

public ref class R {};

public value class Vv {};
public interface class I {};

void F1(R% trl) {}
void F2(1% tr2) {}
void F3(v% tr3) {}
void F4(int% tr3) {}

200

Metadata

.method assembly static void F1l(class R modreq([mscorlib]
System.Runtime.CompilerServices.IsImplicitlyDereferenced) trl) .. { .. }

.method assembly static void F2(class I modreq([mscorlib]
System.Runtime.CompilerServices.IsImplicitlyDereferenced) tr2) .. { .. }

.method assembly static void F3(valuetype V& tr3) .. { .. }
.method assembly static void F4(int32& tr3) .. { .. }

end example]

34.2.2 Interior pointers

An interior pointer to a type shall be emitted into metadata as a managed pointer to that type with the
modopt IsExplicitlyDereferenced (§33.1.5.4). [Example:

public ref class R {};
public value class VvV {};
public interface class I {};

void Fl(interior_ptr<RA> ipl) {}
void F2(interior_ptr<IA> 1ip2) {}
void F3(interior_ptr<v> ip3) {}

void F4(interior_ptr<int> ip3) {}

.method assembly static void Fla(class R& modopt([mscorlib]
System.Runtime.CompilerServices.IsExplicitlyDereferenced) ipl) .. { .. }

.method assembly static void F2a(class I& modopt([mscorlib]
System.Runtime.CompilerServices.IsExplicitlyDereferenced) ip2) .. { .. }

.method assembly static void F3a(valuetype V& modopt([mscorlib]
System.Runtime.CompilerServices.IseExplicitlyDereferenced) ip3) .. { .. }

.method assembly static void F4a(int32& modopt([mscorlib]
System.Runtime.CompilerServices.IsExplicitlyDereferenced) ip3) .. { .. }

end example]

34.2.3 Pinning pointers

A pinning pointer shall be emitted into metadata with the modifier pinned and the modopt
Isexplicitlybereferenced (§33.1.5.4). [Example:

value struct Vv {
int Data;
void FO {
pin_ptr<v> ppv = this;
V¥ pv = ppv;
}
};

int main() {
V v;
pin_ptr<v> ppv = &v;
int* pi = &ppv->Data;

.class .. Vv .. {
.field public int32 Data
.method .. FO .. {

“locals ([0] valuetype V& pinned modopt([mscorlib]

System.Runtime.CompilerServices.IsExplicitlyDereferenced) V_0,
[1] valuetype V* Vv_1)

201

C++/CLI Language Specification

.method .. main() .. {

locals ([0] valuetype V& pinned modopt([mscorlib]
System.Runtime.CompilerServices.IsExplicitlyDereferenced) V_0,
[1] int32* v_1,
[2] valuetype V V_2)
=

end exaple]

34.2.4 Native arrays

The encoding of native arrays in metadata is unspecified. [Note: This does not cause interop problems
because such arrays cannot have publi c visibility. end note]

34.3 Variables

34.3.1 File-scope and namespace-scope variables

The encoding of file-scope and namespace-scope variable declarations and definitions in metadata is
unspecified. [Note: This does not cause interop problems because such declarations and definitions cannot
have pub1i c visibility. end note]

34.4 Conversions

34.4.1 String literal conversions

When a <narrow-string-literal-type> or <wide-string-literal-type> is converted to System: : StringA, the
result is treated as a CLI string literal. [Example:

void F(StringA s);

F("red\t" "car\n");
F("ABC\XFF");

FC(L"bTue™);

F(L"\XFF" L"\XFE") ;

Tdstr "red\tcar\n"

call void F(string)

ldstr bytearray (41 00 42 00 43 00 FF 00)
call void F(string)

ldstr "blue"

call void F(string)

Tdstr bytearray (FF 00 FE 00)

call void F(string)

end example]

34.4.2 Boxing conversions

A boxing conversion is achieved via the box instruction, as specified in the CLI Standard, Partition IIT, §4.
This causes a runtime bitwise copy of the value class instance to an object on the CLI heap. [Example:

int main(Q) {
Console::writeLine("{0}, {1}", 10, TimeSpan::Minvalue);

202

Metadata

.method .. main() .. {

Tdstr "i = {0}"
ldc.i4.s 10
box [mscorlib]System.Int32
T1dsfld valuetype [mscorlib]System.TimeSpan
[mscorlib]System.TimeSpan: :Minvalue
box [mscorlib]System.TimeSpan
call void [mscorlib]System.Console: :WriteLine(string, object,
ob%ect)
dc.i4.0
ret

end example]

34.4.3 Conversion functions

In ref classes, implicit conversion functions shall have the name op_ImpTicit, and explicit conversion
functions shall have the name op_Exp11icit. In native classes, implicit conversion functions shall have the
name <op_Imp1icit>, and explicit conversion functions shall have the name <op_Exp1icit>. All
conversion functions shall be marked specialname. op_Implicit and op_Exp1icit can be overloaded
on their return type. [Example:

public value struct Decimal {

gtatjc operator Decimal(int value);
static explicit operator double(becimal value);

explicit operator float(Q);
.class public sequential .. becimal .. {
.method public specialname static valuetype Decimal op_Implicit(
int32 value) .. { ..
.method public specialname static float64 op_Explicit(
valuetype Decimal value) .. { .. }

.method public specialname instance float32 op_Explicit()

end example]

Converting constructors are emitted as constructors, never as conversion functions. (Constructors in ref
classes and value classes are always explicit.)

34.5 Expressions

34.5.1 Class member access

When using an instance of a value type to call a virtual function in a base class (which can only be
System: :valueType or System: :Object), and that value type does not itself override that function, the
instance of the value type shall be boxed. In no other cases shall accessing a member of a value type cause
boxing. [Example:
value struct Vv {
virtual int GetHashCode() override { .. }
int main(QQ {
V v;
. v.GetHashCode(); // calls V::GetHashCode
v.ToString(Q); // calls valueType::ToString

203

C++/CLI Language Specification

.method .. main() .. {

.locals ([0] valuetype Vv Vv_0)
dloca.s V_0

initobj \Y

Tdloca.s Vv_0

call instance int32 V::GetHashcode()

Tdloc.0

box V

callvirt instance string [mscorlib]System.valueType::ToString()

-

As V overrides GetHashCode, no box instruction is needed before the call instruction. However, as V does
not override ToStr1ing, the version from ValueType is used, resulting in a box instruction followed by a
callvirt instruction.

end example]

34.5.2 Dynamic cast

If a run-time check is applied to the cast, and T is a handle or reference to a CLI class type, the run-time
check shall be performed using the isinst instruction.

34.5.3 Safe cast

When a “handle to cv2 B” is cast to a “handle to cvl D”, a run-time check is performed by the castclass
instruction to determine that D inherits from B. The result of the conversion is the result of that instruction.

When a “cv2 B” is cast to a “tracking reference to cvl D”, a run-time check is performed by the castclass
instruction to determine that D inherits from B. The result is the dereferenced result of castclass.

When an rvalue of type “handle to cvl R” is converted to an lvalue of type V, the unbox instruction is used.

34.6 Functions

34.6.1 Name lookup

On input, the presence or absence of the hidebysig notation in metadata is ignored; all native types are
treated as having hidebyname members while all CLI class types are treated as having hidebysig members.
[Note: On output, CLI class types shall have each of their members marked hidebysig (§34.7.4). end note]

34.6.2 Parameter arrays

A function can have a parameter array as its final parameter only. Such a parameter shall result in a
. custom directive for the standard attribute System: : ParamArrayAttribute, on the final parameter in
the . method directive generated for that function. [Example:

void f(... array<oObjectA>A p) { .. }

int main() {
array<ObjectA>A al
array<ObjectA>A a2
array<ObjectA>A a3

gcnew array<ObjectA>(2);
gcnew array<ObjectA>(4);
gchew array<ObjectA>(8);

f(al);
f(a2, al);
f(al, a3, a2);

204

Metadata

.method assembly static void f(object[] p) .. {
.param [1]
.custom instance void [mscorlib]System.ParamArrayAttribute::.ctor()
= (01 00 00 00)

o
end example]

The final parameter of a function taking a parameter array is a handle to a CLI array of the given type. Calls
to such a function shall be translated into an allocation of a CLI array of the given type, with consecutive
elements of that array being initialized with the arguments passed to the function, in their lexical order.

[Example: Here's an example of using a parameter array with a member function:

pubTic ref struct C {
static void F(int val, ... array<StringA>A Tist) { .. }

static void TestF() {
F(10, "red", "blue", '"green");

3
};
.class public .. C .. {
.method public static void F(int32 val, string[] Tlist) .. {
.param [2]
.custom instance void [mscorlib]System.ParamArrayAttribute::.ctor()
) = (01 00 00 00)

.method public static void TestF() .. {
.maxstack 3
.locals (string[] Vv_0)
1dc.i4.3
newarr [mscorlib]System.String
stloc.0
1dToc.0
1dc.i4.0

ldstr "red"
stelem.ref
1dloc.0
ldc.i4.1

ldstr "blue"
stelem.ref
1dloc.0

ldc.i4.2

Tdstr "green'
stelem.ref
ldc.i4.s 10
1dToc.0
call void C::F(int32, string[])
ret
3
ks

end example]

34.6.3 Importing native functions

If a function has the attribute D1T1ImportAttribute (in namespace

System: :Runtime: :InteropServices), the compiler is required to not preserve that type in metadata
as a custom attribute. Instead, the compiler shall emit it directly in the file format. (Consumers of such
metadata are required to retrieve this data from the file format and return it as if it were a custom attribute.)

The .method directive generated shall be marked with the pinvokeimpT1 predefined attribute, whose first
quoted string is a platform-specific description indicating where the implementation of the function is

205

C++/CLI Language Specification

located, and whose optional second string is the name of the function as it exists on that platform. The body
of the method shall be empty. [Example:

// MyCLib.h _)

using namespace System::Runtime::InteropServices;
[DT11Import("MyCLib.d11", callingConvention =
calTlingConvention::stdcall, EntryPoint="Hypot")]
extern "C" double Hypotenuse(double s1, double s2);

.method public static pinvokeimpl("MyCLib.d11" as "Hypot" stdcall)
float64 Hypotenuse(float64 sl, float64 s2) cil managed {}

// MyCLibApp.cpp
#include "MyCLib.h"

int main() {
console::writeLine("Hypotenuse = {0}", Hypotenuse(3, 4));

.method .. main() .. {

Tdstr "Hypotenuse = {0}"

T1dc.r8 3.

T1dc.r8 4.

call float64 Hypotenuse(float64, float64)

box [mscorlib]System.Double

call void [mscorlib]System.Console: :WriteLine(string, object)
1dc.i4.0

ret

3
end example]

If a function parameter or return value has the attribute MarshalAsAttribute (in namespace
System: :Runtime: :InteropServices), the compiler is required to not preserve that type in metadata
as a custom attribute. Instead, the compiler shall emit it directly in the file format. (Consumers of such
metadata are required to retrieve this data from the file format and return it as if it were a custom attribute.)
The parameters or return type in the .method directive generated shall be marked with the marshal
attribute according to the UnManagedType argument passed. [Example:
using namespace System::Runtime::InteropServices;
[DT1Import("msvcrt.d11", callingConvention = CallingConvention::Cdecl)]
extern "C" int strcmp([MarshalAs(UnmanagedType::LPStr)] System::StringA

sl,
[MarshaTlAs(UnmanagedType: :LPStr)] System::StringA s2);

.method public static pinvokeimpl("msvcrt.d11" cdecl)
int32 strcmp(string marshal(lpstr) sl, string marshal(lpstr) s2)
cil managed {}

end example]

34.6.4 Non-member functions

The encoding of non-member functions in metadata is unspecified. [Note: This does not cause interop
problems because such functions cannot have pubTi c visibility. end note]

34.7 Classes and members

34.7.1 Class definitions

A ref class, value class, or interface class shall be emitted using a class directive having the corresponding
name and visibility. It can be marked with the following:

e Any one of the "Marshal string" attributes ansi, autocode, or unicode (§34.7.3)

e Any one of the "Type layout" attributes auto, explicit, or sequential (§34.7.3).

206

Metadata

e Any combination of the "Special handling" attributes beforefieldinit, rtspecialname,
serializable, or specialname. (For more information about serialization, see the note
below.)

A nested ref class or value class shall be marked nested, followed by the appropriate accessibility, and
shall be defined inside the type in which it is nested.

A ref class shall be emitted with an extends clause, which specifies either the explicitly given direct base
class or the default base class, [mscorTib]System: :Object. If the class implements any interfaces, a
corresponding imp1ements clause shall be present.

A value class shall extend [mscorlib]System: :valueType, it shall have a type layout of sequential,
and it shall be marked sealed.

An interface class shall be marked interface and abstract

[Example:
public ref class B { .. };

public ref struct D : B {
ref class N { .. };

’
private value struct s { .. };

interface class I { .. };
.class public auto ansi B extends [mscorlib]system.Object { .. }

.class public auto ansi D extends B {))
.class auto ansi nested public N extends [mscorlib]System.object { .. }

}

.class private sequential ansi sealed S extends:
[mscorlib]system.valueType { .. }

.class interface private abstract auto ansi I { .. }
end example]

The encoded name of a class includes its parent namespaces, if any, with each pair of identifiers being
separated by a period.

[Example:

namespace NS1 {
public struct N {
ref struct R1 { .. };
namespace NS2 {
public ref struct R2 {
value struct v { .. };
} H
b

.class public sequential ansi sealed NS1.N extends
[mscorlib]system.valueType {
.class auto ansi nested public R1 extends [mscorlib]System.Object { .. }

.class public auto ansi NS1.NS2.R2 extends [mscorlib]System.Object {
.class sequential ansi sealed nested public VvV extends
[mscorlib]Ssystem.valueType { .. }

end example]

For information specific to generic types, see §34.18.

207

C++/CLI Language Specification

[Note: The CLI standard does not define the process of serialization and deserialization. However, it does
make provision for such a facility by defining a metadata attribute serializable, which can be applied to
a class definition. This attribute indicates that, by default, all the instance data members in that type should
be persisted when their parent object is serialized. The CLI standard also defines a metadata attribute
notserialized, which can be applied to an instance data member definition, to indicate that that member
not be persisted when its parent object is serialized.

In an extended implementation, these metadata attributes might be generated, by example, by the compiler's
recognizing attributes called System: :Runtime: :Serialization::SerializableAttribute and
System: :Runtime::Serialization::NonSerializedAttribute, respectively.

All of the types in the CLI standard library are required to have the serializable attribute. end note]

34.7.1.1 Abstract classes

A ref class explicitly declared abstract shall be emitted as a class marked abstract. [Example:
public ref struct B abstract { .. };
.class public abstract .. B .. { .. }

end example]

34.7.1.2 Sealed classes

A ref class explicitly declared sealed shall be emitted as a class marked sealed. All value classes shall be
marked sealed. [Example:

public ref struct B sealed { .. };

private value struct Cc { .. };
.class public .. sealed B .. { .. }

.class private .. sealed Cc .. { .. }

end example]

34.7.2 Member access
Each access-specifier has a corresponding metadata accessibility attribute, as follows:

C++/CLI Access Specifier | Metadata Accessibility Attribute
private private

protected family

pubTic pubTic

internal assembly

protected public famorassem

public protected famorassem

protected private famandassem

private protected famandassem

Each member shall have its own accessibility attribute, as required. [Example:

public ref class C {
private:
int ml;

protected:
int m2;

pubTic:
int m3;

208

Metadata

internal:
int m4;

protected pubTic:
int m5;

public protected:
int m6;

private protected:
int m7;

protected private:
int m8;

.class public .. C .. {
.field private int32 ml
.field family int32 m2
.field public int32 m3
.field assembly int32 m4
.field famorassem int32 m5
.field famorassem int32 m6
.field famandassem int32 m7
.field famandassem int32 m8

3
end example]

34.7.3 Data members

Each data member shall correspond to a field having the corresponding type and accessibility attribute. (For
information about accessibility of members see §34.7.2.)

A static data member shall have the stati c attribute, while an instance data member shall not. [Example:

public ref class C {
int count;
float* pCoeff;
array<long Tong int>A values;
CA next;
System: :ExceptionA TastException;
static int objectCount;
static StringA name;
};
.class public .. C .. {
.field private int32 count
.field private float32* pCoeff
.field private int64[] values
.field private class C next
.field private class [mscorlib]System.Exception TastException
.field private static int32 objectCount
.field private static string name

}

end example]

If a static data member contains an initializer, the initialization of the corresponding field shall be done in
the parent class's static constructor.

If a ref or value class type has the attribute StructLayoutAttribute (in namespace

System: :Runtime: :InteropServices), the compiler is required to not preserve that type in metadata
as a custom attribute. Instead, the compiler shall emit it directly in the file format. (Consumers of such
metadata are required to retrieve this data from the file format and return it as if it were a custom attribute.)
This attribute can be used to specify the layout of a data structure via the auto, explicit, and
sequential attributes on the class definition, the alignment (via a . pack directive), the size (viaa .size
directive), and the marshalling of strings via the ans1i, auto, and unicode attributes on the class definition.

209

C++/CLI Language Specification

An instance data member can have the attribute FieldoffsetAttribute (in namespace

System: :Runtime: :InteropServices), which controls the exact placement of that member. As with
the attribute StructLayoutAttribute, the compiler shall emit the affects of FieldoffsetAttribute
directly in the file format, rather than emitting the attribute itself.

[Example:
using namespace System::Runtime::InteropServices;

[StructLayout(LayoutKind::Explicit)]
public value class sl
[Fieldoffset(0)] int v;
[Fieldoffset(4)] unsigned char c;
[Fieldoffset(8)] int w;
.class public explicit ansi .. S1 .. {
.pack
.size 0O
.field [4] private unsigned int8 c
.field [0] private int32 v
.field [8] private int32 w

[StructLayout(LayoutKind: :Sequential, Pack=4)]
public value class S2 {
int v;
unsigned char c;
int w;
.class public sequential ansi .. S2 .. {
.pack 4
.size O
.field private unsigned int8 c
.field private int32 v
.field private int32 w

[StructLayout(LayoutKind::Explicit, Size=12, CharSet=CharSet::Unicode)]
public ref class s3 {

[Fieldoffset(0)] int* pi;

[Fieldoffset(0)] unsigned int ptrvalue;
.class public explicit unicode S3 .. {

.pack ..

.size 12

.field [0] private int32* pi

.field [0] private unsigned int32 ptrvalue

end example]

For information about literal and initonly fields see §34.7.11 and §34.7.12, respectively.

A field definition can optionally contain the notserialized attribute. (For more information about
serialization, see the note in §34.7.1.)

Ordinarily, a field shall not be marked rtspecialname or specialname. However, the instance field
called value__ that is emitted in an enum's class shall be marked rtspecialname and specialname

Data members can have applied to them the attribute MarshalAsAttribute (in namespace
System: :Runtime: :InteropServices). For metadata information on this attribute, see §34.6.3.

34.7.4 Functions

A function shall be emitted as a .method directive. Ordinarily, a method definition shall not be marked
rtspecialname or specialname. (Instance and static constructors are exceptions; see §34.7.9 and

210

Metadata

§34.7.10, respectively.) The definition of a static function shall be marked stati c; that for an instance
function shall be marked instance.

Member functions of ref classes, value classes, and interface classes shall be marked hidebysig.

Virtual member functions of ref classes, value classes, and interface classes shall be marked strict, while
non-virtual member functions from those types shall not. [Note: The CLI requires that strict virtual
methods can only be overridden if they are also accessible. end note]

Ordinarily, the name of the method emitted shall be the same as that in its source declaration; however,
instance constructors (§34.7.9), static constructors (§34.7.10), property accessors (§34.7.5), event accessors
(§34.7.6), and static operators (§34.7.7) are exceptions.

The return type, and the types and order of the parameters in the parameter list emitted shall correspond
directly to that in the function's source declaration.

The accessibility of a function shall be reflected in the definition of its .method directive. (See §34.7.2.)

A method definition shall be marked with the appropriate implementation attributes, such as ci1l managed
(see discussion below).

[Example:

public ref class C {

b?tatic void compressbata(int* pl, StringA p2, ObjectA p3) { .. }
pubTic:

void Initialize() { .. }

void Initilaize(Cint i, int j) { .. }

virtual void Display() { ..}
.class public .. C .. {

.method private hidebysig static void compressbata(int32* pl,

string p2, object p3) cil managed { .. }

.method public hidebysig instance void Initialize() cil managed { .. }

.method public hidebysig instance void Initilaize(int32 i, int32 j)
cil managed { .. }

.method public hidebysig strict newslot virtual instance void Display()
! cil managed { .. }

end example]

34.7.4.1 Override functions

Use of an override-specifier shall always result in an .override directive in the metadata, while use of the
function-modifier override without an override-specifier shall not. [Example: Given the following code

public ref struct B {
virtual void FQO {};
virtual void F(int i) {};
public ref struct D1 : B {
virtual void F() override {} // explicitly overrides B::F()
public ref struct D2 : B {
virtual void F() override {} /
virtual void G(int i) = B::F {} /

/ explicitly overrides B::F()
/ named override of B::F(int)

public ref struct D3 : B {
virtual void F(O = B::F {} // explicitly overrides B::F(Q)

the relevant metadata generated for classes D2 and D3 is as follows:

211

C++/CLI Language Specification

.class public .. D2 extends B {
.method public virtual instance void FQ) .. {

i
.method public newslot virtual final instance void G(int32 i) .. {
.override B::F // overrides B::F(int32)

-
}

.class public .. D3 extends B {
.method public newslot virtual final instance void F() .. {
.override B::F // overrides B::F(Q)

-
}

end example]

34.7.4.2 Sealed function modifier
A ref class function explicitly declared sealed shall be emitted as a method marked final. [Example:

public ref struct R {
virtual void F() sealed { .. }

.class .. R .. {
.method .. final instance void FQO .. { .. }

end example]

34.7.4.3 Abstract function modifier

A ref class function explicitly declared abstract shall be emitted as a method marked abstract
[Example:
public ref struct R {
virtual void F1() = O;

virtual void F2() abstract;
virtual void F3() abstract = 0;

.class .. abstract .. R .. {
.method .. abstract .. void F1() .. { .. }
.method .. abstract .. void F20) .. { .. }
.method .. abstract .. void F3Q) .. { .. }

end example]

All instance functions in an interface class shall be emitted as methods marked abstract.

34.7.4.4 The newslot attribute

The new function modifier corresponds exactly to the CLI’s predefined attribute newsTot. [Note:
According to the CLI Standard, Partition II:

“A virtual method is introduced in the inheritance hierarchy by defining a virtual method. The
versioning semantics differ depending on whether or not the definition is marked as newsTot:

If the definition is marked news1ot then the definition always creates a new virtual method, even if
a base class provides a matching virtual method. Any reference to the virtual method created before
the new virtual function was defined will continue to refer to the original definition.

If the definition is not marked news1ot then the definition creates a new virtual method only if
there is no virtual method of the same name and signature inherited from a base class. If the

212

Metadata

inheritance hierarchy changes so that the definition matches an inherited virtual function, the
definition will be treated as a new implementation of that inherited function.”

end note]
Functions shall be marked news1ot in the following cases only:
o The function is a member of an interface.

o The function is a virtual function in a ref class or value class and that function's name is not seen
by lookup in any of the base classes. [Note: Lookup ignores interfaces, so if the name is
specified only in an interface, the function is still marked as newslot. end note]

e The function is a virtual function declared using new.

34.7.4.5 Special attributes

The attributes InAttribute and OutAttribute (both in namespace

System: :Runtime: :InteropServices) can be applied to function parameters. The compiler is required
to not preserve these types in metadata as custom attributes. Instead, the compiler shall emit them directly in
the file format. (Consumers of such metadata are required to retrieve this data from the file format and return
it as if it were a custom attribute.) [Example:

public ref struct C { _ _ _
void F(int* pl, [In] int* p2, [out] int* p3, [In, out] int* p4) { .. }
.class public .. C .. {

.method public instance void F(1nt32‘ pl, [1n] int32* p2,
[out] int32* p3, [in][out] int32* p4) L3

end example]

A method definition can be marked with a variety of implementation attributes. Some of these can be
specified via the attribute MethodImplAttribute (in namespace
System: :Runtime: :CompiTlersServices), which takes as an argument, one or a combination of
enumerators from the type MethodImpTlOptions (also in the same namespace). The compiler is required to
not preserve this type in metadata as a custom attribute. Instead, the compiler shall emit it directly in the file
format. (Consumers of such metadata are required to retrieve this data from the file format and return it as if
it were a custom attribute.) [Example:

public ref struct C {

[MethodImpl(MethodImploptions::NoInlining)] void F1() { .. }

[MethodImpl (MethodImploptions: :Synchronized
MethodImp]Options::NoIn]ining)] void F20) { .. }

.class public .. Cc .. {
.method public instance void F1(Q) .. noinlining { .. }

.method public instance void F2() .. synchronized
noinlining { .. }

end example]

34.7.5 Properties

A property shall be emitted as a . property directive plus one .method directive for each accessor. No
other methods shall be emitted. If the property has a get accessor function, the . property directive shall
contain a .get directive. If the property has a set accessor function, the . property directive shall contain a
. set directive. The method definitions shall be marked specialname. A property itself shall not be
marked rtspecialname or specialname.

213

C++/CLI Language Specification

The definition of an instance property shall be marked instance. Any .set and .get directives that
property contains shall also be marked instance, as shall the corresponding method definitions. For a
static property, only the method definition shall be marked static.

For a scalar or named indexed property P, the name of the method emitted for a get accessor function shall
be get_P, while that for a set accessor function shall be set_P. For a default-indexed property declared in a
type not having the attribute DefaultMemberAttribute, the metadata emitted shall be as if that property
were a named indexed property called Item. For a default-indexed property declared in a type having the
attribute DefaultMemberAttribute, the metadata emitted shall be as if that property were a named
indexed property having the name specified by that attribute.

The accessibility of a property shall be reflected in the definitions of its .methods. (See §34.7.2.) [Note:
The get and set accessor functions of a property can have different accessibilities. end note]

[Example:

pubTic value class Point {
static int pointCount = 0;
int x;
int y;
public:
property int X {
int get() { return x; }
void set(int val) { x = val; }

static property int PointCount {
int get() { return pointCount; }

3
};
.class public .. Point .. {

Tproperty instance int32 X() {)
.set instance void Point::set_X(int32)
.get instance int32 Point::get_X()

.method public specialname instance int32 get_ X() .. { .. }
.method public specialname instance void set_X(int32 val) .. { .. }

.property int32 PointCount() {
.get int32 Point::get_PointCount()

.method public specialname static int32 get_PointCount() .. { .. }
3
end example] [Example:

public ref class Intvector {
int length;
array<int>A values;

public:]]
property int default[int] {

int get(int index) { return values[index]; }
void set(int index, 1int value) { values[index] = value; }

}

.class public .. Intvector .. {
.field private int32 length
.field private int32[] values

214

Metadata

.property instance int32 Item(int32) {)
.get instance int32 IntVector::get_Item(int32)
.set instance void 1IntVector::set_Item(int32, int32)

.method public .. int32 get_Item(int32 index) .. { .. }
.method public .. void set_Item(int32 index, int32 value) .. { .. }

end example]

If a property is declared virtual, the accessor methods it has shall be marked newslot virtual.Ifa
property is not declared virtual, but either of the two of its accessors, or its only accessor is, then the
accessor emitted shall be marked newslot virtual.

If a property is declared sealed, the accessor methods it has shall be marked newsTot virtual final.
If a property is not declared sealed, but either of the two of its accessors, or its only accessor is, then the
accessor emitted shall be marked newsTlot virtual final.

If a property is declared abstract, the accessor methods it has shall be marked newsTot abstract
virtual. If a property is not declared abstract, but either of the two of its accessors, or its only accessor
is, then the accessor emitted shall be marked newsTot abstract virtual.

In the case of a trivial scalar property, the private backing storage field allocated shall have a name in the
implementer's namespace, and be an instance or static field, as appropriate. [Example:

public ref struct C {
property int P;
.class public .. C ..
.field private int32 '<backing_store>P'

.property instance int32 P(Q) {
.set instance void C2::set_P(int32)
.get instance int32 C2::get_P(Q)

.method .. int32 get_P(Q .. {
.maxstack 1
.locals (int32 Vv_0)
Tdarg.0
1df1d int32 C2::'<backing_store>P'
stloc.0
1dToc.0
ret

}

.method .. void set_P(int32 __set_formal) .. {
.maxstack 2
ldarg.0
ldarg.1
stfld int32 C2::'<backing_store>P'
ret

}
}

end example]

The accessor methods of a property can be marked with a variety of implementation attributes. For more
information see §34.7.4.

34.7.6 Events

An event is implemented via an . event directive. That directive shall refer to one add and one remove
accessor function by using an . addon and a . removeon directive, respectively. For an event having a raise
accessor function, that function shall be referred to in the . event directive using a . fire directive. The
name of the add, remove, and raise accessor functions shall be add_xx, remove_xX, and raise_xX,
respectively, where xx is the declared name of the event. All accessor functions shall be marked

215

C++/CLI Language Specification

specialname. If the add or remove accessor functions have the attribute
MethodImpl (MethodImplOptions: :Synchronized), the resulting methods shall be marked
synchronized (see §34.7.4). [Example:

public delegate void EvtHandler(ObjectA sender, EventArgsA e);

public ref class Button {
EvtHandlerA action;
public:
event EvtHandlerA Click {
[MethodImp1 (MethodImploptions: :Synchronized)]
void add(EvtHandlerA d) {}
[MethodImpl (MethodImplOptions: :Synchronized)]
void remove(EvtHandlerA d) { .. }
) void raise(ObjectA sender, EventArgsA e) { .. }
};
.class public .. Button .. {
.field private class EvtHandler action

.event specialname EvtHandler Click {
.addon instance void Button::add_cClick(class EvtHandler)
.removeon instance void Button::remove_Click(class EvtHandler)
.fire instance void Button::raise_Click(object,
class [mscorlib]System.EventArgs)

.method public specialname instance void add_Click(class EvtHandler d)
. synchronized { .. }

.method public specialname instance void remove_Click(class
EvtHandler d) .. synchronized { .. }

.method public specialname instance void raise_Click(object sender,
class [mscorlib]System.EventArgs e) .. { .. }

}
end example]

A trivial event is handled in much the same way as a non-trivial one, except that for a trivial event, storage
shall be allocated for a field to hold the delegate, and add, remove, and raise accessor functions shall be
generated to add and remove functions from the delegate field, and raise the event, respectively. The
generated add and remove accessor functions shall have the same access specifier as their parent event. The
generated raise accessor function shall be marked family.

The generated add accessor function shall combine the delegate argument passed to it with the delegate
field. The generated remove accessor function shall remove the delegate argument passed to it from the
delegate field. The generated raise accessor function shall call the delegate field's Invoke method, passing it
the argument list the raise accessor function was given; that accessor function shall return the value returned
by that call to Invoke. In order to be thread-safe, the generated add and remove accessor functions shall be
marked synchronized. The generated raise access function shall not be so marked. [Example:

public delegate int D(int);

public ref struct X {
event DA Ev;
.class_public .. X ..
.field private class D '<Ev>'

.event specialname D Ev {
.addon instance void X::add_Ev(class D)
.removeon instance void X::remove_Ev(class D)
.fire instance int32 X::raise_Ev(int32)

}

216

Metadata

.method public specialname instance void add_Ev(class D '<value>")
. synchronized {

1dfld class D X::'<Ev>'

call class [mscorlib]System.Delegate
[mscorlib]System.Delegate: :Combine(class
[mscorlib]System.Delegate, class [mscorlib]System.Delegate)

stfld class D X::'<Ev>'
; -

.method public specialname instance void remove_Ev(class D '<value>')
. synchronized {

1dfld class D X::'<Ev>'

call class [mscorlib]System.Delegate
[mscorlib]Ssystem.Delegate: :Remove(class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)

stfld class D X::'<Ev>'
; -

.method family specialname instance int32 raise_Ev(int32 value0) .. {
Tdfld class D X::'<Ev>'
callvirt instance int32 D::Invoke(int32)

ret
}
}

end example]

34.7.7 Static operators

When an implementation emits metadata for a CLS-compliant operator, it shall translate the C++ operator
function identifier to its respective CLS-compliant name, as shown in Table 19-1: CLS-Compliant Unary
Operators and Table 19-2: CLS-Compliant Binary Operators. When an implementation imports functions
from metadata, it shall rewrite that function's CLS-compliant name as its corresponding C++ operator
function identifier, as indicated by these tables..

If an operator function does not match the criteria for a CLS-compliant operator (§19.7.5.1), the operator is
C++-dependent. Table 19-4: C++-Dependent Unary Operators and Table 19-5: C++-Dependent Binary
Operators identify these functions.

When an implementation imports C++-dependent functions (Table 19-4: C++-Dependent Unary Operators
and Table 19-5: C++-Dependent Binary Operators) from metadata, these functions shall be treated using
their corresponding C++ identifiers. If such a function does not make sense as an operator function (for
example, it takes three arguments), the function name shall not be changed to the internal operator function
name, and the function shall be callable by the name it has in the metadata.

All static operator functions shall be marked static and specialname.

[Example:

217

C++/CLI Language Specification

public ref class Intvector {

pubTic:
static IntvectorA operator+(IntvVectorA iv, int 1i);
static IntvectorA operator+(int i, IntVectorA iv);
static IntVectorA operator+(IntVectorA 1ivl, IntvVectorA iv2);
static IntvectorA operator-(IntvVectorA 1iv);
static IntvVectorA operator++(IntvVectorA 1iv);

1

.class public_.. Intvector .. {) o
.method public specialname static class_IntvVector op_Addition(
class IntVector iv, int32 val) .. { .. }

.method public_specialname static class_IntvVector op_Addition(
int32 val, class Intvector iv) .. { .. }

.method public specialname static class Intvector op_Addition(
class IntvVector ivl, class IntVector iv2) .. { ..

.method public specialname static class Intvector op_uUnaryNegation(
class Intvector iv) .. {

.method public specialname static class Intvector op_Increment(
class Intvector iv) .. {

end example]

34.7.8 Non-static operators

The metadata for non-static operators implemented as member functions is just like that for static operators,
except that in the former case, the function is implemented as an instance method instead of a static one.
All non-static operator functions shall be marked specialname.
As with Standard C++, instance versions of operator++ and operator-- have to be implemented
separately for prefix and postfix notation. [Example:
public ref class Intvector {
pubﬁic:)
IntvectorA operator+(int val);]
static IntvectorA operator+(int val, IntvVectorA iv);
IntVectorA operator+(IntVectorA 1iv2);
IntvVectorA operator-Q);
IntvectorA operator++();
IntVectorA operator++(int);
3

.class public .. Intvector .. {
.method public specialname class IntVector op_Addition(int32 val)

.1 .}

.method public_specialname static class_IntvVector op_Addition(
int32 val, class IntVector iv) .. {

.method public specialname class Intvector op_Addition(
class IntVector iv2) .. {

.method public specialname class Intvector op_uUnaryNegation() .. { .. }
.method public specialname class IntVector op_Increment() .. { .. }
.method public specialname class Intvector op_Increment(int32) .. { .. }

}

The function operator+(int, IntvectorA) cannot be implemented as an instance method as its first
parameter is not of the parent class type or a handle to that type. end example]

218

Metadata

In the case of operators implemented as global functions, they shall be marked assembTy, and their names
shall be the exact spelling of their source language token; '+' for operator+, '-' for operator-, "++'
for operator++, and so on. As with Standard C++, instance versions of operator++ and operator--
have to be implemented separately for prefix and postfix notation. [Example:

public ref class Intvector {

-

IntVectorA operator+(IntvVectorA 1iv, int val);
IntVectorA operator+(int val, IntvectorA iv);
IntVectorA operator+(IntVectorA 1ivl, IntvVectorA iv2);
IntVectorA operator-(IntvectorA iv);

IntVectorA operator++(IntvectorA iv);

IntVectorA operator++(IntvVectorA 1iv, int);

.class public .. Intvector .. {

.-

.class public abstract ..)
.method assembly specialname static class Intvector '+'(
class Intvector iv, int32 val) .. { .. }

.method assembly specialname static class Intvector '+'(
int32 val, class Intvector iv) .. { .. }

.method assembly specialname static class Intvector '+'(
class Intvector ivl, class IntVector iv2) .. { .. }

.method assembly specialname static class Intvector '-'(
class Intvector iv) .. {

.method assembly specialname static class Intvector '++'(
class Intvector iv) .. {

.method assembly specialname static class IntvVector '++'(

class IntVector iv, int32)

end example]

34.7.9 Instance constructors

An instance constructor of a ref class shall be emitted as an instance method, called . ctor, of its class. The
accessibility of the constructor shall be reflected in its definition (see §34.7.2). The method shall be marked
specialname, rtspecialname, instance, cil, and managed, and shall have a void return type and
corresponding parameter list. [Example:

public ref class C {
int v;
cO{ .13
pubTic:
c@int i) : v(@G) { .. }
.class public .. C .. {
.method private specialname rtspecialname instance void .ctor() .. {
.maxstack ..
Tldarg.0
call instance void [mscorlib]System.Object::.ctor()
ret

}

219

C++/CLI Language Specification

.method public specialname rtspecialname instance void .ctor(int32 i) ..

.maxstack ..

Tdarg.0

call instance void [mscorlib]System.Object::.ctor()
ldarg.0

ldarg.1

stfld int32 C::v

ret

}
}

end example]

An instance constructor can be marked with a variety of implementation attributes. For more information see
§34.7.4.

34.7.10 Static constructors

A static constructor of a ref or value class shall be emitted as a private static method, called . cctor, of
its class. The method shall be marked specialname, rtspecialname, static, cil, and managed, and
shall have a vo1id return type and no arguments. The class itself shall be marked beforefieldinit
[Example:

public ref class B {

static BQ) { .. }
public:

-

.class public beforefieldinit .. B .. {
.method private specialname rtspecialname static void .cctor()
cil managed { .. }

end example]

A static constructor can be marked with a variety of implementation attributes. For more information see
§34.7.4.

34.7.11 Literal fields
A literal field shall be implemented as a public static literal field with the specified initial value. [Example:

public ref struct X {
Titeral int Count = 100;
Titeral StringA Greeting = "Hello";

.class public .. X .. {

.field public static literal int32 Count = int32(0x00000064)
.field public static literal string Greeting = "Hello"

end example]

For information about metadata generation for data members in general, see §34.7.3.

34.7.12 Initonly fields

An initonly field shall be implemented as an instance or static initonly field, as appropriate. The accessibility
of the field shall be reflected in its definition. The initialization code placed in the static constructor for each
explicitly initialized static initonly field shall cause those fields to be initialized in their declaration lexical
order. [Example:

220

Metadata

public ref class X {
initonly static int Vvl
initonly static int V3
initonly static int Vv4;
public:
initonly int V5;
static X(OO { v4 = vl + v3; }
X(int i) { v5 = 1; }

};

.class public .. X .. {
.field private static initonly int32 vl
.field private static initonly int32 V2
.field private static initonly int32 V3
.field private static initonly int32 v4
.field public initonly int32 V5

.method private specialname rtspecialname static void .cctor() .. {
.maxstack 2

1dc.i4.5

stsfld int32 X::vl1
1dsfld int32 X::vl
stsfld int32 X::Vv2
1dsfld int32 X::V2
1dc.i4.1

add

stsfld int32 X::Vv3
1dsfld int32 X::vl1
1dsf1d int32 X::V3
add

stsfld int32 X::Vv4
ret

}
}

In the static constructor, V1, V2, and V3 shall be initialized in that order, all before the assignment to V4. end
example]

For information about metadata generation for data members in general, see §34.7.3.

34.7.13 Destructors and finalizers

34.7.13.1 CLI dispose pattern

C++/CLI implements the destructor and finalizer semantics in ref classes by using the CLI dispose pattern.
This pattern makes use of three functions upon which all languages targeting the CLI agree. These functions
are

void Dispose();

void Dispose(bool);
void Finalize(Q);

and their definitions are generated by the compiler, as required. Two other C++/CLI-specific private helper
functions are also generated, and used by Dispose(bool); they are:

void __identifier(“~T") ()
void __identifier(“!1T") (O

where T is the parent class name.

Many languages have constructs that support this dispose pattern directly. Since C++/CLI fully supports this
dispose pattern, any CLI class type authored in C++/CLI can be used by other languages, and any CLI class
type authored in other languages and having this dispose pattern, supports C++ destructor cleanup semantics
when used in C++/CLI code.

The CLI dispose pattern requires the following:

221

C++/CLI Language Specification

e A function Dispose() that implements System: : IDisposable: :Dispose().
e A function Finalize() that overrides System: :0Object::Finalize().

e A function Dispose(bool), which is a member of a class that has a Dispose() function that
implements System: :IDisposable: :Dispose(), or is a member of a class that has a
Finalize() function that overrides System: :Object: :Finalize(), or the
Dispose(booT1) function itself overrides a Dispose(bool) function in a base class that does
have such a Dispose() or Finalize() function

A C++/CLI program that contains a definition for a function having any of these signatures is ill-formed.
[Note: It would be helpful to the programmer if the diagnostic issued in such cases encouraged the
programmer to define a destructor and/or finalizer instead. end note] Function definitions having these
signatures can exist, however.

If a function definition having any of these signatures fulfills the corresponding requirement above, it shall
be used to implement the CLI dispose pattern, and a C++/CLI program that calls such a function is ill-
formed. [Note: It would be helpful to the programmer if the diagnostic issued in such cases encouraged the
programmer to call the destructor instead. end note] If a function definition having any of these signatures
does not fulfill the corresponding requirement above, it shall not be used to implement the CLI dispose
pattern, and a C++/CLI program is permitted to call that function directly.

The System: :IDisposable interface is used by the CLI dispose pattern as an entry point for destruction.
However, because C++/CLI provides direct support for cleanup via destructors and finalizers, the

System: : IDisposable interface need never be used directly. A C++/CLI program shall not use this
interface.

[Example:

public ref class B {
protected:
BO) {}
pubTlic:
~B() {1}
public ref class D : B {
protected:
DO {}
pubTlic:
~D() {1}
.class .. B .. implements [mscorlib]System.IDisposable {
.method .. void '!B'Q .. -
.met?gd - {oid Dispose(bool marshal(unsigned int8) A_1l) .. {
arg.
brfalse.s 1IL_000b
Tdarg.0
call instance void B::'~B'()
br.s IL_001b
IL_000b:
nop

.try {
Tdarg.0
call instance void B::'"!B'(Q)
Teave.s IL_001b

finally {
Tdarg.0
call instance void [mscorlib]System.Object::Finalize()
endfinally

¥
IL_001b:
ret

222

Metadata

.method .. void Dispose() .. {
Tdarg.0
1dc.14.1
callvirt instance void B::Dispose(bool)
Tdarg.0
call void [mscorlib]System.GC: :SuppressFinalize(object)
ret

}

.method .. void Finalize(Q) .. {
Tdarg.0
Tdc.i4.0
callvirt instance void B::Dispose(bool)
ret

}
.method .. void '~B'(Q) .. { .. }

.class .. D extends B {
.method .. void 'ID'Q) .. { .. }
.method .. void Dispose(bool marshal(unsigned int8) A_1l) .. {

ldarg.1
brfalse.s IL_0015
.try {
Tdarg.0
call instance void D::'~D'()

leave.s IL_0013

finally {

Tdarg.0

Tdc.i4.1

call instance void B::Dispose(bool)
; endfinally

IL_0013:

br.s IL_0026
IL_0015:

nop

.try {
Tdarg.0
call instance void D::'"!D'(Q)
Teave.s IL_0026

finally {

Tdarg.0

Tdc.i4.0

call instance void B::Dispose(bool)
y endfinally

IL_0026:
ret
.method .. void '~D'Q) .. { .. }
3

end example]

34.7.13.2 Destructors

A ref class with a user-defined or compiler-generated destructor shall be marked as implementing
System: :IDisposable

Destruction of an instance of a ref class shall always begin by dynamically casting that object to
System: :IDisposable. If that cast succeeds, the Dispose() function shall be called through the result

223

C++/CLI Language Specification

of the cast. If that cast fails, the destructor does nothing. [Note: As a result, a destructor can be called on an
instance of any ref class, value class, or interface class. end note]

The compiler shall not generate code to call a destructor except through the
System: :IDisposable: :Dispose function.

Although a value class cannot have a destructor, if a value class indirectly implements

System: :IDisposable (as the result of another interface’s implementing System: : IDisposable), the
compiler shall emit a corresponding Dispose () function that implements the interface; however, that
Dispose() function shall do nothing.

For an interface class declaring a destructor, no method shall be emitted for that destructor; however, the
interface shall be marked as implementing System: : IDisposable.

34.7.13.3 Finalizers

A finalizer for a class shall be generated if and only if the user writes a finalizer for that class.

Calls to a finalizer in any ref class T result in direct calls to the __identifier(*!T”) function
(§34.7.13.9).

34.7.13.4 Functions generated to support the dispose pattern

The CLI dispose pattern uses three primary functions: Dispose(), Finalize(), and Dispose(bool).
Two secondary functions, __identifier(“~T”) () and __identifier(“!T”) (), are called by
Dispose(bool). The definitions of all five functions are generated by the compiler, as specified below.

34.7.13.5 The Dispose() function

This member function is the starting point for cleanup done via destruction.
This function shall only be emitted for any ref class T in the following scenarios:
e The Dispose(bool) function is being introduced by class T (Cases #2 and #3 below), or

e [fCase #1 was used and no base class that used Case #1 has already introduced a pubTic
virtual Dispose() that implements System: : IDisposable.

This function shall not be emitted
o Ifthe dispose pattern already exists, and
e A Dispose() that is part of the dispose pattern also exists, and
e The class explicitly implements System: : IDisposable.

This function shall be emitted as if it were written in C++/CLI, inside the definition of T, as follows:

public:
virtual void Dispose() sealed {
this->Dispose(true);
System: :GC: :SuppressFinalize(this);

The parent class of any Dispose () function emitted by the compiler, shall be marked as implementing
System: :IDisposable.

If a base class of T has a Dispose () method that does not implement System: : IDisposabTe, that base
class function shall be hidden by the one emitted for T. The Dispose() function shall be marked news1ot
in metadata unless the function can override a base class’s implementation of Dispose () that implements
System: :IDisposable.

34.7.13.6 The Finalize() function

This function is the starting point for cleanup done via finalization.

224

Metadata

This function shall only be emitted for any ref class T if the following criteria are met:
o The compiler will generate an __identifier(“!T”) function for class T, and

o (lass T is introducing the dispose pattern (Cases #2 and #3 below), or if class T is extending the
dispose pattern (Case #1 below), no base class with the dispose pattern has already introduced a
Finalize() function.

This function shall be emitted as if it were written in C++/CLI, inside the definition of T, as follows:

protected:
virtual void Finalize() override {
this->Dispose(false);

The Finalize() function shall never be marked news1ot in metadata.

34.7.13.7 The Dispose(bool) function

For any ref class T, this function is generated if and only if either or both of the functions
__identifier(“~T”) () and _identifier("!T”) () are generated for this class or the compiler needs
to generate a non-trivial destructor to clean up members of that class.

This function has three possible forms, as shown in Case #1, Case #2, and Case #3, below. (In each Case, the
base class of T is assumed to be Base. It is also assumed that class T has both a destructor and a finalizer. If
one or the other of these functions is omitted, the corresponding call to __identifier(“~T”) or
__identifier(“~T”) shall be omitted.) The decision tree following these Cases shows how each Case is
chosen.

Case #1: Extending the dispose pattern, existing Dispose(bool) that is part of the dispose pattern

protected:
virtual void Dispose(bool calledFrombispose) override {
if (calledFromDispose) {

try {
this->__identifier("~T")Q;
} finally {
try {
this->Base: :Dispose(true);
} finally {
// member cleanup goes here
3
} else {
try {
this->__identifier("!T");
} finally {

this->Base: :Dispose(false);

}
}

Case #2: Introducing dispose pattern, no public Dispose() that implements System::IDisposable

225

C++/CLI Language Specification

protected:
virtual void Dispose(bool calledFrombispose) {
if (calledFromDispose) {
this->__identifier("~T")Q;
} else {
try {
try {
this->__identifier("!T")Q;
} finally {
// member cleanup goes here

3
} finally {
this->Base::Finalize();

}
}

Case #3: Introducing dispose pattern, existing callable Dispose()
protected:

virtual void Dispose(bool calledFrombispose) {
if (calledFromDispose) {

try {
this->__identifier("~T")Q;
} finally {
try {
this->Base: :Dispose();
} finally {
// member cleanup goes here
1
} else {
try {
this->__identifier("!T")Q;
} finally {

this->Base::Finalize();

226

NO

Does a base class have a
Dispose(boad) function?

Does a base class have a
public Dispose() that
implements |Disposable?

Case #2
Introduce dispose
pattarmn, no
chaining o
exsting Dispose()

YES
Case #3
Introduce dispose
pattern, chain o
existing Dispose)
L 4

MO

Intraduce dispose

aexisting Dispose()

Dispaselbool)
hides existing
signature in base

Case #2

patterm, no
chaining to

public Dispose() that
implements IDisposable?

MO Is Disposa{bool)

YES

Case #3
Introduce dispose
pattem, chain o
existing Disposa()

Dispose(banl)
hides existing
signature in base

Does the base class that
intreduced the protected virual
Dispose(bool) have an override for
Object-Finalize?
MO

Case #2
Introduce dispose
pattarn, no
chaining to
existiing Dispose()

227

pratected and virual?

YES

Does the base class that
introduced the protected virtual
Dispose{bool) have a puldic
Dispose(} that implements

|Disposable®

Case#
Extend the existing
dispose pattern

Metadata

h A

Case #1
|Extend the existing
dispose pattern

C++/CLI Language Specification

34.7.13.8 The __identifier(“~T")() function

This function shall be emitted for any ref class T, but only if that class has a user-defined destructor. The
body of this function shall correspond exactly to that of the user-defined destructor. The compiler shall not
generate calls to functions in the base class in this function.

This function shall be emitted as if it were written in C++/CLI, inside the definition of T, as follows:

private:
void __identifier("~T") () {
// user-defined destructor body goes here

34.7.13.9 The __identifier(“IT")() function

This function shall be emitted for any ref class T, but only if that class has a user-defined finalizer. The body
of this function shall correspond exactly to that of the user-defined finalizer. The compiler shall not generate
any other code in this function.

This function shall be emitted as if it were written in C++/CLI, inside the definition of T, as follows:

private:
void __identifier("!T")(O {
// user-defined finalizer body goes here

34.8 Native classes

A native class shall be emitted as a value class (even though a native class is not a value class) with the
corresponding name and visibility (§34.6.3). It shall be marked with the following:

e The "Marshal string" attributes ansi (§34.7.3), and
o The "Type layout" attribute sequential (§34.7.3),

however, the corresponding attribute, StructLayoutAttribute (and FieldoffsetAttribute), from
namespace System: :Runtime: :InteropServices cannot be applied to a native class at the source code
level.

A nested native class or value class shall be marked nested, followed by the appropriate accessibility, and
shall be defined inside the type in which it is nested.

Like a value class, a native class shall extend [mscorlib]System: :valueType.

The value class used to encode the native class shall contain an explicit . s1ize directive whose value is
determined by the implementation, as the size needed to represent an instance of that class.

The value class used to encode the tnative class shall have attached to it the NativeCppClass (§33.2.1)
attribute, from namespace System: :Runtime: :CompilerServices.

The encoding for a native class is not required to have any other characteristics. In particular, it is not
required to have a constructor or the members of the class encoded.

[Example:

public class N1 {
char c[2];
int i;
double d;
public:
void FO { .. }
.class public sequential ansi sealed N1 extends
[mscorlib]system.valueType {
.size 16
.custom instance void [mscorlib]System.Runtime.CompilerServices.
NativeCppClassAttribute::.ctor() = (..)}

228

Metadata

The size 16 bytes is based on an implementation in which a char occupies 1 byte, an int occupies 4 bytes,
a doube occupies 8 bytes, a char can be aligned on any boundary, an int is aligned on a 4-byte
boundary, and a doubTe is aligned on an 8-byte boundary. (That is, two 1-byte chars, two bytes of
padding, one 4-byte int, and one 8-byte doubTe.)

namespace MyApp {
pubTic class N2 {
char c[3];
double d;
int 1;
pubTlic:
void F(int i) { }
class N3 {
short int s;
public:
N void F(int i) { }

}

.class public sequential ansi sealed MyApp.N2 extends
[mscorlib]system.valueType {
.size 24
.custom instance void [mscorlib]System.Runtime.CompilerServices.
NativeCppClassAttribute::.ctor() = (C ..)
.class sequential ansi sealed nested public N3 extends
[mscorlib]System.valueType {
.size 2
.custom instance void [mscorlib]System.Runtime.CompilerServices.

NativeCppClassAttribute::.ctor() = (..)

}

The size 24 bytes comes from three 1-byte chars, five bytes of padding, one 8-byte double, one 4-byte
int, one 2-byte short, and two bytes of padding. The size 2 bytes comes from one 2-byte short.

template<typename T>
public class N4 {

T ml;

T m2[2];
pubTlic:

void F(T t, T* pt) {}
N4<char> n4a;
N4<int> ndb;

.class public sequential ansi sealed 'N4<char>' extends
[mscorlib]System.valueType {
.size 3
.custom instance void [mscorlib]System.Runtime.CompilerServices.
NativeCppClassAttribute::.ctor() = (..)

.class public sequential ansi sealed 'N4<int>' extends
[mscorlib]Ssystem.valueType {
.size 12
.custom instance void [mscorlib]System.Runtime.CompilerServices.
NativeCppClassAttribute::.ctor() = (..)

The encodings of n4a and n4b are not shown.
end example]

Metadata for template classes is described in §34.17.

229

C++/CLI Language Specification

34.9 Ref classes

[Note: For implementations providing the IsBoxed modifier: Any member function of a ref class, value
class, or interface class having a parameter declaration or return type involving a handle to a value type shall
have that parameter and/or return type marked with the modifier IsBoxed (§33.1.5.1). end note]

Any member function of a ref class, value class, or interface class having a ref class type parameter passed
by value shall have the corresponding parameter marked with the modifier IsByvalue (§33.1.5.2).

Any member function of a ref class, value class, or interface class having a const-qualified parameter or
returning a const-qualified type shall have the corresponding parameter and/or return type marked with the
modifier IsConst (§33.1.5.3), as appropriate. However, parameter qualification at the top level shall not be
so marked. [Example: A parameter such as const int* ci shall be marked, but one such as const int
i shall not. end example]

Any data member of a ref class, value class, or interface class having a const-qualified type shall be
marked with the modifier IsConst (§33.1.5.3).

Any member function of a ref class, value class, or interface class having a parameter that is an interior
pointer or pinning pointer shall have the corresponding parameter marked with the modifier
IsexplicitlyDereferenced (§33.1.5.4).

Any member function of a ref class, value class, or interface class having a parameter that is a reference or
tracking reference, or returning a reference or tracking reference shall have the corresponding parameter
and/or return type marked with the modifier IsImpTicitlyDereferenced (§33.1.5.5).

Any data member of a ref class, value class, or interface class that is a reference or tracking reference shall
be marked with the modifier IsImplicitlyDereferenced (§33.1.5.5).

[Note: For implementations providing the IsLong modifier: Any member function of a ref class, value
class, or interface class having a parameter declaration or return type involving a Tong int or Tong
doub'e shall have that parameter and/or return type marked with the modifier IsLong (§33.1.5.6).

Any data member of a ref class, value class, or interface class involving a Tong int or Tong doubTle shall
have that parameter and/or return type marked with the modifier IsLong (§33.1.5.6). end note]

Any member function of a ref class, value class, or interface class having a parameter declaration or return
type involving a plain char shall have that parameter and/or return type marked with the modifier
IsSignunspecifiedByte (§33.1.5.7).

Any data member of a ref class, value class, or interface class involving a plain char shall be marked with
the modifier IsSignUnspecifiedByte (§33.1.5.7).

Any member function of a ref class, value class, or interface class returning an instance of a ref class type by
value shall be marked with the modifier IsudtReturn (§33.1.5.8).

Any member function of a ref class, value class, or interface class having a volatile-qualified parameter
or returning a volatile-qualified type shall have the corresponding parameter and/or return type marked
with the modifier IsvoTlatile (§33.1.5.9), as appropriate. However, parameter qualification at the top level
shall not be so marked. [Example: A parameter such as volatile int* vi shall be marked, but one such
asvolatile int v shall not. end example]

Any data member of a ref class, value class, or interface class having a volati Te-qualified type shall be
marked with the modifier Isvolatile (§33.1.5.9).

For more information, see §34.7.1.

34.10 Value classes

For more information, see §34.7.1 and §34.9.

230

Metadata

34.11 CLI arrays

CLI arrays are encoded in metadata according to the CLI standard, primarily in Partitions I, 11, and III.
[Note: A CLI array type shall be defined by specifying the element type of the CLI array, the rank of the CLI
array, and the upper and lower bounds of each dimension of the CLI array.

CLI array elements shall be laid out within the CLI array object in row-major order. The actual storage
allocated for each CLI array element can include platform-specific padding.

The VES shall provide two constructors for arrays:

e The first takes a sequence of integers giving the number of elements in each dimension (a lower
bound of zero is assumed).

e The second takes twice as many arguments. These arguments occur in pairs—one pair per
dimension—with the first argument of each pair specifying the lower bound for that dimension,
and the second argument specifying the total number of elements in that dimension.

In addition to array constructors, the VES provides the instance methods Get, Set, and Address to access
specific elements and compute their addresses. These methods take a number for each dimension, to specify
the target element. In addition, Set takes an additional final argument specifying the value to be stored into
the target element. end note]

[Example:

ref class R {

array<int>A ml;

array<array<StringA>A, 2>A m2;
public:

array<StringA, 2>A F(array<RA, 3>A ary) { .. }
.class .. R .. {

.field private int32[] ml

.field private string[][0...,0...] m2

.method public instance string[0...,0...]

F(class R[0...,0...,0...] ary) .. { .. }

array<int>A arraylD = gcnhew array<int>(10);
array<int, 3>A array3D = gcnew array<int, 3>(10, 20, 30);
pin_ptr<int> ppl;

.method .. {
.locals ([0] int32[0...,0...,0...] V_O,
[1] int32[] v_1)
[2] int32& pinned modopt([mscorlib]
System.Runtime.CompilerServices.IsExplicitlyDereferenced)

V_2)
Tdnull
stloc.1
Tdnull
stloc.0
1dc.i4.s 10
newarr [mscorlib]System.Int32
stloc.1
1dloc.1
1dc.i4.5
1dc.i4.s 10
stelem.i4
ldc.i4.s 10
1dc.i4.s 20
1dc.i4.s 30
newobj instance void int32[0...,0...,0...]::.ctor(int32,
int32, int32)
stloc.0

231

C++/CLI Language Specification

arraylD[5] = 10;
array3p[1,2,3] = array3D[4,5,6];

1dloc.0

1dc.i4.1
1dc.i4.2
1dc.i4.3

1dToc.0

1dc.i4.4
1dc.i4.5
1dc.i4.6

call instance int32 int32[0...,0...,0...]::Get(int32,
int32, int32)

call instance void int32[0...,0...,0...]::Set(int32,
int32, int32, int32)

ppl &arraylD[8];
ppl = &array3D[7,6,5];

stloc.0

1dloc.1

1dc.i4.8

Tdelema [mscorlib]System.Int32
stloc.?2

1dloc.0

ldc.i4.7

1dc.i4.6

1dc.i4.5

call instance int32& int32[0...,0...,0...]::Address(int32,
int32, int32)

end example]

34.12 Interfaces

An interface class shall be emitted as a class with the corresponding name and visibility. It shall be marked
interface. As an interface class is a class, see §34.7 and its subordinate subclauses, and §34.9 for
metadata details pertaining to classes and their members.

All interface class member functions shall be emitted as . methods marked as newsT1ot, abstract, and
virtual. [Example:

public interface struct I {
void FQ);
property int P {
int get();
) void set(int value);
};
.class interface public abstract .. I {
.method public newslot abstract virtual instance void FQ) .. { .. }

.property instance int32 P() {
.get instance int32 I::get_P(Q)
.set instance void I::set_P(int32)

}
.method public newslot .. abstract virtual .. int32 get_ PO .. { .. }

.method public newslot .. abstract virtual .. void set_P(int32 value)

end example]

[Example:

232

Metadata

public interface struct 11 {
void FQ;

public interface struct 12 : 11 {

void GQO);
void KQO);

public ref struct B {
virtual void KO { .. }
public ref struct D : B, I2 {
virtual void FO) { .. } // implements I1:
virtual void HO) = 12::G { .. } // implements I2: G
virtual void GO new { .. } // a new G
// 12::K implemented by B::K

1

public ref struct E abstract : Il {
virtual void F() abstract;

.class interface public abstract .. I1 {
.method public newslot abstract virtual instance void FQ) .. { .. }

.class interface public abstract .. I2 implements Il {
.method public newslot abstract virtual instance void GQ) .. { .. }
.method public newslot abstract virtual instance void K(O) .. { .. }

.class public .. B
.method public newslot virtual instance void KO .. { .1}

.class public .. D extends B implements I2 {
.method public virtual instance void FQ .. { .
.method public newslot virtual final instance void HO .. {
.override I2::G

}
.method public newslot virtual instance void G() .. { .. }

.class public abstract .. E .. implements Il {
.method public abstract virtual instance void FQ) .. { .. }

end example]

34.13 Enums

Both native and CLI enums shall be implemented as sealed classes that derive from System: : Enum. The
visibility of the enum type shall be reflected in its class's definition. Each enum type's class shall contain a
public instance field called vaTue__ whose type shall be that of the enum's underlying type, which shall be
a CLS-compliant integer type. That field shall be marked rtspecialname and specialname. (For
information specific to fields, see §34.7.3.)

Each enumerator in a CLI enum shall have a corresponding public static literal field of the same name,
whose type is that of the parent enum type, and whose value is as defined in the enum-specifier. [Note
Enumerators in native enums have no such corresponding fields. As a result, to share their values across
separate compilations, a header must be used. end note]

[Example:
public enum Suit : short { Hearts = 1, Spades, Clubs, Diamonds};

enum class Direction { North, South = 10, East, west = 20 };

233

C++/CLI Language Specification

.class public .. sealed Suit extends [mscorlib]System.Enum {
.field public specialname rtspecialname intl6 value__

.class private .. sealed Direction extends [mscorlib]System.Enum {
.field public static Titeral valuetype Direction East = int32(0x0B)
.field public static literal valuetype Direction North int32(0x00)
.field public static literal valuetype Direction South = int32(0x0A)
.field public static Titeral valuetype Direction west = int32(0x14)
.field public specialname rtspecialname int32 value__

end example]

34.14 Delegates

A delegate shall be implemented as a sealed class that (ultimately) derives from System: :Delegate.
[Note: A delegate class need not derive directly from this class, however. A conforming implementation of
the CLI is permitted to extend the required type hierarchy by including intermediate types. For example, a
conforming implementation of the CLI could provide a type System: :MulticastDelegate, which, in
turn, is derived from System: :Delegate. As such, a conforming C++/CLI implementation could derive
its delegate classes from System: :MulticastDelegate, or from a class derived from that class. end
note]

The visibility of the delegate type shall be reflected in its class's definition.

For each delegate type class, a conforming implementation shall provide a constructor, a method called
Invoke, and the methods BeginInvoke and EndInvoke (used for asynchronous processing), as defined
by the CLI standard.

[Example:
public delegate ObjectA D(int* pi, array<int>A a);

.class public .. sealed D extends [mscorlib]System.Delegate {
.method public specialname rtspecialname instance void
.ctor(object A_1l, native int A_2) runtime managed forwardref {}

.method public newslot virtual instance class
[mscorlib]System.IAsyncResult BeginInvoke(int32* pi, int32[] a,
class [mscorlib]system.AsyncCallback callback, object obj)
runtime managed forwardref {}

.method public newslot virtual instance object
EndInvoke(class [mscorlib]System.IAsyncResult result)
runtime managed forwardref {}

.method public newslot virtual instance object Invoke(int32* pi,
int32[] a) runtime managed forwardref {}

end example]

In §27.2, it states "Each delegate type shall have two constructors, as follows: ..." The library class
System: :Delegate has no constructors defined. Instead, as we can see from the metadata example above,
one, and only one, constructor is generated for a delegate, and its implementation attributes are runtime
managed instead of ci1 managed. This is because the constructor is generated at runtime by the VES.
Although the C++/CLI syntax supports delegate constructor calls having either one or two arguments, both
forms shall be converted to a call to the one constructor that actually exists in metadata. The C++/CLI
constructor taking one argument shall be emitted as a call to the two-argument version with nulTptr as the
first argument.

[Example:
delegate void D(int 1i);

234

Metadata

ref struct R {

static void M1(int a) { }

void M2(int b) { }

virtual void M3(int c) { }
int main() {

RA r = gchew R;

DA d;

d gcnew D(&R::M1);

d gcnew D(r, &R::M2);

d += gcnew D(r, &R::M3);

b
.method .. main() .. {

locals ([0] class D V_0
v_1

[1] class R 5
Tdnull
stloc.1
Tdnull
stloc.0
newobj instance void R::.ctor()
stloc.1
Tdnull
Tdftn void R::M1(int32)
hewobj instance void D::.ctor(object, native int)
stloc.0
1dloc.1
1dftn instance void R::M2(int32)
hewobj instance void D::.ctor(object, native int)
stloc.0
1dloc.0
Tdloc.1
dup
Tdvirtftn 1instance void R::M3(int32)
nhewobj instance void D::.ctor(object, native int)
call class [mscorlib]System.Delegate

[mscorlib]System.Delegate: :Combine(
class [mscorlib]System.Delegate,
class [mscorlib]System.Delegate)
castclass D
stloc.0

}

end example]

34.15 Exceptions
try, catch, and finalTly shall be emitted using one or more . try directives. [Example:

int main() {
try {

catch (NullReferenceExceptionA exl) {

catch (IndexoutOfRangeExceptionA ex2) {

235

C++/CLI Language Specification
finally {
// ...

}

.method .. main() ..

locals ([0] class [mscorlib]system.IndexoutOfRangeException ex2,
[1] class [mscorlib]System.NullReferenceException exl)

try

{
.try

Teave.s L8

catch [mscorlib]system.NullReferenceException

stloc.1
leave.s Le

catch [mscorlib]system.IndexoutOfRangeException
{

stloc.0
lTeave.s La
L8: br.s Lc
La: lTeave.s L13
Lc: br.s L10
Ie: leave.s L13
I10: TJleave.s L13
}
finally
{
) endfinally
L13: ..
}
end example]
The metadata encoding for exception-declarations that declare non-ref class types, or have the form . . ., is

unspecified.

34.16 Attributes

If it is not required to be consumed by the compiler, an attribute on a program element shall be emitted into
metadata via a . custom directive on that element, or, in some cases, to the immediately preceding element
declaration. If a program element has multiple attributes, and multiple attributes are permitted, that element
shall have one . custom directive for each; their ordering is irrelevant.

A custom attribute is declared using the directive . custom, followed by the method declaration for a type
constructor (i.e., that method's name shall be . ctor), optionally followed by an equals sign (=) and a set of
byte values in parentheses. The values of the constructor's arguments, if any, shall be specified in the set of
bytes in the format specified by the CLI Standard. If there are no arguments, the equals sign and
parenthesized set of bytes shall be omitted. As a constructor is an instance method, its . custom directive
shall contain the instance attribute. [Example:

236

Metadata

[AttributeUsage(AttributeTargets::Al11, AllowMultiple = true,
Inherited = true)]
public ref class XAttribute : Attribute {
StringA name;
public:
XAttribute(StringA name) : name(name) {}
property StringA Name { StringA get() { return name;} }
.class public .. XAttribute extends [mscorlib]System.Attribute {
.custom instance void
[mscorlib]System.AttributeUsageAttribute::.ctor(valuetype
[mscorlib]System.AttributeTargets) = (01 00 FF 7F 00 00 02 00 54
02 OD 41 6C 6C 6F 77 4D 75 6C 74 69 70 6C 65 01 54 02 09 49 6E 68
65 72 69 74 65 64 01)

-

[X("refclass")]
public ref class R {
[X("field")] int count;
public:
[X("constructor")] RO {}
.class .. R .. {
.custom instance void XAttribute::.ctor(string)
66 63 6C 61 73 73 00 00) // refclass

(01 00 08 72 65

.field private int32 count
. .gustom instance void XAttribute::.ctor(string)
C 64
00 00) // field

.method public specialname rtspecialname instance void .ctor() cil .. {
.custom instance void XAttribute::.ctor(string) = (01 00 OB 63 6F
6E 73 74 72 75 63 74 6F 72 00 00) // constructor

(01 00 05 66 69 65

3
3
[X("valueclass™)]
public value struct v {
[X("methodl™) ,X("method2")] [returnvalue:X("returnvalue")]
void Display([X("parameter™)] 1int i) {}
.class .. Vv .. {

.custom instance void XAttribute::.ctor(string) = (01 00 OA 76 61
6C 75 65 63 6C 61 73 73 00 00) // valueclass

.method .. void Display(int32 i) .. {
.custom instance void XAttribute::.ctor(string)
74 68 6F 64 32 00 00) // method2
.custom instance void XAttribute::.ctor(string)
74 68 6F 64 31 00 00) // methodl

.param [0]
.custom instance void XAttribute::.ctor(string) = (01 00 OB 72 65
74 75 72 6E 76 61 6C 75 65 00 00) // returnvalue

.param [1]
.custom instance void XAttribute::.ctor(string) = (01 00 09 70 61
! 72 61 6D 65 74 65 72 00 00) // parameter

(01 00 07 6D 65
(01 00 07 6D 65

}

.param [0] represents the function's return value, while the actual parameter attributes start with
.param [1].

237

C++/CLI Language Specification

[X("interfaceclass")]
public interface class I {
[X("property")]property int Count {
[X("getter")]int get();

};

.class interface .. I {
.custom instance void XAttribute::.ctor(string) = (01 00 OE 69 6E
74 65 72 66 61 63 65 63 6C 61 73 73 00 00) // interfaceclass

.property instance int32 Count() {
.custom instance void XAttribute::.ctor(string)
6F 70 65 72 74 79 00 00) // property
.get instance int32 I::get_Count()

(01 00 08 70 72

.method public .. get_Count() .. {
.custom instance void XAttribute::.ctor(string)
74 74 65 72 00 00) // getter

(01 00 06 67 65

}
}

[X("nativeclass")]
public class N {
[X("field")] int count;
public:
[X("constructor")] NO { .. }
[X("method")] [returnvalue:X("returnvalue")]
void Display([X("parameter")] int) {}
.class .. N .. {
.custom instance void XAttribute::.ctor(string) = (01 00 OB 6E 61 74

69 76
65 63 6C 61 73 73 00 00) // nativeclass

As member information for a native class need not be emitted in metadata, only the . custom directive for
the class itself need be present. end example]

Since attributes can be used to customize metadata, they are often referred to as custom attributes. There are
two kinds of custom attributes: genuine custom attributes and pseudo-custom attributes. Custom attributes
and pseudo-custom attributes are treated differently, at the time they are defined, as follows:

e A custom attribute is stored directly into the metadata; the blob which holds its defining data is
stored as-is. That blob can be retrieved later.

e A pseudo-custom attribute is recognized because its name is one of a short list. Rather than
store its blob directly in metadata, that blob is parsed, and the information it contains is used to
set bits and/or fields within metadata tables. The blob is then discarded; it cannot be retrieved
later.

Pseudo-custom attributes therefore serve to capture user directives, using the same familiar syntax the
compiler provides for genuine custom attributes, but these user directives are then stored into the more
space-efficient form of metadata tables. Tables are also faster to check at runtime than are genuine custom
attributes.

Many custom attributes are invented by higher layers of software. They are stored and returned by the CLI,
without its knowing or caring what they mean. However, all pseudo-custom attributes, plus a collection of
genuine custom attributes, are of special interest to compilers and to the CLI. The CLI Standard, Partition II,
subclause 21 lists the pseudo-custom attributes and distinguished custom attributes, where distinguished
means that the CLI and/or compilers need to pay direct attention to them, and their behavior is affected in
some way.

The special processing needed for various pseudo-custom attributes is described elsewhere in this clause.
Examples include D11ImportAttribute, FieldoffsetAttribute, InAttribute,
MarshalAsAttribute, MethodImplAttribute, OutAttribute, and StructLayoutAttribute

238

Metadata

A conforming implementation needs to be aware of the attribute AttributeUsageAttribute (from
namespace System).

The parameter array ellipses notation (. . .) involves the generation of a . custom directive for the attribute
ParamArrayAttribute, (in namespace System). See §34.6.2.

34.17 Templates

The metadata encoding for template classes and functions is unspecified except that the name of any
template class emitted shall not be spelled in a CLS-compliant manner.

34.18 Generics

The name of a generic type shall be that type's name as specified in the C++/CLI source, plus a suffix of the
form 'n, where n is a decimal integer constant (without leading zeros) representing the arity of that type. The
name in metadata of a non-generic type shall not have such a suffix. [Example:

ref class X { .. };

// metadata type name is X
.class public .. x .. { ..

generic<typename T>
public ref class X { .. };

// _metadata type name is X1
.class public .. X'1< .. > .. { .. }

generic<typename T, typename U>
public ref class X {
pubTic:
ref class Y { .. };
gener1c<typename A>
ref class z { .. };

1

// metadata type name is X 2
.class public .. X 2< .. T, .. U> .. {

// metadata type name is Y
.class .. nested public vy<(C .. T, .. U> .. { .. }

// _metadata type name is Z'1
.class .. nested public z' 1<(C .. T, ..U, .. A> . { ..}

end example]

239

C++/CLI Language Specification

Annex A. Grammar

A.1 Keywords

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

egnum-name;
identifier

template-name:
identifier

property-or-event-name:
identifier
default

A.2 Lexical conventions

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

token
identifier
keyword
literal
operator
punctuator

240

hexadecimal-digit

Grammar

header-name:
<h-char-sequence>
"g-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except new-line and >

g-char-sequence
g-char
g-char-sequence g-char

g-char:
any member of the source character set except new-line and "

pp-number:

digit
digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number

identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
universal-character-name

. a b ¢ d e f g h i j k1 m
n o p (q r s t u Vv w X y z
A B C D E F G H I J K L M
N 0 P Q R S T U \Y W X Y Z
digit: one of
o 1 2 3 4 5 6 7 8 9
preprocessing-op-or-punc: one of
[] # ## ()
<: > <% %> %: %:%: ; :
new delete ? i . ¥
+ - * / % A & | ~
! = < > += -= H= = %=
A= &= = << >> >>= <<= == =
<= >= && || ++ -- , ->% ->
and and_eq bitand bitor compl not hot_eq
or or_eq xor xor_eq
literal:

integer-literal
character-literal
floating-literal
string-literal
boolean-literal
null-literal

241

C++/CLI Language Specification

integer-literal:
decimal-literal integer-suffixop
octal-literal integer-suffixop
hexadecimal-literal integer-suffixop

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0x hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
o 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4
a b ¢ d e
A B C D E F

- v

integer-suffix:
unsigned-suffix long-suffixyp
unsigned-suffix long-long-suffiXep
long-suffix unsigned-suffixop
long-long-suffix unsigned-suffixop

unsigned-suffix: one of
u U

long-suffix: one of
T L

long-long suffix: one of
1 L

character-literal:
'c-char-sequence’
L 'c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single-quote ', backslash \, or new-line
character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

242

simple-escape-sequence: one of
AN VAN
\a \b \f \n \r A\t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-part,, floating-suffixep
digit-sequence exponent-part floating-suffiX,p

fractional-constant:
digit-sequencey,: . digit-sequence
digit-sequence

exponent-part:
e signgy digit-sequence
E signgy: digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
floating-suffix: one of
f 1 F L

string-literal:
"'s-char-sequence,p "
L"s-char-sequencegp"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:

Grammar

any member of the source character set except the double-quote ", backslash \, or new-line

character
escape-sequence
universal-character-name

boolean-literal:
false
true

null-literal:
nullptr

A.3 Basic concepts

translation-unit:
declaration-seqopt

243

C++/CLI Language Specification

A.4 Expressions

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
! class-name
template-id
generic-id
default

qualified-id:
:1opt Nested-name-specifier templateqy unqualified-id
identifier
operator-function-id
template-id

nested-name-specifier:
class-or-namespace-name :: nested-name-specifierqy
class-or-namespace-name :: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name
property-or-event-name

postfix-expression:
primary-expression
postfix-expression [expression-list]
postfix-expression (expression-listoy:)
simple-type-specifier (expression-list,)
typename ::q nested-name-specifier identifier (expression-list,,)
typename ::oy nested-name-specifier templateq, template-id (expression-listyy)
postfix-expression . templatey, id-expression
postfix-expression -> template,, id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)
typenamegy ::o Nested-name-specifier identifier :: typeid
typenameyy ::o Nested-name-specifier template,y template-id :: typeid

244

Grammar

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
:lopt Nested-name-specifieryy; type-name :: ~ type-name
i 1opt Nested-name-specifier template template-id :: ~ type-name
I lopt Nested-name-specifiery; ~ type-name

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & o+ - ! ~

new-expression:
ot New new-placementyy new-type-id new-initializeroy
ot New new-placementyy (type-id) new-initializer,y
gcnew type-specifier-seq new-initializeryy, array-initoy

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declarator

new-declarator:
ptr-operator new-declaratory
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator [constant-expression]

new-initializer:
(expression-listyy:)

array-init:
{ initializer-list o5 }

{1}

delete-expression:
:iopt delete cast-expression
1iop delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression
pm-expression ->*

o
=

cast-expression
cast-expression

245

C++/CLI Language Specification

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression A and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of

to

= w= /: %: += -= >>= <<L= &: A= | =

246

Grammar

expression:
assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

expression-statement:
expressiongy: ;

compound-statement:
{ statement-seqey: }

Statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator = assignment-expression

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement condition,y: ; expressiong:) Statement
foriieach (type-specifier-seq declarator in assignment-expression) statement

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue ;
return expressiong ;
goto identifier ;

declaration-statement:
block-declaration

247

C++/CLI Language Specification

A.6 Declarations

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
generic-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
attributes,y: decl-specifier-seqop: init-declarator-listyy ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqe,: decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier
delegate-specifier

248

simple-type-specifier:
: 1opt Nested-name-specifierq, type-name
:1opt Nested-name-specifier template template-id

char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name

typedef-name

elaborated-type-specifier:

attributesgp
attributesgp
attributesgp
attributesgp
attributes,p

enum-name;:
identifier

enum-specifier:

class-key
class-key
enum-key
typename
typename

:1opt Nested-name-specifieryy, identifier

:iopt Nested-name-specifiery, templatey, template-id
i 1opt Nested-name-specifier,y identifier

:iopt Nested-name-specifieryy identifier

1ot Nested-name-specifier templateqy template-id

attributes,,; top-level-visibility,,: enum-key identifier,; enum-baseqy
{ enumerator-listo,; }

enum-key:
enum
enu
enu

enum-base:

Tass
truct

type-specifier-seq

enumerator-list:

enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:

enumerator
enumerator

enumerator:
attributesgp

= constant-expression

identifier

namespace-name:

original-namespace-name

namespace-alias

original-namespace-name:

identifier

249

Grammar

C++/CLI Language Specification

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body 3

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

namespace-body:
declaration-seqop

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
I 1opt Nested-name-specifieryy namespace-name

using-declaration:
using typenamegy ::on nNested-name-specifier unqualified-id ;
using :: unqualified-id ;

using-directive:
using namespace ::oy nNested-name-specifiery, namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqo, }
extern string-literal declaration

A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializergp

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqop
exception-specificationg
direct-declarator [constant-expressiong]
(declarator)

250

Grammar

ptr-operator:
cv-qualifier-seqqp
A cv-qualifier-seqopt
&
%
i 1opt Nested-name-specifier * cv-qualifier-seqop:

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqpy:

cv-qualifier:
const
volatile

declarator-id:
id-expression
: lopt Nested-name-specifierq, type-name

type-id:
type-specifier-seq abstract-declarator

type-specifier-seq:
type-specifier type-specifier-seqop

abstract-declarator:
ptr-operator abstract-declarator
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declarator
(parameter-declaration-clause) cv-qualifier-seqqy exception-specificationgy
direct-abstract-declarator,, [constant-expressiong J
(abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listop: - . . opt
parameter-declaration-list
parameter-array
parameter-declaration-list , parameter-array

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
attributes,, decl-specifier-seq declarator
attributes,, decl-specifier-seq declarator = assignment-expression
attributes,, decl-specifier-seq abstract-declaratory
attributes,, decl-specifier-seq abstract-declarator,,; = assignment-expression

parameter-array:
attributesyy ... parameter-declaration

function-definition:
attributes,,: decl-specifier-seqq,: declarator function-modifiers,, override-specifier,
ctor-initializeroy function-body
attributes,,: decl-specifier-seqq,: declarator function-modifiers,, override-specifiergp
function-try-block

function-body:
compound-statement

251

C++/CLI Language Specification

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list ,q 3

{3

initializer-list:
initializer-clause
initializer-list , initializer-clause

A.8 Classes

class-name:
identifier
template-id

class-specifier:
attributes,,: top-level-visibility,, class-head { member-specificationgy }

top-level-visibility:
public
private

class-head:
class-key identifieryy class-modifiersy,: base-clauseqy
class-key nested-name-specifier identifier class-modifiersq, base-clauseqy
class-key nested-name-specifiero,; template-id class-modifiersy, base-clauseqy

class-key:
class

struct
union

valueiiclass
valueiistruct
interfaceiiclass
interfaceiistruct

class-modifiers:
class-modifiersy,: class-modifier

class-modifier:
abstract
sealed

member-specification:
member-declaration member-specificationgy
access-specifier : member-specificationgy

252

Grammar

member-declaration:
attributes,y initonly-or-literaly, decl-specifier-seqo,: member-declarator-listoy ;
function-definition ;qp
: 1ot Nested-name-specifier templatey, unqualified-id
using-declaration
template-declaration
generic-declaration
delegate-specifier
event-definition
property-definition

initonly-or-literal:
initonly
Titeral

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator function-modifiersy,: override-specifieryy
declarator constant-initializerp
identifiery,y : constant-expression

function-modifiers:
function-modifiersy,: function-modifier

function-modifier:
abstract
new
override
sealed

override-specifier:
= overridden-name-list
pure-specifier

overridden-name-list:
id-expression
overridden-name-list , id-expression

pure-specifier:
=0

constant-initializer:
= constant-expression

A.9 Properties and events
property-definition:
attributesy,: property-modifiersy,: property type-specifier-seq declarator property-
indexesgpt
{ accessor-specification 3}
attributes,,. property-modifiers,,; property type-specifier-seq declarator ;

property-modifiers:

property-modifiersy, property-modifier
property-modifier:

static

virtual

253

C++/CLI Language Specification

property-indexes:
[property-index-parameter-list]

property-index-parameter-list:
type-id
property-index-parameter-list , type-id

accessor-specification:
accessor-declaration accessor-specificationgy
access-specifier : accessor-specificationg

accessor-declaration:
attributes,,; decl-specifier-seqo,: member-declarator-listy:
function-definition

event-definition:
attributes,,, event-modifiersy,y event event-type identifier
{ accessor-specification }
attributes,,, event-modifiers,,y event event-type identifier ;

event-modifiers:
event-modifiersy, event-modifier

event-modifier:
static
virtual

event-type:
:lopt Nested-name-specifiery, type-name Aqy
lopt Nested-name-specifiery,; template template-id A

A.10 Derived classes

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
: 1opt Nested-name-specifiery, class-name
virtual access-specifieryy ::opr Nested-name-specifiery, class-name
access-specifier virtualey ::op nested-name-specifiery, class-name

access-specifier:
private
protected
pubTic
internal
protected public
public protected
private protected
protected private

A.11 Special member functions

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratory

254

Grammar

conversion-declarator:
ptr-operator conversion-declarator

ctor-initializer:
meme-initializer-list

mem-initializer-list:

mem-initializer

mem-initializer , mem-initializer-list
mem-initializer:

mem-initializer-id (expression-listy,;)
mem-initializer-id:

:lopt Nested-name-specifiery, class-name

identifier

A.12 Overloading

operator-function-id:
operator operator
operator operator < template-argument-listy, >

operator: one of

new delete new[] delete[]

+ - * / % A & | ~
! = < > +=] 7"‘: = °0=
"= &= |= << >> >>= <<= == =
<= >= & I ++ -- : ->* >
O []

A.13 Delegates

delegate-specifier:
attributes, top-level-visibility,,; delegate type-specifier-seq declarator ;

A.14 Templates

template-declaration:
exporty: template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieryy
class identifieryy = type-id
typename identifierqy
typename identifiero; = type-id
template < template-parameter-list > class identifierqy
template < template-parameter-list > class identifier,,; = id-expression

template-id:
template-name < template-argument-listy, >

template-name:
identifier

255

C++/CLI Language Specification

template-argument-list:
template-argument
template-argument-list , template-argument

template-argument:
assignment-expression
type-id
id-expression

explicit-instantiation:
template declaration

explicit-specialization:
template < > declaration

A.15 Generics

generic-declaration:
generic < generic-parameter-list > constraint-clause-list,,: declaration

generic-parameter-list:
generic-parameter
generic-parameter-list , generic-parameter

generic-parameter:
attributes,y class identifier
attributes,y typename identifier

generic-id:
generic-name < generic-argument-list >

generic-name:
identifier
operator-function-id

generic-argument-list:
generic-argument
generic-argument-list , generic-argument

generic-argument:
type-id

constraint-clause-list:
constraint-clause-list,,x constraint-clause

constraint-clause:
where identifier : constraint-item-list

constaint-item-list:
constraint-item
constraint-item-list , constraint-item

constraint-item:
type-id
refiiclass
refiistruct
valueiiclass
valueiistruct
gcnew ()

256

Grammar

A.16 Exception handling

try-block:
try compound-statement handler-seq
try compound-statement finally-clause
try compound-statement handler-seq finally-clause

function-try-block:
try ctor-initializerey: function-body handler-seq
try ctor-initializer, function-body finally-clause
try ctor-initializerey; function-body handler-seq finally-clause

handler-seq:
handler handler-seqq:

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq

finally-clause:
finally compound-statement

throw-expression:
throw assignment-expressiongp

exception-specification:
throw (type-id-listoy:)

type-id-list:
type-id
type-id-list , type-id

A.17 Attributes

attributes:
attribute-sections

attribute-sections:
attribute-sections,y, attribute-section

attribute-section:
[attribute-target-specifiery, attribute-list 1]

attribute-target-specifier:
attribute-target

257

C++/CLI Language Specification

attribute-target:
assembly
class
constructor
delegate
enum
event
field
interface
method
parameter
property
returnvalue
struct

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsy

attribute-name:
type-name

attribute-arguments:
(positional-argument-listy;;)
(positional-argument-list , named-argument-list
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list ~, positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list ~, named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
assignment-expression

A.18 Preprocessing directives
preprocessing-file:
groupoept
group:
group-part
group group-part
group-part:
pp-tokensy,: new-line
if-section
control-line

258

Grammar

if-section:
if-group elif-groups,,: else-groupy,: endif-line

if-group:
1if constant-expression new-line groupgp:
ifdef identifier new-line groupgp
difndef identifier new-line groupgy:

elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line groupep
else-group:
else new-line groupgy:
endif-line:
endif new-line
control-line:
1include pp-tokens new-line
using pp-tokens new-line
define identifier replacement-list new-line
define identifier Iparen identifier-list,,:) replacement-list new-line
undef identifier new-line
T1ine pp-tokens new-line
error pp-tokensy: new-line
pragma pp-tokensy,: new-line
new-line
Iparen:

the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensgp

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

259

C++/CLI Language Specification

Annex B. Verifiable code

[Note: Reserved for future use. end note]

260

Documentation comments

Annex C. Documentation comments

This annex is informative.

C.1 Introduction

Comments having a special form can be used to direct a tool to produce XML from those comments and the
source code elements they precede. Such comments are single-line comments that start with exactly three
slashes (///). They shall immediately precede a user-defined type (such as a class, delegate, or interface) or
a member (such as a field, event, property, or function) that they annotate. Attribute sections are considered
part of declarations, so documentation comments shall precede attributes applied to a type or member.

Alternatively, comments (possibly multi-line) that start with a slash and exactly two asterisks may also
contain XML document comments.

These comments may only be applied to CLI class types and members within those types. While processing
such comments, if they are applied to unsupported types, the compiler shall issue a warning.

Documentation comments in a header are processed only if that header were included using the "..." form of
#include.

Syntax:

single-line-doc-comment:
/// intput-characters,p

delimited-doc-comment:
/** delimited-comment-charactersyy */

In a single-line-doc-comment, if there is a white-space character following the /// characters on each of the
single-line-doc-comments adjacent to the current single-line-doc-comment, then that one white-space
character is not included in the XML output.

In a delimited-doc-comment, if the first non-white-space character on the second line is an asterisk and the
same pattern of optional white-space characters and an asterisk character is repeated at the beginning of each
of the lines within the delimited-doc-comment, then the characters of the repeated pattern are not included in
the XML output. The pattern can include white-space character after, as well as before, the asterisk
character.

Example:

JOROR
ww

<remarks>))))
Class <c>Point</c> models a point in a two-dimensional plane.
</remarks>

public ref class Point {

public:
/// <remarks>Method <c>Draw</c> renders the point.</remarks>
void Draw() { /*...*

The text within documentation comments shall be well-formed according to the rules of XML
(http://www.w3.0org/TR/REC-xml). If the XML is ill-formed, a warning is generated and the documentation
file will contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined in §C.2. Some of
the recommended tags have special meanings:

261

C++/CLI Language Specification

The <param> tag is used to describe parameters. If such a tag is used, the documentation
generator shall verify that the specified parameter exists and that all parameters are described in
documentation comments. If such verification fails, the documentation generator issues a
warning.

The cref attribute can be attached to any tag to provide a reference to a code element. The
documentation generator shall verify that this code element exists. If the verification fails, the
documentation generator issues a warning. When looking for a name described in a cref
attribute, the documentation generator shall respect namespace visibility according to using
statements appearing within the source code.

The <summary> tag is intended to be used by a documentation viewer to display additional
information about a type or member.

Note carefully that the documentation file does not provide full information about the type and members (for
example, it does not contain any type information). To get such information about a type or member, the
documentation file shall be used in conjunction with reflection on the actual type or member.

C.2 Recommended tags

The documentation generator shall accept and process any tag that is valid according to the rules of XML.
The following tags provide commonly used functionality in user documentation. (Of course, other tags are

possible.)

Tag Section Purpose

<Cc> §C.2.1 Set text in a code-like font

<code> §C.2.2 Set one or more lines of source code or program output
<example> §C.23 Indicate an example

<exception> §C.2.4 Identifies the exceptions a function can throw
<list> §C.2.5 | Create a list or table

<para> §C.2.6 | Permit structure to be added to text

<param> §C.2.7 | Describe a parameter for a function or constructor
<paramref> §C.2.8 Identify that a word is a parameter name
<permission> §C.2.9 | Document the security accessibility of a member
<remarks> §C.2.10 | Describe a type

<returns> §C.2.11 | Describe the return value of a function

<see> §C.2.12 | Specify a link

<seealso> §C.2.13 | Generate a See Also entry

<summary> §C.2.14 | Describe a member of a type

<typeparam> §C.2.15 | Describe a generic type parameter
<typeparamref> §C.2.16 | Identify that a word is a type parameter name
<value> §C.2.17 | Describe a property

C.2.1<c>

This tag provides a mechanism to indicate that a fragment of text within a description should be set in a

special font such as that used for a block of code. For lines of actual code, use <code> (§C.2.2).

Syntax:
<c>text to be set like code</c>

Example:

262

Documentation comments

/// <remarks>

/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </remarks>

ref class Point

// ...
1

C.2.2 <code>

This tag is used to set one or more lines of source code or program output in some special font. For small
code fragments in narrative, use <c> (§C.2.1).

Syntax:
<code>source code or program output</code>

Example:

/// <summary>
/// Changes the Point's location by the given x- and y-offsets.
/// <example>
/ The following code:
/ <code>
/ Point p(3,5);
/ p.Translate(-1,3);
/ </code>
/ results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>
void Translate(int xord, int yord) {
X += xord;
Y += yord;

//
//
//
//
//
//

}

C.2.3 <example>

This tag allows example code within a comment, to specify how a function or other library member may be
used. Ordinarily, this would also involve use of the tag <code> (§C.2.2) as well.

Syntax:
<example>description</example>

Example:

See <code> (§C.2.2) for an example.

C.2.4 <exception>

This tag provides a way to document the exceptions a function can throw.

Syntax:
<exception cref="member'">description</exception>

where

cref="member"

The name of a member. The documentation generator checks that the given member exists and translates
member to the canonical element name in the documentation file.

description
A description of the circumstances in which the exception is thrown.

Example:

263

C++/CLI Language Specification

public ref class DataBaseOperations

/// <exception cref="MasterFileFormatCorruptException">.</exception>
/// <exception cref="MasterFileLockedOpenException">..</exception>
static void ReadRecord(int flag) {
if (flag == 1)
throw new MasterFileFormatCorruptException();
else if (flag == 2)
throw new MasterFileLockedOpenException();
// ..
3
3

C.2.5<list>

This tag is used to create a list or table of items. It may contain a <11 stheader> block to define the
heading row of either a table or definition list. (When defining a table, only an entry for term in the heading
need be supplied.)

Each item in the list is specified with an <item> block. When creating a definition list, both term and
description shall be specified. However, for a table, bulleted list, or numbered list, only description
need be specified.

Syntax:

<list type="bullet" | "number" | "table">
<listheader>
<term>term</term>
<description>description</description>
</1istheader>
<item>
<term>term</term>
<description>description</description>
</item>

<item>
<term>term</term>
<description>description</description>
</item>
</Tist>

where
term

The term to define, whose definition is in description
description

Either an item in a bullet or numbered list, or the definition of a term.

Example:

public ref class MyClass {

pubTic:
/// <remarks>
/// Here 1is an example of a bulleted 1ist:
/// <list type="bullet">
/// <jitem>
/// <description>First item.</description>
/// </item>
/// <item>
/// <description>Second item.</description>
/// </item>
/// </Tist>
/// </remarks>
static void FQ {

/ ...
};

264

Documentation comments

C.2.6 <para>

This tag is for use inside other tags, such as <remarks> (§C.2.10) or <returns> (§C.2.11), and permits
structure to be added to text.

Syntax:
<para>content</para>

where
content

The text of the paragraph.

Example:
/// <summary>
/// <para>
/// This is the entry point of the Point class testing program.
/// </para>
/// <para>
/// This program tests each function and operator, and is intended
/// to be run after any non-trivial maintenance has been performed
/// on the Point class.
/// </para>

/// </summary>
int main(Q)

C.2.7 <param>

This tag is used to describe a parameter for a function, constructor, or indexer.

Syntax:
<param name="name'>description</param>

where
name

The name of the parameter.
description

A description of the parameter.

Example:

/// <summary>
/// This function changes the point's location to the given
coordinates.
/// </summary>
/// <param name="xord"><c>xord</c> is the new x-coordinate.</param>
/// <param name="yord"><c>yord</c> is the new y-coordinate.</param>
void Move(int xord, int yord) {

X = xord;

Y = yord;

}

C.2.8 <paramref>

This tag is used to indicate that a word is a parameter. The documentation file can be processed to format
this parameter in some distinct way.

Syntax:
<paramref name="name" />

where

265

C++/CLI Language Specification

name

The name of the parameter.

/ <summary>

/ This constructor initializes the new Point to
/ (<paramref name="xord"/>,<paramref name="yord"/>).
/ </summary>

/ <param name="xord">

/ <c>xord</c> is the new Point's x-coordinate.
/ </param>

/ <param name="yord">

/ <c>yord</c> is the new Point's y-coordinate.
/ </param>

int(int xord, int yord) {

X xord;

Y = yord;

//
//
//
//
//
//
//
//
//
//
PO

}

C.2.9 <permission>
This tag allows the security accessibility of a member to be documented.
Syntax:

<permission cref="member">description</permission>
where

cref="member"

The name of a member. The documentation generator checks that the given code element exists and
translates member to the canonical element name in the documentation file.

description
A description of the access to the member.

Example:

/// <permission cref="System::Security::PermissionSet">
/// Everyone can access this function.

/// </permission>

static void Test() {

C.2.10 <remarks>

This tag is used to specify overview information about a type. (Use <summary> (§C.2.14) to describe the
members of a type.)

Syntax:
<remarks>description</remarks>
where
description
The text of the remarks.

Example:

/// <remarks>

/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </remarks>

public ref class Point

// ...
};

266

Documentation comments

C.2.11 <returns>

This tag is used to describe the return value of a function.

Syntax:
<returns>description</returns>

where

description
A description of the return value.

Example:

/// <summary>
/// Report a point's location as a string.
/// </summary>
/// <returns>
/// A string representing a point's location, in the form (x,y),
/// without any Teading, trailing, or embedded whitespace.
/// </returns>
StringA Tostring() override {
return string::Format("({0},{1})", X, Y);

C.2.12 <see>

This tag allows a link to be specified within text. Use <seealso> (§C.2.13) to indicate text that is to appear
in a See Also subclause.

Syntax:
<see cref="member"/>

where
cref="member"

The name of a member. The documentation generator checks that the given code element exists and changes
member to the element name in the generated documentation file.

Example:

/// <summary>
/// This function changes the point's location to the given
coordinates.
/// Use the <see cref="Translate"/> function to apply a relative
change.
/// </summary>
void Move(int xord, int yord) {
X = xord;
Y = yord;

}

/// <summary>

/// This function changes the point's location by the given offsets.
/// Use the <see cref="Move"/> function to directly set the
coordinates.

/// </summary>

void Translate(int xord, int yord) {
X += xord;
Y += yord;

}

C.2.13 <seealso>

This tag allows an entry to be generated for the See Also section. Use <see> (§C.2.12) to specify a link
from within text.

Syntax:

267

C++/CLI Language Specification

<seealso cref="member"/>

where
cref="member"

The name of a member. The documentation generator checks that the given code element exists and changes
member to the element name in the generated documentation file.

Example:

/// <summary>]]) .
/// This function determines whether two Points have the same location.

/// </summary>

/// <seealso cref="operator=="/>
/ <seealso cref="operator!="/>

boo1/Equa1s(0bjectA o) override {

C.2.14 <summary>
This tag can be used to describe a member for a type. Use <remarks> (§C.2.10) to describe the type itself.
Syntax:
<summary>description</summary>
where
description
A summary of the member.

Example:

/// <summary> o]
/// This constructor initializes the new Point to (0,0).

/// </summary>
Point() {
// .

C.2.15 <typeparam>

This tag is used to describe a type parameter for a generic type or function.

Syntax:
<typeparam name="name">description</typeparam>

where
name

The name of the type parameter.
description

A description of the type parameter.

Example:

/// <summary>

/// A single linked Tist that stores unique elements.
/// </summary>

/// <typeparam name="T">Each element of the 1list 1is a
<c>T</c>.</typeparam>

generic<typename T>

ref class List {

/ /

268

Documentation comments

C.2.16 <typeparamref>

This tag is used to indicate that a word is a type parameter. The documentation file can be processed to
format this parameter in some distinct way.

Syntax:

<typeparamref name="name"/>
where

name

The name of the parameter.

C.2.17 <value>
This tag allows a property to be described.
Syntax:
<value>property description</value>
where
property description
A description for the property.

Example:

/// <value>
/// The point's x-coordinate.

/// </value>
property int X {
int get() { return x; }
void set(int value) { x = value; }

C.3 Processing the documentation file
The following information is intended for C++/CLI implementations targeting the CLI.

The documentation generator generates an 1D string for each element in the source code that is tagged with a
documentation comment. This ID string uniquely identifies a source element. A documentation viewer can
use an ID string to identify the corresponding metadata/reflection item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a

generated ID string for each element.

C.3.1ID string format
The documentation generator observes the following rules when it generates the ID strings:

e No white space is placed in the string.

e The first part of the string identifies the kind of member being documented, via a single
character followed by a colon. The following kinds of members are defined:

Character | Description
Event
Field

Method (including constructors, destructors, finalizers, functions, and
operators)

Namespace

oz £ |Tm

Property (including indexers)

269

C++/CLI Language Specification

D Typedef
T Type (such as class, delegate, enum, interface, and struct)

Error string; the rest of the string provides information about the error. For
! example, the documentation generator generates error information for
links that cannot be resolved.

e The second part of the string is the fully qualified name of the element, starting at the root of the
namespace. The name of the element, its enclosing type(s), and namespace are separated by
periods. If the name of the item itself has periods, they are replaced by NUMBER SIGN #
(U+0023) characters. (It is assumed that no element has this character in its name.)

e For functions and properties with arguments, the argument list follows, enclosed in parentheses.
For those without arguments, the parentheses are omitted. The arguments are separated by
commas. The encoding of each argument is the same as a CLI signature, as follows: Arguments
are represented by their fully qualified name. For example, int is System.Int32, and so on.
Tracking reference arguments have an @ following their type name. Arguments passed by value
or via param arrays have no special notation. Arguments that are CLI arrays are represented as [
lowerbound : size , ..., lowerbound : size] where the number of commas is the rank less
one, and the lower bounds and size of each dimension, if known, are represented in decimal. If a
lower bound or size is not specified, it is omitted. If the lower bound and size for a particular
dimension are omitted, the “:” is omitted as well. Jagged arrays are represented by one “[]” per
level. Arguments that have pomter types other than void are represented using a * following the
type name. A void pointer is represented using a type name of System.Vvoid.

C.3.2 ID string examples

The following examples each show a fragment of C++ code, along with the ID string produced from each
source element capable of having a documentation comment:

e Types are represented using their fully qualified name.

enum class color { Red, Blue, Green };

namespace Acme {
interface class IProcess { /*...*/ };
value class valueType { /*...%/ };
ref class widget : IProcess {
pubTic:
ref class NestedClass { /*...*/ };
interface class IMenuItem { / LA
delegate void Del(int i);
enum class Direction { North, South, East, West };

}

:Color"

:Acme.IProcess"
:Acme.valueType"
:Acme.widget"
:Acme.widget.NestedClass"
:Acme.widget.IMenuItem"
:Acme.widget.Del"
:Acme.Widget.Direction"

G444 444

e Fields are represented by their fully qualified name.

namespace Acme {
value class valueType {
private:
int total;

’

270

Documentation comments

ref class widget: IProcess {
public:
ref class NestedcClass {
private:
int value;

private:
StringA message;
static colorA defaultColor;
Titeral double PI = 3.14159;
initonly double monthlyAverage;
array<long>A arrayl;
array<widgetA,2>A array?2;
int *pCount;

) float **ppvalues;
}

:Acme.valueType.total"
:Acme.Widget.NestedClass.value"
:Acme.Widget.message"
:Acme.Widget.defaultColor"
:Acme.widget.PI"
:Acme.Widget.monthlyAverage"
:Acme.Widget.arrayl"
:Acme.widget.array2"
:Acme.widget.pCount"
:Acme.Widget.ppvalues™

R R i)

e Constructors.

namespace Acme {
ref class widget : IProcess {

static widget() { /*...*/ }
public:

widget() { /*...*/ }

widget(stringA s) { /*...%/ }

y
}
"M:Acme.widget.#cctor"

"M:Acme.widget.#ctor")
"M:Acme.widget.#ctor(System.String)"

e Finalizers.

namespace Acme {
ref class widget : IProcess {
protected:
widget() { /*...*/ }

}
"M:Acme.widget.Finalize"

e Methods.

namespace Acme {
value class valueType {
public:
void M(int i) { /*...*/ }

’

ref class widget : IProcess {
public
ref class NestedClass {
public:
void M(int i) { /*...*/ }

271

C++/CLI Language Specification

1

static void Mm0Q) { /*...*/ }

void M1l(wchar_t c, f]oat/ f, valueType% v) { /*...*/ }

void M2(array<short>A x1, array<1nt 2>A X2,
array<array<1nt>A>A/x§)

void M3(array<array<1nt>A> X3, array<array<widgetA,3>A>A x4)

void M4(wchar t *pc, Color **pf) { /*...*/ }
void M5(void *pv, array<array<doub1e ,2>A > pd) { /*...%/ }
void M6(int i, ... array<ObjectA>A args) { /*...*/ }

}

:Acme.valueType.M(System.Int32)"
:Acme.widget.NestedClass.M(System.Int32)"

:Acme.Widget.m0"
:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"
:Acme.widget.M2(System.Intl6[],System.Int32[0:,0:],System.Int64[]1[]1)"
:Acme.widget.M3(System.Int64[][] Acme W1dget[0 ,0:,0:][1D"
:Acme.Widget.M4(System.Char* Co1or
:Acme.widget.MS(System.Void*,System.Doub1e*[0:,0:][])"
:Acme.Widget.M6(System.Int32,System.0Object[])"

EEE=E=EZI=ZE=Z=Z

e Properties and indexers.

namespace Acme {
ref class widget : IProcess {
public:
property int width {
int get() { /*...%/ }
void set(int value) { /*...*/ }

property int defau]t[1nt] {
int get(int i) { /*.
void set(int i, 1int va1ue) { /*...*/ }

property int default[StringA, int] {
int get(StringA s, int 1) { /*...*/ }
void set(StringA s, int i, int va1ue) {/*...%/ }

};
}
"P:Acme.widget.width"
"P:Acme.widget.Item(System.Int32)"
"P:Acme.widget.Item(System.String,System.Int32)"

e Events.

namespace Acme {
ref_class widget : IProcess {
pubTic:
event DelA AnEvent;
y
3
"E:Acme.widget.AnEvent"

e Unary operators. (The complete set of unary operator function names used is listed in Table
19-1: CLS-Compliant Unary Operators.)

namespace Acme {
ref class widget : IProcess {
public:
static widgetA operator+(widgetAr x) { /*...%/ }

272

Documentation comments

}s
}

"M:Acme.widget.op_UnaryPlus(Acme.widget)"

e Binary operators. (The complete set of binary operator function names used is listed in Table
19-2: CLS-Compliant Binary Operators.)

hamespace Acme {
ref class widget : IProcess {
public:
static widgetA operator+(widgetA x1, widgetA x2) { /*...*/ }
}
"M:Acme.widget.op_Addition(Acme.widget,Acme.Widget)"

9
~

e Conversion operators have a trailing followed by the return type.

namespace Acme {
ref class widget : IProcess {

public:
static explicit operator int(widgetAr x) { /*...%/ }
static operator long long(widgetA x) { /*...*/ }

} ’

"M:Acme.widget.op_Explicit(Acme.widget)~System.Int32"
"M:Acme.widget.op_Implicit(Acme.widget)~System.Int64"

C.4 An example

C.4.1 C++ source code

The following example shows the source code of a Point class:

273

C++/CLI Language Specification

namespace Graphics {
/// <remarks>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </remarks>
public ref class Point {
pubTic:
/// <value>
/// The Point's x-coordinate.
/// </value>
property int X;

/// <value>
/// The Points' y-coordinate.

/// </value>
property int Y;

/// <summary>
/// This constructor initializes the new Point to (0,0).
/// </summary>

Point() {

X = 0;

Y = 0;
3
/// <summary>
/// This constructor initializes the new Point to
/// (<paramref name="xord"/>,<paramref name="yord"/>).
/// </summary>
/// <param name="xord">
/// <c>xord</c> is the new Point's x-coordinate.
/// </param>
/// <param name="yord">
/// <c>yord</c> is the new Point's y-coordinate.
/// </param>
Point(int xord, int yord) {

X = xord;

Y = yord;

/ <summary>

/ This function changes the point's location to the given
/ coordinates.

/ </summary>

/ <param name="xord">

/ <c>xord</c> is the new x-coordinate.
/ </param>

/ <param name="yord">

/ <c>yord</c> is the new y-coordinate.
/ </param>

/ <seealso cref="Translate"/>

id Move(int xord, int yord) {

< NN\ W
O NN NN\~

X = xord;
Y = yord;
ks
/// <summary>
/// This function changes the point's location by the given
/// x- and y-offsets.
/// </summary>
/// <example>
/// The following code:
/// <code>
/// Point p(3,5);
/// p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// <param name="xord">
/// <c>xord</c> is the relative x-offset.

274

Documentation comments

/// </param>
/// <param name="yord">
/// <c>yord</c> 1is the relative y-offset.
/// </param>
/// <seealso cref="Move'"/>
void Translate(int xord, int yord) {
X += xord;
Y += yord;
b
/// <summary>
/// This function determines whether two Points have the same
/// location.
/// </summary>
/// <param name="0">
/// <c>0</c> is the object to be compared to the current object.
/// </param>
/// <returns>
/// True if the Points have the same location; otherwise, false.
/// </returns>
/// <seealso cref="operator =="/>
/// <seealso cref="operator !="/>
bool Equals(ObjectA o) override {
PointA p = dynamic_cast<PointA>(0);
if (!'p) return false;
) return (X == p->X) && (Y == p->Y);
/// <summary>
/// Computes the hash code for a Point.
/// </summary>
/// <returns>
/// A hash code computed from the x and y coordinates.
/// </returns>
int GetHashCode() override {

return X A Y;

3

/// <summary>

/// Report a point's location as a string.

/// </summary>

/// <returns>

/// A string representing a point's location, in the form (x,y),
/// without any leading, training, or embedded whitespace.
/// </returns>

StringA Tostring() override {

) return String::Format("({0},{1})", X, Y);

/// <summary>

/// This operator determines whether two Points have the same
/// location.

/// </summary>

/// <param name="pl">The first Point to be compared.</param>
/// <param name="p2">The second Point to be compared.</param>
/// <returns>

/// True if the Points have the same location; otherwise, false.
/// </returns>

/// <seealso cref="Equals"/>

/// <seealso cref="operator !="/>

static bool operator==(PointA pl, PointA p2) {

if ((ObjectA)pl == nullptr || (ObjectA)p2 == nullptr)
return false;
return (pl->X == p2->X) && (pl->Y == p2->Y);

ks
/// <summary>]]
/// This operator determines whether two Points have the same
/// Tlocation.

275

C++/CLI Language Specification

/// </summary>

/// <param name="pl">The first Point to be compared.</param>
/// <param name="p2">The second Point to be compared.</param>
/// <returns>

/// True if the Points do not have the same location;

/// otherwise, false.

/// </returns>

/// <seealso cref="Equals"/>

/// <seealso cref="operator =="/>

static bool operator!=(PointA pl, PointA p2) {

return !(pl == p2);

};
}

C.4.2 Resulting XML

Here is the output produced by one documentation generator when given the source code for class Point,
shown above:

<?xml version="1.0"?>
<doc>
<assembly>
Point
</assembly>
<members>
<member name="T:Graphics.Point">
<remarks>
Class <c>Point</c> models a point in a two-dimensional plane.
</remarks>
</member>

<member name="M:Graphics.Point.get X">
<value>
The Point's x-coordinate.
</value>

</member>

<member name="M:Graphics.Point.get Y">
<value>

The Points' y-coordinate.

</value>

</member>

<member name="M:Graphics.Point.#ctor">
<summary>
This constructor initializes the new Point to (0,0).
</summary>

</member>

<member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
<summary>

This constructor initializes the new Point to

(<paramref name="xord"/>,<paramref name="yord"/>).

</summary>

<param name="xord">
<c¢>xord</c> is the new Point's x-coordinate.
</param>

<param name="yord">
<c¢>yord</c> is the new Point's y-coordinate.

276

</param>
</member>

<member name="M:Graphics.Point. Move(System.Int32,System.Int32)">
<summary>

This function changes the point's location to the given coordinates.
</summary>

<param name="xord">
<c¢>xord</c> is the new x-coordinate.
</param>

<param name="yord">
<c>yord</c> is the new y-coordinate.
</param>

<seealso cref="M:Graphics.Point. Translate(System.Int32,System.Int32)"/>
</member>

<member name="M:Graphics.Point. Translate(System.Int32,System.Int32)">
<summary>

This function changes the point's location by the given x- and y-offsets.
</summary>

<example>
The following code:
<code>
Point p(3,5);
p.Translate(-1,3);
</code>
results in <c>p</c>'s having the value (2,8).
</example>

<param name="xord">
<c>xord</c> is the relative x-offset.
</param>

<param name="yord">
<c¢>yord</c> is the relative y-offset.
</param>
<seealso cref="M:Graphics.Point. Move(System.Int32,System.Int32)"/>
</member>

<member name="M:Graphics.Point.Equals(System.Object)">
<summary>
This function determines whether two Points have the same location.
</summary>

<param name="0">
<c>0</c> is the object to be compared to the current object.
</param>

<returns>
True if the Points have the same location; otherwise, false.
</returns>

<seealso cref="M:Graphics.Point.op Equality(Graphics.Point,Graphics.Point)"/>
<seealso cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
</member>

277

Documentation comments

C++/CLI Language Specification

<member name="M:Graphics.Point.GetHashCode">
<summary>
Computes the hash code for a Point.
</summary>

<returns>

A hash code computed from the x and y coordinates.
</returns>

</member>

<member name="M:Graphics.Point. ToString">
<summary>

Report a point's location as a string.
</summary>

<returns>
A string representing a point's location, in the form (x,y),
without any leading, training, or embedded whitespace.
</returns>

</member>

<member name="M:Graphics.Point.op Equality(Graphics.Point,Graphics.Point)">
<summary>
This operator determines whether two Points have the same location.
</summary>

<param name="p1">The first Point to be compared.</param>
<param name="p2">The second Point to be compared.</param>

<returns>
True if the Points have the same location; otherwise, false.
</returns>

<seealso cref="M:Graphics.Point.Equals(System.Object)"/>
<seealso cref="M:Graphics.Point.op Inequality(Graphics.Point,Graphics.Point)"/>
</member>

<member name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
<summary>

This operator determines whether two Points have the same location.

</summary>

<param name="p1">The first Point to be compared.</param>
<param name="p2">The second Point to be compared.</param>

<returns>
True if the Points do not have the same location; otherwise, false.
</returns>

<seealso cref="M:Graphics.Point.Equals(System.Object)"/>

<seealso cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
</member>

</members>

</doc>

278

Non-normative references

Annex D. Non-normative references

ECMA-334:2005, C# Programming language.

279

C++/CLI Language Specification

Annex E. CLI naming guidelines

This annex is informative.

Information on this topic can be found at the following location:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

End of informative text

280

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/ht
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/ht

Future directions

Annex F. Future directions

This annex is informative.

This annex contains information about features that might be considered for a future revision of this
Standard.

F.1 Expressions

F.1.1 Class member access

A named indexed property could be accessed like any other member of a class. [Note: As expected, an
expression of the form p->NamedIndexer[index] is equivalent to (*p) .NamedIndexer[index]. end
note]

F.1.2 Type identification
Consider having a way for typeid on CLI class types produce a std: : type_info.

F.1.3 Pointer type portability

The hardware architecture running the program determines the size of pointers. With the CLI, it is possible
to use pointer types in programs that can run on multiple hardware architectures where pointer sizes are
different. In order to support such programs, sizeof expressions on pointers would turn into a runtime
expression instead of a compile time constant.

F.2 Statements

F.2.1 The checked and unchecked statements

Statements of the form checked { .. } and unchecked { .. } could be used to control the overflow-
checking context for integral-type arithmetic operations and conversions.

F.3 Classes

F.3.1 Delegating constructors

Tutorial: When implementing a class, it is not unusual to have a number of constructors share some common
code. For example, consider the case of the following point class:

class point {

int x_;

int y_;

void commonCode();
pubTic:

point();

point(int x, int y);

point(const point& p);

s
All three constructors need to initialize the two private members, Xx_ and y_; they might also perform other

actions, some of which they share, and some of which are unique. One approach is as follows:

point::point() : x_(0), y_(0) {
commonCode() ;
// custom code goes here

281

C++/CLI Language Specification

point::point(int x, int y) : x_(x), y_(y) {
commonCode() ;

point::point(const point& p) : x_(p.-x_), y_(p.y_) {
commonCode() ;
// custom code goes here

Certainly, the constructor with no parameters can be eliminated by adding default argument values to the
constructor having two. However, that is not an entirely satisfactory approach for all classes. Specifically, it
allows the two-argument constructor to be called with only the first argument, but not with only the second,
which, philosophically, is asymmetric.

As shown above, a common approach to implementing such a family of constructors is to place their
common code in a private member function, such as commonCode, and have each of them call that function.

C++/CLI could help solve this problem by providing delegating constructors. Simply stated, prior to
executing its body, a delegating constructor can call one of its sibling constructors as though it were a base
constructor. That is, it delegates part of the Object’s initialization to another constructor, gets control back,
and then optionally performs other actions as well. Using this approach, the constructors shown earlier can
be re-implemented as follows:

point::point() : point(0, 0) {
// custom code goes here

point::point(int x, int y) : x_(x), y_(y) {
// common code goes here

point::point(const point& p) : point(p.x_, p.y_) {
// custom code goes here

Note how the ctor-initializer construct has been extended to accommodate a call to a sibling constructor,
using the exact same approach as for a call to a base class constructor. The common code statements can
now be part of the body of the second constructor, where they will be executed by calls to all three
constructors. When the first and third constructors are called, they transfer control to the second. When that
returns control to its caller, that caller’s body is executed.

Any constructor can delegate to any of its siblings; however, a class shall have at least one non-delegating
constructor (no diagnostic is required), and that constructor can still have a ctor-initializer that calls one or
more base class constructors. A delegating constructor cannot also have a ctor-initializer that contains a
comma-separated list of member initializers.

Specification: The definition of ctor-initializer is augmented to accommodate the addition of delegating
constructors to C++/CLI; however, no change is necessary in the Standard C++ (§8.4) grammar.

Prior to executing its body, a constructor can call one of its sibling constructors to initialize members. That
is, it delegates the object’s initialization to another constructor, gets control back, and then optionally
performs other actions as well. A constructor that delegates in this manner is called a delegating
constructor, and the constructor to which it delegates is called a target constructor. A delegating constructor
can also be a target constructor of some other delegating constructor. [Example:

class FullName {
string firstName_;
string middleName_;
string TastName_;
public:
FullName(string firstName, string middleName, string TastName);
FullName(string firstName, string lastName);
FullName(const FullName& name);

282

Future directions

FullName::FullName(string firstName, string middleName, string lastName)
firstName_(firstName), middleName_(middleName), TastName_(lastName)

}

// de1egatin? copy constructor
FullName: :FullName(const FullName& name)
FulTName(name. firstName, name.middleName, name.lastName)

}

// de1egatin? constructor _
FullName::FullName(string firstName, string lastName)
FulTName(firstName, "", lastName)

}

end example]

If a mem-initializer-id designates the class being defined, it shall be the only mem-initializer. The resulting
ctor-initializer signifies that the constructor being defined is a delegating constructor.

A delegating constructor causes a constructor from the class itself to be invoked. The target constructor is
selected by overload resolution and template argument deduction, as usual. If a delegating constructor
definition includes a ctor-initializer that directly or indirectly invokes the constructor itself, the program is
ill-formed; however, no diagnostic is required.

[Example: When using constructors that are templates, deduction works as usual:

class X {
template<class T> X(T, T) : 1_(first, last) { /* Common Init */ }
Tist<int> 1_;
public:
X(vector<short>&);
X::X(vector<short>& v) : X(v.begin(), v.end()) { }
// T is deduced as vector<short>::iterator

end example]

The object’s lifetime begins when all construction is successfully completed. For the purposes of the C++
Standard (§3.8), “the constructor call has completed” means the originally invoked constructor call.
[Rationale: Even if a target constructor completes, an outer delegating constructor can still throw an
exception, and if so the caller did not get the object that was requested. The foregoing decision also
preserves the Standard C++ rule that an exception emitted from a constructor means that the object’s
lifetime never began. end rationale]

F.3.2 Properties

Allowing properties in native classes.

Allowing the modifiers abstract, new, override, and sealed to be applied directly to a property as well
as or instead of to one or more of its accessors.

F.3.3 Events

Allowing the modifiers abstract, new, override, and sealed to be applied directly to an event as well
as or instead of to one or more of its accessors.

F.3.4 Unsupported CLS-recommended operators

Function Name in Assembly \ C++ Operator Function Name

283

C++/CLI Language Specification

op_SignedRightshift undefined
op_UnsignedRightshift undefined
op_MemberSelection undefined
op_PointerToMemberSelection undefined

Regarding op_MemberSelection and op_PointerToMembersSelection, the C++ Standard only
permits non-static member declarations of these operators.

F.3.5 Operators true and false
Add the ability to define operator true and operator false.

F.4 Generic types

Although the CLI permits the retrieval of a System: : Type object that is associated with an open
constructed generic type (§31.2.1), C++/CLI provides no syntax for doing this. However, such syntax might
be considered in future.

F.5 Custom modifiers

F.5.1 IsPinned
This modopt type supports the use of the type pin_ptr as a parameter.
Description:

This type is used in the signature of any function. [Example:

public ref class X {
public:

void F(pin_ptr<int> x) { .. }

end example]

F.6 Attributes
Add the ability to chose unambiguously between two attributes called X and XAttribute.

End of informative text

284

Portability issues

Annex G. Portability issues

This annex is informative.

This annex collects some information about portability that appears in this Standard.

G.1 Undefined behavior

The committee that produced this standard did not intend to introduce any new undefined behavior.

G.2 Implementation-defined behavior

A conforming implementation is required to document its choice of behavior in each of the areas listed in
this subclause. The following are implementation-defined:

1. Except for plain char, signed char, and unsigned char, the mapping of fundamental types to
CLI types. (§12.1.1)

2. Ifthe pre-defined macro __cplusplus_cTi is the subject of a #define or a #undef
preprocessing directive. (§11.1)

G.3 Unspecified behavior

The behavior is unspecified in the following circumstances:

1. Whether the replacement of an __ident1ifier construct takes place before or after translation
phase 4. (§9.1.1)

2. Whether white space generated by comments, documentation comments, and macro invocations is
permitted in the position signified by the 3 symbol. (§9.1.2)

3. The semantics of any attribute target specifiers other than those described in this standard. (§29.2)

4. The interaction between the CLI library and the Standard C and C++ libraries (except for those
requirements described elsewhere in this Standard). (§32)

End of informative text

285

C++/CLI Language Specification

Annex H. Index

This annex is informative.

... See ellipsis
AddON ... 215
ClaASS o 207
(01015110 o WU 204, 236
CVENT ..eiiiiiiie et 215
FIELd e 209
FITC e 215
LS USSR 213
1OCALS oo 200
MEthod.....cccevvveeiiiiiiiiie 205,211
OVEITIAR .evvvvviieceeeeeeeeeeee e 211, 233
PACK ettt 209
PATAIM . ..eeiiiieiie ettt 205, 237
J00) 015 17U 213
§15 1010174510) s DO 215
SEE o vetttttetttttt ettt ——————————————————————————— 213
SIZE 1ureriiieeeeeeeeeeiire e e e e e e et r e e e e e e e eertbaaaaaeaeaans 209
ALY e 235

_identifier("!T")()eeeveeereecreereeieeienns 26, 101, 228

__identifier("~T")() .coverveevrerreererennenn 26,101, 228

_1dentifier(..) coveeeeeieeeee e 38

4=

event handler addition..........coceevvvveveiiiiiiinnnnns 24
event handler removalccccovvvevvnveeennnnen. 24
abstract class............... See class modifier, abstract

abstract function....See function modifier, abstract
access

ASSEMDIY ...eoeiiiiieiieeie e 44
FAMILY oo 44
family and assembly...........ccccccveveiiiniiennnns 44
family or assemblyccccceveveviirciieciieriieninene 44
NATTOWET ...evveeeeeeiieeeeeiieeeeerreeeesereeeesnseeeeesnneens 44
PLIVALC...eeiiiieciiieeiieeeieeetee e e evee e 43,44
PIOtECted....eevieiieciiecieere et 43
PUDLIC....eiiiieiieiieriecieeeeee e 43,44
14 16 1<) USSR 44
accessor function
F:Ye [DO See add accessor function
[0S A See get accessor function
property 21, 109, 111, See also get accessor
function; set accessor function
remove................ See remove accessor function
1<) S URR See set accessor function
add accessor functioncceecveeeveevieeneesnenenenns 24
add_* reserved namesc.coccvevveriieniennennnn. 101
APPLICALION ..ottt 4

286

application domaincceeeverrerreecreenreenieenneens 4
argument list
function callccoooeviiiviiieiieee 72
variable-length................... See parameter array
AITAY veeeveeeereenteeeniteeeteessteeesseessseeesnseessseens 38, 142
CIEALION ..eovvvieeeiieeiieeeiee et eree e e e eere e 143
element aCCESS ...ccuviereriieriieeiieeie e 143
INIAlIZAtiONocvveeieeieceeeeeecee e 144
IMEMDETS.eevreirerereereereesieesseessressseenseensens 144
PATAMELETvveeeevieeiieeeree e e ereeeieeeeereeeneneas 104
Standard CHt....ooveveviiieiiieeeececen 4,142
StOrage 1ayout......cccvevverieeieeieeeeie e 231
ATTAY oot 90, 142, 144
AITAY COVATIANCE....uveereeereereeereereeveesreenens 62, 144
ASSEMDBLY ...veiiiiiiecieciece e, 4,30
attribute................... 4,32, 159, See also Attribute
class naming convention............ccceceveeeerennns 159
compilation of an.........cccevevevvveciiiciienieennen, 165
delegate......cooveeieriieiieeeeeee e 163
EVENL...uiiiieiiiieeeeiiee e eitee e et e e eerre e e eraee e 163
FUNCHON.....viiiieiieciececeeeeee e 163
ENUINE CUSLOM ..eevvveereeereenieenreeieeneeeseneseneans 238
INStance of ANccccecveeeiieeiiieecie e, 165
NAME O AN ..eeeviiiciiicie e 162
[0 100) 0 <3 1 RS 163
PpSeudo CUSEOMeevieeieiieieciieeieee e 238
TESETVEd...iiiiieiiieeieeeieeeere e e e eeeeeseree e 166
specification of an..........ccoecvevevvecrieciienieennnn, 161
ARTIDULE ..o 159, 166
attribute Classccvvveeveeeiieeieeeeeeee e, 159
MUI-USE .o 159, 160
parameter
NAMEd......oooiiiiiiieiiie e, 160
POSItionalcccvveviiiieiieeieeeee e, 160
SINGIE-USE ...eevieiieeiieeieereeeeee e 159
attribute SECON.....cvvecvreieeiieiiecieree e 161
Attribute Suffixccoeevveeeiieiiieeee e 164
attribute target.......cveeveeeveeerierieriesee e 163
ASSEMDBLY ..o 162
ClASS woieiiiecie et 162
CONSEIUCEOT ..eevvvieeeereeeereeeireeereeeeeeeeereeenereenes 162
delegate......coveeieeiieieeieee e 162
153110100 SO URUUURURRUPRN 162
EVEME.eeetiieiiieerieeireeeteeereeereeeeaeesereeeereenes 162
Fleld .o 163
INEETTACE ..ovveeeieeeie ettt 163
MEthodccovviiiiiiiiieeccee e 163

O TR 200 (1 1<) 163
PLOPEILY coevieeiieeeiie ettt 163
returnvalue........oooveeeeiiieciieeee e 163
SETUCE ..ttt 163
AttributeTargetsoeevvevvevveeieenieriesee e e 166
AttributeUsage See AttributeUsageAttribute
AttributeUsageAttribute............c.ccveennnen. 159, 166
behavior
implementation-definedcccecenennn 285
undefined.......coooeeieiieniinie 285
unspecifiedoocvvevieeieieieeee e 285
block
finally
exception thrown from.........c.cccceeevveeveenenns 91
DOXINEG...veievieiieieeieesieeete e 4,14
Byte e, 50
C# Standard.........ccooeeieeiiiiiiniiee e 279
callable entitycccceeveeveerireereere e, 153
class
abstract See class modifier, abstract
attributeooeeeeeeeeee, See attribute class
153110111 DO See enum class
generic
Operator and..........eceveeevveerrreeciieerree e 175
initialization 0f @ccceevevieciieviiiniesie e 26
INterface......cooovvevveeviiecieeeeeeee, See interface
NALIVE o See native class
T e See ref class
sealed....cccccevvevevvennnns See class modifier, sealed
STTUCE VEISUS...uvveeeeiiieeeeiireeeeiveeeeeireeeeevneeeeans 28
default valuesccccoeeeereneeienieieeee 139
INNErItaNnCeccevveevieeieeeceeeeeee e 139
meaning of this.........ccceeveeviniiiiniiieen, 139
class definitioncccceeveeneinininniiicccee 98
class MOdIfier.....c.ccvvevieiieviieierie e 99
ADSITACT .ottt 99
s€aled....ociiiiiieeee 100
(0159 [y S 4
CLI dispose patterneceerververvennnennns 26, 221
cliziinterior Ptr.......cceeveeveeveennenne See interior_ptr
ClizipIN_ P eeeiiciiiciieeieecee e See pin_ptr
clizzsafe cast......coeeveevenienieniieninnns See safe cast
CLS......... See Common Language Specification
CLS compliance.........ccceeveveeevieeniieeiieeeree e 4
COILECHION ... 19, 89
SYStEMIIATTAY wvvveeeveeeiieeeieeeiie e 90
Common Intermediate Language......................... 8
Common Language Infrastructure xii
Common Language Specification...........c..cccoc..... 8
Common Type System.......ccoceeeveeenieernneene 5,6,8
Conditional Attributeccccceeveeveenieierenenee. 167
COMSL .ttt See also constant
constant
MU POINEET ...t 63
CONSITAINT ... 34

287

CLASS oo 34
CONSLTUCEOT ..eeeeeeiieeeeiiiee e e eeiee e eree e e 34
INEETTACE oo 34
constructor
delegating........ccceeveveeciieciieieieee e 282
INSTANCE ..o 126
Y7215 [« H R 26, 127
default......cooooeeiiieeiieeee e 128
BATEET oottt ettt 282
conversion
DOXING .oevveeerieiieiieie e ere e eseeeseneerneens 66
EXPLICIE cevvevreeiieieeieeeee e 67
implicit
CONStant EXPreSSiON.......ecvveeeevveerveerveeerenens 66
CTS.eeeeee See Common Type System
CUITeNt...cooiiiiiii 89
DefaultMemberAttributecouu...... 101,214
definition
non-inline................ See definition, out-of-class
OULt-0F-ClaSS ...ooooviiiieiie e, 4
delegate.............. 4,19, 23, 153, See also Delegate
combining of........ccecvverieriiiniiecieeeeeeeenn 82
equality of........ See operator, equality, delegate
removal of @.......ccocoiiiiiiiiiiii 82
sealedness of @c.ccecovveeiiiiiiiiciiieee, 154
Delegate.......ccceevieviiiiiiieeeeeeee e 19, 153
members Ofooooiiiiiiiiiie e 43
dEStIUCLOT c.vveeeeeeeeeeeeeeeeeeeeeee e 25,131, 223
DiSPOSE().eevveerveerererierieeieerieeneeereens 26,101, 224
Dispose(bool)......ccoeeviieiiieiieiieinne, 26, 101, 225
CILIPSIS .cuvieiieciieere ettt 95
153110104 ISP RRI 11
ENUIM ClASS..c.eevveeeiiiiiieeeeeee e 150
ENUM SEIUCE ..eeeiiiiiiieeiieec e e 150
(1Y) 1| AR 4,23, 115
ADSLIACT .. .ccuviiiiieeciie e 117
ACCESSING AN ..vvvvreerieeireeereeeireesereeeeeeesereeeans 71
INSTANCE ...oevveeeeeiiee e e et e et e evaee e 116
non-trivialc.cooviiiiiiieiiic e, 115
OVEITIAE ... 117
reserved NAMEScccevveeeeiciiereeiinieeeeeieennnn 101
SEAledoiieiiieiie e 117
STALIC ..eeiieeiiieeieeeeee e 116
VAL e 24,115,117
event handler............cccooovveeeiiiieiiieie e, 115
EXAMPIES ...veeirieiieieeiecie et 9
exception
types thrown by certain operations...... 157, 158
Execution Engine... See Virtual Execution System
explicit interface membercccceeveerueennnnnne. 29
4 =] (c DU 4
1180170)11 SRS See initonly field
literal.......ooovveeeieeiiiiiiieeeeeeee See literal field
Finalize()...oovevvvevveeieeieecieeeieeeeeeeneens 26, 101, 224
fINAlIZET ... 25,131, 224

C++/CLI Language Specification

function
ADSITACT .. 4
pure virtual See function, abstract
reserved NAmMeSccocvvveveeeeeeeecnnenennn. 101, 102
function Membercccceevevvviiiiiiieieeeeeeene, 70
function modifier..........ccoovevvviviiiiiiiiiiiiieeeeenn, 104
ADSTIACE e 107
TIEW eveeeeeeeeeeeeeeee e e e e ee e e e e e eeeanrrereeeeeeeens 108
OVEITIAE .. 104
SEALEA .. eeeieeiiiiiieee e 107
garbage ColleCtioncceevvvevivenierresrennens 5,18
ge-lvalue.....ccoovevieniiieieee, See lvalue, gc
generic method...................... See method, generic
ENECTICS .evveevieeereeeieeeireeereeeveeeereeseveens 171,172
get accessor function........c.eeeveeeveeveerieenennns 21, 111
get * reserved NamMesoeceeveeeiieeniieniienieenn 100
get Ttem ...ooovviiiii e 101
GetEnumerator............cooovevvveeeeieeeeeeiieeeeeeeeee 89
handle..........ooovviiiiieicic e 5
UL o 40
OPETAtiONS OMN @ ..evvveereeereeeereeereeseeeenes 119, 126
heap
CLI oot 5
F0F: 15 A7 5
hidebynamecccceevveeviverieniieniecreere e, 44
hidebySig ..covverriieiieieeiieierece e 45,211
IDisposable........ccccecveeecrieeniieriie e 131,222
IEC oo, See International Electrotechnical
Commission
IEC 60559 standard............cooovevvveeeeeiiiiiinnieeeennnn, 3
IEEESee Institute of Electrical and Electronics
Engineers
IEEE 754 standard........... See IEC 60559 standard
IEnumerable::GetEnumerator See GetEnumerator
IEnumerator::Currentcccuueee...... See Current
IEnumerator::MoveNext See MoveNext
J101 0= 9 17210 (o1 N 51
initonly field.......c.cccovevieviiiiiieieeeees 21,129
literal field VEISUS.........ccovvvvvenvreeeeeennnn. 128, 130
INSTANCE . c.eevveeeeeeeeeeeeeeeeeeee e e e e e e e enraeeeeee e 5
Institute of Electrical and Electronics Engineers .8
INt32 oo 12
IO oo 12
INEETTACE ..vvviiiiiieeeeeeee s 28, 146
DASC.eeeeee e 146
delegateoooeeveierieeie e 148
Lo75 1 AN 147
FUNCHION .evvviiiiieceee e 147
Implementation............cceeeververcreecieerieennennns 148
10015700101 RUR PR PRRRRTR 146
ADSEraCt . 146, 147
741 g0 F: | SRR 146, 147
PIOPEITY civiieiiieeiieeiiee ettt 147
interface class.....ccoccvveeeeeiviiiveeeeeennnnn. See interface
interface Struct.......cccceeveeveeevvveeeennnnen. See interface

288

VLTSI o) gl 0] 1 (TP 16, 38, 54
INEETNAL ..ottt 44
International Electrotechnical Commission......... 8
International Organization for Standardization ... 8
INVOCAION LSt ..vvveeeieiieeieeieeieeeesee e 153
ISO..ei See International Organization for

Standardization
ISO/TEC 10646 ..o 3
KEYWOT ..c.vvieeiieiieiieiie e 38
literal field.......coovvveiiiiiiiiiiiieeeee e 20, 128

initonly field versusccceevvevviennnns 128, 130

interdependency ofccccevvvrivriiienienniens 128

restrictions on type of a........ccecceeeieviennnnnen. 128

VErsioning of @ccceeevveeeiieenieenieeeeieenreenns 130
IValUE ...t 5

gc5, 58
Marshal ASAHIIbULEcc.eoveeiiiiiiiieieie 97
member

data.....ooovieiiei e See field
member declarationcceoeeeen.n. 99, 128, 129
member name

TESETVE...eouieiieieierieeiececee e 100
MEtadata........cceueiiiiieiiieeee e e 5
method

GENETIC .ovevveerreerieeieeieeieesereseresereesseesseeseesses 35

VITtUAL .. 212
modifier

(o) 01 T0) 1 1 USRS 191

TEQUITEd ..eonvieiieiie e 191
1007016 0] 0] AR See modifier, optional
10070161 (<o (S See modifier, required
MOVENECXL ..eeeieieeiieeeiee ettt &9
NAMESPACE ...eeenereernreeerireerieeeniteesieeeniaeesbeeenareenns 30
NALIVE ClaSS...ciuiiiiiiiiiieeieeeeree e 133
NativeCppClassAttribute.........c.cccvevreennenns 42,228
new

class member hiding andc.ccccvvennennnne. 21
new function See function modifier, new
NEWSIOL. . .ieiiiiieiieeie ettt 212
NOIMALIVE TEXE..veiivrieiiieeiieeeieeeeee et e eiee e 9
TIOEES ..ttt ettt ettt ettt et e sbe e st e eeas 9
NUILEYPC oot 53
NUl valueoooveiiiiei e 62
null value constant..........ccoceeveenieeniienienenene 40
nullptr

null pointer constant and.............cccevereenee. 63
NullReferenceException

foreach andccccoeevveiveciieciieiceeeee, 89
0] o] o1 APPSR 13
object reference.........ccceeeeveevierieennnne. See handle
Obsolete......cccceveeveeneennenns See ObsoleteAttribute
Obsolete Attribute..........ceeeveereerierreereeieeiens 166
operator

equality

delegate......covevieriecieeieee e 84

SEALIC 1ovveereestiesreereereereeteere e sere b e reenres 117
Ct+t-dependent........cccccvvevrveveenienreennnne. 125
CLS-compliant........cccecvevieeneenienieninnee. 123
decrement.......cccceevevvveveivineeeeiinennn 120, 126
INCTEMENeeveeeeieeeeeieeeee e 120, 126
Synthesis 0f @.......cceceeevecieesienieieneeen, 123

output
formattedcccooovvevciieeieeee e 11
overload resolution.........c.cecveveereereencreere e, 71
override function..See function modifier, override
override SPeCifier.......covvevieriierciiirerreereereennenn 104
PATAMELET AITAY ...c.vverererereereereereereresenenenennns 16, 94

type parameter andc..cceeeeeeiieenieeniennene 181
PIN P ittt 38,55
PINNING .oevvieiieiieiieeieere e see e sreeereenee e 5
pointer

F101 55 (o) SRRt See interior ptr

PINNING ..o See pin_ptr

private type........coovenee.. See type visibility, private
PTOPEILY ceeieeeeiieeeeeiieee e eee e e 5,21, 109

ADSIIACE 1eevvveiiecie e 113

ACCESSING A.vvvrerreereeieeieerieerrenreereeseesseenseens 71

INAEXEd ...eeviiiiiiiiiiiieee e 21, 109
ACCESSING AN..eviieiiieiiieeiieenieeereeeereesreeenns 71
default........ccooovvviviiviiiiieeeee 22,110
NAMEd ...eooviiiiieeiie e 110

INSEANCE....vvieereeeiieeeiieeereeereeeereeeereeeeneeeeneas 111

1€ad-0N1Y .vvevieiieiecieeeee e 112

TEAA-WIILE ..eevvveeerieiieiiesie e cee e 112

reServed NAMESeceevveeevieeiieeeiee e 100

16721 F: | N 21, 109
EEIVIAL Lo 114

SEALIC .vvieiiieciie ettt e e 111

EAVIAL 1.t 22

WIIE-ONLY .oeovviiiieciicieereeeeee e 112

protected public........c.ccueenneen. see public protected
public protected........c.ceevvveeriieeciieeie e 44
public type.....coverreennenne See type visibility, public
raise * reserved NAmMEScceevveerieereeernennenns 101
TANK...ceviiiiiee ettt ettt e sere e eareaen 231
1EDINAING ..eeeeviieiieciee ettt 5
Tef ClaSS «oovvveeeieee e 135, 146
DASE...cetiieiiiecee e 135
restricted tyPes ...covvevveeeciieeiie e, 135
1011S) 1110)<) SRRSO 135
T SIUCE 1ovvvevieieeieee e See ref class
remove accessor function..........cceeeeveeeeveeeneennee. 24
remove * reserved NaAmes.........coccveeeveeveenneenne. 101
TVAIUC....ei ittt 5
SAfE CASt..eeviiiiieiiee e 38,76
SBYLE ...eeeeeieetieieie et 43,50

10015111105 (I o) USSR 43
sealed class................... See class modifier, sealed
sealed function See function modifier, sealed
set accessor fUNCHONc.cccveeveevveerieenieesieeeenenns 21

289

set * reserved NAMEScveevveevveerieereennenenenens 100
SEt TEEIM ceevieeiiieeeee e 101
standard
CH o See C# Standard
IEC 60559......cccveennee. See IEC 60559 standard
IEEE 754....ccoiiinne, See IEC 60559 standard
Unicode......cccceerueruennne See Unicode standard
SEIICE 1ttt 211
STIUCT o 11,28
Class VETSUS ...eevvieriieniieiieeicececeeece e 28
default values.........ccoooeeeeveiinieieee, 139
INhETItanceoovevereeeieiieeeeceeeceee, 139
meaning of thiscccccoeevviiiiiiiniienens 139
13111110 SO See enum struct
inheritance and...........cocceveveeienenienencenne. 139
() SRR See ref class
Value....ocooveiiiiieeeeeeeeeee, See value class
System::ArithmeticException.............cccveen.e.n.. See
ArithmeticException
SyStemM:iiAITAY ..ccveeeeieecreeeree e See Array
System::Array TypeMismatch...............coev.eee. See
ArrayTypeMismatch
System::Attribute.........cccecveeeveeerennen. See Attribute
System:: AttributeTargets...... See AttributeTargets
System:: AttributeUsageAttribute See
AttributeUsageAttribute
System::Delegate..........cccceevveeunennnne. See Delegate
System::DivideByZeroException.................... See
DivideByZeroException
System::ExecutionEngineException................ See
ExecutionEngineException
System::IDisposable.................... See IDisposable
System::IndexOutOfRangeException.............. See
IndexOutOfRangeException
System::Int32.....ccoevcvveveiieieeiee e, See Int32
System::Into4.......coccveviiiiniiiiieeieee, See Int64
System::InvalidCastException............c.cccveune. See
InvalidCastException
System::MissingFieldException...................... See
MissingFieldException
System::MissingMethodException.................. See
MissingMethodException
System::NullReferenceException.................... See

NullReferenceException
System::ObsoleteAttribute.. See ObsoleteAttribute

System::OutOfMemoryException................... See
OutOfMemoryException

System::OverflowException.........c...ccoeeveennenne. See
OverflowException

System::Reflection::DefaultmemberAttribute..See
DefaultMemberAttribute

System::Runtime::InteropServices::Marshal AsSee
Marshal AsAttribute

System::SBYteooovvieviieeiieeieeeee e see SByte

System::SecurityException See SecurityException

C++/CLI Language Specification

System::StackOverflowException See
StackOverflowException
System::TyPe....coovueeriieiiiienieeeiieeeeee See Type
System:: TypelnitializationException............... See
TypelnitializationException
System::TypeLoadExceptionc.cccecueenene See
TypeLoadException
System::ValueType.......ccceevevrennen. see ValueType
this
constructor call
EXPLICIE. eeurieiieeieeie e 283
type of in ref classccccevvverveveeiiniieennn, 139
type of in value classccecveveerieneeneenienne 55
TOSLING ..vvvevieeie et 13
trACKING. .. vievieiiecie et 5
type
AITAY cevveeeerreerereeireeesreeesreesseeessseessseanns See array
DOXEA ..t 5
ClaSS 1.t See class
1 1) RS 5
CLI e 5
TNEETTACE ... e 5
NALIVE 1.ttt eree e 5
TET e 5
VAIUC ..o 5
ClOSEd ..o 178
collectioncocceeveeneenienienienee, See collection
CONSLIUCEEd ..o 33
bases Of oo 173,179
delegateoceevieiieiie e 51
Elementceoveeiiiniine e 89
fundamental...........ccocoveeiininiininee 6
mapping to system class.............co........ 43, 50
members 0f @.......ccoeveenienieniiniececeee 43
handle........coooeeiiiieee e 6
INSTANICE. ...ttt 172
INEETTACE .. .eetieiiiiiiie e 51
101101 SRS 141
0] 0751 1 F USSR 178
pointer

290

NALIVE 1eeveeeiieeieeeieeeee e e ereeeeeeeseneeeeeeenes 6
Privateoccveeveeneene See type visibility, private
public ...cccoevieirnnne, See type visibility, public
TAW 1eevvreererereeereeseeseeseesseesseesseesssesssesssesssensnes 52
reference

NALIVE ooevieeiie ettt et eane e 6

trACKING .vveevieeeiieciie et 6
simple

struct type and.........cocceeevveeiierieenieennen. 28,138
SETUCT .ottt See struct
value class

DOXEA oo 5

SIMPLE....eiiiieiieiieeeee et 5

TYPC ettt 74
tYPE ATUMENLveevveenieeereeereeereereereesieeeeeseeeens 33
type INfErenCingcoceeveeereeeieerieerieesieeeieeeeenes 36
tYPE PATAMELET ...veevveereeieeeireeere e ere e evee e 33
bOXING aNd ..eovvveiieeiieeie e, 188
CONVErSION aNd......c.cecvveevverieerierirenieeieeeeens 189
member LoOKUP ONcovveevvierereeerienreenieennen, 187
type VISIDIILY .vveveeeiiciecieceeee e 57,98
ClASS evieiieeieee et 57
default.....coovveeiiiiiiiiii, 12, 57
delegate.....c.oovvuiieiiieeiie e 57
1< 110100 PSPPI 57
INEEITACE oo 57
PIIVALE ...t ciee e 12,57
PUDBLIC oot 12,57
STTUCE ettt 57
18811070):€1 1 V=PRSS 6, 14
value class
101151001015 GRS 43
value Struct......cccoeeveeeeieeecieeeeieenen, See value class
ValueType 43, 51,77, 135, 138, 139, 184
variable
10CAL ..ot 11
VEISIONING ..vvveevieeiieeereeeieeesereesreeeseneesseeessseees 31
VES...ciiiiene See Virtual Execution System
Virtual Execution System...........c.ccceeeeeneen. 5,6,8
WRHETE (. 184

	ECMA-372.pdf
	Table of Contents
	Introduction
	1. Scope
	2. Conformance
	3. Normative references
	4. Definitions
	5. Notational conventions
	6. Acronyms and abbreviations
	7. General description
	8. Language overview
	8.1 Getting started
	8.2 Types
	8.2.1 Fundamental types and the CLI
	8.2.2 Conversions
	8.2.3 CLI array types
	8.2.4 Type system unification
	8.2.5 Pointers, handles, and null

	8.3 Parameters
	8.4 Automatic memory management
	8.5 Expressions
	8.6 Statements
	8.7 Delegates
	8.8 Native and ref classes
	8.8.1 Literal fields
	8.8.2 Initonly fields
	8.8.3 Functions
	8.8.4 Properties
	8.8.5 Events
	8.8.6 Static operators
	8.8.7 Instance constructors
	8.8.8 Destructors and finalizers
	8.8.9 Static constructors
	8.8.10 Inheritance
	8.8.10.1 Function overriding

	8.9 Value classes
	8.10 Interfaces
	8.11 Enums
	8.12 Namespaces and assemblies
	8.13 Versioning
	8.14 Attributes
	8.15 Generics
	8.15.1 Creating and consuming generics
	8.15.2 Constraints
	8.15.3 Generic functions

	9. Lexical structure
	9.1 Tokens
	9.1.1 Identifiers
	9.1.2 Keywords
	9.1.3 Literals
	9.1.3.1 Integer literals
	9.1.3.2 The null literal
	9.1.3.3 String literals

	9.1.4 Operators and punctuators

	10. Basic concepts
	10.1 Assemblies
	10.2 Application entry point
	10.3 Importing types from assemblies
	10.4 Reserved names
	10.5 Members
	10.5.1 Value class members
	10.5.2 Delegate members

	10.6 Member access
	10.6.1 Declared accessibility

	10.7 Name lookup

	11. Preprocessor
	11.1 Conditional inclusion
	11.2 Predefined macro names

	12. Types
	12.1 Value types
	12.1.1 Fundamental types

	12.2 Class types
	12.2.1 Value classes
	12.2.2 Ref classes
	12.2.3 Interface classes
	12.2.4 Delegate types

	12.3 Declarator types
	12.3.1 Raw types
	12.3.2 Pointer types
	12.3.3 Handle types
	12.3.4 Null type
	12.3.5 Reference types
	12.3.6 Interior pointers
	12.3.6.1 Definitions
	12.3.6.2 Target type restrictions
	12.3.6.3 Operations
	12.3.6.4 Data access
	12.3.6.5 The this pointer

	12.3.7 Pinning pointers
	12.3.7.1 Definitions
	12.3.7.2 Target type restrictions
	12.3.7.3 Operations
	12.3.7.4 Data access
	12.3.7.5 Duration of pinning

	12.3.8 Native arrays

	12.4 Top-level type visibility

	13. Variables
	13.1 gc-lvalues
	13.1.1 Standard conversions
	13.1.2 Expressions
	13.1.3 Reference initializers
	13.1.4 Temporary objects

	13.2 File-scope and namespace-scope variables
	13.3 Direct initialization

	14. Conversions
	14.1 Conversion sequences
	14.2 Standard conversions
	14.2.1 Handle conversions
	14.2.1.1 Ranking handle conversions

	14.2.2 Pointer conversions
	14.2.3 Lvalue conversions
	14.2.4 Integral promotions
	14.2.5 String literal conversions
	14.2.6 Boxing conversions

	14.3 Implicit conversions
	14.3.1 Implicit constant expression conversions
	14.3.2 User-defined implicit conversions
	14.3.3 Boolean Equivalence

	14.4 Explicit conversions
	14.5 User-defined conversions
	14.5.1 Constructors
	14.5.2 Explicit conversion functions
	14.5.3 Static conversion functions

	14.6 Parameter array conversions
	14.7 Naming conventions

	15. Expressions
	15.1 Function members
	15.2 Primary expressions
	15.3 Postfix expressions
	15.3.1 Subscripting and indexed access
	15.3.2 Function call
	15.3.3 Explicit type conversion (functional notation)
	15.3.4 Class member access
	15.3.5 Increment and decrement
	15.3.6 Dynamic cast
	15.3.7 Type identification
	15.3.8 Static cast
	15.3.9 Reinterpret cast
	15.3.10 Const cast
	15.3.11 Safe cast

	15.4 Unary expressions
	15.4.1 Unary operators
	15.4.1.1 Unary &
	15.4.1.2 Unary *
	15.4.1.3 Unary %
	15.4.1.4 Unary ^
	15.4.1.5 Logical negation

	15.4.2 Increment and decrement
	15.4.3 Sizeof
	15.4.4 New
	15.4.5 Delete
	15.4.6 The gcnew operator
	15.4.7 The throw expression

	15.5 Explicit type conversion (cast notation)
	15.6 Additive operators
	15.6.1 Delegate combination
	15.6.2 Delegate removal
	15.6.3 String concatenation

	15.7 Shift operators
	15.8 Relational operators
	15.8.1 Handle equality operators
	15.8.2 Delegate equality operators
	15.8.3 String equality

	15.9 Logical AND operator
	15.10 Logical OR operator
	15.11 Conditional operator
	15.12 Assignment operators
	15.13 Constant expressions
	15.14 Property and event rewrite rules

	16. Statements
	16.1 Selection statements
	16.1.1 The switch statement

	16.2 Iteration statements
	16.2.1 The for each statement

	16.3 Jump statements
	16.3.1 The break statement
	16.3.2 The continue statement
	16.3.3 The return statement
	16.3.4 The goto statement

	16.4 The try block

	17. Namespaces
	17.1 Reserved namespaces

	18. Functions
	18.1 <cstdarg>-style variable-argument lists
	18.2 Name lookup
	18.3 Overload resolution
	18.4 Parameter arrays
	18.5 Importing native functions
	18.6 Non-member functions
	18.7 Attributes

	19. Classes and members
	19.1 Class definitions
	19.1.1 Class modifiers
	19.1.1.1 Abstract classes
	19.1.1.2 Sealed classes

	19.2 Reserved member names
	19.2.1 Member names reserved for properties
	19.2.2 Member names reserved for events
	19.2.3 Member names reserved for functions
	19.2.4 Possible collision with reserved property and event names

	19.3 Data members
	19.4 Functions
	19.4.1 Override functions
	19.4.2 Sealed function modifier
	19.4.3 Abstract function modifier
	19.4.4 New function modifier

	19.5 Properties
	19.5.1 Qualified names of properties and events
	19.5.2 Static and instance properties
	19.5.3 Accessor functions
	19.5.4 Virtual, sealed, abstract, and override accessor functions
	19.5.5 Trivial scalar properties

	19.6 Events
	19.6.1 Static and instance events
	19.6.2 Accessor functions
	19.6.3 Virtual, sealed, abstract, and override accessor functions
	19.6.4 Trivial events
	19.6.5 Event invocation

	19.7 Static operators
	19.7.1 Homogenizing the candidate overload set
	19.7.2 Operators on handles
	19.7.3 Increment and decrement operators
	19.7.4 Operator synthesis
	19.7.5 Naming conventions
	19.7.5.1 CLS-compliant operators
	19.7.5.2 Non-C++ operators
	19.7.5.3 Assignment operators
	19.7.5.4 C++-dependent operators

	19.8 Non-static operators
	19.9 Instance constructors
	19.10 Static constructors
	19.11 Literal fields
	19.12 Initonly fields
	19.12.1 Using static initonly fields for constants
	19.12.2 Versioning of literal fields and static initonly fields

	19.13 Destructors and finalizers
	19.13.1 Destructors
	19.13.2 Finalizers

	20. Native classes
	20.1 Functions
	20.2 Properties
	20.3 Static operators
	20.4 Delegates
	20.5 Friends
	20.6 Events
	20.7 Finalizer
	20.8 Initonly and literal fields
	20.9 Static constructors

	21. Ref classes
	21.1 Ref class definitions
	21.1.1 Ref class base specification

	21.2 Ref class members
	21.2.1 Variable initializers

	21.3 Functions
	21.4 Properties
	21.5 Events
	21.6 Static operators
	21.7 Non-static operators
	21.8 Instance constructors
	21.9 Static constructor
	21.10 Literal fields
	21.11 Initonly fields
	21.12 Destructors and finalizers
	21.13 Delegates

	22. Value classes
	22.1 Value class definitions
	22.1.1 Value class base specification

	22.2 Value class members
	22.3 Ref class and value class differences
	22.3.1 Inheritance
	22.3.2 Default values
	22.3.3 Meaning of this
	22.3.4 Destructors and finalizers

	22.4 Simple value classes
	22.5 Constructors
	22.6 Operators

	23. Mixed types
	24. CLI arrays
	24.1 CLI array types
	24.1.1 The System::Array type

	24.2 CLI array creation
	24.3 CLI array element access
	24.4 CLI array members
	24.5 CLI array covariance
	24.6 CLI array initializers

	25. Interfaces
	25.1 Interface definitions
	25.1.1 Interface base specification

	25.2 Interface members
	25.2.1 Functions
	25.2.2 Properties
	25.2.3 Events
	25.2.4 Delegates
	25.2.5 Member access
	25.2.6 Destructors and finalizers

	25.3 Interface implementations

	26. Enums
	26.1 Enum definitions
	26.1.1 Enum base specification
	26.1.2 Initial enumerator values
	26.1.3 CLI enum values and operations

	26.2 The System::Flags attribute

	27. Delegates
	27.1 Delegate definitions
	27.2 Delegate instantiation
	27.3 Delegate invocation

	28. Exceptions and exception handling
	28.1 Common exception classes
	28.2 Exception specifications

	29. Attributes
	29.1 Attribute classes
	29.1.1 Attribute usage
	29.1.2 Positional and named parameters
	29.1.3 Attribute parameter types

	29.2 Attribute specification
	29.3 Attribute instances
	29.3.1 Compilation of an attribute
	29.3.2 Run-time retrieval of an attribute instance

	29.4 Reserved attributes
	29.4.1 The AttributeUsage attribute
	29.4.2 The Obsolete attribute
	29.4.3 The Conditional attribute
	29.4.4 Security attributes

	29.5 Attributes for interoperation
	29.5.1 Interoperation with other CLI-based languages
	29.5.1.1 The DefaultMember attribute
	29.5.1.2 The MethodImplOption attribute

	29.5.2 Interoperation with native code

	30. Templates
	30.1 Template declarations
	30.2 Template specialization
	30.3 Attributes
	30.4 Type deduction
	30.4.1 Template argument deduction

	31. Generics
	31.1 Generic declarations
	31.1.1 Type parameters
	31.1.2 Referencing a generic type by name
	31.1.3 The instance type
	31.1.4 Base classes and interfaces
	31.1.5 Class members
	31.1.6 Static members
	31.1.7 Operators
	31.1.8 Member overloading
	31.1.9 Member overriding
	31.1.10 Nested types

	31.2 Constructed types
	31.2.1 Open and closed constructed types
	31.2.2 Type arguments
	31.2.3 Base classes and interfaces
	31.2.4 Class members
	31.2.5 Accessibility

	31.3 Generic functions
	31.3.1 Function signature matching rules
	31.3.2 Type deduction

	31.4 Constraints
	31.4.1 Satisfying constraints
	31.4.2 Member lookup on type parameters
	31.4.3 Type parameters and boxing
	31.4.4 Conversions involving type parameters

	32. Standard C and C++ libraries
	33. CLI libraries
	33.1 Custom modifiers
	33.1.1 Signature matching
	33.1.2 modreq vs. modopt
	33.1.3 Modifier syntax
	33.1.4 Types having multiple custom modifiers
	33.1.5 Standard custom modifiers
	33.1.5.1 IsBoxed
	33.1.5.2 IsByValue
	33.1.5.3 IsConst
	33.1.5.4 IsExplicitlyDereferenced
	33.1.5.5 IsImplicitlyDereferenced
	33.1.5.6 IsLong
	33.1.5.7 IsSignUnspecifiedByte
	33.1.5.8 IsUdtReturn
	33.1.5.9 IsVolatile

	33.2 Standard attributes
	33.2.1 NativeCppClass

	34. Metadata
	34.1 Basic concepts
	34.1.1 Importing types from assemblies

	34.2 Types
	34.2.1 Reference types
	34.2.2 Interior pointers
	34.2.3 Pinning pointers
	34.2.4 Native arrays

	34.3 Variables
	34.3.1 File-scope and namespace-scope variables

	34.4 Conversions
	34.4.1 String literal conversions
	34.4.2 Boxing conversions
	34.4.3 Conversion functions

	34.5 Expressions
	34.5.1 Class member access
	34.5.2 Dynamic cast
	34.5.3 Safe cast

	34.6 Functions
	34.6.1 Name lookup
	34.6.2 Parameter arrays
	34.6.3 Importing native functions
	34.6.4 Non-member functions

	34.7 Classes and members
	34.7.1 Class definitions
	34.7.1.1 Abstract classes
	34.7.1.2 Sealed classes

	34.7.2 Member access
	34.7.3 Data members
	34.7.4 Functions
	34.7.4.1 Override functions
	34.7.4.2 Sealed function modifier
	34.7.4.3 Abstract function modifier
	34.7.4.4 The newslot attribute
	34.7.4.5 Special attributes

	34.7.5 Properties
	34.7.6 Events
	34.7.7 Static operators
	34.7.8 Non-static operators
	34.7.9 Instance constructors
	34.7.10 Static constructors
	34.7.11 Literal fields
	34.7.12 Initonly fields
	34.7.13 Destructors and finalizers
	34.7.13.1 CLI dispose pattern
	34.7.13.2 Destructors
	34.7.13.3 Finalizers
	34.7.13.4 Functions generated to support the dispose pattern
	34.7.13.5 The Dispose() function
	34.7.13.6 The Finalize() function
	34.7.13.7 The Dispose(bool) function
	34.7.13.8 The __identifier(“~T”)() function
	34.7.13.9 The __identifier(“!T”)() function

	34.8 Native classes
	34.9 Ref classes
	34.10 Value classes
	34.11 CLI arrays
	34.12 Interfaces
	34.13 Enums
	34.14 Delegates
	34.15 Exceptions
	34.16 Attributes
	34.17 Templates
	34.18 Generics

	A. Grammar
	A.1 Keywords
	A.2 Lexical conventions
	A.3 Basic concepts
	A.4 Expressions
	A.5 Statements
	A.6 Declarations
	A.7 Declarators
	A.8 Classes
	A.9 Properties and events
	A.10 Derived classes
	A.11 Special member functions
	A.12 Overloading
	A.13 Delegates
	A.14 Templates
	A.15 Generics
	A.16 Exception handling
	A.17 Attributes
	A.18 Preprocessing directives

	B. Verifiable code
	C. Documentation comments
	C.1 Introduction
	C.2 Recommended tags
	C.2.1 <c>
	C.2.2 <code>
	C.2.3 <example>
	C.2.4 <exception>
	C.2.5 <list>
	C.2.6 <para>
	C.2.7 <param>
	C.2.8 <paramref>
	C.2.9 <permission>
	C.2.10 <remarks>
	C.2.11 <returns>
	C.2.12 <see>
	C.2.13 <seealso>
	C.2.14 <summary>
	C.2.15 <typeparam>
	C.2.16 <typeparamref>
	C.2.17 <value>

	C.3 Processing the documentation file
	C.3.1 ID string format
	C.3.2 ID string examples

	C.4 An example
	C.4.1 C++ source code
	C.4.2 Resulting XML

	D. Non-normative references
	E. CLI naming guidelines
	F. Future directions
	F.1 Expressions
	F.1.1 Class member access
	F.1.2 Type identification
	F.1.3 Pointer type portability

	F.2 Statements
	F.2.1 The checked and unchecked statements

	F.3 Classes
	F.3.1 Delegating constructors
	F.3.2 Properties
	F.3.3 Events
	F.3.4 Unsupported CLS-recommended operators
	F.3.5 Operators true and false

	F.4 Generic types
	F.5 Custom modifiers
	F.5.1 IsPinned

	F.6 Attributes

	G. Portability issues
	G.1 Undefined behavior
	G.2 Implementation-defined behavior
	G.3 Unspecified behavior

	H. Index

