Office Open
XML

Part 2: Open Packaging Conventions

December 2006






10

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

Table of Contents

Table of Contents

0T = Vo T o vii
B T Y ol o 1= N 1
2. NOIrMAtive REFEIrENCES......cciiiuuiiiiiiiiiiiiiiiiiitieeitriee et tessssestessssestesssssstesssssssenssssssensssssssnsssssssnsssssanns 2
R 0 71 411 4o T T 3
4. NoOtational CONVENTIONS .....cceeeueeiiiiiiiiiremuiiisiiiiiiiremseiiiiiiremssiiiiimeesssssssistiressssssisstmmesssssssssssssnes 6
4.1 DOCUMENT CONVENTIONS ...etiiiiiieiiiiiiitte e e e e ettt e e e e e ettt e e e e e s s et abeeteeeeeseaanaraeaeeeeessaassbaaaeesesssaaasssaaaeesesans 6
A D I T-4 -1 0 o T o £ PP PP TP UUPPRTPPPTO 6
5. Acronyms and Abbreviations.......ccceciiiiiiiiiiiiiiiiiiiiiisiees e sresaiessesasssssensssesssnsssssannsssssanas 8
ST =Y T=T & 1 0 T=E o o1 o1 o TN 9
72 0 1Y 1= V= 10
8. PaCKage IMOAEL ......ceeiiiiieecieec ettt creeereanerennesenseerenserenserensssensesensseransssensensnssssnsssensssnansssansesansans 11
Tt R o [ o (T PP U P UPPPPPPPPTOt 11
811 Palt NGMIES ettt aan 11
8.1.2  CONTENT TYPES ettt s 13
20 I T €1 o 1V o I 1o PP 13
.14 XML USQEE ..ttt an 14

S - Vo Vo Lo [ =TT oY - PSPPI 14
8.2.1  RelatiVE REIEIENCES ...ciiicuiiiii ettt ettt e e et e e s st e e e s s bee e e e sbteeeesbeeeeesbeeeeesaseeeeeanns 15
8.2.2  FIaBIMBNTS. . ettt aan 15

S T =1 - 14T o ] 1 o 1 RSP SP PR 15
S T8 A =T - [ o 1 T o 3l - o PSRN 16
8.3.2  Package RelatioNSNiPS .....uuiii ittt e e e e e e et e e e e b te e e e ebtaeeeebaeeeeaans 16
8.3.3  RelationNShip MarkUp ...c..eeiii ittt e e et e e e et e e e e e bee e e e ebteeeeeabeeeeeenseneananes 16
8.3.4  Representing RelatioNSHiPS.......ccc i iiiii ettt e et e e e e ette e e e e ette e e e ebteeeeeeataeaeaans 19
8.3.5  Support for Versioning and EXtENSIDIlITY.......ccueeiiiiiieiicieee et 21

L O o 1 (oF: | o Yol - N 22
9.1 Physical Mapping GUIAEIINES........uuiiiiiiiieciiiee ettt see e e st e e e st e e e e s abee e essbeeeeenreeeesnsens 22
18 0 A \V/ - ToToT=Te [ @YY oo T 1 T=T o} £ UPSRNS 23

1S 00 R \V/ -1 o] oY [ o T = @e T | £=1 o | A IV o =13 PP PP PTP RPN 23
9.1.3  Mapping Part Names to Physical Package ltem NamES........cccveiiiiiiiiiiiiiie et eeree e e 28
SN I A 1Y < o [F- 1V o V= SRR 30

S I \V - To o1 V= (o T WA | N ol VA< TSRS 31
9.2.1  MaApPPING PaArt DAta ....uueeeeiiiiiiiiiiiiiii e anaan 32
9.2.2  ZIP IE@IM NAIMES «.eeeeeeeeieee ittt ettt e e e ettt e e e e e e ettt e e e e e e s s aab b e teeeee s e e anbeeeeeeeeeeaaunsbeteeeeeeesansnneeeeaaeannn 32
9.2.3  Mapping Part Names tO ZIP [£EM NAMES .......uuue s 32
9.2.4  Mapping ZIP Item Names tO Part NAmMES........uuu e 33
9.2.5  ZIP Package LIMiItations.......cc.uuiiiiieee ittt e e e tree e e e e e s e et e e e e e e s e e sannb e e e e e e e e e eanrrtaeaeaaaaaan 33
9.2.6  MappPiNg Part CONTENT TYPE .uuuuueeeiiiiiiii e anann 34
9.2.7  Mapping the GrowWth Hint........cooriii et e e e e e et e e e e e e e esnnraeneeaeeean 34
9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption .........cccecvvveeiiiiiii e 34



N

o b~ w

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27

28

29
30
31
32

33

34
35

36

37

38

39
40
41
42

Table of Contents

9.2.9  ZIP Format Clarifications fOr PACKages ......cuuiie ittt e e e e trrae e e e e e 35

10, COrE PrOPeItieS. . iuuuiieeiiiuiiieiireiiiisireeitieeiteeetrassraeserasssrssssresssssasssrssssrasssssssssasssssnsssenssssassssassssansssanss 36
L10.1 C0re Properties Part .. 37
10.2 Location Of COre Properties Part........iiicciiieiiiiieieitieesstee e ssttee e sttt e e s stee e e s s bte e e s sbeeeessbeeeessseneessanseeassnns 39
10.3 Support for Versioning and EXteNSIDIlity ......cccveiiiiiiiiiiiiee e 39
10.4 Schema Restrictions fOr COre Properties .....iccuiiiicciiie ittt e e s e e s sbee e e s sreeeeseans 39
0 T I 0 TU T3 T = |3 41
00 R I o TWT ] o T = 11 I - T OSSPSR 41
12, Digital SIBNAtUIES...ciiiiirerueiiiiiiiiiireiisiiiiiirrressessiseiiiietssssssierstttresssssssssssssmresssssssssssssssesssssssssssssssessnnes 42
I A @ g Yo Yo T Y= oY ) (=T o ol (o T Y =4 PPt 42
12.2 Digital SIGNAtUIE PArts ......eciiiiiiiei ettt e et e ettt e e e et e e e e e bt e e e e ebteeesebteeeseaseaeesanseaeesaseseesansteeananns 42
12.2.1 Digital Signature OFigin Part.......ccueii ittt e e e s atee e s e v e e e e e abae e s enraeeeenraeesennsens 43
12.2.2 Digital Signature XML Signature Part.........cceeiiciiei ettt s et e s vee e e e aree e e e arae e e e nrae e s enreas 43
12.2.3 Digital Signature CertifiCate Part........ccuei et e e e e aree e s e nrae e e e eares 44
12.2.4  Digital SigNature MarkUp .......oeeccuieieeiiieee ettt e et e s te e e e e tae e e e e tbae e e eabaeeeenstaeeeenraeeeennseneeennsens 44
12.3 Digital SigNature EXAMPIE. ... ittt e et e e e e bte e e s ette e e s ebteeeeeasteeeseaseaeeeaseeeeeansteeananns 58
12,4 Generating SiBNAtUIES ..o 60
12.5 Validating SIBNATUIES ....cccuiiieiee ittt ettt e et e st e et e e s e e s beeesateesaseeessaeeanseeessseesnseeeseessnseeensenanns 61
12.5.1 Signature Validation and Streaming CoONSUMPLION .....c.eeviiiiiiiieiiieeiieesee e eree e see e evee e 62
12.6 Support for Versioning and EXteNSIDIlity .......ccuviiiiiiiie i 62
12.6.1 UsSIiNg RelatioNShip TYPES uuiiiiiiiiiie ettt ettt e e e e e e st e e s s arae e e s ssbeeeesnbeeeessnbeeesennnens 62
12.6.2 Markup Compatibility Namespace for Package Digital Signatures........ccccoceeevevcieeeiiiciee e 62
Annex A. Resolving Unicode Strings to Part Names........ccccceeiiiiirirmeiiiiiiiiinnieiniininnnssssessissnnnesssssssssnnne 64
A1 Creating an IRI from @ UNICOAE STHING ...uvii ittt tee e e etee e e e etee e e e eabae e s eeabee e s eeabeeeeeennees 64
A2 Creating @ URITrOmM @n IRI.....ooii ettt ette e e et e e e e et e e e e e abe e e e e abae e e esnbeeeeenabeeeeenres 64
A.3 Resolving a Relative Reference to @ Part Name .......coocuiiiiiciiie ettt e e e 65
A4 SEring CONVEISION EXAMPIES ..oveiiiiiiiii it cctee ettt e e et e e et e e e s stee e e s eabeee e seabaeeeesabaeeessnseeessnnseneesnnsens 65
ANNEX B. PACK URI ...cceiieiiiiiiiiiiiniiiiiiiiiiiiniiseiiiisiinnesesessissssirsesasssssssssssmnesassssssssssssessssssssssssssssesnnssssssssssnes 66
20 R - 1ol U 12 BTl o T=Y o o TSRO SURI 66
B.2 ReSOIVING @ PACK URI 0 @ RESOUICE.....cccuviieeieiiiee ettt e ettt eeette e e e e tte e e e ette e e eebteeeessteeassseseasaseseseeassanaesans 67
B.3  ComMPOSING @ PACK URI .. ..ottt ettt ettt e et e e e e bt e e e e e bt e e e e ebteeeeessaeeseabeseeeaseaesesnsseeananns 68
2 o TRV 1Yo Vol TRt 69
Annex C. ZIP Appnote.txt ClarifiCations.......cccceeiiiiiiiiiiieiiiiiiiiiiniiiiesssessesssmssenn 70
C.1  Archive File HEAder CONSISTENCY ..uuviiiiiiieeeiiiiee ettt e ectte e e e sttt e e e stre e e e stteeeesabaeeessseeesessaeesanssesasennseneesnnsens 70
(O3 -1 o L3 €= VRSP 70
Annex D.Schemas - XIMIL SChemMa.....ccuiiiiiiiiiiiiiiiiiiiiiiieiiiiieiiiisieeiimmseeiesmsesiesmsistmesmsssssenmsssssessssssssssssssssns 81
Annex E. SChemas - RELAX NG .....ccuuciiiiiiiiniimmussiiiiiiinemssmsiiisiiimesssisssistimmmssmsssssissimmmsssssssssssssssesssssssssssssnns 82
Annex F. Standard Namespaces and CoNtent TYPES ......cereeeeiiiiimeieriimmierienmiereenmsersensseresnsssssssnsssssssnsssssenns 83
Annex G.Physical Model Design Considerations...........cccciieiiieniiieeiiieeniiieiiiiniereniiieesersasessnssssnssessnsssensessnnnns 85
G0t R 1 Yol ol T 4V [P 86
G.1.1  Direct ACCESS CONSUMPTION ... uuuuutitiiiiitiiitiiiiiiea s asanann 86
G.1.2  Streaming CONSUMPTION. . .. e ittt s aas 86



00 N O s~ W N R

10
11
12
13
14
15
16

17

18
19

Table of Contents

[ G I (<Y 0 Y[ Y ==Y | o T 86
G.1.4  Simultaneous Creation and CONSUMPLION ....cuuiiiiiiiiieiiiiiec ettt e e e s svee e e s saeeeeseans 86

G I 1Yo YU} ] 1Y L= PP 86
G0 R 141 o LI @ ] o =T o T o V- PP PUTUPPRTN 86
I N 1) {1 [ 1Y Te @ T (=T 1o Y- PP UPPRTPRTN 87

LG B @00 0 o 10T g TToF= T oY o Y 42 [=T-3 PSR 87
G.3.1  SEQUENTIAI DEIIVEIY .eeeieieieeee ettt ette e e et e e e et e e e ebte e e e ebteeeeebteeeeesteeaeenseaeeesnseneananes 87
LG 0 -1 g To [ o 17 Y o ol T SR UURUPPRTR 87
Annex H.Conformance REQUIFEMENLS...........cciiieeeieiiiiuierrenneerrennseeeeennssessenmssessennssssesnnssssesnsssssesnsssssesnssssnenns 88
[ TR A o ol T =L 1V o o [ RPN 88

[ 1A o o\ Tor- |l o Tl == UPTPPRRNE 96

[ ST A o o Y2 Tor- | 1V =T o o1 o = PRSI 101

o I O] {3 o o] o T<T o =L TP PP TP PPPTROPPP 106

[ o I o TW T 0]« - 11 SR 107

[ I ST B 7= (1 = Y Fd o T Y (UL <L PR 108

[ TR A - 1ol U 1 SRR 119
ANNEX L. BiblIOGIraphy ....cceee it crrtccr e see s e es s rensesseea s s s enassessennssessennssessennssessennssessennnsansennnnanns 121
N T 1= G R 13T =) G 123






Foreword

Foreword

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following
parts:

e Part 1: "Fundamentals"

e Part 2: "Open Packaging Conventions" (this document)
e Part 3:"Primer"

e Part 4: "Markup Language Reference"

e Part 5: "Markup Compatibility and Extensibility"

This part, Part 2, includes a number of annexes that refer to data files provided in electronic form only.

Vi



O 00 N O

10
11

12
13
14

15
16
17

18

19
20

21

Scope

1. Scope

This Part (the Open Packaging Conventions specification) specifies a set of conventions that are used by Office
Open XML documents to define the structure and functionality of a package in terms of a package model and a
physical model.

The package model defines a package abstraction that holds a collection of parts. The parts are composed,
processed, and persisted according to a set of rules. Parts can have relationships to other parts or external
resources, and the package as a whole can have relationships to parts it contains or external resources. The
package model specifies how the parts of a package are named and related. Parts have content types and are
uniquely identified using the well-defined naming guidelines provided in this Open Packaging specification.

The physical mapping defines the mapping of the components of the package model to the features of a specific
physical format, namely a ZIP archive.

This Open Packaging Conventions specification also describes certain features that might be supported in a
package, including core properties for package metadata, a thumbnail for graphical representation of a package,
and digital signatures of package contents.

Because this Standard will continue to evolve, packages are designed to accommodate extensions and support
compatibility goals in a limited way. The versioning and extensibility mechanisms described in Part 5: "Markup

Compatibility and Extensibility" support compatibility between software systems based on different versions of
this Standard while allowing package creators to make use of new or proprietary features.

This Open Packaging Conventions specification specifies requirements for package implementers, producers,
and consumers.

In all subsequent uses, the term "this specification" shall refer to the content of this Part.



10

11

Normative References

2. Normative References

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this Open Packaging specification. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. However, parties to agreements based on this Open Packaging
specification are encouraged to investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative document referred to
applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and
times.

ISO/IEC 9594-8 Public-key and attribute certificate frameworks (x.509 Certificate).

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).



10
11
12

13

14
15

16
17

18
19

20
21

22
23

24

25
26

27

28

Definitions

3. Definitions

For the purposes of this Open Packaging specification, the following definitions apply. Other terms are defined
where they appear in italic type. Terms explicitly defined in this Open Packaging specification are not to be
presumed to refer implicitly to similar terms defined elsewhere.

The terms base URI and relative reference are used in accordance with RFC 3986.

access style — The style in which local access or networked access is conducted. The access styles are as follows:
streaming creation, streaming consumption, simultaneous creation and consumption, and direct access
consumption.

behavior — External appearance or action.

behavior, implementation-defined — Unspecified behavior where each implementation shall document that
behavior, thereby promoting predictability and reproducibility within any given implementation. (This term is
sometimes called “application-specific behavior”.)

behavior, unspecified —Behavior where this Open Packaging specification imposes no requirements.

communication style — The style in which package contents are delivered by a producer or received by a
consumer. Communication styles include: random access and sequential delivery.

consumer — A piece of software or a device that reads packages through a package implementer. A consumer is
often designed to consume packages only for a specific physical package format.

content type — Describes the content stored in a part. Content types define a media type, a subtype, and an
optional set of parameters, as defined in RFC 2616.

Content Types stream — A specially-named stream that defines mappings from part names to content types.
The content types stream is not itself a part, and is not URI addressable.

device — A piece of hardware, such as a personal computer, printer, or scanner, that performs a single function
or set of functions.

format consumer — A consumer that consumes packages conforming to a format designer's specification.

format designer — The author of a particular file format specification built on this Open Packaging Conventions
specification.

format producer — A producer that produces packages conforming to a format designer's specification.

growth hint — A suggested number of bytes to reserve for a part to grow in-place.



10

11
12

13
14

15

16
17
18
19

20

21
22

23
24
25

26
27

28

29
30

31
32
33

Definitions

interleaved ordering — The layout style of a physical package where parts are broken into pieces and “mixed-
in” with pieces from other parts. When delivered, interleaved packages can help improve the performance of
the consumer processing the package.

layout style — The style in which the collection of parts in a physical package is laid out: either simple ordering
or interleaved ordering.

local access — The access architecture in which a pipe carries data directly from a producer to a consumer on a
single device.

logical item name — An abstraction that allows package implementers to manipulate physical data items
consistently regardless of whether those data items can be mapped to parts or not or whether the package is
laid out with simple ordering or interleaved ordering.

networked access — The access architecture in which a consumer and the producer communicate over a
protocol, such as across a process boundary, or between a server and a desktop computer.

pack URI — A URI scheme that allows URIs to be used as a uniform mechanism for addressing parts within a
package. Pack URIs are used as Base URIs for resolving relative references among parts in a package.

package — A logical entity that holds a collection of parts.

package implementer — Software that implements the physical input-output operations to a package according
to the requirements and recommendations of this Open Packaging specification. A package implementer is used
by a producer or consumer to interact with a physical package. A package implementer may be either a stand-
alone APl or may be an integrated component of a producer, consumer application, or device.

package model — A package abstraction that holds a collection of parts.

package relationship — A relationship whose target is a part and whose source is the package as a whole.
Package relationships are found in the package relationships part named “/_rels/.rels”.

part — A stream of bytes with a MIME content type and associated common properties. Typically corresponds
to a file [Example: on a file system end example], a stream [Example: in a compound file end example], or a
resource [Example: in an HTTP URI end example].

part name — The path component of a pack URI. Part names are used to refer to a part in the context of a
package, typically as part of a URI.

physical model — A description of the capabilities of a particular physical format.

physical package format — A specific file format, or other persistence or transport mechanism, that can
represent all of the capabilities of a package.

piece — A portion of a part. Pieces of different parts may be interleaved together. The individual pieces are
named using a unique mapping from the part name. Piece name grammar is not equivalent to the part name
grammar. Pieces are not addressable in the package model.



10
11

12
13
14

15
16

17
18

19

20
21

22
23

24

25
26

27

28
29

Definitions

pipe — A communication mechanism that carries data from the producer to the consumer.

producer — A piece of software or a device that writes packages through a package implementer. A producer is
often designed to produce packages according to a particular physical package format specification.

random access — A style of communication between the producer and the consumer of the package. Random
access allows the consumer to reference and obtain data from anywhere within a package.

relationship —The kind of connection between a source part and a target part in a package. Relationships make
the connections between parts directly discoverable without looking at the content in the parts, and without
altering the parts themselves. (See also Package Relationships.)

relationships part — A part containing an XML representation of relationships.

sequential delivery — A communication style in which all of the physical bits in the package are delivered in the
order they appear in the package.

signature policy — A format-defined policy that specifies what configuration of parts and relationships shall or
might be included in a signature for that format and what additional behaviors that producers and consumers of
that format shall follow when applying or verifying signatures following that format's signature policy.

simple ordering — A defined ordering for laying out the parts in a package in which all the bits comprising each
part are stored contiguously.

simultaneous creation and consumption — A style of access between a producer and a consumer in highly
pipelined environments where streaming creation and streaming consumption occur simultaneously.

stream — A linearly ordered sequence of bytes.

streaming consumption — An access style in which parts of a physical package may be processed by a consumer
before all of the bits of the package have been delivered through the pipe.

streaming creation — A production style in which a producer dynamically adds parts to a package after other
parts have been added without modifying those parts.

thumbnail — A small image that is a graphical representation of a part or the package as a whole.

well-known part — A part with a well-known relationship, which enables the part to be found without knowing
the location of other parts.

ZIP archive — A ZIP file as defined in the ZIP file format specification. A ZIP archive contains ZIP items.

ZIP item — A ZIP item is an atomic set of data in a ZIP archive that becomes a file when the archive is
uncompressed. When a user unzips a ZIP based package, the user sees an organized set of files and folders.



10
11
12
13
14

15

16
17

18

4.

4.1

Notational Conventions

Notational Conventions

Document Conventions

The following typographical conventions are used in this Standard:

1.

4.2

The first occurrence of a new term is written in italics. [Example: ... is considered normative. end
example]

A term defined as a basic definition is written in bold. [Example: behavior — External ... end example]
The name of an XML element is written using an Element style. [Example: The root element is
document. end example]

The name of an XML element attribute is written using an Attribute style. [Example: ... an id attribute.
end example)

An XML element attribute value is written using a constant-width style. [Example: ... value of
CommentReference. end example)

An XML element type name is written using a Type style. [Example: ... as values of the xsd:anyURI data
type. end example]

Diagram Notes

In some cases, markup semantics are described using diagrams. The diagrams place the parent element on the
left, with attributes and child elements to the right. The symbols are described below.

Symbol Description

E] Required element: This box represents an element that shall appear

exactly once in markup when the parent element is included. The
“+” and “=” symbols on the right of these boxes have no semantic
meaning.

= Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

['L] Range indicator: These numbers indicate that the designated

7 = element or choice of elements can appear in markup any number of
times within the range specified.

E sttributes Attribute group: This box indicates that the enclosed boxes are each
I:I attributes of the parent element. Solid-border boxes are required
-3 attributes; dashed-border boxes are optional attributes.




Notational Conventions

Symbol Description
Eja Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.
13 Choice symbol: Only one of the element boxes connected to this
symbol shall appear in markup.
,:Tj:;u; - _| Type indicator: The elements within the dashed box are of the

complex type indicated.




Acronyms and Abbreviations

5. Acronyms and Abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this specification:
IEC — the International Electrotechnical Commission

ISO — the International Organization for Standardization

W3C — World Wide Web Consortium

End of informative text.



10
11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

6.

General Description

General Description

This Open Packaging specification is intended for use by implementers, academics, and application
programmers. As such, it contains a considerable amount of explanatory material that, strictly speaking, is not

necessary in a formal specification.

This Open Packaging specification is divided into the following subdivisions:

P wnNPRE

Front matter (clauses 1-7);
Overview (clause 8);

Main body (clauses 9-13);
Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes

provide additional information and summarize the information contained in this Open Packaging specification.

The following form the normative part of this Open Packaging specification:

Introduction

Clauses 1-4, 6, and 8-12
Annex A-—Annex D
Annex F

The following form the informative part of this Open Packaging specification:

Clauses 5 and 7
Annex E

Annex G-Annex J
All notes

All examples

Whole clauses and annexes that are informative are identified as such. Informative text that is contained within

normative text is identified as either an example, or a note as specified in 4.1, “Document Conventions.”



10
11

12
13
14

15

16

Overview

7. Overview

This clause is informative.

This Open Packaging specification describes an abstract model and physical format conventions for the use of
XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content and
resources of a document within a package. It is intended to support the content types and organization for
various applications and is written for developers who are building systems that process package content.

In addition, this Open Packaging specification defines common services that can be included in a package, such
as Core Properties and Digital Signatures.

A primary goal is to ensure the interoperability of independently created software and hardware systems that
produce or consume package content and use common services. This Open Packaging specification defines the
formal requirements that producers and consumers shall satisfy in order to achieve interoperability.

Various XML-based building blocks within a package make use of the conventions described in Part 5: “Markup
Compatibility and Extensibility” to facilitate future enhancement and extension of XML markup. That part shall
be explicitly cited by any markup specification that bases its versioning and extensibility strategy on Markup
Compatibility elements and attributes.

End of informative text.

10



10

11
12

13

14
15

16

17

18
19
20

Package Model

8. Package Model

A package is a logical entity that holds a collection of parts. The purpose of the package is to aggregate all of the
pieces of a document (or other type of content) into a single object. [Example: A package holding a document
with a picture might contain two parts: an XML markup part representing the document and another part
representing the picture. end example] The package is also capable of storing relationships between parts.

The package provides a convenient way to distribute documents with all of their component pieces, such as
images, fonts, and data. Although this Open Packaging specification defines a single-file package format, the
package model allows for the future definition of other physical package representations. [Example: A package
could be physically represented in a collection of loose files, in a database, or ephemerally in transit over a
network connection. end example]

This Open Packaging specification also defines a URI scheme, the pack URI, that allows URIs to be used as a
uniform mechanism for addressing parts within a package.

8.1 Parts

A part is a stream of bytes with the properties listed in Table 8-1. A stream is a linearly ordered sequence of
bytes. Parts are analogous to a file in a file system or to a resource on an HTTP server.

Table 8-1. Part properties

Name Description Required/Optional

Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]

Content The type of content stored in the part Required. The package

Type implementer shall require a
content type and the format
designer shall specify the
content type. [M1.2]

Growth Hint | A suggested number of bytes to reserve for Optional. The package

the part to grow in-place implementer might allow a
growth hint to be provided by
a producer. [01.1]

8.1.1 Part Names

Each part has a name. Part names refer to parts within a package. [Example: The part name
“/hello/world/doc.xml” contains three segments: “hello”, “world”, and “doc.xml|”. The first two segments in the
sample represent levels in the logical hierarchy and serve to organize the parts of the package, whereas the

11



10

11

12

13

14

15

16
17

18

19
20
21
22

23

24

25

26
27

28

29

30

Package Model
third contains actual content. Note that segments are not explicitly represented as folders in the package model,
and no directory of folders exists in the package model. end example]

Part Name Syntax
The part name grammar is defined as follows:

part_name = 1*( "/" segment )
segment 1*( pchar )

pchar is defined in RFC 3986.

The part name grammar implies the following constraints. The package implementer shall neither create any
part that violates these constraints nor retrieve any data from a package as a part if the purported part name
violates these constraints.

e A part name shall not be empty. [M1.1]

e A part name shall not have empty segments. [M1.3]

e A part name shall start with a forward slash (“/”) character. [M1.4]

e A part name shall not have a forward slash as the last character. [M1.5]

e A segment shall not hold any characters other than pchar characters. [M1.6]

Part segments have the following additional constraints. The package implementer shall neither create any part
with a part name comprised of a segment that violates these constraints nor retrieve any data from a package as
a part if the purported part name contains a segment that violates these constraints.

e Asegment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters.
(M1.7]

o A segment shall not contain percent-encoded unreserved characters. [M1.8]

o A segment shall not end with a dot (“.”) character. [M1.9]

e Asegment shall include at least one non-dot character. [M1.10]

[Example:
Example 8-1. A part name

/a/%D1%86.xml
/xml/iteml.xml

Example 8-2. An invalid part name
//xml/.

end example]

12



10

11
12
13
14
15

16

17

18

19
20

21
22
23
24

25
26

27

28

29

30
31
32
33

Package Model

8.1.1.1 Part Naming

A package implementer shall neither create nor recognize a part with a part name derived from another part
name by appending segments to it. [M1.11] [Example: If a package contains a part named
“/segmentl/segment2/.../segmentn”, then other parts in that package shall not have names such as:
“/segmentl”, “segmentl/segment2”, or “/segmentl/segment2/.../segmentn-1". end example]

8.1.1.2 Part Name Equivalence

Part name equivalence is determined by comparing part names as case-insensitive ASCII strings. Packages shall
not contain equivalent part names and package implementers shall neither create nor recognize packages with
equivalent part names. [M1.12]

8.1.2 Content Types

Every part has a content type, which identifies the type of content that is stored in the part. Content types
define a media type, a subtype, and an optional set of parameters. Package implementers shall only create and
only recognize parts with a content type; format designers shall specify a content type for each part included in
the format. Content types for package parts shall fit the definition and syntax for media types as specified in RFC
2616, §3.7. [M1.13] This definition is as follows:

media-type = type "/" subtype *( ";" parameter )
where parameter is expressed as
attribute "=" value

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may be case-sensitive,
depending on the semantics of the parameter attribute name.

Content types shall not use linear white space either between the type and subtype or between an attribute and
its value. Content types also shall not have leading or trailing white spaces. Package implementers shall create
only such content types and shall require such content types when retrieving a part from a package; format
designers shall specify only such content types for inclusion in the format. [M1.14]

The package implementer shall require a content type that does not include comments and the format designer
shall specify such a content type. [M1.15]

Format designers might restrict the usage of parameters for content types. [01.2]

Content types for package-specific parts are defined in Annex F, “Standard Namespaces and Content Types.”

8.1.3 Growth Hint

Sometimes a part is modified after it is placed in a package. Depending on the nature of the modification, the
part might need to grow. For some physical package formats, this could be an expensive operation and could
damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place,
moving as few bytes as possible.

13



w N

w

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35
36

Package Model

To support these scenarios, a package implementer can associate a growth hint with a part. [01.1] The growth
hint identifies the number of bytes by which the producer predicts that the part will grow. In a mapping to a
particular physical format, this information might be used to reserve space to allow the part to grow in-place.
This number serves as a hint only. The package implementer might ignore the growth hint or adhere only loosely
to it when specifying the physical mapping. [01.3] If the package implementer specifies a growth hint, it is set
when a part is created and the package implementer shall not change the growth hint after the part has been
created. [M1.16]

8.1.4 XML Usage

All XML content of the parts defined in this Open Packaging specification shall conform to the following
validation rules:

1. XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding
declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any
encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon
creation and retrieval of the XML content. [M1.17]

2. The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable
Denial of Service attacks, typically through the use of an internal entity expansion technique. As
mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this
Open Packaging specification. Package implementers shall enforce this requirement upon creation and
retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18]

3. If the XML content contains the Markup Compatibility namespace, as described in Part 5: “Markup
Compatibility and Extensibility”, it shall be processed by the package implementer to remove Markup
Compatibility elements and attributes, ignorable namespace declarations, and ignored elements and
attributes before applying subsequent validation rules. [M1.19]

4. XML content shall be valid against the corresponding XSD schema defined in this Open Packaging
specification. In particular, the XML content shall not contain elements or attributes drawn from
namespaces that are not explicitly defined in the corresponding XSD unless the XSD allows elements or
attributes drawn from any namespace to be present in particular locations in the XML markup. Package
implementers shall enforce this requirement upon creation and retrieval of the XML content. [M1.20]

5. XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they
are explicitly defined in the XSD schema or by other means described in this Open Packaging
specification. Package implementers shall enforce this requirement upon creation and retrieval of the
XML content. [M1.21]

8.2 Part Addressing

Parts often contain references to other parts. [Example: A package might contain two parts: an XML markup file
and an image. The markup file holds a reference to the image so that when the markup file is processed, the
associated image can be identified and located. end example.]

14



10
11

12
13
14

15

16

17

18

19

20

21
22

23

24

25

26

27
28

29

30
31
32

Package Model

8.2.1 Relative References
A relative reference is expressed so that the address of the referenced part is determined relative to the part

containing the reference.

Relative references from a part are interpreted relative to the base URI of that part. By default, the base URI of a
part is derived from the name of the part, as defined in §B.3.

If the format designer permits it, parts can contain Unicode strings representing references to other parts. If
allowed by the format designer, format producers can create such parts and format consumers shall consume
them. [01.4] In particular, XML markup might contain Unicode strings referencing other parts as values of the
xsd:anyURI data type. Format consumers shall convert these Unicode strings to URIs, as defined in Annex A,
“Resolving Unicode Strings to Part Names,” before resolving them relative to the base URI of the part containing
the Unicode string. [M1.23]

Some types of content provide a way to override the default base URI by specifying a different base in the
content. [Example: XML Base or HTML end example]. In the presence of one of these overrides, format
consumers shall use the specified base URI instead of the default. [M1.24]

[Example:
Example 8-3. Part names and relative references
A package includes parts with the following names:

e /markup/page.xml
e /images/picture.jpg
e /images/other_picture.jpg

If /markup/page.xml contains a reference to ../images/picture.jpg, then this reference is interpreted as referring
to the part name /images/picture.jpg.

end example)

8.2.2 Fragments
Sometimes it is useful to address a portion of or a specific point in a part. In URIs, a fragment identifier is used

for this purpose. (See RFC 3986.)

[Example: In an XML part a fragment identifier might identify a portion of the XML content using an XPath
expression. end example]

8.3 Relationships

Parts often contain references to other parts in the package and to resources outside of the package. In general,
these references are represented inside the referring part in ways that are specific to the content type of the
part, that is, in arbitrary markup or an application-specific encoding. This effectively hides the internal and

15



10
11

12

13
14
15
16

17

18

19
20
21

22

23
24

25

26
27
28

29
30
31

32
33
34
35

Package Model

external links between parts from consumers that do not understand the content types of the parts containing
such references.

The package introduces a higher-level mechanism to describe references from parts to other internal or external
resources: relationships. Relationships represent the type of connection between a source part and a target
resource. They make the connection directly discoverable without looking at the part contents, so they are
independent of content-specific schemas and quick to resolve.

Relationships provide a second important function: relating parts without modifying their content. Sometimes
relationships act as a label where the content type of the labeled part does not define a way to attach the given
information. Some scenarios require information to be attached to an existing part without modifying that part,
either because the part is encrypted and cannot be decrypted, or because it is digitally signed and changing it
would invalidate the signature.

8.3.1 Relationships Part

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The
Relationships part is URI-addressable and it can be opened, read, and deleted. The Relationships part shall not
have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to
create such a relationship and shall treat any such relationship as invalid. [M1.25]

The content type of the Relationships part is defined in Annex F, “Standard Namespaces and Content Types".

8.3.2 Package Relationships

A relationship whose source is a package as a whole is known as a package relationship. Package relationships
are used to identify the “starting” parts in a package for a given context. This method avoids relying on naming
conventions for finding parts in a package.

8.3.3 Relationship Markup

Relationships are represented using Relationship elements nested in a single Relationships element. These
elements are defined in the Relationships namespace, as specified in Annex F, “Standard Namespaces and
Content Types". The schema for relationships is described in Annex D, "Schemas - XML Schema".

The package implementer shall require that every Relationship element has an Id attribute, the value of which
is unique within the Relationships part, and that the Id type is xsd:ID, the value of which conforms to the naming
restrictions for xsd:ID as described in the W3C Recommendation “XML Schema Part 2: Datatypes.” [M1.26]

The nature of a Relationship element is identified by the Type attribute. Relationship Type is defined in the
same way that namespaces are defined for XML namespaces. By using types patterned after the Internet
domain-name space, non-coordinating parties can safely create non-conflicting relationship types.

Relationship types can be compared to determine whether two Relationship elements are of the same type.
This comparison is conducted in the same way as when comparing URIs that identify XML namespaces: the two
URIs are treated as strings and considered identical if and only if the strings have the same sequence of
characters. The comparison is case-sensitive and no escaping is done or undone.

16



Package Model

The Target attribute of the Relationship element holds a URI that points to a target resource. Where the URl is
expressed as a relative reference, it is resolved against the base URI of the Relationships source part. The
xml:base attribute shall not be used to specify a base URI for relationship XML content.

8.3.3.1 Relationships Element

The structure of a Relationships element is shown in the following diagram:

diagram T T _|
CT_Relationships

annotation | The root element of the Relationships part.

8.3.3.2 Relationship Element

The structure of a Relationship element is shown in the following diagram:

diagram T
& | CT_Relations m

| El atteibutes |

=Relationship

-

attributes ' \Name Type Use Default Fixed Annotation
TargetMode ST_TargetMode |optional The package implementer might allow

a TargetMode to be provided by a
producer. [01.5]

The TargetMode indicates whether
or not the target describes a resource
inside the package or outside the
package. The valid values are
“Internal” and “External”.

The default value is Internal. When
set to Internal, the Target attribute
shall be a relative reference and that

17



Target

Type

xsd:anyURI

xsd:anyURI

xsd:ID

required

required

required

Package Model

reference is interpreted relative to
the “parent” part. For package
relationships, the package
implementer shall resolve relative
references in the Target attribute
against the pack URI that identifies
the entire package resource. [M1.29]
For more information, see Annex B,
“Pack URL.”

When set to External, the Target
attribute may be a relative reference
or a URL. If the Target attribute is a
relative reference, then that
reference is interpreted relative to
the location of the package.

The package implementer shall
require the Target attribute to be a
URI reference pointing to a target
resource. The URI reference shall be a
URI or a relative reference. [M1.28]

Target attribute values are
dependent on the TargetMode
attribute value.

The package implementer shall
require the Type attribute to be a URI
that defines the role of the
relationship and the format designer
shall specify such a Type. [M1.27]

The package implementer shall
require a valid XML identifier. [M1.26]
The Id type is xsd:ID and it shall
conform to the naming restrictions
for xsd:ID as specified in the W3C
Recommendation “XML Schema Part
2: Datatypes.” The value of the Id

18



10
11
12
13

14
15
16

17

18

19
20
21

Package Model

attribute shall be unique within the
Relationships part.

annotation | Represents a single relationship.

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship
element. [01.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a
package implementer shall not resolve the URI to a scope less than an entire part. [M1.32]

8.3.4 Representing Relationships

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one
or more relationships can have an associated Relationships part. This part holds the list of relationships for the
source part. For more information on the Relationships namespace and relationship types, see Annex F,
“Standard Namespaces and Content Types.”

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given
folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part
is formed by appending “.rels” to the name of the original part. Package relationships are found in the package
relationships part named “/_rels/.rels”.

The package implementer shall name relationship parts according to the special relationships part naming
convention and require that parts with names that conform to this naming convention have the content type for
a Relationships part. [M1.30]

[Example:
Example 8-4. Sample relationships and associated markup

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital
Signature Origin part is targeted by a package relationship. The connection from the Digital Signature Origin to
the Digital Signature XML Signature part is represented by a relationship.

19



O 00 N O

11
12
13

14

15

16

17
18
19
20

21
22

Package Model

Package Relationships Part PACKAGE
/_relsf.rels

'

Digital Signature
Origin Part
forigin

Relationships Part
{_rels/origin.rels

l

Digital Signature
XML Signature
Part
fsignature?.xml

The relationship targeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the
Digital Signature XML Signature part is stored in /_rels/origin.rels.

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the
Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships”>
<Relationship
Target="./Signature.xml"
Id="A5FFC797514BC"
Type="http://schemas.openxmlformats.org/package/2006/relationships/
digital-signature/signature"/>
</Relationships>

end example]
[Example:
Example 8-5. Targeting resources

Relationships can target resources outside of the package at an absolute location and resources located relative
to the current location of the package. The following Relationships part specifies relationships that connect a
part to picl.jpg at an external absolute location, and to my_house.jpg at an external location relative to the
location of the package:

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships™

20



O 00 N OO s~ W N

=
L O

Jany
N

13

14

15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

30

31
32
33

34
35
36
37

Package Model

<Relationship
TargetMode="External™
Id="A9EFC627517BC"
Target="http://www.custom.com/images/picl.jpg"
Type="http://www.custom.com/external-resource”/>
<Relationship
TargetMode="External™
Id="A5EFC797514BC"
Target="./images/my_house.jpg"
Type="http://www.custom.com/external-resource"/>
</Relationships>

end example]
[Example:
Example 8—6. Re-using attribute values

The following Relationships part contains two relationships, each using unique Id values. The relationships share
the same Target, but have different relationship types.

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship
Target="./Signature.xml”
Id="A5FFC797514BC"
Type="http://schemas.openxmlformats.org/package/2006/
relationships/digital-signature/signature”/>
<Relationship
Target="./Signature.xml"
Id="B5F32797CC4B7"
Type="http://www.custom.com/internal-resource"”/>
</Relationships>

end example]

8.3.5 Support for Versioning and Extensibility

Producers might generate relationship markup that uses the versioning and extensibility mechanisms defined in
Part 5: “Markup Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML
namespaces. [01.7]

Consumers shall process relationship markup in a manner that conforms to Part 5: “Markup Compatibility and
Extensibility”. Producers editing relationships based on this version of the relationship markup specification shall
not preserve any ignored content, regardless of the presence of any preservation attributes as defined in Part 5:
“Markup Compatibility and Extensibility”. [M1.31]

21



10
11
12
13

14
15

16
17
18
19
20

21

22
23
24

25
26
27
28
29
30

31
32
33

Physical Package

9. Physical Package

In contrast to the package model that describes the contents of a package in an abstract way, the physical
package refers to a package that is stored in a particular physical file format. This includes the physical model
and physical mapping considerations.

The physical model abstractly describes the capabilities of a particular physical format and how producers and
consumers can use a package implementer to interact with that physical package format. The physical model
includes the access style, or the manner in which package input-output is conducted, as well as the
communication style, which describes the method of interaction between producers and consumers across a
communications pipe. The physical model also includes the layout style, or how part contents are physically
stored within the package. The layout style can either be simple ordering, where the parts are arranged
contiguously as atomic blocks of data, or interleaved ordering, where the parts are broken into individual pieces
and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a physical
package design is reliant upon the physical model capabilities.

[Note: See Annex G, “Physical Model Design Considerations” for additional discussion of the physical model. end
note]

Physical mappings describe the manner in which the package contents are mapped to the features of that
specific physical format. Details of how package components are mapped are described, as well as common
mapping patterns and mechanisms for storing part content types. This Open Packaging specification describes
both the specific considerations for physical mapping to a ZIP archive as well as generic physical mapping
considerations applicable to any physical package format.

9.1 Physical Mapping Guidelines

Whereas the package model defines a package abstraction, an instance of a package must be based on a
physical representation. A physical package format is a particular physical representation of the package
contents in a file.

Many physical package formats have features that partially match the packaging model components. In defining
mappings from the package model to a physical package format, it is advisable to take advantage of any
similarities in capabilities between the package model and the physical package medium while using layers of
mapping to provide additional capabilities not inherently present in the physical package medium. [Example:
Some physical package formats store parts as individual files in a file system, in which case it is advantageous to
map many part names directly to identical physical file names. end example]

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary
content types with parts and supporting part interleaving end example] Package implementers might use the
common mapping solutions defined in this Open Packaging specification. [02.3]

22



Physical Package

9.1.1 Mapped Components

The package implementer shall define a physical package format with a mapping for the required components
package, part name, part content type and part contents. [M2.2] [Note: Not all physical package formats support
the part growth hint. end note]

Table 9—1. Mapped components

Name Description Required/Optional

Package URI-addressable resource that identifies package Required. The package implementer shall
as a whole unit provide a physical mapping for the
package. [M2.2]

Part name Names a part Required. The package implementer shall
provide a physical mapping for each
part’s name. [M2.2]

Part content Identifies the kind of content stored in the part Required. The package implementer shall

type provide a physical mapping for each

part’s content type. [M2.2]

Required. The package implementer shall
provide a physical mapping for each
part’s contents. [M2.2]

Part contents Stores the actual content of the part

Part growth Number of additional bytes to reserve for possible | Optional. The package implementer
hint growth of part might provide a physical mapping for a
growth hint that might be specified by a
producer. [02.2]

9.1.2 Mapping Content Types

Methods for mapping part content types to a physical format are described below.

9.1.2.1 Identifying the Part Content Type

The package implementer shall define a format mapping with a mechanism for associating content types with

10

11
12
13

14
15
16
17

parts. [M2.3]

Some physical package formats have a native mechanism for representing content types. [Example: the content

type header in MIME end example] For such packages, the package implementer should use the native

mechanism to map the content type for a part. [S2.1]

For all other physical package formats, the package implementer should include a specially-named XML stream

in the package called the Content Types stream. [S2.2] The Content Types stream shall not be mapped to a part

by the package implementer. [M2.1] This stream is therefore not URI-addressable. However, it can be

interleaved in the physical package using the same mechanisms used for interleaving parts.

23



10

11

12

13

14
15

16

17

18
19
20
21

22

23

24

25

Physical Package

9.1.2.2 Content Types Stream Markup

The Content Types stream identifies the content type for each package part. The Content Types stream contains
XML with a top-level Types element, and one or more Default and Override child elements. Default elements
define default mappings from the extensions of part names to content types. Override elements are used to
specify content types on parts that are not covered by, or are not consistent with, the default mappings.
Package producers can use pre-defined Default elements to reduce the number of Override elements on a part,
but are not required to do so. [02.4]

The package implementer shall require that the Content Types stream contain one of the following for every
part in the package:

e One matching Default element

e One matching Override element

e Both a matching Default element and a matching Override element, in which case the Override
element takes precedence. [M2.4]

The package implementer shall require that there not be more than one Default element for any given
extension, and there not be more than one Override element for any given part name. [M2.5]

The order of Default and Override elements in the Content Types stream is not significant.
If the package is intended for streaming consumption:

e The package implementer should not allow Default elements; as a consequence, there should be one
Override element for each part in the package.

e The format producer should write the Override elements to the package so they appear before the
parts to which they correspond, or in close proximity to the part to which they correspond.

[S2.3]
The package implementer can define Default content type mappings even though no parts use them. [02.5]

9.1.2.2.1 Types Element

The structure of a Types element is shown in the following diagram:

diagram r - T T T
| CT_Types |
. Default 1]
s S Override
R —

annotation The root element of the Content Types stream.

24



Physical Package

9.1.2.2.2 Default Element

The structure of a Default element is shown in the following diagram:

[ CT_Default |

diagram

| & sttriputes

Default Extension

ContemtType

I

attributes | Name Type Use Default [Fixed Annotation

Extension ST_Extension required A part name extension. A Default
element matches any part whose
name ends with a period followed by
the value of this attribute. The
package implementer shall require a
non-empty extension in a Default
element. [M2.6]

ContentType ST_ContentType required A content type as defined in RFC 2616.
Indicates the content type of any
matching parts (unless overridden).
The package implementer shall
require a content type in a Default
element and the format designer shall
specify the content type. [M2.6]

annotation pefines default mappings from the extensions of part names to content types.

9.1.2.2.3 Override Element

The structure of an Override element is shown in the following diagram:

diagram T T T
g [ CT_Override

| B asttriputes

|
||
ContemtType ]

Override

PartHame

T

25



O 0 N o Uu b

11
12

attributes | Name Type

Use

ContentType ST _ContentType required

PartName xs:anyURI required

Physical Package

Default Fixed /Annotation

A content type as defined in RFC 2616.
Indicates the content type of the
matching part. The package
implementer shall require a content
type and the format designer shall
specify the content type in an
Override element. [M2.7]

A part name. An Override element
matches the part whose name is equal
to the value of this attribute. The
package implementer shall require a
part name. [M2.7]

annotation | specifies content types on parts that are not covered by, or are not consistent with,

the default mappings.

9.1.2.2.4 Content Types Stream Markup Example

[Example:

Example 9-7. Content Types stream markup

<Types

xmlns="http://schemas.openxmlformats.org/package/2006/content-types">
<Default Extension="txt" ContentType="text/plain" />

<Default Extension="jpeg" ContentType="image/jpeg" />

<Default Extension="picture" ContentType="image/gif" />

<Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" />

</Types>

The following is a sample list of parts and their corresponding content types as defined by the Content Types

stream markup above.

Part name Content type
/a/b/samplel.txt text/plain
/a/b/sample2.jpg image/jpeg
/a/b/sample3.picture | image/gif
/a/b/sampled.picture | image/jpeg

26



10
11
12
13
14
15

16
17

18

19
20

21

23
24
25
26
27

28
29
30
31

32
33
34
35

Physical Package

end example]

9.1.2.3

Setting the Content Type of a Part

When adding a new part to a package, the package implementer shall ensure that a content type for that part is

specified in the Content Types stream; the package implementer shall perform the following steps to do so

[M2.8]:

1.

9.1.2.4

Get the extension from the part name by taking the substring to the right of the rightmost occurrence of
the dot character (.) from the rightmost segment.

If a part name has no extension, a corresponding Override element shall be added to the Content Types
stream.

Compare the resulting extension with the values specified for the Extension attributes of the Default
elements in the Content Types stream. The comparison shall be case-insensitive ASCII.

If there is a Default element with a matching Extension attribute, then the content type of the new part
shall be compared with the value of the ContentType attribute. The comparison might be case-sensitive
and include every character regardless of the role it plays in the content-type grammar of RFC 2616, or it
might follow the grammar of RFC 2616.

a. If the content types match, no further action is required.
b. If the content types do not match, a new Override element shall be added to the Content Types
stream. .

If there is no Default element with a matching Extension attribute, a new Default element or Override
element shall be added to the Content Types stream.

Getting the Content Type of a Part

To get the content type of a part, the package implementer shall perform the following steps [M2.9]:

1.

Compare the part name with the values specified for the PartName attribute of the Override elements.
The comparison shall be case-insensitive ASCII.

If there is an Override element with a matching PartName attribute, return the value of its
ContentType attribute. No further action is required.

If there is no Override element with a matching PartName attribute, then

a. Get the extension from the part name by taking the substring to the right of the rightmost
occurrence of the dot character (.) from the rightmost segment.

b. Check the Default elements of the Content Types stream, comparing the extension with the
value of the Extension attribute. The comparison shall be case-insensitive ASCII.

If there is a Default element with a matching Extension attribute, return the value of its ContentType
attribute. No further action is required.

If neither Override nor Default elements with matching attributes are found for the specified part
name, the implementation shall not map this part name to a part.

27



10

11
12

13

14

15

16

18
19
20
21
22
23

Physical Package

9.1.2.5 Support for Versioning and Extensibility

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 5: “Markup
Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML-namespaces into
the Content Types stream markup. [M2.10]

9.1.3 Mapping Part Names to Physical Package Item Names

The mapping of part names to the names of items in the physical package uses an intermediate logical item
name abstraction. This logical item name abstraction allows package implementers to manipulate physical data
items consistently regardless of whether those data items can be mapped to parts or not or whether the
package is laid out with simple ordering or interleaved ordering. See §9.1.4 for interleaving details.

[Example:

Figure 9—1 illustrates the relationship between part names, logical item names, and physical package item
names.

Figure 9—1. Part names and logical item names

Part names Logical item Physical package
[Public, case-insensitive) names ]tem names
Moo xaml - - Soa. xaml ~ - Physical itern name
! bar.xaml Sbar.xaml/[0]. piece - - Physical item name
fbar.xaml/[1]. piece - - Physical item name
‘\\ - fbar.xaml/[2].Piece -+ - Physical item name
N fBar.xaml/[3]. plece - - Physical item name
Ay {bar. XAML/[4].last. piece |« - Physical item name
!/ [ContentTypes]. xmil £t " Physical itern name
end example]
9.1.3.1 Logical [tem Names

Logical item names have the following syntax:

LogicalItemName = PrefixName [SuffixName]

PrefixName = *AChar
AChar = %x20-7E
SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece"

PieceNumber "@" | NonZeroDigit [1*Digit]
Digit = "@" | NonZeroDigit

28



10
11
12

13

14

15
16

17
18

19

20
21

22

23
24

25
26
27

28
29
30
31

Physical Package

NonZeroDigit = "1" | "2" | "3" | "4 | 5" | "e" | "7" | "8" | "o
[Note: Piece numbers identify the individual pieces of an interleaved part. end note]
The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12]
The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13]

Logical item names are considered equivalent if their prefix names and suffix names are equivalent. The package
implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package
implementer shall not allow packages that contain logical items with equivalent prefix names and with equal
piece numbers, where piece numbers are treated as integer decimal values. [M2.15]

Logical item names that use suffix names form a complete sequence if and only if:

1. The prefix names of all logical item names in the sequence are equivalent, and
The suffix names of the sequence start with “/[0].piece” and end with “/[n].last.piece” and include a
piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted
as decimal integer values.

9.1.3.2 Mapping Part Names to Logical [tem Names

Non-interleaved part names are mapped to logical item names that have an equivalent prefix name and no
suffix name.

Interleaved part names are mapped to the complete sequence of logical item names with an equivalent prefix

name.
9.1.3.3 Mapping Logical Item Names and Physical Package Item Names

The mapping of logical item names and physical package item names is specific to the particular physical
package.

9.1.3.4 Mapping Logical Item Names to Part Names

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name provided
that the prefix name conforms to the part name syntax.

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the
logical item name having the suffix name “/[0].piece”, provided that the prefix name conforms to the part name
syntax.

The package implementer might allow a package that contains logical item names and complete sequences of
logical item names that cannot be mapped to a part name because the logical item name does not follow the
part naming grammar or the logical item does not have an associated content type. [02.7] The package
implementer shall not map logical items to parts if the logical item names violate the part naming rules. [M2.16]

29



10

11
12

13
14
15

16
17

18
19

20

21

22

23
24
25
26
27
28

29

30
31

32

Physical Package

The package implementer shall consider naming collisions within the set of part names mapped from logical
item names to be an error. [M2.17]

9.1.4 Interleaving

Not all physical packages natively support interleaving of the data streams of parts. The package implementer
should use the mechanism described in this Open Packaging specification to allow interleaving when mapping to
the physical package for layout scenarios that support streaming consumption. [S2.4]

The interleaving mechanism breaks the data stream of a part into pieces, which can be interleaved with pieces
of other parts or with whole parts. Pieces are named using a unique mapping from the part name, defined in
§9.1.3. This enables a consumer to join the pieces together in their original order, forming the data stream of
the part.

The individual pieces of an interleaved part exist only in the physical package and are not addressable in the
packaging model. A piece might be empty.

An individual part shall be stored either in an interleaved or non-interleaved fashion. The package implementer
shall not mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifies
whether that format might use interleaving. [02.1]

The grammar for deriving piece names from a given part name is defined by the logical item name grammar as
defined in §9.1.3.1. A suffix name is mandatory.

The package implementer should store pieces in their natural order for optimal efficiency. [S2.5] The package
implementer might create a physical package containing interleaved parts and non-interleaved parts. [02.6]

[Example:
Example 9-8. ZIP archive contents
A ZIP archive might contain the following item names mapped to part pieces and whole parts:

spine.xml/[@].piece
pages/page0.xml
spine.xml/[1].piece
pages/pagel.xml
spine.xml/[2].last.piece
pages/page2.xml

end example]

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in
the following example.

[Example:

30



O 00 N O

10

11
12

13

14

15

16

17
18

19
20
21
22

Physical Package

Example 9-9. Performance benefits with interleaved ordering

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an
image part (images/picture.jpg) referring to an image that appears on the page.

markup/page . xmi

images/pitiine jpsg

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The
figure below illustrates this scenario. The consumer is unable to display the image until it has received all of the
page part and the image part. In some circumstances, such as small packages on a high-speed network, this may
be acceptable. In others, having to read through all of markup/page.xml to get to the image results in
unacceptable performance or places unreasonable memory demands on the consumer’s system.

byte
markup/page-xmi
Y imagesipichire pag
Byte n

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the
image part immediately following the reference to the image. This allows the consumer to begin processing the
image as soon as it encounters the reference.

byte 0 markupipage.xmi
part-1
imageaipiciirg. pag
Y markup/page xmil
bytea n part 2
end example]

9.2 Mapping to a ZIP Archive

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open
Packaging specification might provide additional mappings.

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification
related to encryption, decryption, or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become
files when the archive is unzipped. When users unzip a ZIP-based package, they see a set of files and folders that
reflects the parts in the package and their hierarchical naming structure. end note]

31



O 00 N O

10
11
12

13

14
15
16

17

18
19

20
21
22
23

Physical Package

Table 9-2, Package model components and their physical representations, shows the various components of the
package model and their corresponding physical representation in a ZIP archive.

Table 9—-2. Package model components and their physical representations

Package model Physical representation
component
Package ZIP archive file
Part ZIP item
Part name Stored in item header (and ZIP central directory as appropriate).

See §9.2.3 for conversion rules.

Part content type ZIP item containing XML that identifies the content types for each part
according to the pattern described in §9.1.2.1.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §9.2.7 for a detailed description of the data structure.

9.2.1 Mapping Part Data

In a ZIP archive, the data associated with a part is represented as one or more items.

A package implementer shall store a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a
package implementer shall represent a part as one or more pieces, using the method described in §9.1.4.
[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its
constituent pieces. Each piece is stored within a ZIP archive as a single ZIP item.

In the ZIP archive, the chunk of bits that represents an item is stored contiguously. A package implementer
might intentionally order the sequence of ZIP items in the archive to enable an efficient organization of the part
data in order to achieve correct and optimal interleaving. [03.1]

9.2.2 ZIP Item Names

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform
to ZIP archive file name grammar. [M3.2] Package implementers shall create item names that are unique within
a given archive. [M3.3]

9.2.3 Mapping Part Names to ZIP Item Names

To map part names to ZIP item names the package implementer shall perform, in order, the following steps
[M3.4]:

1. Convert the part name to a logical item name or, in the case of interleaved parts, to a complete
sequence of logical item names.

2. Remove the leading forward slash (/) from the logical item name or, in the case of interleaved parts,
from each of the logical item names within the complete sequence.

32



10
11

12
13
14

15
16
17

18
19

20

21

22
23
24
25
26
27

Physical Package

The package implementer shall not map a logical item name or complete sequence of logical item names sharing
a common prefix to a part name if the logical item prefix has no corresponding content type. [M3.5]

9.2.4 Mapping ZIP Item Names to Part Names

To map ZIP item names to part names, the package implementer shall perform, in order, the following steps
[M3.6]:

1. Map the ZIP item names to logical item names by adding a forward slash (/) to each of the ZIP item
names.
2. Map the obtained logical item names to part names. For more information, see §9.1.3.4.

9.2.5 ZIP Package Limitations

The package implementer shall map all ZIP items to parts except MS-DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS files. [M3.7]

[Note: The ZIP specification specifies that ZIP items recognized as MS-DOS files are those with a “version made
by” field and an “external file attributes” field in the “file header” record in the central directory that have a
value of 0. end note]

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item
name, Extra field, and Comment fields. [M3.8] Accordingly, part names stored in ZIP archives are limited to
65,535 characters, subtracting the size of the Extra and Comment fields.

Package implementers should restrict part naming to accommodate file system limitations when naming parts
to be stored as ZIP items. [S3.1]

[Example:

Examples of these limitations are:

“xn o".n

e On Windows file systems, the asterisk (“*”) and colon (“:”) are not valid, so parts named with this
character will not unzip successfully.

e On Windows file systems, many programs can handle only file names that are less than 256 characters
including the full path; parts with longer names might not behave properly once unzipped.

e On Unix file systems, the semicolon (“;”) has a special meaning, so parts with this character might not be
processed as expected.

end example]

ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers
shall enforce this restriction. [M3.9]

33



10
11

12

13
14
15
16

17
18

19

20

21
22

23
24

Physical Package

9.2.6 Mapping Part Content Type

Part content types are used for associating content types with part data within a package. In ZIP archives,
content type information is stored using the common mapping pattern that stores this information in a single
XML stream as follows:

e Package implementers shall store content type data in an item(s) mapped to the logical item name with
the prefix_name equal to “/[Content_Types].xml” or in the interleaved case to the complete sequence
of logical item names with that prefix_name. [M3.10]

Package implementers shall not map logical item name(s) mapped to the Content Types stream in a ZIP archive
to a part name. [M3.11] [Note: Bracket characters "[" and "]" were chosen for the Content Types stream name
specifically because these characters violate the part naming grammar, thus reinforcing this requirement. end

note]

9.2.7 Mapping the Growth Hint

In a ZIP archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grow in-
place. The padding is stored in the Extra field, as defined in the ZIP file format specification. If a growth hint is
used for an interleaved part, the package implementer should store the Extra field containing the growth hint
padding with the item that represents the first piece of the part. [S3.2]

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 9-3, Structure of the Extra
field for growth hints below.

Table 9-3. Structure of the Extra field for growth hints

Field Size Value

Header ID 2 bytes A220

Length of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signature (for 2 bytes A028

verification)

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding Should be filled with NULL characters

Length]
9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption

Several substantial conditions that represent a package unfit for streaming consumption may be detected mid-
processing by a streaming package implementer. These include:

e Aduplicate ZIP item name is detected the moment the second ZIP item with that name is encountered.
Duplicate ZIP item names are not allowed. [M3.3]

34



10
11

12

13
14

Physical Package

e Ininterleaved packages, an incomplete sequence of ZIP items is detected when the last ZIP item is
received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items cannot be
mapped to a part and is therefore invalid. [M2.16]

e Aninconsistency between the local ZIP item headers and the ZIP central directory file headers is
detected at the end of package consumption, when the central directory is processed.

e AZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected at the
end of package consumption, when the central directory is processed. Only a ZIP item that is a file shall
be mapped to a part in a valid package.

When any of these conditions are detected, the streaming package implementer shall generate an error,
regardless of any processing that has already taken place. Package implementers shall not generate a package
containing any of these conditions when generating a package intended for streaming consumption. [M3.13]

9.2.9 ZIP Format Clarifications for Packages

The ZIP format includes a number of features that packages do not support. Some ZIP features are clarified in
the package context. See Annex C, “ZIP Appnote.txt Clarifications,” for package-specific ZIP information.

35



Core Properties

10. Core Properties

Core properties enable users to get and set well-known and common sets of property metadata within
packages. The core properties and the Standard that describes them are shown in Table 10-1, “Core
properties”. The namespace for the properties in this table in the Open Packaging Conventions domain are
defined in Annex F, “Standard Namespaces and Content Types.”

Core property elements are non-repeatable. They may be empty or omitted. The Core Properties Part may be
omitted if no core properties are present.

Table 10-1. Core properties

Property Domain Description
category Open A categorization of the content of this package.
Packaging
Conventions [Example: Example values for this property might include:
Resume, Letter, Financial Forecast, Proposal, Technical
Presentation, and so on. This value might be used by an
application's user interface to facilitate navigation of a large
set of documents. end example]
contentStatus | Open The status of the content. [Example: Values might include
Packaging “Draft”, “Reviewed”, and “Final”. end example]
Conventions
contentType Open The type of content represented, generally defined by a
Packaging specific use and intended audience. [Example: Values might
Conventions include “Whitepaper”, “Security Bulletin”, and “Exam”. end
example]
[Note: This property is distinct from MIME content types as
defined in RFC 2616. end note]
created Dublin Core Date of creation of the resource.
creator Dublin Core An entity primarily responsible for making the content of
the resource.
description Dublin Core An explanation of the content of the resource. [Example:
Values might include an abstract, table of contents,
reference to a graphical representation of content, and a
free-text account of the content. end example]
identifier Dublin Core An unambiguous reference to the resource within a given
context.

36



Property Domain Description
keywords Open A delimited set of keywords to support searching and
Packaging indexing. This is typically a list of terms that are not
Conventions available elsewhere in the properties.
language Dublin Core The language of the intellectual content of the resource.
[Note: IETF RFC 3066 provides guidance on encoding to
represent languages. end note]
lastModifiedBy | Open The user who performed the last modification. The
Packaging identification is environment-specific. [Example: A name,

Conventions

email address, or employee ID. end example] It is
recommended that this value be as concise as possible.

lastPrinted Open The date and time of the last printing.
Packaging
Conventions

modified Dublin Core Date on which the resource was changed.

revision Open The revision number. [Example: This value might indicate
Packaging the number of saves or revisions, provided the application
Conventions updates it after each revision. end example]

subject Dublin Core The topic of the content of the resource.

title Dublin Core The name given to the resource.

version Open The version number. This value is set by the user or by the
Packaging application.
Conventions

10.1 Core Properties Part

Core Properties

Core properties are stored in XML in the Core Properties part. The Core Properties part content type is defined

in Annex F, “Standard Namespaces and Content Types.”

The structure of the CoreProperties element is shown in the following diagram:

37



© 0 N o U b

11
12
13
14
15

diagram

coreProperties [T‘j(—EEEI—

CT_coreProperties |

1 category | |

Core Properties

annotation | Producers might provide all or a subset of these metadata properties to describe the contents of a

[Example:
Example 10-1. Core properties markup

An example of a core properties part is illustrated by this example:

package.

<coreProperties

xmlns="http://schemas.openxmlformats.org/package/2006/metadata/
core-properties”
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<dc:creator>Alan Shen</dc:creator>

<dcterms:created xsi:type="dcterms:W3CDTF">
2005-06-12

</dcterms:created>

<contentType>Functional Specification</contentType>

<dc:title>OPC Core Properties</dc:title>

38



O 00 N OO s~ W N

=
o

11

12
13
14
15
16

17

18
19
20
21
22
23
24

25

26
27

28
29
30
31
32
33
34
35
36

Core Properties

<dc:subject>Spec defines the schema for OPC Core Properties and their
location within the package</dc:subject>

<dc:language>eng</dc:language>
<version>1.0</version>
<lastModifiedBy>Alan Shen</lastModifiedBy>
<dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified>
<contentStatus>Reviewed</contentStatus>
<category>Specification</category>

</coreProperties>

end example]

10.2 Location of Core Properties Part

The location of the Core Properties part within the package is determined by traversing a well-defined package
relationship as listed in Annex F, “Standard Namespaces and Content Types”. The format designer shall specify
and the format producer shall create at most one core properties relationship for a package. A format consumer
shall consider more than one core properties relationship for a package to be an error. If present, the
relationship shall target the Core Properties part. [M4.1]

10.3 Support for Versioning and Extensibility

The format designer shall not specify and the format producer shall not create Core Properties that use the
Markup Compatibility namespace as defined in Annex F, “Standard Namespaces and Content Types”. A format
consumer shall consider the use of the Markup Compatibility namespace to be an error. [M4.2] Instead,
versioning and extensibility functionality is accomplished by creating a new part and using a relationship with a
new type to point from the Core Properties part to the new part. This Open Packaging specification does not
provide any requirements or guidelines for new parts or relationship types that are used to extend core
properties.

10.4 Schema Restrictions for Core Properties

The following restrictions apply to every XML document instance that contains Open Packaging Conventions
core properties:

1. Producers shall not create a document element that contains refinements to the Dublin Core elements,
except for the two specified in the schema: <dcterms:created> and <dcterms:modified> Consumers shall
consider a document element that violates this constraint to be an error. [M4.3]

2. Producers shall not create a document element that contains the xml:lang attribute. Consumers shall
consider a document element that violates this constraint to be an error. [M4.4] For Dublin Core
elements, this restriction is enforced by applications.

3. Producers shall not create a document element that contains the xsi:type attribute, except for a
<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present and
shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core

39



Core Properties

namespace. Consumers shall consider a document element that violates this constraint to be an error.
[M4.5]

40



Thumbnails

11. Thumbnails

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a
package or a package as a whole. These images can be generated by the producer and stored as parts. [05.1]

11.1 Thumbnail Parts

The format designer shall specify thumbnail parts that are identified by either a part relationship or a package
relationship. The producer shall build the package accordingly. [M5.1] For information about the relationship
type for Thumbnail parts, see Annex F, “Standard Namespaces and Content Types.”

41



10
11
12

13

14
15
16

17
18
19
20
21
22

23

24

25
26
27

28

29
30
31

32

Digital Signatures

12. Digital Signatures

Format designers might allow a package to include digital signatures to enable consumers to validate the
integrity of the contents. The producer might include the digital signature when allowed by the format designer.
[06.1] Consumers can identify the parts of a package that have been signed and the process for validating the
signatures. Digital signatures do not protect data from being changed. However, consumers can detect whether
signed data has been altered and notify the end-user, restrict the display of altered content, or take other
actions.

Producers incorporate digital signatures using a specified configuration of parts and relationships. This clause
describes how the package digital signature framework applies the W3C Recommendation “XML-Signature
Syntax and Processing” (referred to here as the “XML Digital Signature specification”). In addition to complying
with the XML Digital Signature specification, producers and consumers also apply the modifications specified
in§12.2.4.1.

12.1 Choosing Content to Sign

Any part or relationship in a package can be signed, including Digital Signature XML Signature parts themselves.
An entire Relationships part or a subset of relationships can be signed. By signing a subset, other relationships
can be added, removed, or modified without invalidating the signature.

Because applications use the package format to store various types of content, application designers that
include digital signatures should define signature policies that are meaningful to their users. A signature policy
specifies which portions of a package should not change in order for the content to be considered intact. To
ensure validity, some clients require that all of the parts and relationships in a package be signed. Others require
that selected parts or relationships be signed and validated to indicate that the content has not changed. The
digital signature infrastructure in packages provides flexibility in defining the content to be signed, while
allowing parts of the package to remain changeable.

12.2 Digital Signature Parts

The digital signature parts consist of the Digital Signature Origin part, Digital Signature XML Signature parts, and
Digital Signature Certificate parts. Relationship names and content types relating to the use of digital signatures
in packages are defined in Annex F, “Standard Namespaces and Content Types.”

[Example:

Figure 12—1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example
Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature.
The signatures relate to the signed parts.

Figure 12-1. A signed package

42



10
11
12

13
14

15

16

17
18
19
20

Digital Signatures

s "y

Fe Bibaship Felation s hip

Digital Signature Cigital Signature
XML Signature ¥l Signature -
Part Part -‘\_\UH Signed Part
B0
LiFl e \ \‘
i Signed Fart URI
e lation zh | \\ \ Signed Part
Rl
Signed Part

M vy
end example]

12.2.1 Digital Signature Origin Part

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. The
package implementer shall include only one Digital Signature Origin part in a package and it shall be targeted
from the package root using the well-defined relationship type specified in Annex F, “Standard Namespaces and
Content Types”. [M6.1] When creating the first Digital Signature XML Signature part, the package implementer
shall create the Digital Signature Origin part, if it does not exist, in order to specify a relationship to that Digital
Signature XML Signature part. [M6.2] If there are no Digital Signature XML Signature parts in the package, the
Digital Signature Origin part is optional. [06.2] Relationships to the Digital Signature XML Signature parts are
defined in the Relationships part. The producer should not create any content in the Digital Signature Origin part
itself. [S6.1]

The producer shall create Digital Signature XML Signature parts that have a relationship from the Digital
Signature Origin part and the consumer shall use that relationship to locate signature information within the
package. [M6.3]

12.2.2 Digital Signature XML Signature Part

Digital Signature XML Signature parts are targeted from the Digital Signature Origin part by a relationship that
uses the well-defined relationship type specified in Annex F, “Standard Namespaces and Content Types”. The
Digital Signature XML Signature part contains digital signature markup. The producer might create zero or more
Digital Signature XML Signature parts in a package. [06.4]

43



10
11
12
13
14
15
16
17

18

19
20

21

22

23
24
25
26
27
28
29
30
31
32
33

Digital Signatures

12.2.3 Digital Signature Certificate Part

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature.
Alternatively, the producer might store the certificate as a separate part in the package, might embed it within
the Digital Signature XML Signature part itself, or might not include it in the package if certificate data is known
or can be obtained from a local or remote certificate store. [06.5]

The package digital signature infrastructure supports X.509 certificate technology for signer authentication.

If the certificate is represented as a separate part within the package, the producer shall target that certificate
from the appropriate Digital Signature XML Signature part by a Digital Signature Certificate relationship as
specified in Annex F, “Standard Namespaces and Content Types” and the consumer shall use that relationship to
locate the certificate. [M6.4] The producer might sign the part holding the certificate. [06.6] The content types
of the Digital Signature Certificate part and the relationship targeting it from the Digital Signature XML Signature
part are defined in Annex F, “Standard Namespaces and Content Types”, Producers might share Digital Signature
Certificate parts by using the same certificate to create more than one signature. [06.7] Producers generating
digital signatures should not create Digital Signature Certificate parts that are not the target of at least one
Digital Signature Certificate relationship from a Digital Signature XML Signature part. In addition, producers
should remove a Digital Signature Certificate part if removing the last Digital Signature XML Signature part that
has a Digital Signature Certificate relationship to it. [S6.2]

12.2.4 Digital Signature Markup

The markup described here includes a subset of elements and attributes from the XML Digital Signature
specification and some package-specific markup. For a complete example of a digital signature, see §12.3.

12.2.4.1 Modifications to the XML Digital Signature Specification

The package modifications to the XML Digital Signature specification are summarized as follows:

1. The producer shall create Reference elements within a SignedInfo element that reference elements
within the same Signature element. The consumer shall consider Reference elements within a
SignedInfo element that reference any resources outside the same Signature element to be in error.
[M6.5] The producer should only create Reference elements within a Signedinfo element that reference
an Object element. [S6.5] The producer shall not create a reference to a package-specific Object
element that contains a transform other than a canonicalization transform. The consumer shall consider
a reference to a package-specific Object element that contains a transform other than a canonical
transform to be an error. [M6.6]

2. The producer shall create one and only one package-specific Object element in the Signature element.
The consumer shall consider zero or more than one package-specific Object element in the Signature
element to be an error. [M6.7]

The producer shall create package-specific Object elements that contain exactly one Manifest element and
exactly one SignatureProperties element. [Note: This SignatureProperties element can contain multiple
SignatureProperty elements. end note] The consumer shall consider package-specific Object elements that

44



2

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32

33

Digital Signatures

contain other types of elements to be an error. [M6.8] [Note: A signature may contain other Object elements
that are not package-specific. end note]

a. The producer shall create Reference elements within a Manifest element that reference with
their URI attribute only parts within the package. The consumer shall consider Reference
elements within a Manifest element that reference resources outside the package to be an
error. [M6.9] The producer shall create relative references to the local parts that have query
components that specifies the part content type as described in §12.2.4.6. The relative
reference excluding the query component shall conform to the part name grammar. The
consumer shall consider a relative reference to a local part that has a query component that
incorrectly specifies the part content type to be an error. [M6.10] The producer shall create
Reference elements with a query component that specifies the content type that matches the
content type of the referenced part. The consumer shall consider signature validation to fail if
the part content type compared in a case-sensitive manner to the content type specified in the
query component of the part reference does not match. [M6.11]

b. The producer shall not create Reference elements within a Manifest element that contain
transforms other than the canonicalization transform and relationships transform. The
consumer shall consider Reference elements within a Manifest element that contain transforms
other than the canonicalization transform and relationships transform to be in error. [M6.12]

c. A producer that uses an optional relationships transform shall follow it by a canonicalization
transform. The consumer shall consider any relationships transform that is not followed by a
canonicalization transform to be an error. [M6.13]

d. The producer shall create exactly one SignatureProperty element with the Id attribute value
set to idSignatureTime. The Target attribute value of this element shall be either empty or
contain a fragment reference to the value of the Id attribute of the root Signature element. A
SignatureProperty element shall contain exactly one SignatureTime child element. The
consumer shall consider a SignatureProperty element that does not contain a SignatureTime
element or whose Target attribute value is not empty or does not contain a fragment reference
the Id attribute of the ancestor Signature element to be in error. [M6.14].

[Note: All modifications to XML Digital Signature markup occur in locations where the XML Signature schema
allows any namespace. Therefore, package digital signature XML is valid against the XML Signature schema. end
note]

12.2.4.2 Signature Element

The structure of a Signature element is shown in the following diagram:

45



Digital Signatures

diagram

H aitriputes

Signature Signedinfo

namespace http://www.w3.org/2000/09/xmldsig#

attributes |Name Type Use Default Fixed Annotation
Id xs:ID  optional A unique identifier of the signature xml
document.

annotation | The root element of the signature xml document stored in a signature part. The producer shall
create a Signature element that contains exactly one local-data, package-specific Object element
and zero or more application-specific Object elements. If a Signature element violates this
constraint, a consumer shall consider this to be an error. [M6.15]

12.2.4.3 SignedInfo Element

The structure of a SignedInfo element is shown in the following diagram:

diagram

CanonicalizationMethod

-

Signedinfo $—E* ESignaturel'-u-'letl'n:rtl =

™

,Reference E;l]

1.
namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | specifies the data in the package that is signed. Holds one or more references to Object elements
within the same Digital Signature XML Signature part. The producer shall create a SignedInfo
element that contains exactly one reference to the package-specific Object element. The consumer
shall consider it an error if a SignedInfo element does not contain a reference to the package-
specific Object element. [M6.16]

46



10

11
12

13
14

15

16

17
18

19

20

Digital Signatures

12.2.4.4 CanonicalizationMethod Element

The structure of a CanonicalizationMethod element is shown in the following diagram:

diagram

B attributes

|;Can-crnicalizationl'u'letlm{l ['l}

namespace http://www.w3.0rg/2000/09/xmldsig#
attributes | Name Type Use Default [Fixed |Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
canonicalization algorithm.

annotation | specifies the canonicalization algorithm applied to the SignedInfo element prior to performing
signature calculations.

Since XML allows equivalent content to be represented differently, a producer should apply a canonicalization
transform to the SignedInfo element when it generates it, and a consumer should apply the canonicalization
transform to the SignedInfo element when validating it. [S6.3]

[Note: Performing a canonicalization transform ensures that SignedInfo content can be validated even if the
content has been regenerated using, for example, different entity structures, attribute ordering, or character
encoding.

Producers and consumers should also use canonicalization transforms for references to parts that hold XML
documents. These transforms are defined using the Transformelement. end note]

The following canonicalization methods shall be supported by producers and consumers of packages with digital
signatures:

e XML Canonicalization (c14n)
e XML Canonicalization with Comments (c14n with comments)

Consumers validating signed packages shall fail the validation if other canonicalization methods are
encountered. [M6.34]

12.2.4.5 SignatureMethod Element

The structure of a SignatureMethod element is shown in the following diagram:

47



Digital Signatures

diagram B attributes

IESignatureMetIm{I |$|-

namespace http://www.w3.org/2000/09/xmldsig#
attributes | Name Type Use Default |Fixed |Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
algorithm for the signature method.

annotation | pefines the algorithm that is used to convert the SignedInfo element into a hashed value
contained in the SignatureValueelement. Producers shall support DSA and RSA algorithms to
produce signatures. Consumers shall support DSA and RSA algorithms to validate signatures.
[M6.17]

12.2.4.6 Reference Element

The structure of a Reference element is shown in the following diagram:

diagram E aitriputes

URI

;
ia Transforms

Reference

namespace http://www.w3.org/2000/09/xmldsig#
attributes ||Name [Type Use Default Fixed Annotation

URI  xs:anyURI required Within a <SignedInfo> element, this attribute
contains a URI that identifies an element within the
signature xml document.

Within a <Manifest> element, this attribute contains
a relative reference composed of a reference to a

part that conforms to the part name grammar and a
query component that identifies the content type of

48



10

11

12

13

14
15

16

17

18

19

Digital Signatures

that part.

annotation | specifies the object being signed, a digest algorithm, a digest value, and a list of transforms to be
applied prior to digesting.

12.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element

The producer shall create a Reference element within a Manifest element with a URI attribute and that
attribute shall contain a part name, without a fragment identifier. The consumer shall consider a Reference
element with a URI attribute that does not contain a part name to be an error. [M6.18]

References to package parts include the part content type as a query component. The syntax of the relative
reference is as follows:

/pagel.xml?ContentType="value"
where value is the content type of the targeted part.
[Note: See §12.2.4.1 for additional requirements on Reference elements. end note]
[Example:
Example 12-2. Part reference with query component
In the following example, the content type is “application/vnd.ms-package.relationships+xml”.

URI="/ rels/document.xml.rels?ContentType=application/vnd.ms-
package.relationships+xml"

end example]

12.2.4.7 Transforms Element

The structure of a Transforms element is shown in the following diagram:

dlagram | Transforms E]{—u-—tE}ETransform

1.0

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | contains an ordered list of Transform elements that describe how the producer digested the
Object data before signing it.

49



10

11

12

Digital Signatures

The following transforms shall be supported by producers and consumers of packages with digital signatures:

e XML Canonicalization (c14n)
e XML Canonicalization with Comments (c14n with comments)
e Relationships transform (package-specific)

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships
transforms shall only be supported by producers and consumers when the Transform element is a descendant
element of a Manifest element [M6.19]

12.2.4.8 Transform Element

The structure of a Transform element is shown in the following diagram:

diagram B attriputes

JEETEN _RelationshipReference
13 Ed
: =
S ’RelationshipsGroupF!eference

namespace http://www.w3.0rg/2000/09/xmldsig#

Transform |-

attributes | Name Type Use Default Fixed Annotation

Algorithm xs:anyURI required Contains a URI that identifies the particular
transformation algorithm.

annotation | pescribes how the signer obtained the Object data that was digested.

12.2.4.9 DigestMethod Element

The structure of a DigestMethod element is shown in the following diagram:

diagram & attriputes

E[ligestl'-.-'letllocl 1|-

namespace http://www.w3.org/2000/09/xmldsig#

attributes  |Name Type Use Default Fixed Annotation

50



Digital Signatures

Algorithm xs:anyURI required Contains a URI that identifies the particular
digest method.

annotation | pefines the algorithm that yields the DigestValue from the object data after transforms are
applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce or
validate signatures. [M6.17]

12.2.4.10 DigestValue Element

The structure of a DigestValue element is shown in the following diagram:

dlagram E[lligest‘ufaluu&

namespace http://www.w3.org/2000/09/xmldsig#

annotation | contains the encoded value of the digest in base64.

12.2.4.11 SignatureValue Element

The structure of a SignatureValue element is shown in the following diagram:

diagram B sttributes

IESignatureUalue [Il}; R

namespace http://www.w3.org/2000/09/xmldsig#
attributes | Name Type Use Default |Fixed |Annotation
Id xs:ID joptional Contains a URI that identifies the

SignatureValueelement within the signature xml
document.

annotation | contains the actual value of the digital signature in base64.

12.2.4.12 Object Element

The Object element can be either package-specific or application-specific.

51



10

11

12
13
14
15
16
17

18

19

Digital Signatures

12.2.4.13 Package-Specific Object Element

The structure of a Object element is shown in the following diagram:

diagram E attriputes

,I'-.-'Ianifest =

,SignatureProperties

namespace http://www.w3.org/2000/09/xmldsig#
attributes | Name Type Use Default Fixed Annotation

Id xs:ID Shall have value of "idPackageObject".

annotation | Holds the Manifest and SignatureProperties elements that are package-specific.

[Note: Although the diagram above shows use of the Id attribute as optional, as does the XML Digital Signature
schema, for package-specific Object elements, the Id attribute shall be specified and have the value of
“idPackageObject”. This is a package-specific restriction over and above the XML Digital Signature schema. end
note]

The producer shall create each Signature element with exactly one package-specific Object. For a signed
package, consumers shall treat the absence of a package-specific Object, or the presence of multiple package-
specific Object elements, as an invalid signature. [M6.15]

12.2.4.14 Application-Specific Object Element

The application-specific Object element specifies application-specific information. The format designer might
permit one or more application-specific Object elements. If allowed by the format designer, format producers
can create one or more application-specific Object elements. [06.8] Producers shall create application-specific
Object elements that contain XML-compliant data; consumers shall treat data that is not XML-compliant as an
error. [M6.20] Format designers and producers might not apply package-specific restrictions regarding URIs and
Transform elements to application-specific Object element. [06.9]

12.2.4.15 KeyInfo Element

The structure of a KeyInfo element is shown in the following diagram:

52



Digital Signatures

diagram FHe:.,d.rro [{]{--—EL X509Data
1.m

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | Enables recipients to obtain the key needed to validate the signature. Can contain keys, names,
certificates, and other public key management information. Producers and consumers shall use the
certificate embedded in the Digital Signature XML Signature part when it is specified. [M6.21]

12.2.4.16 X509Data Element

The structure of an X509Data element is shown in the following diagram:

diagram | X509Data [TI:|{—H-—l:_|-|f}l{509Certiﬁcate |
1..00

namespace http://www.w3.org/2000/09/xmldsig#

annotation | contains one or more identifiers of X509 certificates.

12.2.4.17 X509Certificate Element

The structure of an X509Certificate element is shown in the following diagram:

diagram = X509Certificate

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | contains a base64-encoded X509 certificate.

12.2.4.18 Manifest Element

The structure of a Manifest element is shown in the following diagram:

dlagram | Manifest I:ll]-[—"-—ELReference

1.0

53



Digital Signatures

namespace http://www.w3.0rg/2000/09/xmldsig#

annotation | contains references to the signed parts of the package. The producer shall not create a Manifest
element that references any data outside of the package. The consumer shall consider a Manifest
element that references data outside of the package to be in error. [M6.22]

12.2.4.19 SignatureProperties Element

The structure of a SignaturePropertieselement is shown in the following diagram:

dlagram | Signatllreprollél'ﬁes E]{—u-—jE-lfSignatur&Proliew

1.w

namespace http://www.w3.org/2000/09/xmldsig#

Annotation | contains additional information items concerning the generation of signatures placed in
SignatureProperty elements.

12.2.4.20 SignatureProperty Element

The structure of a SignatureProperty element is shown in the following diagram:

diagram B sttribntes

|§Signmure~Pr1:r|:|-13~rt1-,-r

,SignatureTime

namespace http://www.w3.org/2000/09/xmldsig#
attributes  |Name Type Use Default Fixed Annotation

Target xs:anyURI required Contains a unique identifier of the

Signature element.

Id xs:1D optional Contains signature property’s unique
identifier.

54



10

Digital Signatures

annotation | contains additional information concerning the generation of signatures.

12.2.4.21 SignatureTime Element

The structure of a SignatureTime element is shown in the following diagram:

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | Ho|ds the date/time stamp for the signature.

12.2.4.22 Format Element

The structure of a Format element is shown in the following diagram:

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | specifies the format of the date/time stamp. The producer shall create a data/time format that
conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer shall
consider a format that does not conform to the syntax described in that WC3 note to be in error.
[M6.23]

The date and time format definition conforms to the syntax described in the W3C Note “Date and Time
Formats.”

12.2.4.23 Value Element

The structure of a Value element is shown in the following diagram:

55



Digital Signatures

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation | Ho|ds the value of the date/time stamp. The producer shall create a value that conforms to the
format specified in the Format element. The consumer shall consider a value that does not
conform to that format to be in error. [M6.24]

12.2.4.24 RelationshipReference Element

The structure of a RelationshipReference element is shown in the following diagram:

dlagram FﬂelmionshipHe’ference |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature
attributes | Name Type Use Default |Fixed |Annotation

Sourceld xsd:string required Specifies the value of the Id attribute of the

Relationship element.

annotation | specifies the Relationship element to be signed.

12.2.4.25 RelationshipsGroupReference Element

The structure of a RelationshipsGroupReference element is shown in the following diagram:

dlagram Fﬂelmionshinsﬁrou|}|-'l-&fer-ence |

namespace http://schemas.openxmlformats.org/package/2006/digital-signature
attributes  |Name Type Use Default Fixed Annotation

SourceType xsd:anyURI required Specifies the value of the Type attribute of
Relationship elements.

annotation | specifies that the group of Relationship elements with the specified Type value is to
be signed.

56



w N

w

10
11

12

13
14

15
16

17

18

19
20
21
22

23

24
25
26
27
28
29
30
31
32
33
34

Digital Signatures

Format designers might permit producers to sign individual relationships in a package or the Relationships part
as a whole. [06.10] To sign a subset of relationships, the producer shall use the package-specific relationships
transform. The consumer shall use the package-specific relationships transform to validate the signature when a
subset of relationships are signed. [M6.25] The transform filters the contents of the Relationships part to include
only relationships that have Id values matching the specified Sourceld values or Type values matching the
specified SourceType values. A producer shall not specify more than one relationship transform for a particular
relationships part. A consumer shall treat the presence of more than one relationship transform for a particular
relationships part as an error. [M6.35]

Producers shall specify a canonicalization transform immediately following a relationships transform and
consumers that encounter a relationships transform that is not immediately followed by a canonicalization
transform shall generate an error. [M6.26]

12.2.4.26 Relationships Transform Algorithm

The relationships transform takes the XML document from the Relationships part and converts it to another
XML document.

The package implementer might create relationships XML that contains content from several namespaces, along
with versioning instructions as defined in Part 5: “Markup Compatibility and Extensibility”. [06.11]

The relationships transform algorithm is as follows:
Step 1: Process versioning instructions

1. The package implementer shall process the versioning instructions, considering that the only known
namespace is the Relationships namespace.

2. The package implementer shall remove all ignorable content, ignoring preservation attributes.
The package implementer shall remove all versioning instructions.

Step 2: Sort and filter relationships

1. The package implementer shall remove all namespace declarations except the Relationships namespace
declaration.

2. The package implementer shall remove the Relationships namespace prefix, if it is present.

The package implementer shall sort relationship elements by Id value in lexicographical order,
considering Id values as case-sensitive Unicode strings.

4. The package implementer shall remove all Relationship elements that do not have eitheran Id value
that matches any Sourceld valueor a Type value that matches any SourceType value, among the
Sourceld and SourceType values specified in the transform definition. Producers and consumers shall
compare values as case-sensitive Unicode strings. [M6.27] The resulting XML document holds all
Relationship elements that either have an Id value that matches a Sourceld value or a Type value that
matches a SourceType value specified in the transform definition.

Step 3: Prepare for canonicalization

57



w N

w

10

11

12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Digital Signatures

1. The package implementer shall remove all characters between the Relationships start tag and the first
Relationship start tag.

2. The package implementer shall remove any contents of the Relationship element.
The package implementer shall remove all characters between the last Relationship end tag and the
Relationships end tag.

4. |If there are no Relationship elements, the package implementer shall remove all characters between
the Relationships start tag and the Relationships end tag.

12.3 Digital Signature Example

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and
Processing” with some package-specific modifications specified in §12.2.4.1.

[Example:

Digital signature markup for packages is illustrated in this example. For information about namespaces used in
this example, see Annex F, “Standard Namespaces and Content Types.”

<Signature Id="SignatureId" xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsig#dsa-shal"/>
<Reference
URI="#idPackageObject"
Type="http://www.w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.0rg/2000/09/
xmldsigi#shal"/>
<DigestValue>...</DigestValue>
</Reference>
<Reference
URI="#Application"
Type="http://www.w3.0rg/2000/09/xmldsig#0bject">
<Transforms>
<Transform Algorithm="http://www.w3.0rg/TR/2001/
REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<DigestValue>...</DigestValue>

58



O 00 N OO s~ W N

HOSA DA DA WWWWWWWWWW NN NN NN DNDNDNDN R R R R R R R R R
w N P O LV 0 N O U~ W N R O L O NoOO R WN RO LN W N R O

</Reference>
</SignedInfo>
<SignatureValue

<KeyInfo>
<X509Data>
<X509Cert
</X509Data>
</KeyInfo>

>...</SignatureValue>

ificate>...</X509Certificate>

Digital Signatures

<Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org

/package/2006
<Manifest>

<Referenc

vnd.ms

<Trans

/digital-signature">

e URI="/document.xml?ContentType=application/
-document+xml">
forms>

<Transform Algorithm="http://www.w3.o0rg/TR/2001/

</Tran

REC-xml-c14n-20010315"/>
sforms>

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/

xml

dsig#shal"/>

<DigestValue>...</DigestValue>

</Referen
<Referenc
URI="/
vnd
<Trans

ce>
e

_rels/document.xml.rels?ContentType=application/

.ms-package.relationships+xml">
forms>

<Transform Algorithm="http://schemas.openxmlformats.org/

package/2005/06/RelationshipTransform">
<pds:RelationshipReference SourceId="B1"/>
<pds:RelationshipReference SourceId="A1"/>
<pds:RelationshipReference SourceId="A11"/>
<pds:RelationshipsGroupReference SourceType=
"http://schemas.custom.com/required-resource"/>

</Transform>
<Transform Algorithm="http://www.w3.0rg/TR/2001/

</Tran

<Diges

xml

<Diges

</Referen
</Manifest>

REC-xml-c14n-20010315"/>

sforms>

tMethod Algorithm="http://www.w3.0rg/2000/09/
dsig#shal"/>

tValue>...</DigestValue>

ce>

59



O 00 N OO s~ W N

=
L O

Jany
N

13

14
15

16
17
18

19

20

21
22
23
24
25
26

27
28
29
30
31
32
33

Digital Signatures

<SignatureProperties>
<SignatureProperty Id="idSignatureTime" Target="#Signatureld">
<pds:SignatureTime>
<pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format>
<pds:Value>2003-07-16T19:20+01:00</pds:Value>
</pds:SignatureTime>
</SignatureProperty>
</SignatureProperties>
</Object>
<Object Id="Application">...</Object>
</Signature>

end example]

12.4 Generating Signatures

The steps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-
Signature Syntax and Processing,” with some modification for package-specific constructs.

The steps below might not be sufficient for generating signatures that contain application-specific Object
elements. Format designers that utilize application-specific Object elements shall also define the additional
steps that shall be performed to sign the application-specific Object elements.

To generate references:
1. For each package part being signed:

a. The package implementer shall apply the transforms, as determined by the producer, to the
contents of the part. [Note: Relationships transforms are applied only to Relationship parts.
When applied, the relationship transform filters the subset of relationships within the entire
Relationship part for purposes of signing. end note]

b. The package implementer shall calculate the digest value using the resulting contents of the
part.

2. The package implementer shall create a Reference element that includes the reference of the part with
the query component matching the content type of the target part, necessary Transform elements, the
DigestMethod element and the DigestValue element.

3. The package implementer shall construct the package-specific Object element containing a Manifest
element with both the child Reference elements obtained from the preceding step and a child
SignatureProperties element, which, in turn, contains a child SignatureTime element.

4. The package implementer shall create a reference to the resulting package-specific Object element.

When signing Object element data, package implementers shall follow the generic reference creation algorithm
described in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. [M6.28]

To generate signatures:

60



w N

w

10
11
12

13
14
15

16

17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37

Digital Signatures

1. The package implementer shall create the SignedInfo element with a SignatureMethodelement, a
CanonicalizationMethod element, and at least one Reference element.

2. The package implementer shall canonicalize the data and then calculate the SignatureValue element
using the SignedInfo element based on the algorithms specified in the SignedInfo element.

3. The package implementer shall construct a Signature element that includes SignedInfo, Object, and
SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall
also include the Keylnfo element.

12.5 Validating Signatures

Consumers validate signatures following the steps described in §3.2 of the W3C Recommendation “XML-
Signature Syntax and Processing.” When validating digital signatures, consumers shall verify the content type
and the digest contained in each Reference descendant element of the SignedInfo element, and validate the
signature calculated using the SignedInfo element. [M6.29]

The steps below might not be sufficient to validate signatures that contain application-specific Object elements.
Format designers that utilize application-specific Object elements shall also define the additional steps that shall
be performed to validate the application-specific Object elements.

To validate references:

1. The package implementer shall canonicalize the SignedInfo element based on the
CanonicalizationMethod element specified in the SignedInfo element.
2. For each Reference element in the SignedInfo element:

a. The package implementer shall obtain the Object element to be digested.

For the package-specific Object element, the package implementer shall validate references to
signed parts stored in the Manifest element. The package implementer shall consider
references invalid if there is a missing part. [M6.9] [Note: If a relationships transform is specified
for a signed Relationships part, only the specified subset of relationships within the entire
Relationships part are validated. end note]

c. Forthe package-specific Object element, validation of Reference elements includes verifying
the content type of the referenced part and the content type specified in the reference query
component. Package implementers shall consider references invalid if these two values are
different. The string comparison shall be case-sensitive and locale-invariant. [M6.11]

d. The package implementer shall digest the obtained Object element using the DigestMethod
element specified in the Reference element.

e. The package implementer shall compare the generated digest value against the DigestValue
element in the Reference element of the Signedinfo element. Package implementers shall
consider references invalid if there is any mismatch. [M6.30]

To validate signatures:
1. The package implementer shall obtain the public key information from the KeyInfo element or from an

external source.

61



10
11

12

13
14

15

16
17

18

19

20

21
22
23
24

Digital Signatures

2. The package implementer shall obtain the canonical form of the SignatureMethod element using the
CanonicalizationMethod element. The package implementer shall use the result and the previously
obtained KeyInfo element to confirm the SignatureValue element stored in the SignedInfo element.
The package implementer shall decrypt the SignatureValueelement using the public key prior to
comparison.

12.5.1 Signature Validation and Streaming Consumption

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and
processing signatures. [M6.31]

12.6 Support for Versioning and Extensibility
The package digital signature infrastructure supports the exchange of signed packages between current and
future package clients.

12.6.1 Using Relationship Types

Future versions of the package format will specify distinct relationship types for revised signature parts. Using
these relationships, producers will be able to store separate signature information for current and previous
versions. Consumers will be able to choose the signature information they know how to validate.

Figure 12-2, “Part names and logical item names”, illustrates this versioning capability that will be available in
future versions of the package format.

Figure 12-2. A package containing versioned signatures

- ™
Relatiochip Pebtorchp
{vemon 1) iWermion 2
Digital Signature Digital Signature
XML Signature XML Signature
Part Part
[Wersion 1) {Wersion 2)
. A

12.6.2 Markup Compatibility Namespace for Package Digital Signatures

The package implementer shall not use the Markup Compatibility namespace, as specified in Annex F, “Standard
Namespaces and Content Types,” within the package-specific Object element. The package implementer shall
consider the use of the Markup Compatibility namespace within the package-specific Object element to be an
error. [M6.32]

62



10

Digital Signatures

Format designers might specify an application-specific package part format that allows for the embedding of
versioned or extended content that might not be fully understood by all present and future implementations.
Producers might create such embedded versioned or extended content and consumers might encounter such
content. [06.12] [Example: An XML package part format might rely on Markup Compatibility elements and
attributes to embed such versioned or extended content. end example]

If an application allows for a single part to contain information that might not be fully understood by all
implementations, then the format designer shall carefully design the signing and verification policies to account
for the possibility of different implementations being used for each action in the sequence of content creation,
content signing, and signature verification. Producers and consumers shall account for this possibility in their
signing and verification processing. [M6.33]

63



10
11
12
13

14

15

16
17

18

19

20

21
22

Resolving Unicode Strings to Part Names

Annex A. Resolving Unicode Strings to Part
Names

Package clients might use Unicode strings for referencing parts in a package. [Example: Values of xsd:anyURI
data type within XML markup are Unicode strings. end example]

This annex specifies how such Unicode strings shall be resolved to part names.

The diagram below illustrates the conversion path from the Unicode string to a part name. The numbered arcs
identify string transformations.

Figure A—-1. Strings are converted to part names for referencing parts

1] 2]

Unicode string ——[1-2]1—» IRI —I[2-3] URI —[3-4] Part Name

A Unicode string representing a URI can be passed to the producer or consumer. The producing or consuming
application shall convert the Unicode string to a URI. If the URI is a relative reference, the application shall
resolve it using the base URI of the part, which is expressed using the pack scheme, to the URI of the referenced
part. [M1.33]

The process for resolving a Unicode string to a part name follows Arcs [1-2], [2-3], and [3-4].

A.1  Creating an IRI from a Unicode String

With reference to Arc [1-2] in Figure A—1, a Unicode string is converted to an IRl by percent-encoding each ASCII
character that does not belong to the set of reserved or unreserved characters as defined in RFC 3986.

A.2  Creating a URI from an IRI

With reference to Arc [2-3] in Figure A—1, an IRl is converted to a URI by converting non-ASCII characters as
defined in Step 2 in §3.1 of RFC 3987

If a consumer converts the URI back into an IRI, the conversion shall be performed as specified in §3.2 of RFC
3987. [M1.34]

64



10
11
12
13
14
15
16
17

21

A3

Resolving Unicode Strings to Part Names

Resolving a Relative Reference to a Part Name

If the URI reference obtained in §A.2 is a URI, it is resolved in the regular way, that is, with no package-specific

considerations. Otherwise, if the URI reference is a relative reference, it is resolved (with reference to Arc [3-4]

in Figure A-1) as follows:

N

o vk w

~

10.

A4

Percent-encode each open bracket ([) and close bracket (]).

Percent-encode each percent (%) character that is not followed by a hexadecimal notation of an octet

value.

Un-percent-encode each percent-encoded unreserved character.

Un-percent-encode each forward slash (/) and back slash (\).

Convert all back slashes to forward slashes.

If present in a segment containing non-dot (“.”) characters, remove trailing dot (

each segment.

Replace each occurrence of multiple consecutive forward slashes (/) with a single forward slash.
If a single trailing forward slash (/) is present, remove that trailing forward slash.

“n

Remove complete segments that consist of three or more dots.

) characters from

Resolve the relative reference against the base URI of the part holding the Unicode string, as it is defined

in §5.2 of RFC 3986. The path component of the resulting absolute URI is the part name.

String Conversion Examples

[Example:

Examples of Unicode strings converted to IRIs, URIs, and part names are shown below:

Unicode string IRI URI Part name
/a/b.xml /a/b.xml /a/b.xml /a/b.xml
/a/u.xml Ja/u.xml /a/%D1%86.xml| | /a/%D1%86.xml
/%41/%61.xml /%41/%61.xml /%41/%61.xml JA/a.xml
/%25XY.xml /%25XY.xml /%25XY.xml /%25XY.xml
J%XY.xml J%XY.xml /%25XY.xml /%25XY.xml
/%2541 .xml /%2541 .xml /%2541 .xml /%2541 .xml
/../a.xml /../a.xml /../a.xml Ja.xml
/./u.xml /./u.xml /./%D1%86.xm| | /%D1%86.xml
[%2e/%2e/a.xml | /%2e/%2e/a.xml| | /%2e/%2e/a.xml| | /a.xml
\a.xml %5Ca.xml %5Ca.xml Ja.xml
\%41.xml %5C%41.xml %5C%41.xml JA.xml
/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml

\%2e/a.xml

%5C%2e/a.xml

%5C%2e/a.xml

Ja.xml

end example]

65



10
11

12

13
14
15
16

17

18
19
20

21
22

23

24
25
26

27
28
29

30

Pack URI

Annex B. Pack URI

A package is a logical entity that holds a collection of parts. This Open Packaging specification defines a way to
use URIs to reference part resources inside a package. This approach defines a new scheme in accordance with
the guidelines in RFC 3986.

The following terms are used as they are defined in RFC 3986: scheme, authority, path, segment, reserved
characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query, fragment, and resource.

B.1 Pack URI Scheme

RFC 3986 provides an extensible mechanism for defining new kinds of URIs based on new schemes. Schemes are
the prefix in a URI before the colon. [Example: “http”, “ftp”, “file” end example] This Open Packaging
specification defines a specific URI scheme used to refer to parts in a package: the pack scheme. A URI that uses

the pack scheme is called a pack URI.

The pack URI grammar is defined as follows:

pack_URI = "pack://" authority [ "/" | path ]
authority = *( unreserved | sub-delims | pct-encoded )
path = 1*( "/" segment )

segment = 1*( pchar )

unreserved, sub-delims, pchar and pct-encoded are defined in RFC 3986

The authority component contains an embedded URI that points to a package. The package implementer shall
create an embedded URI that meets the requirements defined in RFC 3986 for a valid URI. [M7.1] §B.3 describes
the rules for composing pack URIs by combining the URI of an entire package resource with a part name.

The package implementer shall not create an authority component with an unescaped colon (:) character.
[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of
an unescaped colon character in an authority component. [07.1]

The optional path component identifies a particular part within the package. The package implementer shall
only create path components that conform to the part naming rules. When the path component is missing, the
resource identified by the pack URI is the package as a whole. [M7.2]

In order to be able to embed the URI of the package in the pack URI, it is necessary either to replace or to
percent-encode occurrences of certain characters in the embedded URI. For example, forward slashes (/) are
replaced with commas (,). The rules for these substitutions are described in §B.3.

The optional query component in a pack URI is ignhored when resolving the URI to a part.

66



10

11

12
13

14

15

16

17

18

19
20

21

22

23

24
25
26
27
28
29
30

Pack URI
A pack URI might have a fragment identifier as specified in RFC 3986. If present, this fragment applies to
whatever resource the pack URI identifies.
[Example:
Example B—1. Using the pack URI to identify a part

The following URI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container”
package resource:

pack://http%3c, ,www.openxmlformats.org,my.container/a/b/foo.xml
end example]
[Example:
Example B—2. Equivalent pack URIs
The following pack URIs are equivalent:

pack://http%3c, ,www.openxmlformats.org,my.container
pack://http%3c, ,www.openxmlformats.org,my.container/

end example)
[Example:
Example B—3. A pack URI with percent-encoded characters

The following URI identifies the “/c/d/bar.xml” part within the
“http://myalias:pswr@www.my.com/containers.aspx?my.container” package:

pack://http%3c, ,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container
/c/d/bar.xml

end example]

B.2  Resolving a Pack URI to a Resource

The following is an algorithm for resolving a pack URI to a resource (either a package or a part):

1. Parse the pack URI into the potential three components: scheme, authority, path, as well as any
fragment identifier.

In the authority component, replace all commas (,) with forward slashes (/).

Un-percent-encode ASCII characters in the resulting authority component.

The resultant authority component is the URI for the package as a whole.

ik wN

If the path component is empty, the pack URI resolves to the package as a whole and the resolution
process is complete.

67



10

11

12

13

14

15
16

17

18

19
20

21
22

23
24

25
26
27
28
29
30
31

Pack URI

6. A non-empty path component shall be a valid part name. If it is not, the pack URl is invalid.
7. The pack URI resolves to the part with this part name in the package identified by the authority
component.

[Example:
Example B—4. Resolving a pack URI to a resource
Given the pack URI:
pack://http%3c, ,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml
The components:

<authority>= http%3c, ,www.my.com,packages.aspx%3fmy.package
<path>= /a/b/foo.xml

Are converted to the package URI:
http://www.my.com/packages.aspx?my.package
And the path:
/a/b/foo.xml

Therefore, this URI refers to a part named “/a/b/foo.xml” in the package at the following URI:
http://www.my.com/packages.aspx?my.package.

end example]

B.3 Composing a Pack URI

The following is an algorithm for composing a pack URI from the URI of an entire package resource and a part
name.

In order to be suitable for creating a pack URI, the URI reference of a package resource shall conform to
RFC 3986 requirements for valid absolute URIs.

To compose a pack URI from the absolute package URI and a part name, the following steps shall be performed,
in order:

1. Remove the fragment identifier from the package URI, if present.
Percent-encode all percent signs (%), question marks (?), at signs (@), colons (:) and commas (,) in the
package URI.

3. Replace all forward slashes (/) with commas (,) in the resulting string.

4. Append the resulting string to the string “pack://”.

5. Append a forward slash (/) to the resulting string. The constructed string represents a pack URI with a
blank path component.

68



10

11

12

13

14

15

16

17
18
19
20

21

Pack URI
6. Using this constructed string as a base URI and the part name as a relative reference, apply the rules
defined in RFC 3986 for resolving relative references against the base URI.
The result of this operation will be the pack URI that refers to the resource specified by the part name.
[Example:
Example B-5. Composing a pack URI
Given the package URI:
http://www.my.com/packages.aspx?my.package
And the part name:
/a/foo.xml
The pack URI is:
pack://http%3c, ,www.my.com,packages.aspxk3fmy.package/a/foo.xml

end example]

B.4 Equivalence

In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack URIs are
equivalent without resolving them.

The package implementer shall consider pack URIs equivalent if:

The scheme components are octet-by-octet identical after they are both converted to lowercase; and
The URIs, decoded as described in §B.2 from the authority components are equivalent (the equivalency
rules by scheme, as per RFC 3986); and

3. The path components are equivalent when compared as case-insensitive ASCII strings.

[M7.3]

69



10

11

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27
28
29
30

31

ZIP Appnote.txt Clarifications

Annex C. ZIP Appnote.txt Clarifications

The ZIP specification includes a number of features that packages do not support. Some ZIP features are clarified
in the context of this Open Packaging specification. Package producers and consumers shall adhere to the
requirements noted below.

C.1  Archive File Header Consistency

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data
Descriptors, and in the File headers within the Central Directory Record. For a ZIP archive to be a valid physical
layer for a package, the package implementer shall ensure that the ZIP archive holds equal values in the
appropriate fields of every File Header within the Central Directory and the corresponding Local File Header and
Data Descriptor pair. [M3.14]

C.2 Table Key

e  “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex C indicates a
package implementer shall support reading the ZIP archive containing this record or field, however,
support may mean ignoring. [M3.15] During production of a package, a “Yes” value for a field in a table
in Annex C indicates that the package implementer shall write out this record or field. [M3.16]

e “No” — A “No” value for afield in a table in Annex C indicates the package implementer shall not use
this record or field during consumption or production of packages. [M3.17]

e “Optional” — An “Optional” value for a record in a table in Annex C indicates that package implementers
might write this record during production. [03.2]

e “Partially, details below” — A “Partially, details below” value for a record in a table in Annex C indicates
that the record contains fields that might not be supported by package implementers during production
or consumption. See the details in the corresponding table to determine requirements. [M3.18]

e “Only used when needed” — The value “Only used when needed” associated with a record in a table in
Annex C indicates that the package implementer shall use the record only when needed to store data in
the ZIP archive. [M3.19]

Table C-1,“Support for records”, specifies the requirements for package production, consumption, and editing
in regard to particular top-level records or fields described in the ZIP Appnote.txt. [Note: Editing, in this context,
means in-place modification of individual records. A format specification can require editing applications to
instead modify content in-memory and re-write all parts and relationships on each save in order to maintain
more rigorous control of ZIP record usage. end note]

Table C-1. Support for records

Record name Supported on Supported on Pass through on
Consumption Production editing

70



ZIP Appnote.txt Clarifications

Record name

Supported on

Supported on

Pass through on

Consumption Production editing
Local File Header Yes (partially, details Yes (partially, details Yes
below) below)
File data Yes Yes Yes
Data descriptor Yes Optional Optional
Archive decryption No No No
header
Archive extra data No No No
record
Central directory Yes (partially, details Yes (partially, details Yes
structure: below) below)
File header
Central directory Yes (ignore the Optional Optional
structure: signature data)
Digital signature
Zip64 end of central Yes (partially, details Yes (partially, details Optional
directory record V1 below) below, used only when
(from spec version needed)
4.5)
Zip64 end of central No No No
directory record V2
(from spec version
6.2)
Zip64 end of central Yes (partially, details Yes (partially, details Optional
directory locator below) below, used only when
needed)
End of central Yes (partially, details Yes (partially, details Yes

directory record

below)

below, used only when
needed)

Table C-2, “Support for record components”, specifies the requirements for package production, consumption,

and editing in regard to individual record components described in the ZIP Appnote.txt.

Table C-2. Support for record components

Record Field Supported on Supported on Pass through
Consumption Production on editing
Local File Header Local file header signature | Yes Yes Yes

Version needed to extract

Yes (partially, see
Table C-3)

Yes (partially, see
Table C-3)

Yes (partially,
see Table C-3)

71




ZIP Appnote.txt Clarifications

Record

Field

Supported on
Consumption

Supported on
Production

Pass through
on editing

General purpose bit flag

Yes (partially, see
Table C-5)

Yes (partially, see
Table C-5)

Yes (partially,
see Table C-5)

Compression method

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-4) Table C-4) see Table C-4)
Last mod file time Yes Yes Yes
Last mod file date Yes Yes Yes
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
Extra field length Yes Yes Yes
File name (variable size) Yes Yes Yes

Extra field (variable size)

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-6) Table C-6) see Table C-6)

Central directory Central file header Yes Yes Yes
structure: File header signature

version made by: high Yes Yes (0 =MS-DOS | Yes

byte is default

publishing value)
Version made by: low byte | Yes Yes Yes
Version needed to extract | Yes (partially, see | Yes(1.0,1.1,2.0, | Yes

(see Table C-3 for details)

Table C-3)

4.5)

General purpose bit flag

Yes (partially, see
Table C-5)

Yes (partially, see
Table C-5)

Yes (partially,
see Table C-5)

Compression method

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-4) Table C-4) see Table C-4)
Last mod file time (Pass Yes Yes Yes
through, no
interpretation)
Last mod file date (Pass Yes Yes Yes
through, in interpretation)
Crc-32 Yes Yes Yes
Compressed size Yes Yes Yes
Uncompressed size Yes Yes Yes
File name length Yes Yes Yes
Extra field length Yes Yes Yes

72




ZIP Appnote.txt Clarifications

Record Field Supported on Supported on Pass through
Consumption Production on editing
File comment length Yes Yes Yes
(always set to 0)

Disk number start Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)

Internal file attributes Yes Yes Yes

External file attributes Yes Yes Yes

(Pass through, no (MS DOS default

interpretation) value)

Relative offset of local Yes Yes Yes

header

File name (variable size) Yes Yes Yes

Extra field (variable size)

Yes (partially, see

Yes (partially, see

Yes (partially,

Table C-6) Table C-6) see Table C-6)

File comment (variable Yes Yes (always setto | Yes

size) empty)

Zip64 end of central Zip64 end of central Yes Yes Yes
directory V1 (from spec | directory signature

version 4.5, only used Size of zip64 end of central | Yes Yes Yes
when needed) directory

Version made by: high Yes Yes (0 = MS-DOS | Yes

byte (Pass through, no is default

interpretation) publishing value)

Version made by: low byte | Yes Yes (always 4.5 or | Yes

above)

Version needed to extract | Yes (4.5) Yes (4.5) Yes (4.5)

(see Table C-3 for details)

Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)

Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —

the start of the central multi disk disk) no multi disk

directory archives) archives)

Total number of entriesin | Yes Yes Yes

the central directory on

this disk

Total number of entriesin | Yes Yes Yes

the central directory

73




ZIP Appnote.txt Clarifications

Record Field Supported on Supported on Pass through
Consumption Production on editing
Size of the central Yes Yes Yes
directory
Offset of start of central Yes Yes Yes
directory with respect to
the starting disk number
Zip64 extensible data Yes No Yes
sector
Zip64 end of central Zip64 end of central dir Yes Yes Yes
directory locator (only locator signature
used when needed) Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —
the start of the zip64 end multi disk disk) no multi disk
of central directory archives) archives)
Relative offset of the zip64 | Yes Yes Yes
end of central directory
record
Total number of disks Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)
End of central directory | End of central dir Yes Yes Yes
record signature
Number of this disk Yes (partial — no | Yes (always 1 Yes (partial —
multi disk disk) no multi disk
archives) archives)
Number of the disk with Yes (partial — no | Yes (always 1 Yes (partial —
the start of the central multi disk archive) | disk) no multi disk
directory archive)
Total number of entriesin | Yes Yes Yes
the central directory on
this disk
Total number of entriesin | Yes Yes Yes
the central directory
Size of the central Yes Yes Yes
directory
Offset of start of central Yes Yes Yes
directory with respect to
the starting disk number
ZIP file comment length Yes Yes Yes
ZIP file comment Yes No Yes

74




ZIP Appnote.txt Clarifications

Table C-3, “Support for Version Needed to Extract field”, specifies the detailed production, consumption, and

editing requirements for the Extract field, which is fully described in the ZIP Appnote.txt.

Table C-3. Support for Version Needed to Extract field

Version Feature Supported on Supported on Pass through on
Consumption Production editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Ignore No (rewrite/remove)

2.0 File is a folder (directory) Ignore No (rewrite/remove)

2.0 File is compressed using Yes Yes Yes
Deflate compression

2.0 File is encrypted using No No No
traditional PKWARE
encryption

2.1 File is compressed using No No No
Deflate64(tm)

2.5 File is compressed using No No No
PKWARE DCL Implode

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format Yes Yes Yes
extensions

4.6 File is compressed using No No No
BZIP2 compression

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES | No No No

5.0 File is encrypted using No No No
original RC2 encryption

5.0 File is encrypted using RC4 No No No
encryption

5.1 File is encrypted using AES No No No
encryption

5.1 File is encrypted using No No No
corrected RC2 encryption

5.2 File is encrypted using No No No
corrected RC2-64
encryption

6.1 File is encrypted using non- | No No No
OAEP key wrapping

6.2 Central directory encryption | No No No

75



ZIP Appnote.txt Clarifications

Table C-4, “Support for Compression Method field”, specifies the detailed production, consumption, and editing
requirements for the Compression Method field, which is fully described in the ZIP Appnote.txt.

Table C—4. Support for Compression Method field

Code Method Supported on | Supported Pass
Consumption on through
Production | on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression No No No
factor 1

3 The file is Reduced with compression No No No
factor 2

4 The file is Reduced with compression No No No
factor 3

5 The file is Reduced with compression No No No
factor 4

6 The file is Imploded No No No

7 Reserved for Tokenizing compression No No No
algorithm

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library No No No
Imploding

11 Reserved by PKWARE No No No

Table C-5, “Support for modes/structures defined by general purpose bit flags”, specifies the detailed
production, consumption, and editing requirements when utilizing these general-purpose bit flags within
records.

Table C-5. Support for modes/structures defined by general purpose bit flags

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
0 If set, indicates that the file is encrypted. No No No

76



ZIP Appnote.txt Clarifications

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
1, Bit | Bit Yes Yes Yes
2 2 | 1
0 0 Normal (-en) compression option
was used.
0 1 Maximum (-exx/-ex) compression
option was used.
1 0 Fast (-ef) compression option was
used.
1 1 Super Fast (-es) compression

option was used.

3 If this bit is set, the fields crc-32, compressed size Yes Yes Yes
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data. (PKZIP version 2.04g for DOS only recognizes
this bit for method 8 compression, newer versions
of PKZIP recognize this bit for any compression

method.)

4 Reserved for use with method 8, for enhanced Ignore Bitssetto | Yes
deflating 0

5 If this bit is set, this indicates that the file is Ignore Bits setto | Yes
compressed patched data. (Requires PKZIP version 0
2.70 or greater.)

6 Strong encryption. If this bit is set, you should set Ignore Bits setto | Yes
the version needed to extract value to at least 50 0

and you must also set bit 0. If AES encryption is
used, the version needed to extract value must be

at least 51.

7 Currently unused Ignore Bitssetto | Yes
0

8 Currently unused Ignore Bitssetto | Yes
0

9 Currently unused Ignore Bits setto | Yes
0

10 | Currently unused Ignore Bits setto | Yes
0

11 | Currently unused Ignore Bits setto | Yes
0

77



ZIP Appnote.txt Clarifications

Bit Feature Supported Supported Pass
on on through
Consumption | Production on
editing
12 | Reserved by PKWARE for enhanced compression Ignore Bitssetto | Yes
0
13 | Used when encrypting the Central Directory to Ignore Bits setto | Yes
indicate selected data values in the Local Header 0
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.
14 | Reserved by PKWARE Ignore Bits setto | Yes
0
15 | Reserved by PKWARE Ignore Bits setto | Yes
0

Table C-6, “Support for Extra field (variable size), PKWARE-reserved”, specifies the detailed production,

consumption, and editing requirements for the Extra field entries reserved by PKWARE and described in the ZIP

Appnote.txt.

Table C-6. Support for Extra field (variable size), PKWARE-reserved

Field Field description Supported on Supported on Pass through
ID Consumption Production on editing

0x0001 | ZIP64 extended information | Yes Yes Optional
extra field

0x0007 | AV Info Ignore No Yes

0x0008 | Reserved for future Unicode | Ignore No Yes
file name data (PFS)

0x0009 | 0S/2 Ignore No Yes

0x000a | NTFS Ignore No Yes

0x000c | OpenVMS Ignore No Yes

0x000d | Unix Ignore No Yes

0x000e | Reserved for file stream and | Ignore No Yes
fork descriptors

0x000f | Patch Descriptor Ignore No Yes

0x0014 | PKCS#7 Store for X.509 Ignore No Yes
Certificates

0x0015 | X.509 Certificate ID and Ignore No Yes
Signature for individual file

78



ZIP Appnote.txt Clarifications

Field Field description Supported on Supported on Pass through
ID Consumption Production on editing
0x0016 | X.509 Certificate ID for Ignore No Yes
Central Directory
0x0017 | Strong Encryption Header Ignore No Yes
0x0018 | Record Management Ignore No Yes
Controls
0x0019 | PKCS#7 Encryption Ignore No Yes
Recipient Certificate List
0x0065 | IBM S/390 (Z390), AS/400 Ignore No Yes
(1400) attributes —
uncompressed
0x0066 | Reserved for IBM S/390 Ignore No Yes

(2390), AS/400 (1400)
attributes — compressed

0x4690 | POSZIP 4690 (reserved) Ignore No Yes

Table C-7, “Support for Extra field (variable size), third-party extensions”, specifies the detailed production,
consumption, and editing requirements for the Extra field entries reserved by third parties and described in the
ZIP Appnote.txt.

Table C-7. Support for Extra field (variable size), third-party extensions

Field Field description Supported on Supported on Pass through on
ID Consumption Production editing
0x07c8 | Macintosh Ignore No Yes
0x2605 | Ziplt Macintosh Ignore No Yes
0x2705 | Ziplt Macintosh Ignore No Yes
1.3.5+
0x2805 | Ziplt Macintosh Ignore No Yes
1.3.5+
0x334d | Info-ZIP Macintosh Ignore No Yes
0x4341 | Acorn/SparkFS Ignore No Yes
0x4453 | Windows NT security | Ignore No Yes
descriptor (binary
ACL)
0x4704 | VM/CMS Ignore No Yes
0x470f | MVS Ignore No Yes
0x4b46 | FWKCS MD5 (see Ignore No Yes
below)

79



ZIP Appnote.txt Clarifications

Field Field description Supported on Supported on Pass through on
ID Consumption Production editing
Ox4c41 | 0S/2 access control Ignore No Yes
list (text ACL)
0x4d49 | Info-ZIP OpenVMS Ignore No Yes
Ox4f4c | Xceed original Ignore No Yes
location extra field
0x5356 | AOS/VS (ACL) Ignore No Yes
0x5455 | extended timestamp Ignore No Yes
0x554e | Xceed unicode extra Ignore No Yes
field
0x5855 | Info-ZIP Unix (original, | Ignore No Yes
also 0S/2, NT, etc)
0x6542 | BeOS/BeBox Ignore No Yes
0x756e | ASi Unix Ignore No Yes
0x7855 | Info-ZIP Unix (new) Ignore No Yes
0xa220 | Padding, Microsoft Optional Optional Optional
Oxfd4a | SMS/QDOS Ignore No Yes

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0.

[M3.20]

The package implementer shall ensure that all fields that contain “number of entries” do not exceed

2,147,483,647. [M3.21]

80



Schemas - XML Schema

Annex D. Schemas - XML Schema

This Open Packaging Conventions specification includes a family of schemas defined using the XML Schema 1.0
syntax. The normative definitions of these schemas reside in an accompanying file named
OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form only.

If discrepancies exist between the electronic version of a schema and its corresponding representation as
published in this part, Part 2, the electronic version is the definitive version.

81



Schemas - RELAX NG

Annex E. Schemas - RELAX NG

This clause is informative.

This Open Packaging Conventions specification includes a family of schemas defined using the RELAX NG syntax.
The definitions of these schemas reside in an accompanying file named
OpenPackagingConventions-RELAXNG.zip, which is distributed in electronic form only.

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML
Schema is the definitive version.

End of informative text.

82



10

11

Standard Namespaces and Content Types

Annex F. Standard Namespaces and Content
Types

The namespaces available for use in a package are listed in Table F-1, Package-wide namespaces

Table F-1. Package-wide namespaces

Description Namespace URI
Content Types http://schemas.openxmliformats.org/package/2006/content-types
Core Properties http://schemas.openxmliformats.org/package/2006/metadata/core-properties
Digital Signatures http://schemas.openxmliformats.org/package/2006/digital-signature
Relationships http://schemas.openxmliformats.org/package/2006/relationships
Markup Compatibility | http://schemas.openxmliformats.org/markup-compatibility/2006

The content types available for use in a package are listed in Table F-2, Package-wide content types

Table F-2. Package-wide content types

Description Content Type
Core Properties part application/vnd.openxmliformats-package.core-properties+xml
Digital Signature Certificate application/vnd.openxmlformats-package.digital-signature-
part certificate
Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin
Digital Signature XML Signature | application/vnd.openxmlformats-package.digital-signature-
part xmlsignature+xml
Relationships part application/vnd.openxmlformats-package.relationships+xml

Package implementers and format designers shall not create content types with parameters for the package-
specific parts defined in this Open Packaging specification and shall treat the presence of parameters in these
content types as an error. [M1.22]

The relationship types available for use in a package are listed in Table F-3, Package-wide relationship types.

Table F-3. Package-wide relationship types

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmliformats.org/package/2006/relationships/digital-
signature/signature

83



Standard Namespaces and Content Types

Description Relationship Type
Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
Certificate signature/certificate
Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
Origin signature/origin
Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

84



10

11

12
13
14

15
16

Physical Model Design Considerations

Annex G. Physical Model Design
Considerations

This annex is informative.

The physical model defines the ways in which packages are produced and consumed. This model is based on
three components: a producer, a consumer, and a pipe between them.

Figure G—1. Components of the physical model

Writer - Reader
Ripe
inter4rocess pipe O

procEss [FOCESS
l"\--
t“’" lacal-area network ]
=

=

[ddlyii=g

A producer is a piece of software or a device that writes packages. A consumer is a piece of software or a device

that reads packages. A device is a piece of hardware, such as a printer or scanner that performs a single function

or set of functions. Data is carried from the producer to the consumer by a pipe.
In local access, the pipe carries data directly from a producer to a consumer on a single device.

In networked access the consumer and the producer communicate with each other over a protocol. The
significant communication characteristics of this pipe are speed and request latency. For example, this
communication might occur across a process boundary or between a server and a desktop computer.

In order to maximize performance, designers of physical package formats consider access style, layout style, and

communication style.

85



10
11

12

13
14
15
16

17
18
19
20

21

22
23
24

25

26
27

28

29
30
31

Physical Model Design Considerations

G.1  Access Styles

The access style in which local access or networked access is conducted determines the simultaneity possible
between processing and input-output operations.

G.1.1 Direct Access Consumption

Direct access consumption allows consumers to request the specific portion of the package desired, without
sequentially processing the preceding parts of the package. For example a byte-range request. This is the most
common access style.

G.1.2 Streaming Consumption

Streaming consumption allows consumers to begin processing parts before the entire package has arrived.
Physical package formats should be designed to allow consumers to begin interpreting and processing the data
they receive before all of the bits of the package have been delivered through the pipe.

G.1.3 Streaming Creation

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the
parts that will be written. For example, when an application begins to build a print spool file package, it may not
know how many pages the package will contain. Likewise, a program that is generating a report may not know
initially how long the report will be or how many pictures it will have.

In order to support streaming creation, the package implementer should allow a producer to add parts after
other parts have already been added. A Consumer shall not require a producer to state how many parts they will
create when they start writing. The package implementer should allow a producer to begin writing the contents
of a part without knowing the ultimate length of the part.

G.1.4 Simultaneous Creation and Consumption

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the
same time on a package. Because of the benefits that can be realized within pipelined architectures that use it,
the package implementer should support simultaneous creation and consumption in the physical package.

G.2 Layout Styles

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in
one of two styles: simple ordering or interleaved ordering.

G.2.1 Simple Ordering

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes
for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package
uses simple ordering, all of the bytes for each part are stored contiguously.

86



10
11

12

13
14
15

16

17
18

19

20
21
22
23
24

25

Physical Model Design Considerations

G.2.2 Interleaved Ordering

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios.
For example, interleaved ordering improves performance for multi-media playback, where video and audio are
delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup.

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing
easy reconstruction of the original contiguous part.

Because of the performance benefits it provides, package implementers should support interleaving in the
physical package. The package implementer might handle the internal representation of interleaving differently
in different physical models. Regardless of how the physical model handles interleaving, a part that is broken
into multiple pieces in the physical file is considered one logical part; the pieces themselves are not parts and
are not addressable.

G.3 Communication Styles

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to
as the communication style. Communication can be based on sequential delivery of or random access to parts.
The communication style used depends on the capabilities of both the pipe and the physical package format.

G.3.1 Sequential Delivery

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the.
Generally, all pipes support sequential delivery.

G.3.2 Random Access

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes
are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order
to maximize performance, the package implementer should support random access in both the pipe and the
physical package. In the absence of this support, consumers need to wait until the parts they need are delivered
sequentially.

End of informative text.

87



10
11
12

13

14

15

16
17
18
19
20
21
22

23
24

25

26

Conformance Requirements

Annex H. Conformance Requirements

This annex is informative.

This annex summarizes all conformance requirements for producers and consumers implementing the Open
Packaging Conventions. It is intended as a convenience; the text in the referenced clause or subclause is
considered normative in all cases.

Conformance requirements are divided into tables based on their general topic below. The tables contain the
requirements that producers and consumers shall follow, those that they should follow, and those that are
optional. Each conformance requirement is given a unique ID comprised of a letter (M — MANDATORY; S —
SHOULD; O — OPTIONAL), an identifier for the topic it relates to, and a unique ID within that topic. Mandatory
requirements are those stated with the normative terms "shall," "shall not," or any of their normative
equivalents. Should items are those stated with the normative terms "should," "should not," or any of their

normative equivalents. Optional requirements are those stated with the normative terms "can," "cannot,"

"might," "might not," or any of their normative equivalents.

Producers and consumers might use these IDs to report error conditions.
The top-level topics and their identifiers are described as follows:

Package Model requirements
Physical Packages requirements
ZIP Physical Mapping requirements
Core Properties requirements
Thumbnail requirements

Digital Signatures requirements

No ks wnNR

Pack URI requirements

Additionally, these tables identify, as does the referenced text, who is burdened with enforcing or supporting
the requirement:

H.1  Package Model

Table H-1. Package model conformance requirements

ID Rule Reference Package Format Format Format
Implementer | Designer | Producer | Consumer

M1.1 | The package implementershall | 8.1,8.1.1 x
require a part name.

88




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.2

The package implementer shall
require a content type and the
format designer shall specify
the content type.

8.1

X

X

M1.3

A part name shall not have
empty segments.

M1.4

A part name shall start with a
forward slash (“/”) character.

M1.5

A part name shall not have a
forward slash as the last
character.

M1.6

A segment shall not hold any
characters other than pchar
characters. .

M1.7

A segment shall not contain
percent-encoded forward slash
(“/”), or backward slash (“\”)
characters.

M1.8

A segment shall not contain
percent-encoded unreserved
characters.

M1.9

A segment shall not end with a
dot (“.”) character.

M1.10

A segment shall include at least
one non-dot character

M1.11

A package implementer shall
neither create nor recognize a
part with a part name derived
from another part name by
appending segments to it.

8.1.1.1

M1.12

Part name equivalence is
determined by comparing part
names as case-insensitive ASCII
strings. Packages shall not
contain equivalent part names
and package implementers
shall neither create nor
recognize packages with
equivalent part names.

8.1.1.2

89




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.13

Package implementers shall
only create and only recognize
parts with a content type;
format designers shall specify a
content type for each part
included in the format. Content
types for package parts shall fit
the definition and syntax for
media types as specified in RFC
2616, §3.7.

8.1.2

X

X

M1.14

Content types shall not use
linear white space either
between the type and subtype
or between an attribute and its
value. Content types also shall
not have leading or trailing
white spaces. Package
implementers shall create only
such content types and shall
require such content types
when retrieving a part from a
package; format designers shall
specify only such content types
for inclusion in the format.

8.1.2

M1.15

The package implementer shall
require a content type that
does not include comments and
the format designer shall
specify such a content type.

8.1.2

M1.16

If the package implementer
specifies a growth hint, it is set
when a part is created and the
package implementer shall not
change the growth hint after
the part has been created.

8.1.3

90




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.17

XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,
that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.14

X

M1.18

DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

8.14

M1.19

If the XML content contains the
Markup Compatibility
namespace, as described in
Part 5: “Markup Compatibility
and Extensibility”, it shall be
processed by the package
implementer to remove
Markup Compatibility elements
and attributes, ignorable
namespace declarations, and
ignored elements and
attributes before applying
subsequent validation rules.

8.14

91




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20

XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content
shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

8.14

X

M1.21

XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.14

M1.22

Package implementers and
format designers shall not
create content types with
parameters for the package-
specific parts defined in this
Open Packaging specification
and shall treat the presence of
parameters in these content
types as an error.

Annex F

92




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

M1.23

XML markup might contain
Unicode strings referencing
other parts as values of the
xsd:anyURI data type. Format
consumers shall convert these
Unicode strings to URlIs, as
defined in Annex A, “Resolving
Unicode Strings to Part
Names,” before resolving them
relative to the base URI of the
part containing the Unicode
string.

8.2.1

X

M1.24

Some types of content provide
a way to override the default
base URI by specifying a
different base in the content. In
the presence of one of these
overrides, format consumers
shall use the specified base URI
instead of the default.

8.2.1

M1.25

The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

8.3.1

M1.26

The package implementer shall
require that every Relationship
element has an Id attribute, the
value of which is unique within
the Relationships part, and that
the Id type is xsd:ID, the value
of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

8.3.3

93




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.27

The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a

Type.

8.3.3.2

X

X

M1.28

The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URl ora
relative reference.

8.3.3.2

M1.29

When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

8.3.3.2

M1.30

The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the content type for a
Relationships part

8.34

94




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.31

Consumers shall process
relationship markup in a
manner that conforms to

Part 5: “Markup Compatibility
and Extensibility”. Producers
editing relationships based on
this version of the relationship
markup specification shall not
preserve any ignored content,
regardless of the presence of
any preservation attributes as
defined in Part 5: “Markup

Compatibility and Extensibility”.

8.3.5

X

X

M1.32

If a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

8.3.3.2

M1.33

A Unicode string representing a
URI can be passed to the
producer or consumer. The
producing or consuming
application shall convert the
Unicode string to a URL. If the
URI is a relative reference, the

the base URI of the part, which
is expressed using the pack
scheme, to the URI of the
referenced part.

application shall resolve it using

Annex A

M1.34

If a consumer converts the URI
back into an IRI, the conversion
shall be performed as specified
in §3.2 of RFC 3987.

A2

Table H-2. Package model optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

011

The package implementer might

allow a growth hint to be provided

by a producer.

8.1,8.1.3

X

95




Conformance Requirements

1D

Rule

Reference

Implementer

Package

Format
Designer

Format
Producer

Format
Consumer

01.2

Format designers might restrict the
usage of parameters for content
types.

8.1.2

X

013

The package implementer might
ignore the growth hint or adhere
only loosely to it when specifying
the physical mapping.

8.1.3

014

If the format designer permits it,
parts can contain Unicode strings
representing references to other
parts. If allowed by the format
designer, format producers can
create such parts and format
consumers shall consume them.

8.2.1

015

The package implementer might
allow a TargetMode to be provided
by a producer.

8.3.3.2

01l.6

A format designer might allow
fragment identifiers in the value of
the Target attribute of the
Relationship element.

8.3.3.2

01.7

Producers might generate
relationship markup that uses the
versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML namespaces.

8.3.5

1 H.2

Physical Packages

2 Table H-3. Physical packages conformance requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.1

The Content Types stream shall not
be mapped to a part by the package
implementer.

9.1.21

><A

96




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.2

The package implementer shall
define a physical package format
with a mapping for the required
components package, part name,

part content type and part contents.

9.11

X

M2.3

The package implementer shall
define a format mapping with a
mechanism for associating content
types with parts.

9.1.21

M2.4

The package implementer shall
require that the Content Types
stream contain one of the following
for every part in the package:

One matching Default element

One matching Override element
Both a matching Default element
and a matching Override element,
in which case the Override element
takes precedence.

9.1.2.2

M2.5

The package implementer shall
require that there not be more than
one Default element for any given
extension, and there not be more
than one Override element for any
given part name.

9.1.2.2

M2.6

The package implementer shall
require a non-empty extension in a
Default element. The package
implementer shall require a content
type in a Default element and the
format designer shall specify the
content type.

9.1.2.2.2

M2.7

The package implementer shall
require a content type and the
format designer shall specify the
content type in an Override
element. The package implementer
shall require a part name.

9.1.2.2.3

97




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.8

When adding a new partto a
package, the package implementer
shall ensure that a content type for
that part is specified in the Content
Types stream; the package
implementer shall perform the steps
described in §9.1.2.3.

9.1.2.3

XA

M2.9

To get the content type of a part,
the package implementer shall
perform the steps described

in §9.1.2.4.

9.1.24

M2.10

The package implementer shall not
use the versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML-namespaces into the
Content Types stream markup.

9.1.25

M2.11

The package implementer shall not
mix interleaving and non-
interleaving for an individual part.

9.14

M2.12

The package implementer shall
compare prefix names as case-
insensitive ASCII strings.

9.13.1

M2.13

The package implementer shall
compare suffix names as case-
insensitive ASCII strings.

9.1.31

M2.14

The package implementer shall not
allow packages that contain
equivalent logical item names.

9.1.31

M2.15

The package implementer shall not
allow packages that contain logical
items with equivalent prefix names
and with equal piece numbers,
where piece numbers are treated as
integer decimal values.

9.1.31

M2.16

The package implementer shall not
map logical items to parts if the
logical item names violate the part
naming rules.

9.134

98




Conformance Requirements

Rule

Reference

Implementer

Package

Format
Designer

Format
Producer

Format
Consumer

M2.17

The package implementer shall

9.1.34

X

consider naming collisions within
the set of part names mapped from
logical item names to be an error.

M2.18

When interleaved, a package
implementer shall represent a part
as one or more pieces, using the
method described in §9.1.4.

9.2.1 x®

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-4. Physical packages recommendations

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

S2.1

Some physical package
formats have a native
mechanism for representing
content types. For such
packages, the package
implementer should use the
native mechanism to map the
content type for a part.

9.1.2.1

X

S2.2

If no native method of
mapping a content type to a
part exists, the package
implementer should include a
specially-named XML stream
in the package called the
Content Types stream

9.1.21

99




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format

Consumer

S2.3

If the package is intended for
streaming consumption:

The package implementer
should not allow Default
elements; as a consequence,
there should be one Override
element for each part in the
package.

The format producer should
write the Override elements
to the package so they appear
before the parts to which they
correspond, or in close
proximity to the part to which
they correspond.

9.1.2.2

XA

XA

S2.4

The package implementer
should use the mechanism
described in this Open
Packaging specification to
allow interleaving when
mapping to the physical
package for layout scenarios
that support streaming
consumption.

9.14

S2.5

The package implementer
should store pieces in their
natural order for optimal
efficiency.

9.14

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-5. Physical packages optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

021

The format designer specifies
whether that format might use
interleaving.

9.14

X

100




Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

02.2

Optional. The package implementer
might provide a physical mapping for
a growth hint that might be specified
by a producer.

9.11

X

023

Package implementers might use the
common mapping solutions defined
in this Open Packaging specification.

9.1

024

Package producers can use pre-
defined Default elements to reduce
the number of Override elements on
a part, but are not required to do so.

9.1.2.2

025

The package implementer can define
Default content type mappings even
though no parts use them.

9.1.2.2

02.6

The package implementer might
create a physical package containing
interleaved parts and non-interleaved
parts.

9.14

02.7

The package implementer might
allow a package that contains logical
item names and complete sequences
of logical item names that cannot be
mapped to a part name because the
logical item name does not follow the
part naming grammar or the logical
item does not have an associated
content type.

9.134

Notes:

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions.

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

H.3

The requirements in Table H-6, Table H-7, and

ZIP Physical Mapping

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

101




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.2 | If a growth hint is used for an 10.2.7 X
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that represents

the first piece of the part.

Table J-8 are only relevant when mapping to the ZIP physical package format.

Table H-6. ZIP physical mapping conformance requirements

Format
Consumer

Format
Producer

Format
Designer

ID Rule Reference Package

Implementer

M3.1 | A package implementer shall storea | 9.2.1 x
non-interleaved part as a single ZIP

item.

M3.2 | ZIP item names are case-sensitive 9.2.2 X
ASCII strings. Package implementers
shall create ZIP item names that
conform to ZIP archive file name

grammar.

M3.3 | Package implementers shall create 9.2.2 X
item names that are unique within a

given archive.

M3.4 | To map part names to ZIP item 9.2.3 X
names the package implementer
shall perform, in order, the steps

described in §9.2.3.

M3.5 | The package implementer shallnot | 9.2.3 x
map a logical item name or
complete sequence of logical item
names sharing a common prefix to a
part name if the logical item prefix

has no corresponding content type.

M3.6 | To map ZIP item names to part 9.2.4 X
names, the package implementer
shall perform, in order, the steps

described in §9.2.4.

102




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.7

The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files.

9.2.5

X

M3.8

The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files. [M3.7]

[Note: The ZIP specification
specifies that ZIP items recognized
as MS-DOS files are those with a
“version made by” field and an
“external file attributes” field in the
“file header” record in the central
directory that have a value of 0. end
note]

In ZIP archives, the package
implementer shall not exceed
65,535 bytes for the combined
length of the item name, Extra field,
and Comment fields.

9.2.5

M3.9

ZIP-based packages shall not include
encryption as described in the ZIP
specification. Package implementers
shall enforce this restriction.

9.2.5

M3.10

Package implementers shall store
content type data in an item(s)
mapped to the logical item name
with the prefix_name equal to
“/[Content_Types].xml” or in the
interleaved case to the complete
sequence of logical item names with
that prefix_name.

9.2.6

M3.11

Package implementers shall not
map logical item name(s) mapped to
the Content Types stream in a ZIP
archive to a part name.

9.2.6

103




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.13

Several substantial conditions that
represent a package unfit for
streaming consumption may be
detected mid-processing by a
streaming package implementer,
described in §9.2.8. When any of
these conditions are detected, the
streaming package implementer
shall generate an error, regardless
of any processing that has already
taken place. Package implementers
shall not generate a package
containing any of these conditions
when generating a package
intended for streaming
consumption.

9.2.8

X

M3.14

For a ZIP archive to be a valid
physical layer for a package, the
package implementer shall ensure
that the ZIP archive holds equal
values in the appropriate fields of
every File Header within the Central
Directory and the corresponding
Local File Header and Data
Descriptor pair.

Annex C

M3.15

During consumption of a package, a
"Yes" value for a field in a table in
Annex C indicates a package
implementer shall support reading
the ZIP archive containing this
record or field, however, support
may mean ignoring.

Annex C

M3.16

During production of a package, a
“Yes” value for a field in a table in
Annex C indicates that the package
implementer shall write out this
record or field.

Annex C

M3.17

A “No” value for a field in a table in
Annex C indicates the package
implementer shall not use this
record or field during consumption
or production of packages.

Annex C

104




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.18

A “Partially, details below” value for
a record in a table in Annex C
indicates that the record contains
fields that might not be supported
by package implementers during
production or consumption. See the
details in the corresponding table to
determine requirements.

Annex C

X

M3.19

The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C

M3.20

The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C

M3.21

The package implementer shall
ensure that all 64-bit stream record
sizes and offsets have the high-
order bit =0.

Annex C

Notes:

A: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions.

Table H-7. ZIP physical mapping recommendations

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.1

Package implementers should restrict
part naming to accommodate file
system limitations when naming
parts to be stored as ZIP items.

9.25

X

S3.2

If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that
represents the first piece of the part.

9.2.7

Table H-8. ZIP physical mapping optional requirements

105




Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

03.1

A package implementer might
intentionally order the sequence of
ZIP items in the archive to enable an
efficient organization of the part data
in order to achieve correct and
optimal interleaving.

9.2.1

X

03.2

An “Optional” value for a record in a
table in Annex C indicates that
package implementers might write
this record during production.

Annex C

H.4

Core Properties

The requirements in Table H-9 are only relevant if using the core properties feature.

Table H-9. Core properties conformance requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.1

The format designer shall specify
and the format producer shall
create at most one core properties
relationship for a package. A format
consumer shall consider more than
one core properties relationship for
a package to be an error. If present,
the relationship shall target the Core
Properties part.

10.2

X

X

X

M4.2

The format designer shall not
specify and the format producer
shall not create Core Properties that
use the Markup Compatibility
namespace as defined in Annex F,
“Standard Namespaces and Content
Types”. A format consumer shall
consider the use of the Markup
Compatibility namespace to be an

error.

10.3

106




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.3

Producers shall not create a
document element that contains
refinements to the Dublin Core
elements, except for the two
specified in the schema:
<dcterms:created> and
<dcterms:modified> Consumers
shall consider a document element
that violates this constraint to be an
error.

10.4

X

X

M4.4

Producers shall not create a
document element that contains the
xml:lang attribute. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4

M4.5

Producers shall not create a
document element that contains the
xsi:type attribute, except for a
<dcterms:created> or
<dcterms:modified> element where
the xsi:type attribute shall be
present and shall hold the value
dcterms:W3CDTF, where dcterms is
the namespace prefix of the Dublin
Core namespace. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4

H.5

Thumbnail

The requirements in Table H-10 and Table H-11 are only relevant if using the thumbnail feature.

Table H-10. Thumbnail conformance requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M5.1

The format designer shall specify
thumbnail parts that are identified
by either a part relationship or a
package relationship. The producer
shall build the package accordingly.

111

X

X

Table H-11. Thumbnail optional requirements

107




Conformance Requirements

1D

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

05.1

The format designer might allow
images, called thumbnails, to be
used to help end-users identify parts
of a package or a package as a
whole. These images can be
generated by the producer and
stored as parts.

11

X

X

H.6

Digital Signatures

The requirements in Table H-12, Table H-13, and Table H-14 are only relevant if using the digital signatures

feature.

Table H-12. Digital Signatures conformance requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.1

The package implementer shall
include only one Digital Signature
Origin part in a package and it shall
be targeted from the package root
using the well-defined relationship
type specified in Annex F,
“Standard Namespaces and
Content Types”.

12.21

X

M6.2

When creating the first Digital
Signature XML Signature part, the
package implementer shall create
the Digital Signature Origin part, if
it does not exist, in order to specify
a relationship to that Digital
Signature XML Signature part.

12.2.1

M6.3

The producer shall create Digital
Signature XML Signature parts that
have a relationship from the Digital
Signature Origin part and the
consumer shall use that
relationship to locate signature
information within the package.

12.2.1

108




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.4

If the certificate is represented as a
separate part within the package,
the producer shall target that
certificate from the appropriate
Digital Signature XML Signature
part by a Digital Signature
Certificate relationship as specified
in Annex F, “Standard Namespaces
and Content Types” and the
consumer shall use that
relationship to locate the
certificate.

12.2.3

X

X

M6.5

The producer shall create
Reference elements within a
SignedInfo element that reference
elements within the same
Signature element. The consumer
shall consider Reference elements
within a SignedInfo element that
reference any resources outside
the same Signature element to be
in error.

12.24.1

M6.6

The producer shall not create a
reference to a package-specific
Object element that contains a
transform other than a
canonicalization transform. The
consumer shall consider a
reference to a package-specific
Object element that contains a
transform other than a canonical
transform to be an error.

12.24.1

Mé6.7

The producer shall create one and
only one package-specific Object
element in the Signature element.
The consumer shall consider zero
or more than one package-specific
Object element in the Signature
element to be an error.

12.24.1

109




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.8

The producer shall create package-
specific Object elements that
contain exactly one Manifest
element and exactly one
SignatureProperties element.
[Note: This SignatureProperties
element can contain multiple
SignatureProperty elements. end
note] The consumer shall consider
package-specific Object elements
that contain other types of
elements to be an error.

12.24.1

X

X

M6.9

The producer shall create
Reference elements within a
Manifest element that reference
with their URI attribute only parts
within the package. The consumer
shall consider Reference elements
within a Manifest element that
reference resources outside the
package to be an error.

12.24.1

M6.10

The producer shall create relative
references to the local parts that
have query components that
specifies the part content type as
described in §12.2.4.6. The relative
reference excluding the query
component shall conform to the
part name grammar. The
consumer shall consider a relative
reference to a local part that has a
query component that incorrectly
specifies the part content type to
be an error.

12.24.1

110




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.11

The producer shall create
Reference elements with a query
component that specifies the
content type that matches the
content type of the referenced
part. The consumer shall consider
signature validation to fail if the
part content type compared in a
case-sensitive manner to the
content type specified in the query
component of the part reference
does not match.

12.24.1

X

X

M6.12

The producer shall not create
Reference elements within a
Manifest element that contain
transforms other than the
canonicalization transform and
relationships transform. The
consumer shall consider Reference
elements within a Manifest
element that contain transforms
other than the canonicalization
transform and relationships
transform to be in error.

12.24.1

M6.13

A producer that uses an optional
relationships transform shall follow
it by a canonicalization transform.
The consumer shall consider any
relationships transform that is not
followed by a canonicalization
transform to be an error.

12.24.1

111




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Mé6.14

The producer shall create exactly
one SignatureProperty element
with the Id attribute value set to
idSignatureTime. The Target
attribute value of this element
shall be either empty or contain a
fragment reference to the value of
the Id attribute of the root
Signature element. A
SignatureProperty element shall
contain exactly one
SignatureTime child element. The
consumer shall consider a
SignatureProperty element that
does not contain a SignatureTime
element or whose Target attribute
value is not empty or does not
contain a fragment reference the
Id attribute of the ancestor
Signature element to be in error.

12.24.1

X

X

M6.15

The producer shall create a
Signature element that contains
exactly one local-data, package-
specific Object element and zero
or more application-specific
Object elements. If a Signature
element violates this constraint, a
consumer shall consider this to be
an error.

12.24.2

M6.16

The producer shall create a
SignedInfo element that contains
exactly one reference to the
package-specific Object element.
The consumer shall consider it an
error if a SignedInfo element does
not contain a reference to the
package-specific Object element.

12.243

M6.17

Producers shall support DSA and
RSA algorithms to produce
signatures. Consumers shall
support DSA and RSA algorithms to
validate signatures.

12.2.4.5

112




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.18

The producer shall create a
Reference element within a
Manifest element with a URI
attribute and that attribute shall
contain a part name, without a
fragment identifier. The consumer
shall consider a Reference element
with a URI attribute that does not
contain a part name to be an error.

12.2.4.6

X

X

M6.19

The following transforms shall be
supported by producers and
consumers of packages with digital
signatures:

e XML Canonicalization
(c14n)

e XML Canonicalization with
Comments (c14n with
comments)

e Relationships transform
(package-specific)

Consumers validating signed
packages shall fail the validation if
other transforms are encountered.
Relationships transforms shall only
be supported by producers and
consumers when the Transform
element is a descendant element
of a Manifest element

12.2.4.7

M6.20

Producers shall create application-
specific Object elements that
contain XML-compliant data;
consumers shall treat data that is
not XML-compliant as an error.

12.2.4.14

M6.21

Producers and consumers shall use
the certificate embedded in the
Digital Signature XML Signature
part when it is specified.

12.2.4.15

113




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Consumer

Format
Producer

Format
Designer

M6.22

The producer shall not create a
Manifest element that references
any data outside of the package.
The consumer shall consider a
Manifest element that references
data outside of the package to be
in error.

12.2.4.18

X X

M6.23

The producer shall create a
data/time format that conforms to
the syntax described in the W3C
Note "Date and Time Formats".
The consumer shall consider a
format that does not conform to
the syntax described in that WC3
note to be in error.

12.2.4.22

Mé6.24

The producer shall create a value
that conforms to the format
specified in the Format element.
The consumer shall consider a
value that does not conform to
that format to be in error.

12.2.4.23

M6.25

To sign a subset of relationships,
the producer shall use the
package-specific relationships
transform. The consumer shall use
the package-specific relationships
transform to validate the signature
when a subset of relationships are
signed.

12.2.4.25

M6.26

Producers shall specify a
canonicalization transform
immediately following a
relationships transform and
consumers that encounter a
relationships transform that is not
immediately followed by a
canonicalization transform shall
generate an error.

12.2.4.25

114




Conformance Requirements

ID Rule Reference Package Format Format Format
Implementer | Designer | Producer | Consumer

M6.27 | When applying a relationships 12.2.4.26 X X
transform for digital signatures,
the package implementer shall
remove all Relationship elements
that do not have eitheran Id value
that matches any Sourceld valueor
a Type value that matches any
SourceType value, among the
Sourceld and SourceType values
specified in the transform
definition. Producers and
consumers shall compare values as
case-sensitive Unicode strings.

M6.28 | When signing Object element 124 x
data, package implementers shall
follow the generic reference
creation algorithm described

in §3.1 of the W3C
Recommendation “XML-Signature
Syntax and Processing”.

M6.29 | When validating digital signatures, | 12.5 x
consumers shall verify the content
type and the digest contained in
each Reference descendant
element of the SignedInfo
element, and validate the
signature calculated using the
SignedInfo element.

M6.30 | The package implementer shall 12.5 x
compare the generated digest
value against the DigestValue
element in the Reference element
of the SignedInfo element.
Package implementers shall
consider references invalid if there
is any mismatch.

M6.31 | Streaming consumers that 12.5.1 X
maintain signatures shall be able to
cache the parts necessary for
detecting and processing
signatures.

115




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.32

The package implementer shall not
use the Markup Compatibility
namespace, as specified in Annex
F, “Standard Namespaces and
Content Types,” within the
package-specific Object element.
The package implementer shall
consider the use of the Markup
Compatibility namespace within
the package-specific Object
element to be an error.

12.6.2

X

M6.33

If an application allows for a single
part to contain information that
might not be fully understood by
all implementations, then the
format designer shall carefully
design the signing and verification
policies to account for the
possibility of different
implementations being used for
each action in the sequence of
content creation, content signing,
and signature verification.
Producers and consumers shall
account for this possibility in their
signing and verification processing.

12.6.2

M6.34

The following canonicalization
methods shall be supported by
producers and consumers of
packages with digital signatures:
XML Canonicalization (c14n)

XML Canonicalization with
Comments (c14n with comments)
Consumers validating signed
packages shall fail the validation if
other canonicalization methods are
encountered.

12.2.4.4

M6.35

A producer shall not specify more
than one relationship transform for
a particular relationships part. A
consumer shall treat the presence
of more than one relationship
transform for a particular
relationships part as an error.

12.2.4.25

116




1

Table H-13. Digital signatures recommendations

Conformance Requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.1

The producer should not create any
content in the Digital Signature Origin
part itself.

12.2.1

X

56.2

Producers generating digital
signatures should not create Digital
Signature Certificate parts that are
not the target of at least one Digital
Signature Certificate relationship from
a Digital Signature XML Signature
part. In addition, producers should
remove a Digital Signature Certificate
part if removing the last Digital
Signature XML Signature part that has
a Digital Signature Certificate
relationship to it.

12.2.3

S6.3

For digital signatures, a producer
should apply a canonicalization
transform to the SignedInfo element
when it generates it, and a consumer
should apply the canonicalization
transform to the Signedinfo element
when validating it.

12.24.4

S6.4

Producers and consumers should also
use canonicalization transforms for
references to parts that hold XML
documents.

12.2.4.4

S6.5

The producer should only create
Reference elements within a
SignedInfo element that reference an
Object element.

12.24.1

Table H—14. Digital signatures optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.1

Format designers might allow a
package to include digital signatures
to enable consumers to validate the
integrity of the contents. The
producer might include the digital
signature when allowed by the
format designer.

12

X

X

117




Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.2

If there are no Digital Signature XML
Signature parts in the package, the
Digital Signature Origin part is
optional.

12.2.1

X

06.4

The producer might create zero or
more Digital Signature XML
Signature parts in a package.

12.2.2

06.5

Alternatively, the producer might
store the certificate as a separate
part in the package, might embed it
within the Digital Signature XML
Signature part itself, or might not
include it in the package if certificate
data is known or can be obtained
from a local or remote certificate
store.

12.2.3

06.6

The producer might sign the part
holding the certificate.

12.2.3

06.7

Producers might share Digital
Signature Certificate parts by using
the same certificate to create more
than one signature.

12.2.3

06.8

The format designer might permit
one or more application-specific
Object elements. If allowed by the
format designer, format producers
can create one or more application-
specific Object elements.

12.2.4.14

06.9

Format designers and producers
might not apply package-specific
restrictions regarding URIs and
Transform elements to application-
specific Object element.

12.2.4.14

06.10

Format designers might permit
producers to sign individual
relationships in a package or the
Relationships part as a whole.

12.2.4.25

118




1

2

Conformance Requirements

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

06.11

The package implementer might
create relationships XML that
contains content from several
namespaces, along with versioning
instructions as defined in Part 5:
“Markup Compatibility and
Extensibility”.

12.2.4.26

X

06.12

Format designers might specify an
application-specific package part
format that allows for the
embedding of versioned or
extended content that might not be
fully understood by all present and
future implementations. Producers
might create such embedded
versioned or extended content and
consumers might encounter such
content.

12.6.2

H.7

Pack URI

Table H-15. Pack URI conformance requirements

ID

Rule

Reference

Package

Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.1

The authority component contains an
embedded URI that points to a
package. The package implementer
shall create an embedded URI that
meets the requirements defined in
RFC 3986 for a valid URI.

B.1

X

M7.2

The optional path component identifies
a particular part within the package.
The package implementer shall only
create path components that conform
to the part naming rules. When the
path component is missing, the
resource identified by the pack URI is
the package as a whole.

B.1

119




2

Conformance Requirements

Rule

Reference

Package

Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.3

The package implementer shall
consider pack URIs equivalent if:

The scheme components are octet-by-
octet identical after they are both
converted to lowercase; and

The URIs, decoded as described in §B.2
from the authority components are
equivalent (the equivalency rules by
scheme, as per RFC 3986); and

The path components are equivalent
when compared as case-insensitive
ASCII strings.

B.4

X

M7.4

The package implementer shall not
create an authority component with an
unescaped colon (:) character.

B.1

Table H-16. Pack URI optional requirements

ID

Rule

Reference

Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

07.1

Consumer applications, based on the
obsolete URI specification RFC 2396,
might tolerate the presence of an
unescaped colon character in an
authority component.

B.1

X

End of informative text.

120




10

11

12

13

14
15

16
17

18
19

20
21

22

23

24

25

26

27

Bibliography

Annex . Bibliography

The bibliography is informative.

The following documents are useful references for implementers and users of this Open Packaging specification,
in addition to the normative references:

ISO/IEC Directives Part 2, Rules for the structure and drafting of International Standards, Fourth edition, 2001,
ISBN 92-67-01070-0.

The Unicode Standard, Version 3.0, by the Unicode Consortium; Addison-Wesley Publishing Co, ISBN 0-201-
61633-5, February 2000. The latest version can be found at the Unicode Consortium's web site,
www.unicode.org, at this writing.

Dublin Core Element Set v1.1. http://purl.org/dc/elements/1.1/

Dublin Core Terms Namespace. http://purl.org/dc/terms/

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004.
Namespaces in XML 1.1, W3C Recommendation, 4 February 2004.

RFC 2616 Hypertext Transfer Protocol—HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Frystyk, J.
Gettys, P. Leach, L. Masinter, and J. Mogul, 1999, http://www.rfc-editor.org.

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding,
and L. Masinter, 2005, http://www.rfc-editor.org.

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005,
http://www.rfc-editor.org.

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005,
http://www.rfc-editor.org.

W3C NOTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997,
http://www.w3.0rg/TR/1998/NOTE-datetime-19980827.

XML Base, W3C Recommendation, 27 June 2001.
XML Path Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999.
XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004.

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004.

121


http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/

Bibliography

1 XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002.
2 ZIP File Format Specification, Version 6.2.1, PKWARE Inc., 2005.

3 End of informative text.

122



77

78

O 0 N o b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Annex]. Index

This annex is informative.

access
[ or- | AR U UUUURN 85
NEtWOrKed ........vveeeeeeiiiieeee e 85
ACCESS StYIE oo, 3, 22, 86
AUENONIY e 66
DASE URI..cccciiieeee ettt 3
DENAVION ..., 3
implementation-defined .........cccceeiveviieeiiicienenns 3
UNSPECIFIEA .uviiiiiiieicciee e 3
communication style ........cccovvveeeeeieniicnineeen. 3, 22,87
(o001 4 1 V1 0 1 1=] 3,85
(oo 1 =T o) A A o 1 I PPPPRPPE 3,13
(oo 1 =Y ) A A o 1L 1
content types Stream ........eevveveeeeeeeeeeeeeeeeeeeeeeennn. 3,23
(oo ] (=3 o] fo] o 1=] o =T3P 1
AOVICE vttt e eeeeeeeeeees 3,85
digital signature........cccoeeeeeiiei e, 1
direct access consUMPLION .......coccvveeieeciieeeeeiiieeeenns 86
format CoNSUMEN ......ociiciiieicieec e 3
format designer........ccoccveeeecciee e 3
format producer.......ccoccveeiicieei e 3
fragment ... 66
rowth hint....c.oooiiiiii e 3
IEC... See International Electrotechnical Commission
interleaved ordering......ccccceeeeccieeecciiee e 4
International Electrotechnical Commission ............. 8
[aYOUL SLYIE weveeeciiieecree e 4,22, 86
[0CAl ACCESS ..onnvvieieeiiieeree ettt 4
logical item NamMe .....cuvvveeviiiieccee e, 4,28
NEtWOIrked aCCESS ..ccvuviiriiiriieeiee e 4
ordering
interleaved.......cccccovviiii 22,87
SIMPIE et 22,86
PACK URI.ccceeeeeee et 4,11
PACKAEE . .cc i 1,4, 11
package implementer.......ccccceeeeeeecciiieeee e, 4
package model........ooccviiiiiei i, 1,4

End of informative text.

a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Index

package relationship.......ccccoecveeiiniieeinciee e, 4,16
PANT e e e e e e 1,4, 11
PArt NAME .. 4,11
PALN .o 66
(016 o - Y P U URST 66
pct-encoded characters.......occceeeeeeccciiiieeeeeee e 66
physical MapPINg ....cccoecveei i 1
physical model........ccoveiiiiiiiiieiee e, 4,622
physical package format.......ccccceeeiveiiniiienennnen, 4,622
PIECE ittt 4,30
o1 o TP PPPPPPR 5,22,85
o] oo [V Lol =] oS 5, 85
(e[S L] VU ST 66
FANAOM GCCESS vevvvvvrvrvrrrrrrererereeeeereeeereeeeeereeerereeee. 5, 87
relationship.....eeeeceee e, 5,16
relationship part ......ccccoeeeeciieieece e, 16
relationships part......ccccoceeeeciee e 5
relative referencCe .......oovveveeeeeeei e, 3
reserved Character.......ccooovveeeeeeiiiicciieeeeeec e 66
(Y010 ol = 66
SCHEME. .. 66
SEEMENT .ot 66
sequential delivery .....ccccceeeiiciiee e, 5,87
SIgNAtUIre POLICY..uvieiiiiie e 5
SIMPle Ordering......cccvveeieciieeeeciee e 5
simultaneous creation and consumption........... 5, 86
SEBAM e 511
streaming consuUMPLioN........coeecuvvvieeeeererrcninneen 5, 86
streaming creation........ccccccevevvciiieeeeeeseersiieeen 5, 86
SUb-delimS...cccoiieeiieiee e 66
thumbnail .....ooovvvveiiiiiiiiiiiiiiieeeeeie, 1,5,41,108
unreserved characters......cccooovveeeeeieeeecvveeeeeeeeeeenns 66
well-known part.......ccooocciieii e, 5
XIP @rChiVe .ueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 31
ZIP QrCNIVE..cccveieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeveeeeeeeeeseeeeeeees 5
A |1 =Y o o PN 5,31

123



Index

2 to be used to help end-users identify parts of a package or a package as a whole. These images can be
3 generated by the producer and stored as parts.

124



	Table of Contents
	Foreword
	Scope
	Normative References
	Definitions
	Notational Conventions
	Document Conventions
	Diagram Notes

	Acronyms and Abbreviations
	General Description
	Overview
	Package Model
	Parts
	Part Names
	Part Naming
	Part Name Equivalence

	Content Types
	Growth Hint
	XML Usage

	Part Addressing
	Relative References
	Fragments

	Relationships
	Relationships Part
	Package Relationships
	Relationship Markup
	Relationships Element
	Relationship Element

	Representing Relationships
	Support for Versioning and Extensibility


	Physical Package
	Physical Mapping Guidelines
	Mapped Components
	Mapping Content Types
	Identifying the Part Content Type
	Content Types Stream Markup
	Types Element
	Default Element
	Override Element
	Content Types Stream Markup Example

	Setting the Content Type of a Part
	Getting the Content Type of a Part
	Support for Versioning and Extensibility

	Mapping Part Names to Physical Package Item Names
	Logical Item Names
	Mapping Part Names to Logical Item Names
	Mapping Logical Item Names and Physical Package Item Names
	Mapping Logical Item Names to Part Names

	Interleaving

	Mapping to a ZIP Archive
	Mapping Part Data
	ZIP Item Names
	Mapping Part Names to ZIP Item Names
	Mapping ZIP Item Names to Part Names
	ZIP Package Limitations
	Mapping Part Content Type
	Mapping the Growth Hint
	Late Detection of ZIP Items Unfit for Streaming Consumption
	ZIP Format Clarifications for Packages


	Core Properties
	Core Properties Part
	Location of Core Properties Part
	Support for Versioning and Extensibility
	Schema Restrictions for Core Properties

	Thumbnails
	Thumbnail Parts

	Digital Signatures
	Choosing Content to Sign
	Digital Signature Parts
	Digital Signature Origin Part
	Digital Signature XML Signature Part
	Digital Signature Certificate Part
	Digital Signature Markup
	Modifications to the XML Digital Signature Specification
	Signature Element
	SignedInfo Element
	CanonicalizationMethod Element
	SignatureMethod Element
	Reference Element
	Usage of <Reference> Element as <Manifest> Child Element

	Transforms Element
	Transform Element
	DigestMethod Element
	DigestValue Element
	SignatureValue Element
	Object Element
	Package-Specific Object Element
	Application-Specific Object Element
	KeyInfo Element
	X509Data Element
	X509Certificate Element
	Manifest Element
	SignatureProperties Element
	SignatureProperty Element
	SignatureTime Element
	Format Element
	Value Element
	RelationshipReference Element
	RelationshipsGroupReference Element
	Relationships Transform Algorithm


	Digital Signature Example
	Generating Signatures
	Validating Signatures
	Signature Validation and Streaming Consumption

	Support for Versioning and Extensibility
	Using Relationship Types
	Markup Compatibility Namespace for Package Digital Signatures


	Resolving Unicode Strings to Part Names
	Creating an IRI from a Unicode String
	Creating a URI from an IRI
	Resolving a Relative Reference to a Part Name
	String Conversion Examples

	Pack URI
	Pack URI Scheme
	Resolving a Pack URI to a Resource
	Composing a Pack URI
	Equivalence

	ZIP Appnote.txt Clarifications
	Archive File Header Consistency
	Table Key

	Schemas - XML Schema
	Schemas - RELAX NG
	Standard Namespaces and Content Types
	Physical Model Design Considerations
	Access Styles
	Direct Access Consumption
	Streaming Consumption
	Streaming Creation
	Simultaneous Creation and Consumption

	Layout Styles
	Simple Ordering
	Interleaved Ordering

	Communication Styles
	Sequential Delivery
	Random Access


	Conformance Requirements
	Package Model
	Physical Packages
	ZIP Physical Mapping
	Core Properties
	Thumbnail
	Digital Signatures
	Pack URI

	Bibliography
	Index

