
Office Open

XML
Part 2: Open Packaging Conventions

December 2006

Table of Contents

 iii

Table of Contents 1

Foreword ..vii 2

1. Scope .. 1 3

2. Normative References .. 2 4

3. Definitions ... 3 5

4. Notational Conventions ... 6 6

4.1 Document Conventions ... 6 7

4.2 Diagram Notes ... 6 8

5. Acronyms and Abbreviations .. 8 9

6. General Description ... 9 10

7. Overview ... 10 11

8. Package Model .. 11 12

8.1 Parts ... 11 13

8.1.1 Part Names .. 11 14

8.1.2 Content Types ... 13 15

8.1.3 Growth Hint ... 13 16

8.1.4 XML Usage ... 14 17

8.2 Part Addressing ... 14 18

8.2.1 Relative References ... 15 19

8.2.2 Fragments .. 15 20

8.3 Relationships ... 15 21

8.3.1 Relationships Part.. 16 22

8.3.2 Package Relationships ... 16 23

8.3.3 Relationship Markup ... 16 24

8.3.4 Representing Relationships ... 19 25

8.3.5 Support for Versioning and Extensibility ... 21 26

9. Physical Package .. 22 27

9.1 Physical Mapping Guidelines ... 22 28

9.1.1 Mapped Components .. 23 29

9.1.2 Mapping Content Types .. 23 30

9.1.3 Mapping Part Names to Physical Package Item Names .. 28 31

9.1.4 Interleaving ... 30 32

9.2 Mapping to a ZIP Archive .. 31 33

9.2.1 Mapping Part Data .. 32 34

9.2.2 ZIP Item Names ... 32 35

9.2.3 Mapping Part Names to ZIP Item Names .. 32 36

9.2.4 Mapping ZIP Item Names to Part Names .. 33 37

9.2.5 ZIP Package Limitations ... 33 38

9.2.6 Mapping Part Content Type .. 34 39

9.2.7 Mapping the Growth Hint ... 34 40

9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption .. 34 41

Table of Contents

 iv

9.2.9 ZIP Format Clarifications for Packages .. 35 1

10. Core Properties .. 36 2

10.1 Core Properties Part .. 37 3

10.2 Location of Core Properties Part ... 39 4

10.3 Support for Versioning and Extensibility ... 39 5

10.4 Schema Restrictions for Core Properties .. 39 6

11. Thumbnails .. 41 7

11.1 Thumbnail Parts... 41 8

12. Digital Signatures ... 42 9

12.1 Choosing Content to Sign .. 42 10

12.2 Digital Signature Parts ... 42 11

12.2.1 Digital Signature Origin Part .. 43 12

12.2.2 Digital Signature XML Signature Part .. 43 13

12.2.3 Digital Signature Certificate Part ... 44 14

12.2.4 Digital Signature Markup .. 44 15

12.3 Digital Signature Example .. 58 16

12.4 Generating Signatures ... 60 17

12.5 Validating Signatures ... 61 18

12.5.1 Signature Validation and Streaming Consumption ... 62 19

12.6 Support for Versioning and Extensibility ... 62 20

12.6.1 Using Relationship Types .. 62 21

12.6.2 Markup Compatibility Namespace for Package Digital Signatures ... 62 22

Annex A. Resolving Unicode Strings to Part Names.. 64 23

A.1 Creating an IRI from a Unicode String ... 64 24

A.2 Creating a URI from an IRI ... 64 25

A.3 Resolving a Relative Reference to a Part Name .. 65 26

A.4 String Conversion Examples .. 65 27

Annex B. Pack URI .. 66 28

B.1 Pack URI Scheme ... 66 29

B.2 Resolving a Pack URI to a Resource ... 67 30

B.3 Composing a Pack URI ... 68 31

B.4 Equivalence ... 69 32

Annex C. ZIP Appnote.txt Clarifications ... 70 33

C.1 Archive File Header Consistency ... 70 34

C.2 Table Key ... 70 35

Annex D. Schemas - XML Schema .. 81 36

Annex E. Schemas - RELAX NG .. 82 37

Annex F. Standard Namespaces and Content Types .. 83 38

Annex G. Physical Model Design Considerations .. 85 39

G.1 Access Styles .. 86 40

G.1.1 Direct Access Consumption ... 86 41

G.1.2 Streaming Consumption .. 86 42

Table of Contents

 v

G.1.3 Streaming Creation ... 86 1

G.1.4 Simultaneous Creation and Consumption .. 86 2

G.2 Layout Styles .. 86 3

G.2.1 Simple Ordering... 86 4

G.2.2 Interleaved Ordering ... 87 5

G.3 Communication Styles ... 87 6

G.3.1 Sequential Delivery ... 87 7

G.3.2 Random Access.. 87 8

Annex H. Conformance Requirements ... 88 9

H.1 Package Model .. 88 10

H.2 Physical Packages .. 96 11

H.3 ZIP Physical Mapping ... 101 12

H.4 Core Properties .. 106 13

H.5 Thumbnail .. 107 14

H.6 Digital Signatures ... 108 15

H.7 Pack URI ... 119 16

Annex I. Bibliography .. 121 17

Annex J. Index ... 123 18

19

Foreword

 vii

Foreword 1

This multi-part Standard deals with Office Open XML Format-related technology, and consists of the following 2

parts: 3

 Part 1: "Fundamentals" 4

 Part 2: "Open Packaging Conventions" (this document) 5

 Part 3: "Primer" 6

 Part 4: "Markup Language Reference" 7

 Part 5: "Markup Compatibility and Extensibility" 8

This part, Part 2, includes a number of annexes that refer to data files provided in electronic form only.9

Scope

 1

1. Scope 1

This Part (the Open Packaging Conventions specification) specifies a set of conventions that are used by Office 2

Open XML documents to define the structure and functionality of a package in terms of a package model and a 3

physical model. 4

The package model defines a package abstraction that holds a collection of parts. The parts are composed, 5

processed, and persisted according to a set of rules. Parts can have relationships to other parts or external 6

resources, and the package as a whole can have relationships to parts it contains or external resources. The 7

package model specifies how the parts of a package are named and related. Parts have content types and are 8

uniquely identified using the well-defined naming guidelines provided in this Open Packaging specification. 9

The physical mapping defines the mapping of the components of the package model to the features of a specific 10

physical format, namely a ZIP archive. 11

This Open Packaging Conventions specification also describes certain features that might be supported in a 12

package, including core properties for package metadata, a thumbnail for graphical representation of a package, 13

and digital signatures of package contents. 14

Because this Standard will continue to evolve, packages are designed to accommodate extensions and support 15

compatibility goals in a limited way. The versioning and extensibility mechanisms described in Part 5: "Markup 16

Compatibility and Extensibility" support compatibility between software systems based on different versions of 17

this Standard while allowing package creators to make use of new or proprietary features. 18

This Open Packaging Conventions specification specifies requirements for package implementers, producers, 19

and consumers. 20

In all subsequent uses, the term "this specification" shall refer to the content of this Part. 21

Normative References

 2

2. Normative References 1

The following normative documents contain provisions, which, through reference in this text, constitute 2

provisions of this Open Packaging specification. For dated references, subsequent amendments to, or revisions 3

of, any of these publications do not apply. However, parties to agreements based on this Open Packaging 4

specification are encouraged to investigate the possibility of applying the most recent editions of the normative 5

documents indicated below. For undated references, the latest edition of the normative document referred to 6

applies. Members of ISO and IEC maintain registers of currently valid International Standards. 7

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates and 8

times. 9

ISO/IEC 9594-8 Public-key and attribute certificate frameworks (x.509 Certificate). 10

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS). 11

Definitions

 3

3. Definitions 1

For the purposes of this Open Packaging specification, the following definitions apply. Other terms are defined 2

where they appear in italic type. Terms explicitly defined in this Open Packaging specification are not to be 3

presumed to refer implicitly to similar terms defined elsewhere. 4

The terms base URI and relative reference are used in accordance with RFC 3986. 5

access style — The style in which local access or networked access is conducted. The access styles are as follows: 6

streaming creation, streaming consumption, simultaneous creation and consumption, and direct access 7

consumption. 8

behavior — External appearance or action. 9

behavior, implementation-defined — Unspecified behavior where each implementation shall document that 10

behavior, thereby promoting predictability and reproducibility within any given implementation. (This term is 11

sometimes called “application-specific behavior”.) 12

behavior, unspecified —Behavior where this Open Packaging specification imposes no requirements. 13

communication style — The style in which package contents are delivered by a producer or received by a 14

consumer. Communication styles include: random access and sequential delivery. 15

consumer — A piece of software or a device that reads packages through a package implementer. A consumer is 16

often designed to consume packages only for a specific physical package format. 17

content type — Describes the content stored in a part. Content types define a media type, a subtype, and an 18

optional set of parameters, as defined in RFC 2616. 19

Content Types stream — A specially-named stream that defines mappings from part names to content types. 20

The content types stream is not itself a part, and is not URI addressable. 21

device — A piece of hardware, such as a personal computer, printer, or scanner, that performs a single function 22

or set of functions. 23

format consumer — A consumer that consumes packages conforming to a format designer's specification. 24

format designer — The author of a particular file format specification built on this Open Packaging Conventions 25

specification. 26

format producer — A producer that produces packages conforming to a format designer's specification. 27

growth hint — A suggested number of bytes to reserve for a part to grow in-place. 28

Definitions

 4

interleaved ordering — The layout style of a physical package where parts are broken into pieces and “mixed-1

in” with pieces from other parts. When delivered, interleaved packages can help improve the performance of 2

the consumer processing the package. 3

layout style — The style in which the collection of parts in a physical package is laid out: either simple ordering 4

or interleaved ordering. 5

local access — The access architecture in which a pipe carries data directly from a producer to a consumer on a 6

single device. 7

logical item name — An abstraction that allows package implementers to manipulate physical data items 8

consistently regardless of whether those data items can be mapped to parts or not or whether the package is 9

laid out with simple ordering or interleaved ordering. 10

networked access — The access architecture in which a consumer and the producer communicate over a 11

protocol, such as across a process boundary, or between a server and a desktop computer. 12

pack URI — A URI scheme that allows URIs to be used as a uniform mechanism for addressing parts within a 13

package. Pack URIs are used as Base URIs for resolving relative references among parts in a package. 14

package — A logical entity that holds a collection of parts. 15

package implementer — Software that implements the physical input-output operations to a package according 16

to the requirements and recommendations of this Open Packaging specification. A package implementer is used 17

by a producer or consumer to interact with a physical package. A package implementer may be either a stand-18

alone API or may be an integrated component of a producer, consumer application, or device. 19

package model — A package abstraction that holds a collection of parts. 20

package relationship — A relationship whose target is a part and whose source is the package as a whole. 21

Package relationships are found in the package relationships part named “/_rels/.rels”. 22

part — A stream of bytes with a MIME content type and associated common properties. Typically corresponds 23

to a file [Example: on a file system end example], a stream [Example: in a compound file end example], or a 24

resource [Example: in an HTTP URI end example]. 25

part name — The path component of a pack URI. Part names are used to refer to a part in the context of a 26

package, typically as part of a URI. 27

physical model — A description of the capabilities of a particular physical format. 28

physical package format — A specific file format, or other persistence or transport mechanism, that can 29

represent all of the capabilities of a package. 30

piece — A portion of a part. Pieces of different parts may be interleaved together. The individual pieces are 31

named using a unique mapping from the part name. Piece name grammar is not equivalent to the part name 32

grammar. Pieces are not addressable in the package model. 33

Definitions

 5

pipe — A communication mechanism that carries data from the producer to the consumer. 1

producer — A piece of software or a device that writes packages through a package implementer. A producer is 2

often designed to produce packages according to a particular physical package format specification. 3

random access — A style of communication between the producer and the consumer of the package. Random 4

access allows the consumer to reference and obtain data from anywhere within a package. 5

relationship —The kind of connection between a source part and a target part in a package. Relationships make 6

the connections between parts directly discoverable without looking at the content in the parts, and without 7

altering the parts themselves. (See also Package Relationships.) 8

relationships part — A part containing an XML representation of relationships. 9

sequential delivery — A communication style in which all of the physical bits in the package are delivered in the 10

order they appear in the package. 11

signature policy — A format-defined policy that specifies what configuration of parts and relationships shall or 12

might be included in a signature for that format and what additional behaviors that producers and consumers of 13

that format shall follow when applying or verifying signatures following that format's signature policy. 14

simple ordering — A defined ordering for laying out the parts in a package in which all the bits comprising each 15

part are stored contiguously. 16

simultaneous creation and consumption — A style of access between a producer and a consumer in highly 17

pipelined environments where streaming creation and streaming consumption occur simultaneously. 18

stream — A linearly ordered sequence of bytes. 19

streaming consumption — An access style in which parts of a physical package may be processed by a consumer 20

before all of the bits of the package have been delivered through the pipe. 21

streaming creation — A production style in which a producer dynamically adds parts to a package after other 22

parts have been added without modifying those parts. 23

thumbnail — A small image that is a graphical representation of a part or the package as a whole. 24

well-known part — A part with a well-known relationship, which enables the part to be found without knowing 25

the location of other parts. 26

ZIP archive — A ZIP file as defined in the ZIP file format specification. A ZIP archive contains ZIP items. 27

ZIP item — A ZIP item is an atomic set of data in a ZIP archive that becomes a file when the archive is 28

uncompressed. When a user unzips a ZIP based package, the user sees an organized set of files and folders. 29

Notational Conventions

 6

4. Notational Conventions 1

4.1 Document Conventions 2

The following typographical conventions are used in this Standard: 3

1. The first occurrence of a new term is written in italics. [Example: … is considered normative. end 4

example] 5

2. A term defined as a basic definition is written in bold. [Example: behavior — External … end example] 6

3. The name of an XML element is written using an Element style. [Example: The root element is 7

document. end example] 8

4. The name of an XML element attribute is written using an Attribute style. [Example: … an id attribute. 9

end example] 10

5. An XML element attribute value is written using a constant-width style. [Example: … value of 11

CommentReference. end example] 12

6. An XML element type name is written using a Type style. [Example: … as values of the xsd:anyURI data 13

type. end example] 14

4.2 Diagram Notes 15

In some cases, markup semantics are described using diagrams. The diagrams place the parent element on the 16

left, with attributes and child elements to the right. The symbols are described below. 17

 18

Symbol Description

Required element: This box represents an element that shall appear
exactly once in markup when the parent element is included. The
“+” and “–” symbols on the right of these boxes have no semantic
meaning.

Optional element: This box represents an element that shall appear
zero or one times in markup when the parent element is included.

Range indicator: These numbers indicate that the designated
element or choice of elements can appear in markup any number of
times within the range specified.

Attribute group: This box indicates that the enclosed boxes are each
attributes of the parent element. Solid-border boxes are required
attributes; dashed-border boxes are optional attributes.

Notational Conventions

 7

Symbol Description

Sequence symbol: The element boxes connected to this symbol
shall appear in markup in the illustrated sequence only, from top to
bottom.

Choice symbol: Only one of the element boxes connected to this
symbol shall appear in markup.

Type indicator: The elements within the dashed box are of the
complex type indicated.

Acronyms and Abbreviations

 8

5. Acronyms and Abbreviations 1

This clause is informative. 2

The following acronyms and abbreviations are used throughout this specification: 3

IEC — the International Electrotechnical Commission 4

ISO — the International Organization for Standardization 5

W3C — World Wide Web Consortium 6

End of informative text. 7

General Description

 9

6. General Description 1

This Open Packaging specification is intended for use by implementers, academics, and application 2

programmers. As such, it contains a considerable amount of explanatory material that, strictly speaking, is not 3

necessary in a formal specification. 4

This Open Packaging specification is divided into the following subdivisions: 5

1. Front matter (clauses 1–7); 6

2. Overview (clause 8); 7

3. Main body (clauses 9-13); 8

4. Annexes 9

Examples are provided to illustrate possible forms of the constructions described. References are used to refer 10

to related clauses. Notes are provided to give advice or guidance to implementers or programmers. Annexes 11

provide additional information and summarize the information contained in this Open Packaging specification. 12

The following form the normative part of this Open Packaging specification: 13

 Introduction 14

 Clauses 1–4, 6, and 8–12 15

 Annex A–Annex D 16

 Annex F 17

The following form the informative part of this Open Packaging specification: 18

 Clauses 5 and 7 19

 Annex E 20

 Annex G–Annex J 21

 All notes 22

 All examples 23

Whole clauses and annexes that are informative are identified as such. Informative text that is contained within 24

normative text is identified as either an example, or a note as specified in 4.1, “Document Conventions.” 25

Overview

 10

7. Overview 1

This clause is informative. 2

This Open Packaging specification describes an abstract model and physical format conventions for the use of 3

XML, Unicode, ZIP, and other openly available technologies and specifications to organize the content and 4

resources of a document within a package. It is intended to support the content types and organization for 5

various applications and is written for developers who are building systems that process package content. 6

In addition, this Open Packaging specification defines common services that can be included in a package, such 7

as Core Properties and Digital Signatures. 8

A primary goal is to ensure the interoperability of independently created software and hardware systems that 9

produce or consume package content and use common services. This Open Packaging specification defines the 10

formal requirements that producers and consumers shall satisfy in order to achieve interoperability. 11

Various XML-based building blocks within a package make use of the conventions described in Part 5: “Markup 12

Compatibility and Extensibility” to facilitate future enhancement and extension of XML markup. That part shall 13

be explicitly cited by any markup specification that bases its versioning and extensibility strategy on Markup 14

Compatibility elements and attributes. 15

End of informative text. 16

Package Model

 11

8. Package Model 1

A package is a logical entity that holds a collection of parts. The purpose of the package is to aggregate all of the 2

pieces of a document (or other type of content) into a single object. [Example: A package holding a document 3

with a picture might contain two parts: an XML markup part representing the document and another part 4

representing the picture. end example] The package is also capable of storing relationships between parts. 5

The package provides a convenient way to distribute documents with all of their component pieces, such as 6

images, fonts, and data. Although this Open Packaging specification defines a single-file package format, the 7

package model allows for the future definition of other physical package representations. [Example: A package 8

could be physically represented in a collection of loose files, in a database, or ephemerally in transit over a 9

network connection. end example] 10

This Open Packaging specification also defines a URI scheme, the pack URI, that allows URIs to be used as a 11

uniform mechanism for addressing parts within a package. 12

8.1 Parts 13

A part is a stream of bytes with the properties listed in Table 8–1. A stream is a linearly ordered sequence of 14

bytes. Parts are analogous to a file in a file system or to a resource on an HTTP server. 15

Table 8–1. Part properties 16

Name Description Required/Optional

Name The name of the part Required. The package
implementer shall require a
part name. [M1.1]

Content
Type

The type of content stored in the part Required. The package
implementer shall require a
content type and the format
designer shall specify the
content type. [M1.2]

Growth Hint A suggested number of bytes to reserve for
the part to grow in-place

Optional. The package
implementer might allow a
growth hint to be provided by
a producer. [O1.1]

8.1.1 Part Names 17

Each part has a name. Part names refer to parts within a package. [Example: The part name 18

“/hello/world/doc.xml” contains three segments: “hello”, “world”, and “doc.xml”. The first two segments in the 19

sample represent levels in the logical hierarchy and serve to organize the parts of the package, whereas the 20

Package Model

 12

third contains actual content. Note that segments are not explicitly represented as folders in the package model, 1

and no directory of folders exists in the package model. end example] 2

Part Name Syntax 3

The part name grammar is defined as follows: 4

part_name = 1*("/" segment) 5

segment = 1*(pchar) 6

pchar is defined in RFC 3986. 7

The part name grammar implies the following constraints. The package implementer shall neither create any 8

part that violates these constraints nor retrieve any data from a package as a part if the purported part name 9

violates these constraints. 10

 A part name shall not be empty. [M1.1] 11

 A part name shall not have empty segments. [M1.3] 12

 A part name shall start with a forward slash (“/”) character. *M1.4+ 13

 A part name shall not have a forward slash as the last character. [M1.5] 14

 A segment shall not hold any characters other than pchar characters. [M1.6] 15

Part segments have the following additional constraints. The package implementer shall neither create any part 16

with a part name comprised of a segment that violates these constraints nor retrieve any data from a package as 17

a part if the purported part name contains a segment that violates these constraints. 18

 A segment shall not contain percent-encoded forward slash (“/”), or backward slash (“\”) characters. 19

[M1.7] 20

 A segment shall not contain percent-encoded unreserved characters. [M1.8] 21

 A segment shall not end with a dot (“.”) character. *M1.9+ 22

 A segment shall include at least one non-dot character. [M1.10] 23

[Example: 24

Example 8–1. A part name 25

/a/%D1%86.xml 26

/xml/item1.xml 27

Example 8–2. An invalid part name 28

//xml/. 29

end example] 30

Package Model

 13

8.1.1.1 Part Naming 1

A package implementer shall neither create nor recognize a part with a part name derived from another part 2

name by appending segments to it. [M1.11] [Example: If a package contains a part named 3

“/segment1/segment2/.../segmentn”, then other parts in that package shall not have names such as: 4

“/segment1”, “segment1/segment2”, or “/segment1/segment2/.../segmentn-1”. end example] 5

8.1.1.2 Part Name Equivalence 6

Part name equivalence is determined by comparing part names as case-insensitive ASCII strings. Packages shall 7

not contain equivalent part names and package implementers shall neither create nor recognize packages with 8

equivalent part names. [M1.12] 9

8.1.2 Content Types 10

Every part has a content type, which identifies the type of content that is stored in the part. Content types 11

define a media type, a subtype, and an optional set of parameters. Package implementers shall only create and 12

only recognize parts with a content type; format designers shall specify a content type for each part included in 13

the format. Content types for package parts shall fit the definition and syntax for media types as specified in RFC 14

2616, §3.7. [M1.13] This definition is as follows: 15

media-type = type "/" subtype *(";" parameter) 16

where parameter is expressed as 17

attribute "=" value 18

The type, subtype, and parameter attribute names are case-insensitive. Parameter values may be case-sensitive, 19

depending on the semantics of the parameter attribute name. 20

Content types shall not use linear white space either between the type and subtype or between an attribute and 21

its value. Content types also shall not have leading or trailing white spaces. Package implementers shall create 22

only such content types and shall require such content types when retrieving a part from a package; format 23

designers shall specify only such content types for inclusion in the format. [M1.14] 24

The package implementer shall require a content type that does not include comments and the format designer 25

shall specify such a content type. [M1.15] 26

Format designers might restrict the usage of parameters for content types. [O1.2] 27

Content types for package-specific parts are defined in Annex F, “Standard Namespaces and Content Types.” 28

8.1.3 Growth Hint 29

Sometimes a part is modified after it is placed in a package. Depending on the nature of the modification, the 30

part might need to grow. For some physical package formats, this could be an expensive operation and could 31

damage an otherwise efficiently interleaved package. Ideally, the part should be allowed to grow in-place, 32

moving as few bytes as possible. 33

Package Model

 14

To support these scenarios, a package implementer can associate a growth hint with a part. [O1.1] The growth 1

hint identifies the number of bytes by which the producer predicts that the part will grow. In a mapping to a 2

particular physical format, this information might be used to reserve space to allow the part to grow in-place. 3

This number serves as a hint only. The package implementer might ignore the growth hint or adhere only loosely 4

to it when specifying the physical mapping. [O1.3] If the package implementer specifies a growth hint, it is set 5

when a part is created and the package implementer shall not change the growth hint after the part has been 6

created. [M1.16] 7

8.1.4 XML Usage 8

All XML content of the parts defined in this Open Packaging specification shall conform to the following 9

validation rules: 10

1. XML content shall be encoded using either UTF-8 or UTF-16. If any part includes an encoding 11

declaration, as defined in §4.3.3 of the XML 1.0 specification, that declaration shall not name any 12

encoding other than UTF-8 or UTF-16. Package implementers shall enforce this requirement upon 13

creation and retrieval of the XML content. [M1.17] 14

2. The XML 1.0 specification allows for the usage of Document Type Definitions (DTDs), which enable 15

Denial of Service attacks, typically through the use of an internal entity expansion technique. As 16

mitigation for this potential threat, DTD declarations shall not be used in the XML markup defined in this 17

Open Packaging specification. Package implementers shall enforce this requirement upon creation and 18

retrieval of the XML content and shall treat the presence of DTD declarations as an error. [M1.18] 19

3. If the XML content contains the Markup Compatibility namespace, as described in Part 5: “Markup 20

Compatibility and Extensibility”, it shall be processed by the package implementer to remove Markup 21

Compatibility elements and attributes, ignorable namespace declarations, and ignored elements and 22

attributes before applying subsequent validation rules. [M1.19] 23

4. XML content shall be valid against the corresponding XSD schema defined in this Open Packaging 24

specification. In particular, the XML content shall not contain elements or attributes drawn from 25

namespaces that are not explicitly defined in the corresponding XSD unless the XSD allows elements or 26

attributes drawn from any namespace to be present in particular locations in the XML markup. Package 27

implementers shall enforce this requirement upon creation and retrieval of the XML content. [M1.20] 28

5. XML content shall not contain elements or attributes drawn from “xml” or “xsi” namespaces unless they 29

are explicitly defined in the XSD schema or by other means described in this Open Packaging 30

specification. Package implementers shall enforce this requirement upon creation and retrieval of the 31

XML content. [M1.21] 32

8.2 Part Addressing 33

Parts often contain references to other parts. [Example: A package might contain two parts: an XML markup file 34

and an image. The markup file holds a reference to the image so that when the markup file is processed, the 35

associated image can be identified and located. end example.] 36

Package Model

 15

8.2.1 Relative References 1

A relative reference is expressed so that the address of the referenced part is determined relative to the part 2

containing the reference. 3

Relative references from a part are interpreted relative to the base URI of that part. By default, the base URI of a 4

part is derived from the name of the part, as defined in §B.3. 5

If the format designer permits it, parts can contain Unicode strings representing references to other parts. If 6

allowed by the format designer, format producers can create such parts and format consumers shall consume 7

them. [O1.4] In particular, XML markup might contain Unicode strings referencing other parts as values of the 8

xsd:anyURI data type. Format consumers shall convert these Unicode strings to URIs, as defined in Annex A, 9

“Resolving Unicode Strings to Part Names,” before resolving them relative to the base URI of the part containing 10

the Unicode string. [M1.23] 11

Some types of content provide a way to override the default base URI by specifying a different base in the 12

content. [Example: XML Base or HTML end example]. In the presence of one of these overrides, format 13

consumers shall use the specified base URI instead of the default. [M1.24] 14

[Example: 15

Example 8–3. Part names and relative references 16

A package includes parts with the following names: 17

 /markup/page.xml 18

 /images/picture.jpg 19

 /images/other_picture.jpg 20

If /markup/page.xml contains a reference to ../images/picture.jpg, then this reference is interpreted as referring 21

to the part name /images/picture.jpg. 22

end example] 23

8.2.2 Fragments 24

Sometimes it is useful to address a portion of or a specific point in a part. In URIs, a fragment identifier is used 25

for this purpose. (See RFC 3986.) 26

[Example: In an XML part a fragment identifier might identify a portion of the XML content using an XPath 27

expression. end example] 28

8.3 Relationships 29

Parts often contain references to other parts in the package and to resources outside of the package. In general, 30

these references are represented inside the referring part in ways that are specific to the content type of the 31

part, that is, in arbitrary markup or an application-specific encoding. This effectively hides the internal and 32

Package Model

 16

external links between parts from consumers that do not understand the content types of the parts containing 1

such references. 2

The package introduces a higher-level mechanism to describe references from parts to other internal or external 3

resources: relationships. Relationships represent the type of connection between a source part and a target 4

resource. They make the connection directly discoverable without looking at the part contents, so they are 5

independent of content-specific schemas and quick to resolve. 6

Relationships provide a second important function: relating parts without modifying their content. Sometimes 7

relationships act as a label where the content type of the labeled part does not define a way to attach the given 8

information. Some scenarios require information to be attached to an existing part without modifying that part, 9

either because the part is encrypted and cannot be decrypted, or because it is digitally signed and changing it 10

would invalidate the signature. 11

8.3.1 Relationships Part 12

Each set of relationships sharing a common source is represented by XML stored in a Relationships part. The 13

Relationships part is URI-addressable and it can be opened, read, and deleted. The Relationships part shall not 14

have relationships to any other part. Package implementers shall enforce this requirement upon the attempt to 15

create such a relationship and shall treat any such relationship as invalid. [M1.25] 16

The content type of the Relationships part is defined in Annex F, “Standard Namespaces and Content Types". 17

8.3.2 Package Relationships 18

A relationship whose source is a package as a whole is known as a package relationship. Package relationships 19

are used to identify the “starting” parts in a package for a given context. This method avoids relying on naming 20

conventions for finding parts in a package. 21

8.3.3 Relationship Markup 22

Relationships are represented using Relationship elements nested in a single Relationships element. These 23

elements are defined in the Relationships namespace, as specified in Annex F, “Standard Namespaces and 24

Content Types". The schema for relationships is described in Annex D, "Schemas - XML Schema". 25

The package implementer shall require that every Relationship element has an Id attribute, the value of which 26

is unique within the Relationships part, and that the Id type is xsd:ID, the value of which conforms to the naming 27

restrictions for xsd:ID as described in the W3C Recommendation “XML Schema Part 2: Datatypes.” [M1.26] 28

The nature of a Relationship element is identified by the Type attribute. Relationship Type is defined in the 29

same way that namespaces are defined for XML namespaces. By using types patterned after the Internet 30

domain-name space, non-coordinating parties can safely create non-conflicting relationship types. 31

Relationship types can be compared to determine whether two Relationship elements are of the same type. 32

This comparison is conducted in the same way as when comparing URIs that identify XML namespaces: the two 33

URIs are treated as strings and considered identical if and only if the strings have the same sequence of 34

characters. The comparison is case-sensitive and no escaping is done or undone. 35

Package Model

 17

The Target attribute of the Relationship element holds a URI that points to a target resource. Where the URI is 1

expressed as a relative reference, it is resolved against the base URI of the Relationships source part. The 2

xml:base attribute shall not be used to specify a base URI for relationship XML content. 3

8.3.3.1 Relationships Element 4

The structure of a Relationships element is shown in the following diagram: 5

diagram

annotation The root element of the Relationships part.

8.3.3.2 Relationship Element 6

The structure of a Relationship element is shown in the following diagram: 7

diagram

attributes Name Type Use Default Fixed Annotation

TargetMode ST_TargetMode optional The package implementer might allow

a TargetMode to be provided by a

producer. [O1.5]

The TargetMode indicates whether

or not the target describes a resource

inside the package or outside the

package. The valid values are

“Internal” and “External”.

The default value is Internal. When

set to Internal, the Target attribute

shall be a relative reference and that

Package Model

 18

reference is interpreted relative to

the “parent” part. For package

relationships, the package

implementer shall resolve relative

references in the Target attribute

against the pack URI that identifies

the entire package resource. [M1.29]

For more information, see Annex B,

“Pack URI.”

When set to External, the Target

attribute may be a relative reference

or a URI. If the Target attribute is a

relative reference, then that

reference is interpreted relative to

the location of the package.

Target xsd:anyURI required The package implementer shall

require the Target attribute to be a

URI reference pointing to a target

resource. The URI reference shall be a

URI or a relative reference. [M1.28]

Target attribute values are

dependent on the TargetMode

attribute value.

Type xsd:anyURI required The package implementer shall

require the Type attribute to be a URI

that defines the role of the

relationship and the format designer

shall specify such a Type. [M1.27]

Id xsd:ID required The package implementer shall

require a valid XML identifier. [M1.26]

The Id type is xsd:ID and it shall

conform to the naming restrictions

for xsd:ID as specified in the W3C

Recommendation “XML Schema Part

2: Datatypes.” The value of the Id

Package Model

 19

attribute shall be unique within the

Relationships part.

annotation Represents a single relationship.

 1

A format designer might allow fragment identifiers in the value of the Target attribute of the Relationship 2

element. [O1.6] If a fragment identifier is allowed in the Target attribute of the Relationship element, a 3

package implementer shall not resolve the URI to a scope less than an entire part. [M1.32] 4

8.3.4 Representing Relationships 5

Relationships are represented in XML in a Relationships part. Each part in the package that is the source of one 6

or more relationships can have an associated Relationships part. This part holds the list of relationships for the 7

source part. For more information on the Relationships namespace and relationship types, see Annex F, 8

“Standard Namespaces and Content Types.” 9

A special naming convention is used for the Relationships part. First, the Relationships part for a part in a given 10

folder in the name hierarchy is stored in a sub-folder called “_rels”. Second, the name of the Relationships part 11

is formed by appending “.rels” to the name of the original part. Package relationships are found in the package 12

relationships part named “/_rels/.rels”. 13

The package implementer shall name relationship parts according to the special relationships part naming 14

convention and require that parts with names that conform to this naming convention have the content type for 15

a Relationships part. [M1.30] 16

[Example: 17

Example 8–4. Sample relationships and associated markup 18

The figure below shows a Digital Signature Origin part and a Digital Signature XML Signature part. The Digital 19

Signature Origin part is targeted by a package relationship. The connection from the Digital Signature Origin to 20

the Digital Signature XML Signature part is represented by a relationship. 21

Package Model

 20

 1

The relationship targeting the Digital Signature Origin part is stored in /_rels/.rels and the relationship for the 2

Digital Signature XML Signature part is stored in /_rels/origin.rels. 3

The Relationships part associated with the Digital Signature Origin contains a relationship that connects the 4

Digital Signature Origin part to the Digital Signature XML Signature part. This relationship is expressed as follows: 5

<Relationships 6

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 7

 <Relationship 8

 Target="./Signature.xml" 9

 Id="A5FFC797514BC" 10

 Type="http://schemas.openxmlformats.org/package/2006/relationships/ 11

 digital-signature/signature"/> 12

</Relationships> 13

end example] 14

[Example: 15

Example 8–5. Targeting resources 16

Relationships can target resources outside of the package at an absolute location and resources located relative 17

to the current location of the package. The following Relationships part specifies relationships that connect a 18

part to pic1.jpg at an external absolute location, and to my_house.jpg at an external location relative to the 19

location of the package: 20

<Relationships 21

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships" 22

Package Model

 21

 <Relationship 1

 TargetMode="External" 2

 Id="A9EFC627517BC" 3

 Target="http://www.custom.com/images/pic1.jpg" 4

 Type="http://www.custom.com/external-resource"/> 5

 <Relationship 6

 TargetMode="External" 7

 Id="A5EFC797514BC" 8

 Target="./images/my_house.jpg" 9

 Type="http://www.custom.com/external-resource"/> 10

</Relationships> 11

end example] 12

[Example: 13

Example 8–6. Re-using attribute values 14

The following Relationships part contains two relationships, each using unique Id values. The relationships share 15

the same Target, but have different relationship types. 16

<Relationships 17

 xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 18

 <Relationship 19

 Target="./Signature.xml" 20

 Id="A5FFC797514BC" 21

 Type="http://schemas.openxmlformats.org/package/2006/ 22

 relationships/digital-signature/signature"/> 23

 <Relationship 24

 Target="./Signature.xml" 25

 Id="B5F32797CC4B7" 26

 Type="http://www.custom.com/internal-resource"/> 27

</Relationships> 28

end example] 29

8.3.5 Support for Versioning and Extensibility 30

Producers might generate relationship markup that uses the versioning and extensibility mechanisms defined in 31

Part 5: “Markup Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML 32

namespaces. [O1.7] 33

Consumers shall process relationship markup in a manner that conforms to Part 5: “Markup Compatibility and 34

Extensibility”. Producers editing relationships based on this version of the relationship markup specification shall 35

not preserve any ignored content, regardless of the presence of any preservation attributes as defined in Part 5: 36

“Markup Compatibility and Extensibility”. [M1.31] 37

Physical Package

 22

9. Physical Package 1

In contrast to the package model that describes the contents of a package in an abstract way, the physical 2

package refers to a package that is stored in a particular physical file format. This includes the physical model 3

and physical mapping considerations. 4

The physical model abstractly describes the capabilities of a particular physical format and how producers and 5

consumers can use a package implementer to interact with that physical package format. The physical model 6

includes the access style, or the manner in which package input-output is conducted, as well as the 7

communication style, which describes the method of interaction between producers and consumers across a 8

communications pipe. The physical model also includes the layout style, or how part contents are physically 9

stored within the package. The layout style can either be simple ordering, where the parts are arranged 10

contiguously as atomic blocks of data, or interleaved ordering, where the parts are broken into individual pieces 11

and the pieces are stored as interleaved blocks of data in an optimized fashion. The performance of a physical 12

package design is reliant upon the physical model capabilities. 13

[Note: See Annex G, “Physical Model Design Considerations” for additional discussion of the physical model. end 14

note] 15

Physical mappings describe the manner in which the package contents are mapped to the features of that 16

specific physical format. Details of how package components are mapped are described, as well as common 17

mapping patterns and mechanisms for storing part content types. This Open Packaging specification describes 18

both the specific considerations for physical mapping to a ZIP archive as well as generic physical mapping 19

considerations applicable to any physical package format. 20

9.1 Physical Mapping Guidelines 21

Whereas the package model defines a package abstraction, an instance of a package must be based on a 22

physical representation. A physical package format is a particular physical representation of the package 23

contents in a file. 24

Many physical package formats have features that partially match the packaging model components. In defining 25

mappings from the package model to a physical package format, it is advisable to take advantage of any 26

similarities in capabilities between the package model and the physical package medium while using layers of 27

mapping to provide additional capabilities not inherently present in the physical package medium. [Example: 28

Some physical package formats store parts as individual files in a file system, in which case it is advantageous to 29

map many part names directly to identical physical file names. end example] 30

Designers of physical package formats face some common mapping problems. [Example: Associating arbitrary 31

content types with parts and supporting part interleaving end example] Package implementers might use the 32

common mapping solutions defined in this Open Packaging specification. [O2.3] 33

Physical Package

 23

9.1.1 Mapped Components 1

The package implementer shall define a physical package format with a mapping for the required components 2

package, part name, part content type and part contents. [M2.2] [Note: Not all physical package formats support 3

the part growth hint. end note] 4

Table 9–1. Mapped components 5

Name Description Required/Optional

Package URI-addressable resource that identifies package
as a whole unit

Required. The package implementer shall
provide a physical mapping for the
package. [M2.2]

Part name Names a part Required. The package implementer shall
provide a physical mapping for each
part’s name. *M2.2+

Part content
type

Identifies the kind of content stored in the part Required. The package implementer shall
provide a physical mapping for each
part’s content type. *M2.2+

Part contents Stores the actual content of the part Required. The package implementer shall
provide a physical mapping for each
part’s contents. *M2.2+

Part growth
hint

Number of additional bytes to reserve for possible
growth of part

Optional. The package implementer
might provide a physical mapping for a
growth hint that might be specified by a
producer. [O2.2]

9.1.2 Mapping Content Types 6

Methods for mapping part content types to a physical format are described below. 7

9.1.2.1 Identifying the Part Content Type 8

The package implementer shall define a format mapping with a mechanism for associating content types with 9

parts. [M2.3] 10

Some physical package formats have a native mechanism for representing content types. [Example: the content 11

type header in MIME end example] For such packages, the package implementer should use the native 12

mechanism to map the content type for a part. [S2.1] 13

For all other physical package formats, the package implementer should include a specially-named XML stream 14

in the package called the Content Types stream. [S2.2] The Content Types stream shall not be mapped to a part 15

by the package implementer. [M2.1] This stream is therefore not URI-addressable. However, it can be 16

interleaved in the physical package using the same mechanisms used for interleaving parts. 17

Physical Package

 24

9.1.2.2 Content Types Stream Markup 1

The Content Types stream identifies the content type for each package part. The Content Types stream contains 2

XML with a top-level Types element, and one or more Default and Override child elements. Default elements 3

define default mappings from the extensions of part names to content types. Override elements are used to 4

specify content types on parts that are not covered by, or are not consistent with, the default mappings. 5

Package producers can use pre-defined Default elements to reduce the number of Override elements on a part, 6

but are not required to do so. [O2.4] 7

The package implementer shall require that the Content Types stream contain one of the following for every 8

part in the package: 9

 One matching Default element 10

 One matching Override element 11

 Both a matching Default element and a matching Override element, in which case the Override 12

element takes precedence. [M2.4] 13

The package implementer shall require that there not be more than one Default element for any given 14

extension, and there not be more than one Override element for any given part name. [M2.5] 15

The order of Default and Override elements in the Content Types stream is not significant. 16

If the package is intended for streaming consumption: 17

 The package implementer should not allow Default elements; as a consequence, there should be one 18

Override element for each part in the package. 19

 The format producer should write the Override elements to the package so they appear before the 20

parts to which they correspond, or in close proximity to the part to which they correspond. 21

[S2.3] 22

The package implementer can define Default content type mappings even though no parts use them. [O2.5] 23

9.1.2.2.1 Types Element 24

The structure of a Types element is shown in the following diagram: 25

diagram

annotation The root element of the Content Types stream.

Physical Package

 25

9.1.2.2.2 Default Element 1

The structure of a Default element is shown in the following diagram: 2

diagram

attributes Name Type Use Default Fixed Annotation

Extension ST_Extension required A part name extension. A Default

element matches any part whose

name ends with a period followed by

the value of this attribute. The

package implementer shall require a

non-empty extension in a Default

element. [M2.6]

ContentType ST_ContentType required A content type as defined in RFC 2616.

Indicates the content type of any

matching parts (unless overridden).

The package implementer shall

require a content type in a Default

element and the format designer shall

specify the content type. [M2.6]

annotation Defines default mappings from the extensions of part names to content types.

9.1.2.2.3 Override Element 3

The structure of an Override element is shown in the following diagram: 4

diagram

Physical Package

 26

attributes Name Type Use Default Fixed Annotation

ContentType ST_ContentType required A content type as defined in RFC 2616.

Indicates the content type of the

matching part. The package

implementer shall require a content

type and the format designer shall

specify the content type in an

Override element. [M2.7]

PartName xs:anyURI required A part name. An Override element

matches the part whose name is equal

to the value of this attribute. The

package implementer shall require a

part name. [M2.7]

annotation Specifies content types on parts that are not covered by, or are not consistent with,

the default mappings.

9.1.2.2.4 Content Types Stream Markup Example 1

[Example: 2

Example 9–7. Content Types stream markup 3

<Types 4

 xmlns="http://schemas.openxmlformats.org/package/2006/content-types"> 5

 <Default Extension="txt" ContentType="text/plain" /> 6

 <Default Extension="jpeg" ContentType="image/jpeg" /> 7

 <Default Extension="picture" ContentType="image/gif" /> 8

 <Override PartName="/a/b/sample4.picture" ContentType="image/jpeg" /> 9

</Types> 10

The following is a sample list of parts and their corresponding content types as defined by the Content Types 11

stream markup above. 12

Part name Content type

/a/b/sample1.txt text/plain

/a/b/sample2.jpg image/jpeg

/a/b/sample3.picture image/gif

/a/b/sample4.picture image/jpeg

Physical Package

 27

end example] 1

9.1.2.3 Setting the Content Type of a Part 2

When adding a new part to a package, the package implementer shall ensure that a content type for that part is 3

specified in the Content Types stream; the package implementer shall perform the following steps to do so 4

[M2.8]: 5

1. Get the extension from the part name by taking the substring to the right of the rightmost occurrence of 6

the dot character (.) from the rightmost segment. 7

2. If a part name has no extension, a corresponding Override element shall be added to the Content Types 8

stream. 9

3. Compare the resulting extension with the values specified for the Extension attributes of the Default 10

elements in the Content Types stream. The comparison shall be case-insensitive ASCII. 11

4. If there is a Default element with a matching Extension attribute, then the content type of the new part 12

shall be compared with the value of the ContentType attribute. The comparison might be case-sensitive 13

and include every character regardless of the role it plays in the content-type grammar of RFC 2616, or it 14

might follow the grammar of RFC 2616. 15

a. If the content types match, no further action is required. 16

b. If the content types do not match, a new Override element shall be added to the Content Types 17

stream. . 18

5. If there is no Default element with a matching Extension attribute, a new Default element or Override 19

element shall be added to the Content Types stream. 20

9.1.2.4 Getting the Content Type of a Part 21

To get the content type of a part, the package implementer shall perform the following steps [M2.9]: 22

1. Compare the part name with the values specified for the PartName attribute of the Override elements. 23

The comparison shall be case-insensitive ASCII. 24

2. If there is an Override element with a matching PartName attribute, return the value of its 25

ContentType attribute. No further action is required. 26

3. If there is no Override element with a matching PartName attribute, then 27

a. Get the extension from the part name by taking the substring to the right of the rightmost 28

occurrence of the dot character (.) from the rightmost segment. 29

b. Check the Default elements of the Content Types stream, comparing the extension with the 30

value of the Extension attribute. The comparison shall be case-insensitive ASCII. 31

4. If there is a Default element with a matching Extension attribute, return the value of its ContentType 32

attribute. No further action is required. 33

5. If neither Override nor Default elements with matching attributes are found for the specified part 34

name, the implementation shall not map this part name to a part. 35

Physical Package

 28

9.1.2.5 Support for Versioning and Extensibility 1

The package implementer shall not use the versioning and extensibility mechanisms defined in Part 5: “Markup 2

Compatibility and Extensibility” to incorporate elements and attributes drawn from other XML-namespaces into 3

the Content Types stream markup. [M2.10] 4

9.1.3 Mapping Part Names to Physical Package Item Names 5

The mapping of part names to the names of items in the physical package uses an intermediate logical item 6

name abstraction. This logical item name abstraction allows package implementers to manipulate physical data 7

items consistently regardless of whether those data items can be mapped to parts or not or whether the 8

package is laid out with simple ordering or interleaved ordering. See §9.1.4 for interleaving details. 9

[Example: 10

Figure 9–1 illustrates the relationship between part names, logical item names, and physical package item 11

names. 12

Figure 9–1. Part names and logical item names 13

 14

end example] 15

9.1.3.1 Logical Item Names 16

Logical item names have the following syntax: 17

LogicalItemName = PrefixName [SuffixName] 18

PrefixName = *AChar 19

AChar = %x20-7E 20

SuffixName = "/" "[" PieceNumber "]" [".last"] ".piece" 21

PieceNumber = "0" | NonZeroDigit [1*Digit] 22

Digit = "0" | NonZeroDigit 23

Physical Package

 29

NonZeroDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" 1

[Note: Piece numbers identify the individual pieces of an interleaved part. end note] 2

The package implementer shall compare prefix names as case-insensitive ASCII strings. [M2.12] 3

The package implementer shall compare suffix names as case-insensitive ASCII strings. [M2.13] 4

Logical item names are considered equivalent if their prefix names and suffix names are equivalent. The package 5

implementer shall not allow packages that contain equivalent logical item names. [M2.14] The package 6

implementer shall not allow packages that contain logical items with equivalent prefix names and with equal 7

piece numbers, where piece numbers are treated as integer decimal values. [M2.15] 8

Logical item names that use suffix names form a complete sequence if and only if: 9

1. The prefix names of all logical item names in the sequence are equivalent, and 10

2. The suffix names of the sequence start with “/*0+.piece” and end with “/*n+.last.piece” and include a 11

piece for every piece number between 0 and n, without gaps, when the piece numbers are interpreted 12

as decimal integer values. 13

9.1.3.2 Mapping Part Names to Logical Item Names 14

Non-interleaved part names are mapped to logical item names that have an equivalent prefix name and no 15

suffix name. 16

Interleaved part names are mapped to the complete sequence of logical item names with an equivalent prefix 17

name. 18

9.1.3.3 Mapping Logical Item Names and Physical Package Item Names 19

The mapping of logical item names and physical package item names is specific to the particular physical 20

package. 21

9.1.3.4 Mapping Logical Item Names to Part Names 22

A logical item name without a suffix name is mapped to a part name with an equivalent prefix name provided 23

that the prefix name conforms to the part name syntax. 24

A complete sequence of logical item names is mapped to the part name that is equal to the prefix name of the 25

logical item name having the suffix name “/*0+.piece”, provided that the prefix name conforms to the part name 26

syntax. 27

The package implementer might allow a package that contains logical item names and complete sequences of 28

logical item names that cannot be mapped to a part name because the logical item name does not follow the 29

part naming grammar or the logical item does not have an associated content type. [O2.7] The package 30

implementer shall not map logical items to parts if the logical item names violate the part naming rules. [M2.16] 31

Physical Package

 30

The package implementer shall consider naming collisions within the set of part names mapped from logical 1

item names to be an error. [M2.17] 2

9.1.4 Interleaving 3

Not all physical packages natively support interleaving of the data streams of parts. The package implementer 4

should use the mechanism described in this Open Packaging specification to allow interleaving when mapping to 5

the physical package for layout scenarios that support streaming consumption. [S2.4] 6

The interleaving mechanism breaks the data stream of a part into pieces, which can be interleaved with pieces 7

of other parts or with whole parts. Pieces are named using a unique mapping from the part name, defined in 8

§9.1.3. This enables a consumer to join the pieces together in their original order, forming the data stream of 9

the part. 10

The individual pieces of an interleaved part exist only in the physical package and are not addressable in the 11

packaging model. A piece might be empty. 12

An individual part shall be stored either in an interleaved or non-interleaved fashion. The package implementer 13

shall not mix interleaving and non-interleaving for an individual part. [M2.11] The format designer specifies 14

whether that format might use interleaving. [O2.1] 15

The grammar for deriving piece names from a given part name is defined by the logical item name grammar as 16

defined in §9.1.3.1. A suffix name is mandatory. 17

The package implementer should store pieces in their natural order for optimal efficiency. [S2.5] The package 18

implementer might create a physical package containing interleaved parts and non-interleaved parts. [O2.6] 19

[Example: 20

Example 9–8. ZIP archive contents 21

A ZIP archive might contain the following item names mapped to part pieces and whole parts: 22

spine.xml/[0].piece 23

pages/page0.xml 24

spine.xml/[1].piece 25

pages/page1.xml 26

spine.xml/[2].last.piece 27

pages/page2.xml 28

end example] 29

Under certain scenarios, interleaved ordering can provide important performance benefits, as demonstrated in 30

the following example. 31

[Example: 32

Physical Package

 31

Example 9–9. Performance benefits with interleaved ordering 1

The figure below contains two parts: a page part (markup/page.xml) describing the contents of a page, and an 2

image part (images/picture.jpg) referring to an image that appears on the page. 3

 4

With simple ordering, all of the bytes of the page part are delivered before the bytes of the image part. The 5

figure below illustrates this scenario. The consumer is unable to display the image until it has received all of the 6

page part and the image part. In some circumstances, such as small packages on a high-speed network, this may 7

be acceptable. In others, having to read through all of markup/page.xml to get to the image results in 8

unacceptable performance or places unreasonable memory demands on the consumer’s system. 9

 10

With interleaved ordering, performance is improved by splitting the page part into pieces and inserting the 11

image part immediately following the reference to the image. This allows the consumer to begin processing the 12

image as soon as it encounters the reference. 13

 14

end example] 15

9.2 Mapping to a ZIP Archive 16

This Open Packaging specification defines a mapping for the ZIP archive format. Future versions of this Open 17

Packaging specification might provide additional mappings. 18

A ZIP archive is a ZIP file as defined in the ZIP file format specification excluding all elements of that specification 19

related to encryption, decryption, or digital signatures. A ZIP archive contains ZIP items. [Note: ZIP items become 20

files when the archive is unzipped. When users unzip a ZIP-based package, they see a set of files and folders that 21

reflects the parts in the package and their hierarchical naming structure. end note] 22

Physical Package

 32

Table 9–2, Package model components and their physical representations, shows the various components of the 1

package model and their corresponding physical representation in a ZIP archive. 2

Table 9–2. Package model components and their physical representations 3

Package model
component

Physical representation

Package ZIP archive file

Part ZIP item

Part name Stored in item header (and ZIP central directory as appropriate).
See §9.2.3 for conversion rules.

Part content type ZIP item containing XML that identifies the content types for each part
according to the pattern described in §9.1.2.1.

Growth hint Padding reserved in the ZIP Extra field in the local header that precedes
the item. See §9.2.7 for a detailed description of the data structure.

9.2.1 Mapping Part Data 4

In a ZIP archive, the data associated with a part is represented as one or more items. 5

A package implementer shall store a non-interleaved part as a single ZIP item. [M3.1] When interleaved, a 6

package implementer shall represent a part as one or more pieces, using the method described in §9.1.4. 7

[M2.18] Pieces are named using the specified pattern, making it possible to rebuild the entire part from its 8

constituent pieces. Each piece is stored within a ZIP archive as a single ZIP item. 9

In the ZIP archive, the chunk of bits that represents an item is stored contiguously. A package implementer 10

might intentionally order the sequence of ZIP items in the archive to enable an efficient organization of the part 11

data in order to achieve correct and optimal interleaving. [O3.1] 12

9.2.2 ZIP Item Names 13

ZIP item names are case-sensitive ASCII strings. Package implementers shall create ZIP item names that conform 14

to ZIP archive file name grammar. [M3.2] Package implementers shall create item names that are unique within 15

a given archive. [M3.3] 16

9.2.3 Mapping Part Names to ZIP Item Names 17

To map part names to ZIP item names the package implementer shall perform, in order, the following steps 18

[M3.4]: 19

1. Convert the part name to a logical item name or, in the case of interleaved parts, to a complete 20

sequence of logical item names. 21

2. Remove the leading forward slash (/) from the logical item name or, in the case of interleaved parts, 22

from each of the logical item names within the complete sequence. 23

Physical Package

 33

The package implementer shall not map a logical item name or complete sequence of logical item names sharing 1

a common prefix to a part name if the logical item prefix has no corresponding content type. [M3.5] 2

9.2.4 Mapping ZIP Item Names to Part Names 3

To map ZIP item names to part names, the package implementer shall perform, in order, the following steps 4

[M3.6]: 5

1. Map the ZIP item names to logical item names by adding a forward slash (/) to each of the ZIP item 6

names. 7

2. Map the obtained logical item names to part names. For more information, see §9.1.3.4. 8

9.2.5 ZIP Package Limitations 9

The package implementer shall map all ZIP items to parts except MS-DOSZIP items, as defined in the ZIP 10

specification, that are not MS-DOS files. [M3.7] 11

[Note: The ZIP specification specifies that ZIP items recognized as MS-DOS files are those with a “version made 12

by” field and an “external file attributes” field in the “file header” record in the central directory that have a 13

value of 0. end note] 14

In ZIP archives, the package implementer shall not exceed 65,535 bytes for the combined length of the item 15

name, Extra field, and Comment fields. [M3.8] Accordingly, part names stored in ZIP archives are limited to 16

65,535 characters, subtracting the size of the Extra and Comment fields. 17

Package implementers should restrict part naming to accommodate file system limitations when naming parts 18

to be stored as ZIP items. [S3.1] 19

[Example: 20

Examples of these limitations are: 21

 On Windows file systems, the asterisk (“*”) and colon (“:”) are not valid, so parts named with this 22

character will not unzip successfully. 23

 On Windows file systems, many programs can handle only file names that are less than 256 characters 24

including the full path; parts with longer names might not behave properly once unzipped. 25

 On Unix file systems, the semicolon (“;”) has a special meaning, so parts with this character might not be 26

processed as expected. 27

end example] 28

ZIP-based packages shall not include encryption as described in the ZIP specification. Package implementers 29

shall enforce this restriction. [M3.9] 30

Physical Package

 34

9.2.6 Mapping Part Content Type 1

Part content types are used for associating content types with part data within a package. In ZIP archives, 2

content type information is stored using the common mapping pattern that stores this information in a single 3

XML stream as follows: 4

 Package implementers shall store content type data in an item(s) mapped to the logical item name with 5

the prefix_name equal to “/*Content_Types+.xml” or in the interleaved case to the complete sequence 6

of logical item names with that prefix_name. [M3.10] 7

Package implementers shall not map logical item name(s) mapped to the Content Types stream in a ZIP archive 8

to a part name. [M3.11] [Note: Bracket characters "[" and "]" were chosen for the Content Types stream name 9

specifically because these characters violate the part naming grammar, thus reinforcing this requirement. end 10

note] 11

9.2.7 Mapping the Growth Hint 12

In a ZIP archive, the growth hint is used to reserve additional bytes that can be used to allow an item to grow in-13

place. The padding is stored in the Extra field, as defined in the ZIP file format specification. If a growth hint is 14

used for an interleaved part, the package implementer should store the Extra field containing the growth hint 15

padding with the item that represents the first piece of the part. [S3.2] 16

The format of the ZIP item's Extra field, when used for growth hints, is shown in Table 9–3, Structure of the Extra 17

field for growth hints below. 18

Table 9–3. Structure of the Extra field for growth hints 19

Field Size Value

Header ID 2 bytes A220

Length of Extra field 2 bytes The signature length (2 bytes) + the padding initial
value length (2 bytes) + Length of the padding
(variable)

Signature (for
verification)

2 bytes A028

Padding Initial Value 2 bytes Hex number value is set by the producer when the
item is created

<padding> [Padding
Length]

Should be filled with NULL characters

9.2.8 Late Detection of ZIP Items Unfit for Streaming Consumption 20

Several substantial conditions that represent a package unfit for streaming consumption may be detected mid-21

processing by a streaming package implementer. These include: 22

 A duplicate ZIP item name is detected the moment the second ZIP item with that name is encountered. 23

Duplicate ZIP item names are not allowed. [M3.3] 24

Physical Package

 35

 In interleaved packages, an incomplete sequence of ZIP items is detected when the last ZIP item is 1

received. Because one of the interleaved pieces is missing, the entire sequence of ZIP items cannot be 2

mapped to a part and is therefore invalid. [M2.16] 3

 An inconsistency between the local ZIP item headers and the ZIP central directory file headers is 4

detected at the end of package consumption, when the central directory is processed. 5

 A ZIP item that is not a file, according to the file attributes in the ZIP central directory, is detected at the 6

end of package consumption, when the central directory is processed. Only a ZIP item that is a file shall 7

be mapped to a part in a valid package. 8

When any of these conditions are detected, the streaming package implementer shall generate an error, 9

regardless of any processing that has already taken place. Package implementers shall not generate a package 10

containing any of these conditions when generating a package intended for streaming consumption. [M3.13] 11

9.2.9 ZIP Format Clarifications for Packages 12

The ZIP format includes a number of features that packages do not support. Some ZIP features are clarified in 13

the package context. See Annex C, “ZIP Appnote.txt Clarifications,” for package-specific ZIP information. 14

Core Properties

 36

10. Core Properties 1

Core properties enable users to get and set well-known and common sets of property metadata within 2

packages. The core properties and the Standard that describes them are shown in Table 10–1, “Core 3

properties”. The namespace for the properties in this table in the Open Packaging Conventions domain are 4

defined in Annex F, “Standard Namespaces and Content Types.” 5

Core property elements are non-repeatable. They may be empty or omitted. The Core Properties Part may be 6

omitted if no core properties are present. 7

Table 10–1. Core properties 8

Property Domain Description

category Open
Packaging
Conventions

A categorization of the content of this package.

[Example: Example values for this property might include:
Resume, Letter, Financial Forecast, Proposal, Technical
Presentation, and so on. This value might be used by an
application's user interface to facilitate navigation of a large
set of documents. end example]

contentStatus Open
Packaging
Conventions

The status of the content. [Example: Values might include
“Draft”, “Reviewed”, and “Final”. end example]

contentType Open
Packaging
Conventions

The type of content represented, generally defined by a
specific use and intended audience. [Example: Values might
include “Whitepaper”, “Security Bulletin”, and “Exam”. end
example]
[Note: This property is distinct from MIME content types as
defined in RFC 2616. end note]

created Dublin Core Date of creation of the resource.

creator Dublin Core An entity primarily responsible for making the content of
the resource.

description Dublin Core An explanation of the content of the resource. [Example:
Values might include an abstract, table of contents,
reference to a graphical representation of content, and a
free-text account of the content. end example]

identifier Dublin Core An unambiguous reference to the resource within a given
context.

Core Properties

 37

Property Domain Description

keywords Open
Packaging
Conventions

A delimited set of keywords to support searching and
indexing. This is typically a list of terms that are not
available elsewhere in the properties.

language Dublin Core The language of the intellectual content of the resource.
[Note: IETF RFC 3066 provides guidance on encoding to
represent languages. end note]

lastModifiedBy Open
Packaging
Conventions

The user who performed the last modification. The
identification is environment-specific. [Example: A name,
email address, or employee ID. end example] It is
recommended that this value be as concise as possible.

lastPrinted Open
Packaging
Conventions

The date and time of the last printing.

modified Dublin Core Date on which the resource was changed.

revision Open
Packaging
Conventions

The revision number. [Example: This value might indicate
the number of saves or revisions, provided the application
updates it after each revision. end example]

subject Dublin Core The topic of the content of the resource.

title Dublin Core The name given to the resource.

version Open
Packaging
Conventions

The version number. This value is set by the user or by the
application.

10.1 Core Properties Part 1

Core properties are stored in XML in the Core Properties part. The Core Properties part content type is defined 2

in Annex F, “Standard Namespaces and Content Types.” 3

The structure of the CoreProperties element is shown in the following diagram: 4

Core Properties

 38

diagram

annotation Producers might provide all or a subset of these metadata properties to describe the contents of a

package.

[Example: 1

Example 10–1. Core properties markup 2

An example of a core properties part is illustrated by this example: 3

<coreProperties 4

 xmlns="http://schemas.openxmlformats.org/package/2006/metadata/ 5

 core-properties" 6

 xmlns:dcterms="http://purl.org/dc/terms/" 7

 xmlns:dc="http://purl.org/dc/elements/1.1/" 8

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 9

 <dc:creator>Alan Shen</dc:creator> 10

 <dcterms:created xsi:type="dcterms:W3CDTF"> 11

 2005-06-12 12

 </dcterms:created> 13

 <contentType>Functional Specification</contentType> 14

 <dc:title>OPC Core Properties</dc:title> 15

Core Properties

 39

 <dc:subject>Spec defines the schema for OPC Core Properties and their 1

 location within the package</dc:subject> 2

 <dc:language>eng</dc:language> 3

 <version>1.0</version> 4

 <lastModifiedBy>Alan Shen</lastModifiedBy> 5

 <dcterms:modified xsi:type="dcterms:W3CDTF">2005-11-23</dcterms:modified> 6

 <contentStatus>Reviewed</contentStatus> 7

 <category>Specification</category> 8

</coreProperties> 9

end example] 10

10.2 Location of Core Properties Part 11

The location of the Core Properties part within the package is determined by traversing a well-defined package 12

relationship as listed in Annex F, “Standard Namespaces and Content Types”. The format designer shall specify 13

and the format producer shall create at most one core properties relationship for a package. A format consumer 14

shall consider more than one core properties relationship for a package to be an error. If present, the 15

relationship shall target the Core Properties part. [M4.1] 16

10.3 Support for Versioning and Extensibility 17

The format designer shall not specify and the format producer shall not create Core Properties that use the 18

Markup Compatibility namespace as defined in Annex F, “Standard Namespaces and Content Types”. A format 19

consumer shall consider the use of the Markup Compatibility namespace to be an error. [M4.2] Instead, 20

versioning and extensibility functionality is accomplished by creating a new part and using a relationship with a 21

new type to point from the Core Properties part to the new part. This Open Packaging specification does not 22

provide any requirements or guidelines for new parts or relationship types that are used to extend core 23

properties. 24

10.4 Schema Restrictions for Core Properties 25

The following restrictions apply to every XML document instance that contains Open Packaging Conventions 26

core properties: 27

1. Producers shall not create a document element that contains refinements to the Dublin Core elements, 28

except for the two specified in the schema: <dcterms:created> and <dcterms:modified> Consumers shall 29

consider a document element that violates this constraint to be an error. [M4.3] 30

2. Producers shall not create a document element that contains the xml:lang attribute. Consumers shall 31

consider a document element that violates this constraint to be an error. [M4.4] For Dublin Core 32

elements, this restriction is enforced by applications. 33

3. Producers shall not create a document element that contains the xsi:type attribute, except for a 34

<dcterms:created> or <dcterms:modified> element where the xsi:type attribute shall be present and 35

shall hold the value dcterms:W3CDTF, where dcterms is the namespace prefix of the Dublin Core 36

Core Properties

 40

namespace. Consumers shall consider a document element that violates this constraint to be an error. 1

[M4.5] 2

Thumbnails

 41

11. Thumbnails 1

The format designer might allow images, called thumbnails, to be used to help end-users identify parts of a 2

package or a package as a whole. These images can be generated by the producer and stored as parts. [O5.1] 3

11.1 Thumbnail Parts 4

The format designer shall specify thumbnail parts that are identified by either a part relationship or a package 5

relationship. The producer shall build the package accordingly. [M5.1] For information about the relationship 6

type for Thumbnail parts, see Annex F, “Standard Namespaces and Content Types.” 7

Digital Signatures

 42

12. Digital Signatures 1

Format designers might allow a package to include digital signatures to enable consumers to validate the 2

integrity of the contents. The producer might include the digital signature when allowed by the format designer. 3

[O6.1] Consumers can identify the parts of a package that have been signed and the process for validating the 4

signatures. Digital signatures do not protect data from being changed. However, consumers can detect whether 5

signed data has been altered and notify the end-user, restrict the display of altered content, or take other 6

actions. 7

Producers incorporate digital signatures using a specified configuration of parts and relationships. This clause 8

describes how the package digital signature framework applies the W3C Recommendation “XML-Signature 9

Syntax and Processing” (referred to here as the “XML Digital Signature specification”). In addition to complying 10

with the XML Digital Signature specification, producers and consumers also apply the modifications specified 11

in §12.2.4.1. 12

12.1 Choosing Content to Sign 13

Any part or relationship in a package can be signed, including Digital Signature XML Signature parts themselves. 14

An entire Relationships part or a subset of relationships can be signed. By signing a subset, other relationships 15

can be added, removed, or modified without invalidating the signature. 16

Because applications use the package format to store various types of content, application designers that 17

include digital signatures should define signature policies that are meaningful to their users. A signature policy 18

specifies which portions of a package should not change in order for the content to be considered intact. To 19

ensure validity, some clients require that all of the parts and relationships in a package be signed. Others require 20

that selected parts or relationships be signed and validated to indicate that the content has not changed. The 21

digital signature infrastructure in packages provides flexibility in defining the content to be signed, while 22

allowing parts of the package to remain changeable. 23

12.2 Digital Signature Parts 24

The digital signature parts consist of the Digital Signature Origin part, Digital Signature XML Signature parts, and 25

Digital Signature Certificate parts. Relationship names and content types relating to the use of digital signatures 26

in packages are defined in Annex F, “Standard Namespaces and Content Types.” 27

[Example: 28

Figure 12–1 shows a signed package with signature parts, signed parts, and an X.509 certificate. The example 29

Digital Signature Origin part references two Digital Signature XML Signature parts, each containing a signature. 30

The signatures relate to the signed parts. 31

Figure 12–1. A signed package 32

Digital Signatures

 43

 1

end example] 2

12.2.1 Digital Signature Origin Part 3

The Digital Signature Origin part is the starting point for navigating through the signatures in a package. The 4

package implementer shall include only one Digital Signature Origin part in a package and it shall be targeted 5

from the package root using the well-defined relationship type specified in Annex F, “Standard Namespaces and 6

Content Types”. *M6.1+ When creating the first Digital Signature XML Signature part, the package implementer 7

shall create the Digital Signature Origin part, if it does not exist, in order to specify a relationship to that Digital 8

Signature XML Signature part. [M6.2] If there are no Digital Signature XML Signature parts in the package, the 9

Digital Signature Origin part is optional. [O6.2] Relationships to the Digital Signature XML Signature parts are 10

defined in the Relationships part. The producer should not create any content in the Digital Signature Origin part 11

itself. [S6.1] 12

The producer shall create Digital Signature XML Signature parts that have a relationship from the Digital 13

Signature Origin part and the consumer shall use that relationship to locate signature information within the 14

package. [M6.3] 15

12.2.2 Digital Signature XML Signature Part 16

Digital Signature XML Signature parts are targeted from the Digital Signature Origin part by a relationship that 17

uses the well-defined relationship type specified in Annex F, “Standard Namespaces and Content Types”. The 18

Digital Signature XML Signature part contains digital signature markup. The producer might create zero or more 19

Digital Signature XML Signature parts in a package. [O6.4] 20

Digital Signatures

 44

12.2.3 Digital Signature Certificate Part 1

If present, the Digital Signature Certificate part contains an X.509 certificate for validating the signature. 2

Alternatively, the producer might store the certificate as a separate part in the package, might embed it within 3

the Digital Signature XML Signature part itself, or might not include it in the package if certificate data is known 4

or can be obtained from a local or remote certificate store. [O6.5] 5

The package digital signature infrastructure supports X.509 certificate technology for signer authentication. 6

If the certificate is represented as a separate part within the package, the producer shall target that certificate 7

from the appropriate Digital Signature XML Signature part by a Digital Signature Certificate relationship as 8

specified in Annex F, “Standard Namespaces and Content Types” and the consumer shall use that relationship to 9

locate the certificate. [M6.4] The producer might sign the part holding the certificate. [O6.6] The content types 10

of the Digital Signature Certificate part and the relationship targeting it from the Digital Signature XML Signature 11

part are defined in Annex F, “Standard Namespaces and Content Types”, Producers might share Digital Signature 12

Certificate parts by using the same certificate to create more than one signature. [O6.7] Producers generating 13

digital signatures should not create Digital Signature Certificate parts that are not the target of at least one 14

Digital Signature Certificate relationship from a Digital Signature XML Signature part. In addition, producers 15

should remove a Digital Signature Certificate part if removing the last Digital Signature XML Signature part that 16

has a Digital Signature Certificate relationship to it. [S6.2] 17

12.2.4 Digital Signature Markup 18

The markup described here includes a subset of elements and attributes from the XML Digital Signature 19

specification and some package-specific markup. For a complete example of a digital signature, see §12.3. 20

12.2.4.1 Modifications to the XML Digital Signature Specification 21

The package modifications to the XML Digital Signature specification are summarized as follows: 22

1. The producer shall create Reference elements within a SignedInfo element that reference elements 23

within the same Signature element. The consumer shall consider Reference elements within a 24

SignedInfo element that reference any resources outside the same Signature element to be in error. 25

[M6.5] The producer should only create Reference elements within a SignedInfo element that reference 26

an Object element. [S6.5] The producer shall not create a reference to a package-specific Object 27

element that contains a transform other than a canonicalization transform. The consumer shall consider 28

a reference to a package-specific Object element that contains a transform other than a canonical 29

transform to be an error. [M6.6] 30

2. The producer shall create one and only one package-specific Object element in the Signature element. 31

The consumer shall consider zero or more than one package-specific Object element in the Signature 32

element to be an error. [M6.7] 33

The producer shall create package-specific Object elements that contain exactly one Manifest element and 34

exactly one SignatureProperties element. [Note: This SignatureProperties element can contain multiple 35

SignatureProperty elements. end note] The consumer shall consider package-specific Object elements that 36

Digital Signatures

 45

contain other types of elements to be an error. [M6.8] [Note: A signature may contain other Object elements 1

that are not package-specific. end note] 2

a. The producer shall create Reference elements within a Manifest element that reference with 3

their URI attribute only parts within the package. The consumer shall consider Reference 4

elements within a Manifest element that reference resources outside the package to be an 5

error. [M6.9] The producer shall create relative references to the local parts that have query 6

components that specifies the part content type as described in §12.2.4.6. The relative 7

reference excluding the query component shall conform to the part name grammar. The 8

consumer shall consider a relative reference to a local part that has a query component that 9

incorrectly specifies the part content type to be an error. [M6.10] The producer shall create 10

Reference elements with a query component that specifies the content type that matches the 11

content type of the referenced part. The consumer shall consider signature validation to fail if 12

the part content type compared in a case-sensitive manner to the content type specified in the 13

query component of the part reference does not match. [M6.11] 14

b. The producer shall not create Reference elements within a Manifest element that contain 15

transforms other than the canonicalization transform and relationships transform. The 16

consumer shall consider Reference elements within a Manifest element that contain transforms 17

other than the canonicalization transform and relationships transform to be in error. [M6.12] 18

c. A producer that uses an optional relationships transform shall follow it by a canonicalization 19

transform. The consumer shall consider any relationships transform that is not followed by a 20

canonicalization transform to be an error. [M6.13] 21

d. The producer shall create exactly one SignatureProperty element with the Id attribute value 22

set to idSignatureTime. The Target attribute value of this element shall be either empty or 23

contain a fragment reference to the value of the Id attribute of the root Signature element. A 24

SignatureProperty element shall contain exactly one SignatureTime child element. The 25

consumer shall consider a SignatureProperty element that does not contain a SignatureTime 26

element or whose Target attribute value is not empty or does not contain a fragment reference 27

the Id attribute of the ancestor Signature element to be in error. [M6.14]. 28

[Note: All modifications to XML Digital Signature markup occur in locations where the XML Signature schema 29

allows any namespace. Therefore, package digital signature XML is valid against the XML Signature schema. end 30

note] 31

12.2.4.2 Signature Element 32

The structure of a Signature element is shown in the following diagram: 33

Digital Signatures

 46

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Id xs:ID optional A unique identifier of the signature xml

document.

annotation The root element of the signature xml document stored in a signature part. The producer shall

create a Signature element that contains exactly one local-data, package-specific Object element

and zero or more application-specific Object elements. If a Signature element violates this

constraint, a consumer shall consider this to be an error. [M6.15]

12.2.4.3 SignedInfo Element 1

The structure of a SignedInfo element is shown in the following diagram: 2

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Specifies the data in the package that is signed. Holds one or more references to Object elements

within the same Digital Signature XML Signature part. The producer shall create a SignedInfo

element that contains exactly one reference to the package-specific Object element. The consumer

shall consider it an error if a SignedInfo element does not contain a reference to the package-

specific Object element. [M6.16]

 3

Digital Signatures

 47

 1

12.2.4.4 CanonicalizationMethod Element 2

The structure of a CanonicalizationMethod element is shown in the following diagram: 3

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Algorithm xs:anyURI required Contains a URI that identifies the particular

canonicalization algorithm.

annotation Specifies the canonicalization algorithm applied to the SignedInfo element prior to performing

signature calculations.

 4

Since XML allows equivalent content to be represented differently, a producer should apply a canonicalization 5

transform to the SignedInfo element when it generates it, and a consumer should apply the canonicalization 6

transform to the SignedInfo element when validating it. [S6.3] 7

[Note: Performing a canonicalization transform ensures that SignedInfo content can be validated even if the 8

content has been regenerated using, for example, different entity structures, attribute ordering, or character 9

encoding. 10

Producers and consumers should also use canonicalization transforms for references to parts that hold XML 11

documents. These transforms are defined using the Transformelement. end note] 12

The following canonicalization methods shall be supported by producers and consumers of packages with digital 13

signatures: 14

 XML Canonicalization (c14n) 15

 XML Canonicalization with Comments (c14n with comments) 16

Consumers validating signed packages shall fail the validation if other canonicalization methods are 17

encountered. [M6.34] 18

12.2.4.5 SignatureMethod Element 19

The structure of a SignatureMethod element is shown in the following diagram: 20

Digital Signatures

 48

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Algorithm xs:anyURI required Contains a URI that identifies the particular

algorithm for the signature method.

annotation Defines the algorithm that is used to convert the SignedInfo element into a hashed value

contained in the SignatureValueelement. Producers shall support DSA and RSA algorithms to

produce signatures. Consumers shall support DSA and RSA algorithms to validate signatures.

[M6.17]

 1

12.2.4.6 Reference Element 2

The structure of a Reference element is shown in the following diagram: 3

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 URI xs:anyURI required Within a <SignedInfo> element, this attribute

contains a URI that identifies an element within the

signature xml document.

Within a <Manifest> element, this attribute contains

a relative reference composed of a reference to a

part that conforms to the part name grammar and a

query component that identifies the content type of

Digital Signatures

 49

that part.

annotation Specifies the object being signed, a digest algorithm, a digest value, and a list of transforms to be

applied prior to digesting.

 1

12.2.4.6.1 Usage of <Reference> Element as <Manifest> Child Element 2

The producer shall create a Reference element within a Manifest element with a URI attribute and that 3

attribute shall contain a part name, without a fragment identifier. The consumer shall consider a Reference 4

element with a URI attribute that does not contain a part name to be an error. [M6.18] 5

References to package parts include the part content type as a query component. The syntax of the relative 6

reference is as follows: 7

/page1.xml?ContentType="value" 8

where value is the content type of the targeted part. 9

[Note: See §12.2.4.1 for additional requirements on Reference elements. end note] 10

[Example: 11

Example 12–2. Part reference with query component 12

In the following example, the content type is “application/vnd.ms-package.relationships+xml”. 13

URI="/_rels/document.xml.rels?ContentType=application/vnd.ms-14

package.relationships+xml" 15

end example] 16

12.2.4.7 Transforms Element 17

The structure of a Transforms element is shown in the following diagram: 18

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Contains an ordered list of Transform elements that describe how the producer digested the

Object data before signing it.

 19

Digital Signatures

 50

The following transforms shall be supported by producers and consumers of packages with digital signatures: 1

 XML Canonicalization (c14n) 2

 XML Canonicalization with Comments (c14n with comments) 3

 Relationships transform (package-specific) 4

Consumers validating signed packages shall fail the validation if other transforms are encountered. Relationships 5

transforms shall only be supported by producers and consumers when the Transform element is a descendant 6

element of a Manifest element [M6.19] 7

12.2.4.8 Transform Element 8

The structure of a Transform element is shown in the following diagram: 9

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Algorithm xs:anyURI required Contains a URI that identifies the particular

transformation algorithm.

annotation Describes how the signer obtained the Object data that was digested.

 10

12.2.4.9 DigestMethod Element 11

The structure of a DigestMethod element is shown in the following diagram: 12

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

Digital Signatures

 51

 Algorithm xs:anyURI required Contains a URI that identifies the particular

digest method.

annotation Defines the algorithm that yields the DigestValue from the object data after transforms are

applied. Package producers and consumers shall support RSA-SHA1 algorithms to produce or

validate signatures. [M6.17]

12.2.4.10 DigestValue Element 1

The structure of a DigestValue element is shown in the following diagram: 2

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Contains the encoded value of the digest in base64.

12.2.4.11 SignatureValue Element 3

The structure of a SignatureValue element is shown in the following diagram: 4

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Id xs:ID optional Contains a URI that identifies the

SignatureValueelement within the signature xml

document.

annotation Contains the actual value of the digital signature in base64.

 5

12.2.4.12 Object Element 6

The Object element can be either package-specific or application-specific. 7

Digital Signatures

 52

12.2.4.13 Package-Specific Object Element 1

The structure of a Object element is shown in the following diagram: 2

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Id xs:ID Shall have value of "idPackageObject".

annotation Holds the Manifest and SignatureProperties elements that are package-specific.

 3

[Note: Although the diagram above shows use of the Id attribute as optional, as does the XML Digital Signature 4

schema, for package-specific Object elements, the Id attribute shall be specified and have the value of 5

“idPackageObject”. This is a package-specific restriction over and above the XML Digital Signature schema. end 6

note] 7

The producer shall create each Signature element with exactly one package-specific Object. For a signed 8

package, consumers shall treat the absence of a package-specific Object, or the presence of multiple package-9

specific Object elements, as an invalid signature. [M6.15] 10

12.2.4.14 Application-Specific Object Element 11

The application-specific Object element specifies application-specific information. The format designer might 12

permit one or more application-specific Object elements. If allowed by the format designer, format producers 13

can create one or more application-specific Object elements. [O6.8] Producers shall create application-specific 14

Object elements that contain XML-compliant data; consumers shall treat data that is not XML-compliant as an 15

error. [M6.20] Format designers and producers might not apply package-specific restrictions regarding URIs and 16

Transform elements to application-specific Object element. [O6.9] 17

12.2.4.15 KeyInfo Element 18

The structure of a KeyInfo element is shown in the following diagram: 19

Digital Signatures

 53

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Enables recipients to obtain the key needed to validate the signature. Can contain keys, names,

certificates, and other public key management information. Producers and consumers shall use the

certificate embedded in the Digital Signature XML Signature part when it is specified. [M6.21]

 1

12.2.4.16 X509Data Element 2

The structure of an X509Data element is shown in the following diagram: 3

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Contains one or more identifiers of X509 certificates.

 4

12.2.4.17 X509Certificate Element 5

The structure of an X509Certificate element is shown in the following diagram: 6

diagram

namespace http://www.w3.org/2000/09/xmldsig#

annotation Contains a base64-encoded X509 certificate.

12.2.4.18 Manifest Element 7

The structure of a Manifest element is shown in the following diagram: 8

diagram

Digital Signatures

 54

namespace http://www.w3.org/2000/09/xmldsig#

annotation Contains references to the signed parts of the package. The producer shall not create a Manifest

element that references any data outside of the package. The consumer shall consider a Manifest

element that references data outside of the package to be in error. [M6.22]

 1

12.2.4.19 SignatureProperties Element 2

The structure of a SignaturePropertieselement is shown in the following diagram: 3

diagram

namespace http://www.w3.org/2000/09/xmldsig#

Annotation Contains additional information items concerning the generation of signatures placed in

SignatureProperty elements.

12.2.4.20 SignatureProperty Element 4

The structure of a SignatureProperty element is shown in the following diagram: 5

diagram

namespace http://www.w3.org/2000/09/xmldsig#

attributes Name Type Use Default Fixed Annotation

 Target xs:anyURI required Contains a unique identifier of the

Signature element.

 Id xs:ID optional Contains signature property’s unique

identifier.

Digital Signatures

 55

annotation Contains additional information concerning the generation of signatures.

 1

12.2.4.21 SignatureTime Element 2

The structure of a SignatureTime element is shown in the following diagram: 3

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Holds the date/time stamp for the signature.

 4

12.2.4.22 Format Element 5

The structure of a Format element is shown in the following diagram: 6

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Specifies the format of the date/time stamp. The producer shall create a data/time format that

conforms to the syntax described in the W3C Note "Date and Time Formats". The consumer shall

consider a format that does not conform to the syntax described in that WC3 note to be in error.

[M6.23]

The date and time format definition conforms to the syntax described in the W3C Note “Date and Time 7

Formats.” 8

12.2.4.23 Value Element 9

The structure of a Value element is shown in the following diagram: 10

diagram

Digital Signatures

 56

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

annotation Holds the value of the date/time stamp. The producer shall create a value that conforms to the

format specified in the Format element. The consumer shall consider a value that does not

conform to that format to be in error. [M6.24]

12.2.4.24 RelationshipReference Element 1

The structure of a RelationshipReference element is shown in the following diagram: 2

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes Name Type Use Default Fixed Annotation

SourceId xsd:string required Specifies the value of the Id attribute of the

Relationship element.

annotation Specifies the Relationship element to be signed.

 3

12.2.4.25 RelationshipsGroupReference Element 4

The structure of a RelationshipsGroupReference element is shown in the following diagram: 5

diagram

namespace http://schemas.openxmlformats.org/package/2006/digital-signature

attributes Name Type Use Default Fixed Annotation

SourceType xsd:anyURI required Specifies the value of the Type attribute of

Relationship elements.

annotation Specifies that the group of Relationship elements with the specified Type value is to

be signed.

 6

Digital Signatures

 57

Format designers might permit producers to sign individual relationships in a package or the Relationships part 1

as a whole. [O6.10] To sign a subset of relationships, the producer shall use the package-specific relationships 2

transform. The consumer shall use the package-specific relationships transform to validate the signature when a 3

subset of relationships are signed. [M6.25] The transform filters the contents of the Relationships part to include 4

only relationships that have Id values matching the specified SourceId values or Type values matching the 5

specified SourceType values. A producer shall not specify more than one relationship transform for a particular 6

relationships part. A consumer shall treat the presence of more than one relationship transform for a particular 7

relationships part as an error. [M6.35] 8

Producers shall specify a canonicalization transform immediately following a relationships transform and 9

consumers that encounter a relationships transform that is not immediately followed by a canonicalization 10

transform shall generate an error. [M6.26] 11

12.2.4.26 Relationships Transform Algorithm 12

The relationships transform takes the XML document from the Relationships part and converts it to another 13

XML document. 14

The package implementer might create relationships XML that contains content from several namespaces, along 15

with versioning instructions as defined in Part 5: “Markup Compatibility and Extensibility”. [O6.11] 16

The relationships transform algorithm is as follows: 17

Step 1: Process versioning instructions 18

1. The package implementer shall process the versioning instructions, considering that the only known 19

namespace is the Relationships namespace. 20

2. The package implementer shall remove all ignorable content, ignoring preservation attributes. 21

3. The package implementer shall remove all versioning instructions. 22

Step 2: Sort and filter relationships 23

1. The package implementer shall remove all namespace declarations except the Relationships namespace 24

declaration. 25

2. The package implementer shall remove the Relationships namespace prefix, if it is present. 26

3. The package implementer shall sort relationship elements by Id value in lexicographical order, 27

considering Id values as case-sensitive Unicode strings. 28

4. The package implementer shall remove all Relationship elements that do not have eitheran Id value 29

that matches any SourceId valueor a Type value that matches any SourceType value, among the 30

SourceId and SourceType values specified in the transform definition. Producers and consumers shall 31

compare values as case-sensitive Unicode strings. [M6.27] The resulting XML document holds all 32

Relationship elements that either have an Id value that matches a SourceId value or a Type value that 33

matches a SourceType value specified in the transform definition. 34

Step 3: Prepare for canonicalization 35

Digital Signatures

 58

1. The package implementer shall remove all characters between the Relationships start tag and the first 1

Relationship start tag. 2

2. The package implementer shall remove any contents of the Relationship element. 3

3. The package implementer shall remove all characters between the last Relationship end tag and the 4

Relationships end tag. 5

4. If there are no Relationship elements, the package implementer shall remove all characters between 6

the Relationships start tag and the Relationships end tag. 7

12.3 Digital Signature Example 8

The contents of digital signature parts are defined by the W3C Recommendation “XML-Signature Syntax and 9

Processing” with some package-specific modifications specified in §12.2.4.1. 10

[Example: 11

Digital signature markup for packages is illustrated in this example. For information about namespaces used in 12

this example, see Annex F, “Standard Namespaces and Content Types.” 13

<Signature Id="SignatureId" xmlns="http://www.w3.org/2000/09/xmldsig#"> 14

 <SignedInfo> 15

 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/ 16

 REC-xml-c14n-20010315"/> 17

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/ 18

 xmldsig#dsa-sha1"/> 19

 <Reference 20

 URI="#idPackageObject" 21

 Type="http://www.w3.org/2000/09/xmldsig#Object"> 22

 <Transforms> 23

 <Transform Algorithm="http://www.w3.org/TR/2001/ 24

 REC-xml-c14n-20010315"/> 25

 </Transforms> 26

 <DigestMethod Algorithm="http://www.w3.org/2000/09/ 27

 xmldsig#sha1"/> 28

 <DigestValue>...</DigestValue> 29

 </Reference> 30

 <Reference 31

 URI="#Application" 32

 Type="http://www.w3.org/2000/09/xmldsig#Object"> 33

 <Transforms> 34

 <Transform Algorithm="http://www.w3.org/TR/2001/ 35

 REC-xml-c14n-20010315"/> 36

 </Transforms> 37

 <DigestMethod 38

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 39

 <DigestValue>...</DigestValue> 40

Digital Signatures

 59

 </Reference> 1

 </SignedInfo> 2

 <SignatureValue>...</SignatureValue> 3

 4

 <KeyInfo> 5

 <X509Data> 6

 <X509Certificate>...</X509Certificate> 7

 </X509Data> 8

 </KeyInfo> 9

 10

 <Object Id="idPackageObject" xmlns:pds="http://schemas.openxmlformats.org 11

 /package/2006/digital-signature"> 12

 <Manifest> 13

 <Reference URI="/document.xml?ContentType=application/ 14

 vnd.ms-document+xml"> 15

 <Transforms> 16

 <Transform Algorithm="http://www.w3.org/TR/2001/ 17

 REC-xml-c14n-20010315"/> 18

 </Transforms> 19

 <DigestMethod Algorithm="http://www.w3.org/2000/09/ 20

 xmldsig#sha1"/> 21

 <DigestValue>...</DigestValue> 22

 </Reference> 23

 <Reference 24

 URI="/_rels/document.xml.rels?ContentType=application/ 25

 vnd.ms-package.relationships+xml"> 26

 <Transforms> 27

 <Transform Algorithm="http://schemas.openxmlformats.org/ 28

 package/2005/06/RelationshipTransform"> 29

 <pds:RelationshipReference SourceId="B1"/> 30

 <pds:RelationshipReference SourceId="A1"/> 31

 <pds:RelationshipReference SourceId="A11"/> 32

 <pds:RelationshipsGroupReference SourceType= 33

 "http://schemas.custom.com/required-resource"/> 34

 </Transform> 35

 <Transform Algorithm="http://www.w3.org/TR/2001/ 36

 REC-xml-c14n-20010315"/> 37

 </Transforms> 38

 <DigestMethod Algorithm="http://www.w3.org/2000/09/ 39

 xmldsig#sha1"/> 40

 <DigestValue>...</DigestValue> 41

 </Reference> 42

 </Manifest> 43

Digital Signatures

 60

 <SignatureProperties> 1

 <SignatureProperty Id="idSignatureTime" Target="#SignatureId"> 2

 <pds:SignatureTime> 3

 <pds:Format>YYYY-MM-DDThh:mmTZD</pds:Format> 4

 <pds:Value>2003-07-16T19:20+01:00</pds:Value> 5

 </pds:SignatureTime> 6

 </SignatureProperty> 7

 </SignatureProperties> 8

 </Object> 9

 <Object Id="Application">...</Object> 10

</Signature> 11

end example] 12

12.4 Generating Signatures 13

The steps for signing package contents follow the algorithm outlined in §3.1 of the W3C Recommendation “XML-14

Signature Syntax and Processing,” with some modification for package-specific constructs. 15

The steps below might not be sufficient for generating signatures that contain application-specific Object 16

elements. Format designers that utilize application-specific Object elements shall also define the additional 17

steps that shall be performed to sign the application-specific Object elements. 18

To generate references: 19

1. For each package part being signed: 20

a. The package implementer shall apply the transforms, as determined by the producer, to the 21

contents of the part. [Note: Relationships transforms are applied only to Relationship parts. 22

When applied, the relationship transform filters the subset of relationships within the entire 23

Relationship part for purposes of signing. end note] 24

b. The package implementer shall calculate the digest value using the resulting contents of the 25

part. 26

2. The package implementer shall create a Reference element that includes the reference of the part with 27

the query component matching the content type of the target part, necessary Transform elements, the 28

DigestMethod element and the DigestValue element. 29

3. The package implementer shall construct the package-specific Object element containing a Manifest 30

element with both the child Reference elements obtained from the preceding step and a child 31

SignatureProperties element, which, in turn, contains a child SignatureTime element. 32

4. The package implementer shall create a reference to the resulting package-specific Object element. 33

When signing Object element data, package implementers shall follow the generic reference creation algorithm 34

described in §3.1 of the W3C Recommendation “XML-Signature Syntax and Processing”. *M6.28+ 35

To generate signatures: 36

Digital Signatures

 61

1. The package implementer shall create the SignedInfo element with a SignatureMethodelement, a 1

CanonicalizationMethod element, and at least one Reference element. 2

2. The package implementer shall canonicalize the data and then calculate the SignatureValue element 3

using the SignedInfo element based on the algorithms specified in the SignedInfo element. 4

3. The package implementer shall construct a Signature element that includes SignedInfo, Object, and 5

SignatureValue elements. If a certificate is embedded in the signature, the package implementer shall 6

also include the KeyInfo element. 7

12.5 Validating Signatures 8

Consumers validate signatures following the steps described in §3.2 of the W3C Recommendation “XML-9

Signature Syntax and Processing.” When validating digital signatures, consumers shall verify the content type 10

and the digest contained in each Reference descendant element of the SignedInfo element, and validate the 11

signature calculated using the SignedInfo element. [M6.29] 12

The steps below might not be sufficient to validate signatures that contain application-specific Object elements. 13

Format designers that utilize application-specific Object elements shall also define the additional steps that shall 14

be performed to validate the application-specific Object elements. 15

To validate references: 16

1. The package implementer shall canonicalize the SignedInfo element based on the 17

CanonicalizationMethod element specified in the SignedInfo element. 18

2. For each Reference element in the SignedInfo element: 19

a. The package implementer shall obtain the Object element to be digested. 20

b. For the package-specific Object element, the package implementer shall validate references to 21

signed parts stored in the Manifest element. The package implementer shall consider 22

references invalid if there is a missing part. [M6.9] [Note: If a relationships transform is specified 23

for a signed Relationships part, only the specified subset of relationships within the entire 24

Relationships part are validated. end note] 25

c. For the package-specific Object element, validation of Reference elements includes verifying 26

the content type of the referenced part and the content type specified in the reference query 27

component. Package implementers shall consider references invalid if these two values are 28

different. The string comparison shall be case-sensitive and locale-invariant. [M6.11] 29

d. The package implementer shall digest the obtained Object element using the DigestMethod 30

element specified in the Reference element. 31

e. The package implementer shall compare the generated digest value against the DigestValue 32

element in the Reference element of the SignedInfo element. Package implementers shall 33

consider references invalid if there is any mismatch. [M6.30] 34

To validate signatures: 35

1. The package implementer shall obtain the public key information from the KeyInfo element or from an 36

external source. 37

Digital Signatures

 62

2. The package implementer shall obtain the canonical form of the SignatureMethod element using the 1

CanonicalizationMethod element. The package implementer shall use the result and the previously 2

obtained KeyInfo element to confirm the SignatureValue element stored in the SignedInfo element. 3

The package implementer shall decrypt the SignatureValueelement using the public key prior to 4

comparison. 5

12.5.1 Signature Validation and Streaming Consumption 6

Streaming consumers that maintain signatures shall be able to cache the parts necessary for detecting and 7

processing signatures. [M6.31] 8

12.6 Support for Versioning and Extensibility 9

The package digital signature infrastructure supports the exchange of signed packages between current and 10

future package clients. 11

12.6.1 Using Relationship Types 12

Future versions of the package format will specify distinct relationship types for revised signature parts. Using 13

these relationships, producers will be able to store separate signature information for current and previous 14

versions. Consumers will be able to choose the signature information they know how to validate. 15

Figure 12–2, “Part names and logical item names”, illustrates this versioning capability that will be available in 16

future versions of the package format. 17

Figure 12–2. A package containing versioned signatures 18

 19

12.6.2 Markup Compatibility Namespace for Package Digital Signatures 20

The package implementer shall not use the Markup Compatibility namespace, as specified in Annex F, “Standard 21

Namespaces and Content Types,” within the package-specific Object element. The package implementer shall 22

consider the use of the Markup Compatibility namespace within the package-specific Object element to be an 23

error. [M6.32] 24

Digital Signatures

 63

Format designers might specify an application-specific package part format that allows for the embedding of 1

versioned or extended content that might not be fully understood by all present and future implementations. 2

Producers might create such embedded versioned or extended content and consumers might encounter such 3

content. [O6.12] [Example: An XML package part format might rely on Markup Compatibility elements and 4

attributes to embed such versioned or extended content. end example] 5

If an application allows for a single part to contain information that might not be fully understood by all 6

implementations, then the format designer shall carefully design the signing and verification policies to account 7

for the possibility of different implementations being used for each action in the sequence of content creation, 8

content signing, and signature verification. Producers and consumers shall account for this possibility in their 9

signing and verification processing. [M6.33]10

Resolving Unicode Strings to Part Names

 64

Annex A. Resolving Unicode Strings to Part 1

Names 2

Package clients might use Unicode strings for referencing parts in a package. [Example: Values of xsd:anyURI 3

data type within XML markup are Unicode strings. end example] 4

This annex specifies how such Unicode strings shall be resolved to part names. 5

The diagram below illustrates the conversion path from the Unicode string to a part name. The numbered arcs 6

identify string transformations. 7

Figure A–1. Strings are converted to part names for referencing parts 8

 9

A Unicode string representing a URI can be passed to the producer or consumer. The producing or consuming 10

application shall convert the Unicode string to a URI. If the URI is a relative reference, the application shall 11

resolve it using the base URI of the part, which is expressed using the pack scheme, to the URI of the referenced 12

part. [M1.33] 13

The process for resolving a Unicode string to a part name follows Arcs [1-2], [2-3], and [3-4]. 14

A.1 Creating an IRI from a Unicode String 15

With reference to Arc [1-2] in Figure A–1, a Unicode string is converted to an IRI by percent-encoding each ASCII 16

character that does not belong to the set of reserved or unreserved characters as defined in RFC 3986. 17

A.2 Creating a URI from an IRI 18

With reference to Arc [2-3] in Figure A–1, an IRI is converted to a URI by converting non-ASCII characters as 19

defined in Step 2 in §3.1 of RFC 3987 20

If a consumer converts the URI back into an IRI, the conversion shall be performed as specified in §3.2 of RFC 21

3987. [M1.34] 22

Unicode string IRI

1 2

Part Name[1-2] [3-4]

4

URI[2-3]

3

Resolving Unicode Strings to Part Names

 65

A.3 Resolving a Relative Reference to a Part Name 1

If the URI reference obtained in §A.2 is a URI, it is resolved in the regular way, that is, with no package-specific 2

considerations. Otherwise, if the URI reference is a relative reference, it is resolved (with reference to Arc [3-4] 3

in Figure A–1) as follows: 4

1. Percent-encode each open bracket ([) and close bracket (]). 5

2. Percent-encode each percent (%) character that is not followed by a hexadecimal notation of an octet 6

value. 7

3. Un-percent-encode each percent-encoded unreserved character. 8

4. Un-percent-encode each forward slash (/) and back slash (\). 9

5. Convert all back slashes to forward slashes. 10

6. If present in a segment containing non-dot (“.”) characters, remove trailing dot (“.”) characters from 11

each segment. 12

7. Replace each occurrence of multiple consecutive forward slashes (/) with a single forward slash. 13

8. If a single trailing forward slash (/) is present, remove that trailing forward slash. 14

9. Remove complete segments that consist of three or more dots. 15

10. Resolve the relative reference against the base URI of the part holding the Unicode string, as it is defined 16

in §5.2 of RFC 3986. The path component of the resulting absolute URI is the part name. 17

A.4 String Conversion Examples 18

[Example: 19

Examples of Unicode strings converted to IRIs, URIs, and part names are shown below: 20

Unicode string IRI URI Part name

/a/b.xml /a/b.xml /a/b.xml /a/b.xml

/a/ц.xml /a/ц.xml /a/%D1%86.xml /a/%D1%86.xml

/%41/%61.xml /%41/%61.xml /%41/%61.xml /A/a.xml

/%25XY.xml /%25XY.xml /%25XY.xml /%25XY.xml

/%XY.xml /%XY.xml /%25XY.xml /%25XY.xml

/%2541.xml /%2541.xml /%2541.xml /%2541.xml

/../a.xml /../a.xml /../a.xml /a.xml

/./ц.xml /./ц.xml /./%D1%86.xml /%D1%86.xml

/%2e/%2e/a.xml /%2e/%2e/a.xml /%2e/%2e/a.xml /a.xml

\a.xml %5Ca.xml %5Ca.xml /a.xml

\%41.xml %5C%41.xml %5C%41.xml /A.xml

/%D1%86.xml /%D1%86.xml /%D1%86.xml /%D1%86.xml

\%2e/a.xml %5C%2e/a.xml %5C%2e/a.xml /a.xml

end example] 21

Pack URI

 66

Annex B. Pack URI 1

A package is a logical entity that holds a collection of parts. This Open Packaging specification defines a way to 2

use URIs to reference part resources inside a package. This approach defines a new scheme in accordance with 3

the guidelines in RFC 3986. 4

The following terms are used as they are defined in RFC 3986: scheme, authority, path, segment, reserved 5

characters, sub-delims, unreserved characters, pchar, pct-encoded characters, query, fragment, and resource. 6

B.1 Pack URI Scheme 7

RFC 3986 provides an extensible mechanism for defining new kinds of URIs based on new schemes. Schemes are 8

the prefix in a URI before the colon. [Example: “http”, “ftp”, “file” end example] This Open Packaging 9

specification defines a specific URI scheme used to refer to parts in a package: the pack scheme. A URI that uses 10

the pack scheme is called a pack URI. 11

The pack URI grammar is defined as follows: 12

pack_URI = "pack://" authority ["/" | path] 13

authority = *(unreserved | sub-delims | pct-encoded) 14

path = 1*("/" segment) 15

segment = 1*(pchar) 16

unreserved, sub-delims, pchar and pct-encoded are defined in RFC 3986 17

The authority component contains an embedded URI that points to a package. The package implementer shall 18

create an embedded URI that meets the requirements defined in RFC 3986 for a valid URI. [M7.1] §B.3 describes 19

the rules for composing pack URIs by combining the URI of an entire package resource with a part name. 20

The package implementer shall not create an authority component with an unescaped colon (:) character. 21

[M7.4] Consumer applications, based on the obsolete URI specification RFC 2396, might tolerate the presence of 22

an unescaped colon character in an authority component. [O7.1] 23

The optional path component identifies a particular part within the package. The package implementer shall 24

only create path components that conform to the part naming rules. When the path component is missing, the 25

resource identified by the pack URI is the package as a whole. [M7.2] 26

In order to be able to embed the URI of the package in the pack URI, it is necessary either to replace or to 27

percent-encode occurrences of certain characters in the embedded URI. For example, forward slashes (/) are 28

replaced with commas (,). The rules for these substitutions are described in §B.3. 29

The optional query component in a pack URI is ignored when resolving the URI to a part. 30

Pack URI

 67

A pack URI might have a fragment identifier as specified in RFC 3986. If present, this fragment applies to 1

whatever resource the pack URI identifies. 2

[Example: 3

Example B–1. Using the pack URI to identify a part 4

The following URI identifies the “/a/b/foo.xml” part within the “http://www.openxmlformats.org/my.container” 5

package resource: 6

pack://http%3c,,www.openxmlformats.org,my.container/a/b/foo.xml 7

end example] 8

[Example: 9

Example B–2. Equivalent pack URIs 10

The following pack URIs are equivalent: 11

pack://http%3c,,www.openxmlformats.org,my.container 12

pack://http%3c,,www.openxmlformats.org,my.container/ 13

end example] 14

[Example: 15

Example B–3. A pack URI with percent-encoded characters 16

The following URI identifies the “/c/d/bar.xml” part within the 17

“http://myalias:pswr@www.my.com/containers.aspx?my.container” package: 18

pack://http%3c,,myalias%3cpswr%40www.my.com,containers.aspx%3fmy.container 19

/c/d/bar.xml 20

end example] 21

B.2 Resolving a Pack URI to a Resource 22

The following is an algorithm for resolving a pack URI to a resource (either a package or a part): 23

1. Parse the pack URI into the potential three components: scheme, authority, path, as well as any 24

fragment identifier. 25

2. In the authority component, replace all commas (,) with forward slashes (/). 26

3. Un-percent-encode ASCII characters in the resulting authority component. 27

4. The resultant authority component is the URI for the package as a whole. 28

5. If the path component is empty, the pack URI resolves to the package as a whole and the resolution 29

process is complete. 30

Pack URI

 68

6. A non-empty path component shall be a valid part name. If it is not, the pack URI is invalid. 1

7. The pack URI resolves to the part with this part name in the package identified by the authority 2

component. 3

[Example: 4

Example B–4. Resolving a pack URI to a resource 5

Given the pack URI: 6

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/b/foo.xml 7

The components: 8

<authority>= http%3c,,www.my.com,packages.aspx%3fmy.package 9

<path>= /a/b/foo.xml 10

Are converted to the package URI: 11

http://www.my.com/packages.aspx?my.package 12

And the path: 13

/a/b/foo.xml 14

Therefore, this URI refers to a part named “/a/b/foo.xml” in the package at the following URI: 15

http://www.my.com/packages.aspx?my.package. 16

end example] 17

B.3 Composing a Pack URI 18

The following is an algorithm for composing a pack URI from the URI of an entire package resource and a part 19

name. 20

In order to be suitable for creating a pack URI, the URI reference of a package resource shall conform to 21

RFC 3986 requirements for valid absolute URIs. 22

To compose a pack URI from the absolute package URI and a part name, the following steps shall be performed, 23

in order: 24

1. Remove the fragment identifier from the package URI, if present. 25

2. Percent-encode all percent signs (%), question marks (?), at signs (@), colons (:) and commas (,) in the 26

package URI. 27

3. Replace all forward slashes (/) with commas (,) in the resulting string. 28

4. Append the resulting string to the string “pack://”. 29

5. Append a forward slash (/) to the resulting string. The constructed string represents a pack URI with a 30

blank path component. 31

Pack URI

 69

6. Using this constructed string as a base URI and the part name as a relative reference, apply the rules 1

defined in RFC 3986 for resolving relative references against the base URI. 2

The result of this operation will be the pack URI that refers to the resource specified by the part name. 3

[Example: 4

Example B–5. Composing a pack URI 5

Given the package URI: 6

http://www.my.com/packages.aspx?my.package 7

And the part name: 8

/a/foo.xml 9

The pack URI is: 10

pack://http%3c,,www.my.com,packages.aspx%3fmy.package/a/foo.xml 11

end example] 12

B.4 Equivalence 13

In some scenarios, such as caching or writing parts to a package, it is necessary to determine if two pack URIs are 14

equivalent without resolving them. 15

The package implementer shall consider pack URIs equivalent if: 16

1. The scheme components are octet-by-octet identical after they are both converted to lowercase; and 17

2. The URIs, decoded as described in §B.2 from the authority components are equivalent (the equivalency 18

rules by scheme, as per RFC 3986); and 19

3. The path components are equivalent when compared as case-insensitive ASCII strings. 20

[M7.3] 21

ZIP Appnote.txt Clarifications

 70

Annex C. ZIP Appnote.txt Clarifications 1

The ZIP specification includes a number of features that packages do not support. Some ZIP features are clarified 2

in the context of this Open Packaging specification. Package producers and consumers shall adhere to the 3

requirements noted below. 4

C.1 Archive File Header Consistency 5

Data describing files stored in the archive is substantially duplicated in the Local File Headers and Data 6

Descriptors, and in the File headers within the Central Directory Record. For a ZIP archive to be a valid physical 7

layer for a package, the package implementer shall ensure that the ZIP archive holds equal values in the 8

appropriate fields of every File Header within the Central Directory and the corresponding Local File Header and 9

Data Descriptor pair. [M3.14] 10

C.2 Table Key 11

 “Yes” — During consumption of a package, a "Yes" value for a field in a table in Annex C indicates a 12

package implementer shall support reading the ZIP archive containing this record or field, however, 13

support may mean ignoring. *M3.15+ During production of a package, a “Yes” value for a field in a table 14

in Annex C indicates that the package implementer shall write out this record or field. [M3.16] 15

 “No” — A “No” value for a field in a table in Annex C indicates the package implementer shall not use 16

this record or field during consumption or production of packages. [M3.17] 17

 “Optional” — An “Optional” value for a record in a table in Annex C indicates that package implementers 18

might write this record during production. [O3.2] 19

 “Partially, details below” — A “Partially, details below” value for a record in a table in Annex C indicates 20

that the record contains fields that might not be supported by package implementers during production 21

or consumption. See the details in the corresponding table to determine requirements. [M3.18] 22

 “Only used when needed” — The value “Only used when needed” associated with a record in a table in 23

Annex C indicates that the package implementer shall use the record only when needed to store data in 24

the ZIP archive. [M3.19] 25

Table C–1,“Support for records”, specifies the requirements for package production, consumption, and editing 26

in regard to particular top-level records or fields described in the ZIP Appnote.txt. [Note: Editing, in this context, 27

means in-place modification of individual records. A format specification can require editing applications to 28

instead modify content in-memory and re-write all parts and relationships on each save in order to maintain 29

more rigorous control of ZIP record usage. end note] 30

Table C–1. Support for records 31

Record name Supported on
Consumption

Supported on
Production

Pass through on
editing

ZIP Appnote.txt Clarifications

 71

Record name Supported on
Consumption

Supported on
Production

Pass through on
editing

Local File Header Yes (partially, details
below)

Yes (partially, details
below)

Yes

File data Yes Yes Yes

Data descriptor Yes Optional Optional

Archive decryption
header

No No No

Archive extra data
record

No No No

Central directory
structure:
File header

Yes (partially, details
below)

Yes (partially, details
below)

Yes

Central directory
structure:
Digital signature

Yes (ignore the
signature data)

Optional Optional

Zip64 end of central
directory record V1
(from spec version
4.5)

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

Zip64 end of central
directory record V2
(from spec version
6.2)

No No No

Zip64 end of central
directory locator

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Optional

End of central
directory record

Yes (partially, details
below)

Yes (partially, details
below, used only when
needed)

Yes

 1

Table C–2, “Support for record components”, specifies the requirements for package production, consumption, 2

and editing in regard to individual record components described in the ZIP Appnote.txt. 3

Table C–2. Support for record components 4

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Local File Header Local file header signature Yes Yes Yes

Version needed to extract Yes (partially, see
Table C–3)

Yes (partially, see
Table C–3)

Yes (partially,
see Table C–3)

ZIP Appnote.txt Clarifications

 72

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

General purpose bit flag Yes (partially, see
Table C–5)

Yes (partially, see
Table C–5)

Yes (partially,
see Table C–5)

Compression method Yes (partially, see
Table C–4)

Yes (partially, see
Table C–4)

Yes (partially,
see Table C–4)

Last mod file time Yes Yes Yes

Last mod file date Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table C–6)

Yes (partially, see
Table C–6)

Yes (partially,
see Table C–6)

Central directory
structure: File header

Central file header
signature

Yes Yes Yes

version made by: high
byte

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes Yes

Version needed to extract
(see Table C–3 for details)

Yes (partially, see
Table C–3)

Yes (1.0, 1.1, 2.0,
4.5)

Yes

General purpose bit flag Yes (partially, see
Table C–5)

Yes (partially, see
Table C–5)

Yes (partially,
see Table C–5)

Compression method Yes (partially, see
Table C–4)

Yes (partially, see
Table C–4)

Yes (partially,
see Table C–4)

Last mod file time (Pass
through, no
interpretation)

Yes Yes Yes

Last mod file date (Pass
through, in interpretation)

Yes Yes Yes

Crc-32 Yes Yes Yes

Compressed size Yes Yes Yes

Uncompressed size Yes Yes Yes

File name length Yes Yes Yes

Extra field length Yes Yes Yes

ZIP Appnote.txt Clarifications

 73

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

File comment length Yes Yes
(always set to 0)

Yes

Disk number start Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Internal file attributes Yes Yes Yes

External file attributes
(Pass through, no
interpretation)

Yes Yes
(MS DOS default
value)

Yes

Relative offset of local
header

Yes Yes Yes

File name (variable size) Yes Yes Yes

Extra field (variable size) Yes (partially, see
Table C–6)

Yes (partially, see
Table C–6)

Yes (partially,
see Table C–6)

File comment (variable
size)

Yes Yes (always set to
empty)

Yes

Zip64 end of central
directory V1 (from spec
version 4.5, only used
when needed)

Zip64 end of central
directory signature

Yes Yes Yes

Size of zip64 end of central
directory

Yes Yes Yes

Version made by: high
byte (Pass through, no
interpretation)

Yes Yes (0 = MS-DOS
is default
publishing value)

Yes

Version made by: low byte Yes Yes (always 4.5 or
above)

Yes

Version needed to extract
(see Table C–3 for details)

Yes (4.5) Yes (4.5) Yes (4.5)

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

ZIP Appnote.txt Clarifications

 74

Record Field Supported on
Consumption

Supported on
Production

Pass through
on editing

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

Zip64 extensible data
sector

Yes No Yes

Zip64 end of central
directory locator (only
used when needed)

Zip64 end of central dir
locator signature

Yes Yes Yes

Number of the disk with
the start of the zip64 end
of central directory

Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Relative offset of the zip64
end of central directory
record

Yes Yes Yes

Total number of disks Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

End of central directory
record

End of central dir
signature

Yes Yes Yes

Number of this disk Yes (partial — no
multi disk
archives)

Yes (always 1
disk)

Yes (partial —
no multi disk
archives)

Number of the disk with
the start of the central
directory

Yes (partial — no
multi disk archive)

Yes (always 1
disk)

Yes (partial —
no multi disk
archive)

Total number of entries in
the central directory on
this disk

Yes Yes Yes

Total number of entries in
the central directory

Yes Yes Yes

Size of the central
directory

Yes Yes Yes

Offset of start of central
directory with respect to
the starting disk number

Yes Yes Yes

ZIP file comment length Yes Yes Yes

ZIP file comment Yes No Yes

 1

ZIP Appnote.txt Clarifications

 75

Table C–3, “Support for Version Needed to Extract field”, specifies the detailed production, consumption, and 1

editing requirements for the Extract field, which is fully described in the ZIP Appnote.txt. 2

Table C–3. Support for Version Needed to Extract field 3

Version Feature Supported on
Consumption

Supported on
Production

Pass through on
editing

1.0 Default value Yes Yes Yes

1.1 File is a volume label Ignore No (rewrite/remove)

2.0 File is a folder (directory) Ignore No (rewrite/remove)

2.0 File is compressed using
Deflate compression

Yes Yes Yes

2.0 File is encrypted using
traditional PKWARE
encryption

No No No

2.1 File is compressed using
Deflate64(tm)

No No No

2.5 File is compressed using
PKWARE DCL Implode

No No No

2.7 File is a patch data set No No No

4.5 File uses ZIP64 format
extensions

Yes Yes Yes

4.6 File is compressed using
BZIP2 compression

No No No

5.0 File is encrypted using DES No No No

5.0 File is encrypted using 3DES No No No

5.0 File is encrypted using
original RC2 encryption

No No No

5.0 File is encrypted using RC4
encryption

No No No

5.1 File is encrypted using AES
encryption

No No No

5.1 File is encrypted using
corrected RC2 encryption

No No No

5.2 File is encrypted using
corrected RC2-64
encryption

No No No

6.1 File is encrypted using non-
OAEP key wrapping

No No No

6.2 Central directory encryption No No No

 4

ZIP Appnote.txt Clarifications

 76

Table C–4, “Support for Compression Method field”, specifies the detailed production, consumption, and editing 1

requirements for the Compression Method field, which is fully described in the ZIP Appnote.txt. 2

Table C–4. Support for Compression Method field 3

Code Method Supported on
Consumption

Supported
on

Production

Pass
through

on editing

0 The file is stored (no compression) Yes Yes Yes

1 The file is Shrunk No No No

2 The file is Reduced with compression
factor 1

No No No

3 The file is Reduced with compression
factor 2

No No No

4 The file is Reduced with compression
factor 3

No No No

5 The file is Reduced with compression
factor 4

No No No

6 The file is Imploded No No No

7 Reserved for Tokenizing compression
algorithm

No No No

8 The file is Deflated Yes Yes Yes

9 Enhanced Deflating using Deflate64™ No No No

10 PKWARE Data Compression Library
Imploding

No No No

11 Reserved by PKWARE No No No

 4

Table C–5, “Support for modes/structures defined by general purpose bit flags”, specifies the detailed 5

production, consumption, and editing requirements when utilizing these general-purpose bit flags within 6

records. 7

Table C–5. Support for modes/structures defined by general purpose bit flags 8

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

0 If set, indicates that the file is encrypted. No No No

ZIP Appnote.txt Clarifications

 77

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

1,
2

Bit
2

Bit
1

0 0 Normal (-en) compression option
was used.

0 1 Maximum (-exx/-ex) compression
option was used.

1 0 Fast (-ef) compression option was
used.

1 1 Super Fast (-es) compression
option was used.

Yes Yes Yes

3 If this bit is set, the fields crc-32, compressed size
and uncompressed size are set to zero in the local
header. The correct values are put in the data
descriptor immediately following the compressed
data. (PKZIP version 2.04g for DOS only recognizes
this bit for method 8 compression, newer versions
of PKZIP recognize this bit for any compression
method.)

Yes Yes Yes

4 Reserved for use with method 8, for enhanced
deflating

Ignore Bits set to
0

Yes

5 If this bit is set, this indicates that the file is
compressed patched data. (Requires PKZIP version
2.70 or greater.)

Ignore Bits set to
0

Yes

6 Strong encryption. If this bit is set, you should set
the version needed to extract value to at least 50
and you must also set bit 0. If AES encryption is
used, the version needed to extract value must be
at least 51.

Ignore Bits set to
0

Yes

7 Currently unused Ignore Bits set to
0

Yes

8 Currently unused Ignore Bits set to
0

Yes

9 Currently unused Ignore Bits set to
0

Yes

10 Currently unused Ignore Bits set to
0

Yes

11 Currently unused Ignore Bits set to
0

Yes

ZIP Appnote.txt Clarifications

 78

Bit Feature Supported
on

Consumption

Supported
on

Production

Pass
through

on
editing

12 Reserved by PKWARE for enhanced compression Ignore Bits set to
0

Yes

13 Used when encrypting the Central Directory to
indicate selected data values in the Local Header
are masked to hide their actual values. See the
section describing the Strong Encryption
Specification for details.

Ignore Bits set to
0

Yes

14 Reserved by PKWARE Ignore Bits set to
0

Yes

15 Reserved by PKWARE Ignore Bits set to
0

Yes

 1

Table C–6, “Support for Extra field (variable size), PKWARE-reserved”, specifies the detailed production, 2

consumption, and editing requirements for the Extra field entries reserved by PKWARE and described in the ZIP 3

Appnote.txt. 4

Table C–6. Support for Extra field (variable size), PKWARE-reserved 5

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0001 ZIP64 extended information
extra field

Yes Yes Optional

0x0007 AV Info Ignore No Yes

0x0008 Reserved for future Unicode
file name data (PFS)

Ignore No Yes

0x0009 OS/2 Ignore No Yes

0x000a NTFS Ignore No Yes

0x000c OpenVMS Ignore No Yes

0x000d Unix Ignore No Yes

0x000e Reserved for file stream and
fork descriptors

Ignore No Yes

0x000f Patch Descriptor Ignore No Yes

0x0014 PKCS#7 Store for X.509
Certificates

Ignore No Yes

0x0015 X.509 Certificate ID and
Signature for individual file

Ignore No Yes

ZIP Appnote.txt Clarifications

 79

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through
on editing

0x0016 X.509 Certificate ID for
Central Directory

Ignore No Yes

0x0017 Strong Encryption Header Ignore No Yes

0x0018 Record Management
Controls

Ignore No Yes

0x0019 PKCS#7 Encryption
Recipient Certificate List

Ignore No Yes

0x0065 IBM S/390 (Z390), AS/400
(I400) attributes —
uncompressed

Ignore No Yes

0x0066 Reserved for IBM S/390
(Z390), AS/400 (I400)
attributes — compressed

Ignore No Yes

0x4690 POSZIP 4690 (reserved) Ignore No Yes

 1

Table C–7, “Support for Extra field (variable size), third-party extensions”, specifies the detailed production, 2

consumption, and editing requirements for the Extra field entries reserved by third parties and described in the 3

ZIP Appnote.txt. 4

Table C–7. Support for Extra field (variable size), third-party extensions 5

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x07c8 Macintosh Ignore No Yes

0x2605 ZipIt Macintosh Ignore No Yes

0x2705 ZipIt Macintosh
1.3.5+

Ignore No Yes

0x2805 ZipIt Macintosh
1.3.5+

Ignore No Yes

0x334d Info-ZIP Macintosh Ignore No Yes

0x4341 Acorn/SparkFS Ignore No Yes

0x4453 Windows NT security
descriptor (binary
ACL)

Ignore No Yes

0x4704 VM/CMS Ignore No Yes

0x470f MVS Ignore No Yes

0x4b46 FWKCS MD5 (see
below)

Ignore No Yes

ZIP Appnote.txt Clarifications

 80

Field
ID

Field description Supported on
Consumption

Supported on
Production

Pass through on
editing

0x4c41 OS/2 access control
list (text ACL)

Ignore No Yes

0x4d49 Info-ZIP OpenVMS Ignore No Yes

0x4f4c Xceed original
location extra field

Ignore No Yes

0x5356 AOS/VS (ACL) Ignore No Yes

0x5455 extended timestamp Ignore No Yes

0x554e Xceed unicode extra
field

Ignore No Yes

0x5855 Info-ZIP Unix (original,
also OS/2, NT, etc)

Ignore No Yes

0x6542 BeOS/BeBox Ignore No Yes

0x756e ASi Unix Ignore No Yes

0x7855 Info-ZIP Unix (new) Ignore No Yes

0xa220 Padding, Microsoft Optional Optional Optional

0xfd4a SMS/QDOS Ignore No Yes

 1

The package implementer shall ensure that all 64-bit stream record sizes and offsets have the high-order bit = 0. 2

[M3.20] 3

The package implementer shall ensure that all fields that contain “number of entries” do not exceed 4

2,147,483,647. [M3.21] 5

Schemas - XML Schema

 81

Annex D. Schemas - XML Schema 1

This Open Packaging Conventions specification includes a family of schemas defined using the XML Schema 1.0 2

syntax. The normative definitions of these schemas reside in an accompanying file named 3

OpenPackagingConventions-XMLSchema.zip, which is distributed in electronic form only. 4

If discrepancies exist between the electronic version of a schema and its corresponding representation as 5

published in this part, Part 2, the electronic version is the definitive version. 6

Schemas - RELAX NG

 82

Annex E. Schemas - RELAX NG 1

This clause is informative. 2

This Open Packaging Conventions specification includes a family of schemas defined using the RELAX NG syntax. 3

The definitions of these schemas reside in an accompanying file named 4

OpenPackagingConventions-RELAXNG.zip, which is distributed in electronic form only. 5

If discrepancies exist between the RELAX NG version of a schema and its corresponding XML Schema, the XML 6

Schema is the definitive version. 7

End of informative text. 8

Standard Namespaces and Content Types

 83

Annex F. Standard Namespaces and Content 1

Types 2

The namespaces available for use in a package are listed in Table F–1, Package-wide namespaces 3

Table F–1. Package-wide namespaces 4

Description Namespace URI

Content Types http://schemas.openxmlformats.org/package/2006/content-types

Core Properties http://schemas.openxmlformats.org/package/2006/metadata/core-properties

Digital Signatures http://schemas.openxmlformats.org/package/2006/digital-signature

Relationships http://schemas.openxmlformats.org/package/2006/relationships

Markup Compatibility http://schemas.openxmlformats.org/markup-compatibility/2006

The content types available for use in a package are listed in Table F–2, Package-wide content types 5

Table F–2. Package-wide content types 6

Description Content Type

Core Properties part application/vnd.openxmlformats-package.core-properties+xml

Digital Signature Certificate
part

application/vnd.openxmlformats-package.digital-signature-
certificate

Digital Signature Origin part application/vnd.openxmlformats-package.digital-signature-origin

Digital Signature XML Signature
part

application/vnd.openxmlformats-package.digital-signature-
xmlsignature+xml

Relationships part application/vnd.openxmlformats-package.relationships+xml

Package implementers and format designers shall not create content types with parameters for the package-7

specific parts defined in this Open Packaging specification and shall treat the presence of parameters in these 8

content types as an error. [M1.22] 9

The relationship types available for use in a package are listed in Table F–3, Package-wide relationship types. 10

Table F–3. Package-wide relationship types 11

Description Relationship Type

Core Properties http://schemas.openxmlformats.org/package/2006/relationships/metadata/c
ore-properties

Digital Signature http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/signature

Standard Namespaces and Content Types

 84

Description Relationship Type

Digital Signature
Certificate

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/certificate

Digital Signature
Origin

http://schemas.openxmlformats.org/package/2006/relationships/digital-
signature/origin

Thumbnail http://schemas.openxmlformats.org/package/2006/relationships/metadata/t
humbnail

Physical Model Design Considerations

 85

Annex G. Physical Model Design 1

Considerations 2

This annex is informative. 3

The physical model defines the ways in which packages are produced and consumed. This model is based on 4

three components: a producer, a consumer, and a pipe between them. 5

Figure G–1. Components of the physical model 6

 7

A producer is a piece of software or a device that writes packages. A consumer is a piece of software or a device 8

that reads packages. A device is a piece of hardware, such as a printer or scanner that performs a single function 9

or set of functions. Data is carried from the producer to the consumer by a pipe. 10

In local access, the pipe carries data directly from a producer to a consumer on a single device. 11

In networked access the consumer and the producer communicate with each other over a protocol. The 12

significant communication characteristics of this pipe are speed and request latency. For example, this 13

communication might occur across a process boundary or between a server and a desktop computer. 14

In order to maximize performance, designers of physical package formats consider access style, layout style, and 15

communication style. 16

Physical Model Design Considerations

 86

G.1 Access Styles 1

The access style in which local access or networked access is conducted determines the simultaneity possible 2

between processing and input-output operations. 3

G.1.1 Direct Access Consumption 4

Direct access consumption allows consumers to request the specific portion of the package desired, without 5

sequentially processing the preceding parts of the package. For example a byte-range request. This is the most 6

common access style. 7

G.1.2 Streaming Consumption 8

Streaming consumption allows consumers to begin processing parts before the entire package has arrived. 9

Physical package formats should be designed to allow consumers to begin interpreting and processing the data 10

they receive before all of the bits of the package have been delivered through the pipe. 11

G.1.3 Streaming Creation 12

Streaming creation allows producers to begin writing parts to the package without knowing in advance all of the 13

parts that will be written. For example, when an application begins to build a print spool file package, it may not 14

know how many pages the package will contain. Likewise, a program that is generating a report may not know 15

initially how long the report will be or how many pictures it will have. 16

In order to support streaming creation, the package implementer should allow a producer to add parts after 17

other parts have already been added. A Consumer shall not require a producer to state how many parts they will 18

create when they start writing. The package implementer should allow a producer to begin writing the contents 19

of a part without knowing the ultimate length of the part. 20

G.1.4 Simultaneous Creation and Consumption 21

Simultaneous creation and consumption allows streaming creation and streaming consumption to happen at the 22

same time on a package. Because of the benefits that can be realized within pipelined architectures that use it, 23

the package implementer should support simultaneous creation and consumption in the physical package. 24

G.2 Layout Styles 25

The style in which parts are ordered within a package is referred to as the layout style. Parts can be arranged in 26

one of two styles: simple ordering or interleaved ordering. 27

G.2.1 Simple Ordering 28

With simple ordering, parts are arranged contiguously. When a package is delivered sequentially, all of the bytes 29

for the first part arrive first, followed by all of the bytes for the second part, and so on. When such a package 30

uses simple ordering, all of the bytes for each part are stored contiguously. 31

Physical Model Design Considerations

 87

G.2.2 Interleaved Ordering 1

With interleaved ordering, pieces of parts are interleaved, allowing optimal performance in certain scenarios. 2

For example, interleaved ordering improves performance for multi-media playback, where video and audio are 3

delivered simultaneously and inline resource referencing, where a reference to an image occurs within markup. 4

By breaking parts into pieces and interleaving those pieces, it is possible to optimize performance while allowing 5

easy reconstruction of the original contiguous part. 6

Because of the performance benefits it provides, package implementers should support interleaving in the 7

physical package. The package implementer might handle the internal representation of interleaving differently 8

in different physical models. Regardless of how the physical model handles interleaving, a part that is broken 9

into multiple pieces in the physical file is considered one logical part; the pieces themselves are not parts and 10

are not addressable. 11

G.3 Communication Styles 12

The style in which a package and its parts are delivered by a producer or accessed by a consumer is referred to 13

as the communication style. Communication can be based on sequential delivery of or random access to parts. 14

The communication style used depends on the capabilities of both the pipe and the physical package format. 15

G.3.1 Sequential Delivery 16

With sequential delivery, all of the physical bits in the package are delivered in the order they appear in the. 17

Generally, all pipes support sequential delivery. 18

G.3.2 Random Access 19

Random access allows consumers to request the delivery of a part out of sequential physical order. Some pipes 20

are based on protocols that can enable random access. For example, HTTP 1.1 with byte-range support. In order 21

to maximize performance, the package implementer should support random access in both the pipe and the 22

physical package. In the absence of this support, consumers need to wait until the parts they need are delivered 23

sequentially. 24

End of informative text. 25

Conformance Requirements

 88

Annex H. Conformance Requirements 1

This annex is informative. 2

This annex summarizes all conformance requirements for producers and consumers implementing the Open 3

Packaging Conventions. It is intended as a convenience; the text in the referenced clause or subclause is 4

considered normative in all cases. 5

Conformance requirements are divided into tables based on their general topic below. The tables contain the 6

requirements that producers and consumers shall follow, those that they should follow, and those that are 7

optional. Each conformance requirement is given a unique ID comprised of a letter (M – MANDATORY; S – 8

SHOULD; O – OPTIONAL), an identifier for the topic it relates to, and a unique ID within that topic. Mandatory 9

requirements are those stated with the normative terms "shall," "shall not," or any of their normative 10

equivalents. Should items are those stated with the normative terms "should," "should not," or any of their 11

normative equivalents. Optional requirements are those stated with the normative terms "can," "cannot," 12

"might," "might not," or any of their normative equivalents. 13

Producers and consumers might use these IDs to report error conditions. 14

The top-level topics and their identifiers are described as follows: 15

1. Package Model requirements 16

2. Physical Packages requirements 17

3. ZIP Physical Mapping requirements 18

4. Core Properties requirements 19

5. Thumbnail requirements 20

6. Digital Signatures requirements 21

7. Pack URI requirements 22

Additionally, these tables identify, as does the referenced text, who is burdened with enforcing or supporting 23

the requirement: 24

H.1 Package Model 25

Table H–1. Package model conformance requirements 26

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.1 The package implementer shall
require a part name.

8.1, 8.1.1 ×

Conformance Requirements

 89

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.2 The package implementer shall
require a content type and the
format designer shall specify
the content type.

8.1 × ×

M1.3 A part name shall not have
empty segments.

0 ×

M1.4 A part name shall start with a
forward slash (“/”) character.

0 ×

M1.5 A part name shall not have a
forward slash as the last
character.

0 ×

M1.6 A segment shall not hold any
characters other than pchar
characters. .

0 ×

M1.7 A segment shall not contain
percent-encoded forward slash
(“/”), or backward slash (“\”)
characters.

0 ×

M1.8 A segment shall not contain
percent-encoded unreserved
characters.

0 ×

M1.9 A segment shall not end with a
dot (“.”) character.

0 ×

M1.10 A segment shall include at least
one non-dot character

0 ×

M1.11 A package implementer shall
neither create nor recognize a
part with a part name derived
from another part name by
appending segments to it.

8.1.1.1 ×

M1.12 Part name equivalence is
determined by comparing part
names as case-insensitive ASCII
strings. Packages shall not
contain equivalent part names
and package implementers
shall neither create nor
recognize packages with
equivalent part names.

8.1.1.2 ×

Conformance Requirements

 90

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.13 Package implementers shall
only create and only recognize
parts with a content type;
format designers shall specify a
content type for each part
included in the format. Content
types for package parts shall fit
the definition and syntax for
media types as specified in RFC
2616, §3.7.

8.1.2 × ×

M1.14 Content types shall not use
linear white space either
between the type and subtype
or between an attribute and its
value. Content types also shall
not have leading or trailing
white spaces. Package
implementers shall create only
such content types and shall
require such content types
when retrieving a part from a
package; format designers shall
specify only such content types
for inclusion in the format.

8.1.2 × ×

M1.15 The package implementer shall
require a content type that
does not include comments and
the format designer shall
specify such a content type.

8.1.2 × ×

M1.16 If the package implementer
specifies a growth hint, it is set
when a part is created and the
package implementer shall not
change the growth hint after
the part has been created.

8.1.3 × ×

Conformance Requirements

 91

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.17 XML content shall be encoded
using either UTF-8 or UTF-16. If
any part includes an encoding
declaration, as defined in §4.3.3
of the XML 1.0 specification,
that declaration shall not name
any encoding other than UTF-8
or UTF-16. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.1.4 ×

M1.18 DTD declarations shall not be
used in the XML markup
defined in this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content
and shall treat the presence of
DTD declarations as an error.

8.1.4 ×

M1.19 If the XML content contains the
Markup Compatibility
namespace, as described in
Part 5: “Markup Compatibility
and Extensibility”, it shall be
processed by the package
implementer to remove
Markup Compatibility elements
and attributes, ignorable
namespace declarations, and
ignored elements and
attributes before applying
subsequent validation rules.

8.1.4 ×

Conformance Requirements

 92

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.20 XML content shall be valid
against the corresponding XSD
schema defined in this Open
Packaging specification. In
particular, the XML content
shall not contain elements or
attributes drawn from
namespaces that are not
explicitly defined in the
corresponding XSD unless the
XSD allows elements or
attributes drawn from any
namespace to be present in
particular locations in the XML
markup. Package implementers
shall enforce this requirement
upon creation and retrieval of
the XML content.

8.1.4 ×

M1.21 XML content shall not contain
elements or attributes drawn
from “xml” or “xsi” namespaces
unless they are explicitly
defined in the XSD schema or
by other means described in
this Open Packaging
specification. Package
implementers shall enforce this
requirement upon creation and
retrieval of the XML content.

8.1.4 ×

M1.22 Package implementers and
format designers shall not
create content types with
parameters for the package-
specific parts defined in this
Open Packaging specification
and shall treat the presence of
parameters in these content
types as an error.

Annex F × ×

Conformance Requirements

 93

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.23 XML markup might contain
Unicode strings referencing
other parts as values of the
xsd:anyURI data type. Format
consumers shall convert these
Unicode strings to URIs, as
defined in Annex A, “Resolving
Unicode Strings to Part
Names,” before resolving them
relative to the base URI of the
part containing the Unicode
string.

8.2.1 ×

M1.24 Some types of content provide
a way to override the default
base URI by specifying a
different base in the content. In
the presence of one of these
overrides, format consumers
shall use the specified base URI
instead of the default.

8.2.1 ×

M1.25 The Relationships part shall not
have relationships to any other
part. Package implementers
shall enforce this requirement
upon the attempt to create
such a relationship and shall
treat any such relationship as
invalid.

8.3.1 ×

M1.26 The package implementer shall
require that every Relationship
element has an Id attribute, the
value of which is unique within
the Relationships part, and that
the Id type is xsd:ID, the value
of which conforms to the
naming restrictions for xsd:ID
as described in the W3C
Recommendation “XML
Schema Part 2: Datatypes.”

8.3.3 ×

Conformance Requirements

 94

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.27 The package implementer shall
require the Type attribute to be
a URI that defines the role of
the relationship and the format
designer shall specify such a
Type.

8.3.3.2 × ×

M1.28 The package implementer shall
require the Target attribute to
be a URI reference pointing to a
target resource. The URI
reference shall be a URI or a
relative reference.

8.3.3.2 ×

M1.29 When set to Internal, the
Target attribute shall be a
relative reference and that
reference is interpreted relative
to the “parent” part. For
package relationships, the
package implementer shall
resolve relative references in
the Target attribute against the
pack URI that identifies the
entire package resource.

 8.3.3.2 ×

M1.30 The package implementer shall
name relationship parts
according to the special
relationships part naming
convention and require that
parts with names that conform
to this naming convention have
the content type for a
Relationships part

8.3.4 ×

Conformance Requirements

 95

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M1.31

Consumers shall process
relationship markup in a
manner that conforms to
Part 5: “Markup Compatibility
and Extensibility”. Producers
editing relationships based on
this version of the relationship
markup specification shall not
preserve any ignored content,
regardless of the presence of
any preservation attributes as
defined in Part 5: “Markup
Compatibility and Extensibility”.

8.3.5 × ×

M1.32 If a fragment identifier is
allowed in the Target attribute
of the Relationship element, a
package implementer shall not
resolve the URI to a scope less
than an entire part.

8.3.3.2 ×

M1.33 A Unicode string representing a
URI can be passed to the
producer or consumer. The
producing or consuming
application shall convert the
Unicode string to a URI. If the
URI is a relative reference, the
application shall resolve it using
the base URI of the part, which
is expressed using the pack
scheme, to the URI of the
referenced part.

Annex A × ×

M1.34 If a consumer converts the URI
back into an IRI, the conversion
shall be performed as specified
in §3.2 of RFC 3987.

A.2 ×

 Table H–2. Package model optional requirements 1

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O1.1 The package implementer might
allow a growth hint to be provided
by a producer.

8.1, 8.1.3 ×

Conformance Requirements

 96

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O1.2 Format designers might restrict the
usage of parameters for content
types.

8.1.2 ×

O1.3 The package implementer might
ignore the growth hint or adhere
only loosely to it when specifying
the physical mapping.

8.1.3 ×

O1.4 If the format designer permits it,
parts can contain Unicode strings
representing references to other
parts. If allowed by the format
designer, format producers can
create such parts and format
consumers shall consume them.

8.2.1 × × ×

O1.5 The package implementer might
allow a TargetMode to be provided
by a producer.

8.3.3.2 ×

O1.6
A format designer might allow
fragment identifiers in the value of
the Target attribute of the
Relationship element.

8.3.3.2 ×

O1.7 Producers might generate
relationship markup that uses the
versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML namespaces.

8.3.5 ×

H.2 Physical Packages 1

Table H–3. Physical packages conformance requirements 2

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.1 The Content Types stream shall not
be mapped to a part by the package
implementer.

9.1.2.1 ×A

Conformance Requirements

 97

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.2 The package implementer shall
define a physical package format
with a mapping for the required
components package, part name,
part content type and part contents.

9.1.1 ×

M2.3 The package implementer shall
define a format mapping with a
mechanism for associating content
types with parts.

9.1.2.1 ×

M2.4 The package implementer shall
require that the Content Types
stream contain one of the following
for every part in the package:
One matching Default element
One matching Override element
Both a matching Default element
and a matching Override element,
in which case the Override element
takes precedence.

9.1.2.2 ×A

M2.5 The package implementer shall
require that there not be more than
one Default element for any given
extension, and there not be more
than one Override element for any
given part name.

9.1.2.2 ×A

M2.6 The package implementer shall
require a non-empty extension in a
Default element. The package
implementer shall require a content
type in a Default element and the
format designer shall specify the
content type.

9.1.2.2.2 ×A ×A

M2.7 The package implementer shall
require a content type and the
format designer shall specify the
content type in an Override
element. The package implementer
shall require a part name.

9.1.2.2.3 ×A ×A

Conformance Requirements

 98

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.8 When adding a new part to a
package, the package implementer
shall ensure that a content type for
that part is specified in the Content
Types stream; the package
implementer shall perform the steps
described in §9.1.2.3.

9.1.2.3 ×A

M2.9 To get the content type of a part,
the package implementer shall
perform the steps described
in §9.1.2.4.

9.1.2.4 ×A

M2.10 The package implementer shall not
use the versioning and extensibility
mechanisms defined in Part 5:
“Markup Compatibility and
Extensibility” to incorporate
elements and attributes drawn from
other XML-namespaces into the
Content Types stream markup.

9.1.2.5 ×A

M2.11 The package implementer shall not
mix interleaving and non-
interleaving for an individual part.

9.1.4 ×B

M2.12 The package implementer shall
compare prefix names as case-
insensitive ASCII strings.

9.1.3.1 ×

M2.13 The package implementer shall
compare suffix names as case-
insensitive ASCII strings.

9.1.3.1 ×B

M2.14 The package implementer shall not
allow packages that contain
equivalent logical item names.

9.1.3.1 ×

M2.15 The package implementer shall not
allow packages that contain logical
items with equivalent prefix names
and with equal piece numbers,
where piece numbers are treated as
integer decimal values.

9.1.3.1 ×B

M2.16 The package implementer shall not
map logical items to parts if the
logical item names violate the part
naming rules.

9.1.3.4 ×

Conformance Requirements

 99

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M2.17 The package implementer shall
consider naming collisions within
the set of part names mapped from
logical item names to be an error.

9.1.3.4 ×

M2.18 When interleaved, a package
implementer shall represent a part
as one or more pieces, using the
method described in §9.1.4.

9.2.1 ×B

Notes: 1

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions. 2

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions. 3

Table H–4. Physical packages recommendations 4

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.1 Some physical package
formats have a native
mechanism for representing
content types. For such
packages, the package
implementer should use the
native mechanism to map the
content type for a part.

9.1.2.1 ×

S2.2 If no native method of
mapping a content type to a
part exists, the package
implementer should include a
specially-named XML stream
in the package called the
Content Types stream

9.1.2.1 ×

Conformance Requirements

 100

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S2.3 If the package is intended for
streaming consumption:
The package implementer
should not allow Default
elements; as a consequence,
there should be one Override
element for each part in the
package.
The format producer should
write the Override elements
to the package so they appear
before the parts to which they
correspond, or in close
proximity to the part to which
they correspond.

9.1.2.2 ×A ×A

S2.4 The package implementer
should use the mechanism
described in this Open
Packaging specification to
allow interleaving when
mapping to the physical
package for layout scenarios
that support streaming
consumption.

9.1.4 ×B

S2.5 The package implementer
should store pieces in their
natural order for optimal
efficiency.

9.1.4 ×B

Notes: 1

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions. 2

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions. 3

Table H–5. Physical packages optional requirements 4

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.1 The format designer specifies
whether that format might use
interleaving.

9.1.4 ×

Conformance Requirements

 101

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O2.2 Optional. The package implementer
might provide a physical mapping for
a growth hint that might be specified
by a producer.

9.1.1 ×

O2.3 Package implementers might use the
common mapping solutions defined
in this Open Packaging specification.

9.1 ×

O2.4 Package producers can use pre-
defined Default elements to reduce
the number of Override elements on
a part, but are not required to do so.

9.1.2.2 ×A

O2.5 The package implementer can define
Default content type mappings even
though no parts use them.

9.1.2.2 ×A

O2.6 The package implementer might
create a physical package containing
interleaved parts and non-interleaved
parts.

9.1.4 ×

O2.7 The package implementer might
allow a package that contains logical
item names and complete sequences
of logical item names that cannot be
mapped to a part name because the
logical item name does not follow the
part naming grammar or the logical
item does not have an associated
content type.

9.1.3.4 ×B

Notes: 1

A: Only relevant if using the content type mapping strategy specified in the Open Packaging Conventions. 2

B: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions. 3

H.3 ZIP Physical Mapping 4

The requirements in Table H–6, Table H–7, and 5

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

Conformance Requirements

 102

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.2 If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that represents
the first piece of the part.

10.2.7 ×

 1

Table J–8 are only relevant when mapping to the ZIP physical package format. 2

Table H–6. ZIP physical mapping conformance requirements 3

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.1 A package implementer shall store a
non-interleaved part as a single ZIP
item.

9.2.1 ×

M3.2 ZIP item names are case-sensitive
ASCII strings. Package implementers
shall create ZIP item names that
conform to ZIP archive file name
grammar.

9.2.2 ×

M3.3 Package implementers shall create
item names that are unique within a
given archive.

9.2.2 ×

M3.4 To map part names to ZIP item
names the package implementer
shall perform, in order, the steps
described in §9.2.3.

9.2.3 ×

M3.5 The package implementer shall not
map a logical item name or
complete sequence of logical item
names sharing a common prefix to a
part name if the logical item prefix
has no corresponding content type.

9.2.3 ×

M3.6 To map ZIP item names to part
names, the package implementer
shall perform, in order, the steps
described in §9.2.4.

9.2.4 ×

Conformance Requirements

 103

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.7 The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files.

9.2.5 ×

M3.8 The package implementer shall map
all ZIP items to parts except MS-
DOSZIP items, as defined in the ZIP
specification, that are not MS-DOS
files. [M3.7]
[Note: The ZIP specification
specifies that ZIP items recognized
as MS-DOS files are those with a
“version made by” field and an
“external file attributes” field in the
“file header” record in the central
directory that have a value of 0. end
note]
In ZIP archives, the package
implementer shall not exceed
65,535 bytes for the combined
length of the item name, Extra field,
and Comment fields.

9.2.5 ×

M3.9 ZIP-based packages shall not include
encryption as described in the ZIP
specification. Package implementers
shall enforce this restriction.

9.2.5 ×

M3.10 Package implementers shall store
content type data in an item(s)
mapped to the logical item name
with the prefix_name equal to
“/*Content_Types+.xml” or in the
interleaved case to the complete
sequence of logical item names with
that prefix_name.

9.2.6 ×

M3.11 Package implementers shall not
map logical item name(s) mapped to
the Content Types stream in a ZIP
archive to a part name.

9.2.6 ×

Conformance Requirements

 104

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.13 Several substantial conditions that
represent a package unfit for
streaming consumption may be
detected mid-processing by a
streaming package implementer,
described in §9.2.8. When any of
these conditions are detected, the
streaming package implementer
shall generate an error, regardless
of any processing that has already
taken place. Package implementers
shall not generate a package
containing any of these conditions
when generating a package
intended for streaming
consumption.

9.2.8 ×

M3.14 For a ZIP archive to be a valid
physical layer for a package, the
package implementer shall ensure
that the ZIP archive holds equal
values in the appropriate fields of
every File Header within the Central
Directory and the corresponding
Local File Header and Data
Descriptor pair.

Annex C ×

M3.15 During consumption of a package, a
"Yes" value for a field in a table in
Annex C indicates a package
implementer shall support reading
the ZIP archive containing this
record or field, however, support
may mean ignoring.

Annex C ×

M3.16 During production of a package, a
“Yes” value for a field in a table in
Annex C indicates that the package
implementer shall write out this
record or field.

Annex C ×

M3.17 A “No” value for a field in a table in
Annex C indicates the package
implementer shall not use this
record or field during consumption
or production of packages.

Annex C ×

Conformance Requirements

 105

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M3.18 A “Partially, details below” value for
a record in a table in Annex C
indicates that the record contains
fields that might not be supported
by package implementers during
production or consumption. See the
details in the corresponding table to
determine requirements.

Annex C ×

M3.19 The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C ×

M3.20 The value “Only used when needed”
associated with a record in a table in
Annex C indicates that the package
implementer shall use the record
only when needed to store data in
the ZIP archive.

Annex C ×

M3.21 The package implementer shall
ensure that all 64-bit stream record
sizes and offsets have the high-
order bit = 0.

Annex C ×

Notes: 1

A: Only relevant if supporting the interleaving strategy specified in the Open Packaging Conventions. 2

Table H–7. ZIP physical mapping recommendations 3

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S3.1 Package implementers should restrict
part naming to accommodate file
system limitations when naming
parts to be stored as ZIP items.

9.2.5 ×

S3.2 If a growth hint is used for an
interleaved part, the package
implementer should store the Extra
field containing the growth hint
padding with the item that
represents the first piece of the part.

9.2.7 ×

Table H–8. ZIP physical mapping optional requirements 4

Conformance Requirements

 106

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O3.1 A package implementer might
intentionally order the sequence of
ZIP items in the archive to enable an
efficient organization of the part data
in order to achieve correct and
optimal interleaving.

9.2.1 ×

O3.2 An “Optional” value for a record in a
table in Annex C indicates that
package implementers might write
this record during production.

Annex C ×

H.4 Core Properties 1

The requirements in Table H–9 are only relevant if using the core properties feature. 2

Table H–9. Core properties conformance requirements 3

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.1 The format designer shall specify
and the format producer shall
create at most one core properties
relationship for a package. A format
consumer shall consider more than
one core properties relationship for
a package to be an error. If present,
the relationship shall target the Core
Properties part.

10.2 × × ×

M4.2 The format designer shall not
specify and the format producer
shall not create Core Properties that
use the Markup Compatibility
namespace as defined in Annex F,
“Standard Namespaces and Content
Types”. A format consumer shall
consider the use of the Markup
Compatibility namespace to be an
error.

10.3 × × ×

Conformance Requirements

 107

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M4.3 Producers shall not create a
document element that contains
refinements to the Dublin Core
elements, except for the two
specified in the schema:
<dcterms:created> and
<dcterms:modified> Consumers
shall consider a document element
that violates this constraint to be an
error.

10.4 × ×

M4.4 Producers shall not create a
document element that contains the
xml:lang attribute. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4 × ×

M4.5 Producers shall not create a
document element that contains the
xsi:type attribute, except for a
<dcterms:created> or
<dcterms:modified> element where
the xsi:type attribute shall be
present and shall hold the value
dcterms:W3CDTF, where dcterms is
the namespace prefix of the Dublin
Core namespace. Consumers shall
consider a document element that
violates this constraint to be an
error.

10.4 × ×

H.5 Thumbnail 1

The requirements in Table H–10 and Table H–11 are only relevant if using the thumbnail feature. 2

Table H–10. Thumbnail conformance requirements 3

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M5.1 The format designer shall specify
thumbnail parts that are identified
by either a part relationship or a
package relationship. The producer
shall build the package accordingly.

11.1 × ×

Table H–11. Thumbnail optional requirements 4

Conformance Requirements

 108

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O5.1 The format designer might allow
images, called thumbnails, to be
used to help end-users identify parts
of a package or a package as a
whole. These images can be
generated by the producer and
stored as parts.

11 × ×

H.6 Digital Signatures 1

The requirements in Table H–12, Table H–13, and Table H–14 are only relevant if using the digital signatures 2

feature. 3

Table H–12. Digital Signatures conformance requirements 4

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.1 The package implementer shall
include only one Digital Signature
Origin part in a package and it shall
be targeted from the package root
using the well-defined relationship
type specified in Annex F,
“Standard Namespaces and
Content Types”.

12.2.1 ×

M6.2 When creating the first Digital
Signature XML Signature part, the
package implementer shall create
the Digital Signature Origin part, if
it does not exist, in order to specify
a relationship to that Digital
Signature XML Signature part.

12.2.1 ×

M6.3 The producer shall create Digital
Signature XML Signature parts that
have a relationship from the Digital
Signature Origin part and the
consumer shall use that
relationship to locate signature
information within the package.

12.2.1 × ×

Conformance Requirements

 109

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.4 If the certificate is represented as a
separate part within the package,
the producer shall target that
certificate from the appropriate
Digital Signature XML Signature
part by a Digital Signature
Certificate relationship as specified
in Annex F, “Standard Namespaces
and Content Types” and the
consumer shall use that
relationship to locate the
certificate.

12.2.3 × ×

M6.5 The producer shall create
Reference elements within a
SignedInfo element that reference
elements within the same
Signature element. The consumer
shall consider Reference elements
within a SignedInfo element that
reference any resources outside
the same Signature element to be
in error.

12.2.4.1 × ×

M6.6 The producer shall not create a
reference to a package-specific
Object element that contains a
transform other than a
canonicalization transform. The
consumer shall consider a
reference to a package-specific
Object element that contains a
transform other than a canonical
transform to be an error.

12.2.4.1 × ×

M6.7 The producer shall create one and
only one package-specific Object
element in the Signature element.
The consumer shall consider zero
or more than one package-specific
Object element in the Signature
element to be an error.

12.2.4.1 × ×

Conformance Requirements

 110

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.8 The producer shall create package-
specific Object elements that
contain exactly one Manifest
element and exactly one
SignatureProperties element.
[Note: This SignatureProperties
element can contain multiple
SignatureProperty elements. end
note] The consumer shall consider
package-specific Object elements
that contain other types of
elements to be an error.

12.2.4.1 × ×

M6.9 The producer shall create
Reference elements within a
Manifest element that reference
with their URI attribute only parts
within the package. The consumer
shall consider Reference elements
within a Manifest element that
reference resources outside the
package to be an error.

12.2.4.1 × ×

M6.10 The producer shall create relative
references to the local parts that
have query components that
specifies the part content type as
described in §12.2.4.6. The relative
reference excluding the query
component shall conform to the
part name grammar. The
consumer shall consider a relative
reference to a local part that has a
query component that incorrectly
specifies the part content type to
be an error.

12.2.4.1 × ×

Conformance Requirements

 111

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.11 The producer shall create
Reference elements with a query
component that specifies the
content type that matches the
content type of the referenced
part. The consumer shall consider
signature validation to fail if the
part content type compared in a
case-sensitive manner to the
content type specified in the query
component of the part reference
does not match.

12.2.4.1 × ×

M6.12 The producer shall not create
Reference elements within a
Manifest element that contain
transforms other than the
canonicalization transform and
relationships transform. The
consumer shall consider Reference
elements within a Manifest
element that contain transforms
other than the canonicalization
transform and relationships
transform to be in error.

12.2.4.1 × ×

M6.13 A producer that uses an optional
relationships transform shall follow
it by a canonicalization transform.
The consumer shall consider any
relationships transform that is not
followed by a canonicalization
transform to be an error.

12.2.4.1 × ×

Conformance Requirements

 112

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.14 The producer shall create exactly
one SignatureProperty element
with the Id attribute value set to
idSignatureTime. The Target
attribute value of this element
shall be either empty or contain a
fragment reference to the value of
the Id attribute of the root
Signature element. A
SignatureProperty element shall
contain exactly one
SignatureTime child element. The
consumer shall consider a
SignatureProperty element that
does not contain a SignatureTime
element or whose Target attribute
value is not empty or does not
contain a fragment reference the
Id attribute of the ancestor
Signature element to be in error.

12.2.4.1 × ×

M6.15 The producer shall create a
Signature element that contains
exactly one local-data, package-
specific Object element and zero
or more application-specific
Object elements. If a Signature
element violates this constraint, a
consumer shall consider this to be
an error.

12.2.4.2 × ×

M6.16 The producer shall create a
SignedInfo element that contains
exactly one reference to the
package-specific Object element.
The consumer shall consider it an
error if a SignedInfo element does
not contain a reference to the
package-specific Object element.

12.2.4.3 × ×

M6.17 Producers shall support DSA and
RSA algorithms to produce
signatures. Consumers shall
support DSA and RSA algorithms to
validate signatures.

12.2.4.5 × ×

Conformance Requirements

 113

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.18 The producer shall create a
Reference element within a
Manifest element with a URI
attribute and that attribute shall
contain a part name, without a
fragment identifier. The consumer
shall consider a Reference element
with a URI attribute that does not
contain a part name to be an error.

12.2.4.6 × ×

M6.19
The following transforms shall be
supported by producers and
consumers of packages with digital
signatures:

 XML Canonicalization
(c14n)

 XML Canonicalization with
Comments (c14n with
comments)

 Relationships transform
(package-specific)

Consumers validating signed
packages shall fail the validation if
other transforms are encountered.
Relationships transforms shall only
be supported by producers and
consumers when the Transform
element is a descendant element
of a Manifest element

12.2.4.7 × ×

M6.20 Producers shall create application-
specific Object elements that
contain XML-compliant data;
consumers shall treat data that is
not XML-compliant as an error.

12.2.4.14 × ×

M6.21 Producers and consumers shall use
the certificate embedded in the
Digital Signature XML Signature
part when it is specified.

12.2.4.15 × ×

Conformance Requirements

 114

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.22 The producer shall not create a
Manifest element that references
any data outside of the package.
The consumer shall consider a
Manifest element that references
data outside of the package to be
in error.

12.2.4.18 × ×

M6.23 The producer shall create a
data/time format that conforms to
the syntax described in the W3C
Note "Date and Time Formats".
The consumer shall consider a
format that does not conform to
the syntax described in that WC3
note to be in error.

12.2.4.22 × ×

M6.24 The producer shall create a value
that conforms to the format
specified in the Format element.
The consumer shall consider a
value that does not conform to
that format to be in error.

12.2.4.23 × ×

M6.25 To sign a subset of relationships,
the producer shall use the
package-specific relationships
transform. The consumer shall use
the package-specific relationships
transform to validate the signature
when a subset of relationships are
signed.

12.2.4.25 × ×

M6.26 Producers shall specify a
canonicalization transform
immediately following a
relationships transform and
consumers that encounter a
relationships transform that is not
immediately followed by a
canonicalization transform shall
generate an error.

12.2.4.25 × ×

Conformance Requirements

 115

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.27 When applying a relationships
transform for digital signatures,
the package implementer shall
remove all Relationship elements
that do not have eitheran Id value
that matches any SourceId valueor
a Type value that matches any
SourceType value, among the
SourceId and SourceType values
specified in the transform
definition. Producers and
consumers shall compare values as
case-sensitive Unicode strings.

12.2.4.26 × ×

M6.28 When signing Object element
data, package implementers shall
follow the generic reference
creation algorithm described
in §3.1 of the W3C
Recommendation “XML-Signature
Syntax and Processing”.

12.4 ×

M6.29 When validating digital signatures,
consumers shall verify the content
type and the digest contained in
each Reference descendant
element of the SignedInfo
element, and validate the
signature calculated using the
SignedInfo element.

12.5 ×

M6.30 The package implementer shall
compare the generated digest
value against the DigestValue
element in the Reference element
of the SignedInfo element.
Package implementers shall
consider references invalid if there
is any mismatch.

12.5 ×

M6.31 Streaming consumers that
maintain signatures shall be able to
cache the parts necessary for
detecting and processing
signatures.

12.5.1 ×

Conformance Requirements

 116

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M6.32 The package implementer shall not
use the Markup Compatibility
namespace, as specified in Annex
F, “Standard Namespaces and
Content Types,” within the
package-specific Object element.
The package implementer shall
consider the use of the Markup
Compatibility namespace within
the package-specific Object
element to be an error.

12.6.2 ×

M6.33 If an application allows for a single
part to contain information that
might not be fully understood by
all implementations, then the
format designer shall carefully
design the signing and verification
policies to account for the
possibility of different
implementations being used for
each action in the sequence of
content creation, content signing,
and signature verification.
Producers and consumers shall
account for this possibility in their
signing and verification processing.

12.6.2 × × ×

M6.34 The following canonicalization
methods shall be supported by
producers and consumers of
packages with digital signatures:
XML Canonicalization (c14n)
XML Canonicalization with
Comments (c14n with comments)
Consumers validating signed
packages shall fail the validation if
other canonicalization methods are
encountered.

12.2.4.4 × ×

M6.35 A producer shall not specify more
than one relationship transform for
a particular relationships part. A
consumer shall treat the presence
of more than one relationship
transform for a particular
relationships part as an error.

12.2.4.25 × ×

Conformance Requirements

 117

Table H–13. Digital signatures recommendations 1

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

S6.1 The producer should not create any
content in the Digital Signature Origin
part itself.

12.2.1 ×

S6.2 Producers generating digital
signatures should not create Digital
Signature Certificate parts that are
not the target of at least one Digital
Signature Certificate relationship from
a Digital Signature XML Signature
part. In addition, producers should
remove a Digital Signature Certificate
part if removing the last Digital
Signature XML Signature part that has
a Digital Signature Certificate
relationship to it.

12.2.3 ×

S6.3 For digital signatures, a producer
should apply a canonicalization
transform to the SignedInfo element
when it generates it, and a consumer
should apply the canonicalization
transform to the SignedInfo element
when validating it.

12.2.4.4 × ×

S6.4 Producers and consumers should also
use canonicalization transforms for
references to parts that hold XML
documents.

12.2.4.4 × ×

S6.5 The producer should only create
Reference elements within a
SignedInfo element that reference an
Object element.

12.2.4.1 ×

Table H–14. Digital signatures optional requirements 2

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.1 Format designers might allow a
package to include digital signatures
to enable consumers to validate the
integrity of the contents. The
producer might include the digital
signature when allowed by the
format designer.

12 × ×

Conformance Requirements

 118

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.2 If there are no Digital Signature XML
Signature parts in the package, the
Digital Signature Origin part is
optional.

12.2.1 ×

O6.4 The producer might create zero or
more Digital Signature XML
Signature parts in a package.

12.2.2 ×

O6.5 Alternatively, the producer might
store the certificate as a separate
part in the package, might embed it
within the Digital Signature XML
Signature part itself, or might not
include it in the package if certificate
data is known or can be obtained
from a local or remote certificate
store.

12.2.3 ×

O6.6 The producer might sign the part
holding the certificate.

12.2.3 ×

O6.7 Producers might share Digital
Signature Certificate parts by using
the same certificate to create more
than one signature.

12.2.3 ×

O6.8 The format designer might permit
one or more application-specific
Object elements. If allowed by the
format designer, format producers
can create one or more application-
specific Object elements.

12.2.4.14 × ×

O6.9 Format designers and producers
might not apply package-specific
restrictions regarding URIs and
Transform elements to application-
specific Object element.

12.2.4.14 × ×

O6.10
Format designers might permit
producers to sign individual
relationships in a package or the
Relationships part as a whole.

12.2.4.25 × ×

Conformance Requirements

 119

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O6.11 The package implementer might
create relationships XML that
contains content from several
namespaces, along with versioning
instructions as defined in Part 5:
“Markup Compatibility and
Extensibility”.

12.2.4.26 ×

O6.12 Format designers might specify an
application-specific package part
format that allows for the
embedding of versioned or
extended content that might not be
fully understood by all present and
future implementations. Producers
might create such embedded
versioned or extended content and
consumers might encounter such
content.

12.6.2 × × ×

H.7 Pack URI 1

Table H–15. Pack URI conformance requirements 2

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.1 The authority component contains an
embedded URI that points to a
package. The package implementer
shall create an embedded URI that
meets the requirements defined in
RFC 3986 for a valid URI.

B.1 ×

M7.2 The optional path component identifies
a particular part within the package.
The package implementer shall only
create path components that conform
to the part naming rules. When the
path component is missing, the
resource identified by the pack URI is
the package as a whole.

B.1 ×

Conformance Requirements

 120

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

M7.3 The package implementer shall
consider pack URIs equivalent if:
The scheme components are octet-by-
octet identical after they are both
converted to lowercase; and
The URIs, decoded as described in §B.2
from the authority components are
equivalent (the equivalency rules by
scheme, as per RFC 3986); and
The path components are equivalent
when compared as case-insensitive
ASCII strings.

B.4 ×

M7.4 The package implementer shall not
create an authority component with an
unescaped colon (:) character.

B.1 ×

Table H–16. Pack URI optional requirements 1

ID Rule Reference Package
Implementer

Format
Designer

Format
Producer

Format
Consumer

O7.1 Consumer applications, based on the
obsolete URI specification RFC 2396,
might tolerate the presence of an
unescaped colon character in an
authority component.

B.1 ×

End of informative text. 2

Bibliography

 121

Annex I. Bibliography 1

The bibliography is informative. 2

The following documents are useful references for implementers and users of this Open Packaging specification, 3

in addition to the normative references: 4

ISO/IEC Directives Part 2, Rules for the structure and drafting of International Standards, Fourth edition, 2001, 5

ISBN 92-67-01070-0. 6

The Unicode Standard, Version 3.0, by the Unicode Consortium; Addison-Wesley Publishing Co, ISBN 0-201-7

61633-5, February 2000. The latest version can be found at the Unicode Consortium's web site, 8

www.unicode.org, at this writing. 9

Dublin Core Element Set v1.1. http://purl.org/dc/elements/1.1/ 10

Dublin Core Terms Namespace. http://purl.org/dc/terms/ 11

Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation, 04 February 2004. 12

Namespaces in XML 1.1, W3C Recommendation, 4 February 2004. 13

RFC 2616 Hypertext Transfer Protocol—HTTP/1.1, The Internet Society, Berners-Lee, T., R. Fielding, H. Frystyk, J. 14

Gettys, P. Leach, L. Masinter, and J. Mogul, 1999, http://www.rfc-editor.org. 15

RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, The Internet Society, Berners-Lee, T., R. Fielding, 16

and L. Masinter, 2005, http://www.rfc-editor.org. 17

RFC 3987 Internationalized Resource Identifiers (IRIs), The Internet Society, Duerst, M. and M. Suignard, 2005, 18

http://www.rfc-editor.org. 19

RFC 4234 Augmented BNF for Syntax Specifications: ABNF, The Internet Society, Crocker, D., (editor), 2005, 20

http://www.rfc-editor.org. 21

W3C NOTE 19980827, Date and Time Formats, Wicksteed, Charles, and Misha Wolf, 1997, 22

http://www.w3.org/TR/1998/NOTE-datetime-19980827. 23

XML Base, W3C Recommendation, 27 June 2001. 24

XML Path Language (XPath), Version 1.0, W3C Recommendation, 16 November 1999. 25

XML Schema Part 1: Structures, W3C Recommendation, 28 October 2004. 26

XML Schema Part 2: Datatypes, W3C Recommendation, 28 October 2004. 27

http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/

Bibliography

 122

XML-Signature Syntax and Processing, W3C Recommendation, 12 February 2002. 1

ZIP File Format Specification, Version 6.2.1, PKWARE Inc., 2005. 2

End of informative text. 3

Index

 123

Annex J. Index 1

This annex is informative. 2

3 access 4

local .. 85 5

networked .. 85 6

access style ... 3, 22, 86 7

authority ... 66 8

base URI .. 3 9

behavior .. 3 10

implementation-defined 3 11

unspecified ... 3 12

communication style 3, 22, 87 13

consumer .. 3, 85 14

content type ... 3, 13 15

content types .. 1 16

content types stream ... 3, 23 17

core properties ... 1 18

device ... 3, 85 19

digital signature .. 1 20

direct access consumption 86 21

format consumer .. 3 22

format designer .. 3 23

format producer ... 3 24

fragment ... 66 25

growth hint ... 3 26

IEC ... See International Electrotechnical Commission 27

interleaved ordering ... 4 28

International Electrotechnical Commission 8 29

layout style ... 4, 22, 86 30

local access ... 4 31

logical item name ... 4, 28 32

networked access ... 4 33

ordering 34

interleaved .. 22, 87 35

simple ... 22, 86 36

pack URI .. 4, 11 37

package ... 1, 4, 11 38

package implementer ... 4 39

package model.. 1, 4 40

package relationship ... 4, 16 41

part ... 1, 4, 11 42

part name ... 4, 11 43

path .. 66 44

pchar .. 66 45

pct-encoded characters ... 66 46

physical mapping ..1 47

physical model .. 4, 22 48

physical package format 4, 22 49

piece ... 4, 30 50

pipe ... 5, 22, 85 51

producer ... 5, 85 52

query .. 66 53

random access .. 5, 87 54

relationship ... 5, 16 55

relationship part .. 16 56

relationships part ..5 57

relative reference ...3 58

reserved character ... 66 59

resource ... 66 60

scheme ... 66 61

segment ... 66 62

sequential delivery ... 5, 87 63

signature policy ...5 64

simple ordering ...5 65

simultaneous creation and consumption 5, 86 66

stream ... 5, 11 67

streaming consumption 5, 86 68

streaming creation .. 5, 86 69

sub-delims.. 66 70

thumbnail ... 1, 5, 41, 108 71

unreserved characters ... 66 72

well-known part ..5 73

XIP archive ... 31 74

ZIP archive...5 75

ZIP item ... 5, 31 76

End of informative text. 77

 78

Index

 124

 1

 to be used to help end-users identify parts of a package or a package as a whole. These images can be 2

generated by the producer and stored as parts. 3

	Table of Contents
	Foreword
	Scope
	Normative References
	Definitions
	Notational Conventions
	Document Conventions
	Diagram Notes

	Acronyms and Abbreviations
	General Description
	Overview
	Package Model
	Parts
	Part Names
	Part Naming
	Part Name Equivalence

	Content Types
	Growth Hint
	XML Usage

	Part Addressing
	Relative References
	Fragments

	Relationships
	Relationships Part
	Package Relationships
	Relationship Markup
	Relationships Element
	Relationship Element

	Representing Relationships
	Support for Versioning and Extensibility

	Physical Package
	Physical Mapping Guidelines
	Mapped Components
	Mapping Content Types
	Identifying the Part Content Type
	Content Types Stream Markup
	Types Element
	Default Element
	Override Element
	Content Types Stream Markup Example

	Setting the Content Type of a Part
	Getting the Content Type of a Part
	Support for Versioning and Extensibility

	Mapping Part Names to Physical Package Item Names
	Logical Item Names
	Mapping Part Names to Logical Item Names
	Mapping Logical Item Names and Physical Package Item Names
	Mapping Logical Item Names to Part Names

	Interleaving

	Mapping to a ZIP Archive
	Mapping Part Data
	ZIP Item Names
	Mapping Part Names to ZIP Item Names
	Mapping ZIP Item Names to Part Names
	ZIP Package Limitations
	Mapping Part Content Type
	Mapping the Growth Hint
	Late Detection of ZIP Items Unfit for Streaming Consumption
	ZIP Format Clarifications for Packages

	Core Properties
	Core Properties Part
	Location of Core Properties Part
	Support for Versioning and Extensibility
	Schema Restrictions for Core Properties

	Thumbnails
	Thumbnail Parts

	Digital Signatures
	Choosing Content to Sign
	Digital Signature Parts
	Digital Signature Origin Part
	Digital Signature XML Signature Part
	Digital Signature Certificate Part
	Digital Signature Markup
	Modifications to the XML Digital Signature Specification
	Signature Element
	SignedInfo Element
	CanonicalizationMethod Element
	SignatureMethod Element
	Reference Element
	Usage of <Reference> Element as <Manifest> Child Element

	Transforms Element
	Transform Element
	DigestMethod Element
	DigestValue Element
	SignatureValue Element
	Object Element
	Package-Specific Object Element
	Application-Specific Object Element
	KeyInfo Element
	X509Data Element
	X509Certificate Element
	Manifest Element
	SignatureProperties Element
	SignatureProperty Element
	SignatureTime Element
	Format Element
	Value Element
	RelationshipReference Element
	RelationshipsGroupReference Element
	Relationships Transform Algorithm

	Digital Signature Example
	Generating Signatures
	Validating Signatures
	Signature Validation and Streaming Consumption

	Support for Versioning and Extensibility
	Using Relationship Types
	Markup Compatibility Namespace for Package Digital Signatures

	Resolving Unicode Strings to Part Names
	Creating an IRI from a Unicode String
	Creating a URI from an IRI
	Resolving a Relative Reference to a Part Name
	String Conversion Examples

	Pack URI
	Pack URI Scheme
	Resolving a Pack URI to a Resource
	Composing a Pack URI
	Equivalence

	ZIP Appnote.txt Clarifications
	Archive File Header Consistency
	Table Key

	Schemas - XML Schema
	Schemas - RELAX NG
	Standard Namespaces and Content Types
	Physical Model Design Considerations
	Access Styles
	Direct Access Consumption
	Streaming Consumption
	Streaming Creation
	Simultaneous Creation and Consumption

	Layout Styles
	Simple Ordering
	Interleaved Ordering

	Communication Styles
	Sequential Delivery
	Random Access

	Conformance Requirements
	Package Model
	Physical Packages
	ZIP Physical Mapping
	Core Properties
	Thumbnail
	Digital Signatures
	Pack URI

	Bibliography
	Index

