
This specification is developed on GitHub with the help of the ECMAScript community. There are a number of ways to
contribute to the development of this specification:

GitHub Repository: https://github.com/tc39/ecma402
Issues: All Issues, File a New Issue
Pull Requests: All Pull Requests, Create a New Pull Request
Test Suite: Test262
Editor:

Leo Balter (@leobalter)
Community:

Mailing list: es-discuss
IRC: #tc39 on freenode
IRC: #tc39-ecma402 on freenode

Refer to the colophon for more information on how this document is created.

This specification's source can be found at https://github.com/tc39/ecma402.

The ECMAScript 2019 Internationalization API Specification (ECMA-402 6th Edition), provides key language sensitive
functionality as a complement to the ECMAScript 2020 Language Specification (ECMA-262 10th Edition or successor). Its
functionality has been selected from that of well-established internationalization APIs such as those of the
Internationalization Components for Unicode (ICU) library, of the .NET framework, or of the Java platform.

The 1st Edition API was developed by an ad-hoc group established by Ecma TC39 in September 2010 based on a proposal by
Nebojša Ćirić and Jungshik Shin.

EC ECMA-402, 6th edition, June 2019
 ECMAScript® 2019 Internationalization
 API Specification

Contributing to this Specification

Introduction

☰

https://github.com/tc39/ecma402
https://github.com/tc39/ecma402/issues
https://github.com/tc39/ecma402/issues/new
https://github.com/tc39/ecma402/pulls
https://github.com/tc39/ecma402/pulls/new
https://github.com/tc39/test262
mailto:leonardo.balter at gmail dot com
https://twitter.com/leobalter
https://esdiscuss.org/
ircs://irc.freenode.net:6667
https://freenode.net/kb/answer/chat
ircs://irc.freenode.net:6667
https://freenode.net/kb/answer/chat
https://github.com/tc39/ecma402

The 2nd Edition API was adopted by the General Assembly of June 2015, as a complement to the ECMAScript 6th Edition.

The 3rd Edition API was the first edition released under Ecma TC39's new yearly release cadence and open development
process. A plain-text source document was built from the ECMA-402 source document to serve as the base for further
development entirely on GitHub. Over the year of this standard's development, dozens of pull requests and issues were filed
representing several of bug fixes, editorial fixes and other improvements. Additionally, numerous software tools were
developed to aid in this effort including Ecmarkup, Ecmarkdown, and Grammarkdown.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39 to the
development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting TC39's
ECMAScript efforts. This community has reviewed numerous drafts, filed dozens of bug reports, performed implementation
experiments, contributed test suites, and educated the world-wide developer community about ECMAScript
Internationalization. Unfortunately, it is impossible to identify and acknowledge every person and organization who has
contributed to this effort.

Norbert Lindenberg
ECMA-402, 1st Edition Project Editor

Rick Waldron
ECMA-402, 2nd Edition Project Editor

Caridy Patiño
ECMA-402, 3rd, 4th and 5th Editions Project Editor

Caridy Patiño, Daniel Ehrenberg, Leo Balter
ECMA-402, 6th Edition Project Editors

This Standard defines the application programming interface for ECMAScript objects that support programs that need to adapt
to the linguistic and cultural conventions used by different human languages and countries.

A conforming implementation of the ECMAScript 2020 Internationalization API Specification must conform to the ECMAScript
2020 Language Specification (ECMA-262 10th Edition, or successor), and must provide and support all the objects, properties,
functions, and program semantics described in this specification.

A conforming implementation of the ECMAScript 2020 Internationalization API Specification is permitted to provide additional
objects, properties, and functions beyond those described in this specification. In particular, a conforming implementation of
the ECMAScript 2020 Internationalization API Specification is permitted to provide properties not described in this
specification, and values for those properties, for objects that are described in this specification. A conforming implementation
is not permitted to add optional arguments to the functions defined in this specification.

1 Scope

2 Conformance

A conforming implementation is permitted to accept additional values, and then have implementation-defined behaviour
instead of throwing a RangeError, for the following properties of options arguments:

The options property localeMatcher in all constructors and supportedLocalesOf methods.
The options properties usage and sensitivity in the Collator constructor.
The options properties style and currencyDisplay in the NumberFormat constructor.
The options properties minimumIntegerDigits, minimumFractionDigits, maximumFractionDigits,
minimumSignificantDigits, and maximumSignificantDigits in the NumberFormat constructor, provided that the additional
values are interpreted as integer values higher than the specified limits.
The options properties listed in Table 5 in the DateTimeFormat constructor.
The options property formatMatcher in the DateTimeFormat constructor.
The options property type in the PluralRules constructor.

The following referenced documents are required for the application of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ECMAScript 2020 Language Specification (ECMA-262 10th Edition, or successor).
https://www.ecma-international.org/publications/standards/Ecma-262.htm

NOTE
Throughout this document, the phrase “ES2020, x” (where x is a sequence of numbers separated by periods) may be used as
shorthand for "ECMAScript 2020 Language Specification (ECMA-262 10th Edition, sub clause x)".

ISO/IEC 10646:2014: Information Technology – Universal Multiple-Octet Coded Character Set (UCS) plus Amendment
1:2015 and Amendment 2, plus additional amendments and corrigenda, or successor

https://www.iso.org/iso/catalogue_detail.htm?csnumber=63182
https://www.iso.org/iso/catalogue_detail.htm?csnumber=65047
https://www.iso.org/iso/catalogue_detail.htm?csnumber=66791

ISO 4217:2015, Codes for the representation of currencies and funds, or successor
IETF BCP 47:

RFC 5646, Tags for Identifying Languages, or successor
RFC 4647, Matching of Language Tags, or successor

IETF RFC 6067, BCP 47 Extension U, or successor
IANA Time Zone Database
The Unicode Standard
Unicode Technical Standard 35, Unicode Locale Data Markup Language

This section contains a non-normative overview of the ECMAScript 2020 Internationalization API Specification.

3 Normative References

4 Overview

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.iso.org/iso/catalogue_detail.htm?csnumber=63182
https://www.iso.org/iso/catalogue_detail.htm?csnumber=65047
https://www.iso.org/iso/catalogue_detail.htm?csnumber=66791
https://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=64758
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc4647
https://tools.ietf.org/html/rfc6067
https://www.iana.org/time-zones/
https://www.unicode.org/versions/latest
https://unicode.org/reports/tr35/

Internationalization of software means designing it such that it supports or can be easily adapted to support the needs of
users speaking different languages and having different cultural expectations, and enables worldwide communication
between them. Localization then is the actual adaptation to a specific language and culture. Globalization of software is
commonly understood to be the combination of internationalization and localization. Globalization starts at the lowest level
by using a text representation that supports all languages in the world, and using standard identifiers to identify languages,
countries, time zones, and other relevant parameters. It continues with using a user interface language and data presentation
that the user understands, and finally often requires product-specific adaptations to the user's language, culture, and
environment.

The ECMAScript 2020 Language Specification lays the foundation by using Unicode for text representation and by providing a
few language-sensitive functions, but gives applications little control over the behaviour of these functions. The ECMAScript
2020 Internationalization API Specification builds on this by providing a set of customizable language-sensitive functionality.
The API is useful even for applications that themselves are not internationalized, as even applications targeting only one
language and one region need to properly support that one language and region. However, the API also enables applications
that support multiple languages and regions, even concurrently, as may be needed in server environments.

The ECMAScript 2020 Internationalization API Specification is designed to complement the ECMAScript 2020 Language
Specification by providing key language-sensitive functionality. The API can be added to an implementation of the ECMAScript
2020 Language Specification (ECMA-262 10th Edition, or successor).

The ECMAScript 2020 Internationalization API Specification provides several key pieces of language-sensitive functionality
that are required in most applications: String comparison (collation), number formatting, date and time formatting,
pluralization rules, and case conversion. While the ECMAScript 2020 Language Specification provides functions for this basic
functionality (on Array.prototype: toLocaleString; on String.prototype: localeCompare, toLocaleLowerCase,
toLocaleUpperCase; on Number.prototype: toLocaleString; on Date.prototype: toLocaleString, toLocaleDateString, and
toLocaleTimeString), it leaves the actual behaviour of these functions largely up to implementations to define. The
ECMAScript 2020 Internationalization API Specification provides additional functionality, control over the language and over
details of the behaviour to be used, and a more complete specification of required functionality.

Applications can use the API in two ways:

1. Directly, by using the constructors Intl.Collator, Intl.NumberFormat, Intl.DateTimeFormat, or Intl.PluralRules to
construct an object, specifying a list of preferred languages and options to configure the behaviour of the resulting object.
The object then provides a main function (compare, select, or format), which can be called repeatedly. It also provides a
resolvedOptions function, which the application can use to find out the exact configuration of the object.

2. Indirectly, by using the functions of the ECMAScript 2020 Language Specification mentioned above. The collation and
formatting functions are respecified in this specification to accept the same arguments as the Collator, NumberFormat,
and DateTimeFormat constructors and produce the same results as their compare or format methods. The case
conversion functions are respecified to accept a list of preferred languages.

The Intl object is used to package all functionality defined in the ECMAScript 2020 Internationalization API Specification to

4.1 Internationalization, Localization, and Globalization

4.2 API Overview

avoid name collisions.

Due to the nature of internationalization, the API specification has to leave several details implementation dependent:

The set of locales that an implementation supports with adequate localizations: Linguists estimate the number of human
languages to around 6000, and the more widely spoken ones have variations based on regions or other parameters. Even
large locale data collections, such as the Common Locale Data Repository, cover only a subset of this large set.
Implementations targeting resource-constrained devices may have to further reduce the subset.
The exact form of localizations such as format patterns: In many cases locale-dependent conventions are not standardized,
so different forms may exist side by side, or they vary over time. Different internationalization libraries may have
implemented different forms, without any of them being actually wrong. In order to allow this API to be implemented on
top of existing libraries, such variations have to be permitted.
Subsets of Unicode: Some operations, such as collation, operate on strings that can include characters from the entire
Unicode character set. However, both the Unicode standard and the ECMAScript standard allow implementations to limit
their functionality to subsets of the Unicode character set. In addition, locale conventions typically don't specify the
desired behaviour for the entire Unicode character set, but only for those characters that are relevant for the locale.
While the Unicode Collation Algorithm combines a default collation order for the entire Unicode character set with the
ability to tailor for local conventions, subsets and tailorings still result in differences in behaviour.

ECMA 402 describes the schema of the data used by its functions. The data contained inside is implementation-dependent,
and expected to change over time and vary between implementations. The variation is visible by programmers, and it is
possible to construct programs which will depend on a particular output. However, this specification attempts to describe
reasonable constraints which will allow well-written programs to function across implementations. Implementations are
encouraged to continue their efforts to harmonize linguistic data.

This standard uses a subset of the notational conventions of the ECMAScript 2020 Language Specification (ECMA-262 10th

Edition), as ES2020:

Object Internal Methods and Internal Slots, as described in ES2020, 6.1.7.2.
Algorithm conventions, including the use of abstract operations, as described in ES2020, 7.1, 7.2, 7.3.
Internal Slots, as described in ES2020, 9.1.
The List and Record Specification Type, as described in ES2020, 6.2.1.

NOTE
As described in the ECMAScript Language Specification, algorithms are used to precisely specify the required semantics of
ECMAScript constructs, but are not intended to imply the use of any specific implementation technique. Internal slots are used
to define the semantics of object values, but are not part of the API. They are defined purely for expository purposes. An

4.3 Implementation Dependencies

4.3.1 Compatibility across implementations

5 Notational Conventions

https://tc39.github.io/ecma262/#sec-object-internal-methods-and-internal-slots
https://tc39.github.io/ecma262/#sec-type-conversion
https://tc39.github.io/ecma262/#sec-testing-and-comparison-operations
https://tc39.github.io/ecma262/#sec-operations-on-objects
https://tc39.github.io/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

implementation of the API must behave as if it produced and operated upon internal slots in the manner described here.

As an extension to the Record Specification Type, the notation “[[<name>]]” denotes a field whose name is given by the
variable name, which must have a String value. For example, if a variable s has the value "a", then [[<s>]] denotes the field
[[a]].

This specification uses blocks demarcated as Normative Optional to denote the sense of Annex B in ECMA 262. That is,
normative optional sections are required when the ECMAScript host is a web browser. The content of the section is normative
but optional if the ECMAScript host is not a web browser.

The following table extends the Well-Known Intrinsic Objects table defined in ES2020, 6.1.7.4.

Table 1: Well-known Intrinsic Objects (Extensions)

Intrinsic Name Global Name ECMAScript Language Association

%Date_now% Date.now The initial value of the now data property of the
intrinsic %Date% (ES2020, 20.3.3.1)

%Intl% Intl The Intl object (8).

%Collator% Intl.Collator The Intl.Collator constructor (10.1)

%CollatorPrototype% Intl.Collator.prototype The initial value of the prototype data property of
the intrinsic %Collator% (10.2.1).

%NumberFormat% Intl.NumberFormat The Intl.NumberFormat constructor (11.2)

%NumberFormatPrototype% Intl.NumberFormat.prototype The initial value of the prototype data property of
the intrinsic %NumberFormat% (11.3.1).

%DateTimeFormat% Intl.DateTimeFormat The Intl.DateTimeFormat constructor (12.2).

%DateTimeFormatPrototype% Intl.DateTimeFormat.prototype The initial value of the prototype data property of
the intrinsic %DateTimeFormat% (12.3.1).

%PluralRules% Intl.PluralRules The Intl.PluralRules constructor (13.2).

%PluralRulesPrototype% Intl.PluralRules.prototype The initial value of the prototype data property of
the intrinsic %PluralRules% (13.3.1).

%StringProto_indexOf% String.prototype.indexOf The initial value of the indexOf data property of
the intrinsic %StringPrototype% (ES2020, 21.1.3.8)

5.1 Well-Known Intrinsic Objects

6 Identification of Locales, Currencies, and Time Zones

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-additional-ecmascript-features-for-web-browsers
https://tc39.github.io/ecma262/#sec-well-known-intrinsic-objects
https://tc39.github.io/ecma262/#sec-date-constructor
https://tc39.github.io/ecma262/#sec-date.now
https://tc39.github.io/ecma262/#sec-properties-of-the-string-prototype-object
https://tc39.github.io/ecma262/#sec-string.prototype.indexof

This clause describes the String values used in the ECMAScript 2020 Internationalization API Specification to identify locales,
currencies, and time zones.

The String values used to identify locales, currencies, and time zones are interpreted in a case-insensitive manner, treating the
Unicode Basic Latin characters "A" to "Z" (U+0041 to U+005A) as equivalent to the corresponding Basic Latin characters "a"
to "z" (U+0061 to U+007A). No other case folding equivalences are applied. When mapping to upper case, a mapping shall be
used that maps characters in the range "a" to "z" (U+0061 to U+007A) to the corresponding characters in the range "A" to
"Z" (U+0041 to U+005A) and maps no other characters to the latter range.

EXAMPLES "ß" (U+00DF) must not match or be mapped to "SS" (U+0053, U+0053). "ı" (U+0131) must not match or be
mapped to "I" (U+0049).

The ECMAScript 2020 Internationalization API Specification identifies locales using language tags as by the Unicode BCP 47
locale identifiers, which may include extensions such as those registered through RFC 6067. Their canonical form is that of a
Unicode BCP 47 Locale Identifier, as specified in Unicode Technical Standard #35 LDML § 3.3 BCP 47 Conformance.

Unicode BCP 47 Locale Identifiers are structurally valid when they match those syntactical formatting criteria of Unicode
Technical Standard 35, section 3.2, or successor, but it is not required to validate them according to the Unicode validation
data. All structurally valid language tags are valid for use with the APIs defined by this standard. However, the set of locales
and thus language tags that an implementation supports with adequate localizations is implementation dependent. The
constructors Collator, NumberFormat, DateTimeFormat, and PluralRules map the language tags used in requests to locales
supported by their respective implementations.

This standard uses the term "Unicode locale extension sequence" - as described in unicode_locale_extensions in
Unicode BCP 47 - for any substring of a language tag that is not part of a private use subtag sequence, starts with a separator
"-" and the singleton "u", and includes the maximum sequence of following non-singleton subtags and their preceding "-"
separators.

The IsStructurallyValidLanguageTag abstract operation verifies that the locale argument (which must be a String value)

represents a well-formed Unicode BCP 47 Locale Identifier" as specified in Unicode Technical Standard 35 section 3.2, or
successor,
does not include duplicate variant subtags, and
does not include duplicate singleton subtags.

The abstract operation returns true if locale can be generated from the EBNF grammar in section 3.2 of the Unicode Technical

6.1 Case Sensitivity and Case Mapping

6.2 Language Tags

6.2.1 Unicode Locale Extension Sequences

6.2.2 IsStructurallyValidLanguageTag (locale)

https://unicode.org/reports/tr35/#BCP_47_Conformance
https://unicode.org/reports/tr35/#unicode_locale_extensions

Standard 35, or successor, starting with unicode_locale_id, and does not contain duplicate variant or singleton subtags (other
than as a private use subtag). It returns false otherwise. Terminal value characters in the grammar are interpreted as the
Unicode equivalents of the ASCII octet values given.

The CanonicalizeLanguageTag abstract operation returns the canonical and case-regularized form of the locale argument
(which must be a String value that is a structurally valid Unicode BCP 47 Locale Identifier as verified by the
IsStructurallyValidLanguageTag abstract operation). A conforming implementation shall take the steps specified in the “BCP
47 Language Tag to Unicode BCP 47 Locale Identifier” algorithm, from Unicode Technical Standard #35 LDML § 3.3.1 BCP 47
Language Tag Conversion.

The DefaultLocale abstract operation returns a String value representing the structurally valid (6.2.2) and canonicalized
(6.2.3) BCP 47 language tag for the host environment's current locale.

The ECMAScript 2020 Internationalization API Specification identifies currencies using 3-letter currency codes as defined by
ISO 4217. Their canonical form is upper case.

All well-formed 3-letter ISO 4217 currency codes are allowed. However, the set of combinations of currency code and
language tag for which localized currency symbols are available is implementation dependent. Where a localized currency
symbol is not available, the ISO 4217 currency code is used for formatting.

The IsWellFormedCurrencyCode abstract operation verifies that the currency argument (which must be a String value)
represents a well-formed 3-letter ISO currency code. The following steps are taken:

1. Let normalized be the result of mapping currency to upper case as described in 6.1.
2. If the number of elements in normalized is not 3, return false.
3. If normalized contains any character that is not in the range "A" to "Z" (U+0041 to U+005A), return false.
4. Return true.

The ECMAScript 2020 Internationalization API Specification identifies time zones using the Zone and Link names of the IANA
Time Zone Database. Their canonical form is the corresponding Zone name in the casing used in the IANA Time Zone
Database.

All registered Zone and Link names are allowed. Implementations must recognize all such names, and use best available

6.2.3 CanonicalizeLanguageTag (locale)

6.2.4 DefaultLocale ()

6.3 Currency Codes

6.3.1 IsWellFormedCurrencyCode (currency)

6.4 Time Zone Names

https://unicode.org/reports/tr35/#BCP_47_Language_Tag_Conversion

current and historical information about their offsets from UTC and their daylight saving time rules in calculations. However,
the set of combinations of time zone name and language tag for which localized time zone names are available is
implementation dependent.

The IsValidTimeZoneName abstract operation verifies that the timeZone argument (which must be a String value) represents a
valid Zone or Link name of the IANA Time Zone Database.

The abstract operation returns true if timeZone, converted to upper case as described in 6.1, is equal to one of the Zone or Link
names of the IANA Time Zone Database, converted to upper case as described in 6.1. It returns false otherwise.

The CanonicalizeTimeZoneName abstract operation returns the canonical and case-regularized form of the timeZone argument
(which must be a String value that is a valid time zone name as verified by the IsValidTimeZoneName abstract operation). The
following steps are taken:

1. Let ianaTimeZone be the Zone or Link name of the IANA Time Zone Database such that timeZone, converted to upper case
as described in 6.1, is equal to ianaTimeZone, converted to upper case as described in 6.1.

2. If ianaTimeZone is a Link name, let ianaTimeZone be the corresponding Zone name as specified in the "backward" file of
the IANA Time Zone Database.

3. If ianaTimeZone is "Etc/UTC" or "Etc/GMT", return "UTC".
4. Return ianaTimeZone.

The Intl.DateTimeFormat constructor allows this time zone name; if the time zone is not specified, the host environment's
current time zone is used. Implementations shall support UTC and the host environment's current time zone (if different from
UTC) in formatting.

The DefaultTimeZone abstract operation returns a String value representing the valid (6.4.1) and canonicalized (6.4.2) time
zone name for the host environment's current time zone.

Unless specified otherwise in this document, the objects, functions, and constructors described in this standard are subject to
the generic requirements and restrictions specified for standard built-in ECMAScript objects in the ECMAScript 2020 Language
Specification, 10th edition, clause 17, or successor.

6.4.1 IsValidTimeZoneName (timeZone)

6.4.2 CanonicalizeTimeZoneName

6.4.3 DefaultTimeZone ()

7 Requirements for Standard Built-in ECMAScript Objects

8 The Intl Object

https://tc39.github.io/ecma262/#sec-ecmascript-standard-built-in-objects

The Intl object is the %Intl% intrinsic object and the initial value of the Intl property of the global object. The Intl object is a
single ordinary object.

The value of the [[Prototype]] internal slot of the Intl object is the intrinsic object %ObjectPrototype%.

The Intl object is not a function object. It does not have a [[Construct]] internal method; it is not possible to use the Intl object
as a constructor with the new operator. The Intl object does not have a [[Call]] internal method; it is not possible to invoke the
Intl object as a function.

The Intl object has an internal slot, [[FallbackSymbol]], which is a new %Symbol% in the current realm with the
[[Description]] "IntlLegacyConstructedSymbol"

See 10.

See 11.

See 12.

See 13.

NOTE
In ECMA 402 v1, Intl constructors supported a mode of operation where calling them with an existing object as a receiver
would transform the receiver into the relevant Intl instance with all internal slots. In ECMA 402 v2, this capability was
removed, to avoid adding internal slots on existing objects. In ECMA 402 v3, the capability was re-added as "normative
optional" in a mode which chains the underlying Intl instance on any object, when the constructor is called. See Issue 57 for
details.

When the getCanonicalLocales method is called with argument locales, the following steps are taken:

8.1 Constructor Properties of the Intl Object

8.1.1 Intl.Collator (...)

8.1.2 Intl.NumberFormat (...)

8.1.3 Intl.DateTimeFormat (...)

8.1.4 Intl.PluralRules (...)

8.2 Function Properties of the Intl Object

8.2.1 Intl.getCanonicalLocales (locales)

https://tc39.github.io/ecma262/#global-object
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-symbol-constructor
https://tc39.github.io/ecma262/#realm
https://github.com/tc39/ecma402/issues/57

1. Let ll be ? CanonicalizeLocaleList(locales).
2. Return CreateArrayFromList(ll).

The constructors for the objects providing locale sensitive services, Collator, NumberFormat, DateTimeFormat, and
PluralRules, use a common pattern to negotiate the requests represented by the locales and options arguments against the
actual capabilities of their implementations. The common behaviour is described here in terms of internal slots describing the
capabilities and of abstract operations using these internal slots.

The constructors Intl.Collator, Intl.NumberFormat, Intl.DateTimeFormat, and Intl.PluralRules have the following internal
slots:

[[AvailableLocales]] is a List that contains structurally valid (6.2.2) and canonicalized (6.2.3) BCP 47 language tags
identifying the locales for which the implementation provides the functionality of the constructed objects. Language tags
on the list must not have a Unicode locale extension sequence. The list must include the value returned by the
DefaultLocale abstract operation (6.2.4), and must not include duplicates. Implementations must include in
[[AvailableLocales]] locales that can serve as fallbacks in the algorithm used to resolve locales (see 9.2.6). For example,
implementations that provide a "de-DE" locale must include a "de" locale that can serve as a fallback for requests such
as "de-AT" and "de-CH". For locales that in current usage would include a script subtag (such as Chinese locales), old-
style language tags without script subtags must be included such that, for example, requests for "zh-TW" and "zh-HK"
lead to output in traditional Chinese rather than the default simplified Chinese. The ordering of the locales within
[[AvailableLocales]] is irrelevant.
[[RelevantExtensionKeys]] is a List of keys of the language tag extensions defined in Unicode Technical Standard 35 that
are relevant for the functionality of the constructed objects.
[[SortLocaleData]] and [[SearchLocaleData]] (for Intl.Collator) and [[LocaleData]] (for Intl.NumberFormat,
Intl.DateTimeFormat, and Intl.PluralRules) are records that have fields for each locale contained in [[AvailableLocales]].
The value of each of these fields must be a record that has fields for each key contained in [[RelevantExtensionKeys]]. The
value of each of these fields must be a non-empty list of those values defined in Unicode Technical Standard 35 for the
given key that are supported by the implementation for the given locale, with the first element providing the default
value.

EXAMPLE An implementation of DateTimeFormat might include the language tag "th" in its [[AvailableLocales]] internal slot,
and must (according to 12.3.3) include the key "ca" in its [[RelevantExtensionKeys]] internal slot. For Thai, the "buddhist"
calendar is usually the default, but an implementation might also support the calendars "gregory", "chinese", and
"islamicc" for the locale "th". The [[LocaleData]] internal slot would therefore at least include {[[th]]: {[[ca]]: «
"buddhist", "gregory", "chinese", "islamicc" »}}.

9 Locale and Parameter Negotiation

9.1 Internal slots of Service Constructors

9.2 Abstract Operations

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

Where the following abstract operations take an availableLocales argument, it must be an [[AvailableLocales]] List as specified
in 9.1.

The abstract operation CanonicalizeLocaleList takes the following steps:

1. If locales is undefined, then
a. Return a new empty List.

2. Let seen be a new empty List.
3. If Type(locales) is String, then

a. Let O be CreateArrayFromList(« locales »).
4. Else,

a. Let O be ? ToObject(locales).
5. Let len be ? ToLength(? Get(O, "length")).
6. Let k be 0.
7. Repeat, while k < len

a. Let Pk be ToString(k).
b. Let kPresent be ? HasProperty(O, Pk).
c. If kPresent is true, then

i. Let kValue be ? Get(O, Pk).
ii. If Type(kValue) is not String or Object, throw a TypeError exception.

iii. Let tag be ? ToString(kValue).
iv. If IsStructurallyValidLanguageTag(tag) is false, throw a RangeError exception.
v. Let canonicalizedTag be CanonicalizeLanguageTag(tag).

vi. If canonicalizedTag is not an element of seen, append canonicalizedTag as the last element of seen.
d. Increase k by 1.

8. Return seen.

NOTE 1
Non-normative summary: The abstract operation interprets the locales argument as an array and copies its elements into a
List, validating the elements as structurally valid language tags and canonicalizing them, and omitting duplicates.

NOTE 2
Requiring kValue to be a String or Object means that the Number value NaN will not be interpreted as the language tag "nan",
which stands for Min Nan Chinese.

The BestAvailableLocale abstract operation compares the provided argument locale, which must be a String value with a
structurally valid and canonicalized BCP 47 language tag, against the locales in availableLocales and returns either the longest
non-empty prefix of locale that is an element of availableLocales, or undefined if there is no such element. It uses the fallback
mechanism of RFC 4647, section 3.4. The following steps are taken:

1. Let candidate be locale.
2. Repeat,

9.2.1 CanonicalizeLocaleList (locales)

9.2.2 BestAvailableLocale (availableLocales, locale)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-hasproperty
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

a. If availableLocales contains an element equal to candidate, return candidate.
b. Let pos be the character index of the last occurrence of "-" (U+002D) within candidate. If that character does not

occur, return undefined.
c. If pos ≥ 2 and the character "-" occurs at index pos-2 of candidate, decrease pos by 2.
d. Let candidate be the substring of candidate from position 0, inclusive, to position pos, exclusive.

The LookupMatcher abstract operation compares requestedLocales, which must be a List as returned by
CanonicalizeLocaleList, against the locales in availableLocales and determines the best available language to meet the request.
The following steps are taken:

1. Let result be a new Record.
2. For each element locale of requestedLocales in List order, do

a. Let noExtensionsLocale be the String value that is locale with all Unicode locale extension sequences removed.
b. Let availableLocale be BestAvailableLocale(availableLocales, noExtensionsLocale).
c. If availableLocale is not undefined, then

i. Set result.[[locale]] to availableLocale.
ii. If locale and noExtensionsLocale are not the same String value, then

1. Let extension be the String value consisting of the first substring of locale that is a Unicode locale
extension sequence.

2. Set result.[[extension]] to extension.
iii. Return result.

3. Let defLocale be DefaultLocale().
4. Set result.[[locale]] to defLocale.
5. Return result.

NOTE
The algorithm is based on the Lookup algorithm described in RFC 4647 section 3.4, but options specified through Unicode
locale extension sequences are ignored in the lookup. Information about such subsequences is returned separately. The
abstract operation returns a record with a [[locale]] field, whose value is the language tag of the selected locale, which must be
an element of availableLocales. If the language tag of the request locale that led to the selected locale contained a Unicode
locale extension sequence, then the returned record also contains an [[extension]] field whose value is the first Unicode locale
extension sequence within the request locale language tag.

The BestFitMatcher abstract operation compares requestedLocales, which must be a List as returned by
CanonicalizeLocaleList, against the locales in availableLocales and determines the best available language to meet the request.
The algorithm is implementation dependent, but should produce results that a typical user of the requested locales would
perceive as at least as good as those produced by the LookupMatcher abstract operation. Options specified through Unicode
locale extension sequences must be ignored by the algorithm. Information about such subsequences is returned separately.
The abstract operation returns a record with a [[locale]] field, whose value is the language tag of the selected locale, which
must be an element of availableLocales. If the language tag of the request locale that led to the selected locale contained a
Unicode locale extension sequence, then the returned record also contains an [[extension]] field whose value is the first

9.2.3 LookupMatcher (availableLocales, requestedLocales)

9.2.4 BestFitMatcher (availableLocales, requestedLocales)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

Unicode locale extension sequence within the request locale language tag.

The abstract operation UnicodeExtensionValue is called with extension, which must be a Unicode locale extension sequence,
and String key. This operation returns the type subtags for key by performing the following steps:

1. Assert: The number of elements in key is 2.
2. Let size be the number of elements in extension.
3. Let searchValue be the concatenation of "-", key, and "-".
4. Let pos be Call(%StringProto_indexOf%, extension, « searchValue »).
5. If pos ≠ -1, then

a. Let start be pos + 4.
b. Let end be start.
c. Let k be start.
d. Let done be false.
e. Repeat, while done is false

i. Let e be Call(%StringProto_indexOf%, extension, « "-", k »).
ii. If e = -1, let len be size - k; else let len be e - k.

iii. If len = 2, then
1. Let done be true.

iv. Else if e = -1, then
1. Let end be size.
2. Let done be true.

v. Else,
1. Let end be e.
2. Let k be e + 1.

f. Return the String value equal to the substring of extension consisting of the code units at indices start (inclusive)
through end (exclusive).

6. Let searchValue be the concatenation of "-" and key.
7. Let pos be Call(%StringProto_indexOf%, extension, « searchValue »).
8. If pos ≠ -1 and pos + 3 = size, then

a. Return the empty String.
9. Return undefined.

NOTE
Non-normative summary: UnicodeExtensionValue returns the type subtags of the first keyword for a given key. For example,
UnicodeExtensionValue("u-ca-ethiopic-amete-alem-ca-ethioaa", "ca") returns "ethiopic-amete-alem". If the
keyword for key has no type subtags, UnicodeExtensionValue returns the empty String. If extension contains no keyword for
key, undefined is returned.

The ResolveLocale abstract operation compares a BCP 47 language priority list requestedLocales against the locales in

9.2.5 UnicodeExtensionValue (extension, key)

9.2.6 ResolveLocale (availableLocales, requestedLocales, options, relevantExtensionKeys,
localeData)

https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call

availableLocales and determines the best available language to meet the request. availableLocales, requestedLocales, and
relevantExtensionKeys must be provided as List values, options and localeData as Records.

The following steps are taken:

1. Let matcher be options.[[localeMatcher]].
2. If matcher is "lookup", then

a. Let r be LookupMatcher(availableLocales, requestedLocales).
3. Else,

a. Let r be BestFitMatcher(availableLocales, requestedLocales).
4. Let foundLocale be r.[[locale]].
5. Let result be a new Record.
6. Set result.[[dataLocale]] to foundLocale.
7. Let supportedExtension be "-u".
8. For each element key of relevantExtensionKeys in List order, do

a. Let foundLocaleData be localeData.[[<foundLocale>]].
b. Assert: Type(foundLocaleData) is Record.
c. Let keyLocaleData be foundLocaleData.[[<key>]].
d. Assert: Type(keyLocaleData) is List.
e. Let value be keyLocaleData[0].
f. Assert: Type(value) is either String or Null.

g. Let supportedExtensionAddition be "".
h. If r has an [[extension]] field, then

i. Let requestedValue be UnicodeExtensionValue(r.[[extension]], key).
ii. If requestedValue is not undefined, then

1. If requestedValue is not the empty String, then
a. If keyLocaleData contains requestedValue, then

i. Let value be requestedValue.
ii. Let supportedExtensionAddition be the concatenation of "-", key, "-", and value.

2. Else if keyLocaleData contains "true", then
a. Let value be "true".
b. Let supportedExtensionAddition be the concatenation of "-" and key.

i. If options has a field [[<key>]], then
i. Let optionsValue be options.[[<key>]].

ii. Assert: Type(optionsValue) is either String, Undefined, or Null.
iii. If keyLocaleData contains optionsValue, then

1. If SameValue(optionsValue, value) is false, then
a. Let value be optionsValue.
b. Let supportedExtensionAddition be "".

j. Set result.[[<key>]] to value.
k. Append supportedExtensionAddition to supportedExtension.

9. If the number of elements in supportedExtension is greater than 2, then
a. Let privateIndex be Call(%StringProto_indexOf%, foundLocale, « "-x-" »).
b. If privateIndex = -1, then

i. Let foundLocale be the concatenation of foundLocale and supportedExtension.

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-samevalue
https://tc39.github.io/ecma262/#sec-call

c. Else,
i. Let preExtension be the substring of foundLocale from position 0, inclusive, to position privateIndex, exclusive.

ii. Let postExtension be the substring of foundLocale from position privateIndex to the end of the string.
iii. Let foundLocale be the concatenation of preExtension, supportedExtension, and postExtension.

d. Assert: IsStructurallyValidLanguageTag(foundLocale) is true.
e. Let foundLocale be CanonicalizeLanguageTag(foundLocale).

10. Set result.[[locale]] to foundLocale.
11. Return result.

NOTE
Non-normative summary: Two algorithms are available to match the locales: the Lookup algorithm described in RFC 4647
section 3.4, and an implementation dependent best-fit algorithm. Independent of the locale matching algorithm, options
specified through Unicode locale extension sequences are negotiated separately, taking the caller's relevant extension keys
and locale data as well as client-provided options into consideration. The abstract operation returns a record with a [[locale]]
field whose value is the language tag of the selected locale, and fields for each key in relevantExtensionKeys providing the
selected value for that key.

The LookupSupportedLocales abstract operation returns the subset of the provided BCP 47 language priority list
requestedLocales for which availableLocales has a matching locale when using the BCP 47 Lookup algorithm. Locales appear in
the same order in the returned list as in requestedLocales. The following steps are taken:

1. Let subset be a new empty List.
2. For each element locale of requestedLocales in List order, do

a. Let noExtensionsLocale be the String value that is locale with all Unicode locale extension sequences removed.
b. Let availableLocale be BestAvailableLocale(availableLocales, noExtensionsLocale).
c. If availableLocale is not undefined, append locale to the end of subset.

3. Return subset.

The BestFitSupportedLocales abstract operation returns the subset of the provided BCP 47 language priority list
requestedLocales for which availableLocales has a matching locale when using the Best Fit Matcher algorithm. Locales appear in
the same order in the returned list as in requestedLocales. The steps taken are implementation dependent.

The SupportedLocales abstract operation returns the subset of the provided BCP 47 language priority list requestedLocales for
which availableLocales has a matching locale. Two algorithms are available to match the locales: the Lookup algorithm
described in RFC 4647 section 3.4, and an implementation dependent best-fit algorithm. Locales appear in the same order in
the returned list as in requestedLocales. The following steps are taken:

1. If options is not undefined, then
a. Let options be ? ToObject(options).

9.2.7 LookupSupportedLocales (availableLocales, requestedLocales)

9.2.8 BestFitSupportedLocales (availableLocales, requestedLocales)

9.2.9 SupportedLocales (availableLocales, requestedLocales, options)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-toobject

b. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").
2. Else, let matcher be "best fit".
3. If matcher is "best fit", then

a. Let supportedLocales be BestFitSupportedLocales(availableLocales, requestedLocales).
4. Else,

a. Let supportedLocales be LookupSupportedLocales(availableLocales, requestedLocales).
5. Return CreateArrayFromList(supportedLocales).

The abstract operation GetOption extracts the value of the property named property from the provided options object, converts
it to the required type, checks whether it is one of a List of allowed values, and fills in a fallback value if necessary. If values is
undefined, there is no fixed set of values and any is permitted.

1. Let value be ? Get(options, property).
2. If value is not undefined, then

a. Assert: type is "boolean" or "string".
b. If type is "boolean", then

i. Let value be ToBoolean(value).
c. If type is "string", then

i. Let value be ? ToString(value).
d. If values is not undefined, then

i. If values does not contain an element equal to value, throw a RangeError exception.
e. Return value.

3. Else, return fallback.

The abstract operation DefaultNumberOption converts value to a Number value, checks whether it is in the allowed range, and
fills in a fallback value if necessary.

1. If value is not undefined, then
a. Let value be ? ToNumber(value).
b. If value is NaN or less than minimum or greater than maximum, throw a RangeError exception.
c. Return floor(value).

2. Else, return fallback.

The abstract operation GetNumberOption extracts the value of the property named property from the provided options object,
converts it to a Number value, checks whether it is in the allowed range, and fills in a fallback value if necessary.

1. Let value be ? Get(options, property).
2. Return ? DefaultNumberOption(value, minimum, maximum, fallback).

9.2.10 GetOption (options, property, type, values, fallback)

9.2.11 DefaultNumberOption (value, minimum, maximum, fallback)

9.2.12 GetNumberOption (options, property, minimum, maximum, fallback)

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-toboolean
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-get-o-p

The Intl.Collator constructor is the %Collator% intrinsic object and a standard built-in property of the Intl object. Behaviour
common to all service constructor properties of the Intl object is specified in 9.1.

The abstract operation InitializeCollator accepts the arguments collator (which must be an object), locales, and options. It
initializes collator as a Collator object. The following steps are taken:

1. Let requestedLocales be ? CanonicalizeLocaleList(locales).
2. If options is undefined, then

a. Let options be ObjectCreate(null).
3. Else,

a. Let options be ? ToObject(options).
4. Let usage be ? GetOption(options, "usage", "string", « "sort", "search" », "sort").
5. Set collator.[[Usage]] to usage.
6. If usage is "sort", then

a. Let localeData be %Collator%.[[SortLocaleData]].
7. Else,

a. Let localeData be %Collator%.[[SearchLocaleData]].
8. Let opt be a new Record.
9. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").

10. Set opt.[[localeMatcher]] to matcher.
11. Let numeric be ? GetOption(options, "numeric", "boolean", undefined, undefined).
12. If numeric is not undefined, then

a. Let numeric be ! ToString(numeric).
13. Set opt.[[kn]] to numeric.
14. Let caseFirst be ? GetOption(options, "caseFirst", "string", « "upper", "lower", "false" », undefined).
15. Set opt.[[kf]] to caseFirst.
16. Let relevantExtensionKeys be %Collator%.[[RelevantExtensionKeys]].
17. Let r be ResolveLocale(%Collator%.[[AvailableLocales]], requestedLocales, opt, relevantExtensionKeys, localeData).
18. Set collator.[[Locale]] to r.[[locale]].
19. Let collation be r.[[co]].
20. If collation is null, let collation be "default".
21. Set collator.[[Collation]] to collation.
22. If relevantExtensionKeys contains "kn", then

a. Set collator.[[Numeric]] to ! SameValue(r.[[kn]], "true").
23. If relevantExtensionKeys contains "kf", then

a. Set collator.[[CaseFirst]] to r.[[kf]].
24. Let sensitivity be ? GetOption(options, "sensitivity", "string", « "base", "accent", "case", "variant" »,

10 Collator Objects

10.1 The Intl.Collator Constructor

10.1.1 InitializeCollator (collator, locales, options)

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-samevalue

undefined).
25. If sensitivity is undefined, then

a. If usage is "sort", then
i. Let sensitivity be "variant".

b. Else,
i. Let dataLocale be r.[[dataLocale]].

ii. Let dataLocaleData be localeData.[[<dataLocale>]].
iii. Let sensitivity be dataLocaleData.[[sensitivity]].

26. Set collator.[[Sensitivity]] to sensitivity.
27. Let ignorePunctuation be ? GetOption(options, "ignorePunctuation", "boolean", undefined, false).
28. Set collator.[[IgnorePunctuation]] to ignorePunctuation.
29. Return collator.

When the Intl.Collator function is called with optional arguments locales and options, the following steps are taken:

1. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
2. Let internalSlotsList be « [[InitializedCollator]], [[Locale]], [[Usage]], [[Sensitivity]], [[IgnorePunctuation]], [[Collation]],

[[BoundCompare]] ».
3. If %Collator%.[[RelevantExtensionKeys]] contains "kn", then

a. Append [[Numeric]] as the last element of internalSlotsList.
4. If %Collator%.[[RelevantExtensionKeys]] contains "kf", then

a. Append [[CaseFirst]] as the last element of internalSlotsList.
5. Let collator be ? OrdinaryCreateFromConstructor(newTarget, "%CollatorPrototype%", internalSlotsList).
6. Return ? InitializeCollator(collator, locales, options).

The Intl.Collator constructor has the following properties:

The value of Intl.Collator.prototype is %CollatorPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the supportedLocalesOf method is called, the following steps are taken:

1. Let availableLocales be %Collator%.[[AvailableLocales]].
2. Let requestedLocales be ? CanonicalizeLocaleList(locales).
3. Return ? SupportedLocales(availableLocales, requestedLocales, options).

10.1.2 Intl.Collator ([locales [, options]])

10.2 Properties of the Intl.Collator Constructor

10.2.1 Intl.Collator.prototype

10.2.2 Intl.Collator.supportedLocalesOf (locales [, options])

https://tc39.github.io/ecma262/#active-function-object
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor

The value of the length property of the supportedLocalesOf method is 1.

The value of the [[AvailableLocales]] internal slot is implementation defined within the constraints described in 9.1. The value
of the [[RelevantExtensionKeys]] internal slot is a List that must include the element "co", may include any or all of the
elements "kn" and "kf", and must not include any other elements.

NOTE
Unicode Technical Standard 35 describes ten locale extension keys that are relevant to collation: "co" for collator usage and
specializations, "ka" for alternate handling, "kb" for backward second level weight, "kc" for case level, "kn" for numeric,
"kh" for hiragana quaternary, "kk" for normalization, "kf" for case first, "kr" for reordering, "ks" for collation strength, and
"vt" for variable top. Collator, however, requires that the usage is specified through the usage property of the options object,
alternate handling through the ignorePunctuation property of the options object, and case level and the strength through the
sensitivity property of the options object. The "co" key in the language tag is supported only for collator specializations, and
the keys "kb", "kh", "kk", "kr", and "vt" are not allowed in this version of the Internationalization API. Support for the
remaining keys is implementation dependent.

The values of the [[SortLocaleData]] and [[SearchLocaleData]] internal slots are implementation defined within the
constraints described in 9.1 and the following additional constraints:

The first element of [[SortLocaleData]][[<locale>]].[[co]] and [[SearchLocaleData]][[<locale>]].[[co]] must be null for all
locale values.
The values "standard" and "search" must not be used as elements in any [[SortLocaleData]].[[<locale>]].[[co]] and
[[SearchLocaleData]].[[<locale>]].[[co]] list.
[[SearchLocaleData]][[<locale>]] must have a sensitivity field with a String value equal to "base", "accent", "case", or
"variant" for all locale values.

The Intl.Collator prototype object is itself an ordinary object. %CollatorPrototype% is not an Intl.Collator instance and does not
have an [[InitializedCollator]] internal slot or any of the other internal slots of Intl.Collator instance objects.

The initial value of Intl.Collator.prototype.constructor is the intrinsic object %Collator%.

The initial value of the @@toStringTag property is the string value "Object".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

10.2.3 Internal Slots

10.3 Properties of the Intl.Collator Prototype Object

10.3.1 Intl.Collator.prototype.constructor

10.3.2 Intl.Collator.prototype [@@toStringTag]

10.3.3 get Intl.Collator.prototype.compare

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

This named accessor property returns a function that compares two strings according to the sort order of this Collator object.

Intl.Collator.prototype.compare is an accessor property whose set accessor function is undefined. Its get accessor function
performs the following steps:

1. Let collator be this value.
2. If Type(collator) is not Object, throw a TypeError exception.
3. If collator does not have an [[InitializedCollator]] internal slot, throw a TypeError exception.
4. If collator.[[BoundCompare]] is undefined, then

a. Let F be a new built-in function object as defined in 10.3.3.1.
b. Set F.[[Collator]] to collator.
c. Set collator.[[BoundCompare]] to F.

5. Return collator.[[BoundCompare]].

NOTE
The returned function is bound to collator so that it can be passed directly to Array.prototype.sort or other functions.

A Collator compare function is an anonymous built-in function that has a [[Collator]] internal slot.

When a Collator compare function F is called with arguments x and y, the following steps are taken:

1. Let collator be F.[[Collator]].
2. Assert: Type(collator) is Object and collator has an [[InitializedCollator]] internal slot.
3. If x is not provided, let x be undefined.
4. If y is not provided, let y be undefined.
5. Let X be ? ToString(x).
6. Let Y be ? ToString(y).
7. Return CompareStrings(collator, X, Y).

The length property of a Collator compare function is 2.

When the CompareStrings abstract operation is called with arguments collator (which must be an object initialized as a
Collator), x and y (which must be String values), it returns a Number other than NaN that represents the result of a locale-
sensitive String comparison of x with y. The two Strings are compared in an implementation-defined fashion. The result is
intended to order String values in the sort order specified by the effective locale and collation options computed during
construction of collator, and will be negative, zero, or positive, depending on whether x comes before y in the sort order, the
Strings are equal under the sort order, or x comes after y in the sort order, respectively. String values must be interpreted as
UTF-16 code unit sequences, and a surrogate pair (a code unit in the range 0xD800 to 0xDBFF followed by a code unit in the
range 0xDC00 to 0xDFFF) within a string must be interpreted as the corresponding code point.

The sensitivity of collator is interpreted as follows:

base: Only strings that differ in base letters compare as unequal. Examples: a ≠ b, a = á, a = A.

10.3.3.1 Collator Compare Functions

10.3.3.2 CompareStrings (collator, x, y)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tostring

accent: Only strings that differ in base letters or accents and other diacritic marks compare as unequal. Examples: a ≠ b, a
≠ á, a = A.
case: Only strings that differ in base letters or case compare as unequal. Examples: a ≠ b, a = á, a ≠ A.
variant: Strings that differ in base letters, accents and other diacritic marks, or case compare as unequal. Other
differences may also be taken into consideration. Examples: a ≠ b, a ≠ á, a ≠ A.

NOTE 1
In some languages, certain letters with diacritic marks are considered base letters. For example, in Swedish, "ö" is a base letter
that's different from "o".

If the collator is set to ignore punctuation, then strings that differ only in punctuation compare as equal.

For the interpretation of options settable through extension keys, see Unicode Technical Standard 35.

The CompareStrings abstract operation with any given collator argument, if considered as a function of the remaining two
arguments x and y, must be a consistent comparison function (as defined in ES2020, 22.1.3.25) on the set of all Strings.

The actual return values are implementation-defined to permit implementers to encode additional information in the value.
The method is required to return +0 when comparing Strings that are considered canonically equivalent by the Unicode
standard.

NOTE 2
It is recommended that the CompareStrings abstract operation be implemented following Unicode Technical Standard 10,
Unicode Collation Algorithm (available at https://unicode.org/reports/tr10/), using tailorings for the effective locale and
collation options of collator. It is recommended that implementations use the tailorings provided by the Common Locale Data
Repository (available at http://cldr.unicode.org).

NOTE 3
Applications should not assume that the behaviour of the CompareStrings abstract operation for Collator instances with the
same resolved options will remain the same for different versions of the same implementation.

This function provides access to the locale and collation options computed during initialization of the object.

1. Let collator be this value.
2. If Type(collator) is not Object, throw a TypeError exception.
3. If collator does not have an [[InitializedCollator]] internal slot, throw a TypeError exception.
4. Let options be ! ObjectCreate(%ObjectPrototype%).
5. For each row of Table 2, except the header row, in table order, do

a. Let p be the Property value of the current row.
b. Let v be the value of collator's internal slot whose name is the Internal Slot value of the current row.
c. If the current row has an Extension Key value, then

i. Let extensionKey be the Extension Key value of the current row.
ii. If %Collator%.[[RelevantExtensionKeys]] does not contain extensionKey, then

1. Let v be undefined.
d. If v is not undefined, then

i. Perform ! CreateDataPropertyOrThrow(options, p, v).

10.3.4 Intl.Collator.prototype.resolvedOptions ()

https://tc39.github.io/ecma262/#sec-array.prototype.sort
https://unicode.org/reports/tr10/
http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow

6. Return options.

Table 2: Resolved Options of Collator Instances

Internal Slot Property Extension Key

[[Locale]] "locale"

[[Usage]] "usage"

[[Sensitivity]] "sensitivity"

[[IgnorePunctuation]] "ignorePunctuation"

[[Collation]] "collation"

[[Numeric]] "numeric" kn

[[CaseFirst]] "caseFirst" kf

Intl.Collator instances are ordinary objects that inherit properties from %CollatorPrototype%.

Intl.Collator instances have an [[InitializedCollator]] internal slot.

Intl.Collator instances also have several internal slots that are computed by the constructor:

[[Locale]] is a String value with the language tag of the locale whose localization is used for collation.
[[Usage]] is one of the String values "sort" or "search", identifying the collator usage.
[[Sensitivity]] is one of the String values "base", "accent", "case", or "variant", identifying the collator's sensitivity.
[[IgnorePunctuation]] is a Boolean value, specifying whether punctuation should be ignored in comparisons.
[[Collation]] is a String value with the "type" given in Unicode Technical Standard 35 for the collation, except that the
values "standard" and "search" are not allowed, while the value "default" is allowed.

Intl.Collator instances also have the following internal slots if the key corresponding to the name of the internal slot in Table 2
is included in the [[RelevantExtensionKeys]] internal slot of Intl.Collator:

[[Numeric]] is a Boolean value, specifying whether numeric sorting is used.
[[CaseFirst]] is one of the String values "upper", "lower", or "false".

Finally, Intl.Collator instances have a [[BoundCompare]] internal slot that caches the function returned by the compare
accessor (10.3.3).

10.4 Properties of Intl.Collator Instances

11 NumberFormat Objects

The abstract operation SetNumberFormatDigitOptions applies digit options used for number formatting onto the intl object.

1. Assert: Type(intlObj) is Object.
2. Assert: Type(options) is Object.
3. Assert: Type(mnfdDefault) is Number.
4. Assert: Type(mxfdDefault) is Number.
5. Let mnid be ? GetNumberOption(options, "minimumIntegerDigits", 1, 21, 1).
6. Let mnfd be ? GetNumberOption(options, "minimumFractionDigits", 0, 20, mnfdDefault).
7. Let mxfdActualDefault be max(mnfd, mxfdDefault).
8. Let mxfd be ? GetNumberOption(options, "maximumFractionDigits", mnfd, 20, mxfdActualDefault).
9. Let mnsd be ? Get(options, "minimumSignificantDigits").

10. Let mxsd be ? Get(options, "maximumSignificantDigits").
11. Set intlObj.[[MinimumIntegerDigits]] to mnid.
12. Set intlObj.[[MinimumFractionDigits]] to mnfd.
13. Set intlObj.[[MaximumFractionDigits]] to mxfd.
14. If mnsd is not undefined or mxsd is not undefined, then

a. Let mnsd be ? DefaultNumberOption(mnsd, 1, 21, 1).
b. Let mxsd be ? DefaultNumberOption(mxsd, mnsd, 21, 21).
c. Set intlObj.[[MinimumSignificantDigits]] to mnsd.
d. Set intlObj.[[MaximumSignificantDigits]] to mxsd.

The abstract operation InitializeNumberFormat accepts the arguments numberFormat (which must be an object), locales, and
options. It initializes numberFormat as a NumberFormat object. The following steps are taken:

1. Let requestedLocales be ? CanonicalizeLocaleList(locales).
2. If options is undefined, then

a. Let options be ObjectCreate(null).
3. Else,

a. Let options be ? ToObject(options).
4. Let opt be a new Record.
5. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").
6. Set opt.[[localeMatcher]] to matcher.
7. Let localeData be %NumberFormat%.[[LocaleData]].
8. Let r be ResolveLocale(%NumberFormat%.[[AvailableLocales]], requestedLocales, opt, %NumberFormat%.

[[RelevantExtensionKeys]], localeData).
9. Set numberFormat.[[Locale]] to r.[[locale]].

10. Set numberFormat.[[NumberingSystem]] to r.[[nu]].
11. Let dataLocale be r.[[dataLocale]].

11.1 Abstract Operations For NumberFormat Objects

11.1.1 SetNumberFormatDigitOptions (intlObj, options, mnfdDefault, mxfdDefault)

11.1.2 InitializeNumberFormat (numberFormat, locales, options)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

12. Let style be ? GetOption(options, "style", "string", « "decimal", "percent", "currency" », "decimal").
13. Set numberFormat.[[Style]] to style.
14. Let currency be ? GetOption(options, "currency", "string", undefined, undefined).
15. If currency is not undefined, then

a. If the result of IsWellFormedCurrencyCode(currency) is false, throw a RangeError exception.
16. If style is "currency" and currency is undefined, throw a TypeError exception.
17. If style is "currency", then

a. Let currency be the result of converting currency to upper case as specified in 6.1.
b. Set numberFormat.[[Currency]] to currency.
c. Let cDigits be CurrencyDigits(currency).

18. Let currencyDisplay be ? GetOption(options, "currencyDisplay", "string", « "code", "symbol", "name" »,
"symbol").

19. If style is "currency", set numberFormat.[[CurrencyDisplay]] to currencyDisplay.
20. If style is "currency", then

a. Let mnfdDefault be cDigits.
b. Let mxfdDefault be cDigits.

21. Else,
a. Let mnfdDefault be 0.
b. If style is "percent", then

i. Let mxfdDefault be 0.
c. Else,

i. Let mxfdDefault be 3.
22. Perform ? SetNumberFormatDigitOptions(numberFormat, options, mnfdDefault, mxfdDefault).
23. Let useGrouping be ? GetOption(options, "useGrouping", "boolean", undefined, true).
24. Set numberFormat.[[UseGrouping]] to useGrouping.
25. Let dataLocaleData be localeData.[[<dataLocale>]].
26. Let patterns be dataLocaleData.[[patterns]].
27. Assert: patterns is a record (see 11.3.3).
28. Let stylePatterns be patterns.[[<style>]].
29. Set numberFormat.[[PositivePattern]] to stylePatterns.[[positivePattern]].
30. Set numberFormat.[[NegativePattern]] to stylePatterns.[[negativePattern]].
31. Return numberFormat.

When the abstract operation CurrencyDigits is called with an argument currency (which must be an upper case String value),
the following steps are taken:

1. If the ISO 4217 currency and funds code list contains currency as an alphabetic code, return the minor unit value
corresponding to the currency from the list; otherwise, return 2.

A Number format function is an anonymous built-in function that has a [[NumberFormat]] internal slot.

11.1.3 CurrencyDigits (currency)

11.1.4 Number Format Functions

When a Number format function F is called with optional argument value, the following steps are taken:

1. Let nf be F.[[NumberFormat]].
2. Assert: Type(nf) is Object and nf has an [[InitializedNumberFormat]] internal slot.
3. If value is not provided, let value be undefined.
4. Let x be ? ToNumeric(value).
5. Return FormatNumeric(nf, x).

The length property of a Number format function is 1.

The FormatNumericToString abstract operation is called with arguments intlObject (which must be an object with
[[MinimumSignificantDigits]], [[MaximumSignificantDigits]], [[MinimumIntegerDigits]], [[MinimumFractionDigits]], and
[[MaximumFractionDigits]] internal slots), and x (which must be a Number or BigInt value), and returns x as a string value
with digits formatted according to the five formatting parameters.

1. If intlObject.[[MinimumSignificantDigits]] and intlObject.[[MaximumSignificantDigits]] are both not undefined, then
a. Let result be ToRawPrecision(x, intlObject.[[MinimumSignificantDigits]], intlObject.[[MaximumSignificantDigits]]).

2. Else,
a. Let result be ToRawFixed(x, intlObject.[[MinimumIntegerDigits]], intlObject.[[MinimumFractionDigits]], intlObject.

[[MaximumFractionDigits]]).
3. Return result.

The PartitionNumberPattern abstract operation is called with arguments numberFormat (which must be an object initialized
as a NumberFormat) and x (which must be a Number or BigInt value), interprets x as a numeric value, and creates the
corresponding parts according to the effective locale and the formatting options of numberFormat. The following steps are
taken:

1. If x is not NaN and x < 0 or x is -0, then
a. Let x be -x.
b. Let pattern be numberFormat.[[NegativePattern]].

2. Else,
a. Let pattern be numberFormat.[[PositivePattern]].

3. Let result be a new empty List.
4. Let beginIndex be Call(%StringProto_indexOf%, pattern, « "{", 0 »).
5. Let endIndex be 0.
6. Let nextIndex be 0.
7. Let length be the number of code units in pattern.
8. Repeat, while beginIndex is an integer index into pattern

a. Set endIndex to Call(%StringProto_indexOf%, pattern, « "}", beginIndex »).
b. Assert: endIndex is greater than beginIndex.
c. If beginIndex is greater than nextIndex, then

11.1.5 FormatNumericToString (intlObject, x)

11.1.6 PartitionNumberPattern (numberFormat, x)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call

i. Let literal be a substring of pattern from position nextIndex, inclusive, to position beginIndex, exclusive.
ii. Append a new Record { [[Type]]: "literal", [[Value]]: literal } as the last element of result.

d. Let p be the substring of pattern from position beginIndex, exclusive, to position endIndex, exclusive.
e. If p is equal to "number", then

i. If x is NaN, then
1. Let n be an implementation- and locale-dependent (ILD) String value indicating the NaN value.
2. Append a new Record { [[Type]]: "nan", [[Value]]: n } as the last element of result.

ii. Else if x is not a finite Number or BigInt,
1. Let n be an ILD String value indicating infinity.
2. Append a new Record { [[Type]]: "infinity", [[Value]]: n } as the last element of result.

iii. Else,
1. If numberFormat.[[Style]] is "percent", let x be 100 × x.
2. Let n be FormatNumericToString(numberFormat, x).
3. If the numberFormat.[[NumberingSystem]] matches one of the values in the "Numbering System"

column of Table 3 below, then
a. Let digits be a List whose 10 String valued elements are the UTF-16 string representations of the 10

digits specified in the "Digits" column of the matching row in Table 3.
b. Replace each digit in n with the value of digits[digit].

4. Else use an implementation dependent algorithm to map n to the appropriate representation of n in the
given numbering system.

5. Let decimalSepIndex be Call(%StringProto_indexOf%, n, « ".", 0 »).
6. If decimalSepIndex > 0, then

a. Let integer be the substring of n from position 0, inclusive, to position decimalSepIndex, exclusive.
b. Let fraction be the substring of n from position decimalSepIndex, exclusive, to the end of n.

7. Else,
a. Let integer be n.
b. Let fraction be undefined.

8. If the numberFormat.[[UseGrouping]] is true, then
a. Let groupSepSymbol be the implementation-, locale-, and numbering system-dependent (ILND)

String representing the grouping separator.
b. Let groups be a List whose elements are, in left to right order, the substrings defined by ILND set of

locations within the integer.
c. Assert: The number of elements in groups List is greater than 0.
d. Repeat, while groups List is not empty

i. Remove the first element from groups and let integerGroup be the value of that element.
ii. Append a new Record { [[Type]]: "integer", [[Value]]: integerGroup } as the last element of

result.
iii. If groups List is not empty, then

i. Append a new Record { [[Type]]: "group", [[Value]]: groupSepSymbol } as the last element
of result.

9. Else,
a. Append a new Record { [[Type]]: "integer", [[Value]]: integer } as the last element of result.

10. If fraction is not undefined, then
a. Let decimalSepSymbol be the ILND String representing the decimal separator.

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

b. Append a new Record { [[Type]]: "decimal", [[Value]]: decimalSepSymbol } as the last element of
result.

c. Append a new Record { [[Type]]: "fraction", [[Value]]: fraction } as the last element of result.
f. Else if p is equal to "plusSign", then

i. Let plusSignSymbol be the ILND String representing the plus sign.
ii. Append a new Record { [[Type]]: "plusSign", [[Value]]: plusSignSymbol } as the last element of result.

g. Else if p is equal to "minusSign", then
i. Let minusSignSymbol be the ILND String representing the minus sign.

ii. Append a new Record { [[Type]]: "minusSign", [[Value]]: minusSignSymbol } as the last element of result.
h. Else if p is equal to "percentSign" and numberFormat.[[Style]] is "percent", then

i. Let percentSignSymbol be the ILND String representing the percent sign.
ii. Append a new Record { [[Type]]: "percentSign", [[Value]]: percentSignSymbol } as the last element of result.

i. Else if p is equal to "currency" and numberFormat.[[Style]] is "currency", then
i. Let currency be numberFormat.[[Currency]].

ii. Assert: numberFormat.[[CurrencyDisplay]] is "code", "symbol" or "name".
iii. If numberFormat.[[CurrencyDisplay]] is "code", then

1. Let cd be currency.
iv. Else if numberFormat.[[CurrencyDisplay]] is "symbol", then

1. Let cd be an ILD string representing currency in short form. If the implementation does not have such a
representation of currency, use currency itself.

v. Else if numberFormat.[[CurrencyDisplay]] is "name", then
1. Let cd be an ILD string representing currency in long form. If the implementation does not have such a

representation of currency, use currency itself.
vi. Append a new Record { [[Type]]: "currency", [[Value]]: cd } as the last element of result.

j. Else,
i. Let unknown be an ILND String based on x and p.

ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
k. Set nextIndex to endIndex + 1.
l. Set beginIndex to Call(%StringProto_indexOf%, pattern, « "{", nextIndex »).

9. If nextIndex is less than length, then
a. Let literal be the substring of pattern from position nextIndex, inclusive, to position length, exclusive.
b. Append a new Record { [[Type]]: "literal", [[Value]]: literal } as the last element of result.

10. Return result.

Table 3: Numbering systems with simple digit mappings

Numbering System Digits

arab U+0660 to U+0669

arabext U+06F0 to U+06F9

bali U+1B50 to U+1B59

beng U+09E6 to U+09EF

deva U+0966 to U+096F

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

fullwide U+FF10 to U+FF19

gujr U+0AE6 to U+0AEF

guru U+0A66 to U+0A6F

hanidec U+3007, U+4E00, U+4E8C, U+4E09, U+56DB, U+4E94, U+516D, U+4E03, U+516B, U+4E5D

khmr U+17E0 to U+17E9

knda U+0CE6 to U+0CEF

laoo U+0ED0 to U+0ED9

latn U+0030 to U+0039

limb U+1946 to U+194F

mlym U+0D66 to U+0D6F

mong U+1810 to U+1819

mymr U+1040 to U+1049

orya U+0B66 to U+0B6F

tamldec U+0BE6 to U+0BEF

telu U+0C66 to U+0C6F

thai U+0E50 to U+0E59

tibt U+0F20 to U+0F29

NOTE 1
The computations rely on String values and locations within numeric strings that are dependent upon the implementation and
the effective locale of numberFormat ("ILD") or upon the implementation, the effective locale, and the numbering system of
numberFormat ("ILND"). The ILD and ILND Strings mentioned, other than those for currency names, must not contain any
characters in the General Category "Number, decimal digit" as specified by the Unicode Standard.

NOTE 2
It is recommended that implementations use the locale provided by the Common Locale Data Repository (available at
http://cldr.unicode.org).

The FormatNumeric abstract operation is called with arguments numberFormat (which must be an object initialized as a
NumberFormat) and x (which must be a Number or BigInt value), and performs the following steps:

1. Let parts be ? PartitionNumberPattern(numberFormat, x).
2. Let result be the empty String.
3. For each part in parts, do

11.1.7 FormatNumeric(numberFormat, x)

http://cldr.unicode.org/

a. Set result to a String value produced by concatenating result and part.[[Value]].
4. Return result.

The FormatNumericToParts abstract operation is called with arguments numberFormat (which must be an object initialized as
a NumberFormat) and x (which must be a Number or BigInt value), and performs the following steps:

1. Let parts be ? PartitionNumberPattern(numberFormat, x).
2. Let result be ArrayCreate(0).
3. Let n be 0.
4. For each part in parts, do

a. Let O be ObjectCreate(%ObjectPrototype%).
b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
d. Perform ! CreateDataPropertyOrThrow(result, ! ToString(n), O).
e. Increment n by 1.

5. Return result.

When the ToRawPrecision abstract operation is called with arguments x (which must be a finite non-negative Number or
BigInt), minPrecision, and maxPrecision (both must be integers between 1 and 21), the following steps are taken:

1. Let p be maxPrecision.
2. If x = 0, then

a. Let m be the String consisting of p occurrences of the character "0".
b. Let e be 0.

3. Else,
a. Let e and n be integers such that 10p–1 ≤ n < 10p and for which the exact mathematical value of n × 10e–p+1 – x is as

close to zero as possible. If there are two such sets of e and n, pick the e and n for which n × 10e–p+1 is larger.
b. Let m be the String consisting of the digits of the decimal representation of n (in order, with no leading zeroes).

4. If e ≥ p, then
a. Return the concatenation of m and e-p+1 occurrences of the character "0".

5. If e = p-1, then
a. Return m.

6. If e ≥ 0, then
a. Let m be the concatenation of the first e+1 characters of m, the character ".", and the remaining p–(e+1) characters

of m.
7. If e < 0, then

a. Let m be the concatenation of the String "0.", –(e+1) occurrences of the character "0", and the string m.
8. If m contains the character ".", and maxPrecision > minPrecision, then

a. Let cut be maxPrecision – minPrecision.
b. Repeat, while cut > 0 and the last character of m is "0"

11.1.8 FormatNumericToParts(numberFormat, x)

11.1.9 ToRawPrecision(x, minPrecision, maxPrecision)

https://tc39.github.io/ecma262/#sec-arraycreate
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-tostring

i. Remove the last character from m.
ii. Decrease cut by 1.

c. If the last character of m is ".", then
i. Remove the last character from m.

9. Return m.

When the ToRawFixed abstract operation is called with arguments x (which must be a finite non-negative Number or BigInt),
minInteger (which must be an integer between 1 and 21), minFraction, and maxFraction (which must be integers between 0
and 20), the following steps are taken:

1. Let f be maxFraction.
2. Let n be an integer for which the exact mathematical value of n ÷ 10f – x is as close to zero as possible. If there are two

such n, pick the larger n.
3. If n = 0, let m be the String "0". Otherwise, let m be the String consisting of the digits of the decimal representation of n

(in order, with no leading zeroes).
4. If f ≠ 0, then

a. Let k be the number of characters in m.
b. If k ≤ f, then

i. Let z be the String consisting of f+1–k occurrences of the character "0".
ii. Let m be the concatenation of Strings z and m.

iii. Let k be f+1.
c. Let a be the first k–f characters of m, and let b be the remaining f characters of m.
d. Let m be the concatenation of the three Strings a, ".", and b.
e. Let int be the number of characters in a.

5. Else, let int be the number of characters in m.
6. Let cut be maxFraction – minFraction.
7. Repeat, while cut > 0 and the last character of m is "0"

a. Remove the last character from m.
b. Decrease cut by 1.

8. If the last character of m is ".", then
a. Remove the last character from m.

9. If int < minInteger, then
a. Let z be the String consisting of minInteger–int occurrences of the character "0".
b. Let m be the concatenation of Strings z and m.

10. Return m.

The UnwrapNumberFormat abstract operation gets the underlying NumberFormat operation for various methods which
implement ECMA-402 v1 semantics for supporting initializing existing Intl objects.

1. Assert: Type(nf) is Object.

11.1.10 ToRawFixed(x, minInteger, minFraction, maxFraction)

11.1.11 UnwrapNumberFormat(nf)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values

2. If nf does not have an [[InitializedNumberFormat]] internal slot and ? InstanceofOperator(nf, %NumberFormat%) is
true, then

a. Let nf be ? Get(nf, %Intl%.[[FallbackSymbol]]).

3. If Type(nf) is not Object or nf does not have an [[InitializedNumberFormat]] internal slot, then
a. Throw a TypeError exception.

4. Return nf.

NOTE
See 8.1 Note 1 for the motivation of the normative optional text.

The NumberFormat constructor is the %NumberFormat% intrinsic object and a standard built-in property of the Intl object.
Behaviour common to all service constructor properties of the Intl object is specified in 9.1.

When the Intl.NumberFormat function is called with optional arguments locales and options, the following steps are taken:

1. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
2. Let numberFormat be ? OrdinaryCreateFromConstructor(newTarget, "%NumberFormatPrototype%", «

[[InitializedNumberFormat]], [[Locale]], [[NumberingSystem]], [[Style]], [[Currency]], [[CurrencyDisplay]],
[[MinimumIntegerDigits]], [[MinimumFractionDigits]], [[MaximumFractionDigits]], [[MinimumSignificantDigits]],
[[MaximumSignificantDigits]], [[UseGrouping]], [[PositivePattern]], [[NegativePattern]], [[BoundFormat]] »).

3. Perform ? InitializeNumberFormat(numberFormat, locales, options).

4. Let this be the this value.
5. If NewTarget is undefined and ? InstanceofOperator(this, %NumberFormat%) is true, then

a. Perform ? DefinePropertyOrThrow(this, %Intl%.[[FallbackSymbol]], PropertyDescriptor{ [[Value]]: numberFormat,
[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).

b. Return this.

6. Return numberFormat.

NOTE
See 8.1 Note 1 for the motivation of the normative optional text.

The Intl.NumberFormat constructor has the following properties:

The value of Intl.NumberFormat.prototype is %NumberFormatPrototype%.

11.2 The Intl.NumberFormat Constructor

11.2.1 Intl.NumberFormat ([locales [, options]])

11.3 Properties of the Intl.NumberFormat Constructor

11.3.1 Intl.NumberFormat.prototype

https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#active-function-object
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor
https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-definepropertyorthrow

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the supportedLocalesOf method is called with arguments locales and options, the following steps are taken:

1. Let availableLocales be %NumberFormat%.[[AvailableLocales]].
2. Let requestedLocales be ? CanonicalizeLocaleList(locales).
3. Return ? SupportedLocales(availableLocales, requestedLocales, options).

The value of the length property of the supportedLocalesOf method is 1.

The value of the [[AvailableLocales]] internal slot is implementation defined within the constraints described in 9.1.

The value of the [[RelevantExtensionKeys]] internal slot is « "nu" ».

NOTE 1
Unicode Technical Standard 35 describes two locale extension keys that are relevant to number formatting, "nu" for
numbering system and "cu" for currency. Intl.NumberFormat, however, requires that the currency of a currency format is
specified through the currency property in the options objects.

The value of the [[LocaleData]] internal slot is implementation defined within the constraints described in 9.1 and the
following additional constraints:

The list that is the value of the "nu" field of any locale field of [[LocaleData]] must not include the values "native",
"traditio", or "finance".
[[LocaleData]].[[<locale>]] must have a patterns field for all locale values locale. The value of this field must be a record,
which must have fields with the names of the three number format styles: "decimal", "percent", and "currency".
Each of these fields in turn must be a record with the fields positivePattern and negativePattern. The value of these fields
must be string values that must contain the substring "{number}" and may contain the substrings "{plusSign}", and
"{minusSign}"; the values within the percent field must also contain the substring "{percentSign}"; the values
within the currency field must also contain the substring "{currency}". The pattern strings must not contain any
characters in the General Category "Number, decimal digit" as specified by the Unicode Standard.

NOTE 2
It is recommended that implementations use the locale data provided by the Common Locale Data Repository (available at
http://cldr.unicode.org).

The Intl.NumberFormat prototype object is itself an ordinary object. %NumberFormatPrototype% is not an Intl.NumberFormat
instance and does not have an [[InitializedNumberFormat]] internal slot or any of the other internal slots of
Intl.NumberFormat instance objects.

11.3.2 Intl.NumberFormat.supportedLocalesOf (locales [, options])

11.3.3 Internal slots

11.4 Properties of the Intl.NumberFormat Prototype Object

http://cldr.unicode.org/

The initial value of Intl.NumberFormat.prototype.constructor is the intrinsic object %NumberFormat%.

The initial value of the @@toStringTag property is the string value "Object".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Intl.NumberFormat.prototype.format is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let nf be the this value.
2. If Type(nf) is not Object, throw a TypeError exception.
3. Let nf be ? UnwrapNumberFormat(nf).
4. If nf.[[BoundFormat]] is undefined, then

a. Let F be a new built-in function object as defined in Number Format Functions (11.1.4).
b. Set F.[[NumberFormat]] to nf.
c. Set nf.[[BoundFormat]] to F.

5. Return nf.[[BoundFormat]].

NOTE
The returned function is bound to nf so that it can be passed directly to Array.prototype.map or other functions. This is
considered a historical artefact, as part of a convention which is no longer followed for new features, but is preserved to
maintain compatibility with existing programs.

When the formatToParts method is called with an optional argument value, the following steps are taken:

1. Let nf be the this value.
2. If Type(nf) is not Object, throw a TypeError exception.
3. If nf does not have an [[InitializedNumberFormat]] internal slot, throw a TypeError exception.
4. Let x be ? ToNumeric(value).
5. Return ? FormatNumericToParts(nf, x).

This function provides access to the locale and formatting options computed during initialization of the object.

1. Let nf be this value.
2. If Type(nf) is not Object, throw a TypeError exception.
3. Let nf be ? UnwrapNumberFormat(nf).

11.4.1 Intl.NumberFormat.prototype.constructor

11.4.2 Intl.NumberFormat.prototype [@@toStringTag]

11.4.3 get Intl.NumberFormat.prototype.format

11.4.4 Intl.NumberFormat.prototype.formatToParts (value)

11.4.5 Intl.NumberFormat.prototype.resolvedOptions ()

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values

4. Let options be ! ObjectCreate(%ObjectPrototype%).
5. For each row of Table 4, except the header row, in table order, do

a. Let p be the Property value of the current row.
b. Let v be the value of nf's internal slot whose name is the Internal Slot value of the current row.
c. If v is not undefined, then

i. Perform ! CreateDataPropertyOrThrow(options, p, v).
6. Return options.

Table 4: Resolved Options of NumberFormat Instances

Internal Slot Property

[[Locale]] "locale"

[[NumberingSystem]] "numberingSystem"

[[Style]] "style"

[[Currency]] "currency"

[[CurrencyDisplay]] "currencyDisplay"

[[MinimumIntegerDigits]] "minimumIntegerDigits"

[[MinimumFractionDigits]] "minimumFractionDigits"

[[MaximumFractionDigits]] "maximumFractionDigits"

[[MinimumSignificantDigits]] "minimumSignificantDigits"

[[MaximumSignificantDigits]] "maximumSignificantDigits"

[[UseGrouping]] "useGrouping"

Intl.NumberFormat instances inherit properties from %NumberFormatPrototype%.

Intl.NumberFormat instances have an [[InitializedNumberFormat]] internal slot.

Intl.NumberFormat instances also have several internal slots that are computed by the constructor:

[[Locale]] is a String value with the language tag of the locale whose localization is used for formatting.
[[NumberingSystem]] is a String value with the "type" given in Unicode Technical Standard 35 for the numbering system
used for formatting.
[[Style]] is one of the String values "decimal", "currency", or "percent", identifying the number format style used.
[[Currency]] is a String value with the currency code identifying the currency to be used if formatting with the
"currency" style. It is only used when [[Style]] has the value "currency".
[[CurrencyDisplay]] is one of the String values "code", "symbol", or "name", specifying whether to display the currency
as an ISO 4217 alphabetic currency code, a localized currency symbol, or a localized currency name if formatting with the

11.5 Properties of Intl.NumberFormat Instances

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow

"currency" style. It is only used when [[Style]] has the value "currency".
[[MinimumIntegerDigits]] is a non-negative integer Number value indicating the minimum integer digits to be used.
Numbers will be padded with leading zeroes if necessary.
[[MinimumFractionDigits]] and [[MaximumFractionDigits]] are non-negative integer Number values indicating the
minimum and maximum fraction digits to be used. Numbers will be rounded or padded with trailing zeroes if necessary.
[[MinimumSignificantDigits]] and [[MaximumSignificantDigits]] are positive integer Number values indicating the
minimum and maximum fraction digits to be shown. Either none or both of these properties are present; if they are, they
override minimum and maximum integer and fraction digits – the formatter uses however many integer and fraction
digits are required to display the specified number of significant digits.
[[UseGrouping]] is a Boolean value indicating whether a grouping separator should be used.
[[PositivePattern]] and [[NegativePattern]] are String values as described in 11.3.3.

Finally, Intl.NumberFormat instances have a [[BoundFormat]] internal slot that caches the function returned by the format
accessor (11.4.3).

Several DateTimeFormat algorithms use values from the following table, which provides internal slots, property names and
allowable values for the components of date and time formats:

Table 5: Components of date and time formats

Internal Slot Property Values

[[Weekday]] "weekday" "narrow", "short", "long"

[[Era]] "era" "narrow", "short", "long"

[[Year]] "year" "2-digit", "numeric"

[[Month]] "month" "2-digit", "numeric", "narrow", "short", "long"

[[Day]] "day" "2-digit", "numeric"

[[Hour]] "hour" "2-digit", "numeric"

[[Minute]] "minute" "2-digit", "numeric"

[[Second]] "second" "2-digit", "numeric"

[[TimeZoneName]] "timeZoneName" "short", "long"

12 DateTimeFormat Objects

12.1 Abstract Operations For DateTimeFormat Objects

12.1.1 InitializeDateTimeFormat (dateTimeFormat, locales, options)

The abstract operation InitializeDateTimeFormat accepts the arguments dateTimeFormat (which must be an object), locales,
and options. It initializes dateTimeFormat as a DateTimeFormat object. This abstract operation functions as follows:

1. Let requestedLocales be ? CanonicalizeLocaleList(locales).
2. Let options be ? ToDateTimeOptions(options, "any", "date").
3. Let opt be a new Record.
4. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").
5. Set opt.[[localeMatcher]] to matcher.
6. Let hour12 be ? GetOption(options, "hour12", "boolean", undefined, undefined).
7. Let hourCycle be ? GetOption(options, "hourCycle", "string", « "h11", "h12", "h23", "h24" », undefined).
8. If hour12 is not undefined, then

a. Let hourCycle be null.
9. Set opt.[[hc]] to hourCycle.

10. Let localeData be %DateTimeFormat%.[[LocaleData]].
11. Let r be ResolveLocale(%DateTimeFormat%.[[AvailableLocales]], requestedLocales, opt, %DateTimeFormat%.

[[RelevantExtensionKeys]], localeData).
12. Set dateTimeFormat.[[Locale]] to r.[[locale]].
13. Set dateTimeFormat.[[Calendar]] to r.[[ca]].
14. Set dateTimeFormat.[[HourCycle]] to r.[[hc]].
15. Set dateTimeFormat.[[NumberingSystem]] to r.[[nu]].
16. Let dataLocale be r.[[dataLocale]].
17. Let timeZone be ? Get(options, "timeZone").
18. If timeZone is not undefined, then

a. Let timeZone be ? ToString(timeZone).
b. If the result of IsValidTimeZoneName(timeZone) is false, then

i. Throw a RangeError exception.
c. Let timeZone be CanonicalizeTimeZoneName(timeZone).

19. Else,
a. Let timeZone be DefaultTimeZone().

20. Set dateTimeFormat.[[TimeZone]] to timeZone.
21. Let opt be a new Record.
22. For each row of Table 5, except the header row, in table order, do

a. Let prop be the name given in the Property column of the row.
b. Let value be ? GetOption(options, prop, "string", « the strings given in the Values column of the row », undefined).
c. Set opt.[[<prop>]] to value.

23. Let dataLocaleData be localeData.[[<dataLocale>]].
24. Let formats be dataLocaleData.[[formats]].
25. Let matcher be ? GetOption(options, "formatMatcher", "string", « "basic", "best fit" », "best fit").
26. If matcher is "basic", then

a. Let bestFormat be BasicFormatMatcher(opt, formats).
27. Else,

a. Let bestFormat be BestFitFormatMatcher(opt, formats).
28. For each row in Table 5, except the header row, in table order, do

a. Let prop be the name given in the Property column of the row.
b. Let p be bestFormat.[[<prop>]].

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

c. If p not undefined, then
i. Set dateTimeFormat's internal slot whose name is the Internal Slot column of the row to p.

29. If dateTimeFormat.[[Hour]] is not undefined, then
a. Let hcDefault be dataLocaleData.[[hourCycle]].
b. Let hc be dateTimeFormat.[[HourCycle]].
c. If hc is null, then

i. Set hc to hcDefault.
d. If hour12 is not undefined, then

i. If hour12 is true, then
1. If hcDefault is "h11" or "h23", then

a. Set hc to "h11".
2. Else,

a. Set hc to "h12".
ii. Else,

1. Assert: hour12 is false.
2. If hcDefault is "h11" or "h23", then

a. Set hc to "h23".
3. Else,

a. Set hc to "h24".
e. Set dateTimeFormat.[[HourCycle]] to hc.
f. If dateTimeformat.[[HourCycle]] is "h11" or "h12", then

i. Let pattern be bestFormat.[[pattern12]].
g. Else,

i. Let pattern be bestFormat.[[pattern]].
30. Else,

a. Set dateTimeFormat.[[HourCycle]] to undefined.
b. Let pattern be bestFormat.[[pattern]].

31. Set dateTimeFormat.[[Pattern]] to pattern.
32. Return dateTimeFormat.

When the ToDateTimeOptions abstract operation is called with arguments options, required, and defaults, the following steps
are taken:

1. If options is undefined, let options be null; otherwise let options be ? ToObject(options).
2. Let options be ObjectCreate(options).
3. Let needDefaults be true.
4. If required is "date" or "any", then

a. For each of the property names "weekday", "year", "month", "day", do
i. Let prop be the property name.

ii. Let value be ? Get(options, prop).
iii. If value is not undefined, let needDefaults be false.

5. If required is "time" or "any", then

12.1.2 ToDateTimeOptions (options, required, defaults)

https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-get-o-p

a. For each of the property names "hour", "minute", "second", do
i. Let prop be the property name.

ii. Let value be ? Get(options, prop).
iii. If value is not undefined, let needDefaults be false.

6. If needDefaults is true and defaults is either "date" or "all", then
a. For each of the property names "year", "month", "day", do

i. Perform ? CreateDataPropertyOrThrow(options, prop, "numeric").
7. If needDefaults is true and defaults is either "time" or "all", then

a. For each of the property names "hour", "minute", "second", do
i. Perform ? CreateDataPropertyOrThrow(options, prop, "numeric").

8. Return options.

When the BasicFormatMatcher abstract operation is called with two arguments options and formats, the following steps are
taken:

1. Let removalPenalty be 120.
2. Let additionPenalty be 20.
3. Let longLessPenalty be 8.
4. Let longMorePenalty be 6.
5. Let shortLessPenalty be 6.
6. Let shortMorePenalty be 3.
7. Let bestScore be -Infinity.
8. Let bestFormat be undefined.
9. Assert: Type(formats) is List.

10. For each element format of formats in List order, do
a. Let score be 0.
b. For each property shown in Table 5, do

i. Let optionsProp be options.[[<property>]].
ii. Let formatProp be format.[[<property>]].

iii. If optionsProp is undefined and formatProp is not undefined, then decrease score by additionPenalty.
iv. Else if optionsProp is not undefined and formatProp is undefined, then decrease score by removalPenalty.
v. Else if optionsProp ≠ formatProp,

1. Let values be « "2-digit", "numeric", "narrow", "short", "long" ».
2. Let optionsPropIndex be the index of optionsProp within values.
3. Let formatPropIndex be the index of formatProp within values.
4. Let delta be max(min(formatPropIndex - optionsPropIndex, 2), -2).
5. If delta = 2, decrease score by longMorePenalty.
6. Else if delta = 1, decrease score by shortMorePenalty.
7. Else if delta = -1, decrease score by shortLessPenalty.
8. Else if delta = -2, decrease score by longLessPenalty.

c. If score > bestScore, then
i. Let bestScore be score.

12.1.3 BasicFormatMatcher (options, formats)

https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-algorithm-conventions

ii. Let bestFormat be format.
11. Return bestFormat.

When the BestFitFormatMatcher abstract operation is called with two arguments options and formats, it performs
implementation dependent steps, which should return a set of component representations that a typical user of the selected
locale would perceive as at least as good as the one returned by BasicFormatMatcher.

A DateTime format function is an anonymous built-in function that has a [[DateTimeFormat]] internal slot.

When a DateTime format function F is called with optional argument date, the following steps are taken:

1. Let dtf be F.[[DateTimeFormat]].
2. Assert: Type(dtf) is Object and dtf has an [[InitializedDateTimeFormat]] internal slot.
3. If date is not provided or is undefined, then

a. Let x be Call(%Date_now%, undefined).
4. Else,

a. Let x be ? ToNumber(date).
5. Return FormatDateTime(dtf, x).

The length property of a DateTime format function is 1.

The PartitionDateTimePattern abstract operation is called with arguments dateTimeFormat (which must be an object
initialized as a DateTimeFormat) and x (which must be a Number value), interprets x as a time value as specified in ES2015,
20.3.1.1, and creates the corresponding parts according to the effective locale and the formatting options of dateTimeFormat.
The following steps are taken:

1. Let x be TimeClip(x).
2. If x is NaN, throw a RangeError exception.
3. Let locale be dateTimeFormat.[[Locale]].
4. Let nfOptions be ObjectCreate(null).
5. Perform ! CreateDataPropertyOrThrow(nfOptions, "useGrouping", false).
6. Let nf be ? Construct(%NumberFormat%, « locale, nfOptions »).
7. Let nf2Options be ObjectCreate(null).
8. Perform ! CreateDataPropertyOrThrow(nf2Options, "minimumIntegerDigits", 2).
9. Perform ! CreateDataPropertyOrThrow(nf2Options, "useGrouping", false).

10. Let nf2 be ? Construct(%NumberFormat%, « locale, nf2Options »).
11. Let tm be ToLocalTime(x, dateTimeFormat.[[Calendar]], dateTimeFormat.[[TimeZone]]).
12. Let pattern be dateTimeFormat.[[Pattern]].
13. Let result be a new empty List.

12.1.4 BestFitFormatMatcher (options, formats)

12.1.5 DateTime Format Functions

12.1.6 PartitionDateTimePattern (dateTimeFormat, x)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-time-values-and-time-range
https://tc39.github.io/ecma262/#sec-time-values-and-time-range
https://tc39.github.io/ecma262/#sec-timeclip
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

14. Let beginIndex be Call(%StringProto_indexOf%, pattern, « "{", 0 »).
15. Let endIndex be 0.
16. Let nextIndex be 0.
17. Let length be the number of code units in pattern.
18. Repeat, while beginIndex is an integer index into pattern

a. Set endIndex to Call(%StringProto_indexOf%, pattern, « "}", beginIndex »).
b. Assert: endIndex is greater than beginIndex.
c. If beginIndex is greater than nextIndex, then

i. Let literal be a substring of pattern from position nextIndex, inclusive, to position beginIndex, exclusive.
ii. Add new part record { [[Type]]: "literal", [[Value]]: literal } as a new element of the list result.

d. Let p be the substring of pattern from position beginIndex, exclusive, to position endIndex, exclusive.
e. If p matches a Property column of the row in Table 5, then

i. Let f be the value of dateTimeFormat's internal slot whose name is the Internal Slot column of the matching
row.

ii. Let v be the value of tm's field whose name is the Internal Slot column of the matching row.
iii. If p is "year" and v ≤ 0, let v be 1 - v.
iv. If p is "month", increase v by 1.
v. If p is "hour" and dateTimeFormat.[[HourCycle]] is "h11" or "h12", then

1. Let v be v modulo 12.
2. If v is 0 and dateTimeFormat.[[HourCycle]] is "h12", let v be 12.

vi. If p is "hour" and dateTimeFormat.[[HourCycle]] is "h24", then
1. If v is 0, let v be 24.

vii. If f is "numeric", then
1. Let fv be FormatNumber(nf, v).

viii. Else if f is "2-digit", then
1. Let fv be FormatNumber(nf2, v).
2. If the length property of fv is greater than 2, let fv be the substring of fv containing the last two

characters.
ix. Else if f is "narrow", "short", or "long", then let fv be a String value representing f in the desired form; the

String value depends upon the implementation and the effective locale and calendar of dateTimeFormat. If p is
"month", then the String value may also depend on whether dateTimeFormat has a [[Day]] internal slot. If p is
"timeZoneName", then the String value may also depend on the value of the [[inDST]] field of tm. If p is "era",
then the String value may also depend on whether dateTimeFormat has a [[Era]] internal slot and if the
implementation does not have a localized representation of f, then use f itself.

x. Add new part record { [[Type]]: p, [[Value]]: fv } as a new element of the list result.
f. Else if p is equal to "ampm", then

i. Let v be tm.[[hour]].
ii. If v is greater than 11, then

1. Let fv be an implementation and locale dependent String value representing "post meridiem".
iii. Else,

1. Let fv be an implementation and locale dependent String value representing "ante meridiem".
iv. Add new part record { [[Type]]: "dayPeriod", [[Value]]: fv } as a new element of the list result.

g. Else,
i. Let unknown be an implementation-, locale-, and numbering system-dependent String based on x and p.

https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-algorithm-conventions

ii. Append a new Record { [[Type]]: "unknown", [[Value]]: unknown } as the last element of result.
h. Set nextIndex to endIndex + 1.
i. Set beginIndex to Call(%StringProto_indexOf%, pattern, « "{", nextIndex »).

19. If nextIndex is less than length, then
a. Let literal be the substring of pattern from position nextIndex, exclusive, to position length, exclusive.
b. Add new part record { [[Type]]: "literal", [[Value]]: literal } as a new element of the list result.

20. Return result.

NOTE 1
It is recommended that implementations use the locale and calendar dependent strings provided by the Common Locale Data
Repository (available at http://cldr.unicode.org), and use CLDR "abbreviated" strings for DateTimeFormat "short"
strings, and CLDR "wide" strings for DateTimeFormat "long" strings.

NOTE 2
It is recommended that implementations use the time zone information of the IANA Time Zone Database.

The FormatDateTime abstract operation is called with arguments dateTimeFormat (which must be an object initialized as a
DateTimeFormat) and x (which must be a Number value), and performs the following steps:

1. Let parts be ? PartitionDateTimePattern(dateTimeFormat, x).
2. Let result be the empty String.
3. For each part in parts, do

a. Set result to a String value produced by concatenating result and part.[[Value]].
4. Return result.

The FormatDateTimeToParts abstract operation is called with arguments dateTimeFormat (which must be an object initialized
as a DateTimeFormat) and x (which must be a Number value), and performs the following steps:

1. Let parts be ? PartitionDateTimePattern(dateTimeFormat, x).
2. Let result be ArrayCreate(0).
3. Let n be 0.
4. For each part in parts, do

a. Let O be ObjectCreate(%ObjectPrototype%).
b. Perform ! CreateDataPropertyOrThrow(O, "type", part.[[Type]]).
c. Perform ! CreateDataPropertyOrThrow(O, "value", part.[[Value]]).
d. Perform ! CreateDataProperty(result, ! ToString(n), O).
e. Increment n by 1.

5. Return result.

When the ToLocalTime abstract operation is called with arguments date, calendar, and timeZone, the following steps are taken:

12.1.7 FormatDateTime(dateTimeFormat, x)

12.1.8 FormatDateTimeToParts (dateTimeFormat, x)

12.1.9 ToLocalTime (date, calendar, timeZone)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-arraycreate
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdataproperty
https://tc39.github.io/ecma262/#sec-tostring

1. Apply calendrical calculations on date for the given calendar and timeZone to produce weekday, era, year, month, day,
hour, minute, second, and inDST values. The calculations should use best available information about the specified
calendar and timeZone, including current and historical information about time zone offsets from UTC and daylight saving
time rules. If the calendar is "gregory", then the calculations must match the algorithms specified in ES2020, 20.3.1.

2. Return a Record with fields [[weekday]], [[era]], [[year]], [[month]], [[day]], [[hour]], [[minute]], [[second]], and [[inDST]],
each with the corresponding calculated value.

NOTE
It is recommended that implementations use the time zone information of the IANA Time Zone Database.

The UnwrapDateTimeFormat abstract operation gets the underlying DateTimeFormat operation for various methods which
implement ECMA-402 v1 semantics for supporting initializing existing Intl objects.

1. Assert: Type(dtf) is Object.

2. If dtf does not have an [[InitializedDateTimeFormat]] internal slot and ? InstanceofOperator(dtf, %DateTimeFormat%) is
true, then

a. Let dtf be ? Get(dtf, %Intl%.[[FallbackSymbol]]).

2. If Type(dtf) is not Object or dtf does not have an [[InitializedDateTimeFormat]] internal slot, then
a. Throw a TypeError exception.

3. Return dtf.

NOTE
See 8.1 Note 1 for the motivation of the normative optional text.

The Intl.DateTimeFormat constructor is the %DateTimeFormat% intrinsic object and a standard built-in property of the Intl
object. Behaviour common to all service constructor properties of the Intl object is specified in 9.1.

When the Intl.DateTimeFormat function is called with optional arguments locales and options, the following steps are
taken:

1. If NewTarget is undefined, let newTarget be the active function object, else let newTarget be NewTarget.
2. Let dateTimeFormat be ? OrdinaryCreateFromConstructor(newTarget, "%DateTimeFormatPrototype%", «

[[InitializedDateTimeFormat]], [[Locale]], [[Calendar]], [[NumberingSystem]], [[TimeZone]], [[Weekday]], [[Era]],
[[Year]], [[Month]], [[Day]], [[Hour]], [[Minute]], [[Second]], [[TimeZoneName]], [[HourCycle]], [[Pattern]],
[[BoundFormat]] »).

3. Perform ? InitializeDateTimeFormat(dateTimeFormat, locales, options).

4. Let this be the this value.

12.1.10 UnwrapDateTimeFormat(dtf)

12.2 The Intl.DateTimeFormat Constructor

12.2.1 Intl.DateTimeFormat ([locales [, options]])

https://tc39.github.io/ecma262/#sec-overview-of-date-objects-and-definitions-of-abstract-operations
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#active-function-object
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor

5. If NewTarget is undefined and ? InstanceofOperator(this, %DateTimeFormat%) is true, then
a. Perform ? DefinePropertyOrThrow(this, %Intl%.[[FallbackSymbol]], PropertyDescriptor{ [[Value]]: dateTimeFormat,

[[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }).
b. Return this.

6. Return dateTimeFormat.

NOTE
See 8.1 Note 1 for the motivation of the normative optional text.

The Intl.DateTimeFormat constructor has the following properties:

The value of Intl.DateTimeFormat.prototype is %DateTimeFormatPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the supportedLocalesOf method is called with arguments locales and options, the following steps are taken:

1. Let availableLocales be %DateTimeFormat%.[[AvailableLocales]].
2. Let requestedLocales be ? CanonicalizeLocaleList(locales).
3. Return ? SupportedLocales(availableLocales, requestedLocales, options).

The value of the length property of the supportedLocalesOf method is 1.

The value of the [[AvailableLocales]] internal slot is implementation defined within the constraints described in 9.1.

The value of the [[RelevantExtensionKeys]] internal slot is « "ca", "nu", "hc" ».

NOTE 1
Unicode Technical Standard 35 describes three locale extension keys that are relevant to date and time formatting, "ca" for
calendar, "tz" for time zone, "hc" for hour cycle, and implicitly "nu" for the numbering system of the number format used for
numbers within the date format. DateTimeFormat, however, requires that the time zone is specified through the timeZone
property in the options objects.

The value of the [[LocaleData]] internal slot is implementation defined within the constraints described in 9.1 and the
following additional constraints:

The list that is the value of the "nu" field of any locale field of [[LocaleData]] must not include the values "native",

12.3 Properties of the Intl.DateTimeFormat Constructor

12.3.1 Intl.DateTimeFormat.prototype

12.3.2 Intl.DateTimeFormat.supportedLocalesOf (locales [, options])

12.3.3 Internal slots

https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-definepropertyorthrow

"traditio", or "finance".
[[LocaleData]].[[<locale>]].[[hc]] must be « null, "h11", "h12", "h23", "h24" » for all locale values locale.
[[LocaleData]].[[<locale>]] must have an [[hourCycle]] field with a String value equal to "h11", "h12", "h23", or "h24"
for all locale values locale.
[[LocaleData]][locale] must have a formats field for all locale values. The value of this field must be a list of records, each
of which has a subset of the fields shown in Table 5, where each field must have one of the values specified for the field in
Table 5. Multiple records in a list may use the same subset of the fields as long as they have different values for the fields.
The following subsets must be available for each locale:

weekday, year, month, day, hour, minute, second
weekday, year, month, day
year, month, day
year, month
month, day
hour, minute, second
hour, minute

Each of the records must also have a pattern field, whose value is a String value that contains for each of the date and
time format component fields of the record a substring starting with "{", followed by the name of the field, followed by
"}". If the record has an hour field, it must also have a pattern12 field, whose value is a String value that, in addition to
the substrings of the pattern field, contains a substring "{ampm}".

EXAMPLE An implementation might include the following record as part of its English locale data: {[[hour]]: "numeric",
[[minute]]: "2-digit", [[second]]: "2-digit", [[pattern]]: "{hour}:{minute}:{second}", [[pattern12]]:
"{hour}:{minute}:{second} {ampm}"}.

NOTE 2
It is recommended that implementations use the locale data provided by the Common Locale Data Repository (available at
http://cldr.unicode.org).

The Intl.DateTimeFormat prototype object is itself an ordinary object. %DateTimeFormatPrototype% is not an
Intl.DateTimeFormat instance and does not have an [[InitializedDateTimeFormat]] internal slot or any of the other internal
slots of Intl.DateTimeFormat instance objects.

The initial value of Intl.DateTimeFormat.prototype.constructor is the intrinsic object %DateTimeFormat%.

The initial value of the @@toStringTag property is the string value "Object".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

12.4 Properties of the Intl.DateTimeFormat Prototype Object

12.4.1 Intl.DateTimeFormat.prototype.constructor

12.4.2 Intl.DateTimeFormat.prototype [@@toStringTag]

http://cldr.unicode.org/

Intl.DateTimeFormat.prototype.format is an accessor property whose set accessor function is undefined. Its get accessor
function performs the following steps:

1. Let dtf be this value.
2. If Type(dtf) is not Object, throw a TypeError exception.
3. Let dtf be ? UnwrapDateTimeFormat(dtf).
4. If dtf.[[BoundFormat]] is undefined, then

a. Let F be a new built-in function object as defined in DateTime Format Functions (12.1.5).
b. Set F.[[DateTimeFormat]] to dtf.
c. Set dtf.[[BoundFormat]] to F.

5. Return dtf.[[BoundFormat]].

NOTE
The returned function is bound to dtf so that it can be passed directly to Array.prototype.map or other functions. This is
considered a historical artefact, as part of a convention which is no longer followed for new features, but is preserved to
maintain compatibility with existing programs.

When the formatToParts method is called with an argument date, the following steps are taken:

1. Let dtf be this value.
2. If Type(dtf) is not Object, throw a TypeError exception.
3. If dtf does not have an [[InitializedDateTimeFormat]] internal slot, throw a TypeError exception.
4. If date is undefined, then

a. Let x be Call(%Date_now%, undefined).
5. Else,

a. Let x be ? ToNumber(date).
6. Return ? FormatDateTimeToParts(dtf, x).

This function provides access to the locale and formatting options computed during initialization of the object.

1. Let dtf be this value.
2. If Type(dtf) is not Object, throw a TypeError exception.
3. Let dtf be ? UnwrapDateTimeFormat(dtf).
4. Let options be ! ObjectCreate(%ObjectPrototype%).
5. For each row of Table 6, except the header row, in table order, do

a. Let p be the Property value of the current row.
b. If p is "hour12", then

i. Let hc be dtf.[[HourCycle]].
ii. If hc is "h11" or "h12", let v be true.

iii. Else if, hc is "h23" or "h24", let v be false.

12.4.3 get Intl.DateTimeFormat.prototype.format

12.4.4 Intl.DateTimeFormat.prototype.formatToParts (date)

12.4.5 Intl.DateTimeFormat.prototype.resolvedOptions ()

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object

iv. Else, let v be undefined.
c. Else,

i. Let v be the value of dtf's internal slot whose name is the Internal Slot value of the current row.
d. If v is not undefined, then

i. Perform ! CreateDataPropertyOrThrow(options, p, v).
6. Return options.

Table 6: Resolved Options of DateTimeFormat Instances

Internal Slot Property

[[Locale]] "locale"

[[Calendar]] "calendar"

[[NumberingSystem]] "numberingSystem"

[[TimeZone]] "timeZone"

[[HourCycle]] "hourCycle"

"hour12"

[[Weekday]] "weekday"

[[Era]] "era"

[[Year]] "year"

[[Month]] "month"

[[Day]] "day"

[[Hour]] "hour"

[[Minute]] "minute"

[[Second]] "second"

[[TimeZoneName]] "timeZoneName"

For web compatibility reasons, if the property hourCycle is set, the hour12 property should be set to true when hourCycle is
"h11" or "h12", or to false when hourCycle is "h23" or "h24".

NOTE 1
In this version of the ECMAScript 2020 Internationalization API, the timeZone property will be the name of the default time
zone if no timeZone property was provided in the options object provided to the Intl.DateTimeFormat constructor. The first
edition left the timeZone property undefined in this case.

NOTE 2
For compatibility with versions prior to the fifth edition, the "hour12" property is set in addition to the "hourCycle"
property.

https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow

Intl.DateTimeFormat instances inherit properties from %DateTimeFormatPrototype%.

Intl.DateTimeFormat instances have an [[InitializedDateTimeFormat]] internal slot.

Intl.DateTimeFormat instances also have several internal slots that are computed by the constructor:

[[Locale]] is a String value with the language tag of the locale whose localization is used for formatting.
[[Calendar]] is a String value with the "type" given in Unicode Technical Standard 35 for the calendar used for
formatting.
[[NumberingSystem]] is a String value with the "type" given in Unicode Technical Standard 35 for the numbering
system used for formatting.
[[TimeZone]] is a String value with the IANA time zone name of the time zone used for formatting.
[[Weekday]], [[Era]], [[Year]], [[Month]], [[Day]], [[Hour]], [[Minute]], [[Second]], [[TimeZoneName]] are each either
undefined, indicating that the component is not used for formatting, or one of the String values given in Table 5,
indicating how the component should be presented in the formatted output.
[[HourCycle]] is a String value indicating whether the 12-hour format ("h11", "h12") or the 24-hour format ("h23",
"h24") should be used. "h11" and "h23" start with hour 0 and go up to 11 and 23 respectively. "h12" and "h24" start
with hour 1 and go up to 12 and 24. [[HourCycle]] is only used when [[Hour]] is not undefined.
[[Pattern]] is a String value as described in 12.3.3.

Finally, Intl.DateTimeFormat instances have a [[BoundFormat]] internal slot that caches the function returned by the format
accessor (12.4.3).

The abstract operation InitializePluralRules accepts the arguments pluralRules (which must be an object), locales, and options.
It initializes pluralRules as a PluralRules object. The following steps are taken:

1. Let requestedLocales be ? CanonicalizeLocaleList(locales).
2. If options is undefined, then

a. Let options be ObjectCreate(null).
3. Else

a. Let options be ? ToObject(options).
4. Let opt be a new Record.
5. Let matcher be ? GetOption(options, "localeMatcher", "string", « "lookup", "best fit" », "best fit").
6. Set opt.[[localeMatcher]] to matcher.
7. Let t be ? GetOption(options, "type", "string", « "cardinal", "ordinal" », "cardinal").

12.5 Properties of Intl.DateTimeFormat Instances

13 PluralRules Objects

13.1 Abstract Operations for PluralRules Objects

13.1.1 InitializePluralRules (pluralRules, locales, options)

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

8. Set pluralRules.[[Type]] to t.
9. Perform ? SetNumberFormatDigitOptions(pluralRules, options, 0, 3).

10. Let localeData be %PluralRules%.[[LocaleData]].
11. Let r be ResolveLocale(%PluralRules%.[[AvailableLocales]], requestedLocales, opt, %PluralRules%.

[[RelevantExtensionKeys]], localeData).
12. Set pluralRules.[[Locale]] to the value of r.[[locale]].
13. Return pluralRules.

When the GetOperands abstract operation is called with argument s, it performs the following steps:

1. Assert: Type(s) is String.
2. Let n be ! ToNumber(s).
3. Assert: n is finite.
4. Let dp be ! Call(%StringProto_indexOf%, s, « "." »).
5. If dp = -1, then

a. Set iv to n.
b. Let f be 0.
c. Let v be 0.

6. Else,
a. Let iv be the substring of s from position 0, inclusive, to position dp, exclusive.
b. Let fv be the substring of s from position dp, exclusive, to the end of s.
c. Let f be ! ToNumber(fv).
d. Let v be the length of fv.

7. Let i be abs(! ToNumber(iv)).
8. If f ≠ 0, then

a. Let ft be the value of fv stripped of trailing "0".
b. Let w be the length of ft.
c. Let t be ! ToNumber(ft).

9. Else,
a. Let w be 0.
b. Let t be 0.

10. Return a new Record { [[Number]]: n, [[IntegerDigits]]: i, [[NumberOfFractionDigits]]: v,
[[NumberOfFractionDigitsWithoutTrailing]]: w, [[FractionDigits]]: f, [[FractionDigitsWithoutTrailing]]: t }.

Table 7: Plural Rules Operands Record Fields

Internal Slot Type Description

[[Number]] Number Absolute value of the source number (integer and decimals)

[[IntegerDigits]] Number Number of digits of [[Number]].

[[NumberOfFractionDigits]] Number Number of visible fraction digits in [[Number]], with trailing zeros.

[[NumberOfFractionDigitsWithoutTrailing]] Number Number of visible fraction digits in [[Number]], without trailing

13.1.2 GetOperands (s)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

zeros.

[[FractionDigits]] Number Number of visible fractional digits in [[Number]], with trailing zeros.

[[FractionDigitsWithoutTrailing]] Number Number of visible fractional digits in [[Number]], without trailing
zeros.

When the PluralRuleSelect abstract operation is called with four arguments, it performs an implementation-dependent
algorithm to map n to the appropriate plural representation of the Plural Rules Operands Record operands by selecting the
rules denoted by type for the corresponding locale, or the String value "other".

When the ResolvePlural abstract operation is called with arguments pluralRules (which must be an object initialized as a
PluralRules) and n (which must be a Number value), it returns a String value representing the plural form of n according to the
effective locale and the options of pluralRules. The following steps are taken:

1. Assert: Type(pluralRules) is Object.
2. Assert: pluralRules has an [[InitializedPluralRules]] internal slot.
3. Assert: Type(n) is Number.
4. If n is not a finite Number, then

a. Return "other".
5. Let locale be pluralRules.[[Locale]].
6. Let type be pluralRules.[[Type]].
7. Let s be ! FormatNumberToString(pluralRules, n).
8. Let operands be ? GetOperands(s).
9. Return ? PluralRuleSelect(locale, type, n, operands).

The PluralRules constructor is the %PluralRules% intrinsic object and a standard built-in property of the Intl object. Behaviour
common to all service constructor properties of the Intl object is specified in 9.1.

When the Intl.PluralRules function is called with optional arguments locales and options, the following steps are taken:

1. If NewTarget is undefined, throw a TypeError exception.
2. Let pluralRules be ? OrdinaryCreateFromConstructor(newTarget, "%PluralRulesPrototype%", « [[InitializedPluralRules]],

[[Locale]], [[Type]], [[MinimumIntegerDigits]], [[MinimumFractionDigits]], [[MaximumFractionDigits]],
[[MinimumSignificantDigits]], [[MaximumSignificantDigits]] »).

3. Return ? InitializePluralRules(pluralRules, locales, options).

13.1.3 PluralRuleSelect (locale, type, n, operands)

13.1.4 ResolvePlural (pluralRules, n)

13.2 The Intl.PluralRules Constructor

13.2.1 Intl.PluralRules ([locales [, options]])

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor

The Intl.PluralRules constructor has the following properties:

The value of Intl.PluralRules.prototype is %PluralRulesPrototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

When the supportedLocalesOf method is called with arguments locales and options, the following steps are taken:

1. Let availableLocales be %PluralRules%.[[AvailableLocales]].
2. Let requestedLocales be ? CanonicalizeLocaleList(locales).
3. Return ? SupportedLocales(availableLocales, requestedLocales, options).

The value of the length property of the supportedLocalesOf method is 1.

The value of the [[AvailableLocales]] internal slot is implementation defined within the constraints described in 9.1.

The value of the [[RelevantExtensionKeys]] internal slot is [].

NOTE 1
Unicode Technical Standard 35 describes no locale extension keys that are relevant to the pluralization process.

The value of the [[LocaleData]] internal slot is implementation defined within the constraints described in 9.1.

NOTE 2
It is recommended that implementations use the locale data provided by the Common Locale Data Repository (available at
http://cldr.unicode.org).

The Intl.PluralRules prototype object is itself an ordinary object. %PluralRulesPrototype% is not an Intl.PluralRules instance
and does not have an [[InitializedPluralRules]] internal slot or any of the other internal slots of Intl.PluralRules instance
objects.

The initial value of Intl.PluralRules.prototype.constructor is the intrinsic object %PluralRules%.

13.3 Properties of the Intl.PluralRules Constructor

13.3.1 Intl.PluralRules.prototype

13.3.2 Intl.PluralRules.supportedLocalesOf (locales [, options])

13.3.3 Internal slots

13.4 Properties of the Intl.PluralRules Prototype Object

13.4.1 Intl.PluralRules.prototype.constructor

http://cldr.unicode.org/

The initial value of the @@toStringTag property is the string value "Object".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

When the select method is called with an argument value, the following steps are taken:

1. Let pr be the this value.
2. If Type(pr) is not Object, throw a TypeError exception.
3. If pr does not have an [[InitializedPluralRules]] internal slot, throw a TypeError exception.
4. Let n be ? ToNumber(value).
5. Return ? ResolvePlural(pr, n).

This function provides access to the locale and options computed during initialization of the object.

1. Let pr be the this value.
2. If Type(pr) is not Object, throw a TypeError exception.
3. If pr does not have an [[InitializedPluralRules]] internal slot, throw a TypeError exception.
4. Let options be ! ObjectCreate(%ObjectPrototype%).
5. For each row of Table 8, except the header row, in table order, do

a. Let p be the Property value of the current row.
b. Let v be the value of pr's internal slot whose name is the Internal Slot value of the current row.
c. If v is not undefined, then

i. Perform ! CreateDataPropertyOrThrow(options, p, v).
6. Let pluralCategories be a List of Strings representing the possible results of PluralRuleSelect for the selected locale pr.

[[Locale]]. This List consists of unique string values, from the the list "zero", "one", "two", "few", "many" and
"other", that are relevant for the locale whose localization is specified in LDML Language Plural Rules.

7. Perform ! CreateDataProperty(options, "pluralCategories", CreateArrayFromList(pluralCategories)).
8. Return options.

Table 8: Resolved Options of PluralRules Instances

Internal Slot Property

[[Locale]] "locale"

[[Type]] "type"

[[MinimumIntegerDigits]] "minimumIntegerDigits"

[[MinimumFractionDigits]] "minimumFractionDigits"

[[MaximumFractionDigits]] "maximumFractionDigits"

13.4.2 Intl.PluralRules.prototype [@@toStringTag]

13.4.3 Intl.PluralRules.prototype.select(value)

13.4.4 Intl.PluralRules.prototype.resolvedOptions ()

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-createdataproperty
https://tc39.github.io/ecma262/#sec-createarrayfromlist

[[MinimumSignificantDigits]] "minimumSignificantDigits"

[[MaximumSignificantDigits]] "maximumSignificantDigits"

Intl.PluralRules instances inherit properties from %PluralRulesPrototype%.

Intl.PluralRules instances have an [[InitializedPluralRules]] internal slots.

Intl.PluralRules instances also have several internal slots that are computed by the constructor:

[[Locale]] is a String value with the language tag of the locale whose localization is used by the plural rules.
[[Type]] is one of the String values "cardinal" or "ordinal", identifying the plural rules used.
[[MinimumIntegerDigits]] is a non-negative integer Number value indicating the minimum integer digits to be used.
[[MinimumFractionDigits]] and [[MaximumFractionDigits]] are non-negative integer Number values indicating the
minimum and maximum fraction digits to be used. Numbers will be rounded or padded with trailing zeroes if necessary.
[[MinimumSignificantDigits]] and [[MaximumSignificantDigits]] are positive integer Number values indicating the
minimum and maximum fraction digits to be used. Either none or both of these properties are present; if they are, they
override minimum and maximum integer and fraction digits.

The ECMAScript Language Specification, edition 10 or successor, describes several locale sensitive functions. An ECMAScript
implementation that implements this Internationalization API Specification shall implement these functions as described here.

NOTE
The Collator, NumberFormat, or DateTimeFormat objects created in the algorithms in this clause are only used within these
algorithms. They are never directly accessed by ECMAScript code and need not actually exist within an implementation.

This definition supersedes the definition provided in ES2020, 21.1.3.10.

When the localeCompare method is called with argument that and optional arguments locales, and options, the following
steps are taken:

1. Let O be RequireObjectCoercible(this value).
2. Let S be ? ToString(O).

13.5 Properties of Intl.PluralRules Instances

14 Locale Sensitive Functions of the ECMAScript Language
Specification

14.1 Properties of the String Prototype Object

14.1.1 String.prototype.localeCompare (that [, locales [, options]])

https://tc39.github.io/ecma262/#sec-string.prototype.localecompare
https://tc39.github.io/ecma262/#sec-requireobjectcoercible
https://tc39.github.io/ecma262/#sec-tostring

3. Let thatValue be ? ToString(that).
4. Let collator be ? Construct(%Collator%, « locales, options »).
5. Return CompareStrings(collator, S, thatValue).

The value of the length property of the localeCompare method is 1.

NOTE 1
The localeCompare method itself is not directly suitable as an argument to Array.prototype.sort because the latter requires
a function of two arguments.

NOTE 2
The localeCompare function is intentionally generic; it does not require that its this value be a String object. Therefore, it
can be transferred to other kinds of objects for use as a method.

This definition supersedes the definition provided in ES2020, 21.1.3.22.

This function interprets a string value as a sequence of code points, as described in ES2020, 6.1.4. The following steps are
taken:

1. Let O be RequireObjectCoercible(this value).
2. Let S be ? ToString(O).
3. Let requestedLocales be ? CanonicalizeLocaleList(locales).
4. If requestedLocales is not an empty List, then

a. Let requestedLocale be requestedLocales[0].
5. Else,

a. Let requestedLocale be DefaultLocale().
6. Let noExtensionsLocale be the String value that is requestedLocale with all Unicode locale extension sequences (6.2.1)

removed.
7. Let availableLocales be a List with language tags that includes the languages for which the Unicode Character Database

contains language sensitive case mappings. Implementations may add additional language tags if they support case
mapping for additional locales.

8. Let locale be BestAvailableLocale(availableLocales, noExtensionsLocale).
9. If locale is undefined, let locale be "und".

10. Let cpList be a List containing in order the code points of S as defined in ES2020, 6.1.4, starting at the first element of S.
11. Let cuList be a List where the elements are the result of a lower case transformation the ordered code points in cpList

according to the Unicode Default Case Conversion algorithm or an implementation defined conversion algorithm. A
conforming implementation's lower case transformation algorithm must always yield the same cpList given the same
cuList and locale.

12. Let L be a String whose elements are the UTF-16 Encoding (defined in ES2020, 6.1.4) of the code points of cuList.
13. Return L.

Lower case code point mappings may be derived according to a tailored version of the Default Case Conversion Algorithms of
the Unicode Standard. Implementations may use locale specific tailoring defined in SpecialCasings.txt and/or CLDR and/or
any other custom tailoring.

14.1.2 String.prototype.toLocaleLowerCase ([locales])

https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-string.prototype.tolocalelowercase
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-requireobjectcoercible
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type

NOTE 1
The case mapping of some code points may produce multiple code points. In this case the result String may not be the same
length as the source String. Because both toLocaleUpperCase and toLocaleLowerCase have context-sensitive behaviour,
the functions are not symmetrical. In other words, s.toLocaleUpperCase().toLocaleLowerCase() is not necessarily
equal to s.toLocaleLowerCase().

NOTE 2
The toLocaleLowerCase function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

This definition supersedes the definition provided in ES2020, 21.1.3.23.

This function interprets a string value as a sequence of code points, as described in ES2020, 6.1.4. This function behaves in
exactly the same way as String.prototype.toLocaleLowerCase, except that characters are mapped to their uppercase
equivalents. A conforming implementation's upper case transformation algorithm must always yield the same result given the
same sequence of code points and locale.

NOTE
The toLocaleUpperCase function is intentionally generic; it does not require that its this value be a String object. Therefore,
it can be transferred to other kinds of objects for use as a method.

The following definition(s) refer to the abstract operation thisNumberValue as defined in ES2020, 20.1.3.

This definition supersedes the definition provided in ES2020, 20.1.3.4.

When the toLocaleString method is called with optional arguments locales and options, the following steps are taken:

1. Let x be ? thisNumberValue(this value).
2. Let numberFormat be ? Construct(%NumberFormat%, « locales, options »).
3. Return FormatNumeric(numberFormat, x).

The following definition(s) refer to the abstract operation thisBigIntValue as defined in ES2019, .

This definition supersedes the definition provided in ES2019, .

14.1.3 String.prototype.toLocaleUpperCase ([locales])

14.2 Properties of the Number Prototype Object

14.2.1 Number.prototype.toLocaleString ([locales [, options]])

14.3 Properties of the BigInt Prototype Object

14.3.1 BigInt.prototype.toLocaleString ([locales [, options]])

https://tc39.github.io/ecma262/#sec-string.prototype.tolocaleuppercase
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-properties-of-the-number-prototype-object
https://tc39.github.io/ecma262/#sec-number.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-construct

When the toLocaleString method is called with optional arguments locales and options, the following steps are taken:

1. Let x be ? thisBigIntValue(this value).
2. Let numberFormat be ? Construct(%NumberFormat%, « locales, options »).
3. Return FormatNumeric(numberFormat, x).

The following definition(s) refer to the abstract operation thisTimeValue as defined in ES2020, 20.3.4.

This definition supersedes the definition provided in ES2020, 20.3.4.39.

When the toLocaleString method is called with optional arguments locales and options, the following steps are taken:

1. Let x be ? thisTimeValue(this value).
2. If x is NaN, return "Invalid Date".
3. Let options be ? ToDateTimeOptions(options, "any", "all").
4. Let dateFormat be ? Construct(%DateTimeFormat%, « locales, options »).
5. Return FormatDateTime(dateFormat, x).

This definition supersedes the definition provided in ES2020, 20.3.4.38.

When the toLocaleDateString method is called with optional arguments locales and options, the following steps are taken:

1. Let x be ? thisTimeValue(this value).
2. If x is NaN, return "Invalid Date".
3. Let options be ? ToDateTimeOptions(options, "date", "date").
4. Let dateFormat be ? Construct(%DateTimeFormat%, « locales, options »).
5. Return FormatDateTime(dateFormat, x).

This definition supersedes the definition provided in ES2020, 20.3.4.40.

When the toLocaleTimeString method is called with optional arguments locales and options, the following steps are taken:

1. Let x be ? thisTimeValue(this value).
2. If x is NaN, return "Invalid Date".
3. Let options be ? ToDateTimeOptions(options, "time", "time").
4. Let timeFormat be ? Construct(%DateTimeFormat%, « locales, options »).
5. Return FormatDateTime(timeFormat, x).

14.4 Properties of the Date Prototype Object

14.4.1 Date.prototype.toLocaleString ([locales [, options]])

14.4.2 Date.prototype.toLocaleDateString ([locales [, options]])

14.4.3 Date.prototype.toLocaleTimeString ([locales [, options]])

https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-date.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-date.prototype.tolocaledatestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-date.prototype.tolocaletimestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct

This definition supersedes the definition provided in ES2020, 22.1.3.27.

When the toLocaleString method is called with optional arguments locales and options, the following steps are taken:

1. Let array be ? ToObject(this value).
2. Let len be ? ToLength(? Get(array, "length")).
3. Let separator be the String value for the list-separator String appropriate for the host environment's current locale (this is

derived in an implementation-defined way).
4. Let R be the empty String.
5. Let k be 0.
6. Repeat, while k < len

a. If k > 0, then
i. Set R to the string-concatenation of R and separator.

b. Let nextElement be ? Get(array, ! ToString(k)).
c. If nextElement is not undefined or null, then

i. Let S be ? ToString(? Invoke(nextElement, "toLocaleString", « locales, options »)).
ii. Set R to the string-concatenation of R and S.

d. Increase k by 1.
7. Return R.

NOTE 1
This algorithm's steps mirror the steps taken in 22.1.3.27, with the exception that Invoke(nextElement, "toLocaleString")
now takes locales and options as arguments.

NOTE 2
The elements of the array are converted to Strings using their toLocaleString methods, and these Strings are then
concatenated, separated by occurrences of a separator String that has been derived in an implementationdefined locale-
specific way. The result of calling this function is intended to be analogous to the result of toString, except that the result of
this function is intended to be locale-specific.

NOTE 3
The toLocaleString function is intentionally generic; it does not require that its this value be an Array object. Therefore it
can be transferred to other kinds of objects for use as a method.

The following aspects of the ECMAScript 2020 Internationalization API Specification are implementation dependent:

In all functionality:
Additional values for some properties of options arguments (2)
Canonicalization of extension subtag sequences beyond the rules of RFC 5646 (6.2.3)
The default locale (6.2.4)

14.5 Properties of the Array Prototype Object

14.5.1 Array.prototype.toLocaleString ([locales [, options]])

A Implementation Dependent Behaviour

https://tc39.github.io/ecma262/#sec-array.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-invoke
https://tc39.github.io/ecma262/#sec-array.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-invoke

The default time zone (6.4.3)
The set of available locales for each constructor (9.1)
The BestFitMatcher algorithm (9.2.4)
The BestFitSupportedLocales algorithm (9.2.8)

In Collator:
Support for the Unicode extensions keys kn, kf and the parallel options properties numeric, caseFirst (10.1.1)
The set of supported "co" key values (collations) per locale beyond a default collation (10.2.3)
The set of supported "kn" key values (numeric collation) per locale (10.2.3)
The set of supported "kf" key values (case order) per locale (10.2.3)
The default search sensitivity per locale (10.2.3)
The sort order for each supported locale and options combination (10.3.3.1)

In NumberFormat:
The set of supported "nu" key values (numbering systems) per locale (11.3.3)
The patterns used for formatting positive and negative values as decimal, percent, or currency values per locale
(11.1.7)
Localized representations of NaN and Infinity (11.1.7)
The implementation of numbering systems not listed in Table 3 (11.1.7)
Localized decimal and grouping separators (11.1.7)
Localized digit grouping schemata (11.1.7)
Localized currency symbols and names (11.1.7)

In DateTimeFormat:
The BestFitFormatMatcher algorithm (12.1.1)
The set of supported "ca" key values (calendars) per locale (12.3.3)
The set of supported "nu" key values (numbering systems) per locale (12.3.3)
The default hourCycle setting per locale (12.3.3)
The set of supported date-time formats per locale beyond a core set, including the representations used for each
component and the associated patterns (12.3.3)
Localized weekday names, era names, month names, am/pm indicators, and time zone names (12.1.7)
The calendric calculations used for calendars other than "gregory", and adjustments for local time zones and
daylight saving time (12.1.7)

In PluralRules:
List of Strings representing the possible results of plural selection and their corresponding order per locale. (13.1.1)

10.1, 11.2, 12.2 In ECMA-402, 1st Edition, constructors could be used to create Intl objects from arbitrary objects. This is
no longer possible in 2nd Edition.
12.4.3 In ECMA-402, 1st Edition, the length property of the function object F was set to 0. In 2nd Edition, length is set to 1.

B Additions and Changes That Introduce Incompatibilities
with Prior Editions

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

This specification is authored on GitHub in a plaintext source format called Ecmarkup. Ecmarkup is an HTML and Markdown
dialect that provides a framework and toolset for authoring ECMAScript specifications in plaintext and processing the
specification into a full-featured HTML rendering that follows the editorial conventions for this document. Ecmarkup builds on
and integrates a number of other formats and technologies including Grammarkdown for defining syntax and Ecmarkdown for
authoring algorithm steps. PDF renderings of this specification are produced by printing the HTML rendering to a PDF.

Prior editions of this specification were authored using Word—the Ecmarkup source text that formed the basis of this edition
was produced by converting the ECMAScript 2015 Word document to Ecmarkup using an automated conversion tool.

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://ecma-international.org/

© 2019 Ecma International

This draft document may be copied and furnished to others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However,
this document itself may not be modified in any way, including by removing the copyright notice or references to Ecma
International, except as needed for the purpose of developing any document or deliverable produced by Ecma International.

This disclaimer is valid only prior to final version of this document. After approval all rights on the standard are reserved by
Ecma International.

The limited permissions are granted through the standardization phase and will not be revoked by Ecma International or its
successors or assigns during this time.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

C Colophon

D Copyright & Software License

Copyright Notice

https://github.com/tc39/ecma402
https://github.com/bterlson/ecmarkup
https://github.com/rbuckton/grammarkdown
https://github.com/domenic/ecmarkdown
https://ecma-international.org/

All Software contained in this document ("Software") is protected by copyright and is being made available under the "BSD
License", included below. This Software may be subject to third party rights (rights from parties other than Ecma
International), including patent rights, and no licenses under such third party rights are granted under this license even if the
third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN PATENT MATTERS
AVAILABLE AT https://ecma-international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE
LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Software License

	www.ecma-international.org
	ECMAScript® 2019 Internationalization API Specification

