ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-85

VIRTUAL FILE PROTOCOL

September 1982

Free copies of this document are available from ECMA,

European Computer Manufacturers Association

114 Rue du Rhéne — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-85

VIRTUAL FILE PROTOCOL

September 1982

BRILF_HISTORY

This Standard ECMA-85 is one of a set of standards for Open Systems
Interconnection (OST). Open Systems Interconnection standards are
intended to facilitate homogeneous interconnection between hete-
i rogeneous information processing systems. The standard is with-
Oj‘ in the framework for the co-ordination of standards for Open Sys-
- tems Interconnection which is defined by 1S0/7498.

This ECMA Standard is based on the practical experience of ECMA
member companies world-wide, and on the results of their active
participation in the current work of I1SO and national standard
bodies in Europe and the USA. It represents a pragmatic and wide-
ly based consensus.

A particular emphasis of this Standard is to specify the homoge-
neous externally visible and verifiable characteristics needed
for interconnection compatibility, while avoiding unnecessary
constraints upon, and changes to, the heterogeneous internal de-
sign and implementation of the information processing systems to
be interconnected.

In the interest of a rapid and effective standardization, the
\ standard is oriented towards urgent and well understood needs.
O ' It 1s intended to be capable of modular extension to cover future
developments in technology and needs.

Adopted as Standard ECMA-85 at the General Assembly of June 7-8, 1982.

0®

[§S}

[§]

N

— e

« o .
SO S I S I =

.1

I

TABLE OFF CONTENTS

GENERAL
INTRODUCTION
SCOPL
REFERENCES
GENERAL OVERVIEW

VIRTUAL TFTLEL
VIRTUAL FILE MODEL

2.1.1 General Principles

2.1.2 Virtual file addressing

2.1.3 Virtual filec attributes

Z.1.4 Summary of attributes applicability

VIRTUAL FILE MODEL SUBSETS

2.2.1 General

2.2.2 Kernel

2.2.3 Unstructured files extension

2.2.4 Tield descriptions extension
SERVICE

SERVICE OVERVIEW

5.1.1 Roles of partners
5.1.2 Dynamic structuring of a VFS connecction
5.1.35 Connection facility
5.1.4 TFile management
5.1.5 File data transfer
5.1.6 Parameter value setting
3.1.7 Recovery
5.1.8 Grouping of service structures
3.1.9 List of services
SERVICE DESCRIPTION
3.2.1 Primitives
5.2.2 Lrror reporting
SERVICE SUBJECTS
3.3.1 General
3.3.2 Kernel
5.3.3 Basic file management extension
5.5.4 Restart extension
PROTOCOL

PROTOCOL OVERVILEW

4.1.1 Roles of VFS entities

4.1.2 Descriptive model

4.1.3 Grouping of protocol structures
4.1.4 List of protocol structures

PROTOCOL DESCRIPTION
4.2.1 Notation

Page

o

NN ==

(3]

o PO &= =

U S S G R — —_

Ll U1 U1 Do

—
[oal

10

16
10

7
17
18
18
19

0o
@)

LRI L LIy DD DD
oo U1 Bl W

.9

Table of Contents (cont'd)

Select Protocol request (SP)
Select Protocol response (SPR)
Release Protocol request (RP)
Release Protocol response (RPR)
Disconnect Protocol request (DP)
End Group request (EG)

End Group response (EGR)
Select File request (SL)

.10 Select File response (SLR)

.11 Release File request (RL)

.12 Release File response (RLR)
.13 Create File request (CR)

.14 Create File response (CRR)

.15 Delete File request (DL)

.16 Delete File response (DLR)

i Read Attributes request (RA)
.18 Read Attributes response (RAR)
.19 Open File request (OP)

.20 Open File response (OPR)

.21 Close File request (CL)

.22 Close File response (CLR)

.23 Begin Transfer request (BT)
.24 Begin Transfer Response (BTR)
.25 Data request (DATA)

.26 End Transfer request (ET)

.27 End Transfer response (ETR)
.28 Checkpoint request (CK)

.29 Checkpoint response (CKR)

.30 Abort Transfer request (AT)
.31 Abort Transfer response (ATR)
.32 Restart Transfer request (RT)
.33 Restart Transfer response (RTR)

PROTOCOL ENCODING

4.3.1 Message structure
4.3.2 Parameter encoding

PRESENTATION SERVICES MAPPING

General

Connection mapping

Presentation connection establishment
Presentation connection termination
Presentation negotiation

Data exchange

Dialogue facilities

Summary of presentation service usage
Summary of VFP messages mapping

PROTOCOL SUBSETS

4.5.1 General

Kernel

Basic file management extension
Restart extension

Kol I N NN s IES N BaN)

B S S S S S S S S N S S O i i i e i S S
PO DN MNMNMONMNNNMOMN VIO NN NN NN NN NN
—
~J

SO SO S O SO S N S
ARADEDLEASD S
O oo~ O U

= =
v U o
= o

~
_-—
.

40
40
41
41
41
41
42
42
42
42
43
43
43
44
44
44
45
45
45
46
40
46
47
47
47
47
48
48
438
48
49
49

49

49
50

60

60
60
60
61
61
01
62
63
03

63

63
63
04
64

O)

Table of Contents (cont'd)

5. CONFORMANCE
5.1 CONFORMANCE REQUIREMENTS

5

U U o

ol

=

U= Lo

APPENDICLES

General

Equipment

Peer cquipment

Protocol subsets

Additional virtual file protocol
Requirements

APPENDIX A BRIEF DESCRIPTION OF THE REFERENCE MODEL
OF OPEN SYSTEMS INTERCONNECTION
A.1 SCOPE
A.2 GENERAL DESCRIPTION
A.2.1 Introduction
A.2.2 Overall perspective
A.2.3 The Open Systems Interconnection environment
A.2.4 Management Aspects
A.2.5 Concepts of a Layered Architecture
A.3 THE LAYERED MODEL
A.3.1 The Application Layer
A.3.2 The Presentation Layer
A.3.3 The Session Layer
A.3.4 The Transport Layer
A.3.5 The Network Layer
A.3.6 The Link Layer
A.3.7 The Physical Layer
APPENDIX B TERMINOLOGY

B.1 GENERAL

B.2 DEFINITIONS

APPENDIX C

N UGN

APPENDIX

D.
D.
D.
D

=N

D

INTRODUCTTION

ELEMENTS USED IN THE FORMAL DESCRIPTION
FORMAL DESCRIPTION CONVENTIONS

FORMAL

NOTATION

INTRODUCTION AND SCOPE
DEFINITIONS

SERVICE
PRIMITIVES

SERVICE STRUCTURE
EFFECTS OF SERVICES
PARAMETER NOTATION

MODEL

FORMAL DESCRIPTION

DESCRIPTION TABLES

65

66
00
606
66
60
67
67

69

70

70
70

70
70
70
71
71

72

72
73
73
73
74
74
75

76

70
76

78

78
78
79
79
30
80
50

82
82
32
S0
88

Table of Contents (cont'd)

Page
APPENDIX E TILE TRANSFER APPLICATION SERVICE 103
E.1 INTRODUCTION 103
E.2 COPY SERVICE 103
E.3 SUSPEND SERVICE 105
.4 RESTART SERVICE 105
.5 CANCEL SERVICE 1006
APPENDIX F FUTURE EXTENSIONS 107
F.1 GENERAL 107
F.2 LIAISON WITH OTHER STANDARDIZATION BODIES 107
F.3 FLEXIBILITY FOR FUTURE EXTENSION 107
F.4 VIRTUAL FILE MODEL ENHANCEMENTS 108
F.4.1 Principles 108
F.4.2 New file structures 108
F.4.3 Enhanced field description 109
F.4.4 Key enhancements 109
F.5 SERVICE ENHANCEMENTS 109
F.5.1 Principles 109
F.5.2 Partial file transfer 109
F.5.3 Collections of files 110
F.5.4 JTMP support 110
F.6 CONFORMANCE TESTING 110
APPENDIX G USE OF THE SPECIAL EXTENSION MECHANISM 111
G.1 SCOPE 111
G.2 SPECIAL EXTENSION MECHANTSM 111
APPENDIX H EXAMPLE OF FILE ATTRIBUTES MAPPING 113
[1.1 INTRODUCTION 113
.2 MAPPING TABLE 113

0®

1 General

INTRODUCTION

This Standard ECMA-85 is one of a set of standards for

Open Systems Interconnection. Open Systems Interconnection
standards are intended to facilitate homogeneous inter-
connection between heterogeneous information processing
systems. The standard is within the framework for the co-
ordination of standards for Open Systems Interconnection
which is defined by ISO 7498.

This ECMA standard is based on the practical experience of
ECMA member companies world-wide, and on the results of
their active participation in the current work of ISO and
national standard bodies in Europe and the USA. It repre-
sents a pragmatic and widely based consensus.

A particular emphasis of this standard is to specify the
homogeneous externally visible and verifiable characteris-
tics needed for interconnection compatibility, while
avoiding unnecessary constraints upon and changes to the
heterogeneous internal design and implementation of the
information processing systems to be interconnected.

In the interest of a rapid and effective standardisation,
the standard is oriented towards urgent and well understood
needs. It is intended to be capable of modular extension
to cover future developments in technology and needs.

SCOPE

This ECMA Virtual File Protocol Standard:

- defines a virtual file model (see section 2),

- defines operations on the virtual file model as abstract
interactions between two virtual file service users, via
the virtual file service (see section 3),

- defines the protocol to support the above service and its
mapping into the underlying presentation service (see
section 4),

- specifies the requirements for conformance with this pro-
tocol (see section 5).

The standard defines only what is needed for a basic file
transfer. It provides the consistent technical basis for
further virtual file protocol standards with extended scope.

The standard defines what is needed for compatible intercon-
nection between information processing systems. It does not

define local interactions between a virtual file service user
and the virtual file service. It in no way defines interlayer
interfaces.

v

1.4

This Standard is for the application layer of Open
Systems Interconnection (see ISO 7498).

REFERENCES

ISO 7498 Data Processing - Open Systems Interconnection -
Basic Reference Model.,

ECMA-6 7-Bit Input/Output Coded Character Set.

ECMA-84 Data Presentation Protocol.

ISO 2014 Writing of calendar dates 1in all-numeric form.

IS0 3307 Representations of time of the day.

GENERAL OVERVIEW

The role of the virtual file protocol is to allow a standard- @).
ized handling of files in the context of Open Systems inter-
connection, in a way independent from the location of files

and from the specific host systems.

This is made possible by the definition of a generalized

file model called the Virtual File: all the services provided
by the virtual file protocol are applied to virtual files.
Each implementation provides a local mapping of virtual files
into its own real files.

The services provided by the virtual file protocol can be
divided into two categories:

- virtual file access, which allows the inspection and
manipulation of all or parts of the contents of a virtual
tile,

- virtual file management, which allows the inspection and
manipulation of the attributes associated with a virtual
£ile,

File transfer applications use a combination of virtual file
access and virtual file management to move the contents and
associated properties of a virtual file from one system to
another. Definition of a file transfer application service
is outside the scope of this standard; an example is given
in appendix E to help understand the relationship between

a file transfer application and this standard.

0@

O |

2 Virtual File

0@

)

Zs

1 VIRTUAL FILE MODEL

This section describes a general open ended model, but it
presents only those aspects which concern the file transfer.

2.1.1

2:.142

General principles

Standardized file descriptions are achieved by using the
concept of Virtual Filestore, which allows open working
between dissimilar real files. The virtual filestore is
built on the premise that standardized representations
can be set up for a file or a collection of files (file-
store). It allows the absorption of the differences in
style and specifications by using mapping functions to
relate the standard descriptions to local resources and
vice-versa. Any particular system can then interwork with
other different systems in terms which can be mutually
understood. Although the objective is to deal with real
files, the model and protocol will deal only with virtual
files. The mapping between real and virtual files is
considered a local concern. This is illustrated in figure
2.1/1.

The description of the virtual filestore is resolved into
a set of distinct properties called attributes; the values
of these attributes identify or describe the files to be
handled. The real files which are mapped onto the virtual
filestore description and the mechanism by which the
mapping is implemented will vary considerably from case

to case, but the exchange of information will still be in
terms of the virtual filestore attributes.

Appendix H describes, as an example, the possible mapping
of the real file attributes defined in the ECMA labelling
and file structure standards for files on portable data
interchange media.

Virtual file addressing

Each virtual file is identified in an unambiguous way by
means of its name, defined in BNF as:

<virtual-file-name>::=<virtual-filestore-name><file-name>

<virtual-filestore-name>::= global title necessary to es-
tablish an application connection with the VFS
entity that supports this virtual filestore.

<file-name>::= name that must be passed to the VFS en-
tity in order to enable it to properly identify
the file. The file name is unique within this
virtual filestore. It is transferred as a charac-
ter string. It may explicitly or implicitly de-
fine the media on which the file resides:
there is no separate parameter for this.

System

System B

Real

filestore

ping
unctions

A

Virtual
filestore

Real
filestore

mapping

unctions Virtual
filestore

Virtual
File
Service

System C

o9

mapping

?unctions

Virtual
filestore

Real
filestore

ystem D

Virtual
filestore

mapping
functions

Real
filestore

Fig. 2.1/1 - Virtual Filestore in an OSI Environment

Virtual file attributes

2.1.3
2.1.3.1
OXE)
™N
e
1
0D
2.1.3.2

Attributes overview

The description of a virtual file is made by means of
defining a set of distinct properties called attributes.
The values of the attributes define, identify and des-
cribe the virtual file completely, allowing correct
mapping between real and virtual files.

The attributesof a virtual file can be classified into
3 categories:

Container attributes: for addressing and protection.

They include:

file name
file passwords
access-control-1list

History attributes: automatically maintained by the

filestore to reflect the accumulated file activity.

Contents attributes: for description of the structure

of the file contents. They are the most numerous and
are subdivided for better modularity into subcategories
as follows:

Global attributes: file-structure
file-data-type
file-current-size

file-maximum-size

Record attributes: record-sequence
direct-access
record-size-type

record-size

Key attributes: key-position
key length

key-field-rank

field-rank
field-data-type
field-size
field-complement

Field attributes:

File name

Each file within a given Virtual Filestore is identi-

fied in an unambiguous way by means of its name.

Because the naming policy depends on the application
environment, the Virtual File Service has to allow any
types of names.

Value: character string

2s1leB,3

Z2els5.4

Zsledeb

2.1:8.0

File passwords

Within the Virtual Filestore, security mechanisms

are provided to protect a given file against unautho-

rized access. One of the commonly used mechanisms are

passwords. As for the file name, the passwords attri-
bute depends on local naming policies. So the Virtual

Filestore has to allow any types of passwords.

Value: character string

Access control list

Another security mechanism is the access control 1list,
identifying authorized users of the file and their
specific permissions. This attribute defines whether
the file is protected by an access control list or not.
If yes, the file 1s created with only one authorized
user having all permissions: the creator. Further up-
dates of the access control list as well as types of
permissions, are not standardized in this version and
are considered to be a local matter.

Value: symbolic (yes/no)
History

The history attributes are for statistical purpose
only. They are locally created at file creation time
and locally updated for every subsequent operation on
the file contents (either local or remote). They only
appear in the Read Attributes service.

The following attributes may be supported:

- Date and time of creation

- User identification for creation

- Date and time of last access

- User identification for last access
- Date and time of last modification
- Total number of accesses

- Total number of modifications

Value: character string, for identifications
date-time
numeric, for the last two

File structure

Defines the internal structuring of the file. Two
models are supported: unstructured and flat. Other
models of file structure will be considered in future
versions (see appendix F).

0D

Z2u Lsdad

2:1:5:8

2.1.3.9

2,1.3:10

An unstructured file has no visible internal struc-
ture: it is composed only of a sequence of octets or
characters (see 2.1.3.7).

A flat file is composed of records, without any
relationship between records other than sequencing.
This category includes most conventional files and
the relational model.

Value: symbolic (flat/unstructured)

File data type

This attribute describes the type of data stored in
the file. The value '"heterogeneous' means that field
descriptions are provided in the file attributes.
Otherwise the file contents are considered as homo-
geneous and field descriptions are not supplied. The
value '"character" means that the file data is entirely
composed of characters. The value "transparent' means
that the file data is entirely composed of octets,

the content of which is undefined.

When the file structure is "unstructured'", this attri-
bute cannot have the value "heterogeneous'.

Value: symbolic (character/transparent/heterogeneous)

File current size

This attribute specifies the approximate amount of user

data currently in the file. The value provided at
creation time indicates the minimum amount of space to
be allocated to the file. After creation, the value of
this attribute is updated locally every time the file

grows. The unit of measure is kilo-octets if file-data-

type is "transparent'", kilo-characters if file-data-
type is '"character", and records if file data type 1s
"heterogeneous'.

Value: numeric

File maximum size

This attribute defines the maximum size to which the
file can grow. Crossing this boundary may cause an
error. The unit of measure is the same as for the file
current size.

Value: numeric

Record sequence

This attribute describes the order of the records when
the file is sequentially accessed. Not applicable to
unstructured files.

Value: symbolic (by position/by key)

2.,1.3.11

NOTE 1

Since different systems may adopt different data syntaxes,
it is not possible to guarantee that the key sequence 1is
preserved in a file transfer.

Direct access

This attribute describes by which means the records
are directly accessible. Not applicable to unstruc-
tured files.

Value: symbolic (by no means/by position/by key)
NOTE 2

"Record sequence" and "direct access'" together comprise the so
called "file organization". The table below shows the equivalence
between some well known organizations and the values of these
attributes.

Table 2.1/1 - Equivalence to file organizations

Record sequence
Direct access
by position by key
by no means sequential -
by position relative -
by key random index
sequential

2.1.3.12

2elsdal3

Record size type

This attribute defines whether all records have the
same size or not. Not applicable to unstructured files.

Value: symbolic (fixed/variable)

Record size

This attribute defines the maximum or fixed record
size. Applicable only if file structure is '"flat" and
file data type is not "heterogeneous'". If file struc-
ture is '"flat" and file data type is "heterogeneous',
record size is deduced from the field descriptions.

The unit of measure is octets if file data type is

"transparent'", characters if file data type is ''charac-
ter'".

Value: numeric

2.1.3.14 Key position

This attribute is applicable only if at least one

of the attributes record sequence and direct access
has the value "by key'" and file data type is not
"heterogeneous'". It defines the beginning of the key
within a record, as the number of octets or characters
(see 2.1.3.7) from the beginning of the record. A
value of N means there are N octets or characters
before the key.

Value: numeric

2.1.3.15 Key length

This attribute is applicable only when key position
is. It defines the fixed length of the key, assumed
.I 0 contiguous, in octets or characters (see 2.1.3.7).

Value: numeric
2.1.3.16 Key field rank

This attribute is applicable only if at least one of

the attributes record sequence and direct access has

the value '"by key" and file data type is "heterogeneous'.
It defines the key by the field rank (2.1.3.17) of the
key field (a single field) in the field descriptions.

Value: numeric
2.1.3.17 Field rank

This attribute is applicable only if file data type

is "heterogeneous'". Like all the following attributes,
it is specified once per record field. It indicates
the rank of the field in the record, '"1'" being the
leftmost field of the record.

” J. Value: numeric
2.1.3.18 Field data type

This attribute is applicable only when field rank is.
It specifies the data type of an elementary field.

There are two major data types: strings and numbers.

Strings are further subdivided according to their
elements: character strings, octet strings (for trans-
parent data) and bit strings.

Numbers are further characterized by a scale (fixed or
floating point), a base (binary or decimal) and a sign
option (signed or unsigned).

2:1:3.10

2.1.3.20

= 11 =

Value: character string
octet string
bit string
unsigned fixed binary
signed fixed binary
unsigned fixed decimal
signed fixed decimal
signed floating point

NOTE 3

It is assumed that the location of the fixed point is known
only by the users.

NOTE 4

The base attribute for numbers 1s introduced at the application
Jevel because it influences the performance of file processing
by user programs: users select the base according to the most
frequent type of processing of the field (editing or computation).

NOTE 5

Floating point decimal is excluded.

Field size

This attribute is applicable only when field rank is.
It specifies the size of an elementary field. For
floating point data type, it designates the size of
the fraction. For the other data types, it designates
the total field size.

The unit of measure depends on the field data type,
in the following way:

character string: characters

octet string: octets

bit string: bits

fixed binary: bits (sign not included)

fixed decimal: decimal digits (sign not included)
floating point: digits (currently restricted to
hexadecimal base).

Field complement

This attribute is field data type dependent. In this
standard, it applies only to "floating point'" and
specifies the size of the exponent, in bits.

Value: numeric

2.1.4 Summary of attributes applicability

The following table specifies the conditions for appli-
cability of the different file attributes. Absence of
condition means the attribute is always applicable.

"o

08

U)

Il

J ’

- 12 -

The conditions are encoded as follows:

file structure value is not '"unstructured"
file data type value is "heterogeneous"
record sequence value is '"by key"

direct access value is '"by key"

field data type value is '"floating point"

moOw>

attribute conditions

file-name
file-passwords
access-control-list
history-attributes

file-structure
file-data-type
file-current-size
file-maximum-size

record-sequence A
direct-access A
record-size-type A
record-size A and not B
key-position A and (C or D) and not B
key-length A and (C or D) and not B
key-field-rank A and (C or D) and B
field-rank A and B
field-data-type A and B
field-size A and B
A

field-complement and B and E

2.2 VIRTUAL FILE MODEL SUBSETS

2.2’],

General

Subsets of the virtual file model are defined to achieve
simplification and variety control. The virtual file
model is subsetted in the following way:

- a kernel model, composed of all the attributes and
attribute values that all implementations must support.

- optional extensions, each composed of an additional
set of attributes:

Unstructured files extension
Field descriptions extension

Each of these options can be supported independently of
whether the other is supported.

The class-of-filestore parameter of the F-CONNECT service
(see 3.2.1.1) specifies the optional virtual file model
extensions that may be used on the connection. The Primary
proposes its maximum requirement and the Secondary res-
ponds with its capabilities within the proposed set of
extensions. The Primary may decide to terminate the con-

(W)

- 13 =

nection if the selected set 1s too restricted.

Two sorts of file attributes are provided within the
Virtual Filestore. Mandatory attributes are required
to be supported by each Virtual Filestore implementa-
tion, while the support of optional attributes is not
required. Even if it does not support an optional
attribute within its own local filestore, a VFS entity
may have to support this attribute when referring to

a remote filestore which supports 1it.

In the following subclauses, mandatory attributes or
attribute values are denoted with a '"*'" on the left
of the attribute name. The others are all optional.

Kernel

The attributes and attribute values included in this 0
subset are:

*file-name
file-passwords
access-control-1list
history attributes

*file-structure (flat)

*file-data-type (character/transparent)
file-current-size

*file-maximum-size

*record-sequence (by position)
record-sequence (by key)
*direct-access (by no means)
direct-access (by position/by key)
*record-size-type (fixed)
record-size-type (variable)
*record-size 0;
1

key-position
key-length

Unstructured files extension

The attributes and attribute values included in this
extension are:

*file-structure (unstructured)

Field descriptions extension

The attributes and attribute values included in this
extension are:

*file-data-type (heterogeneous)

key-field-rank

- 14 -

*field-rank
*field-data-type (character and octet string,

unsigned fixed binary number)
field-data-type (all other types)
*field-size
field-complement

‘9

(D

ORI)

e

- 15 -

3 Service

o

3.1 SERVICE OVERVIEW

Selsl

Roles of partners

In a VFS connection between two VFS users, the dialogue
is always asymmetrical, i.e. the two VFS users play
different and complementary roles. The initiator of

the VFS connection (called the Primary) is the one who
defines the work to be performed on the Virtual Filestore
through the connection: it is in a more or less direct
relation with the end user on behalf of whom it acts.
The other VFS user (called the Secondary) is there to
execute the work proposed by the Primary and report to
it; it resides on the same system as the Virtual File-
store and has no relation with an end user, except
through the Primary.

There are however particular phases, in the life of a

VFS connection, where the file data is being transferred:
the direction of the transfer can vary from one such

phase to another. During these phases, a temporary leader-
ship is assumed by the Sender of data, while the Receiver
acts as a slave, that is it can only accept data or report
abnormal conditions. As soon as a file data transfer phase
i1s completed, the roles switch back to Primary and
Secondary.

Dynamic structuring of a VFS connection

The VFS allows operations on only one file at a time on

a given VFS connection. Multiple files can be handled
concurrently through several parallel VFS connections.
Furthermore, within one VFS connection, operations on the
current file are executed one after the other in the order
of submission. This is necessary to keep total control on
the sequence of events.

The work performed on a VFS connection can be dynamically
structured as a set of nested enclosures, which must be
opened in the hierarchical order and closed in the reverse
order. If the VFS connection breaks or is abnormally ter-
minated by one VFS user, all the currently opened enclo-
sures are considered as being implicitly closed.

The enclosures are the following, in the hierarchical
order, starting from the outmost one:

- Connection enclosure: the VFS connection exists (from
establishment to termination of the VFS connection).

- File enclosure: a current file exists (from successful
file selection to file release). A connection enclosure
contains any number of file enclosures (including none).

S

-~ 17 =

- Open enclosure: the current file is ready for data
access (from successful file opening to file closing).
A file enclosure contains any number of open enclosures
(including none).

- Transfer enclosure: file data 1is being transferred
(from transfer begin to normal or abnormal transfer
end). For file transfer purpose, only one transfer
enclosure per open enclosure is necessary. Once a trans-
fer enclosure is open, the roles switch to Sender and
Receiver until the transfer enclosure is closed.

Connection facility

The connection facility service provides for establishment
and release of the VFS connection.

At connection establishment, there is a negotiation of

the particular class of service to be used and of any user
special conventions that may be agreed (see Appendix G) .
Renegotiation is not provided in this standard.

Connection termination is normally requested by the Pri-
mary, when all work 1s completed. However, in emergency
cases (e.g. system shutdown), the connection can be abnor-
mally terminated by either VES user at any point in time.
The connection can also be accidentally lost: this is re-

ported to both users by the VES.

File management

The file management service provides to the Primary all
file services with the exception of file data transfer.
This includes:

- Selection of a current file, by designating an existing
file.

- Release of the current file when all work on it has been
completed.

~ Creation of a new file, with specified attributes. This
file then becomes the current file. An option specifies
what to do if a file with the same name already exists.

- Deletion (and release) of the current file.
- Retrieval of selected attributes of the current file.

- Opening of the current file for data access, with a
specified lock. Only sequential data access 1is provided
in this standard: read the file or write to the file
(either after its current content or overwriting it).

- 18 -

- Closing of the current file, with release of the
lock.

- Starting of the file data transfer: this enters the
next part of the service,

File data transfer

The file data transfer service provides all transfer of
file data. The data flow is one way from Sender to
Receiver. Facilities are provided for:

- Orderly termination of the data transfer by the Sender
(with acknowledgement by the Receiver).

- Abnormal termination of the data transfer by either user.
- Checkpointing and checkpoint acknowledgement.

- Immediate restart of the data transfer to a negotiated
previous position. This form of restart can be requested
by either user.

Parameter value setting

A parameter is specified in the service in order to set
its value.

The value of a parameter can be set in one of two ways:
either by selection or by negotiation.

Selection

A number of parameters have their value set by selection,
i.e. one of the two VFS users unilaterally sets the value.
When this value is not acceptable to the other VFS user,
the work in progress cannot be completed. Example: file
name,

Negotiation

The remaining parameters have their value set by negotia-
tion between the two VFS users. Negotiation is performed

in one handshake: the initiator of the negotiation pro-
poses its acceptable values and the other user responds
with the selected value (or with a rejection of the ser-
vice when no acceptable value may be selected). Negotiation
rules are defined for each negotiable parameter.

Unset parameters

It is not necessary to supply all potential parameters in
every case: when a parameter is omitted, its value remains
unset. When the value is neededin the course of the pro-
cessing, the result depends on whether the parameter has

a default value or not.

—————T

= [0 =

- If it has a default value, this default value 1is
automatically assigned to it. This is a matter of
protocol encoding (see 4.3.2.3).

- If it has no default value, the parameter has no
significant value and this may lead to rejection of
the service if a value was mandatory in the parti-
cular circumstances.

Initial values

At the beginning of an enclosure, the initial values
of parameters are as follows:

- all parameters set in a higher level enclosure retain
their current values;

- all parameters that can be set by services of the
enclosure being open are unset. ¢ l

Z.1.7 Recovery

|
\
The purpose of the restart facility is to avoid complete |
repetition of a transfer which was interrupted before

completion. The prime objective is to minimize the amount
of data retransmission, while eliminating any loss or
duplication of data in the receiving file.

Restart may be either immediate or deferred.

An immediate restart occurs within a transfer enclosure,

on request of either VFS user. In such case, negotiation

of the restart position and retransmission occur immedia-
tely: there is no exit from the transfer enclosure.

A deferred restart occurs after the transfer enclosure
has been terminated and the file closed and potentially ,
released. The termination can be involuntary (failure of !
network or either node) or it can be voluntary (shutdown ‘ ” '
or desire to execute higher priority work). In any case

all enclosures that have been closed will have to be re-
opened before the transfer can be resumed. All file attri-
butes and processing attributes should be set to the same
values as initially. Restart position will be negotiated
while entering the open enclosure. A deferred restart can
occur within the same or a different VFS connection. A
deferred restart can be initiated only by the entity
which was the Primary of the interrupted activity.

Open identification

Since a restart can be deferred, there is a need to relate
several successive transfer enclosures as belonging to
the same file transfer activity. As a result, each new file

- 20 =

transfer request will be identified by a unique
identification, which will be recalled every time

a deferred restart is attempted. This identification
is supplied by the Primary when entering the open
enclosure. It is unique only within the Primary and
has to be prefixed by the address of the Primary to be
unique within the Secondary.

The open identification is forgotten (and can therefore
be reused for another activity) once the associated file
transfer request is either successfully completed or
abandoned (non recoverable failure).

Restart position negotiation

The restart position will be designated in terms of
record position in the data flow, starting from the be-
ginning of file data transfer. This type of designation
is not applicable to unstructured files: for unstructured
files, the position will be a character or octet position
in the data flow (according to file-data-type value),
starting from the beginning of file data transfer.

The negotiation rules are the following:
- one partner proposes a restart position,
- the other can agree or specify an earlier position.

The sender can abstain from specifying a restart position,
since restart is normally driven by the receiver. However,
the sender may specify a restart position to force re-
transmission of data.

Checkpoints

As seen above, checkpoints (i.e. the marking of parti-
cular points in the data flow) are not required for
resynchronization of the data flow. However, they are
useful whenever context information (i.e. information
necessary to properly restart data transfer after a
recoverable failure) is saved: checkpoint acknowledge-
ment by the receiver will allow the sender to purge its
context information (thus avoiding uncontrolled growth).
Restart at a position before an acknowledged checkpoint
is allowed, but might involve full retransmission of
the data, dependent on implementations.

Grouping of service structures

The file management services are composed only of type

2 service structures (see Appendix C). Several of these
will be needed to initialize or terminate file data pro-
cessing: the Primary should normally not initiate a new
request primitive before having received the confirmation

e .

to the previous request. However, a better response

time may be achieved, if needed, by issuing a series of
consecutive request primitives and then waiting for the
corresponding response primitives: this feature is called
grouping of service structures and is applicable only

to file management services. The use of this feature 1is
an option, selected by the Primary at connection estab-
lishment.

Though the main concern and the initiative rest with the
Primary, grouping is also visible to the Secondary,
because of error situations. The rules for service group-
ing are the following:

- the end of each service group must be explicitly indi-
cated (End of group service).

- the Secondary normally generates an indication primitive ‘ ‘
for each request, as if there were no grouping. However,
in case of a negative response primitive, no more indi-
cation primitives will be generated, except for the end
of group indication; the end of group response primitive
will therefore directly follow the negative response

primitive.

- the Primary processes each confirmation primitive
individually and only after issuing the end of group
request primitive. It must remember the sequence of
request contained in the group, in order to progress
its state machine after each positive confirmation
primitive as if the next request primitive had just
been sent. When the end of group confirmation is re-
ceived, there is no more pending request.

- a new group can be initiated only after the end of
group confirmation has been received. ‘) I

3.1.9 List of services

The table below lists all the services of the VFS.

For each service, it specifies its type (see Appendix C),
the user who can initiate it (PR: Primary, SC: Secondary,
SN: Sender, RC: Receiver), and its purpose.

Table 3.1/1 - Virtual file services

22 -

Service Type | Init. Description
CONNECTION FACILITY
F-CONNECT 2 PR Establish VFS connection
F-RELEASE 2 PR Clean release of VFS connection
F-DISCONNECT 1 PR,SC Unclean release of VFS connection
F-ABORT 3 - Loss of presentation connection
FILE MANAGEMENT
F-END-GROUP 2 PR Delimit a service group
F-SELECT-FILE 2 PR Establish current file
F-RELEASE-FILE 2 PR Release current file
F-CREATE-FILE 2 PR Create new file
F-DELETE-FILE 2 PR Delete current file
F-READ-ATTRIBUTES | 2 PR Read attributes of current file
F-OPEN-FILE 2 PR Open current file for data access
F-CLOSE-FILE 2 PR Close current file
F-BEGIN-DATA 2 PR Start transfer of file data
FILE DATA TRANSFER
F-DATA 1 SN Transfer file data
F-END-DATA 2 SN End transfer of file data
F-ABORT-DATA 2 SN,RC Abort transfer of file data
F-RESTART 2 SN,RC Resynchronize transfer in progress
F-CHECKPOINT 2 SN Request acknowledgement

3.2

SERVICE DESCRIPTION

3.2.1 Primitives

The service is described by using the service description
notation and terminology defined in Appendix C.

3.2.1.1 The F-CONNECT service

Purpose: to establish a VFS connection. This includes
establishment of a presentation connection, negotiation
of the class of VFS service to be used and of any
particular work option that will remain valid for the
entire duration of the connection.

Structure: type 2

Initiated by: initiator becomes Primary

Parameters:
REQ IND RESP CONF
Diagnostic X X B U
Filestore-name D X X X
Authentication D U X X
Protocol-identifier D U X X
Protocol-version D U D U
Class-of-filestore D U D U
Class-of-service D U D U
Grouping-option D 8] X X
Special-conventions D U D U

Parameter descriptions:
Diagnostic: see 3.2.2

Filestore-name: global title necessary to establish

a connection with the application entity supporting the
virtual filestore (to be supplied to presentation
service). No default.

Authentication: management information necessary for
security and accounting of the connection (user iden-
tification and password, account identification).

Protocol-identifier: applicable value is "VEFP".

Protocol-version: designates the VFP version. Negotiable.
Applicable value for this version is "1".

Class-of-filestore: specifies the class of virtual file
model which will be used on this connection. Negotiated.
See 2.2 for values.

()

k———f

3.2.1.2

)
3.2.1.3

|9
3.2.1.4

- 24 -

Class-of-service: specifies the class of the
Virtual File Service which will be used on this
connection. Negotiated. See 3.3 for values.

Grouping-option: specifies whether the grouping
of service structures will be used (see 3.1.8).

Special-conventions: specifies which special con-
ventions can be used on this connection. Negotiated.
Successful negotiation allows the use of the special-
information parameter in any service where it applies.
Else, use of this facility is illegal. See Appendix G
for purpose of defining special conventions.

The F-RELEASE service

Purpose: to obtain a clean release of a VFS connection.
The effects are non-disruptive. The Secondary cannot
refuse the release of the connection.

Structure: type 2

Initiated by: Primary

Parameters: this service contains no parameters.
The F-DISCONNECT service

Purpose: to obtain an unclean release of a VFS con-
nection (emergency situation) and specify the reason
for this. The effects are disruptive,

Structure: type 1
Initiated by: Primary or Secondary

Parameters:

REQ IND
Diagnostic | D 0]

Parameter descriptions:

Diagnostic: see 3.2.2. Only one diagnostic may be
provided, with a single diagnostic supplement (type 2).

The F-ABORT service

Purpose: to signal a spontaneous disconnection. The
effects are disruptive.

Structure: type 3
Initiated by: either VFS entity

3.2.1.5

SedelsD

Parameters:

IND IND

Diagnostic U 8]

Parameter descriptions:

Diagnostic: see 3.2.2. Only one diagnostic may be
provided, with a single diagnostic supplement (type 2) s

The F-END-GROUP service

Purpose: to delimit the end of a service group. The
Primary cannot initiate any other service (except
F-DISCONNECT) between the F-END-GROUP request and
confirmation primitives. The same constraint applies
to the Secondary, between the F-END-GROUP indication
and response primitives. This service applies only

if the grouping option has been selected in F-CONNECT.

Structure: type 2

Initiated by: Primary

Parameters: this service contains no parameters.
The F-SELECT-FILE service

Purpose:to establish an existing file as the current
file for the connection. In case of success, any
further service will implicitly refer to this file,
until either a F-RELEASE-FILE or a F-DELETE-FILE.
This service is subject to grouping.

Structure: type 2
Initiated by: Primary

Parameters:

REQ IND RESP CONF

Diagnostic
File-name
File-passwords
Special-information

OggoX
ccax
O X x @
o x X a

Parameter descriptions:

Diagnostic: see 3.2.2.

3.2.1.7

SedalslB

- 26 -

File-name: specifies the identification of the file.
S8 2eleds2s

File-passwords: specifies any password(s) needed to
obtain access to the file. See 2.1.3.3.

Special-information: transparent data obeying special
conventions between VFES users (see special-conventions
parameter in F-CONNECT) .

The F-RELEASE-FILE service

Purpose: to release the current file of the connection.

The file enclosure is ended even if the diagnostic
severity is '"failure'. This service is subject to
grouping.

Structure: type 2
Initiated by: Primary

Parameters:

REQ IND | RESP CONF

Diagnostic % X
Special-information D U

jw e
=

Parameter descriptions:
Diagnostic: see 3.2.2.

Special-information: transparent data obeying special
conventions between VFS users (see special-conventions
parameter in F-CONNECT).

The F-CREATE-FILE service

Purpose: to create a new file and establish it as the
current file for the connection. In case of success,

any further service will implicitly refer to this file,

until either a F-RELEASE-FILE or a F-DELETE-FILE.
This service is subject to grouping.

Structure: type 2
Initiated by: Primary

Parameters:

———*—ﬂr

REQ IND RESP | CONF

Diagnostic
File-name
File-passwords
File-attributes
Clash-option
Reversible-mapping
Special-information

Do goOoooOXx
caeacaecac =
=
TR XX %X G

Parameter descriptions:
Diagnostic: see 3.2.2.

File name: specifies the identification of the file.
See 2.1.3.2.

File-passwords: specifies any password(s) to be used
subsequently for protection of the file. See 2.1.3.3.

File-attributes: specifies the values to be assigned
to file attributes other than name and passwords.

See 2.1.3 for the complete list of attributes and
applicability rules. History attributes are not speci-
fied in this service.

Clash-option: specifies what to do if the supplied
file-name corresponds to an already existing file.

Legal values:

Reject: the existing file is kept; diagnostic se-
verity is failure.

Keep: the existing file is kept and selected; diag- . '
nostic severity is success.

Replace: the existing file is replaced by the newly
defined file; diagnostic severity is success.

Reversible-mapping: specifies that the mapping between
virtual and real file must be such that all the attri-
butes supplied with this F-CREATE-FILE are returned
unchanged on any subsequent F-READ-ATTRIBUTES (unless
changed by a user). If reversible mapping is requested,
the F-CREATE-FILE must be rejected if the Secondary
cannot guarantee 1it.

Legal values: yes/mno.

Special-information: transparent data obeying special
conventions between VFS users (see special-conventions
parameter in F-CONNECT).

a9

3.2.1.9

3.2.1.10

L s

- 28 -

The F-DELETE-FILE service

Purpose: to delete and release the current file of
the connection. The file enclosure is ended (with

the file possibly not deleted) even if the diagnostic
severity is '"failure'. This service is subject to
grouping.

Structure: type 2
Initiated by: Primary

Parameters:

REQ IND RESP [CONF

Diagnostic X
Special-information D

enii
jw)
@]

Parameter descriptions:
Diagnostic: see 3.2.2.

Special-information: transparent data obeying special
conventions between VFS users (see special-conventions
parameter in F-CONNECT).

The F-READ-ATTRIBUTES service

Purpose: to return specified attributes of the current
file. This does not include file-name and file-pass-
words. This service is subject to grouping.

Structure: type 2
Initiated by: Primary

Parameters:

REQ IND |RESP | CONF

Diagnostic
Requested-attributes
File-attributes
Special-information

O X Ox
X ax
oo X w
cax

Parameter descriptions
Diagnostic: see 3.2.2.

Requested-attributes: specifies for which categories
of file attributes (see 2.1.3.1) the attribute values
are to be returned.

3s2:1:12

3.2:1:13

3.2.1.14

= 2] -

The F-CLOSE-FILE service

Purpose: to terminate the processing of the contents
of the current file. The open enclosure is ended
even if the diagnostic severity is '"failure'. This
service is subject to grouping.

Structure: type 2
Initiated by: Primary

Parameters:
REQ IND RESP | CONF
Diagnostic X X B U
Special-information D U D U

Parameter descriptions:
Diagnostic: see 3.2.2.

Special-information: transparent data obeying special
conventions between VES users (see special-conventions
parameter in F-CONNECT) .

The F-BEGIN-DATA service

Purpose: to start transfer of file data from or to the
currently open file. The direction of data transfer

is determined by the processing-mode parameter of the
previous F-OPEN-FILE service. This service 1is subject
to grouping.

Structure: type 2
Initiated by: Primary

Parameters:
REQ IND RESP | CONF
Diagnostic X X B U
Special-information D U D U

Parameter descriptions:
Diagnostic: see 3.2.2.

Special-information: transparent data obeying special
conventions between VFS users (see special-conventions
parameter in F-CONNECT).

The F-DATA service

Purpose: to transfer file data

Structure: type 1
Initiated by: Sender

Sxdelslb

3.2.1.16

Parameters:

REQ IND

File-data D U

Parameter descriptions:

File-data: for a flat file, contains one complete
record. Records are ordered as described by the
"Record sequence' attribute (see 2.1.3.10). Empty
records (null size) are allowed and are also taken
into account for the determination of the record
ranks (in the restart-position parameter). For un-
structured files, contains an arbitrary number of
consecutive characters or octets (according to file-
data-type value), in their logical sequence.

The syntax in which the data is transferred is a
concern of Data Presentation: see Standard ECMA-84.

The F-END-DATA service

Purpose: to specify normal completion of file data
transfer. No restart is possible after a successful
F-END-DATA.

The acceptor may reject a proposed F-END-DATA only by
issuing a F-ABORT-DATA request or a F-RESTART request.

Structure: type 2

Initiated by: Sender

Parameters: this service contains no parameters.
The F-ABORT-DATA service

Purpose: to specify abnormal termination of file data
transfer. If the diagnostic severity value is "failure"
the transfer is abandoned. If the diagnostic severity
value is '"recoverable failure'", the transfer is re-
coverable as soon as the cause of error has disappeared.
The effects are disruptive.

In case of collision between two F-ABORT-DATA initiated
at both ends, only the one issued by the Primary is
retained.

Structure: type 2

Initiated by: Sender or Receiver

3.241,17

3:2.1.18

Parameters:

REQ IND RESP | CONF

Diagnostic D U D U

Parameter descriptions:

Diagnostic: see 3.2.2. Only one diagnostic may be
supplied, with no diagnostic supplement.

The F-RESTART service

Purpose: to resynchronize the current file data trans-
fer at a previous point. The effects are disruptive.

The acceptor can reject a proposed F-RESTART only by
issuing a F-ABORT-DATA request (purposeful service

collision, in which only the F-ABORT-DATA is retained).

In case of collision between two F-RESTART initiated
at both ends, only the one issued by the Primary 1s
retained.

Structure: type 2
Initiated by: Sender or Recelver

Parameters:

REQ IND RESP | CONF

Restart-position D U D U

Parameter descriptions:

Restart-position: negotiates the position at which to
resume data transfer.

Legal values:

For flat files, rank in the total transfer flow of

the first record to be retransmitted. For unstructured

files, rank in the total transfer flow of the first
character or octet to be retransmitted. 1 designates
the beginning of transfer. 0 is invalid.

The F-CHECKPOINT service

Purpose: to mark points in the data transfer at which

acknowledgement of processing 1is desired. Other services

can be initiated by the Sender between the request
primitive and the confirmation primitive.

Structure: type 2
Initiated by: Sender

-

Parameters:

REQ IND RESP | CONF

Checkpoint-ident. U U D U

Parameter descriptions:

Checkpoint-identification: serial number uniquely
identifying each checkpoint within a given file data
transfer. No rule is specified for the automatic
incrementation or reset of this serial number.

Error reporting

Error reporting is provided by means of a diagnostic
parameter appearing in response and confirmation primitives.
It also appears in a few request and indication primitives
(for disruptive services). The diagnostic parameter conveys
up to three elements of information, corresponding to

three levels of error analysis:

- severity
- reason
- diagnostic supplement

Each element can be supplied only if the preceding (morc
synthetic) elements have been supplied. A separate
diagnostic parameter is used for each detected error.
Limitations specific to some services are indicated within
the description of these services in 3.2.1.

3.2.2.,1 Severity

Specifies the degree of success or failure. The legal
values are, by increasing order of severity:

- Success.

- Success with warning.

- Recoverable failure: applicable only to a non atomic
operation, i.e. file data transfer. Used with F-
ABORT-DATA primitives to indicate that the data
transfer can be restarted after failure correction.
If the negotiated service subset does not include
the restart extension (see 3.3), there is no differ-
ence between "recoverable failure'" and '"failure'.

- Failure: indicates non recoverable failure.

Severity is the minimum amount of information to be
provided.

3.2.2.2 Reason

Specifies a summary diagnostic. Legal values are supplied
in 4.3.2.4.

3.2.2.3 Diagnostic supplement

Specifies a detailed diagnostic. Several diagnostic
supplements may be specified within the same diagnostic
parameter. The legal types of diagnostic supplements
are defined below.

DS-0: may accompany any reason value and is specifi-
cally expected when the reason value is ''non standard
reason". The legal value is a character string of not
more than 31 characters.

DS-1: accompanies standard reason values like "unset
parameter value'", "illegally duplicated parameter',
"jllegal parameter value". Repeated once for each
erroneous parameter. Contains the parameter type of
the defective parameter.

DS-2: accompanies standard reason values like '"time-
out expiration'" or 'protocol violation". Contains the
type of the expected or erroneous message.

3.3 SERVICE SUBJECTS

3edul

General

Subsets of the virtual file service are defined to achieve
simplification and variety control. The Virtual File
service is subsetted in the following way:

- a kernel, composed of all the services that all imple-
mentations must support,

- two optional extensions, each composed of an additional
set of services:

Basic file management extension,
Restart extension.

Each of these options can be supported independently of
whether the other is supported.

The class-of-service parameter of the F-CONNECT service
specifies the optional extensions that may be used on

the connection. The Primary proposes its maximum require-
ment and the Secondary responds with its capabilities
within the proposed set of extensions. The Primary may
decide to terminate the connection if the selected set

is too restricted.

There is no relationship between the service subsets and
the virtual file model subset in this version: any ser-
vice subset can be used on any virtual file model subset.

t

Beded

Kernel

The services included in this subset are:

F-CONNECT
F-RELEASE
F-DISCONNECT
F-ABORT

F-END-GROUP (*)
F-SELECT-FILE
F-RELEASE-FILE
F-OPEN-FILE
F-CLOSE-FILE
F-BEGIN-DATA

F-DATA
F-END-DATA
F-ABORT-DATA

The open-identification and restart-position parameters
of F-OPEN-FILE are not included in this subset.

(*) Support of the request and indication primitives 1s

optional and indicated in the F-CONNECT request primitive.

Basic file management extension

The services included in this extension are:

F-READ-ATTRIBUTES
F-CREATE-FILE
F-DELETE-FILE

Restart extension

The services included in this extension are:

F-RESTART
F-CHECKPOINT

The open-identification and restart-position parameters
of F-OPEN-FILE are included in this extension.

- 37 -

4 Protocol

4,1 PROTOCOL OVERVIEW

4.1.1

Roles of VFS entities

The asymmetry of the VFS is reflected in the protocol:
the two VFS entities play different and complementary
roles, corresponding to the roles played by their res-
pective users: Primary and Secondary outside of a trans-
fer enclosure, Sender and Receiver within a transfer
enclosure (see 3.1.1).

Descriptive model

The Virtual File Protocol is modelled as an abstract
machine, with protocol structures between the two VES
entities. A protocol structure is an elementary dialogue
for the purpose of an indivisible operation. As such,

it is totally successful or totally unsuccessful, never
partly successful. It is composed of a request, issued
by one VFS entity, and for most (but notall) types of
structure, of a response, issued by the other VFS entity.
Each response or request is a single protocol message.

There are two types of protocol structures:
- Type 1 structure: request without response.
- Type 2 structure: request with response.

A protocol message contains protocol control information
(i.e. one or more parameters) and may in some cases also |
contain file data.

Dynamic execution of the VF protocol results in an
ordered sequence of protocol structures. To describe

the protocol, it is sufficient to separately describe
each of its structures (or messages), plus any precedence
relationship between structures (state transitions).

Grouping of protocol structures

The grouping of protocol structures corresponds to the
grouping of service structures described in 3.1.8. It is
applicable only to file management protocol structures
(see 4.1.4 for the list of them). The effect on the
protocol of the grouping mechanism is briefly described
here. In order not to overload the description of the
protocol in 4.2, the effects of grouping do not appear
in the message descriptions. They are fully taken into
account in the formal description of Appendix D.

Effects at the Primary

First, it is necessary to verify if a request message can
be legally part of the current group before issuing this

= ZG

message. Second, the state machine cannot be immediately
progressed to the XX-pending state: the new state that
the sending of the message should cause is enqueued in

a first in first out queue. The enqueued states are
successively dequeued as successful response messages
are processed. There is no state dequeuing on a failed
response message. The queue is purged when the end of
group response is received.

Effects at the Secondary

The only effect at the Secondary is when a failed response
message is issued: then all incoming request messages are
ignored by the VFS entity until the next end of group
message.

4,1.4 List of protocol structures

The table below lists all the structures of the VFP,

For each structure, it specifies its type (see 4.,1.2),

the VFS entity which can initiate it (PR: Primary,

SC: Secondary, SN: Sender, RC: Receiver), and its purpose.

Table 4.1/1 - Protocol structures

Structure Type |Init. Description
Select Protocol 2 PR Initiate VFS connection
Release Protocol 2 PR Release VFS connection
Disconnect Protocol| 1 PR,SC | Abnormally terminate VFS conn.
End Group 2 PR Delimit a structure group
Select File 2 PR Establish current file
Release File 2 PR Release current file ()
Create File 2 PR Create new file
Delete File 2 PR Delete current file
Read Attributes 2 PR Read attributes of current file
Open File 2 PR Open current file for data access
Close File 2 PR Close current file
Begin Transfer 2 PR Begin transfer of file data
Data 1 SN Transfer file data
End Transfer 2 SN End transfer of file data
Abort Transfer 2 SN,RC | Abort transfer of file data _
Restart Transfer 2 SN,RC | Resynchronize transfer in progress
Checkpoint 2 SN Request acknowledgement

4.

2 PROTOCOL DESCRIPTION

4,2.1

Notation

This clause provides a narrative description of the
protocol. Appendix D provides the formal description.

Each message is defined by the following items:

- Sender of message

- Function

- List of parameters

- Resulting state transition(s)

- Relationship with service primitives (sending/receiving)

A detailed description of parameters is supplied only
when they differ from the service parameters; otherwise
reference is made to the description of the equivalent
parameter in the service.

Select Protocol request (SP)

Sent by: Primary

Function: Initiate a VFS connection
(requests opening of a VFS connection enclosure)

Content: filestore-name

authentication

protocol-definition = {protocol-identifier
{protocol-version
{class-of-filestore
{class-of-service

grouping-option

special-conventions

Parameter descriptions: see F-CONNECT, 3.2.1.1.
Transition: Dormant --> SP pending
Sending: on F-CONNECT request primitive.

Receiving: generates a F-CONNECT indication primitive.
The expected outcome is a F-CONNECT response primitive.

Select Protocol response (SPR)

Sent by: Secondary
Function: response to SP

Content: diagnostic
protocol-definition = {protocol-version
{class-of-filestore
. {class-of-service
special-conventions

4,2.4

4,2.6

4'2.7

- 41 -

Parameter descriptions: see F-CONNECT, Baldelsls

Transition: SP pending --> No-file (successful)
SP pending --> Dormant (rejected)

Sending: on F-CONNECT response primitive.
Receiving: generates a F-CONNECT confirmation primitive.

Release Protocol request (RP)

Sent by: Primary.

Function: request normal termination of the VFS connec-
tion enclosure.

Content: none.
Transition: No-file --> RP-pending.
Sending: on F-RELEASE request primitive.

Receiving: generates a F-RELEASE indication primitive.
The expected outcome is a F-RELEASE response primitive.

Release Protocol response (RPR)

Sent by: Secondary.

Function: response to RP.

Content: none.

Transition: RP pending --> Dormant.

Sending: on F-RELEASE response primitive.

Receiving: generates a F-RELEASE confirmation primitive.

Disconnect Protocol request (DP)

Sent by: Primary/Secondary.

Function: Request abnormal termination of the VES connec-
tion enclosure.

Content: diagnostic.

Parameter descriptions: see F-DISCONNECT, 3.2.1.3.
Transition: Any state --> Dormant.

Sending: on F-DISCONNECT request primitive.

Receiving: generates a F-DISCONNECT indication primitive.

End Group request (EG)

Sent by: Primary.
Function: Delimit the end of a structure group.
Content: none.

Transition: none.

4.2.10

4.2.11

= 47 =

Sending: on F-END-GROUP request primitive.

Receiving: generates a F-END-GROUP indication primitive.
The expected outcome is a F-END-GROUP response primitive.

End Group response (EGR)

Sent by: Secondary.

Function: response to EG.

Content: none.

Transition: none.

Sending: on F-END-GROUP response primitive.

Receiving: generates a F-END-GROUP confirmation primitive.

Select File request (SL)

Sent by: Primary.

Function: Establish as current an existing file.
(requests opening of a file enclosure).

Content: file-name
file-passwords
special-information

Parameter descriptions: see F-SELECT-FILE, 3.2.1.0.
Transition: No-file --> SL-pending
Sending: on F-SELECT-FILE request primitive.

Receiving: generates a F-SELECT-FILE indication primitive.
The expected outcome is a F-SELECT-FILE response primitive.

Select file response (SLR)

Sent by: Secondary.
Function: response to SL.

Content: diagnostic
special - information

Parameter descriptions: see F-SELECT-FILE, 3.2.1.6.

Transition: SL-pending --> File-selected (successful)
SL-pending --> No-file (rejected)

Sending: on F-SELECT-FILE response primitive.
Receiving: generates a F-SELECT-FILE confirmation primitive.

Release File request (RL)

Sent by: Primary.

Function: Release the current file.
(requests closing of the file enclosure).

e

4.2 .12

4.2.13

4.2.14

- 43 -

Content: special-information.

Parameter description: see F-RELEASE-FILE, 3.2.1.7.
Transition: File-selected --> RL-pending.

Sending: on F-RELEASE-FILE request primitive.

Receiving: generates a F-RELEASE-FILE indication
primitive. The expected outcome is a F-RELEASE-FILE
response primitive.

Release File response (RLR)

Sent by: Secondary.
Function: response to RL.

Content: diagnostic
special-information.

Parameter descriptions: see F-RELEASE-FILE, 3.2.1.7.
Transition: RL-pending --> No-file.
Sending: on F-RELEASE-FILE response primitive.

Receiving: generates a F-RELEASE-FILE confirmation
primitive.

Create File request (CR)

Sent by: Primary.

Function: Create and establish as current a new file.
(requests opening of a file enclosure)

Content: file-name

file-passwords

file-attributes = {global-attributes
{record-attributes
{key-attributes
{field-attributes

clash-option

reversible-mapping

special-information

Parameter descriptions: see F-CREATE-FILE, 3.2.1.8.
Transition: No-file --> CR-pending
Sending: on F-CREATE-FILE request primitive.

Receiving: generates a F-CREATE-FILE indication primitive.

The expected outcome is a F-CREATE-FILE response primitive.

Create File response (CRR)

Sent by: Secondary.

Function: response to CR.

4.2,15

4.2.16

4.2.17

Content: diagnostic
special-information.

Parameter descriptions: see F-CREATE-FILE, 3,2.1.8.

Transition: CR-pending --> File-selected (successful)
CR-pending --> No-file (rejected)

Sending: on F-CREATE-FILE response primitive.

Receiving: generates a F-CREATE-FILE confirmation
primitive.

Delete File request (DL)

Sent by: Primary.

Function: delete and release the current file.
(requests closing of the file enclosure)

Content: special-information

Parameter descriptions: see F-DELETE-FILE, 3.2.1.9.
Transition: File-selected --> DL-pending

Sending: on F-DELETE-FILE request primitive.

Receiving: generates a F-DELETE-FILE indication primitive.
The expected outcome is a F-DELETE-FILE response primitive.

Delete File response (DLR)

Sent by: Secondary.
Function: response to DL.

Content: diagnostic
special-information

Parameter descriptions: see F-DELETE-FILE, 3.2.1.9,

Transition: DL-pending --> No-file.

‘Sending: on F-DELETE-FILE response primitive.

Receiving: generates a F-DELETE-FILE confirmation primitive.

Read Attributes request (RA)

Sent by: Primary.

Function: retrieve specified attributes of the current
filé,

Content: requested-attributes
special-information

Parameter descriptions: see F-READ-ATTRIBUTES, 3.2.1.10.
Transition: File-selected --> RA-pending

Sending: on F-READ-ATTRIBUTES request primitive.

4,2.18

4,2.19

4.2.20

- 45 -

Receiving: generates a F-READ-ATTRIBUTES indication
primitive. The expected outcome 1is a F-READ-ATTRIBUTES
response primitive.

Read Attributes response (RAR)

Sent by: Secondary.
Function: response to RA.

Content: diagnostic
file-attributes = {history-attributes
{global-attributes
{record-attributes
{key-attributes
{field-attributes
special-information

Parameter descriptions: see F-READ-ATTRIBUTES, 3eldsdl10,
Transition: RA-pending --> File-selected. '
Sending: on F-READ-ATTRIBUTES response primitive.
Rege?v%ng: generates a F-READ-ATTRIBUTES confirmatién
primitive. ;

Open File request (OP)

Sent by: Primary.
Function: initiate processing of contents of the current
file. (requests opening of an open enclosure) ;

Content: access-mode
processing-mode
lock
failure-option
open-identification
restart-position
special-information

Parameter descriptions: see F-OPEN-FILE, 3.2.1.11.
Transition: File-selected --> OP-pending
Sending: on F-OPEN-FILE request primitive.

Receiving: generates a F-OPEN-FILE indication primitive.
The expected outcome is a F-OPEN-FILE response primitive.

Open File response (OPR)

Sent by: Secondary.

Function: response to OP.

Content: diagnostic
restart-position
special-information

4,2.21

4.2.22

4.2.23

= 46 =

Parameter descriptions: see F-OPEN-FILE, 3.2.1.11.

Transition: OP-pending --> File-open (successful)
OP-pending --> File-selected (rejected)

Sending: on F-OPEN-FILE response primitive.
Receiving: generates a F-OPEN-FILE confirmation primitive.

Close File request (CL)

Sent by: Primary.

Function: terminate processing of contents of the current
file. (requests closing of the open enclosure)

Content: special-information.
Parameter descriptions: see F-CLOSE-FILE, 3.2.1.12.

Transition: File-open --> CL-pending
File-aborted --> CL-pending

Sending: on F-CLOSE-FILE request primitive.

Receiving: generates a F-CLOSE-FILE indication primitive.
The expected outcome is a F-CLOSE-FILE response
primitive.

Close File response (CLR)

Sent by: Secondary
Function: response to CL.

Content: diagnostic
special-information

Parameter descriptions: see F-CLOSE-FILE, 3.2.1.12.
Transition: CL-pending --> File-selected.

Sending: on F-CLOSE-FILE response primitive.

Receiving: generates a F-CLOSE-FILE confirmation primitive.

Begin Transfer request (BT)

Sent by: Primary.

Function: cause transition to file data transfer level.
(requests opening of a transfer enclosure)

Content: special-information,
Parameter descriptions: see F-BEGIN-DATA, 3.2.1.13.
Transition: File-open --> BT-pending.

Sending: on F-BEGIN-DATA request primitive.

Receiving: generates a F-BEGIN-DATA indication primitive.
The expected outcome is a F-BEGIN-DATA response primitive.

4.,2.24

4,2:25

4.2.27

- 47 =

Begin Transfer response (BTR)

Sent by: Secondary.
Function: response to BT.

Content: diagnostic
special-information

Parameter descriptions: see F-BEGIN-DATA, 3¢ldalsld,

Transition: BT-pending --> Data
BT-pending --> File open (rejected)

Sending: on F-BEGIN-DATA response primitive.
Receiving: generates a F-BEGIN-DATA confirmation primitive.

Data request (DATA)

Sent by: Sender.

Function: transfer file data and/or a delimiter.
Content: file-data.

Parameter descriptions: see F-DATA, 3.2.1.14.
Transition: Data --> Data.

Sending: on F-DATA request primitive.

Receiving: generates a F-DATA indication primitive.

End Transfer request (ET)

Sent by: Sender.

Function: specify termination of the transfer without 1loss
of data (requests closing of the transfer enclosure) .

Content: none
Transition: Data --> ET-pending
Sending: on F-END-DATA request primitive.

Receiving: generates a F-END-DATA indication primitive.
The expected outcome is a F-END-DATA response primitive
or a F-RESTART or F-ABORT-DATA request primitive.

End Transfer response (ETR)

Sent by: Receiver.

Function: response to ET.

Content: none.

Transition: ET-pending --> File-open.
Sending: on F-END-DATA response primitive.

Receiving: generates a F-END-DATA indication primitive.

4.2.28 Checkpoint request (CK)

Sent by: Sender.

Function: specify a checkpoint position, for acknowledge-
ment by the Receiver.

Content: checkpoint-identification.

Parameter descriptions: see F-CHECKPOINT, 3.,2,1.18.
Transition: Data --> Data.

Sending: on F-CHECKPOINT request primitive.

Receiving: generates a F-CHECKPOINT indication primitive.
The expected outcome is a F-CHECKPOINT response primitive.

4.2.29 Checkpoint response (CKR)

) Sent by: Receiver.

Function: asynchronous response to CK. Acknowledges safe
processing of all file data until specified checkpoint.

Content: checkpoint-identification.

Parameter descriptions: see F-CHECKPOINT, 3,2.1.18.
Transition: Any data transfer state --> same state.
Sending: on F-CHECKPOINT response primitive.

Receiving: generates a F-CHECKPOINT confirmation primitive.

4.2.30 Abort Transfer request (AT)

Sent by: Sender/Receiver.

Function: specify abnormal termination of the transfer,
with destruction of data in transit. (requests closing
of the transfer enclosure).

) Content: diagnostic.
Parameter descriptions: see F-ABORT-DATA, 3.2.1.16.

Transition: Any other data transfer state --> AT-pending.
Sending: on F-ABORT-DATA request primitive.

Receiving: generates a F-ABORT-DATA indication primitive.
The expected outcome is a F-ABORT-DATA response primitive.

4,2.31 Abort Transfer response (ATR)

Sent by: Sender/Receiver,

Function: response to AT.

Content: diagnostic.

= A9 =

Parameter descriptions: see F-ABORT-DATA, 3.2.1.16.
Transition: AT-pending --> File-aborted.
Sending: on F-ABORT-DATA response primitive.

Receiving: generates a F-ABORT-DATA confirmation primitive.

4.2.32 Restart Transfer request (RT)

Sent by: Sender/Receiver.

Function: request immediate restart of the transfer at
a previous point. Destroys any data in transit.

Content: restart-position.
Parameter descriptions: see F-RESTART, 3.2.1.17.

Transition: Data --> RT-pending
ET-pending --> RT-pending
Sending: on F-RESTART request primitive.
Receiving: generates a F-RESTART indication primitive.

The expected outcome is a F-RESTART response primitive
or a F-ABORT-DATA request primitive,

4.2.33 Restart Transfer response (RTR)

Sent by: Sender/Receiver.

Function: response to RT.

Content: restart-position.

Parameter descriptions: see F-RESTART, 3.2.1.17.
Transition: RT-pending --> Data

Sending: on F-RESTART response primitive,

Receiving: generates a F-RESTART confirmation primitive.

PROTOCOL ENCODING

General convention: the bits of an octet are identified

bl b2 b3 b4 b5 b6 b7 b8, bl being the leftmost and most
significant bit.The same convention applies to strings of
more than one octet, the rightmost bit becoming bl6, b24 or
b32.

4.3.,1 Message structure

Each message of the VFP is composed of 2 parts:
- a one octet message header

- a variable length message content

- 50 -

The message header contains a 8-bit message type.
The legal type values are listed in table 4,3/1.

The message content is composed of the message pa-
rameters, in any order. The representation of para-
meters is described in 4.3.2.

Table 4.3/1 - Message type values

1 SP 2 SPR
3 SL 4 SLR
5 OP 6 OPR
7 CL 8 CLR
9 RL 10 RLR
11 BT 12 BTR
13 ET 14 ETR
15 DATA 16-31 unassigned
32 RA 33 RAR
34 CR 35 CRR
36 DL 37 DLR
38-255 unassigned

NOTE :

The VFP messages that do not appear in the above list are
directly mapped onto lower layer services (see 4.4). They
are the following: RP, RPR, DP, EG, EGR, AT, ATR, RT, RTR,
CK, CKR.

4.3.2 Parameter encoding

T |

Type/Length/Value technique (TLV technique)

The TLV technique is a method for coding an Infor-
mation Unit.

Every information unit is encoded as a triplet, made
ot ;

a type (lst field)

a length (2nd field)

a value (3rd field)

Type field (1 octet)

bl =0
b2-b8 = type value (1 to 127,0 reserved)

Length field (1 or 2 octets)

bl 0: the length is specified on 7 bits (b2-b8)
bl 1: the length is specified on 15 bits (b2-b16)

b2-b8 or bl6: binary number of octets of the
value field

o

]

- 51 -

Value field (0 to N octets)

all octets: data

4.3.2.2 Parameter value representation

The following value types are needed for representa-
tion of the various parameters of the VFP:

C: character string. Any size (unless limits are
defined), character encoding is according to the
ECMA 7-bit coded character set (see ECMA-0).

Each character is mapped on bits b2-b8 of an octet
with bit bl equal to 0. The allowed characters are
those in columns 2 to 7 of the International Refer-

] ence Version, with the following exclusions: 4/0,

5/11 to 5/14, 6/0, 7/11 to 7/15.

N: numeric. Unsigned binary integer, with 4 possible
sizes: 8, 16, 24 or 32 bits.

S: symbolic. Unsigned binary integer, the values of
which encode specific meanings. Size is 8 bits.

M: bit map. Bit string in which each bit encodes a
specific meaning. Size is 8 or 16 bits. Any bit
the role of which is not defined must be encoded
as 0. For bits representing specified options,
the bit is set to 1 if the option is requested,
0 otherwise.

D: date (and optionally time). Encoded as specified
in the Standards ISO 2014 and ISO 3307: YYMMDD (hhmmss) ,
where YY= year, MM= month, DD= day, hh= hour,
mm= minute, ss= second. It is encoded as a character
string (see above), with a size of either 6 octets
(date only) or 12 octets (date and time).

T: transparent. Encoded by VFS user.

aggregate. Composed of fields (sometimes smaller
than 8 bits) of the above types.

Value truncation

For economy reasons, it is recommended to use the minimum
variable length strings for expressing values.

- character strings should not contain unnecessary
spaces.

- for numeric or symbolic, all unnecessary octets from
left containing only zero bits should be removed.

- for bit maps, all unnecessary octets from right con-
taining only zero bits should be removed (must be
from right to allow future extension to the right).

- for transparent, no truncation is applied.

|

4,3.2.3 Parameter encoding

For each parameter of the protocol, table 4.3/2 gives
the following description:

- parameter type (unique identifier)

- maximum length of value field ('"-" means unlimited)
- type of value representation (C, N, S, M, D, T: see
4.3.2.2)

- encoding of all possible values (for S or M only).

The parameters which are directly mapped onto presenta-
tion service parameters do not appear in this table.
These are: filestore-name (see 4.4.3) and checkpoint-
identification (see 4.4.7.3).

Default values

)

J ’ The existence of a default value, to be used in case
the parameter has not been explicitly specified,
depends only on the parameter value type (see 4.3.2.2):

- for value types S and M, there is always a default
value, equal to zero (0).

- for value types C, N, D and T, there is no default
value.

Aggregates

A few parameters contain, instead of an elementary
value, an aggregate of values. This aggregate is en-
coded as a fixed data structure when most elements are
always present and there is no need for extendability.
Otherwise, it is encoded recursively as a set of TLV
items. In this latter case, the range of T's internal
to an aggregate can overlap the range of T's defined

’ , in table 4.3/2, since this represents another level

of encoding.

The internal encoding of aggregate parameters is speci-
fied in 4.3.2.4 to 4.3.2.10.

Table 4.3/2 - Parameter encoding

N O U BN

o

10
11
16
17
24

25
20

28
29
30
31
32

2
4

63

L

Parameter Value Value encoding
type

Diagnostic - - Agoregate, see 4.3.2.4
Protocol-definition = = Aggregate, see 4.3.2.5
File-name 64 C
File-passwords k¥ g
Access-control-1list 1 S 0: no, 1: yes
Access-mode 1 S 0: in sequence
Processing-mode 1 S 0: read, 1: write,

2: append
Lock 1 S 0: exclusive, 1: shared read

2: shared update
Failure-option 1 M bl: rollback
Grouping-option 1 M bl: Grouping
Authentication = s Aggregate, see 4.3.2.11
Open-identification 4 N
Restart-position 4 N
Clash-option 1 S 0: reject, 1: keep,

2: replace
Reversible-mapping 1 S 0: no, 1: yes
Requested-attributes 1 M bl: history, b2: global

b3: record, b4: key

b5: field
History-attributes = = Aggregate, see 4.3.2.6
Global-attributes - - Agpgregate, see 4.3.2.7
Record-attributes = = Aggregate, see 4.3.2.8
Key-attributes - - Aggregate, see 4.3.2.9
Field-attributes - Aggregate, see 4.3.2,10
Special-conventions T
Special-information =~ T
File-data - T see 4.3.2.12

(

4.3.2.4 Value of diagnostic parameter

The value field of the diagnostic parameter is a structure
defined as follows in BNF:

<diagnostic value> ::= <severity> <reason> {<DS>}

<DS> ::= <DS type> <DS value length> <DS value>

- 64 =

The terminal elements are encoded as follows:
<severity>

4-bit unsigned binary integer (bl-b4 of first
octet of <diagnostic value>). See table 4.3/3
for values. When the diagnostic parameter is
omitted, the default value of <severity> is
"'success" (0).,

<reason>

12 bit unsigned binary integer (b5-b8 of first
octet of <diagnostic value>, followed by bl-b8 of
second octet). See table 4.3/4 for values. The
table also indicates the corresponding severity

(or severities) and the messages where ecach

reason value can appear (except for values appli-
cable to most messages). When the diagnostic
parameter is omitted, the default value of <reason>
is '"no reason provided" (0).

<DS type>

5-bit unsigned binary integer (bl-b3 of first octet
of <DS>). Legal values: 0-2.

<DS value length>
5-bit unsigned binary integer (b4-b8 of first octet
of <DS>).

<DS value>
Dependent on <DS type> value, as follows:

0: character string, up to 31 characters.

1: one octet containing a parameter type (see 4.3.2.1)
or 2 octets containing an aggregate type and a
parameter type, in the case of parameters re-
cursively encoded within aggregates.

2: one octet containing a message type (see 4.3.1)
Exception:

A special encoding is required for the diagnostic
parameter when it is supplied as user data in a
P-DISCONNECT, since the P-DISCONNECT can offer only
5 octets of user data (see 4.4.4).

In this special case, the following fields are omitted:
parameter type, parameter length, DS type, DS value
length. The 3 octets are encoded as follows:

- §5§ -

first 2 octets: severity and reason (standard encoding)
third octet: message type (standard value field of
DS type 2)

Table 4.3/3 - Severity values

0: success
1: success with warning
2: recoverable failure
3: failure
Table 4.3/4 - Reason values
Value | Sev.| Reason Messages
0 0 No reasonprovided
| 123 |Non standard reason
2 3 Unset parameter value
3 3 Illegal parameter value
4 5 Unsupported parameter value
5 3 Illegally duplicated parameter
§) | 3 Il1legal parameter type
7 | 3 Unsupported parameter type
8 23 I/0 error AT, ATR
9 23 File space exhausted AT, ATR
10 23 Transmission error AT, ATR
11 23 Record size error AT, ATR
12 23 Presentation error (formatting) AT, ATR
13 23 Presentation error (compression) AT, ATR
14 23 Presentation error (encryption) AT, ATR
15 3 VF protocol violation VF conn. abort
16 3 Time-out expiration DP
17 3 Shut-down DP
18 3 File does not exist SLR, OPR
19 3 Insufficient permission
20 3 Insufficient resources
21 3 File not mountable SLR, CRR, OPR
22 3 File busy SLR, CRR, DLR, OPR
23 1 More restrictive lock OPR
24 3 Rollback not supported OPR
25 3 File already exists CRR
26 1 Existing file kept CRR
27 1 Existing file replaced CRR
2 3 File mapping not reversible CRR
Z9 3 Local filestore error
30 3 Local filestore restriction

Table 4.3/4 - Reason values (cont'd)

Value Sev. Reason Messages
31 3 Password collision CRR
32 1 Input file empty OPR
53 b Specification error in local filestore
34 5 Illegal parameter value duplication
35 3 Conflicting parameter value
30 3 File not prepared for restart OPR
37 3 File waiting restart OPR
38 3 Open-identification not unique OPR
39 3 Open-identification not found OPR :

4.3.2.5 Contents of protocol-definition aggregate

Parameters of this aggregate are encoded as a
structure containing a fixed number of elements
in the specified order. This structure is des-
cribed by table 4.3/5.

Table 4.3/5 - Protocol-definition encoding

Type Parameter Value [Value | Value encoding
length |type

- Protocol-identifier 1 S 0: VFP

- Protocol-version 1 M bl: version 1

- Class-of-filestore 1 M bl: unstructured files
) b2: field descriptions

- Class-of-service 1 M bl: basic file mgt

b2: restart

4.3.2.6 Contents of history-attributes aggregate

Parameters of this aggregate are recursively
encoded as a set of TLV's which are defined in
table 4.3/6

.llllllllllllllllIIIIIIIIIllIllIlllIllIIIIlII-------------.‘r-
- 57 - |

Table 4.3/6 - History-attributes encoding

Type Parameter Value [Value |Value encoding
! length |type
56 Creation-date 12 D |
57 Creation-user-id 8 C
58 Last-access-date 12 D
59 Last-access-user-id 8 C
60 Last-modif-date 12 D
61 Last-modif-user-id 8 C
62 Total-number-of-accesses 4 N
63 Total-number-of-modif 4 N

4.3.2.7 Contents of global-attributes aggregate

Parameters of this aggregate are recursively encoded
as a set of TLV's which are defined in table 4.,3/17.

Table 4.3/7 - Global-attributes encoding

Type Parameter Value |Value | Value encoding
length |type

1 File-structure 1 S 0: flat, 1: unstructured
2 File-data-type I S 0: character,

1: transparent,

2: heterogeneous
3 File-current-size 4 N
4 File-maximum-size 4 N

4.3.2.8 Contents of record-attributes aggregate

Parameters of this aggregate are recursively encoded
as a set of TLV's which are defined in table 4.3/8.

58 -

Table 4.3/8 - Record-attributes encoding

:
Type Parameter Value [Value Value encoding
length|type
5 Record-size-type 1 S 0: fixed, 1: variable
6 Record-size 4 N
7 Record-sequence 1 S 0: by position, 1: by key
8 Direct-access 1 S 0: by no means,
1: by sequence, 2: by key
4.3.2.9 Contents of key-attributes aggregate
Parameters of this aggregate are recursively encoded
as a set of TLV's which are defined in table 4.3/9.
Table 4.3/9 - Key-attributes encoding
Type Parameter Value |Value Value encoding
length [type
9 Key-position 2 N
10 Key-length 2 N
11 Key-field-rank 2 N

4.3.2.10 Contents of field-attributes aggregate

Parameters of this aggregate are recursively encoded
as a set of TLV's which are defined in table 4.3/10.

—

- 59 -

Table 4.3/10 - Field-attributes encoding

Type Parameter Value |Value|Value encoding
length|type
12 Field-rank 2 N
L35 Field-data-type 1 A bl-b2: type (symbolic:
0=string, l=number)
b3-b8: attributes
-for type = 0,
b3: size type (0:fixed)
b4-b6: reserved (0)
b7-b8: element type
(0: character, 1: octet, (
2: bit)
-for type = 1, bit map
b3-b5: reserved (0)
b6: base:0=binary,l=decimal
(0 for floating point)

b7: scale: 0=fixed, 1=float
b8: sign: 0=no, l=yes

14 Field-size 1 N

15 Field-complement 1 N

4.%3.2.11 Contents of authentication aggregate

Parameters of this aggregate are recursively encoded
as a set of TLV's which are defined in table 4.3/11.

Note 6
This description is given here provisionally, until some Security
Protocol standard is produced. (

Table 4.3/11 - Authentication encoding

Type Parameter Value Value [Value encoding
cngth | type

1 User-identification 8 C
2 User-password 8 C
3 Account-identification 8 C

4,3.2.12 File data encoding

Because the encoding of file data for the transfer is
provided by the Presentation layer, the length of this
data may vary from one VFS entity to the other, due

to differences in local syntaxes. Therefore, this
length cannot be specified in the file-data parameter

- 60 -

encoding, which is to be considered as a special
kind of parameter.

Since the file-data parameter is the only parameter
of the DATA message, it is encoded as transparent
data of the VFP, without any parameter header. File
data occupies the totality of the DATA message, with
exception of the message header.

4.4 PRESENTATION SERVICES MAPPING

4.4.1

General

The virtual file protocol relies on the services offered
by the data presentation protocol of the presentation
layer (see Standard ECMA-84).

Connection mapping

Each VFS connection uses one and only one presentation
connection. The presentation connection is used by only
one VFS connection.

NOTE 7

Multiplexing of multiple concurrent VFS connection onto a presenta-
tion connection is excluded in ISO 7498.

Presentation connection establishment

The establishment of a presentation connection between
the Primary and the Secondary is necessary before any
Virtual File protocol activity. The P-CONNECT service
maps the SP and SPR messages of the VFP in the following
way:

- the filestore-name parameter of the SP is mapped onto
the user-called parameter of P-CONNECT.

- the remainder of the SP message is mapped into the
transp-data parameter of P-CONNECT request and
indication.

- the SPR message is mapped into the transp-data para-
meter of P-CONNECT response and confirmation.

- the VFP sets the session parameters of P-CONNECT as
follows:

. Session-subset: "C" (basic synchronized subset)
. Token assignment:
data token: not defined
all other tokens: Primary
Blocking: according to VFP implementations.

——_——-————j

= 61 =

4.4.4 Presentation connection termination

The presentation connection 1is terminated in one of
three ways:

- normal termination request only by the Primary
(RP, RPR messages)

- abnormal termination request by either VFS entity,
resulting either from a F-DISCONNECT request (DP
message) or from a spontaneous action of the VFS
entity itself.

- spontaneous disconnection by the presentation service.

The first case is mapped onto the P-RELEASE service.
Though this service offers negotiated termination, the
Secondary must accept the proposed termination. (

The second case is mapped onto the P-DISCONNECT ser-
vice. The diagnostic parameter of the VFP is mapped
into the transp-data parameter of P-DISCONNECT (see
note 8).

The third case is treated as a presentation service
failure. It is signalled by the P-ABORT service.

NOTE 8

The transp-data parameter of the P-DISCONNECT is limited to 3
octets. This limit is expected to be removed in a future version.

4.4.5 Presentation negotiation

The VEP uses the P-PERFORM-NEGOTIATION service to nego-

tiate the presentation characteristics for a given data
transfer (DPP transfer environment). The P-PERFORM-NEGO-
TIATION is always invoked by the Primary. It may be used

any number of times on a VFS connection (including zero).

It must not be invoked within a file data transfer en- ‘
closure (as defined in 3.1.2); if grouping is used, it

can be invoked only at the beginning of a structure

group.

NOTE 9

This last rule is to eliminate any ambiguity on the current DPP
transfer environment in case of a failed structure group.

4.4.6 Data exchange

A number of VFP messages (see 4.4.9) are mapped as pre-
sentation service data units of the P-DATA service.

A1l VFP control information (message header and TLV para-
meters) are mapped into the transp-data parameter, while
file data is mapped into the formatted-data parameter.

.4.7 Dialogue facilities

The following presentation service dialogue facilities
(implied by the choice of session subset C) are used
for the mapping of VFP messages not sent through P-DATA.

4.,4.7.1

4.4.7.2

4.4.7.3

Dialogue unit concept

The VFP uses the concept of dialogue unit (DU). A
dialogue unit maps:

- a VFP structure group outside of file data transfer,
if grouping is used,

- all consecutive VFP dialogue outside of file data
transfer, if grouping is not used,

- part of a file data transfer enclosure. The trans-
fer enclosure is only one dialogue unit if there
is no restart during the transfer.

Therefore the P-END-DU service maps the EG and EGR
VFP messages and must be used immediately after the
ET and ETR VFP messages and, when grouping is not
used, the BT and BTR messages.

When two consecutive dialogue units are of different
nature, it may be necessary to exchange the End-DU
and the Synchronize tokens: this is achieved through
the P-TOKENS-GIVE service. Both tokens are always
assigned to the same entity:

- Primary for file management dialogue units,
- Sender for file data transfer dialogue units.

Abnormal termination of DU

Outside of file data transfer, dialogue units are
never abnormally terminated (except by disconnection).
File data transfer dialogue units may be abnormally
terminated. The P-RESYNC service maps the follow-

ing VFP messages:

- AT and ATR: the resync-type value is then "abandon"
and the user-data parameter of the P-RESYNC is used
to map the diagnostic parameter of the VFP. Token
exchange can be specified in this use of P-RESYNC:
the rules are the same as in 4.4.7.1.

- RT and RTR: the resync-type value is then "restart"
and the user-data parameter of the P-RESYNC is
used to map the restart-position parameter of ihe
VEFP. Tokens are not exchanged in this use of P-RESYNC.
The serial-number parameter must be set to its va-
lue at the beginning of the DU (in order that the
Primary be always the contention winner).

Minor synchronization points

The P-SYNC service maps the CK and CKR messages of the
VFP. The type is set to '"normal'".

= B3 =

4.4,8 Summary of presentation service usage

The presentation services used by the VFP are:

P-CONNECT
P-RELEASE
P-DISCONNECT
P-ABORT

P-PERFORM-NEGOTIATION
P-DATA

P-SYNC]
P-END-DU

P-RESYNC

P-TOKENS-GIVE

4.4.9 Summary of VFP messages mapping

SP, SPR: P-CONNECT

RP, RPR: P-RELEASE

DP : P-DISCONNECT

SL, SLR: P-DATA

OP, OPR: P-DATA

CL, CLR: P-DATA

RL, RLR: P-DATA

BT, BTR: P-DATA [+ P-END-DU [+ P-TOKENS-GIVEI]
RA, RAR: P-DATA

CR, CRR: P-DATA

DL, DLR: P-DATA

DATA : P-DATA

EG, EGR: P-END-DU [+ P-TOKENS-GIVEI

ET, ETR: P-DATA + P-END-DU [+ P-TOKENS-GIVE]
AT, ATR: P-RESYNC

RT, RTR: P-RESYNC

CK, CKR: P-SYNC

NOTE 10 (

For optional mapping on P-END-DU and P-TOKENS-GIVE, see 4.4.7.1.

4.5 PROTOCOL SUBSETS
4.5.1 General

For each of the service subsets defined in 3.3, a corres-
ponding protocol subset is defined in this clause.

4,5.2 Kernel

The protocol messages included in this subset are:

EG, EGR
SP, SPR
RP, RPR
DP

SL, SLR
OP, OPR
CL, CLR
RL, RLR

BT, BTR
DATA

ET, ETR
AT, ATR

The open-identification parameter in OP and the restart-
position parameter in OP and OPR are not included in
this subset.

Basic file management extension

The protocol messages included in this extension are:

RA, RAR
CR, CRR
DL, DLR

Restart extension

The protocol messages included in this extension are:

RT, RTR
CK, CKR

The open-identification parameter of OP and the restart-
position parameter of OP and OPR are included in this
extension.

- 65 -

5 Conformance

i

| 5.1 CONFORMANCE REQUIREMENTS

5.1.1

5.1.2
)

5.1.3
) s

General

This clause defines the conformance requirements for
the virtual file protocol defined in section 4 of the
standard.

There is no conformance requirement for the abstract
virtual file service defined in section 3 of the
standard.

Only the externally visible and externally testable
criteria are defined.

Equipment
The conformance requirement is for equipment which
consists of hardware and/or software and has the pur-

pose of conforming with this standard. The equipment
may also have other purposes.

Peer equipment

Any execution of the protocol necessarily involves a
peer equipment with which the subject equipment com-
municates. For purposes of verifying conformance, it
i1s assumed that this other peer equipment:

- 1s operating in conformance with the standard;

- may be capable of controlled deviation, in that it
may be the source of deliberate protocol errors for
the purpose of testing.

This conformance requirement does not distinguish any
differences of conformance status between the two equip-
ments (i.e. the notion of a '"reference equipment" with

a '"definitive implementation' is not used).

Protocol subsets

The equipment shall implement one or more of the protocol
subsets defined in 4.5, in the role of Primary or
Secondary or both. For each role, the supplier of the
equipment shall nominate which of these subsets the
equipment is intended to conform with. Any number of the
following can be nominated:

(1) Kernel

(2) Kernel + restart

(3) Kernel + basic file management

(4)° Kernel + restart + basic file management

NOTE 11

Conformance with subset (N) does not necessarily imply confor-
mance with any subset (N-1).

NOTE 12
Primary and secondary need not conform with the same subsets.

The supplier shall also nominate which of the subsets
of the virtual file model, as defined in 2.2, the equip-
ment is intended to support.

Additional virtual file protocol

In addition to the subsets nominated as in 5.1.4, the
equipment may also implement other virtual file protocol,
including different subsets of the protocol defined 1in
this standard.

Such additional provisions are themselves not in confor-
mance with the standard, but do not prejudice conformance
with the standard provided that they are separate and do
not prevent use of the subsets nominated as in 5.1.4.

Requirements

For each role and subset nominated as in 5.1.4 above, the
equipment shall support establishment, use and termination
of a VFS connection by execution of the protocol according
to the following criteria. The subject equipment:

- shall accept correct sequences of VFP messages received
from peer equipment, and respond with correct VFP
message sequences, for the defined states of a VFS
connection;

- shall respond correctly to all incorrect sequences of
VFP messages received for a defined state of a VFS
connection;

- shall accept all correct sequences of the presentation
mapping,

- shall only issue correct sequences of the presentation
mappings,

- should demonstrate a series of file operations which
give evidence that the virtual filestore implementation
is behaving as implied by the virtual file model (for
example, create a file, retrieve its attributes, write
data to it, reread the data from it, delete the file,
verify its absence).

NOTE 13

In particular implementations, however, reversible mapping may
not be needed or may be difficult to achieve. For example, a
real filestore which supports only variable size records can
obviously map a virtual file with fixed size records, but may
be unable to "remember" that the records were fixed size.

The terms '"correct sequences' and '"incorrect sequences"
refer to the protocol defined in section 4 and Appendix D.

- 69 -

Appendices

rkF

= T =

APPENDIX A

BRIEF DESCRIPTION OF THE REFERENCE MODEL OF OPEN SYSTEMS INTER-
CONNECTION

A.1 SCOPE

This appendix is not an integral part of the standard.
It is a copy of ISO/TC97/SCl6 N 575.

This appendix provides a brief description of the Reference
) Model of Open Systems Interconnection.

A.2 GENERAL DESCRIPTION
A.2.1 Introduction

The Reference Model of Open Systems Interconnection pro-
vides a common basis for the co-ordination of the deve-
lopment of new standards for the interconnection of sys-
tems and also allows existing standards to be placed
within a common framework. The model is concerned with
systems comprising terminals, computers and associated
devices and the means for transferring information between
these systems.

A.2.2 Overall perspective

The model does not imply any particular systems implemen-
tation, technology or means of interconnection, but
rather refers to the mutual recognition and support of

) the standardized information exchange procedures.

A.2.3 The Open Systems Interconnection environment

Open Systems Interconnection is not only concerned with
the transfer of information between systems (i.e. with
communication), but also with the capability of these
systems to interwork to achieve a common (distributed)
task. The objective of Open Systems Interconnection is
to define a set of standards which allow interconnected
systems to co-operate.

The Reference Model of Open Systems Interconnection re-
cognizes three basic constituents (see fig. 1):

a) application processes within an OSI environment,

———_f—-‘

b) connections which permit information exchange,
c) the systems themselves.
NOTE A.l

The application processes may be manual, computer or physical
processes.

A.2.4 Management Aspects

Within the Open Systems Interconnection architecture

there is a need to recognize the special problems of
initiating, terminating, monitoring on-going activities

and assisting in their harmonious operations as well

as handling abnormal conditions. These have been col-

lectively considered as the management aspects of the

Open Systems Interconnection architecture. These con-

cepts are essential to the operation of the intercon- (
nected open systems and therefore are included in the
comprehensive description of the Reference Model.

System A System B Aspects of system and
" application process

® ® ® ,/ of concern to OSI

\

Physical interconnection mediaé

Fig. 1 - General schematic diagram illustrating the
basic elements of Open Systems Interconnection ‘

A.2.5 Concepts of a Layered Architecture

The open systems architecture is structured in Layers.
Each system is composed of an ordered set of sub-
systems represented for convenience by Layers in a
vertical sequence. Adjacent subsystems communicate
through their common interface.

A Layer consists of all subsystems with the same rank.
The operation of a layer is the sum of the co-operation
between entities in that Layer. It is governed by a set
of protocols specific to that Layer.

A,

- 72 =

The services of a Layer are provided to the next
higher Layer, using the functions performed within
the Layer and the services available from the next
lower Layer.

An entity in a Layer may provide services to one or
more entities in the next higher Layer and use the
services of one or more entities in the next lower
Layer.

3 THE LAYERED MODEL
The seven-Layer Reference Model is illustrated in fig.Z2.
Layer Peer- to-peer-protocol
Application =3 & l S
Presentation _y < >
Session =S < N
Transport S < >
Network - < S
Link - < >
Physical - < >
A
'Physical media for interconnection
y
Fig. 2 - The seven-layer Reference Model and
peer-to-peer protocol
A.3.1 The Application Layer

As the highest layer in the Reference Model of Open
Systems Interconnection, the Application Layer provides
services to the users of the OSI environment, not to a
next higher layer.

The purpose of the Application Layer is to serve as the
window between communicating users of the OSI environment
through which all exchange of meaningful (to the users)
information occurs.

A.3.4

- 73 -

The user is represented by the application-entity to
its peer.

A1l user specifiable parameters of each communications
instance are made known to the OSI environment (and,
thus, to the mechanisms implementing the OSI environment)
via the Application Layer.

The Presentation Layer

The purpose of the Presentation Layer is to represent
information to communicating application-entities in a
way that preserves meaning while resolving syntax diffe-
rences.

The nature of the boundary between the Application Layer
and the Presentation Layer is different from the nature
of other Layer boundaries in the architecture.

The following principles are adopted to define a bound-
ary between the Application Layer and the Presentation
Layer:

a) internal attributes of the virtual resource and its
manipulation functions exist in the Presentation
Layer;

b) external attributes of the virtual resource and its
manipulation functions exist in the Application Layer;

c) the functions to use the services of the Session La-
yer effectively exist in the Presentation Layer;

d) the functions to use services of the Presentation
Layer effectively exist in the Application Layer.

The Session Layer

The purpose of the Session Layer is to provide the means
necessary for cooperating presentation-entities to or-
ganize and synchronize their dialogue and manage their
data exchange. To do this, the Session Layer provides
services to establish a session-connection between two
presentation entities, and to support their orderly data
exchange interactions.

To implement the transfer of data between the presentation-
entities, the session-connection is mapped onto and uses
a transport-connection.

The Transport Layer

The Transport Layer exists to provide the transport-
service in association with the underlying services
provided by the supporting layers.

- 74 -

The transport-service provides transparent transfer of
data between session entities. Transport Layer relieves
the transport users from any concern with the detailed
way in which reliable and cost effective transfer of
data is achieved.

The Transport Layer is required to optimize the use of
the available communication resources to provide the
performance required by each communicating transport
user at minimum cost. This optimization will be achieved
within the constraints imposed by considering the global
demands of all concurrent transport users and the overall
limit of resources available to the Transport Layer.
Since the network service provides network connections
from any transport entity to any other, all protocols
defined in the Transport Layer will have end-to-end
significance, where the ends are defined as the corres-
pondent transport-entities.

The transport functions invoked in the Transport Layer
to provide requested service quality will depend on the
quality of the network service. The quality of the
network service will depend on the way the network ser-
vice is achieved.

The Network Layer

The Network Layer provides the means to establish
maintain and terminate network connections between
systems containing communicating application-entities

and the functional and procedural means to exchange
network service data units between two transport entities
over network connections.

The Link Layer

The purpose of the Link Layer is to provide the functional
and procedural means to activate, maintain and deactivate
one or more data link connections among network entities.

The objective of this layer is to detect and possibly cor-
rect errors which may occur in the Physical Layer. In ad-
dition, the Link Layer conveys to the Network Layer the
capability to request assembly of data circuits within the
Physical Layer (i.e. the capability of performing control
of circuit switching).

A.3.7 The Physical Layer

The Physical Layer provides mechanical, electrical,
functional and procedural characteristics to activate,
maintain and deactivate physical connections for bit
transmission between data link entities possibly through
intermediate systems, each relaying bit transmission
within the Physical Layer.

r—_—_—f—

- 76 -

APPENDIX B

TERMINOLOGY

B.1 GENERAL
This Appendix is an integral part of the standard.
The terminology used in this standard consists of:

- Reference Model terminology, which is defined in
ISO 7498.

) - Terminology for virtual file model, services and
protocol, which is defined in this Appendix (see B.2).

- Notation terminology, which is defined in Appendix C.

B.2 DEFINITIONS

File: see Virtual File.
Filestore: see Virtual Filestore.

File-Access: the inspection or manipulation of all or part
of the contents of a file.

File-Attributes: the standardized properties of a file.

File-Management:the inspection or manipulation of the
attributes associated with a file.

File Mapping: the process of relating a real file to a
virtual file and vice-versa.

‘ 3 File-Transfer: a function which moves the contents and
{ associated properties of a file from one filestore to
another.

| Message: used in this document to designate a Virtual File
protocol-data-unit, consisting of Virtual File Protocol
| control information and possibly file data.

1 Primary: the Virtual File Service entity (or the VFS user)
‘ which initiates the file transfer.

1 Real File: a named collection of information with a common
set of properties, as stored in a specific system.

Real Filestore: a collection of real files residing at a
particular system, including description of their properties
and names.

- =

- 77 =

Record: the unit of data within a file, that can be
individually accessed through the Virtual File Service.
Applicable to most file structures; exceptions are named
unstructured files.

Secondary: the Virtual File Service entity (or the VEFS
user) which accepts the file transfer initiated by the
Primary.

Virtual File: a commonly agreed image of a file, created
so as to allow open working between dissimilar real files.
The Virtual File Service only operates on virtual files.
In this document, "file'" is always used as a short form
for "virtual file'.

Virtual Filestore: a collection of virtual files, residing

at a particular system, including descriptions of their

properties and names. In this document, "filestore" is ‘ |
always used as a short form for "virtual filestore'. l

Virtual File Service (VES): a standardized service, which
provides an independence of: '

- the specific host system »
- the filestore location
- the local data representation.

This service can operate on virtual files and virtual
filestores. It is composed of file management, file access
and file transfer.

Virtual File Service Entity (VFS entity): addressable entity
to provide virtual file service.

-

- 78 -

APPENDIX C

NOTATION

INTRODUCTION AND SCOPE

This Appendix is an integral part of the standard.

It is a reproduction of notation defined in the ECMA
register of common techniques for OSI standards,
particularised by substitution of the acronym "VES"
into the terms defined.

DEFINITIONS

This terminology is for the notation defined in this
Appendix.

(x)-service: a conceptual unit of the virtual file
service, of which (x) is its particular name.

(Service) primitive: a discrete component of an
(x)-service.

(x)-Request primitive: a type of primitive by means of
which a VES user causes an occurence of the (x)-service.

(x)-Indication primitive: a type of primitive by means
of which a VFS user is informed of an occurence of the
(x)-service.

(x)-Response primitive: a type of primitive by means of
which a VES user replies to an occurence of an (x)-indica-
tion primitive.

(x)-Confirmation primitive: a type of primitive by means
of which a VFS user is informed of an occurence of an
(x)-response primitive.

Service structure: the series of one or more primitives of
which an (x)-service wholly consists.

Service structure type 1l: a service structure with a request

primitive and an indication primitive.

Service structure type 2: a service structure with a request

primitive, an indication primitive, a response primitive
and a confirmation primitive.

Service structure type 3: a service structure with two
indication primitives.

- 79 =

Event: the occurence of a primitive.

Initiator: the VFS user who issues the request primitive
of the (x)-service concerned.

Acceptor: the VFS user who receives the indication pri-
mitive of the (x)-service concerned.

SERVICE MODEL

The virtual file service is modelled as an abstract service
to which VFS users gain access at VFS-access-points. All
interactions are between two VFS users located at separate
VFS-access-points. A single VFS connection is modelled.

PRIMITIVES

The virtual file service is defined by means of service (
primitives.

Primitives are conceptual and are not intended to be directly
related to virtual file protocol elements or to the units

of interaction across a procedural interface in an implemen-
tation. The descriptive technique is independent of such
variable details.

Primitives which relate only to local conventions between
a VFS user and an implementation are not defined. ;

The subdivision of the virtual file service into the parti-
cular primitives chosen is arbitrary, in that the same
virtual file service could be described by other logically
equivalent primitives. There is no notion that a primitive
is "elementary'".

A primitive occurs at one service access point (not both).
It usually has parameters, containing values related to its
occurence. ‘ '

The occurence of a primitive is a logically instantaneous
and indivisible event. The primitive occurs at a logically
separate instant, which cannot be interrupted by the
occurence of another primitive. It occurs either completely
or not at all.

There are four types of primitives in this standard (see C.2):
a) request primitive

b) indication primitive

c) response primitive

d) confirmation primitive.

The primitives are given names prefixed by "F'" (file) to
distinguish them from primitives of adjacent layers. The
names of the primitives are written in upper case, e.g. F-DATA,

S

SERVICE STRUCTURE

Each service consists of one or more primitives and affects
both service access points. There are three different com-
binations of primitives. These combinations are referred to
as service structures. The three service structure types
used in this standard are defined in C.2.

Unlike the occurence of its constituent primitives, the
occurence of a service structure is not logically instan-
taneous and indivisible. The intervals between its consti-
tuent primitives may be non-disruptively interspersed with
the primitives of other service structures, subject to
restrictions particular to the service concerned. Service
structures may also be disrupted by the occurence of certain
other primitives (see C.06).

EFFECTS OF SERVICES

The effects of a service are referred to as being sequen-
tially transmitted if its successive primitives at one
service access point result in the same sequence of cor-
responding primitives at the other service access point
(unless disrupted, see below).

The effects of a service are referred to as being expedited
if its indication or confirmation primitives may arrive at
the other service access point before those of a previous
occurence of a service.

The effects of a service are referred to as being disruptive
if it may destroy, and therefore prevent the occurence of,
indication and confirmation primitives corresponding to
previous request or response primitives. The effects of dis-
rupted services are expedited, unless stated otherwise.

The effects of a primitive are referred to as being non-
disruptive if they do not have the above disruptive effects.
Non-disruptive effects may include effects relating to or
delaying other events without destroying them.

Unless otherwise specified, the effects of a service are
sequentially transmitted and non-disruptive.

PARAMETER NOTATION

For each service structure, the parameters are defined by

a table. followed by a list of parameter descriptions. The
column headings in the parameter tables indicate the primi-
tive types: REQ for Request, IND for Indication, RESP for
Response, CONF for Confirmation.

—

- 81 -

The values in the columns of the parameter tables obey
the following conventions:

D (down): value supplied by the VFS user in the primitive
U (up): value supplied by the VFS in the primitive

B (both): value supplied either by the user or by the VFS
in the primitive

x: parameter not used in the primitive.

The detailed description of a parameter includes its pur-
pose, the rule for setting its value, the default value
and the legal values. All parameters which are supplied by
the user (D) both in request and response primitives are
negotiated. The others are not negotiated.

Unless otherwise stated, the parameter value in the indi- {
cation 1is the same as that in the request, and the para-

meter value 1n the confirmation is the same as that in the

response.

Parameter values are only defined to a level which distin-
guishes meaning, but generally without defining their
absolute value or encoding. These details are outside the
scope of the standard, being local conventions between the
VFS user and an implementation.

D.

APPENDIX D

FORMAL, DESCRIPTION

INTRODUCT ION

This Appendix is an integral part of the standard.

In section 4 of the standard, the virtual file protocol
interactions between two VES entities are described.
That description references states, events and actions
which in this appendix are consolidated into a formal
description of the protocol, as a Finite State Machine
(FSM) .

NOTE D.1

There is no formal description of the presentation mapping-

ELEMENTS USED IN THE FORMAL DESCRIPTION

Table D/1 lists the states which are used in the formal
description. For each entry there is a state code and a
brief description.

Table D/2 lists the events which are used in the formal
description. For each entry there is an event code and a
brief description.

Table D/3 lists the message acronyms which are used in
the formal description to identify messages sent.

Table D/4 1lists the conditions which are used in the
formal description. For each entry there is a condition
code and a brief description.

Table D/S5 lists the valid groupings of request messages,

by describing which pairs of consecutive requests
(preceding, following) are allowed in the same group,

i.e. without an intervening EG message. "Y'" entries indi-
cate valid combinations, blank entries invalid combinations.
"NS" entries refer to valid but irrational combinations

(not significant).

The way in which these various elements are used is defined
in D.3.

- 83 -

Table D/1 - FSM States

State-code State-description State tables
CF.. (Connection Facility
states)
CFO1 Dormant D/7 D/8
CF02 SP-pending D/7 D/8
CFO03 RP-pending D/7 D/8
FM. . (File Management
states)
FMO1 No-file D/7 D/8 D/9 D/10
FMO0 2 SL-pending D/9 D/10
FMO3 CR-pending D/9 D/10
FM04 File-selected D/9 D/10 D/11 D/12
FMOS RL-pending D/9 D/10
FMO06 DL-pending D/9 D/10
FMO7 RA-pending D/9 D/10
FM08 OP-pending D/11 D/12
FMO09 File-open D/11 D/12
FM10 CL-pending D/11 D/12
FM11 BT-pending D/11 D/12
FM12 EGR-pending D/11B
‘ FM13 wait-for-EG D/12B
DT s (Data Transfer states)
DTO1 Data D/13 D/14 D/15 D/16
DTO02 ET-pending D/13 D/15 D/16
! DT03A RT-pending (Sender
‘ initiated) D/15 D/16
l DTO3B RT-pending (Receiver
| initiated) D/15 D/16 ‘
DTO4A AT-pending (Sender
initiated) D/15 D/16
DT04B AT-pending (Receiver
| initiated) D/15 D/16
DTOS File-aborted D/11 D/12
DTO06 CK-pending D/14 D/16
NOTE D.2
The state tables referenced are those where the state-code appears as a
column heading. The state-code may also appear inside other tables as a
resulting state. Tables D/7 and D/8 should be implicitly added to the list

for all state-codes, since they contain "Any other state" as a column heading .

~s

- 84 -

Table D/2 - FSM Events

Event-code Event description
XX ' XX request message
XXR XX response message
XX-RQ Request primitive associated to XX
XX-IN Indication primitive associated to XX
XX-RP Response primitive associated to XX
XX-CF Confirmation primitive associated to XX
NOTE D.3
Table D/3 gives the list of valid values for XX. An example is given below,
) where XX = SL.
SL : SL request message
SLR : SLR response message
SL—-RQ : F-SELECT-FILE request primitive
SL-IN : F-SELECT-FILE indication primitive
SL-RP : F-SELECT-FILE response primitive
SL-CF : F-SELECT-FILE confirmation primitive
Table D/3 - List of protocol messages
Acronym Message name State tables
SP Select Protocol D/7 D/8
RP Release Protocol D/7 D/8
) DP Disconnect Protocol D/7 D/8
) AB(*) Abort Connection D/7 D/8
, EG End Group D/9 D/10 D/11 D/12
' SL Select File D/9 D/10
RL Release File D/9 D/10
CR Create File D/9 D/10
DL Delete File D/9 D/10
RA Read Attributes D/9 D/10
opP Open File D/11 D/12
CL Close File D/11 D/12
BT Begin Transfer D/11 D/12
DATA Data D/13 D/14
ET End Transfer D/15 D/16
RT Restart Transfer D/15 D/16
AT Abort Transfer D/15 D/16
CK Checkpoint D/13 D/14

(*) There are only two events related to the acronym AB:
AB: Presentation connection abort indication from layer 6
AB-IN: VFS connection abort indication.

NOTE D.4

The state tables referenced are those where one of the events associated
with the acronym (see table D/2) appears as a row heading.

Table D/4 - Conditions

Condition Meaning

+ Value of diagnostic severity is ''success'" or
"success with warning"

= Value of diagnostic severity is "failure"

pr VFS entity is "Primary"
§C VFS entity is "Secondary" Q
ag Current request group aborted
eg End of request group pending
| €c Checkpoint counter >0
5CONDV:cond | This intersection is valid only if cond is true

Initial setting of conditions

+,-: not applicable

pr,sc: according to connection establishment
ag, ecg: false

cc: false whenever entering DTO1.

- 86 -

Table D/5 - Request grouping

next
. SL CR RL DL RA OP CL BT EG
prev.

SL NS Y Y Y Y
CR Y NS Y Y Y
RL Y Y Y
DL Y Y Y
RA Y Y NS Y Y
opP Y Y
CL Y Y Y Y Y
BT Y
NOTE D.5

A valid grouping needs not be supported by all implementations.

It is

up to each implementation of a Primary to decide which amount of

grouping, if any, it wants to support.

D.3

Formal Description conventions

The formal description is in tables D/7 to D/16.

The horizontal dimension of each table is the set of all
the states. If for any given state there is no valid event,
then the state does not appear in the table, i.e. no column.

The vertical dimension of each table is the set of all
relevant FSM request events, incoming message events and FSM
response events. For each event there is an entry, i.e. a
TOW.

Each valid intersection contains:

- one or more conditions (where relevant),
- one or more actions (where relevant),
- the new state (always).

The conditions are those defined in table D/4.

The action consists of sending a message or issuing a local
primitive event (indication or confirmation) or setting
a condition.

- 87 -

The new state is the state which is entered after the speci-
fied actions are completed. When the grouping option is sup-
ported, states may be enqueued in a FIFO queue for later re-
trieval (as specified in 4.1.3): this is indicated by the
Q(XXnn) action, where XXnn is the enqueued state. Their de-
queuing is indicated by the DQ action and results in the de-
queued state being entered. The PQ action indicates purging of
the queue. DQ and PQ have a null effect if the queue is empty.
If the queue is not empty, the dequeued stated overrides any
other state indicated in the intersection. Example:

Intersection indicates ":FM01,DQ"; the final state
will be:

- the dequeued state of the queue is not empty,
- FM01 if the queue is empty.
(Note that DQ may also be conditioned by + or -)

Absence of a new state in a valid table entry means the new
state is the current state.

When a request message is dropped as a result of contention
solving or because it belongs to an aborted group, no state
change occurs and the indication primitive is not issued.

An intersection is invalid either if it contains a blank en-

try or if the condition indicated by CONDV is not met. All
invalid intersections between states and incoming message events
are treated as protocol violations: the action is disconnect

the VFS connection (DP message with '"protocol violation"
reason-code), the new state is CF01 (Dormant).

Tn case of grouping, there might arrive valid messages while
waiting for a response primitive (at the Secondary) or an
end-group request primitive (at the Primary). These messages
should be thought of being gated until the expected response

or end-group primitive has arrived, rather than taken as invalid.

All invalid intersections between states and incoming primitive
events are treated as local errors, in a way not specified in
this Standard.

NOTE D.6

Where contentions are solved by lower layer services, they are not shown in
the state tables, since they cannot validly appear in this layer (this
occurs with the following states: DT03A, DT03B, DT04A, DTO04B) .

The following editorial conventions are used:

m.n

action with regard to state change or queuing
" " = connects list of actions

"(a&b)"= logical "and" of conditions a and b

"~ = Jogical negation

"set xx" = set condition xx on

"set ~ xx'"" = set condition xx off

"inc cc'" = increment cc by one

"dec cc" = decrement cc by one.

((

-

D.4 Formal Description Tables

The complete state table for the virtual file protocol FSM

is too large to be edited on a single page. In addition, it
contains a majority of empty cells, representing error cases.
Therefore this state table has been segmented into smaller
tables and besides sub-tables with only empty cells have not
been represented.

In addition, it is necessary to distinguish two FSM's according
to the role played by the VFS entities: Primary/Secondary

in some cases, Sender/Receiver in other cases. Table D/6 is an
index of the formal description tables.

Table D/6 - Index of formal description tables

\ Table Subprotocol Role

D/7 Connection Facility Primary
D/8 Connection Facility Secondary
D/9 File Management (file enclosure) Primay
D/10 File Management (file enclosure) Secondary
D/11 File Management (open enclosure) Primary
D/12 File Management (open enclosure) Secondary
D/13 Data Transfer (data flow) Sender
D/14 Data Transfer (data flow) Receiver
D/15 Data Transfer (termination) Sender
D/16 Data Transfer (termination) Receiver

File Management tables are subdivided into 2 subtables:

one for the case where grouping is not used (D/9A, D/10A, D/11A,
D/12A), the other where grouping is used (D/9B, D/10B, D/11B,
D/12B).

Table D/7 - Connection Facility, Primary

rf—ﬁ‘
89

CF01 CF02 CF03 FMO1 Any
other
Dormant |SP-PEND |RP-PEND |NO-FILE state
: CF02
SP-RQ
SP
SP-CF
SPR +:FM01
-:CFO01
:CF03
RP-RQ
RP
1
!
RP-CF
RPR
:CFO1
:CFO1 :CFO1 :CF01 :CF01
DP-RQ
DP DP DP DP
DP-1IN DP-IN DP-IN DP-IN
DPR
:CFO1 CFO01 :CFO1 :CFO1
AB-IN AB-IN AB-IN AB-1IN
AB
| :CFO1 :CFO1 :CF01 :CFO1
}-

- S

Table D/8 - Connection Facility, Secondary

- 90

CF01 CF02 CF03 FMO1 Any
other
Dormant SP-PEND |RP-PEND | NO-FILE state
SP-1IN
Sp
:CF02
+:FM01
SP-RP -:CF01
SPR
RP-IN
RP .CF03
1
y
:CF01
RP-RP
RPR
:CFO1 :CFO1 :CFO1 :CFO1
DP-RQ
DP DP DP DP
DP-1IN DP-IN DP-IN DP-IN
Ly . CFO1 :CF01 | :CFO1 :CFO1
AB-IN AB-IN AB-IN AB-IN
AB :CF01 :CF01 :CF01 :CF01

-

Table D/9A - File Management (file enclosure), Primary no grouping

MO1 FM02 FM03 FM04 FMO5 FM06 FMO7
FILE-
NO-FILE |SL-PEND |CR-PEND |SELECTED | RL-PEND |DL-PEND | RA-PEND
:FM02
SL-RQ
SL
SL-CF
SER +:FMO4
-:FM01
:FM03
CR-RQ
CR
\
CR-CF
CRR +: FM04
-:FM01
:FMO5
RL-RQ
RL
RL-CF
RLR
:FMO1
: FMO6
DL-RQ
h DL
-
DL-CF
DLR - EMO1
:FEMO7
RA-RQ
RA
RAR RA-CF
:FM04

-

Table D/9B - File Management (File enclosure), Primary, grouping

- 097 =

FMOL [FMO2 FMO3 EMO4 |FMOS BMO6 M7 {|{poe)
NO-FILE [SL-PEND |CR-PEND | girper . IRL-PEND |DL-PEND RA-PEND |FILE-OPEN
B FILE-ABOR
CONDV:~ eg CONDV ~ eg CONDV: ~eg|
SL-RQ ||Q(FM02) N(FM02) Q(FM02)
SL SL SL
SL-CF
SLR +:FM04 ,DQ
-:FMO1
CONDV:~ eg CONDV:~ eg CONDV:~eg
CR-RQ ||Q(FM03) N (FMO3) Q(FM03)
CR CR CR
CR-CF
CRR +: FM04, D
-:FM01
CONDV? eg CONDV . “eg CONDV:"eg
RL-RQ [{Q(FMO5) N(EMO5) Q(FMO5)
RL RL RL
RL-CF
RLR :FEMO1
+ DQ
CONDV: “eg CONDV: “eg CONDV:"eg
DL-RQ [|Q(FM06) N (FMO6) Q(FMO6)
B DL DL DL
DL-CF
DLR :EMO1
+DQ
CONDV:"eg CONDV: “eg CONDV:" eg
RA-RQ |lQ(FMO7) N(FM07) Q(FMO07)
RA RA RA
RA-CF
RAR : FM04
+DQ
CONDV: “eg CONDV: “eg CONDV:" eg
EG-RQ DQ set DQ, set DQ, set
eg 3 eg
EG EG EG
CONDV: eg CONDV: eg CONDV: eg
EGR EG-CF EG-CF EG-CF
PQ, set PQ, set PQ, set
eg eg eg

Table D/10A - File Management (File enclosure), Secondary, no grouping

= 9% =

MO1 FMO02 FMO03 FM04 FMO5 FM0O6 FM07
FILE -
NO-FILE |SL-PEND | CR-PEND SELECTED RL-PEND DL-PEND |RA-PEND
SL-IN
SL
:FM02
+:FM04
SL-RP -:FM01
SLR
CR-IN
CR
& :FM03
+: FM04
CR-RP -:FM01
CRR
RL-IN
RL :FMO5
:FMO1
RL-RP
RLR
DL-IN
DL :FM06
L
vy
:FMO1
DL-RP
DLR
RA-IN
RA :FMO7
:FM04
RA-RP
RAR

Table D/10B - File Management (File enclosure), Secondary, grouping

FM01 EM02 FMO03 EM04 EMOS FM06 EMO7 EM09
FILE =
NO-FILE |SL-PEND | CR-PEND SELECTED RL-PEND | DL-PEND | RA-PEND | FILE-OPEN
CONDV:~eg CONDV': CONDV:
SL ~ag SL-IN (~eglag) C cglag)
~ag: FM02 : FM04 :FM09
ag:FM01
+:FM04
SL-RP -:FMO1
- set ag
SLR
CONDV:" eg CONDV : CONDV::
CR “ag CR-IN (“egkag) ("egag)
“ag:FMC3 : FM04 : FM09
0 ag:FM01
+:FM04
CR-RP -:FMOL
- set ag
CRR
CONDV: CONDV: " eg CONDV:
RL (Ceglag) rag RL-IN (eglag)
:FM01 rag:FM05 | M09
ag:FM04
:FMO1
RL-RP -set ag
RLR
CONDV: CONDV: “eg CONDV:
DL (Cegtag) ag DL-IN (egkag)
FMO1 ag: FM06 : M09
., ag:FM04 .
:FMO1
DL-RP - set ag
DLR
CONDV:: CONDV: “eg CONDV::
RA (Tegkag) ag RA-IN (egag)
: FMO01 fag:FM07 :FM09
ag:FM04
:EM04
RA-RP - set ag
RAR
CONDV: “eg CONDV:~ eg CONDV:~ eg
EG EG-IN EG-IN EG-IN
set eg set eg set eg
CONDV:eg CONDV:eg CONDV: eg
EG-RP set set set
Cag,”eg) (Cag, eg) (ag, eg)
EGR EGR EGR

Table D/11A - File Management

= 9§ =

(open enclosure), Primary, no grouping

-:FM09

FMO4 M08 FMO09 FM10 FM11 DTOS

FILE - FILE-

SELECTED OP-PEND | FILE-OPEN CL-PEND |BT-PEND ARORTED

: FM08
OP-RQ

op
OP-CF
OPR +:FM09
-:FM04
:FM10 :FM10
CL-RQ
Qﬁ CL CL
CL-CF
CLR
:IFM04
:FM11
BT-RQ
BT
BT-CF

BTR +:DT01

-

Table D/11B - File

- 96 -

Management (open enclosure), Primary, grouping

FMO1 FM04 FMO08 FMO09 FM10 FM11 FM12 DTO05
FILE — FILE —
NO-FILE SELECTED OP-PEND |FILE-OPEN|CL-PEND |BT-PEND EGR-PEND ABORTED
CONDV:~ eg| CONDV: ™ eg CONDV: "~ eg CONDV: "~ eg
OP-RQ || Q(FMO8) | Q(FMO8) Q(FM08) 0(EM08)
(0)3 (0% OP OP
OP-CF
OPR +: FM09 , D()
-:FM04
CONDV:Aeg SONDV:Aeg
CL-RQ Q(EML0) N(EML0)
Gl CL
CL-CF
CLR :FM04
+DQ
CONDV: " eg| CONDV: " eg CONDV:" eg CONDV: " eg
BT-RQ || Q(FML1) | Q(FM11) Q(FML1) N(FML1)
BT BT BT BT
BT-CF
BTR +:FM12
-:FM09
EG-RQ see D/9B | see D/9B see D/9B see D/9B
q EG-CF
EGR see D/9B | see D/9B see D/9B set “eg |see D/9B
:DTO1

-

- 07 =

Table D/12A - File Management (open enclosure), Secondary, no grouping

FM04 FMO08 FM09 FM10 FM11 DTOS
FILE - FILE ~
SELECTED OP-PEND {FILE-OPEN| CL-PEND |BT-PEND ABORTED
OP-1IN
(0)3 : MO8
+:FM09
OP-RP -:TFM04
OPR
CL-IN CL-IN
Gl :FM10 :FM10
: FM04
CL-RP
CLR
BT-IN
BT FM11
+:DT01
BT-RP -:FM09
BTR

- s

- 08 -

Table D/12B - File Management (open enclosure), Secondary, grouping

EMO1 FM04 FM08 FM09 EM10 FM11 FM13 DTO0S
FILE - WAIT FOR | FILE -
NO-FILE SELECTED OP-PEND |FILE-OPEN| CL-PEND [BT-PEND EC ABORTED
CONDV: [ONDV:“eg
OP (“egdag) hag OP-IN
:FM01 ag:FM08
ag:FM04
+:FM09
OP-RP -:FM04
- set ag
OPR
CONDV: eg CONDV: e
CL CL-1IN CL-IN
‘f :FM10 :EM10
: FMO4
CL-RP - set ag
CLR
CONDV: | CONDV: CONDV:™ eg
BT (eglag) | (eglag) " ag BT-IN
Cag:FM11
:FMO1 : FM04 ag:FM09
+:FML3
BT-RP ~: FM09
- set ag
BTR
CONDV:~ eg
EG see D/10B|see D/10B] see D/10B EG-IN
f set eg
' CONDV: eg
EG-RP see D/10B|see D/10B see D/10B set
(Cag, eg)
:DTO1
ECR

Table D/13 - Data Transfer (data flow), sender

99

DTO1 DT02
DATA ET-PEND
:DTO1
DATA-RQ
DATA
:DTO01
CK-RQ inc cc
CK
CONDV: cc |CONDV: cc
CKR CK-CF CK-CF
dec cc dec cc

- 100 -

Table D/14 - Data Transfer (data flow), Receiver

DTO1 DT06
DATA CK-PEND
DATA-IN
DATA :DTO01
CK-IN
CK :DT06
:DTO1
CK-RP
‘ CKR

- 101 -

Table D/15 - Data Transfer (termination), Sender

DTO1 DT02 DTO3A | DTO3B DTO4A DTO4B
RT-PEND | RT-PEND | AT-PEND | AT-PEND
DATA ET-PEND | (INIT=SN)|(INIT=RC) | (INTT=SN)| (INTT=RC)
- DT02
ET-RQ
ET
ET-CF
ETR
: FM0O9
- DTO3A
RT-RQ
RT
RT-CF
RTR
:DTO1
RT-1IN RT-IN CONDV:: sc :DTO4A
RT .DTO3B |:DT03B |RT-IN
- DTO3B
-DTO1
RT-RP
RTR
- DTO4A - DTO4A
AT-RQ
‘ AT AT
AT-CF
ATR - DTO5
AT-IN AT-IN |AT-IN CONDV: SC
AT .DTO4B |:DT04B | :DTO4B AT-IN
-DT04B
- DTOS
AT-RP ATR

Table D/16 - Data Transfer (termination) Receiver

= 102 =

DTO01 DT02 DTO03A DT03B DTO04A DT04B DT06
DATA ET-PEND |RT-PEND [RT-PEND |AT-PEND AT-PEND [CK-PEND
(INIT=SN)|(INIT=RC) | (INIT=SN) ((INIT=RC)
ET-IN
ET :DT02
:FM09
ET-RP
ETR
RT-IN CONDV : sc :DT04B RT-IN
RT :DT03A RT-IN :DT03A
:DT03A
:DTO1
RT-RP
RTR
:DT03B :DT03B :DT03B
RT-RQ
RT RT RT
RT-CF
RTR :DTO01
AT-1IN AT-IN CONDV: sc | AT-IN
AT :DTO04A :DTO4A AT-1IN :DT04A
:DT04A
:DTO05
AT-RP
ATR
:DT04B :DT04B :DT04B :DT04B
AT-RQ
AT AT AT AT
AT-CF
ATR :DTO5

B,

1

- 103 -

APPENDIX E

FILE TRANSFER APPLICATION SERVICE

Introduction

This Appendix is not an integral part of the Standard, since
standardizing a file transfer application service is not a
purpose of this Standard.

This Appendix describes an example of a File Transfer Applica-
tion service, which can be provided to an end user by using the
VFS. The distinction between the File Transfer Application
service and the VFS is shown in figure E-1.

END USER

l F.T. applic.
service

F.T.
application
process

Virtual File

service
VES Virtual File Protocol VES Virtual
entity|< 7|entity filestore
(Primary) (Secondary)

Fig. E-1: File Transfer Application and VES

The example identifies 4 possible file transfer application
service elements: COPY, SUSPEND, RESTART, CANCEL.

COPY Service

The COPY service always involves two files: a source file and
a sink file. The effect of the service is to copy the first
one into the second one. In particular conditions and on user
request, the sink file can be created or the source file can
be deleted. The operation succeeds only if the whole source
file is transferred and copied. Partial file transfer service
is not provided.

- 104

Referring to the source and sink files, the following cases
must be distinguished:

a) both files are local

This case is normally resolved locally without involving

0SI, but the implementor may provide the same service 1in-

terface to the end user.

b) both files are remote

This case requires the definition of a management protocol,
not part of this Standard, in order to transfer the request
to one of the concerned systems. This management protocol
It will require standardization
of the File Transfer Application service. Using this pro-

has no impact on the VFS.

tocol, the first File Transfer Application (local to the

user) asks a corresponding File Transfer Application on one
of the two remote systems to perform the transfer and report
the result, as shown in figure E-2.

END USER

F.T.
service

applic.

Fla

application
process

(SYSTEM A)

v

Management
protocol

F.T.

application
process

(SYSTEM B)

l

Virtual File
service

VES
entity

Virtual File Protocol

&~
T

(Primary)

(SYSTEM

B)

V

VES Virtual
entity filestore
(Secondary)

(SYSTEM C)

Fig. E-2: File transfer between 2 remote files

¢

A

c) one of the files is local

This case is directly supported by the Virtual File Service.

In each case, the COPY service element can be defined as fol-
lows:

COPY SERVICE { (SOURCE FILE) (SINK FILE) (TRANSFER OPTIONS)}

The parameters indicate three sets of information that the user
must supply to access the service.

The one concerning the SOURCE FILE includes:

File name: to identify the file and its location.

File password(s): to gain access to it.

Lock options: to allow the user to specify if the source file
must be locked during the transfer or can be concurrently ac-
cessed by other file system users.

Delete option: to allow the user to require the deletion of
the source file after a successful transfer.

The parameters concerning the SINK FILE include:

File name: as above

File password(s): as above

Operation mode: to specify the effect of the copy on the sink
file.

APPEND ONLY or REPLACE ONLY: successful only if the sink
file exists.

MAKE ONLY: successful only if the sink file does not exist.
MAKE OR APPEND or MAKE OR REPLACE: independent of the exist-
ence of the sink file.

The TRANSFER OPTIONS parameters include:

Transfer priority.

Transfer reliability options: recovery of interrupted trans-
fer; rollback of sink file to its previous content in case
the transfer cannot be successfully completed. Recovery and
rollback should be user-selectable options, because they may
affect the performance of the transfer.

SUSPEND service

The SUSPEND allows the user to immediately suspend a transfer
in progress, for any time duration (minutes, hours or days).
It is significant only if the recovery option has been select-
ed.

RESTART service

The RESTART service allows the user to restart an interrupted
transfer; interruption may be due either to accidental fail-
ure or to use of the SUSPEND service. In both cases, the trans-
fer will be resumed at a point automatically determined (as
near as possible to the point of interruption), unless the

user otherwise specifies.

—

- 106 -

The RESTART service is significant only if the recovery option
has been selected. It should however be used with some caution.
The source and sink file should not be modified between inter-
ruption and restart of the transfer: this extended lock faci-
lity may not always be provided by the local file systems.

E.5 CANCEL service

This service allows the user to cancel a transfer in progress
or pending restart. If the rollback option has been specified
in the COPY service, the content of the sink file is restored
to its previous state. If the sink file has been dynamically
created for the transfer (MAKE option of the COPY service), it
is deleted.

E.

APPENDIX F

FUTURE EXTENSIONS

General

This Appendix is not an integral part of the Standard.

It is provided to aid understanding and use of the Standard by
explaining some future extensions and related matters which
have been considered by ECMA during its development.

This is a basic Virtual File protocol, designed to allow such
extensions in a modular way which preserves compatibility.

Liaison with other Standardization Bodies

During the development of this Standard by ECMA, there has
been close liaison with several other standard bodies, espe-
cially the ISO Open System Interconnection Sub-committee
(ISO/TCY7/SC16) .

ECMA is an active contributor to the development of ISO vir-
tual file standards by SC16/WG-5. The technical content of
this ECMA Standard has a high degree of commonality with the
current (1982) ISO work, which is still at a formative stage
prior to agreement of ISO standards. The intention is that
future developments will continue to benefit from this closc
liaison.

Flexibility for Future Extension

The flexibility for future modular extension while preserving
compatibility is obtained in three main ways.

Firstly, the file model, services and protocol included in
this initial Virtual File Standard have been seclected to sup-
port this purpose. They are sufficiently open-ended to allow
future development.

Secondly, the protocol definition has been separated from its
mapping on the lower layer services. To a certain degree,
each of these can be changed independently, without affecting
the other.

Thirdly, the encoding is designed to be highly flexible:

- all variables within an element of protocol are individual-
1y fully encoded wherever practical (instead of collective
encoding of groups of variables, restricting the possible
combinations).

- self-defining formats are used to enable future insertion
of new variables and the extension of existing ones.

- 108 -

- the encoding scheme selected for file attributes has been
designed in order to easily accommodate any foreseen exten-
sion of the Virtual File model (see F.4).

| F.4 Virtual File Model Enhancements

F.4.1 Principles

In the next version, priority will be given to enhancing the
Virtual File model.

ECMA believes that Virtual File standardization cannot be
successful if it imposes major changes to the current file
system, except in the long term. Therefore the Virtual File
model must not propose innovations: it must rather faith-
fully reflect the major existing file and data base models.

Another design guideline is to eliminate from the standardi- .)
zation existing file constructs which are not widely used.

It is recognized that such specific file structures may re-
quire support in homogeneous networks, but it is believed

that this support is better provided by a specific extension
mechanism (see Appendix G) than by increasing the complexity

of the Virtual File model.

For all file model enhancements, a liaison will be establish-
cd with ECMA TC22 and other bodies active in data base stan-
dardization.

F.4.2 New file structures

There are currently four models which are general enough to
be candidate for inclusion in the Virtual File model. By or-
der of increasing complexity and power, these are:

- the unstructured model: the file has no elementary struc-
ture, except the character (or the octet);

- the flat model: the file is structured into records, with- .
out any relationship between these records other than re-
cord sequence. The simplest and most frequent form has a
single type of records, but there may be multiple record
types. The relational model is a particular case of single
record type flat file;

- the hierarchical model: the file has multiple record types,
with hierarchical relationships between the record types.
The relationshps are such that a given record type may be
subordinate in only one relationship. No loop can be dé=
fined in the series of relationships;

- the network model: the file has multiple record types with
relationships between the record types. Many types of re-
lationships are allowed.

In this version, the Virtual File model supports unstructured
files and single record type flat files. The next version
will probably support multiple record type flat files and
hierarchical files.

F.

= 109 =

Support of multiple record types implies the addition of a
record-type attribute, the capability to iterate the record-

attributes (once for each record type),

the capability to

link field-attributes to the appropriate record-type, and
the capability to specify the record-type in the F-DATA. All
these will default to the current situation, where this

information 1is implicit.

Support of hierarchical files implies the addition of rela-
tionship-attributes and the definition of an order of se-

quential access to the hierarchy.

The network model is not well adapted to file transfer, be-

cause it cannot be easily '"flattened'.

Its support will there-

fore be considered only for later versions, in conjunction
with the introduction of services for direct access.

F.4.3 Enhanced field description

The currently specified field descriptions have been volun-
tarily limited to the simplest cases. Consideration will be
given to inclusion in the next version of some useful fea-

tures:

- variable size character fields (the size of which is spe-
cified by the content of a previous field in the record);

- field aggregates: repeating items or repeating groups of
items (the number of repetitions may be fixed or may de-
pend on the content of a previous field in the record).

F.4.4 Key enhancements

Some concerns for a future version are:

- multicomponent keys, i.e. keys composed of several (not
necessarily contiguous) record fields. This is frequently

a property of secondary keys;

- secondary keys: it is not certain, however, that these
should have any visibility in a file transfer.

5 Service Enhancements

F.5.1 Erincigles

The currently defined service is considered as requiring
few urgent extensions, as far as the support of file trans-

fer applications is concerned. Services

for direct access

or for transfer of record updates are not considered as a

short term objective.

F.5.2 Partial file transfer

The most appealing service enhancement seems to be the capa-
bility to transfer parts of files instead of complete files.
This capability is needed only for reading of a file.

L £

- 110 -

While it is easy to agree to such a general functionality,
its scope is more difficult to decide. In the simplest form,
it may be limited to "from here to there', '"here'" and ''there'
being record positions or record key values. More flexible
forms can involve a selection based on record types or on

the values of one or more fields up to a full query capabi-
lity.

The first attempt will offer a reasonably limited capability
for the most common needs.

pPartial file transfer will imply the addition of selection
attributes to the F-BEGIN-DATA service and the capability

for multiple data transfer enclosures within an open en-

closure: this capability already exists in the design, but

is not legal in this version since it has little signifi-

cance for transfer of complete files. Q

F.5.3 Collections of files

Considerations will be given to the transfer of collections
of files, designated by a generic name. It is perhaps suf-
ficient to add a file management service returning the list
of file names matching a generic name.

F.5.4 JTMP support

If and when requirements on the virtual file service are ex-
pressed for the support of a Job Transfer and Manipulation
Protocol, these will be taken in consideration with the ap-
propriate priority.

F.6 Conformance Testing

This Standard does not specify detailed testing methods to ve-

rify conformance. The technical work to define such testing

methods is as yet only at a formative stage. It is intended

to specify conformance testing and associated diagnostic aids Q
in a future version of the Standard.

.1

- 111 -

APPENDIX G

USE OF THE SPECIAL EXTENSION MECHANISM

Scope

This Appendix is not an integral part of the Standard. It 1is
provided as an aid to implementations of the Standard.

The services and protocols defined in this Standard apply to
fully heterogeneous networks. As such, they cover only general
needs, since they cannot reasonably include features which

are not widely supported in current file systems. However, in
many cases, they will be used within less heterogeneous net-
works (or parts of networks) where the systems or the end users
can agree to particular common conventions. For such cases, a
mechanism is provided whereby special extensions can be unila-
terally defined and implemented, according to particular con-
ventions, and without degrading the openness to fully hetero-
geneous environments.

Particular conventions may serve two main purposes:
- addition of specific services, file models or data models;

- simplification, by assuming implicit prenegotiation of a
number of parameters (useful for small systems offering a
single choice for each capability).

If particular conventions have been used for general needs not
satisfied in an early version of the VFP, it is strongly ad-
vised to abandon them as soon as the corresponding needs are
satisfied by a new version of the VEFP.

Special Extension Mechanism

A pre-requisite is to recognize if the other entity supports
the same conventions. This is achieved through the special-
conventions parameter of the F-CONNECT service, allowing to
negotiate any number of special conventions (by repetition of
the parameter). The value of this parameter is an arbitrary
string of 1 or 2 octets identifying a set of conventions.

When at least one set of special conventions has been retained,
the following is allowed in the other services:

- omission of mandatory parameters: their value is either
pre-negotiated or supplied by special extensions;

- usage of the special-information parameter, where applicable,
for conveying special extensions. If several special para-
meters are required for a given service, two possibilities
are offered:

= 112 -

repeat the special-information parameter,

use any encoding scheme allowing to group several distinct
special parameters into a single occurence of the special-

information parameter (e.g. the encoding scheme defined
in 4.3.2.1).

|

- 113 -

APPENDIX H

EXAMPLE OF FILE ATTRIBUTES MAPPING

Introduction

This Appendix is not an integral part of the Standard. It
describes the possible mapping of the real file attributes
defined in the ECMA Labelling Standards for Magnetic Tape
(ECMA-13), Magnetic Tape Cassette (ECMA-41) and Flexible
Disk Cartridges (ECMA-58 and ECMA-67).

Of the file attributes appearing in the specified labels,
those that are medium-independent may be transferred within
the VFP by means of the corresponding virtual file attributes
as identified in the following table.

Mapping Table

In the table below, the "*'" has the following meaning:

- under MT (Magnetic Tape): the field appears in ECMA-13 and
ECMA-41;

- under FD (Flexible Disk): the field appears in ECMA-58 and
ECMA-67;

- under MI (Medium Independent): the field is medium indepen-
dent.

Field Name ED [MT [MI | Equivalent VFP attribute

Label Identifier/Number *

File Identifier * * | File-name (part of)

Block Length *

Begin of Extent *

End of Extent *

Record Format *1 *] * | Record-size-type

Bypass Indicator *

File Accessibility - Access-control-list

Write Protect % (no equivalent)

Interchange Type *

Multivolume Indicator *

File Section Number *

Creation Date i * | Creation-date

Record Length * Record=size

Offset to Next Record Space| *

Record Attribute *

File Organization * * | Direct-access plus record-
sequence

- 114 -

Field Name ED [MT [MI Equivalent VFP attribute
Expiration Date kg ¥ ® (no equivalent)
Verify Copy Indicator * ¥ (see note H.1)
End of Data
File Set Identifier o File-name (part of)
File Sequence Number o B File-name (part of)
Generation Number =1 = File-name (part of)
Generation Version Number i File-name (part of)
Block Count ¥
System Code ¥l # (see note H.1)

*

Buffer Offset Length

NOTE H.1

These fields relate to the processing history of the file, and have no equi-

valent in VFP.

