ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

SUPPORT ENVIRONMENT
FOR
OPEN DISTRIBUTED PROCESSING
(SE-ODP)

ECMA TR/49

December 1989

Free copies of this document are available from ECMA,
European Computer Manufacturers Association
114 Rue du Rhone - CH-1204 Geneva (Switzerland)

Phone: +4122 7353634 Fax: +4122 786 52 31

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

SUPPORT ENVIRONMENT
FOR
OPEN DISTRIBUTED PROCESSING
(SE-ODP)

ECMA TR/49

December 1989

BRIEF HISTORY

This ECMA Technical Report was prepared by TC32-TG2.

Drafting of an ECMA Technical Report on an Open Distributed Application
Support Environment (DASE) was started in mid 1986.

This work was temporarily suspended during 1987 while TG2 concentrated on
contributing to the start-up phase of the new work item on the "Reference Model
for Open Distributed Processing" (RM-ODP) in ISO, and produced the ECMA-
127 OSI RPC Standard to help bridge between OSI and ODP.

Production of this TR resumed in mid 1988, by which time the outlines of ODP
architectural structure had been agreed in ISO. The proposed support
environment has been aligned to the RM-ODP structure, and renamed
accordingly.

The final draft was completed in June, 1989.

Adopted as an ECMA Technical Report by the General Assembly of 14th December 1989

TABLE OF CONTENTS

SECTION ONE - GENERAL

—

SNE IS

SCOPE

FIELD OF APPLICATION
CONFORMANCE
REFERENCES
DEFINITIONS

SECTION TWO - TECHNICAL INTRODUCTION

6.
7.
8.

OVERVIEW OF TECHNICAL INTRODUCTION
WHAT IS AN ODP SUPPORT ENVIRONMENT ?

CHARACTERISTICS OF DISTRIBUTED APPLICATIONS

SECTION THREE - DESCRIPTIVE CONCEPTS

9.

10.
11.
12.
I3,

OVERVIEW OF DESCRIPTIVE CONCEPTS
REFERENCE MODEL OF ODP
VIEWPOINTS

CLARIFICATION OF SCOPE

OBJECT MODELLING TECHNIQUES

SECTION FOUR - SE-ODP ARCHITECTURE SPECIFICATION

14.
1.3.
16.
17.
18.
19.
20.

OVERVIEW OF SE-ODP ARCHITECTURE
DESCRIPTION IN THE COMPUTATION VIEWPOINT
DESCRIPTION IN THE ENGINEERING VIEWPOINT
DESCRIPTION IN THE TECHNOLOGY VIEWPOINT
SE-ODP OBJECT INTERACTIONS

SE-ODP PROCESSING MODEL

SE-ODP COMMUNICATIONS MODEL

Pages

A W W W W

15
17
17
18
19
21

25
27
27
29
32
33
37
39

21.
22.
23.
24.
25.
26.

i -

APPLICATION CONFIGURATION

SE-ODP NAMING & BINDING

SE-ODP DISTRIBUTION TRANSPARENCY TECHNIQUES
SE-ODP RUNTIME SUPPORT

SE-ODP MANAGEMENT ASPECT

SE-ODP SECURITY ASPECT

SECTION FIVE - PROPOSED STANDARDIZATION

27. OVERVIEW OF PROPOSED STANDARDIZATION

28. SE-ODP CONFIGURATION STANDARD

29. SE-ODP INTERACTION SEMANTICS STANDARD

30. SE-ODP INTERFACE DEFINITION LANGUAGES STANDARD
31. SE-ODP INTERCONNECTION STANDARD

32. SE-ODP INFRASTRUCTURE INTERFACES STANDARD
APPENDICES

APPENDIX A - BIBLIOGRAPHY

APPENDIX B - BASIC CONCEPTS

APPENDIX C - DISTRIBUTED SYSTEM CONCEPTS

APPENDIX D - TRADING CONCEPTS

APPENDIX E - INDEX OF TERMINOLOGY

40
43
46
52
27
58

61
63
64
65
66
67
68

71
73
79
95
97
105

SECTION ONE - GENERAL

SCOPE

This ECMA Technical Report results from a preliminary study of architecture to
provide a standard Support Environment for Open Distributed Processing (SE-
ODP). It is primarily concerned with distributed processing in terms of the
structure of applications software, and how to support this.

This ECMA Technical Report:
(a) explains what the SE-ODP is about (see Section Two);

(b) defines concepts with which to describe SE-ODP architecture (see Section
Three);

(¢) specifies SE-ODP architecture (see Section Four);
(d) identifies proposed areas of standardization (see Section Five);
(e) provides supporting tutorial and background material (see Appendices).

The architecture specified in (¢) is not complete or definitive. It is only intended
to be sufficient to provide an initial basis for the further SE-ODP standardization
work identified in (d).

FIELD OF APPLICATION

SE-ODP standardization applies to distributed processing that may be
implemented via the products of multiple independent suppliers.

CONFORMANCE

Conformance requirements are outside the scope of this ECMA Technical Report,
and are a matter for the SE-ODP standards proposed in Section Five.

It is intended that this ECMA Technical Report itself complies with the
requirements of the ISO Reference Model of Open Distributed Processing (RM-
ODP); see clause 10.3.

REFERENCES

ECMA-127 RPC Basic Remote Procedure Call using OSI Remote
Operations. 2nd Edition.

ECMA TR/46 Security in Open Systems - A Security Framework.

ISO 7498-1 Information Processing Systems - Open Systems

Interconnection - Part 1: Basic Reference Model.

ISO 8649 Information Processing Systems - Open Systems
Interconnection - Service definition for the Association
Control Service Element.

ISO 8807 Information Processing - Open Systems Interconnection -

LOTOS - A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour.

ISO 8824 Information Processing Systems - Open systems
Interconnection - Specification of Abstract Syntax Notation
One (ASN.1)

ISO 8825 Information Processing Systems - Open systems
Interconnection - Specification of Basic Encoding Rules One
(BER.1)

ISO 9072/1 Remote Operations Part 1: Model, Notation and Service
Definition.

ISO 10026 Information Processing Systems - Open Systems

Interconnection - Distributed Transaction Processing.

CCITT Rec. X.500 The Directory.
series

References to documents that are not Standards publications are provided in the
Bibliography in Appendix A. They are referenced in the body of the Technical
Report by names and dates in square brackets [<name > yy]|.

DEFINITIONS

For the purposes of this Technical Report the following definitions apply:
processing: programmed activity executed by computers.

distributed processing: processing that may span separate computer address spaces.

Reference Model of Open Distributed Processing (RM-ODP): a reference model to
be defined by ISO/IEC JTC1 SC21 WGT.

open distributed processing: distributed processing conforming (0 requirements
specified in the RM-ODP.

Support Environment for Open Distributed Processing (SE-ODP): technical
provisions to support open distributed processing.

Definitions of other terms are included in definition subclauses within the
individual clauses.

Some definitions are repeated in clauses where they are particularly relevant.
Appendix E is an alphabetical index of all the defined terms and abbreviations
used in this Technical Report. It provides references to where cach is defined.

As an aid to understanding definition structure and use, references to defined
terms are usually in italics.

SECTION TWO - TECHNICAL INTRODUCTION

OVERVIEW OF TECHNICAL INTRODUCTION

The clauses in Section Two provide a technical introduction to the subject area of
the Technical Report.

Clause 7 describes what a support environment for open distributed processing is
required to do.

Clause 8 describes application characteristics that the SE-ODP should support.

WHAT IS AN ODP SUPPORT ENVIRONMENT ?
General
This clause describes, in general terms, what a support environment for open
distributed processing is required to do.
The SE-ODP is concerned with an infrastructure for distributed processing that
goes beyond interconnection and data-communications.
NOTE I:
The terminology relating to system concepts which is used here is defined in Appendix B.
Modular Software and Distributed Processing
There is a fundamental relationship between modular software and distributed
processing. This relationship is described below.
Software engineering practice favours the specification and design of
applications by means of program modules with defined interfaces. Behind these
interfaces, the contents of each module are encapsulated and hidden from other

modules. All interactions between such modules are formulated as interactions
via these interfaces, and not via shared data. See Figure 1.

allinteraction is via
defined interfaces

module I module

Figure 1 - Modular Software

This notion of modules is particularly well-adapted to designing distributed
applications, in which the program modules comprising the application may be
in different locations in a distributed IT system. The services of such a distributed
application would then be provided by co-operation between the modules. Some
of the modules may be sited at physically separated computers, while others may
be co-located on the same computer.

The module interfaces, and the interactions via those interfaces, should be
essentially the same wherever the modules are located. This facilitates resource
sharing and supports the re-usability and portability of the program modules.

The software modularity is only completely general if it allows modules to be
constructed independently, and to be executed autonomously in heterogencous

systems. This allows use of diverse programming languages, computers, operating
systems and interconnection networks. Further requirements for full generality
also include: federated control of the systems concerned (i.e. no one
management authority), and assurance of particular quality attributes such as
dependability (see 8.9.1), and scaling (i.e. adaptability for small and very large
aggregations of modules).

From the above, the key ingredients can be summarized as:

(a) modules + interfaces + encapsulation (this is distinctive of modular
software);

(b) autonomy + separation (this is distinctive of distributed processing);
(¢) dependability + scaling (this is a practical necessity);
(d) portability (for re-use and re-location of software);

(¢) heterogeneity + federation (the extra needs that are distinctive of open
distributed processing).

We are concerned here with the whole combination (a), (b), (¢), (d), (e), and

place particular emphasis on issues arising from heterogeneity, distributed

ownership, distributed authority, and distributed operational control.

Support Environment

Some kind of support environment, or infrastructure, is required to achieve such
distributed processing.

The Support Environment for Open Distributed Processing (SE-ODP) is focussed
on the application programmer’s view of a distributed system. This view is
illustrated informally in Figure 2, in which the modules (circles) that are linked
together are perceived to execute within some all-pervading support
environment (the rectangle). The SE-ODP is an environment for interaction and
binding between software modules (located in physically separate machines, or
co-located). It facilitates the construction, operation and maintenance of
distributed application software systems.

O—0O

Figure 2 - Support Environment

The support environment for distributed processing that is the subject of SE-
ODP standardization is intended to be applicable where there is heterogeneity

7.4

8.
8.1

8.2

9.

and multi-vendor procurement, with consequent requirements for open
standards.

The SE-ODP may be viewed as a means to provide "distributed object access",
and nothing more (see note). If provided in a sufficiently general way, this one
function of "distributed object access" is a sufficient basis for organizing
provision of arbitrary function by modular software using it. Therefore, the SE-
ODP is an enabler for distributed processing in general, and need itself have no
other function.

NOTE 2:
This is a different role from that of the operating systems with rich functionality which manage
computer resources etc. (and are used by the SE-ODP provisions); e.g. Posix.

SE-ODP Prototypes

The SE-ODP proposals in this ECMA Technical Report are based on practical
experience of several ECMA Member Companies with prototype implementa-
tions of support environments for heterogeneous distributed processing. In
particular the following are sources of input to this ECMA work.

(a) The ANSA Testbench implementation by the UK Alvey ANSA project,
now the Esprit ISA project. Members of this Esprit Il consortium are BT,
Digital, GEC/GPT, Ellemtel, HP, ICL, ITL, Patras University, Philips,
Siemens, SEPT and STC. Comprehensive documentation of its current
architecture and software is provided in [ANSA 89].

b The DACNOS implementation by the IBM European Networking Centre

(p y I g
(Heidelberg) and the University of Karlsruhe [KRUEGER 88]. This is a
prototype network operating system for multi-vendor environments.

(¢) The implementation of the DELTASE prototype by the ESPRIT Delta-4
project [DELTA 4, 88]. This is concerned with fault-tolerant open system
structure, intended primarily for process-control applications. Members of
the original Esprit I Consortium were Bull, BASF, Ferranti CSL, GMD
First, IEI-CNR, Frauenhofer Inst., INESC, Jeumont-Schneider, LAAS-
CNRS, LGI/JEMAG, MARI, Telettra, University of Bologna.

Development of these and other SE-ODP prototypes continues, and will be
reflected in further ECMA work on this subject.

CHARACTERISTICS OF DISTRIBUTED APPLICATIONS

General

This clause describes application characteristics that the SE-ODP should support.
The description is in terms of distributed applications and application
components. The latter is a more general way of viewing the "program modules"
of clause 7.

Definitions
The following definitions apply.

computer application: productive activity exerted via computers.

8.3

8.4

- 10 -

application program: the autonomously executable specification of (a part of) a
computer application.

application component: an application program considered in terms of its
contribution to the composition of some computer application whole.

distributed application: a computer application composed of discrete application
components.

Application structure

No distinction is made here between "user" applications (e.g. order entry or
process control), and those applications that might be classified as part of the
"system" (e.g. editing, filing, printing, database, directory). Any computer
application is a potential candidate for open distributed processing, and hence
use of the SE-ODP.

The granularity of application components depends on a number of factors,
including choices made by the designer. Typically, an application component
would be a single unit of compilation (and would correspond to a software
module as described in 7.2). The level of application component granularity of
primary interest in the SE-ODP standardization is that at which the system
designer wants distribution transparency (see 8.6).

Interaction

An interaction between application components is considered to be external and
computational: each application component is wholly external to the other, and
interaction is defined in terms of computational semantics (synchronized flow of
program control and data). At the programming level, invocation of these
interactions is expressed using language constructs such as procedure calls
(hence "remote procedure calls").

A simple model of such an interaction is illustrated in Figure 3. The interaction
is labelled with a symbol "X" that is intended to identily its specification.

application X application
component component

Figure 3 - Interaction between separate components

This requirement to define interactions in terms of computational language
abstractions is different from conventional networking interconnection. In
networking the interactions are usually defined in terms of application protocols
and their message structure, together with interfaces and finite state machines
via which the protocols are mechanized. Abstracting away from such mechanism
details is a characteristic of distributed processing (e.g. ODP) as considered here.
ODP protocols would normally be generated by automated refinement from the
stylized computational specifications of interactions.

8.5

8.6

=11 =

Configurations

Interaction occurs in the context of a binding; i.e. the configuration of
components ol a distributed application is defined by the bindings between them.
These bindings may be static bindings (persisitent, established prior to run-time)
or dynamic bindings (temporary, established at run-time).

Figure 4 illustrates some examples of such external bindings and interactions.
Example 1 is like that already illustrated in Figure 3. Example 2 is the same,
except that the interaction is different (interaction A in the first example, B in
the second). In example 3 there are several different interactions between the
two components, including multiple interactions of the same kind. In example 4
there is a mesh of various interactions between several components.

A
OO O—=—0O C—0O
Example 1 Example 2 Example 3

Example 4

Figure 4 - Application configuration examples
Distribution Transparency

Distribution transparency is concerned with hiding the effects of distribution
(and is explained more fully in B.4).

Application components usually require a high degree of distribution
transparency; e.g. complete hiding of the location (and re-location) of the
application components with which they interact.

However, certain application components may require visibility of component
location, component failure, etc., in order to manipulate to advantage the effects
of separation (e.g. to achieve resilience, parallelism, reconfiguration).

The degree of distribution transparency should therefore be selectable by
application designers and by the programs that use the SE-ODP. But incomplete
distribution transparency may impact software portability (see 8.7).

8.7

8.8

8.9

8.9.1

- 12 -

In practice, the effects of distribution cannot always be completely hidden; for
example, the differences in response times due to transmission and scheduling
delays, or the speed-up due to concurrent execution on separate computers.

Software Portability

The software of distributed applications (or individual application components),
may need to be portable across different operating systems, computers and
networks. This is only considered here in terms of portability of application
design and program source code (not portability of executable binary code).

A basic level of portability is inherent in the potential for re-location that is
provided by distribution transparency, as follows.

Any component (A) that accesses services external to it (x, y, z ...) in a way
that preserves distribution (transparency, should be able to continue (o
access these services, irrespective where it (A) is located in the distributed
system. Access is also independent of where the services (x, y, z ...) are each
provided from (locally or remotely), and independent of what components
(B, C, D ...) provide these services (x, y, z ...), and how they (B, C, D ...) are
constructed. This is, of course, subject to practical constraints on
connectivity, ownership, security, response times, etc.

This potential for re-location can be exploited to achieve general portability, as
follows:

It a component (A) only obtains services external to it (x,y, z ...) via the SE-
ODP (and not in ways dependent on its local environment), then it (A) is
logically independent of its local environment and is portable to anywhere
the services concerned (x,y, z, ...) are accessible via the SE-ODP.

It is assumed that program modules are written in languages for which
appropriate language interpreters (e.g. compilers) are generally available.
Preservation of Existing Investment

The SE-ODP should allow continued successful use of investment in existing
programming languages, compilers, language libraries, operating systems,
databases, networks, terminals and access interfaces. However, the SE-ODP may
also open up opportunities to exploit new languages and new facilities.

It is important that the SE-ODP is such that existing human skills (particularly
those of application system users, analysts, designers and programmers) can be
used productively for the construction and integration of distributed applications,
and with a minimum of re-training.

Special Requirements
Some special requirements are identified in this subclause.
Dependability

Dependability concepts and related quality attributes are defined in |[Laprie
85].

8.9.2

8.9.3

8.9.4

8.9.5

8.9.6

- 13 -

The concept of dependability includes reliability, availability, performance,
security and safety. Many applications using the SE-ODP would have stringent
requirements for dependability.

Real Time Applications

The SE-ODP field of application includes real-time applications (e.g. process
control).

Real-time applications require assurance concerning the timeliness of service
provision. This may range from a firm guarantee of service provision within a
defined deadline, to a high expectation of service within a defined elapsed
time. The timeframe may range from milliseconds to hours. In many cases,
real-time applications also require a high degree of dependability (see 8.9.1).

All distributed applications are real-time applications, in that they require
some assurance of timeliness of interactions; but for many applications using
the SE-ODP the real-time requirements are not stringent.

Clock Synchronization

The synchronization of clocks in physically separate locations is a major issue
in the design and implementation of distributed systems.

The granularity of time measurement, the accuracy of clock synchronization,
and the variability of end-to-end interaction delays are inter-related matters.

Operation of the SE-ODP infrastructure itself depends on (loosely)
synchronized clocks. Their granularity and accuracy should be appropriate (o
the applications concerned. The clock values should also be accessible for
applications to use for their own purposes.

Isochronous Interactions

There are many potential computer applications which have isochronous
interactions between their components (e.g. voice and image interactions in
real-time).

However, most existing computer applications involve only anisochronous
interactions; e.g. current OSI standards for the upper layers only support
anisochronous interactions (not isochronous).

Isochronous interactions between software modules raise difficult technical
issues concerning software design and programming language structure.
Multi-media

Support for multi-media interactions is also required (e.g. data + voice +
image). This includes problems of how to synchronize concurrent voice,
image and data interactions between multiple endpoints, with transmission via
channels with different delay characteristics.

Computer Aided Software Engineering

Computer Aided Software Engineering (CASE) is of increasing importance in
the industry, and is the subject of active standardization work in ECMA
(TC33), the IEEE, ISO, and many other bodies.

- 14 -

Distributed applications using the SE-ODP should be able to benefit from
CASE technology. Likewise, the distributed processing technology from SE-
ODP standardization should be applicable to CASE systems (where the latter
are constructed as heterogeneous distributed applications).

Therefore, the design of the SE-ODP is required to facilitate use of CASE
techniques. A particular characteristic should be ability to use the design
databases on which application development systems are increasingly centred.
These database systems are variously referred to as "data dictionaries", "data
repositories”, and "information resource directory systems (IRDS)".

These CASE concerns are mainly addressed in the proposed SE-ODP
standardization identified in clause 28.

SECTION THREE - DESCRIPTIVE CONCEPTS

- 16 -

-17 -

9. OVERVIEW OF DESCRIPTIVE CONCEPTS

The clauses in Section Three set out a basic toolkit of concepts that are used to
describe and explain the SE-ODP and its use. The concepts and approach are
drawn from the work on the Reference Model of Open Distributed Processing (RM-
ODP) developing in ISO. The structure of the section is set out below.

Clause 10 outlines the work in ISO on the RM-ODP, and relates the SE-ODP to it.

Clause 11 introduces the viewpoints which are the main descriptive framework
identified in the RM-ODP.

Clause 12 describes differences of scope between ECMA SE-ODP standardization
and the ISO RM-ODP work item.

Clause 13 describes the way in which object model techniques are used in this
Technical Report.

10. REFERENCE MODEL OF ODP
10.1 Specification

ISO is investigating and documenting a series of Topics that explore the subject
matter of the RM-ODP work item. At the time of preparing this ECMA
Technical Report there are ISO working papers documenting about half of these
topics; but there is as yet no ISO draft of the RM-ODP. ECMA participates
actively in this ISO work.

Material which is used in this Technical Report and should originate from the
RM-ODP is identified in 10.2 and is documented separately in Appendix B. This
is intended to reflect the current and expected results of the ISO architecture
work, and is therefore a prediction of RM-ODP content.

Appendix C considers different kinds of approaches to distributed systems, and
introduces the terms networking, network operating system and distributed
operating system. These distinctions may be needed in the RM-ODP.

NOTE 3:

Familiarity with the RM-ODP concepts and terminology is assumed in the remaining clauses of this
Technical Report. Therefore, Appendix B should be consulted at this point. If it were not separate
for the procedural reasons stated above, the material in Appendix B would be organized as part of
this Section of this TR.

10.2 Usage of the RM-ODP

This subclause identifies the main items from the RM-ODP on which the SE-
ODP depends. (There is likely to be much else in the RM-ODP which does not
directly affect the SE-ODP and therefore need not be considered here.)

The RM-ODP (via Appendix B) is the source of the following ingredients of the
SE-ODP architectural structure.

(a) It provides terminology and concepts that are general to all open
distributed processing (see Appendix B).

10.3

11.
11.1

- 18 -

(b) It identifies distribution transparency as the distinctive architectural
characteristic inherent in distributed processing. 1t defines several different
kinds of distribution transparency which are needed in various degrees,
depending on circumstances.

(¢) It distinguishes between descriptive techniques applicable to all distributed
processing, of whatever diversity, and the prescriptive formulation of what
is specifically required for distributed processing to qualify as being open.

(d) It identifies heterogeneity as being inherent in open distributed processing.

(¢) It will define an object model which is applicable to all modelling of
distributed processing systems. This unification of modelling technique is
essential to the architectural coherence of ODP.

(f) It defines five viewpoints via which different facets of a distributed
processing system can be modelled separately and related together in a
complete and systematic way.

The SE-ODP includes further levels of architectural detail, some of which may
also be candidates for inclusion in the RM-ODP. Particular items in the latter
category are the concepts of a semantic model of interaction, interface trading,
relationships o security architecture, and identification of further ODP
standardization requirements.

Conformance with the RM-ODP

At the time of preparing this Technical Report, ISO have not yet defined RM-

ODP conformance requirements. The conformance clause of the RM-ODP is

expected to define:

(a) requirements for ODP standards to use RM-ODP concepts and
terminology, and to align to certain ODP reference points at which
conformance is necessary to achieve open distributed processing; and

(b) requirements for products to conform to certain sets of standards in order
to qualify as ODP-conforming.

The intended conformance by this Technical Report is (a); but strict

conformance is not possible until after the RM-ODP conformance clause has

been drafted.
VIEWPOINTS
Introduction

ISO ODP has partitioned the problem space of distributed processing into a
framework of abstractions, in which the primary structure is the five viewpoints
referred to in 10.2 (f).

This partitioning is fundamental to the structure of the SE-ODP, and is briefly
summarized here for the convenience of readers. A more complete description is
given in Appendix B.S.

11.2

11.3

- 19 -

The whole information system is represented in each viewpoint, but with the
emphasis on a particular concern. Collectively, the models in the five viewpoints
are intended to model the main concerns in the design of distributed IT systems.

The five Viewpoints

The following viewpoints have been identified:

Enterprise viewpoint: this describes the information system in terms of what it is
required to do for the enterprise concerned.

Information viewpoint: this concentrates on information structure, and the
information flow of information systems. The rules and constraints that govern
the manipulation of information are identified.

Computation viewpoint: this describes the computational characteristics of the
information system, and the processes which change the information.

Engineering viewpoint: this describes the information system in terms of the
engineering necessary to support the distributed nature of the processing.

Technology viewpoint: this concentrates on the technical artifacts from which the
distributed processing system is built. E.g. it models the hardware and software

that comprise the local operating systems, the input/output devices, storage and
communications.

Implementation

These viewpoint distinctions are a modelling tool. They are not intended to
imply any kind of layered implementation or any particular design process.

12. CLARIFICATION OF SCOPE

12.1

12.2

12.3

Introduction

This clause describes differences of scope between this ECMA SE-ODP
standardization and the ISO RM-ODP work item (and ODP standardization in
general).

Level of Detail

The SE-ODP standardization is concerned with more detailed and more
localized standardization within the general structure (to be) provided by the
RM-ODP.

This is analogous with the way in which OSI standards have been developed
within the general structure provided by the OSI Reference Model, ISO 7498.
(Another parallel is that some more detailed OSI work items started in ECMA
and 1SO before completion of the OSI Reference Model.)

Viewpoints

The SE-ODP standardization is concerned with particular viewpoints within the
RM-ODP (mainly the computation viewpoint and the engineering viewpoint).

The RM-ODP standardization is concerned with all of the viewpoints (although
to varying degrees). In the RM-ODP, data modelling in the information

124

12.5

12.6

12.7

- 20 -

viewpoint is likely to be of major importance (but is outside the SE-ODP scope).
The RM-ODP standardization is also likely to explore further structure defined
in terms of "aspects".

Subject Matter

The SE-ODP standardization is primarily concerned with distributed processing
in terms of matters arising from distribution and the structure of software.

The RM-ODP standardization is apparently concerned with the structure of
information systems more generally, and with providing a general framework in
which to position many different kinds of standards (e.g. database standards,
graphics standards, management standards). SE-ODP standardization does not
attempt to do this.

Field of Application

The SE-ODP standardization is only concerned with information systems in
which there is open distributed processing and use of ODP standards.

The RM-ODP standardization is also concerned with modelling any information
system to which ODP standards might be applicable (i.e. it is intended to
provide a "general descriptive model of all distributed processing", and not just a
"prescriptive model of open distributed processing").

Focus

The SE-ODP standardization concentrates the core area of techniques for using
and providing distribution transparency. This is only a subset of the whole

problem space addressed by ODP standardization, but it is never-the-less large
and complex.

The RM-ODP standardization, and ODP standardization more generally, has a
s g Y,
yet larger and more diverse and more complex content.

Summary

These distinctions are summarized in the Venn diagram in figure 5 (which is a
notation not intended to be to scale).

scope

of the

RM-ODP
scope of and all
SE-ODP ODP

standard-

ization

Figure 5 - Nested scopes

=21 =

13. OBJECT MODELLING TECHNIQUES

13.1

13.2

13.3

Introduction

This clause describes the way in which the general object model defined in
clause B.6 is used to describe information systems and the support structure
provided by the SE-ODP.

Recipes for arrangement and transformation of objects are provided here for use
in the computation viewpoint, the engineering viewpoint and the technology
viewpoint. These recipes are only described to a level sufficient for the
immediate purpose (and some important details are omitted). More complete
and rigorous specification is for future study.

NOTE 4:

Clause B.6 of Appendix B should be read at this point, because it provides the base definitions and
concepts used here.

Definitions

The following definitions apply.

processing component: any object that is considered to contribute to processing.
interface object: an object which is considered to be the locus for interaction.
abstract interface: an interface object at which interaction is defined without
reference to representation.

ODP interface: an abstract interface defined in ways prescribed by SE-ODP
standardization (see note).

ODP component: a processing component defined in terms of one or more ODP

interfaces with which it has a connexion.

native component: a processing component that is not constrained by SE-ODP
standardization (see note).

final form model: the object diagram(s) providing complete description of the
information system considered, as visible in a particular viewpoint.

NOTE 5:

The definitions of "ODP interface" and "native component" refer to "SE-ODP standardization", not
"ODP standardization". The latter might include standardization of objects considered here to be
"native components". When ODP standardization is at a more advanced stage of development, these
particular definitions may need to be be reformulated.

Processing Components

ODP is essentially about processing and interaction between processing
components. This is particularly the case in the computation viewpoint and
engineering viewpoint, with which the SE-ODP is mostly concerned.

Therefore, in this clause the SE-ODP is considered in terms of processing
components and interactions between them; joint actions other than interactions
are not considered.

13.4

22 -

Most of the processing components considered are modelled primarily as ODP
components. All other processing components are wmodelled as native
components.

ODP Interfaces

By definition, a connexion between ODP components is always via an ODP
interface.

The specification of an ODP interface defines all valid interactions that can
occur at the interface object. The particular formulation of ODP interfaces (see
clause 19) ensures that comprehensive specification of distribution transparency
constraints can be a characteristic of all ODP interfaces.

Therefore, explicit specification of interactions and the provision of distribution
transparencies are inherent in every connexion between ODP components. That
is why the SE-ODP generally requires processing components to be modelled in
this way.

An object diagram need only show an ODP interface where doing so is
appropriate to the level of detail being modelled. For example, the two object
diagrams in figure 6 are equivalent, because in both cases the interaction
between the ODP components is the same (x); each diagram is a transformation
of the other.

ODP component ; ODP component,

ODP interface

ODP component ODP component,

Figure 6 - Equivalent object diagrams

In some circumstances it may be appropriate for an object diagram (o show the
connexion between an ODP component and an ODP interface, without showing
the other ODP component or the connexion to it (see figure 7).

ODP component , ODP interface

ODP interface ODP component,

Figure 7 - Object diagrams each equivalent to both those in figure 6

13.5

-23-

This approach to interfaces is a progression from the formulation in [ANSA, 89|.
Interfaces were previously modelled as being integral to the junction between an
object and a connexion (and were thereby part of the basic formulation of the
object model). In this Technical Report, interfaces are modelled as "first class
citizens" which have names and attributes, and can exist separately in object
diagrams. The main reasons for doing this are as follows.

(a) To simplify the formulation of the Basic Object Model in B.6, and to
make it more generally applicable, interfaces are now a refinement added
for use in particular viewpoints.

(b) To achieve a more comfortable fit to the notion that ODP components

bind to ODP interfaces, and not directly to one another. This indirection
is fundamental to the trading of interfaces (see Appendix D).

These formulations are equivalent, in that they are different ways of presenting
the same information.
There is also a concept of "interface objects" in DACNOS [KRUEGER 88].

NOTE 6:

The concept of an "ODP interface" described in this clause should not be confused with the
different (but related) concept of an “interface adaptor", described in clause 21 and used in 10.2.
Transparent Insertion of Objects

An ODP component which allows the interaction considered, and conforms to
the same ODP interface specification, may be inserted transparently into a
connexion. (Detailed formulation of this is for further study.)

The two equivalent object diagrams in figure 8 are an example. In the second

diagram an ODP component is inserted between the ODP components shown in
the first. (The transformations are essentially the same as those in figure 6.)

ODP component 4

ODP component,

ODP component 5
inserted

ODP component , Q /_\ O ODP component ,
X U X

Figure 8 - Insertion of an extra object
Transformations of this kind may be applied to the resultant object diagram,
again and again.
This recipe is particularly important in the engineering viewpoint, where it is
used to insert ODP components that support distribution transparencies.

13.6

13.7

- 24 -

Native Components

Most computers, networks, software systems, etc. are (and will continue to be)
defined outside SE-ODP standardization. They are whatever they are.

The SE-ODP therefore has to operate in the context of whatever is native to the
world that exists independently of it. The concept of native components is used
to model this real-world diversity and heterogeneity.

ODP components may have connexions to native components. A native
component may have connexions to ODP components. These connexions are
identified with interactions that are specific to the native component; i.e. the
ODP component has to adapt to this heterogeneity.

The object diagram in figure 9 is an example in which an ODP component,
defined in terms of a connexion (labelled x) to an ODP interface, also has a
connexion to a native component. By definition, the specification of the
interaction (y) with the native component does not originate from SE-ODP
standardization (but SE-ODP standards might influence choices of which
specifications to use).

ODP interface ODP component native component
Q x __/J v O

Figure 9 - How native components are modelled and hidden

The ODP component in figure 9 is in a position to hide the native component.
Neither the existence of the native component, nor the interactions y, need be
visible to other ODP components that participate in interactions x. The native
component is then encapsulated behind an ODP interface by the ODP
component. Any visible activity has been normalized.

This recipe for ODP components encapsulating the non-ODP world is
fundamental to the operation of the SE-ODP, and is used for description in each
of the viewpoints considered. It is at the heart of the technology viewpoint.

Object Diagrams

In each viewpoint the information system considered is modelled by means of
object diagrams.

Visibility criteria particular to the viewpoint determine what kind of object is
visible.

In any viewpoint there may be object diagrams at different levels of detail, and
separate object diagrams for separate subsystems. The concept of a final form
model brings all this together for each viewpoint.

=5 =

SECTION FOUR - SE-ODP ARCHITECTURE SPECIFICATION

- 26 -

14.

15.
15.1

-2 -

OVERVIEW OF SE-ODP ARCHITECTURE

The clauses in the previous Sections have introduced the subject area of the
Technical Report, and have presented descriptive concepts. From this starting
point, the clauses in Section Four specify the SE-ODP architecture.

The specification is neither complete nor definitive. It is only intended to be
sufficient to provide an initial basis for the further SE-ODP standardization work
identified in the clauses of Section Five. This further work, together with RM-ODP
standardization in [ISO, would provide the basis for definitive architectural
speicification, which might be the subject of a future ECMA SE-ODP standard.
Clause 15 describes and explains what is visible in object diagrams that model an
information system in the computation viewpoint.

Clause 16 describes and explains what is visible in object diagrams that model an
information system in the engineering viewpoint.

Clause 17 describes and explains what is visible in object diagrams that model an
information system in the technology viewpoint.

Clause 18 describes the structure of interactions via ODP interfaces. This structure
is such that interactions can be completely defined without reference to the way in
which they are represented.

Clause 19 describes the SE-ODP processing model which relates together
processing, memory and communications.

Clause 20 describes the Communications Model used for all interactions between
processing components that are executed in separate address spaces.

Clause 21 describes concepts for the configuration of distributed information
systems, and applies these concepts to some of the examples given in clauses 15, 16
and 17.

Clause 22 describes naming and binding techniques used with SE-ODP
architecture.

Clause 23 describes the distribution transparency techniques used in SE-ODP
architecture.

Clause 24 describes the SE-ODP in terms of its run-time support structure (termed
SE-ODP runtime).

Clause 25 describes the management aspect of SE-ODP architecture.

Clause 26 describes the security aspect of SE-ODP architecture.

DESCRIPTION IN THE COMPUTATION VIEWPOINT
Introduction

This clause describes and explains what is visible in object diagrams that model
an information system in the computation viewpoint.

15.2

- 28 -

The relationship between what is modelled in this viewpoint and what is
modelled in the information viewpoint and enterprise viewpoint is not considered
here (because the latter viewpoints are out of scope).

In essence the structure modelled in the computation viewpoint is whatever
happens to be the appropriate combination of application components. As
explained in clause 8, the term "application" has a very general meaning here,
which includes all kinds of computer activity.

This formulation is specific to the SE-ODP and may not be general to ODP
standardization with a wider scope (see clause 12).

Structure

No objects other than ODP components and ODP interfaces are visible in this
viewpoint, and the latter are not necessarily always shown. By these criteria, no
native components and no connexions to them are visible in this viewpoint.

The same information system may be modelled here at different levels of detail.
An ODP component may be decomposed into further ODP components, which
may in turn be decomposed into ODP components; and so on, until
decomposition has reached the level of object granularity which the application
designer wants to be visible to the SE-ODP. (Any further decomposition in the
computations viewpoint would be a private matter, of no concern to the SE-
ODP).

The object diagram in figure 10 shows, at a coarse level of detail, an example
distributed application which happens to consist of human interfacing functions,
application logic, and database access functions. Each of these groupings of
function has been modelled as an ODP component (the corresponding ODP
interface objects are not shown here).

human-computer application database
interface (HCl) logic access

()
N

Figure 10 - An application example in the Computation Viewpoint

Figure 11 shows this same example at a finer level of detail at which there are
nine ODP components, of which six are application-specific and three are
general purpose (the HCI, DBMS and filestore objects). This might be the final
form model (or there might be further decomposition). If it were the final form
model, the maximum degree to which this information system may be distributed
via the SE-ODP is 9 separately executable software components, at up to 9
separate locations.

= 99 -

Application logic
components

application-specific
user interface
functions

application-specific
DBMS access functions

general-purpose

HCl subsystem Filestore

Figure 11 - A decomposition of the example in figure 10

As in all object diagrams, the relative position of the objects has no logical
significance.

Using the recipe described in 13.6, any necessary native components are hidden
by the ODP components (and are not visible in this viewpoint). E.g. the ODP
component labelled "HCI ..." is probably realized via the screen and keyboard of
a graphics workstation, but these are not visible here. Also, each ODP
component in this viewpoint hides the language, operating system and hardware
with which its realization is constructed.
15.3 Summary

As explained in clause 12, the SE-ODP has no need to "know" anything about
matters such as human interfacing, database, file storage and application logic. In
the example in figure 11, the SE-ODP would attach no connotation of "HCI"

(nor any other connotation) to the object that is labelled "HCI". Likewise for the
objects labelled "application logic", "DBMS" and "Filestore".

What the SE-ODP really needs to know about in this viewpoint is: which objects
interact, via what ODP interfaces, and using which distribution transparencies.

16. DESCRIPTION IN THE ENGINEERING VIEWPOINT
16.1 General

This clause describes and explains what is visible in object diagrams that model
an information system in the engineering viewpoint.

This viewpoint models the complete structure of using and providing the
distribution transparencies required by the final form model for the computation
viewpoint.

This formulation is specific to the SE-ODP and may not be general to ODP
standardization with a wider scope (see clause 12).

16.2 Structure

The essence of the structure modelled in the engineering viewpoint is use of the
transparent insertion recipe described in clause 13.5, to insert (arrangements of)
processing components defined by distribution transparency recipes from the SE-
ODP architecture (see clause 23).

NOTE 7:
The transformations described here are mainly mechanical, and in an implementation may be
provided automatically by software tools.

The first transformation to be considered in the engineering viewpoint is
concerned with extended distribution transparencies (defined in 23.2).

It a connexion between ODP components from the final form model of the
computation viewpoint needs extended distribution transparencies, then extra
ODP components to provide them (see 23.4) are inserted into the connexion.
These inserted ODP components may be decomposed into more detailed ODP
components. Any extended distribution transparencies needed by any of these
inserted ODP components would require the insertion of further ODP
components; and so on, until all needs for extended distribution transparencies
are satisfied.

In the example shown in the object diagram in figure 12, one of the original
ODP components might be the "application-specific DBMS access functions" in
figure 11, and the other might be the "DBMS". The connexion between them
might require concurrency transparency and failure transparency, and replication
transparency, which might be provided by objects that support "atomicity" and
object group abstractions (described in 23.4).

/// inserted ODP components
/ providing extended
/ distribution transparencies

original ODP
component,

original ODP
component;

~~ S =2

Figure 12 - Provision of extended distribution transparencies

Whatever the effects of the transformations described above, the resultant object
diagram at this stage is always some collection of ODP components with various
connexions between them (like the final form model from the computation
viewpoint).

Further transformations, described below, are concerned with providing the
basic distribution transparencies (defined in 23.2).

- 31 -

For the final form model in the engineering viewpoint, each of these ODP
components is decomposed into a pair of objects with a connexion between
them. These paired objects are: an ODP component termed an interface adaptor,
and a native component representing the rest of the original ODP component.
The interface adaptor provides to the native component all the basic distribution
transparencies required. For further description see 23.3.

Each interface adaptor is a part of the SE-ODP runtime support system (termed
SE-ODP runtime), and has a connexion to the rest of SE-ODP runtime (the
latter provides the means of interaction between interface adaptors). The
structure of SE-ODP runtime is described in clause 24.

In the final form model of the engineering viewpoint, SE-ODP runtime would be
represented at some appropriate level of granularity. Since the structure of SE-
ODP runtime is general to all uses of the SE-ODP, it is often appropriate to
represent the rest of SE-ODP runtime by a single object, the nucleus. The
detailed composition and configuration of SE-ODP runtime could be shown
separately in object diagrams general to all the information systems considered.

The object diagram in figure 13 is an example of the structure in the engineering
viewpoint. It shows an information system consisting of pairs of objects that
model fifteen separate processing components. But it gives no indication of object
location relative to one another, nor any indication of which native components
interact with which. Nine of the pairs of objects might represent the original
ODP components from figure 11, and the other six might represent the inserted
objects from figure 12. In this diagram it is not apparent which native
components interact with which.

native component
nucleus

interface adaptor

O
O—O

Figure 13 - Provision of basic distribution transparencies

As in all object diagrams, the size and relative position of the objects, and the
orientation and length of the arcs between them, have no logical significance.

16.3

= 39 =

Summary

Further transformations would be needed to make explicit any differences of
location. This would reveal some of the internal structure of SE-ODP runtime,
as described in clauses 19, 20, 23 and 24.

The SE-ODP is largely about the extra inserted objects that are modelled in the
engineering viewpoin(. The original objects (from the computation viewpoint) are
considered here primarily in terms of satisfying their distribution transparency
needs.

17. DESCRIPTION IN THE TECHNOLOGY VIEWPOINT

17.1

17.2

Introduction

This clause describes and explains what is visible in object diagrams that model
an information system in the technology viewpoint.

This viewpoint models use of native components to support the final form model
from the engineering projection, and is not considered in detail by SE-ODP
standardization.

This formulation is specific to the SE-ODP and may not be general to ODP
standardization with a wider scope (see clause 12).

Structure

Only those ODP components from the engineering viewpoint that decompose to
reveal native components of interest need be considered. The general approach
for revealing the native component(s) from which an ODP component is
constructed has been described in clause 13.6 and shown in figure 9.

The question of "what native components are of interest?" needs further study,
but some preliminary guidelines are given below. The main candidates for
decomposition in this viewpoint are:

(a) the SE-ODP interpreter, which hides processors and memory (see clause
19);

(b) an SE-ODP stable-storage object, yet to be defined, which would hide
non-volatile storage, such as discs; and

(c) the SE-ODP IPC object which hides communications mechanisms (see
clause 20).

This corresponds to the general threefold classification of distributed processing
resources into processing, storage and communication.

There is also a need to distinguish native components that are basic to separation
in space and time. The candidates are a native component for modelling units of
physical separation ("physical units"), and a native component for modelling
clocks. For practical reasons a "physical unit" would generally be in one-to-one
correspondence with a local clock (i.e. the accessibility of a local source of
timestamps sets the bounds of a physical locality).

17.3

Encryption mechanisms may be another kind of native component which is of
fundamental significance.

There are various processing components such as the terminal devices, sensors
and actuators via which an IT system interacts with the people, natural systems
and rechnical systems in its environment. As explained in clause 12,
standardization of such mechanisms, and detailed concern about them, is outside
the scope of SE-ODP standardization. A native component sufficiently general to
model all of these mechanisms would be a "transducer object", operating across
the boundary between the IT system and the physical world outside it.

Another boundary occurs between the conceptual world of ODP components
and the actual executable specifications (i.e. programs, written in computer
languages). A native component sufficiently general to model all of the latter
would be a "denotation object".

Summary

In the technology viewpoint, it may be sufficient for SE-ODP standardization
only to consider native objects pertaining to SE-ODP runtime (and not those
pertaining to the application components). If so, this would be a considerable
simplification. Further study is needed.

18. SE-ODP OBJECT INTERACTIONS

18.1

18.2

Introduction

This clause describes the structure of interactions via ODP interfaces.

Overview

As explained in clause 13, most processing components considered in SE-ODP
standardization are modelled as ODP components between which there are
connexions via ODP interfaces.

A common model of interaction semantics is applicable to all ODP interfaces
(see 18.3), and thereby to all ODP components. Any language used to define
ODRP interfaces is required to conform to this Semantic Model (see 18.4). These
“interface definition languages" would be used to define operation signatures,
partial ordering constraints, distribution transparency constraints, etc.

This unification of interaction semantics is summarized in figure 14.

NOTE 8:
Figures 14 and 15 are examples of how the object diagram notation may be used to model abstract
joint action between specifications.

specification of
interface definition language

- 34 -

one Model of
ODP Interaction
Semantics

- agreed mappings

specification of
interface definition language

Figure 14 - Harmonization of Interface Definition Languages (IDLs)

Any of these interface definition languages may be used to specify an ODP
interface. The resultant interface description is defined without reference to
representations of the interface (see 18.5). Each ODP interface is therefore an
abstract interface conforming to the common Semantic Model, and has many
possible program representations (see 18.6) and many possible transfer syntax
representations (see 18.7). This flexibility is summarised in Figure 15.

constraints on
program representations of --—-—3>

interfacey

one Model of
ODP Interaction
Semantics

language constraints from figure
14, forcing one agreed meaning

———————— common to all possible descriptions
and representations of the
interface ,

specification of
an ODP interface ,
(written in some IDL)

constraints on
<€ - —— - transfer syntax representations of
interactions via interfacey

many possible many possible
programming interface transfer syntax
specifications for interface , specifications for interface ,

Figure 15 - Diversity of Interface Representations

The freedom to independently vary programming interfaces and transfer syntax
is supported by the interface adaptor architecture which is described in 23.3.3

and

illustrated

in figure 19. There is almost complete decoupling from

technology-dependent detail (see 18.8).

These various characteristics are now each considered in more detail.

18.3

18.4

18.5

18.6

Interaction Semantics

In order to reason unambiguously about complex distributed processing systems,
it is first necessary to define a Semantic Model of distributed computation,
specifically the semantics of computational interactions.

Existing models of computation (e.g. the von Neumann model) were developed
to describe computing in non-concurrent, single-processor environments.
Specification languages and programming languages based exclusively on such
models have inadequate power for expressing ideas of concurrency and
distribution. In addition, all except the developing object-oriented languages
have difficulty in representing encapsulation adequately. For SE-ODP purposes,
there should be one model of interaction semantics. This would embody all the
concepts necessary to completely describe interactions between the components
of distributed processing systems, including notions of encapsulation,
concurrency, distribution transparency and atomicity.

Clause 29 outlines a standardization work item on this subject.
Languages for Definition of Object Interactions

To provide notation in which to specify interactions, some language
representation of the Semantic Model (see 18.3) is necessary. There may be
several such "interface definition languages", but each must conform to the same
Semantic Model if there is to be consistent interpretation of their semantics.

The purpose of these "interface definition languages" is specification of
interactions between objects. This is different from the traditional role of
programming languages.

Many different kinds of language-design choices can be made when designing a
language (or notation) for this purpose. Each choice has different trade-offs (e.g.
maximizing opportunities for static checking by language systems, or maximizing
re-use of existing notation).

The Interface Definition Notation (IDN) in the ECMA-127 RPC standard is an
example of an "interface definition language" at this level.

Abstract Interface

An interaction between ODP components is constrained by an abstract interface,
which is specified in some "interface definition language" (see 18.4) that
conforms to the Semantic Model (see 18.3). This provides a complete definition
of the interaction, as visible in the computation viewpoint.

This specification is abstract, in that it is uncommitted (o any particular choice
of concrete form. Such choices are made separately in the engineering viewpoint
(see 18.6 and 18.7) and in the technology viewpoint (see 18.8).

Application Programming Interfaces

The application programmer’s view of an interaction is via some programming
interface which is made visible in the engineering viewpoint.

Such an interface has a concrete form that is necessarily committed to some
particular syntax, control structure and language binding (e.g. to the syntax and

18.7

18.8

- 36 -

semantics of some particular programming language, and perhaps to using a
control structure of procedure calls for external interactions). These concrete
interfaces are visible as the interfaces of native components (see 23.3.3). Each is
an engineering viewpoint representation of the corresponding abstract interface
that was defined in the computation viewpoint.

For the purpose of interworking, the programming interface is essentially a local
matter, in that it is not directly visible to the ODP component at the other end of
the interaction. Therefore, in principle, there may be arbitrarily many different
programming interfaces for a given interaction, provided that each is a
representation of the same abstract interface.

For the purpose of software portability, there is a case for using, wherever
possible, the same programming interface for a given interaction.

This de-coupling of the choice of programming interface from other
characteristics of the interaction is an important contribution to simplifying
system design and development.

Transfer Syntax

The transfer syntax is the way in which the structure and content of the
interaction are represented and encoded in transit between the application
components. This is made visible in the engineering viewpoint.

The wransfer syntax may be different from the syntax of the programming
interfaces. Also any necessary distinctions between abstract transfer syntax and
concrete transfer syntax are made at this juncture.

Arbitrarily different transfer syntaxes may Dbe applicable in different
circumstances (e.g. when objects are co-located, when objects are in separate
computers of the same kind, when the computers are different, and when
different kinds of interconnection are used). Both ends need to make mutually
acceptable choices of transfer syntax and to do any necessary conversions.

The specifications of the transfer syntax and the programming interface provide
a complete definition of the representations of the interaction which are visible
in the engineering viewpoint. The semantics and overall syntactic structure
continue to be as defined in the computation viewpoint.

Technology-dependent Structure

The interaction is realized by means that are modelled in the technology
viewpoinl.

Wide freedom of choice at this level is allowed by the completeness of the
abstract definition of interaction behaviour in the computation viewpoint and
engineering viewpoint; see 18.3 to 18.7.

Furthermore, the actual structure at this level is necessarily implementation-
dependent; e.g. different operating systems have different process, memory and
communications structures; different computers represent stored values in
different ways; different kinds of interconnection have different architectures and

~37 -

protocol structures; different infrastructure implementations have different
interfaces, different concurrency provisions.

Therefore, the interaction visible in the technology viewpoint is not defined here;
its heterogeneity is not constrained by SE-ODP architecture. This ties in with the
role of native components in the technology viewpoint, introduced in clause 17.

18.9 SE-ODP Prescriptions

For SE-ODP purposes, there are the following prescriptive constraints on the
specifications of interactions via ODP interfaces.

(a) One standard Semantic Model shall be used throughout.

(b) Standard interface definition language(s) shall be used. For each there is
necessarily an agreed mapping onto the Semantic Model (a).

(¢) For particular SE-ODP functions, standard abstract interfaces shall be used
(e.g. for interaction with the SE-ODP trading function).

(d) Particular standard programming interfaces may be required in some
cases.

(e) Particular standard transfer syntaxes (e.g. ISO 8824 and 8825) and
protocols may be required where interactions are remote and use OSI.

These matters are considered in more detail in 28.4, and in the clauses in
Section Five.

19. SE-ODP PROCESSING MODEL
19.1 Introduction

This clause provides a preliminary description of the SE-ODP processing model
which relates together processing, memory and communications. This is an
engineering viewpoint matter.

19.2 Definitions
The following definitions apply.
processing: programmed activity executed in computers.

SE-ODP processing model: a model of how processing is structured and
organized in the SE-ODP.

interpreter: a mechanism that realizes processing.

SE-ODP interpreter: an interpreter that realizes SE-ODP processing model
concepts.

native interpreter: an interpreter that is a native component.

capsule: an object that is specific to the SE-ODP, and models the computer
address space within which processing is confined by interpreters.

19.3

194

19.5

=38 =

General

Different computer languages, operating systems and computer hardware have
different processing models. All have much in common, and use much the same
terminology (although often with undeclared differences of meaning).

To achieve consistent understanding amid this heterogeneity, it is necessary to
define a common set of processing concepts. This is what the SE-ODP processing
model does.

To achieve distributed processing consistently in heterogeneous processing
environments, it is necessary to define some common mechanism to support
these SE-ODP processing model concepts. This is what the SE-ODP interpreter
does.

Processing is confined within capsules, and all SE-ODP visible interactions
between capsules is via SE-ODP IPC (see clause 20).

Processing model

Processing is organized around the three functional areas of processing, memory
and communication. The encapsulation, concurrency and synchronization
characteristics of processing are of particular importance to distributed
processing. 'The SE-ODP processing model may also include particular concepts
to support interaction constraints (e.g. distribution transparency and atomicity,
which would be defined in the Semantic Model).

Minimality, simplicity and practicability should be guiding principles for design
of the SE-ODP processing model. The details are for tfurther study.

SE-ODP Interpreter

The SE-ODP, and the software of the applications using it, are ultimately
mechanized by processing provided directly by the local environment (i.e. the
instruction set of some native interpreter).

However, some of the SE-ODP functions offered to application components
derive from the SE-ODP processing model. Figure 16 is an object diagram which
shows the role of the SE-ODP interpreter (in the engineering viewpoint) and the
relationships to the native interpreter (in the technology viewpoint).

-390 -

visible in the visible in the
Engineering Viewpoint Technology Viewpoint

native components

iy ™
of the application,
which are hidden by

ODP components

§E-ODP runtime, all executable
including all the >— ______ > denotation
interface adaptors

native
SE-ODP Interpreter Q y interpreter

Figure 16 - The SE-ODP Interpreter

The SE-ODP interpreter provides specialized primitives for concurrency,
synchronization, inter-process communication, etc. In some cases these
primitives can be mapped directly onto normal local processing. But in other
cases the SE-ODP interpreter provides the necessary function itself. This would
usually be done by using some combination of functions provided by the native
interpreter (including the local operating system) and other parts of the SE-ODP.
The details are for further study.

20. SE-ODP COMMUNICATIONS MODEL

20.1

20.2

20.3

Introduction

This clause describes the Communications Model used for all interactions
between processing components that are executed in separate computer address
spaces (capsules).

Definitions
The following definitions apply.

inter-process communication (IPC): communication between processing in
separate computer address spaces (in the SE-ODP [IPC case these would be
capsules).

SE-ODP IPC: /PC relating to the SE-ODP processing model.
Description

The Communications Model exists only to supports the SE-ODP processing
model and the SE-ODP interpreter. They formulate all the relevant interactions
in terms of inter-process communication, which the SE-ODP interpreter supports
with /PC primitives and synchronization and scheduling primitives. Therefore,
this Communications Model is exclusively concerned with supporting SE-ODP
IPC,

21.
21.1

21.2

- 40 -

The IPC primitives are required to provide a normalized basis for mechanization
of all the external interactions (including those needing isochronous and
multicast communication). This normalization, which masks the diversity of
actual communications mechanisms, is visible in the engineering viewpoint. The
diversity of underlying mechanisms is to varying degrees visible in the
technology viewpoint.

The means of communication is presented to the rest of the SE-ODP as services
provided by an SE-ODP IPC object, which hides the diversity of the native
components which it uses to achieve the required communication. These diverse
objects provide diverse communications services for local IPC, data tele-
communications, voice telephony, etc. This structure is illustrated in figure 17.

The rest of the SE-ODP
at that location

SE-ODP IPC
object

native components

providing
diverse means of
communication local IPC OSlI proprietary Voice
object Interconnection Interconnection telephony
object object object

Figure 17 - SE-ODP communications

The real-world diversity of communications technology includes many kinds of
interconnection that do not conform to open standards. It is necessary that SE-
ODP architecture has descriptive flexibility for coverage of this heterogeneity (as
illustrated by the example in figure 17). This does not preclude prescriptive
formulation of ODP standards which may require that appropriate OSI
interconnection standards are used.

APPLICATION CONFIGURATION

Introduction

This clause describes concepts for the configuration of distributed information
systems, and applies this to some of the examples given in clauses 15, 16, 17.
Configuration is to be the subject of more detailed ECMA standardization; see
clause 28.

Definitions
The following definitions apply.

NOTE 9:
These definitions are derived directly from the object model. They depend on the particular
definitions of "“activity", "object", "interaction" and “action" provided in clause B.6.

21.3

- 41 -

Basic service concepts derived from the object model:
service: activity for co-operative use by other objects.

service interaction: an interaction in which one object provides a service for
use by the other object.

exporter: an object to which provision of a service is attributed.

importer: an object to which use of a service is attributed.

export: a proposal to provide some particular service.

import: a proposal to use some particular service.
Configuration concepts derived from the basic service concepts:

client-server interaction: a service interaction in which the importer initiates
action.

producer-consumer interaction: a service interaction in which the exporter
initiates action.

client: an object that is importer with respect to the client-server interaction
considered.
server: an object that is exporter with respect to the client-server interaction
considered.

consumer: an object that is importer with respect to the producer-consumer
interaction considered.

producer: an object that is exporter with respect to the producer-consumer
interaction considered.

client-server model: a model of object configurations in which the
connexions considered are identified with client-server interactions. May be
abbreviated to client-server.

producer-consumer model: a model of object configurations in which the
connexions considered are identified with producer-consumer interactions.
May be abbreviated to producer-consumer.

Configuration support concepts:

trading: activity pertaining to imports and exports.

trading service: a service used to match imports and exports.

trader: an object to which provision of a trading service is attributed.
Using and Providing Services

Clause 15 has described how information systems are modelled in the
computation viewpoint as ODP components with connexions between them.

The main relationship between these ODP components is that they cooperate
with one another via the provision and use of services. This is modelled by the
connexions between them. Each connexion is identified with some service
interaction for which one of the ODP components is the exporter and the other is

214

21.5

21.6

- 42 -

the importer. The contribution that each ODP component makes to the
information system is defined by what it exports.

These same kinds of relationships also prevail in the engineering viewpoint and
the technology viewpoint, where (as explained in clauses 16 and 17) different
objects are visible.

Client-Server and Producer-Consumer Models

The client-server model and the producer-consumer model are particular
formulations of the general importer / exporter structure. Arrangements of ODP
components can be modelled in terms of client, server, producer and consumer
roles.

The terms importer, exporter, client, server, producer and consumer are not
strictly applicable to the object as a whole. An object may have several of these
various roles with respect to its several connexions. But it is often convenient to
refer informally to the object itself as the "client" or "server" in the context of
some particular connexion.

Some of the long standing disputes over "what is a server ?" can now be
resolved by making distinctions between viewpoints. In the computation
viewpoint, the term server refers to application structure (and applications
experts have corresponding notions of what a server is). In the engineering
viewpoint, server refers to SE-ODP support structure; and in the technology
viewpoint, server refers to the artifacts from which the information system is
constructed (so various kinds of operating system experts have various other
notions of what a server is). Similarly, any usage of these concepts in the
enterprise viewpoint or information viewpoint is likely to be different. These
same concepts can also be applied at many different levels of granularity (i.e. a
server is not necessarily only something that is visible as a unit of distributed
system granularity).

Trading

These configurations of objects providing and using services are organized via
what is termed (rading. This operates at the level of individual objects and
connexions, organized within larger scale structure which integrates with
concepts of "management domains" etc.

The SE-ODP provides a (rading service via trader objects, which are themselves
configured as a Trading Application. Clause 24.4 explains how this distributed
application is positioned as the (rading wtility. Appendix D provides a
preliminary description of (rading.

Generics

Standard ODP interfaces, standard ODP components and standard configurations
of them could be defined for commonly occurring functions (e.g. for file
services, document storage and retrieval, printing, electronic mail services,
configuration management, etc.). Some of these items would be general to all

distributed processing, some would be domain specific, and many are already the
subject of open standards. In the latter case, further standardization work would

21.7

- 43 -

be needed to adapt existing functions to take advantage of ODP architecture and
technology.

These matters are actually outside the scope of SE-ODP standardization; but
may variously be within the scope of ODP standardization more generally (see
clause 12).

Review

These concepts of providing and using services, and consequent client-server
relationships, are applicable to the descriptions already given in clauses 15, 16
and 17. This further level of structural detail can now be added by refinement of
the object diagrams in those clauses.

In figure 10, the "HCI" object is a client of the service that is exported by the
"application logic" object, which in turn is a client of the service that is exported
by the "database access" object. In figure 11 these objects are decomposed into
finer grained objects between which there is a further level of trading; e.g. there
is an "application logic" object that exports a service labelled E to three other
"application logic" objects. These examples are modelled here in the

computation viewpoint, and each object considered is an ODP component.

In figure 12, extra ODP components are inserted into this configuration, in order
to provide extended distribution transparencies. ODP component, is the importer
of a service which is apparently provided by ODP component,; but this service is
augmented transparently by the inserted ODP components. In effect, the latter
collectively masquerade as the server to ODP component; and as the client to
ODP component,. Among themselves they have various client-server
relationships. (This example also indicates a need for care about security
characteristics when the SE-ODP inserts objects transparently to achieve desired
characteristics, as modelled in the engineering viewpoint.)

Various client-server relationships could be attributed to the more detailed
engineering viewpoint structure illustrated in figure 13. This requires further
study.

The above example did not include any producer-consumer interactions. These
are relatively common in applications such as process-control and
Communications Command and Control.

22. SE-ODP NAMING & BINDING

22.1

22.2

Introduction

This clause provides a preliminary description of SE-ODP naming and binding
requirements (not the solutions, because at this stage the subject has not yet been
studied in detail).

Definitions
The following definitions apply.
name: a symbol by which objects may be identified.

ODP name: a name that is constrained by SE-ODP standardization (see note).

22.3

- 44 -

native name: a name that is not constrained by SE-ODP standardization (see
note).

NOTE 10:

The definitions of "ODP name" and "native name" refer to "SE-ODP siandardization" not "ODP
standardization". The latter might include standadization of names considered here to be "native
names". When ODP standardization is at a more advanced stage of development, these particular
definitions might need to be reformulated.

naming context: a context within which a name has an agreed interpretation.

context relative name: a name which is interpreted within an identified naming
context.

naming tree: a hierarchy of context relative names, each having an unique value
within its immediate naming context.

binding: a mapping between a name and an object.
address: a name for which there is a binding to an object that represents location.

early binding; static binding: binding in which the mapping is determined in
some previous epoch, and persists thereafter.

late binding; dynamic binding: binding in which the mapping is determined only
in the epoch considered (which is usually the "execution epoch").

ODP association: a binding between an ODP component and a name used by
another ODP component.

Naming

In ODP there is an immense diversity of names. Different considerations apply
to names in the different viewpoints, and in the many different technical
disciplines that are involved in ODP. Many of the names that are encountered
are native names arising in heterogeneous social systems and technical systems
that are not constrained by ODP standardization.

Therefore, the SE-ODP approach to naming has to respect this diversity and
avoid being unduly prescriptive.

All names are inherently context relative names (i.e. any name necessarily has to
be interpreted within some agreed naming context). In some cases this naming
context may be considered to be "global". But many other different naming
contexts may also be considered to be "global" (e.g. in different enterprises, in
different technical disciplines, and in separately constructed systems and
subsystems). The SE-ODP therefore has to operate in a world where naming
trees do not all have a common root. Links will be continually forming between
existing naming (rees, but new separate naming trees will continually be forming
elsewhere. This reflects the continual change that is characteristic of social
systems and complex technical systems. Many naming trees will deliberately be
kept separate for security reasons, or because there is no reason why they should
be related (e.g. the names of organizational roles in some enterprise, and the
names of software components elsewhere, are inherently unrelated).

224

- 45 -

Likewise, the SE-ODP has to be tolerant of diverse ways of representing the
values of names.

However, the SE-ODP should also be able to take advantage of areas in which
naming is "global" and the name representations are homogeneous (e.g. names
conforming to ISO registration schemes).

A further complication is that the same name may bound to many objects; and
vice versa.

Addresses are similarly diverse (e.g. "network addresses" and "computer memory
addresses"). It is likely that addresses will be treated as native names, originating
outside the scope of SE-ODP standardization.

Therefore, the characteristics likely to be defined for ODP names are: context
relative names, multiple independent naming trees, with ways of forming links
between naming trees (probably by introducing common roots, or cross-links, or
aliases), and ways of achieving optimization where names are homogeneous and
"global".

Binding

As with naming, many different kinds of binding are relevant to the SE-ODP,
and much is beyond the reach of SE-ODP standardization (e.g. the bindings
internal to the program structure of a native object).

The SE-ODP makes some important distinctions between the use of static
bindings and dynamic bindings (see 23.3.4).

ODP associations are a particularly important kind of binding. They are usually
formed via trading in some epoch (see clause 21 and Appendix D).

An area requiring further study is the relationship between connexions, and
ODP associations and communications connections. Figure 18 illustrates a
connexion for which these relationships are now considered.

connexion
ODP component , Q Q ODP component ,

Figure 18 - An object diagram

The presence of the connexion in the object diagram does not model the
presence of an ODP association between the objects. At most it expresses
constraints by which it is possible that one or more ODP associations exist. If
one does exist, it may be a dynamic binding that only exists for some of the time.

A further point is that the corresponding ODP association(s) are not strictly
between the ODP components. The ODP association would be between ODP
componenty and some name known to ODP component,, such that ODP

- 46 -

componenty can reference ODP component| ; or vice versa; or both these
bindings might exist.

The presence of a connexion in the object diagram and the existence of an ODP
association do not model or require the existence of a "connection" for
communication between the ODP components, nor the existence of any other
kind of communications channel. At most they indicate that a communications
channel should exist and be available for this purpose when interaction between
the ODP components occurs. If the ODP components are in separate address
spaces (defined as capsules in clause 19), then this becomes a matter for inter-
process communication via SE-ODP IPC (see clause 20), but not otherwise.

Some of these distinctions are made by modelling in different viewpoints. The
connexion in figure 18 is probably visible in the computation viewpoint (but such
ODP components might be in the engineering viewpoint, e.g. as in figure 12).
Any trader and SE-ODP IPC involvement would be modelled in the engineering
viewpoint, and any underlying communications connection would probably be a
matter for the technology viewpoint. But the ODP associations may be
considered to be detailed program implementation matters, not visible in object
diagrams representing system structure.

A further point is that the presence of an ODP association does not necessarily
imply a binding between state in the separate ODP components. This raises
wider issues (e.g. "atomicity") that are not considered further here. Certain
provisions for bindings to the state of remote components are defined in ECMA-
127, and these are likely to be included in future SE-ODP provisions.

The preliminary conclusion is that great care is needed in relating binding
concepts to particular mechanisms such as ISO 8649 ACSE associations, ISO
9072/1 ROSE BIND primitives, and ECMA-127 RPC module linkage.

23. SE-ODP DISTRIBUTION TRANSPARENCY TECHNIQUES
23.1 Introduction

Distribution transparencies have been defined and explained in the ISO RM-
ODP work that is summarised in B.4.

The insertion of distribution transparency recipes into models in the engineering
viewpoint has been described in clause 16. The distribution transparencies
inserted are those required for interactions between (the realizations of) ODP
components (which usually model application components).

This clause describes the distribution transparency recipes that are inserted.

NOTE 11:
Clause B.4 of Appendix B should be consulted at this point because it provides the base definitions
and base concepts of distribution transparency.

- 47 -

23.2 Definitions
The following definitions apply.

basic distribution transparencies: access transparency and location transparency
(see note).

extended distribution transparencies: concurrency (transparency, replication
transparency, failure transparency and migration transparency (see note).

NOTE 12:
The above definitions should be updated when the definitive set of distribution transparencies has
been agreed in the RM-ODP (see B.4).

interface adaptor: an object that provides basic distribution transparencies to an
ODP component.

ACID properties: a set of characteristics prescribed in transaction processing (see
ISO 10026 and 23.4.2).

atomic object: an object to which ACID properties are attributed.

object group: a collection of inter-related objects, for which there is an
abstraction that is a single object.

object factory: an object that creates instances of objects from templates that
specify the required objects.

23.3 Basic Distribution Transparency Techniques
23.3.1 General

Together, the basic distribution transparencies support a style of interaction
that is independent of whether ODP components are co-located or remote.

The basic distribution (transparencies also provide independence from the
heterogeneity of the native objects by which ODP components are realized,
and provide independence from the heterogeneity of underlying networks, etc.

To simplify description, these basic distribution transparencies are explained
here without reference to them being selective, which is considered in 23.5.

23.3.2 Unified Interaction Semantics

The foundation for distribution transparency is that the same Semantic Model
is applicable to all interactions between ODP components, irrespective of
whether the objects are co-located or remote. This unification of interaction
semantics is described in clause 18.

23.3.3 Interface Adaptors

The realization of each ODP component that may use distribution
transparencies is modelled as a native component and an interface adaptor,
both of which are visible in the engineering viewpoint (see 16.2).

The interface adaptor is part of the SE-ODP runtime support structure
(termed SE-ODP runtime) which is described in clause 24. It mechanizes any
necessary dynamic binding, data conversion, use of buffers, and marshalling of
data between buffers and program data structures, etc.

- 48 -

NOTE 13:
The term "stub" is widely used to refer 1o this subject area (e.g. the "RPC stubs" described in
ECMA 127). But "stub" has implementation-specific connotations, and the term is not used in
this Technical Report. The term ‘interface adaptor" is used insiead, with a more general
definition.

The role of an interface adaptor is illustrated in figure 19. The interface
adaptor ensures that the native component sees only its local interaction (A)
with the interface adaptor, and does not see the internal mechanisms of the
interface adaptor, nor the interactions (B) between the interface adaptor and
other objects. Similarly, no other objects see the interaction (A) or the internal
mechanisms of the interface adaptor. See clause 13.6 for description of the
general principles of this information hiding.

realization of an ODP component

N
r . .
native interface
component adaptor

m All other
A U B objects

Figure 19 - General role of an interface adaptor

The original ODP component (e.g. application component) may have
connexions to multiple ODP components. In which case the interaction A (and
perhaps B) would be a composition of the individual interactions, and the
interface adaptor would likewise be composite. In more detailed object
diagrams this structure could be decomposed into its elements; i.e. separate
elementary interactions Ay ... A, via separate elementary interface adaptors.

As explained in clause 18, the details of the local interaction A may be
implementation-specific (i.e. particular to the native component), although
there is necessarily an equivalence to the abstract interaction defined by the
ODP interface concerned. The interface adaptor hides this local variability, i.e.
heterogeneity.

An interface adaptor is, in effect, that part of SE-ODP runtime which is
customized to the needs of a particular realization of an ODP component. It
supports whatever local interaction (A) the native component uses to represent
interactions concerning the ODP component.

The realization of the interface adaptor and the native component are
executed in the same address space (defined as a capsule in clause 19). The
interface adaptor acts as a local "proxy" that represents ODP components
which are external to the native component and with which the native
component has interactions. The native component interacts with the interface
adaptor as if it (the interface adaptor) were the external object. In this way,
external interactions can be programmed as local inter-module interactions
within the local address space. Therefore, the local interactions (A) are

- 49 -

usually those of a normal inter-module programming interface, not a
communications programming interface.

23.3.4 Transparent Dynamic BindingA

The bindings between ODP components may be static bindings or dynamic
bindings. The native components revealed by decomposition of the ODP
components participate in these same bindings. For many kinds of information
systems it is vitally important (e.g. for reasons of design stability, integrity and
security) that bindings at this user-visible level are static bindings that are
guaranteed not to change.

However, the bindings between interface adaptors are always dynamic
bindings: i.e. they are actually made and unmade at runtime (even if always
between exactly the same instances of the same interface adaptors). This
binding structure is illustrated in figure 20.

native component

4 dynatr)?rl]cd(i)rzgtatlc O representing an

application component

native component
representing an
application component

interface adaptor h dynamic q interface adaptor

binding

all other SE-ODP objects

Figure 20 - Transparent dynamic binding

This underlying dynamic binding is a source of flexibility and adaptability
which is fundamental to the provision of distribution transparencies (e.g. it
provides opportunities for location transparency). This dynamic binding is an
internal mechanism that is hidden from the native components by the basic
distribution transparencies; i.e. it need not be visible in the local interaction
(labelled A in figure 19) between a native component and its interface adaptor.

All the SE-ODP binding functions use the trading service to match proposals
to provide and use services. Trading is described in Appendix D.

23.4 Extended Distribution Transparency Techniques

23.4.1 General

The extended distribution transparencies exploit opportunities for qualitative
improvements that arise when basic distribution transparencies are provided.

ECMA has not yet studied this area of ODP in detail. Therefore, this is only
an outline description of subjects for further study.

To simplify description, these extended distribution transparencies are
explained here without reference to them being selective, which is considered
in 23.5.

- 50 -

23.4.2 Atomic Objects

2343

Interactions between ODP components may be required to be robust to
failures.

The basic distribution transparencies provide a degree of robustness to
communications failures, but not coverage for other failures (e.g. failure of the
ODP components themselves).

Support for ACID properties is a more general solution, which is relevant to
all the extended distribution transparencies. ACID properties are concerned
with the atomicity, consistency, independence and durability of the effects of
actions. 1ISO 10026 (OSI TP) is the subject of current ECMA and ISO work in
this area.

A prototype architecture for automated ODP support of atomic objects via
extended distribution transparencies is described in [ANSA 89].

Object Groups

NOTE [4:

This description considers “execution groups" composed from ODP components that offer the
same ODP interface(s) and identical behaviour. Other kinds of object groups are for further
study (e.g. grouping for management purposes).

Object groups are a basis for functional distribution, replication and
parallelism which provide opportunities for improved performance,
availability and fault tolerance.

The improved performance may be gained via parallel execution using
separate resources and by load balancing across these resources. Improved
availability and fault tolerance may be gained via multiple objects that provide
alternative resources, or hot standby, or majority voting of results from
suitably independent sources.

This multiplicity of replicated objects and the coordination of them (although
intended to be ultimately beneficial) adds a major degree of complexity.

The main sources of this added complexity are: the sheer numbers of objects
involved; the continually changing membership of each collection of objects
(due to failures, reconfiguration of resources, etc.); the difficulties of
organizing joint action within each collection of objects; the difficulties of
achieving coherent joint action between the separate collections of objects;
compounded by the need for optimizations to ensure that the interactions can
achieve performance goals, and without violating integrity constraints; the
scaling-up of all of this for many interactions between many collections of
many objects; plus provision of means of (re-)configuring and managing the
resultant complex.

Comprehensive and automated support for object groups is a way of
selectively hiding this complexity (the multiple objects in each object group
behave towards other objects as if the multiple objects were collectively one
object).

- 51 -

A prototype architecture for automated ODP support of object groups via
extended distribution transparencies is described in [ANSA 89]. There is a
close relationship between the latter and the prototype architecture to support
real-time fault-tolerant ODP which is described in [DELTA-4, 88].

For some fields of application these object group concepts and related fault-
tolerance may seem rather esoteric (although for others they are a vital
necessity). A universally applicable case in which they are vitally necessary is
that of the SE-ODP utilities, which are an integral part of SE-ODP runtime
(see clause 24). Therefore, support for object groups is necessarily a
fundamental characteristic of the SE-ODP.

23.4.4 Object Factories

The objects that are the realizations of ODP components at runtime have to be
created and destroyed, and sometimes re-located.

The object factory concept includes the creation of objects, and perhaps their
re-creation when they are re-located. It may also have a role in their ultimate
destruction.

There are related concepts of the "freezing" and "thawing" of objects that
become inactive and then become active again at some later time. A "frozen"
object would be modelled as having a connexion to some kind of stable-
storage object and not to an interpreter. A "thawed" object would be modelled
as having a connexion to an interpreter that can execute it.

These mechanisms for the creation and destruction of objects (and "freezing"
and "thawing") may have a role in supporting relocation transparency.

A prototype architecture for automated ODP support of object factory
functions within provisions for extended distribution transparencies is
described in [ANSA 89].

23.5 Selective Distribution Transparencies

At the level of object granularity considered in the SE-ODP, the basic
distribution transparencies are always available, but may be selectively used. For
a native component to be selective about its use of these distribution
transparencies, the local interaction (labelled A in figure 19) between the native
component and the interface adaptor would need to include means to determine
location, or to participate in trading, etc.

As explained in clause 15, objects that provide the extended distribution
transparencies are only inserted where needed. Therefore the extended
distribution transparencies are inherently selective. Furthermore, the ODP
interfaces of the ODP components inserted may be specified to reveal
distribution characteristics to the native objects concerned, and to provide means
of manipulating these characteristics.

Therefore, all use of distribution transparencies is selective, according to the
requirements of the distributed application concerned.

23.6

-52-

Distribution Transparency when Co-located

ODP components may be co-located in the same computer. As in all other cases,
such ODP components are modelled (in the engineering viewpoint) by a native
component and its interface adaptor.

Depending on the degree of separation required, native components co-located
in the same computer ("physical unit") are either positioned in separate address
spaces (defined as capsules in clause 19), or in the the same capsule. For each
native component its interface adaptor is also in the same capsule.

(In an implementation, any interactions directly between the native components
in the same capsule may be realized via direct inter-module linkage. But this is
an implementation optimization that is not visible in models in the engineering
viewpoint, and probably not in the technology viewpoint either.)

Co-located ODP components are not necessarily homogeneous; i.e. they may be
designed and implemented separately, by different organizations, at different
times, and using different programming languages, house styles and module
interfaces (i.e. different "A"s in figure 19). In this respect co-located objects are
no different from objects that are physically separated. In all cases the basic
distribution transparencies (and in particular access transparency) hide the
differences arising from heterogeneity.

24. SE-ODP RUNTIME SUPPORT

24.1

24.2

Introduction

This clause describes the SE-ODP in terms of run-time support structure. This
structure is visible in the engineering viewpoint and the technology viewpoint.

Definitions
The following definitions apply.

SE-ODP runtime: a distributed IT system which provides ODP distribution
transparencies, to distributed applications, at run time.

nucleus: a part of SE-ODP runtime which is the means of interaction between
interface adaptors.

DTO0; DT1; DT2; DT3: classifications of objects with respect to their provision and
use of distribution transparencies (see Table 1).

SE-ODP utility: any part of SE-ODP runtime which is modelled as one or more
DT3 objects.

distribution transparency utilities: SE-ODP utilities which provide distribution
transparencies.

trading utility: an SE-ODP utility for matching proposals to provide and use
services.

security utilities: SE-ODP utilities to provide security facilities.

management utilities: SE-ODP utilities to provide management of SE-ODP
runtime.

24.3

244

=53 =

object factory utilities: SE-ODP utilities to provide object factory functions.
SE-ODP logical unit: an object which represents location to SE-ODP runtime.
Classification w.r.t. Distribution Transparencies

For description of SE-ODP runtime, all objects are classified with respect to
(w.r.t.) distribution transparencies, per table 1 (which uses truth table notation;
i.e. 0=No, 1=Yes). For example, an object is classified as D2 if it is a user of
distribution transparencies, but is not a provider of distribution transparencies.

role DT3 DT2 DT1 DTO
#
user 1 1 0 0
provider 1 0 1 0

Table 1 - Classification w.r.t. distribution tranparencies

The role of SE-ODP runtime is to provide distribution transparencies. Therefore,
all objects that are part of SE-ODP runtime are considered to contribute to the
provision of distribution transparencies, and are necessarily classified as DT or
DT3.

Similarly, the ODP components modelled in the computation viewpoint are
necessarily classified as DT2. The classification D70 would be applicable to
objects modelled in the information viewpoint (where distribution transparencies
are not known about).

Clause 15 has already described the case in which objects to provide extended
distribution transparencies are modelled in the engineering viewpoint as users of
distribution transparencies (just like objects modelled in the computation
viewpoint). The former are DT3 objects, and the latter are DT2 objects.

In general, a DT3 object cannot make recursive use of the distribution
transparency that it itself provides. SE-ODP runtime can therefore be modelled
as a hierarchy of objects with DTI objects providing the basic distribution
transparencies. The DT3 objects that use these distribution transparencies can
provide other supportive functions and richer distribution transparencies. Other
DT3 objects can use these; and so on until the full range of SE-ODP runtime
functions (e.g. extended distribution transparencies) is provided.

To facilitate distributed implementation of SE-ODP runtime, much of it is
defined as SE-ODP utilities i.e. DT3 objects (see 24.4).

Functional Decomposition

All the structure considered in this subclause is viewed in the engineering
viewpoinl.

- 54 -

The structure of SE-ODP runtime viewed with respect to some particular
interaction is modelled by the object diagram in figure 21. The nucleus provides
support directly to the interface adaptors (see 23.3.3).

components of SE-ODP runtime

: s : : i ' :
native interface interface native
component adaptor nucleus adaptor, component ,

Figure 21 - An interaction via SE-ODP runtime

The nucleus uses SE-ODP IPC (see clause 20) for all inter process
communication, and the SE-ODP interpreter (see clause 19) for execution.

Most of the rest of SE-ODP runtime consists of SE-ODP utilities, as follows.

The (rading function is modelled as the SE-ODP trading utility. This wtility
exploits the basic distribution transparencies so that trading functions can readily
be distributed. It exploits the extended basic distribution transparencies so that
trading functions can be replicated and located close to where they are used,
and can have high degrees of parallelism and fault tolerance.

Likewise, there are distribution transparency utilities, security —utilities,
management ultilities and object factory utilities; all of which may be
implemented as highly replicated distributed applications.

The general functional decomposition of SE-ODP runtime is modelled by the
object diagram in figure 22.

distribution trading security management object factory other
transparency utility utilities utilities utilities utilities
utilities

DT3 objects

interface
adaptors

DT1 objects ¢

nucleus

O

SE-ODP
interpreter

SE-ODP IPC

Figure 22 - General functional decomposition of SE-ODP runtime

24.5

- 55-

This positioning of SE-ODP runtime functions as SE-ODP utilities also achieves
complete modular separation of each from all of the others, and allows the
nucleus to be correspondingly smaller and simpler. The hiding of all
communications by SE-ODP IPC also removes from the nucleus another major
source of complexity and diversity.

Confinement of Processing

SE-ODP runtime confines processing within capsules (or more strictly, the local
operating system confines processing, and this is the SE-ODP way of modelling
that and relating it to distribution transparency mechanisms).

In general terms, the main unit of confinement is usually a "program", consisting
of modules created and brought together by the normal processes of program
construction and linkage, loaded into a computer, and executed there as a
distinct "process".

In SE-ODP terms, this confinement is modelled as a collection of processing
components, modelled as pairs of interface adaptors and native components,
executing in a capsule. This is shown in the object diagram in figure 23. There is
one native component and interface adaptor pair per ODP component
considered. Each of these native components has a connexion to its interface
adaptor, which has a connexion to the nucleus (for continuity of description,
these connexions are identified here with interactions A and B as in figure 19).
The connexions tfrom each object to the object that models the capsule are
identified with some joint action (here labelled C) defining confinement
constraints. This object diagram is not necessarily definitive: the confinement

could be modelled in various other ways.

native components

interface adaptors

capsule

Figure 23 - The composition of a capsule

Because each of the native components and interface adaptors have a connexion
to exactly one capsule, their action is confined there. But the nucleus also has

24.6

- 56 -

connexions (not shown in figure 19) to every other capsule considered. The
nucleus is present at all of these capsules, but its action at each is confined there.
Spatial distribution

Every capsule considered has a connexion to an SE-ODP IPC object, via which
the nucleus mechanizes any interactions between capsules. This is shown in the
object diagram in figure 24. The nucleus is not visible in the diagram because it
is considered here to be part of each capsule (as shown in figure 23).

capsules (anywhere)

SE-ODP IPC

Figure 24 - Distributed processing

A further level of detail can be added by considering location, which the SE-
ODP models in terms of SE-ODP logical units. These are not necessarily in one-
to-one correspondence with "physical units" visible in the technology viewpoint
(see clause 17) - there may be multiple "ODP LUs" per "ODP PU".

The object diagram in figure 25 shows an example in which there are two
locations. Location is modelled here by a connexion from each object to an SE-
ODP logical unit. Each such connexion is identified with some joint action (here
labelled L), defining location constraints. SE-ODP [PC is modelled here by an
object at each location. This object diagram is not necessarily definitive: any such
configuration could be modelled in various other ways.

capsules

capsules

SE-ODP IPC

SE-ODP IPC

SE~QDP ‘ SE-ODP
logical unit , logical unit ,

Figure 25 - Separate locations

The connexions labelled X between capsules and SE-ODP IPC are the same as
in figure 24 (i.e. figure 25 is a refinement of figure 24).

24.7

24.8

- 57 -

SE-ODP logical units are also a basic unit of modularity for managing the
configuration of SE-ODP runtime, and they are points at which operational
control can be exerted.

Viewpoints

As already stated, all of the structure of SE-ODP runtime described above is
modelled in the engineering viewpoint.

Resources used by SE-ODP runtime mostly originate from the local operating
system at each location, and are modelled in the technology viewpoint.
Applicability of Standardization

Not all of SE-ODP runtime needs to be standardized. Much of it can be left free
to be implementation-specific.

To achieve interworking, the following must be standardized:

(a) the means of defining ODP interfaces (i.e. interface definition languages,
for each of which there is a mapping to the Semantic Model);

b the specifications of the ODP interfaces (i.e. the abstract interfaces) of the
ol
particular application components considered;

(¢c) the externally visible services and protocols for SE-ODP IPC;
(d) the particular transfer syntax used in the relevant external interactions;

(¢) ODP interfaces to the trading utility, and perhaps some of the other SE-
ODP utilities.

For the above purpose, it is not necessary to standardize the application
programming interfaces, or the interfaces between the native components and
interface adaptors which are the realizations of ODP components, nor the
interface(s) to the nucleus. These are local implementation matters. But some
standardization of them may be needed to ensure correct mappings between
them and the ODP-interface specifications (b) and for portability of application
component implementations. This is for further study.

For procurement of different parts of SE-ODP runtime from different vendors,
further standardization would be necessary.

Proposed SE-ODP standardization work items are considered in clauses 27-31.

25. SE-ODP MANAGEMENT ASPECT

251

25.2

Introduction

This clause provides a preliminary description of management aspects of the SE-
ODP.
Managed Objects

A general principle is that all ODP components should be "managed objects"
which would usually support ODP interfaces via which the ODP component can
be integrated with management functions that are external to it.

25.3

254

25.5

- 58 -

The nature of these management functions is for further study. There would
probably be standard ODP interfaces for generic management services which
should be exported by ODP components. These services might include event
reporting, meter monitoring, and basic operational controls of the ODP
component (e.g. switch on, switch off, basic diagnostics and dump). There would
also be application-specific management interfaces specific to whatever the
mdividual ODP-component does (these would probably be derived by
refinement of the generic management interfaces).

A major concern with such "managed objects" is the security implications of
each object having rich management interfaces via which its behaviour might be
observed and interfered with.

Management of SE-ODP Runtime

Management of SE-ODP runtime itself would be organized via distributed
applications positioned as management utilities (see clause 24.4).

Various of these SE-ODP utilities would probably use the same data repository
services as are used more generally for Computer Aided Software Engineering,
CASE (see 8.9.6). This implies some degree of integration between CASE
management and SE-ODP management.

Management of Distributed Applications

SE-ODP runtime would probably not have direct responsibility for managing the
distributed applications which use it. But SE-ODP standards may require the
constituent ODP components of distributed applications to have certain
management characteristics (see 25.2 above), and SE-ODP runtime may be
operated in ways that regulate use of applications (e.g. via control of trading).

Domain Structure

Trading operates with a domain structure which should be well aligned to the
needs of system administration, configuration control and security (see Appendix
D).

26. SE-ODP SECURITY ASPECT

26.1

26.2

Introduction

This clause provides a preliminary description of the security aspect of the SE-
ODP.

Security and the RM-ODP

The general structure of the RM-ODP is intended to provide uniform and
coherent descriptive modelling with near-universal applicability. The consequent
normalized descriptions of systems should provide a well-formed basis for
deployment of security architecture concepts.

The five viewpoints provide a systematic basis for relating together different
kinds of social and technical decisions about security, and tying these back to the
fundamental requirements of the enterprise, as expressed in the enterprise
viewpoint. Furthermore, when the security requirements of the enterprise

26.3

26.4

-59-

change, their linkage to technical provisions in the other viewpoints should be
visible. This is a basis for security design-analysis, design-control and audit.

ECMA Security Architecture

Current ECMA work on security architecture is documented in ECMA TR/46,
which defines 10 Security Facilities, listed below.

- subject sponsor facility;

- authentication facility;

- association management facility;

- security state facility;

- security attributes management facility;
- authorization facility;

- interdomain facility;

- security audit facility;

- security recovery facility;

- cryptographic support facility;

The way in which the SE-ODP uses these Security Facilities is for future study.
Most of them are likely to be positioned as SE-ODP security utilities (see 24.4).

Exploitation of SE-ODP Structure

Certain structural characteristics of the SE-ODP can be exploited for security
purposes.

(a) The encapsulation and separation inherent in the capsule concept provides
a basic granularity for security provisions.

(b) The ODP-association is the focus for intervention into object-access by
Security Facilities.

(¢c) The SE-ODP IPC is a common mechanism through which all interactions
between capsules must flow (no matter what diversity of networks etc. is
involved). This is a key to unified assurance of security provisions.

(d) The SE-ODP interaction structure reveals finer grained application-
specific structure which can be a basis for finer grained security controls
(additional to those applied to capsules, the coarse-grained units).

The SE-ODP architecture does not make any a priori assumptions as to whether

access is controlled by access-control-list, or capability mechanisms, or

combinations of both. Further investigation may lead in any of these directions.

What is certain is that cryptographic sealing of information will be widely

necessary for authentication in distributed processing, and that this is also an

enabling technology for distributed use of capability mechanisms.

- 60 -

26.5 Transfer of Security Information

ECMA TR/46 and subsequent TC32-TG9 work on security data elements have
identified various requirements for passing security information between
components of distributed systems. With the SE-ODP these exchanges would
probably be mechanized via normal ODP-associations with appropriate security
characteristics (e.g. using encryption).

- 61 -

SECTION FIVE - PROPOSED STANDARDIZATION

- 62 -

- 63 -

27. OVERVIEW OF PROPOSED STANDARDIZATION

27.1

27.2

27.3

Introduction

The clauses in Section Five propose future SE-ODP standardization work items.
The descriptions are intended to be largely self-contained, and therefore they
repeat some of what is already stated in other clauses.

This clause provides an overview and explanation of these standardization
proposals.

Relationship to other Standardization

The SE-ODP is an area of standardization within Open Distributed Processing.
This area spans the computation viewpoint and the engineering viewpoint of the
RM-ODP;, as illustrated in figure 26. The SE-ODP standardization defines more
detailed structure within the outlines (to be) provided by the RM-ODP.

Enterprise Viewpoint N
Information Viewpoint

Computational Viewpoint RM-ODP

SE-ODP standardization
standardization

Engineering Viewpoint

Technology Viewpoint 7

Figure 26 - Relationship to RM-ODP

SE-ODP standardization may affect and be affected by various other areas of
standardization activity; e.g. OSI Upper Layer Architecture, CCITT Distributed
Applications Framework (DAF), Remote Procedure Call, and the JTC1 study of
Interfaces for Application Portability (IAP).

Emphasis

The proposed SE-ODP standardization recognizes the computation viewpoint as
the primary focus for the SE-ODP.

The distinction relevant here is that the computation viewpoint is essentially
about what the application programmer intends, and the engineering viewpoint is
about supporting whatever is intended. The fundamental choices are those in the
computation viewpoint which define application components and the interactions
necessary between application components.

On this basis, the focus of SE-ODP standardization is on capturing the essence
of distributed processing via interactions in the computation viewpoint,
independent of the specifics of engineering and technological choices. Such
structure is necessarily expressed in language, therefore this focus is linguistic.
See figure 27.

274

- 64 -

all interactions are defined
via computational abstractions
that are independent of
engineering and technological
choices

application * application
component component

Figure 27 - Linguistic Model

As SE-ODP standardization progresses, the emphasis will probably shift to the
engineering viewpoint and to concerns about choices of "technology mappings"
(i.e. how to use the technology that is modelled in the technology viewpoint).

Summary of Proposed SE-ODP Standardization

It is proposed that SE-ODP standardization should proceed in the following
areas:

(a) Configuration (see clause 28);

(b) Interaction Semantics (see clause 29);

(¢) Interface Definition Languages (see clause 30);
(d) Interconnection (see clause 31);

(e) Infrastructure Interfaces (see clause 32).

The crucial item for early start is (b), because it is not yet well understood, and
all the other areas are to various degrees dependent on it. But work on area (a)
should also be started immediately, because it pervades the whole architectural
structure of the SE-ODP.

28. SE-ODP CONFIGURATION STANDARD

28.1

28.2

Introduction
This clause proposes an area of SE-ODP standardization that is referred to as
the "SE-ODP Configuration Standard".

This subject has been recognized and explained in clauses 18, 22 and 24, and in
Appendix D.

The area of standardization is outlined here by briefly stating its scope (see 28.2)
and its purpose and justification (see 28.3).

Scope

Techniques collectively termed "trading" are the main means of configuring the

SE-ODP infrastructure and distributed applications using it. This SE-ODP
standardization work will:

(a) define the SE-ODP Trading Model,

(b) apply the SE-ODP Trading Model in each of the five viewpoints of the
RM-ODP;

28.3

=65 -

(¢) evaluate this SE-ODP Trading Model by applying it to the X.500 Directory
System,;

(d) evaluate this SE-ODP Trading Model by applying it to the ECMA TR/46
Security Framework (and progressions of TR/46);

(¢) integrate the SE-ODP Trading Model with Computer Aided Software
Engineering (CASE) provisions.

(f) define the supportive services provided by the SE-ODP Trading Service
and;

(g) specity the distributed application that provides this Trading Service.

Purpose and Justification

This Configuration standard is fundamental to SE-ODP structure.

The work of specifying trading should flush out and resolve key issues
concerning naming, binding, typing / subtyping, configuration control, access-
control, security, management, federation, scaling and software engineering.

29. SE-ODP INTERACTION SEMANTICS STANDARD

29.1

29.2

Introduction

This clause proposes an area of SE-ODP standardization that is referred to as
the "SE-ODP Interaction Semantics Standard".

This subject has been recognized and explained in clause 18.

The area of standardization is outlined here by briefly stating its scope (see 29.2)
and its purpose and justification (see 29.3).

Scope

This SE-ODP standardization work will define computational semantics common
to all interactions in Open Distributed Processing. The resultant Semantic Model
will be applicable to all "interface definition languages" in which external
interactions are specified and implemented (see clause 30).

Existing semantic models of computation (e.g. von Neumann architectures) were
developed to describe computing in non-concurrent, single-processor
environments. Languages based on such semantic models do not adequately
express all concepts applicable to distributed processing, such as distribution,
concurrency and encapsulation.

The abstractions in this Semantic Model will determine the set of all possible
interactions that conform to ODP Standards and are valid in the computation
viewpoint. The Semantic Model thereby provides criteria against which to
validate the adequacy and correctness of SE-ODP provisions. Similarly, it will
help to reveal whether a technical choice in the engineering viewpoint is about
different ways of doing the same thing, or is about fundamentals.

The semantics will be expressed in formal (i.e. mathematical) notation. But an
interface definition language conforming to these semantics (see clause 30) is not

29.3

- 66 -

restricted to mathematical notation (the essential constraint is the existence of an
agreed mapping of the language onto the Semantic Model).

The standard will also define conformance criteria and process via which
languages/notations can be qualified as ‘"interface definition languages"
consistent with these interaction semantics. See 30.2 (a) for an example of this
qualification process.

Purpose and Justification

The Semantic Model to be defined in this standardization is fundamental to the
architectural structure of the SE-ODP. Without a definitive and comprehensive

Semantic Model, the unambiguous and consistent interpretation of the semantics
of interactions is impossible.

30. SE-ODP INTERFACE DEFINITION LANGUAGES STANDARD

30.1

30.2

Introduction

This clause proposes an area of SE-ODP standardization that is referred (o as
the "SE-ODP Interface Definition Languages Standard".

This subject has been recognized and explained in clause 19.

The area of standardization is outlined here by briefly stating its scope (see 30.2)
and its purpose and justification (see 30.3).

Scope

The subject is standardization of languages for definition of SE-ODP interfaces
which define and constrain the interactions between application components of
distributed applications that use the SE-ODP. The main requirement against

which to evaluate such languages is their conformance with the Semantic Model
(see clause 29).

This SE-ODP standardization work will:

(a) evaluate and qualify for use as "interface definition languages" selected
existing languages / notations such as ISO 8824 ASN.1, ISO 9072 Remote
Operations notation, ECMA 127 RPC notation and ISO 8807 LOTOS;

(b) define a machine-processable language specialized for definition of ODP-
interfaces;,

(c) explore whether there is a need for standardization of programming
languages specialized for this kind of remote interaction.

The existing languages / notations (a) were not designed to conform to the
particular requirements of the Semantic Model (e.g. the semantics of 1ISO 9072
Remote Operations are specified by informal connotation, not machine-
processable denotation). We expect that none of these languages will express all
of the concepts etc. defined in the Semantic Model.

The specialized language (b) for definition of SE-ODP interfaces will entirely
conform to the requirements of the Semantic Model. It therefore necessarily
includes machine-processable denotation for the signatures, semantics, and

- 67 =

relevant distribution transparencies of the interactions. This completeness may
lead towards wider applicability as a language for implementing interactions that
occur as realizations of SE-ODP interfaces. Hence the investigation (c).

30.3 Purpose and Justification

31.
31.1

Enabling the use of existing languages for the definition of SE-ODP interfaces,
per (a) above, is essential for continuity of investment and for phased
introduction of SE-ODP techniques.

The specialized Interface Definition Language for the complete definition of
interactions, (b) above, is a vital ingredient of SE-ODP standardization. It is the
general means for implementation-independent definition of interactions
between application components. It is a natural focus for investment in software
engineering tools to support development of computer applications that use the
SE-ODP.

SE-ODP INTERCONNECTION STANDARD

Introduction

This clause proposes an area of SE-ODP standardization that is referred to as
the "SE-ODP Interconnection Standard".

This subject has been recognized and explained in clause 23.

The area of standardization is outlined here by briefly stating its scope (see 31.2)
and its purpose and justification (see 31.3).

31.2 Scope

An interaction defined between application components in the computation
viewpoint encounters three different sets of circumstances in the engineering
viewpoint. It may occur:

(a) internally to what is termed a capsule (defined in clause 19);
(b) between capsules that are physically co-located;
(c) between capsules that are in physically separate locations.

We are concerned here with standardization for the cases where the application
components are in separate capsules; i.e. (b) and (¢) above. It should be noted
that the semantics of the interaction are the same in all three cases (a), (b), (¢);
only the engineering and technology are different.

This standardization work will:

(d) define the interactions between SE-ODP capsules (i.e. the requirement to
be satisfied by protocols etc.);

(e) define mappings of these interactions onto existing OSI services (with
consequent re-use of existing OSI protocol stacks);

(f) explore other interconnection services and protocols to support
characteristics required for (d); e.g. for isochronous interactions.

31.3

- 68 -

Item (d) may require specification of the SE-ODP processing model (see clause
19) to an appropriate level of detail, so that the requirement can be expressed in
terms of the services of SE-ODP IPC.

The specialized "interface definition language" (see clause 30) might be used for
(d). The specifications (e) will include provisions for compatibility with ECMA-
127 RPC interconnection.
Purpose and Justification

External interconnection is an area in which standards are necessary to ensure
compatibility and successful interworking across communications networks.

32. SE-ODP INFRASTRUCTURE INTERFACES STANDARD

32.1

32.2

Introduction

This clause proposes an area of SE-ODP standardization that is referred to as
the "SE-ODP Infrastructure Interfaces Standard".

This subject has been recognized and explained in clause 24.

The area of standardization is outlined here by briefly stating its scope (see 32.2)
and its purpose and justification (see 32.3).

Scope

The subject of this standardization is interfaces of the SE-ODP infrastructure
(termed SE-ODP runtime) that supports interactions via the SE-ODP. These
interfaces would normally be visible to compilers and interpreters, but not to

application programmers. These infrastructure interfaces are consequently
defined as abstract interfaces without specification of language-bindings for them.

These infrastructure interfaces are local implementation matters, and
standardization of them is not strictly necessary for interworking compatibility
and application portability. This is because interworking compatibility and
portability of applications software using the SE-ODP can, in principle, be
assured by the ability of software tools to adapt programs to use arbitrary
support environment interfaces (e.g. implementation-dependent interfaces).
However, there is a case for variety reduction (see 32.3).

This SE-ODP standardization work will, as necessary:

(a) define the "dynamic binding service" to be provided by SE-ODP run-time
(this uses, and is closely related to, the trading service identified in 28.2);

(b) define the "invocation service" to be provided for interactions via the
bindings (a), by SE-ODP run-time; and

(¢) define a software interface via which the combined services (a) and (b)
are provided and used.

The specialized interface definition language identified in clause 30 might be
used.

- 69 -

32.3 Purpose and Justification

This standardization is important because of the simplifications, saving and
opportunities for multi-vendor procurement that can result from reducing the
variability of support environment interfaces.

Other standards activities such as Posix are defining application programming
interfaces that may be functionally similar to these SE-ODP infrastructure
interfaces. The former should be taken into account by this work item, although
they are language-dependent concrete interfaces visible to application
programmers (unlike the abstract interfaces considered here, which are not
intended to be visible to application programmers).

- 70 -

- 71 -

APPENDICES

72 -

-73 -

APPENDIX A

BIBLIOGRAPHY

ODP standardization should make full use of the known results of research and
practical experience.

There is no single work of reference that provides a complete survey of all the
progress that has occured in the field of distributed information systems. The
references below have been selected to provide a basic reading list. These sources
have been variously used in ECMA ODP work, and in the SE-ODP prototyping
activities referred to in 7.5. They are gratefully acknowledge.

A previous version of this reading list has been contributed by ECMA to the ISO
ODP work (as JTCl SC21/WG1/N363), together with a tutorial survey of
distributed processing.

[ACCETTA 86]

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Teyanian, A. &
Young, M., "Mach: a New Kernel Foundation for Unix Development".
Proceedings of USENIX Summer Conference 1986, 93-112 (June 1986).

[AGUILAR 86]

Aguilar, G., Garcia-Luna-Aceves, J., Moran, D., Craighill, E. & R. Brungardt,
"Architecture for a Multimedia Teleconferencing System", ACM Computer
Communications Review, 16 (3), 126-136 (August 1986).

[ANSA 89]

ANSA Reference Manual, release 01.00, March 1989. Architecture Projects
Management Ltd., 24 Hills Road, CAMBRIDGE CB2 1JP, UK.

[BIRMAN 85|

Birman, K., "Replication and Fault Tolerance in the ISIS System", ACM
Operating Systems Review, (19) 5, 79-86, (December 1985).

[BIRMAN 86]

Birman, K. & Stephenson, P., "Programming with Shared Bulletin Boards in
Asynchronous Distributed Systems", Technical Report TR86-776, Department of
Computer Science, Cornell University (August 1986).

[BIRMAN 87]
Birman, K. & Joseph, T. "Exploiting Virtual Synchrony in Distributed Systems",

Eleventh ACM Symposium on Operating System Principles, 123-128 (November
1987).

- 74 -

[BIRRELL 82]

Birrell, A., Levin, R., Needham, R. and Schroeder, M., "Grapevine: an Exercise in
Distributed Computing", Communications of the ACM, 25 (4), 260-274, (1982).

[BIRRELL 84]

Birrell, A. & Nelson, B., "Implementing Remote Procedure Calls", ACM
Transactions on Computer Systems, 2 (1), 39-59 (February 1984).

[BIRRELL 85]

Birrell, A., "Secure Communications Using Remote Procedure Calls", ACM
Transactions on Computer Systems, 3 (1), 1-14 (February 1985).

[BIRRELL 86]

Birrell, A., Lampson, B., Needham, R. & Schroeder, M., "A Global
Authentication Service Without Global Trust", Proceedings IEEE Security and
Privacy Conference, Oakland, California, USA, 223-230 (1986).

[BLACK 85]

Black, A., "Supporting Distributed Applications", ACM Operating Systems Review,
19 (5), 181-193 (December 1985).

[BLACK 87|

Black, A., Hutchinson, N., Jul, E., Levy, H., & Carter, L. "Distribution and
Abstract Types in Emerald" IEEE Transactions on Software Engineering, SE-
13(1), 65-76, (January 1987).

[BROWNBRIDGE 82|

Brownbridge, D.R., Marshall, L.F. & Randell, B., "The Newcastle Connection or
UNIXes of the World Unite!", Software - Practice and Experience, 12 (12), 1147-
1162 (December 1982).

[CARDELLI 85]

Cardelli, L. & Wegner, P. "On understanding Types, Data Abstraction and
Polymorphism", ACM Computing Surveys, 17(4), 471-522 (December 1985)

[CHECKLAND 86]

Checkland P. "Systems Thinking, Systems Practice". John Wiley & Sons. July
1986. ISBN 0 471 279110.

[CHERITON 84]

Cheriton, D., "The V Kernel: A Software Base for Distributed Systems", IEEE
Software, 1 (2), 19-42 (April 1984).

[CLARK 86]

Clark, D., Presentation on "Rate Controlled Protocols", ARPA Internet End-to-

end Task Group Protocols Workshop, University College, London, (August 1986).
Unpublished.

- 75 -

[COOPER 85]

Cooper, E., "Replicated Distributed Programs", ACM Operating Systems Review,
(19) 5, 63-78 (December 1985).

[DELTA-4 88]

Delta Four Overall System Specification. Ed. D. Powell, LAAS du CNRS, 7
Avenue du Colonel Roche, 31077 TOULOUSE Cedex, France. Novembre 1988.

[DOD 80]

Reference Manual for the Ada Programming Language, United States Department
of Defense, Washington DC, USA (November 1980)

[FORSDICK 85|

Forsdick, H., "Explorations into Real-time Multimedia Conferencing", Proceedings
of IFIP TC 6 International Symposium on Computer Message Systems, Washington,
D.C,, U.S.A., 331-347 (September 1983).

[GRAY 79]

Gray, J., "Notes on Database Operating Systems", in Bayer, R., Graham, R.M. &
Seegmiiller, G., (eds), "Operating Systems: An Advanced Course", Springer-
Verlag, 1979.

[GIBBONS 87

Gibbons, PH., "A Stub Generator for Multilanguage RPC in Heterogeneous
Environemnts". IEE Transactions on Software Engineering, Vol. SE-13, No. 1, Jan.
1987.

[GOLDBERG 83]

Goldberg, A , Robson, D. "Smalltalk-80. The Language and its Implementation".
Addison Wesley, 1983. ISBN 0-201-11371-6.

[JONES 85]

Jones, MB., Raschid, RF., Thompson, MR. "Matchmaker: An Interface
Specification Language for Distributed Processing". Proceedings 12th. ACM
Symposium on Principles of Programming Languages, Jan 1985.

[JONES 79]

Jones, A., "The Object Model: A Conceptual Tool for Structuring Software", in
Bayer, R., Graham, R.M. & Seegmiiller, G., (eds), "Operating Systems: An
Advanced Course", Springer-Verlag, 1979.

[KRUEGER 88|

HECTOR, Vol II: Basic Projects. G. Krueger and G. Muelle (eds.). Springer
Verlag. Heidelberg, 1988.

[KUNG 81]

Kung, T. & Robinson, J., "On Optimistic Methods for Concurrency Control",
ACM Transactions on Database Systems, 6, 213-266 (June 1981).

- 76 -

[LAMPSON 83]

Lampson, B., "Hints for Computer System Design", ACM Operating Systems
Review, 17 (5), 33-48 (October 1983).

[LAPRIE 85]

Laprie, J. "Dependable Computing and Fault Tolerance: Concepts and
Terminology", Proceedings 15th Annual International Symposium on Fault
Tolerant Computing, Ann Arbor, Michigan, USA, 2-11 (June 1985).

[LESLIE 84]

Leslie, 1., Needham, R., Burren, J., Cooper, C. & Adams, C., "The Architecture of
the Universe Network", ACM Computer Communication Review, 14(2) (June
1984).

[LISKOV 82]

Liskov, B. & Scheifler, R., "Guardians and Actions: Linguistic Support for Robust
Distributed Programs". ACM Transactions on Programming Languages and
Systems, 5(3), 381-404 (July 1983).

[MITCHELL 82]

Mitchell, J. & Dion, J.,"A Comparison of Two Network-based File Servers",
Communications of the ACM, 25 (4), 233-245 (December 1982).

[MORRIS 86]

Morris, J., Satyanarayanan, M., Conner, M., Howard, J., Rosenthal, D. &
Donelson-Smith, F., "ANDREW: A Distributed Personal Computing
Environment", Communications of the ACM, 29 (3), 184-201 (March 1986).

[MULLENDER 86]

Mullender, S.J., & Tannenbaum, A.S., "The Design of a Capability-Based
Distributed Operating System", The Computer Journal, 29(4), 289-299 (August
1983).

[NEEDHAM 78]

Needham, R., & Schroeder, M., "Using Encryption for Authentication in Large
Networks of Computers", Communications of the ACM, 21(12), 993-999
(December 1978).

[NEEDHAM 82]

Needham, R.M. & Herbert, A.J., "The Cambridge Distributed System", Addison-
Wesley (1982).

[POPEK 81]

Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G. & Thiel, G.,

"LOCUS: A Network Transparent, High Reliability Distributed System", ACM
Operating Systems Review, 15 (5), 169-177 (December 1981).

=77 -

[RASHID 81]

Rashid, R. & Robertson, G., "Accent: A Communications Oriented Network
Operating System Kernel", ACM Operating Systems Review, 15 (5), 64-75
(December 1981).

[REMER 75|

Remer F de, Kron H. "Programming-in-the-large versus Programming-in-the-
small". Proceedings, Reliable Software, 114-121. 1975.

[ROBINSON 88]

D.C. Robinson, "Domains: An Approach to Management of Very Large
Distributed Computing Systems", PhD Thesis, Imperial College. London 88

[RUSHBY 83]

Rushby, J. and Randell, B. "A Distributed Secure System", IEEE Computer, 16
(7), 55-67 (July 1983).

[SALTZER 84]

Saltzer, J., Reed, D. & Clark, D., "End-to-End Arguments in System Design",
ACM Transactions on Computer Systems, 2 (4), 277-288 (1984).

[SCHROEDER 84|

Schroeder, M., Birrell, A. and Needham, R., "Experience with Grapevine: the
Growth of a Distributed System", ACM Transactions on Computer Systems, 2 (1),
3-21, (February 1984).

[SPECTOR 85|

Spector, A.Z., Butcher, J., Daniels, D.S., Duchamp, D.J., Eppinger, J.L., Fineman,
C.E., Abdelsalam, H. & Schwarz, P.M., "Support for Distributed Transactions in
the TABS Prototype", IEEE Transactions on Software Engineering, SE-11 (6), 520-
530 (June 1985).

[SVOBODOVA 84|

Svobodova, L., "File Servers for Network-based Distributed Systems", ACM
Computing Surveys, 16 (4), 353-398 (December 1984).

[TANENBAUM 85]

Tanenbaum, A.S. and Van Renesse, R., Distributed Operating Systems, ACM
Computing Surveys, 17 (4), 419-470 (December 1985).

[VOYDOCK 83]

Voydock, V. and Kent, S., "Security Mechanisms in High-level Network
Protocols", ACM Computing Surveys, 15 (2), 135-171 (December 1978).

[WALKER 83]

Walker, B., Popek, G., English, R., Kline, C. & Thiel, G., "The LOCUS
Distributed Operating System", ACM Operating Systems Review, 17 (5), 49-70
(October 1983).

- 78 -

[WEGNER 87|

Wegner P. "Dimensions of Object-Based Language Design". OOPSLA 87
Proceedings, ACM 0-89791-247-0/87/0010-0168.

|[WIRTH 83|
Wirth, N., Programming in Modula-2, Springer-Verlag (1983).

B.1
B.1.1

79 -

APPENDIX B

BASIC CONCEPTS

GENERAL

Scope

This Appendix presents ODP Terminology, concepts and architectural
structure that are used in the main body of this Technical Report, on the
assumption that they will be defined in the Reference Model of Open
Distributed Processing (RM-ODP).

This Appendix is a consolidation of and progression from current SO
working papers and ECMA contributions to production of the RM-ODP in
ISO.

The RM-ODP is concerned with architecture that is intended to be applicable
to most kinds of application. Other standards work items are concerned with
domain-specific architectures that are not intended to have this general
applicablility; e.g. the Distributed Office Applications Model (DOAM) in
SCI18. In the mature phase of ODP standardization, these domain-specific
architectures should each be consistent with the RM-ODP.

This relationship to domain-specific architectures is illustrated in figure 28.

(

universal <
applicability

RM-ODP
> Distributed Office Application
“ Modelin SC18.
Computer Integrated Manufacturing
d i “]
om‘afn- poam [oM [case Computer Supported Telephony
specific

Applications (e.g. TC32-TG11)

‘ Computer Aided Software

Engineering (e.g. ECMA TC33)

-

Figure 28 - Relationship to Domain-specific Architectures

B.1.2

B.1.3

- 80 -

Basic Definitions
The following definitions apply.
processing: programmed activity executed in computers.

distributed processing: processing that may span separate computer address
spaces.

Reference Model of Open Distributed Processing (RM-ODP): a reference model
to be defined by ISO/IEC JTCI1 SC21.

open distributed processing (ODP): distributed processing conforming to
requirements specified in the RM-ODP,

All other definitions of terms in this Appendix are included at the beginning
of individual clauses and subclauses.

As an aid to understanding the structure of the definitions etc., references to
them are usually in italics.

Overview
Basic systems concepts and terminology are presented in B.2,
The general applicability of distributed systems is described in B.3.

Distribution transparencies, which are considered to be a distinctive ingredient
of distributed processing, are presented in B.4.

The Framework of Abstractions used in the RM-ODP is presented in B.S.

Object concepts, which are the basis for the general modelling technique used
in ODP, are presented in B.6.

B.2 SYSTEMS

B.2.1

B.2.2

General

This subclause presents a very general approach to the subject of "systems"
and provides the context for considering distributed systems.

Definitions

The following definitions apply:

system: a composite whole.

component: any item that contributes to the composition of some whole.
subsystem: a system considered as a component of some other system.

information system: any system that processes, or stores, or transfers
information.

social system: a system that is considered to include human activity.
technical system: a system that is man made and is not a social system.

socio-technical system: a social system, some subsystem of which is explicitly
considered to be a technical system.

B.2.3

B.3

- 81 -

natural system: any system that is neither a social system not a technical
system.

information technology system: a technical system that is an information
system.

IT system: abbreviation for information technology system.

distributed information system: an information system, some components of
which are considered to be separate.

distributed IT system: a technical system that is a distributed information
system.

distributed system: abbreviation for distributed 1T system where this meaning
is clear from the context.

computer application: productive activity exerted via computers.

application program: the autonomously executable specification of (part of) a
computer application.

application component: an application program considered in terms of its
contribution to the composition of some computer application whole.

distributed application: a computer application composed of discrete
application components.

Information Systems

The same information system may be a social system or a technical system,
depending on which components are considered.

For example, a typical accounting system is an information system consisting
of the accounts department, the people working in it, and the computer
databases and applications programs used for the accounting functions.
Considered as a whole it is a social system because it includes human activity.
But considered only in terms of the computers, databases and software, it is a
technical system (specifically an IT system). Both ways of viewing it are valid
and necessary. The term socio-technical system explicitly recognizes this
duality which is inherent in most systems that are of interest to us here.

All information systems have some interactions with natural systems (e.g. their
physical environment). Some information systems may be designed specifically
to have interactions with a natural system (e.g. a weather forecasting system
interacts with weather systems).

ODP standardization is only concerned with standards for IT systems. That is
why the distinction is made here between technical systems and social systems.
This distinction is not always explicitly made (e.g. see figures 30 and 31).

APPLICABILITY OF DISTRIBUTED SYSTEMS

As a consequence of general organizational, logistical, historical and technical
constraints arising from the real world, IT systems tend to be dispersed into
many separate programs which need to be integrated together as distributed
systems. See figure 29.

- 82 -

Program A Program C

Program B

Figure 29 - Integration of separate programs

Therefore, the field of application of distributed IT systems and distributed
applications is virtually unlimited and very diverse. It includes, but is not limited
to, such areas as:

(a)
(b)
(c)
(d)
(e)

Data Processing Systems;

Office Systems;

Process Control Systems;

Command and Control Systems; and
Integrated Data/Text/Voice/lmage Systems.

Distributed systems are important not only within each field of application, but
also as a bridge between different fields of applications. They can be the means
of integrating separate functions into a large scale information system, see Figure

30.

Admin. Factory

Design

Figure 30 - Integration of separate information systems within an organization

Such

co-ordination and cooperation is also necessary between separate

organizations. This kind of integration of autonomous information systems is
another case of the general applicability of distributed systems, see figure 31.

Supplier Bank

Customer

Figure 31 - Integration of systems in separate organizations

B4
B.4.1

B.4.2

- 83 -

Wide applicability of ODP standardization therefore arises from the wide
applicability of distributed systems and distributed applications.

There are some finer distinctions between networking, network operating systems
and distributed operating systems that have not yet been made in the RM-ODP
work, but are relevant to SE-ODP standardization. See Appendix C.

DISTRIBUTION TRANSPARENCIES

General
This subclause defines and briefly explains distribution transparency.

The separation, or dispersal, of the components of a distributed IT system
requires that there is explicit communication between interacting components.
Furthermore, this separation allows truly parallel execution of programs, the
containment of independent faults to the failing components, and the use of
separation as a means for enforcing security policies. It also allows
incremental growth and contraction of the system.

A key issue in the design of a distributed IT system is how, and to what extent,
to conceal the complexities of the distributed nature of the system, while
exploiting some of the effects of separation to obtain desirable qualities.

This is handled by the selective use of the various mechanisms for distribution
transparency.

Definitions
The following definitions apply.

distribution transparency: means of hiding consequences of distribution from
distributed applications and their human users.

access transparency: a distribution transparency which hides the mechanisms
used to achieve interaction.

location transparency: a distribution transparency which hides the location of
interacting components of a distributed system.

concurrency transparency: a distribution transparency which hides
simultaneous access to shared resources.

replication transparency: a distribution transparency which hides replication of
a component into multiple separate instances.

failure transparency: a distribution transparency which hides the effects of a
failure of a component of a distributed system.
NOTE B.1:

According to the definitions in [LAPRIE 85] "“failure transparency" might more correctly be
termed "fault tranparency" ... hiding ... faults.

migration transparency: a distribution transparency which hides the effects of
relocating a component of a distributed system.

=84 =

B.4.3 The Transparencies

A distributed IT system may be said to have distribution transparency if it
provides means of hiding the effects of distribution from the components and
human users of the system.

There are a number of specializations of distribution transparency which
require different transparency mechanisms.

Access transparency allows invocations on objects irrespective of how the
objects are accessed, and irrespective of whether the objects are co-located or
remote. It requires generic functions for communications, for security and for
related management.

Location transparency ensures that the bindings between objects are
independent of the routes that connect them. It requires functions for naming,
addressing and routeing.

Concurrency transparency allows the parallel use of a resource without
permitting inconsistent use of that resource. It requires functions for event
ordering, synchronization, mutual exclusion and support for atomic operations
(transactions).

Replication (ransparency allows multiple instances of objects to be used (o
increase dependability and performance. This requires functions for both
active replication (where all the instances are simultaneously in operation)
and passive replication (where one instance operates and the others provide
stand-by).

Failure transparency enables the full concealment of faults despite the failure
of components. 1t requires functions for fault management and fault recovery.

Migration transparency allows the movement of an object in a distributed
system without making the transition apparent to interacting objects. It
requires functions for object management, and support for dynamic re-
configuration.

B.4.4 Selective Transparency

Complete distribution transparency, while concealing all the complexities that
result from component separation, may deny the designer of a distributed
system the opportunity to exploit some of the advantages of separation.
Furthermore, the mechanisms for unwanted distribution transparency may
exact an unacceptable performance overhead, particularly in real-time
systems.

For these reasons it is desirable that a support environment for distributed
processing systems should provide for selective use of the transparencies.

B.5 FRAMEWORK OF ABSTRACTIONS
B.5.1 General

This clause summarizes the "Framework of Abstractions" around which the
RM-ODP is to be structured.

B.5.2

B.5.3

-85 -

Definitions

The following definitions apply:

Viewpoint: a model in which an information system is viewed in terms of a
particular set of concerns.

Enterprise viewpoint: a viewpoint for modelling what the information system is
required to do.

Information viewpoint: a viewpoint for modelling the information structure of
the information system.

Computation viewpoint: a viewpoint for modelling the algorithmic structure of
the information system.

Engineering viewpoint: a viewpoint for modelling how qualitative
characteristics of the information system are assured.

Technology viewpoint: a viewpoint for modelling the realized components from
which the information system is constructed.

Aspect: a subject area that pervades all five viewpoints of the RM-ODP.
Viewpoints

In order to avoid dealing with the full complexity of a distributed system all at
once, the system may be considered from different viewpoints, each presenting
a different abstraction of it.

Each viewpoint addresses a particular concern. It does so by fully recognising
the characteristics of the system that are relevant to that concern and
simplifying all others. The latter are still present in the viewpoint, but are less
precisely expressed and are possibly merged with others.

A number of viewpoints are possible, but a set of five viewpoints has been
selected. This is a complete and reasonably minimum set, and the chosen
viewpoints are considered to be those most useful in the description, analysis
and synthesis of complex distributed IT systems.
The framework of abstractions organises these five viewpoints and allows
complete description of the system, consistent across the differing viewpoints.
The names of the selected viewpoints, and the concerns that they address, are
as follows.
- Enterprise viewpoint:

Human and social issues.

Management and finance.

Legal concerns.
- Information viewpoint:

Information modelling, flow and structure.

B.54

B.5.5

- 86 -

- Computation viewpoint:

Application design and development.
(Algorithms for concurrent and distributed computing)
- Engineering viewpoint:
Infrastructure.
Application support.
Transparencies, naming, binding.
- Technology viewpoint:
Constraints imposed by technology.
The enterprise viewpoint describes the information system in terms of what it
is required to do. The model from this viewpoint captures the business and

administrative requirements and policies that justify and orientate the design
of the system.

The information viewpoint describes the information system in terms of
information structure, information flow and information wmanipulation
constraints.

The computation viewpoint describes the information system in terms of the
operation and computational characteristics of the processes that change the
information. 1t concerns the structuring of applications so that they are
independent of the underlying computers and networks.

The engineering viewpoint describes the information system in terms of the
engineering necessary (o support the distributed nature of the processing. It is
concerned with the provisions and assurance of desired characteristics such as
performance, dependability and distribution transparency.

The technology viewpoint describes the information system in terms of the
realised components from which it is built. E.g. it models the hardware and
software of the local operating systems, the input/output devices, storage and
communications.

While each of the viewpoints describes only those matters that are relevant to
its concerns, some matters will be common to two or more viewpoints. In
particular the information viewpoint and computation viewpoint have many
matters in common.

Aspects

A distributed processing system may be considered from certain aspects which
prevade system structure. The aspects identified are: Storage, Process,
Distribution, Identification, Management, Security and User Access. These
concerns generally pervade the five viewpoints, and structuring of them is for
further study.

Levels of abstraction

Each viewpoint is a complete description of the information system,
concentrating on the concerns of that viewpoint. The description may be

- 87 -

specilied in narrative form, or using some formal technique, or a combination
of narrative and formal specification.

Any such-description may be changed by altering the level of abstraction, i.e.
by either adding or removing details (more strictly, these are the processes of
composition and decomposition by refinement).

A description at a high level of abstraction gives a broad overview of the
system from that viewpoint. At a lower level of abstraction the same system is
described from the same viewpoint but with more detail.

B.6 OBJECT MODEL
NOTE B.2:
This subclause is a progression beyond the 1SO ODP work current at the time of drafting the
Technical Report.

B.6.1
B.6.1.1

B.6.1.2

General

Introduction
This subclause defines the object model used in the Technical Report.

The RM-ODP architectural structure is to be described via one object
model, used throughout the five viewpoints defined in the framework of
abstractions (see B.5); i.e. one and the same object model for architectural
modelling in the enterprise viewpoint, information viewpoint, computation
viewpoint, engineering viewpoint and technology viewpoint.

At the time of drafting this Technical Report there is no agreed object
model for this purpose in ISO. A minimal object model is tentatively
outlined in this clause in order to provide a consistent basis for modelling
in the main body of the Technical Report. The criteria when formulating it
were simplicity, and maximum coverage with the minimum number of
concepts.

This is a simplified and generalized subset of what is termed termed "object
engineering" in [ANSA 89]. The latter includes further levels of detail that
have not yet been studied in ECMA (e.g. notations for defining actions and
the constraints upon them, class / type concepts and inheritance concepts;
and specification of the formal mathematical basis of the object model).

What to Model ?

The model outlined in this clause is intended for description of, reasoning
about, and manipulation of, the structure of discrete information systems
composed of discrete components (i.e. the modelling of structure as distinct
from content). A system is to be modelled as an object, and each component
is to be modelled as an object.

For this modelling of system structure it is necessary and sufficient to
model:

(a) the existence and identification of the discrete objects;

(b) the constraints applicable to objects in combination;

B.6.2
B.6.2.1

- 88 -

(¢) the rules of composition for objects in combination.

A complete model of system structure (a), (b), (¢) is not a fully refined

- specification of the objects and the interactions between them (but is none

the less complete in itself). The specification of the objects and interactions
themselves is another matter. It would require further (and often
voluminous) detail which is not relevant to this purpose; and which would
by its presence obscure the essentials of structure.

This object model is therefore necessarily such that detailed specification of
objects and interactions can be added by refinement. As a practical matter,
the specifications of system structure, objects and interactions would usually
be separate items, with appropriate cross-referencing between them.

This is analagous with the way in which electronics engineers use circuit
diagrams and component data sheets. The required object model is for use
in "circuit diagrams" of system structure. The "data sheets" of components
(objects) and their interactions are a separate matter.,

Furthermore, different kinds of specification technique may be applicable
to different kinds of objects and interactions in different viewpoints. This is
further justification for making the choice of techniques for specification of
objects and interactions a matter separate from specification of system
structure.

This one object model for ODP architecture does not preclude use of object
models for other purposes (e.g. component specification, design and
programming). These other purpose may be served by other object models
(and perhaps by re-use of this general object model).

Terminology

Definitions

The following definitions apply:

activity: the exertion of influence.

action: a unit of activity.

object: that to which activity is attributed.

joint action: action attributed (o a pair of objects.
connexion: a model of constraints on possible joint action.

interaction: joint action in which action attributed to one object constrains
action attributed to the other.

model: a representation of some subject.
object model: a model in which objects are represented.

object diagram: an object model in the form of a diagram.

- 89 -

B.6.2.2 Explanation of Terminology

B.6.2.2.1

B.6.2.2.2

B.6.2.2.3

B.6.2.2.4

Activity

These definitions are bootstrapped from the general concept of "activity",
for which a very general definition is used.

For theoretical reasons it may be necessary to underpin these definitions
with more primitive concepts of "substance", "occurrence", etc. This is
for further study.

Object

The term "object" is in widespread use, often in conjunction with various
other terms (e.g. "object-oriented"). It is overloaded with diverse
meanings (e.g. every-day meanings and programming language meanings).

The definition used here is intended to be sufficiently general to be
applicable to all of the rather different kinds of "objects" visible
throughout the framework of abstractions defined in B.5. It rests on the
minimum assumption that an object will at least "exert influence". Any
"object" that did less could hardly be of interest to ODP.

Joint action and Interaction

The definition of joint action is intended to be sufficiently general to be
applicable throughout the framework of abstractions defined in B.S5.

Interaction is a special case of joint action; i.c. there can be joint actions
which are not interactions. Therefore, the more general concept of joint
action is used to construct this basic object model (although in practice
most joint actions of interest are interactions).

Another reason for describing the model in terms of constraints on joint
action (instead of constraints on interaction) is to help to make clear that
the specitying of interactions is not itself the purpose of this object model.

Connexion

The term "connection" is in widespread use. It is overloaded with diverse
meanings which are applicable in various contexts (e.g. the particular
meaning used in OSI standardization); but such meanings are not
necessarily applicable throughout the RM-ODP.

What we are modelling here is "connection" as a constraint on joint
action. This does not have the same connotation as "connection" in
telecommunications; i.e. it does not necessarily imply the existence of a
communications channel.

The alternative spelling "connexion" is used to distinguish the particular
meaning defined in B.6.2.1. The definition is intended to be sufficiently
general to be applicable throughout the framework of abstractions defined
in B.S.

- 90 -

B.6.2.2.5 Origins

These definitions originate from a history of scientific debate about the
nature of "objects", conducted over the Centuries. An early formulation
of this kind of general object model was by the 17th Century German
mathematician Leibnitz. His model attributed all exertion of influence to
autonomous indivisible objects (which he called "monads") between
which there was joint action, and constraints upon joint action (i.e.
connexions), but no interaction whatsoever (which was an implausible
restriction).

The "object-oriented paradigm" of computer science is a recent
invention, specialized for computer programming, etc.

B.6.3 Model

B.6.3.1

B.6.3.2

B.6.3.3

General

The purpose, terminology and tutorial introduction to this object model
have been given above. The model and its notation are now briefly
described.
Concepts
An object is specified in terms of the joint actions in which it is considered
to participate. These joint actions are represented by connexions. An object

may have an arbitrary number of connexions, to the same or different
objects, including itself.

This object model has no way of describing the activity of an object which
has no connexions.

The objects, connexions and joint actions in this object model are models;
i.e. they themselves are not what actually occurs. At most they are an
accurate description of what can occur.

The simplification that any connexion is always between exactly two objects
is not restrictive. Arbitrarily complex connectivity can be modelled by
multiple connexions (e.g. by fan-out via intermediate objects). Also for a
connexion that is not fully determined, an object may represent "any
object", or "the rest of the system".

Further study is needed to define these concepts in more detail. In
particular, equivalence rules are needed (and consequent transforms); e.g.
equivalence between a connexion identified with a compound joint action,
and some combination of connexions each of which is identified with a
more elementary joint action which is also present in the compound joint
action.

Object Diagram Notation

An object diagram notation is used for this object model. The choice of
notation is independent of the choice of concepts. This particular notation
is oriented towards white boards and explaining how to build things.

- 9] -

An object is represented by a circle, with an adjacent textual label that
provides identification. The circle shall not overlap a circle representing
any other object. The size of the circle, its position in the diagram and the
thickness of the line used in drawing it have no logical significance.

A connexion is represented by an arc. The thickness and orientation of the
line used in drawing it have no logical significance. If known, the joint
action with which a connexion is identified is shown by an adjacent label.

Arcs may cross one another (and the crossing has no logical significance);
but arcs may not cross circles (objects). Each end of an arc touches a circle
(object).

An object diagram is a connected graph in the graph theoretic sense (and
therefore shall have no dangling arcs, and no unconnected nodes).

B.6.4 Using the Model

B.6.4.1

Examples

Figure 32 illustrates some examples. Example 1 shows an object connected
to a collection of unknown objects (i.e. an object representing the rest of the
system) and in unknown ways (i.e. no particular joint action is identified
with the connexion). Example 2 illustrates two objects with a single
connexion between them. In example 3 there are multiple connexions
between two objects. In example 4 there is connexion fan-out to multiple
objects.

Object; Re:;sgfe;he
Example 1
A
Object, Object,
m Example 2
Example 3 V
Clients 7 File server
Customers Sales Product
management
Example 4
Order
processing

Production

Accounts

Figure 32 - Object diagram examples

B.6.4.2

= 9D =

These examples illustrate the wide applicability of this object model and its
graphical representation. Example 1 is typical of an incomplete design at an
exploratory stage. It might be a predecessor of the more detailed diagrams
in any of the other examples. Example 2 might be a less detailed view of
example 3 or example 4. From the labels it is apparent that example 3 is a
model of (part of) an information system in which client programs have
three different kinds of joint action with a file service (X might be file
access, Y file transfer, and Z file management). Organizational roles are
modelled in example 4 (not computer software).

Throughout this Technical Report most of the illustrations are object
diagrams conforming to this object model.

Information Hiding

An essential characteristic of object models is that an object models what is
possible, not how it is made possible. The "how" (i.e. the way in which the
object is realized) is hidden, encapsulated within the object. This allows
specification to be reduced to bare necessities, and to be kept independent
of more detailed levels of design and attendant implementation choices.

In this object model the composition of an object can only be revealed as a
more detailed arrangement of objects with connexions to the object
considered; i.e. detail is added by refinement. In the example illustrated in
figure 33, some "file server" object is decomposed into a possible more
detailed arrangement of objects not previously visible. The diagrams in
figure 33 are transformations of one another.

Client A File
objects server

File access

File DiSC
_ server server
interface File transfer
Q A
: Other
Client :
objects objects

File management

Figure 33 - Example of object decompositon
Such information hiding is the key to incremental formulation and
description of a design. Each increment (i.e. the revealing of more objects,
connexions and details of joint actions) is a refinement of its predecessor

B.6.5

(and not a reformulation). This incremental process can be started without
necessarily knowing or anticipating the final structure.

In an object diagram all that is known about an object is the lines which
wrap around it and mark out its connexions, and the labels that accompany
the various lines. Most of an object diagram is white space. The white space
encapsulated within each object symbolizes its unknown content. This is
totally separated from the white space all around the objects, which
symbolizes all things outside the universe of discourse.

Formal Description

Definition of the formal (i.e. mathematical) basis of this object model and of
the object diagram notation is for further study. But some preliminary
observations can be made.

The most important observation is that providing a formal basis for this model
of system structure is a matter separable from detailed formal description of
objects and interactions.

The formal basis for description of such system structure in [ANSA 89] is
graph theoretic arrangement of objects, and set theoretic description of
constraints. For reasons of brevity and general applicability, the constraints on
joint actions are symbolized at a high level of abstraction, with a consequent
coarse level of detail. The technique is oriented towards achieving the
necessary degree of accuracy (i.e. formalism) with minimum precision (i.e.
avoiding unwanted degrees of detail). This accuracy/precision trade-off invites
selective use of more specialized formalisms (e.g. abstract data types, process
algebras and set theoretic inheritance hierarchies) to provide higher precision
where needed. E.g. a symbol representing some joint action in an object
diagram could be expanded into the specification of a set of events and partial
orderings, defined in 1SO 8807 LOTOS notation.

It is likely that LOTOS will be used for detailed ODP specifications of objects
and interactions.

- 94 -

C.1

C.2

C.3

C4

- 05 -

APPENDIX C

DISTRIBUTED SYSTEM CONCEPTS

GENERAL

This Appendix considers different kinds of approach to distributed systems, and
introduces the terms networking, network operating system and distributed
operating system. These distinctions may be needed in the RM-ODP.

DEFINITIONS

The following definitions apply.

networking: use of remote resources accessed via a communications network.
networking facilities: facilities that support networking.

operating system: an IT system that organizes resources pertinent to IT systems.

network operating system: an operating system that is itself a distributed IT
system and organizes resources for remote use.

distributed operating system: an operating system that is itself a distributed IT
system and organizes resources for local and remote use.

NETWORKING

The essence of networking is that the resources accessed are explicitly
considered to be remote. (They may be in close proximity or geographically
distant.)

Networking facilities are concerned with matters such as terminal access, remote
log on, remote job entry, file transfer, remote file access, remote program access,
electronic mail and remote printing; and with provision of the interconnection
that is an ingredient of all these. There may also be networking facilities
concerned with managing remote resources.

The resources accessed are usually organized by autonomous local operating
systems. The networking may therefore span across multiple separate operating
systems. These operating systems may be heterogeneous, and the networking
facilities that are superimposed on them may provide some degree of
homogeneity to the remote users of the resources.

Opportunities for shared use of resources are usually an important characteristic
of networking.

A networking facility is usually provided in ways such that it itself is a distributed
IT system.

NETWORK OPERATING SYSTEM

A network operating system provides a collection of networking facilities that
organize the access to remote resources in a coherent way.

C.5

C.6

- 96 -

Organizing local use of resources is outside the scope of a network operating
system, and is a matter for a local host operating system. Therefore, any network
operating system necessarily co-exists with the host operating system(s). It might,
or might not, exercise some degree of hierarchic control over the host operating
system(s).

DISTRIBUTED OPERATING SYSTEM

A distributed operating system, as defined here, is different from a network
operating system, in that it supports access to local and remote resources. Not
being restricted to remote access, its services are potentially as comprehensive as
those of any operating system.

In principle, a distributed operating system may organize all of the relevant
resources; no other operating system need be present. In practice, a distributed
operating system may be hosted by local operating systems.

A distributed operating system provides homogeneous services to its users. (This
does not preclude the latter from using the services of any other operating
systems that are accessible to them). The computers and interconnection across
which a distributed operating system operates may be homogeneous or
heterogeneous.

The distinction between the concepts of distributed operating system and network
operating system is not absolute, and these terms have been used with different
meanings in different circumstances.

DISTRIBUTED APPLICATIONS

The main use of distributed processing is for realization of distributed
applications.

But distributed processing is not the only way in which distributed applications
can be realized. Some alternatives are:

(a) Networking facilities such as file transfer, electronic mail and remote file
access, may be used to construct some kinds of distributed applications.

(b) Some kinds of distributed applications can be constructed by using
distributed database and distributed virtual memory (although these
themselves usually depend on an underlying specialized distributed
operating system and its distributed processing, which they mask).

Distributed processing is something that networking and network operating
systems and distributed operating systems can all support, to varying degrees. But
they all also support other things (e.g. they may support file store and job
control).

D.1

D.2

- 97 -

APPENDIX D

TRADING CONCEPTS

GENERAL

In the main body of this Technical Report the need for a Trading Application is
identified, and a future work item is proposed to develop a standard defining
such a model for SE-ODP purposes (see clause 28).

This appendix is a preliminary description of trading concepts which have been
contributed to ECMA as a proposed basis for this future work. It originates from
the ANSA project [ANSA 89]. At this stage, the detail in this appendix is not
fully consistent with the main body of the Technical Report.

Trading establishes a relationship between objects which permits interaction
between them. The Trading Application is used by SE-ODP runtime, as
explained in clause 24.

DEFINITIONS
The following definitions apply.

specification: a predicate which can be applied to items in a domain of
discourse.

instance: an item in the domain of discourse which satisfies a particular
specification.

class: the set of all items in the domain of discourse satisfying a particular
specification.

type: the specification of a class.

import: a proposal to use some particular service.

export: a proposal to provide some particular service.

importer: an object to which the use of a service is attributed.

exporter: an object to which provision of a service is attributed.

interface specification: a description of the required behaviour of the importer
and exporter when engaged in interactions.

association: the relationship between an importer and exporter that allows the
importer to invoke operations on the exporter. It is based upon an interface
specification for the service in question. (This is not an OSI layer 7 association.)

trading: activity pertaining to imports and exports.
trading service: a service used to match imports and exports.
trading system: an implementation of the trading service.

trader: an object to which provision of a trading service is attributed.

D.3

D4

- 98 -

trading context: within a trading system, a naming context in which an export is
registered.

trading scope: the set of trading contexts reachable from a given trading context,
including the initial context.

trading domain: the logical scope of a trading system.

federated trading systems: cooperation of two or more (rading systems to provide
a trading service spanning the trading systems.

administrator - controls trading to restrict service usage to importers acting on
behalf of authorized individuals

COMPATIBILITY OF INTERFACE SPECIFICATIONS

The definition of types as sets yields a simple definition of subtypes - i.e., A
[sASubtypeOf B is equivalent to A is a subset of B. Since set membership is
defined in terms of satisfying the specification of the type, then an instance of A
(satisfying the specification of A) also is an instance of B (satisfying the
specification of B). The interface specification for A is compatible with the
interface specification for B.

Interface specifications describe required behaviour; if specification A is
compatible with specification B, then A instances behave as required by
specification B; in addition, they also behave as required by specification A.

For an association to be established, the interface specification of the exporter in
an export must be compatible with the interface specification of the importer in
an import.

EPOCHS

There are several different times in the life of a distributed system at which
trading can occur. The only requirement is that an association must be
established prior to the first operation invocation. These epochs are:

(a) construction: when objects are assembled - e.g. the associations between
objects can be fixed by a compiler or link editor;

(b) configuration: when objects are bound to resources - e.g. if a configuration
editor is used to distribute portions of an application, it can fix
associations between objects;

(c) initialization: when objects are instantiated - e.g. the associations between
objects can be fixed by a program loader based upon contextual
information provided to the loader;

(d) execution: when objects are active - e.g. imports and exports result in
requests to a third party trading system.

INTERFACE TRADING

This subclause describes the primitives used for initiating interface trading and
the criteria by which a match between imports and exports is established.

- 99 -

There are two primitives used in establishing an association between objects:
export and import. To announce its availability, an object exports one of its
interfaces. The export is registered in the trading system and assigned a
permanently unique identifier. Subsequently, another object (it can be the same
object) can issue an import. If there is an exported interface specification
compatible with the imported interface specification, then an association can be
established between the objects concerned.

Figure 34 shows the entities involved in establishing an association between two
objects, A and B between which there is a client-server relationship. Let us
assume that B is the exporter and A is the importer. Each object has a requester
which issues the export or import (it may be part of the object, or a separate
object - in the case of non-execution epoch trading, the requester is a different
object). In addition, an object has a specification of the interface(s) it
supports/uses. The exporter is concerned with the responsibilities of the
performer role in the interface specification, while the importer is concerned
with the responsibilities of the requester role in the interface specification.

B’s requester initiates an export by sending B’s interface specification to the
trading service. Subsequently, A’s requester can request to import the service.
The success of an import is determined by the policy associated with the trading
service. This policy is set by the trading service authority. Essentially, it consists
of the compatibility of interface specifications and the contexts available to
requesters (see sublcause D.9).

The result of a successful trade causes an association to be established between
the objects. This is achieved by the trading service setting up the interface
adaptors of the objects. Subclause D.9.2 discusses some of the necessary
mechanisms.

The objects can also be object groups. The principle is the same, except that
exports and imports are issued on behalf of a group of objects and not individual
objects. Also, the interface adaptors are more complex when providing access to
the object groups. The trading service needs to be aware of the group structure
and will interact with the group manager.

D.6

- 100 -

Authority Interpreted policy

Requester

O

Interface
description,

Requester

Interface
description,

—

Object , Interface Interface Object g
adapter; adapter;

Figure 34 - Interface trading
TYPES AND PROPERTIES

An association can only be established between compatible interface
specifications. As already mentioned, the interface specification for A is
compatible with the interface specification for B if A is a subtype of B. Thus, an
instance of interface A can be substituted for an instance of interface B. This
allows the structuring of the interface type space. However, to fully define all the
possible interface types is likely to result in an unacceptable expansion of the
type spaces. For example, consider the typing of printer interfaces:

- Paper size: A4, Continuous, etc.

- Speed: Pages per minute, characters per second, etc.
- Command Language: Postscript™, Interpress™, etc.
- Location: Various levels of granularity.

- Cost: Price per page, price per character, etc.

Defining subtypes of the PRINTER interface to cover all the combinations of
attributes would result in a very large number of interface types. Instead, the
notion of property is introduced. The specification defines the properties an
instance must have, but not their values. These are defined by the instances
themselves. For example, the interface specification PRINTER might state that
all printers have an attribute which is the paper size property. Individual
instances of the PRINTER interface will assign a value to this property.

The division between a type and property is arbitrary. Both the type and
property values form the contract of the service offer. However, property values
are more flexible. They can be changed between (rading operations. For
example, a PRINTER may change the paper size property between jobs.

D.7

D.8

- 101 -

Since properties of an instance are defined in the interface specification, all
instances of a compatible interface must also assign values to the properties
defined in the supertype. For example, the primitive type OBJECT might have
the properties ’location’ and ‘owner’. If all other types in the systems are
subtypes of OBJECT, then they all must have the properties "location" and
"owner". Note that the value associated with a property is defined by each
instance.

Property values have units. For example, paper size is an enumerated type
containing A4, Continuous, etc. while speed is pages-per-sec. The appropriate
units are specified with the property in an interface specification.

As properties are part of the service contract in an exported interface, it is
necessary to ensure that they have the correct values. For example, the value of
"location” or 'owner’ of an object should not be forgeable. Therefore, we need
some mechanism to ensure the correct values are defined. For ’location’ and
‘owner’, this can be provided by the object support environment. However,
other properties may have their values set by other trusted agents in the system.

It may be necessary to distinguish between trustworthy and untrustworthy
properties. The values of the former properties are guaranteed to be correct and
therefore need to be set by trusted mechanisms. However, the latter properties
can be set by the objects themselves.

TRADING CONTEXTS AND TRADING SCOPES

Configuration management policy defines the instances between which
associations can be established. As trading is part of configuration management,
it must enforce configuration policy. The effect is that an import can not match
just any compatible interface. Instead, the export space is divided into trading
contexts (abbreviated contexts).

Contexts may be thought of as directories. They contain references to exported
services. Also, they can reference other contexts. Theretore, we define a trading
scope as the set of contexts reachable from a given context, including the initial
context.

The export contains a parameter that defines the context in which the exported
service should be registered. Similarly, the import contains a reference to a
context. Unless a matching export has been registered in a context included in
the scope specitied in the import, the import will fail.

The structure of contexts is arbitrary, being determined by administrators of the
trading system. However, there are advantages in limiting the structure to
hierarchies or directed acyclic graphs; e.g. it simplifies searching trading scopes
as there are no cycles, and it is easier to determine that the context space is
divided into separate scopes.

CONSTRAINTS MATCHING

The aim of interface trading is (o select the most suitable export for a particular
import. There may be several exports of compatible type in the import
requester’s scope. This set of exports can be further subdivided by specifying

- 102 -

constraints - e.g. the nearest printer that accepts Postscript™ and costs less than
Sp per page.

NOTE D.1:
A language for expressing trading constraints is outlined here. For ODP purposes it may be
appropriate to use an existing query language; e.g. SQL.

The importer supplies a constraints expression that is used to select the most
suitable offer. The constraints expression consists of:

- Superlative functions: min, max.
- Comparative functions: Greater-than (>), Less-than (<), equal-to (=), etc.
- Constructors: "And" (&), "Or" (]), "Followed-by" (->).

Both superlative and comparative functions are applied to property values, the
difference being that comparative functions are applied to individual service
exports in the importer’s scope, while superlative functions are applied to a set of
exports. If there are two of more service exports with the same property values in
a min or max function, then the trading system chooses one at random.

Constructors allow several constraint functions to be applied to the service
exports. "And" (&) and "or" (]) have their usual logical meanings. "Followed-
by" (->) is used to give precedence to the constraints expression.

These constructs allow flexible constraints expressions to be defined. For
example, consider selecting the cheapest A4 printer in the ECMA offices that
accepts Postscript™ commands.

((location=MRC) & (command =POST) & (size =A4)) -> min(cost)

This constraint expression is applied to all service exports registered in the
importer’s scope that are of type PRINTER. The first three parts are comparative
functions that determine that the printer is at MRC, accepts Postscript™
commands, and uses A4 paper. The result is a set (possibly null) of service
exports which meet these constraints. The superlative function min is then
applied to the cost of each printer in the set.

Both comparative and superlative functions can be applied to mathematical
functions of property values. For example, consider the choice between the
fastest and cheapest printers. A weighted expression can be used as shown
below:

min(W1 * cost + W2 * speed)

This expression will select the minimum of cost weighted by W1 and speed
weighted be W2. The mathematical operators +, -, * and / are permitted in
constraint expressions. Use of trigonometric and logarithmic functions are also
permitted.

As stated earlier, property values have units. To be used in constraint
expressions, the comparative and superlative functions must be defined on all
possible units. For example, it must be possible to determine if the value of a

D.9

D.J9.1

- 103 -

property in one export is greater than that same property in another export. This
requires overloading of the constraint functions.

In addition, it must be possible to convert property units to some base unit for
multiple property comparisons. Thus the minimum of cost and speed for the
PRINTER interface could be specified as:

min(W1 * ord(cost) + W2 * ord(speed))

where ord is a function defined on all numeric-based properties that converts
values to real numbers.

MECHANISMS

Support environment primitives

The three main primitives provided by the support environment for
interaction with the trading system are:

EXPORT

exportHandle <= export(InterfaceSpecification,
TradingContext, PropertyValues)

IMPORT

importHandle <= import(InterfaceSpecification,
TradingContext, Constraints)

SEARCH

setOfExport <= search(InterfaceSpecification,
TradingContext, Constraints)

where:

InterfaceSpecification is the interface specification upon which any resulting
association(s) will be based.

TradingContext is the naming context in which the export is to be placed, or
the anchor of the trading scope in which the search/import is to take place.

PropertyValues provides the values for the properties associated with the
service export.

Constraints specifies the matching constraints to be applied in the
searchlimport

An association results from an import if the following conditions are met:

- InterfaceSpecification€*POrt [sCompatibleWith InterfaceSpecificationimport
- TradingContextexport is in the Trading Scope of TradingContextimport

- at least one export matches the Constraints.

The search primitive returns the unique identifiers of all exports which satisfy
the above criteria. The importer can then associate itself with a particular
export by an import with InterfaceSpecification and TradingContext
unchanged, but with a Constraints expression of the form

"UniquelD = UI"

D.9.2

- 104 -

where Ul is the unique identifier for the chosen export. Note that this method
is only of interest in the execution epoch.

Epochs, associations, and interface adaptors

The structural model shown in Figure 35 may aid visualization of the
interplay between epochs, associations, and interface adaptors.

The vector labeled ih represents an association to another object providing a
particular service. The additional vectors represent other engineering choices
which must be made to realize the association. These additional vectors are
details of the interface adaptor functionality described in clause 23.

Object code using the
service represented by
the import handle ih

Figure 35 - Dispatch vector

Each of these vectors may be filled in at different epochs. Some are fixed at
system design time (e.g. standard intermediate over-the-wire (OTW) format
will always be used), construction time (e.g. service is local, so dispense with
remote invocation machinery), instantiation time (e.g. protocol vectors are
determined from the network environment known to the support
environment), and execution time (e.g. OTW format negotiated at bind time).

- 105 -

APPENDIX E

INDEX OF TERMINOLOGY

This appendix is a list of all the specialised terminology used in this Techical
Report. The items are in alphabetic order, with cross references to where they are

defined.

abstract interface 13.2
access transparency B.4.2
ACID properties 23.2
action B.6
activity B.6
address 22.2
administrator D.2
application component 8.2 B.2.2
application program 82 B22
Aspect B.5
association D.2
atomic object 23.2
basic distribution transparencies 23.2
binding 222
capsule 19.2
class D.2
client 212
client-server interaction 21.2
client-server model 21.2
component B.2.2
Computation viewpoint B.5
computer application 8.2 B.2.2
concurrency transparency B.4.2
connexion B.6
consumer 21.2
context relative name 22.2
distributed application 8.2 B.2.2
distributed information system B.2.2
distributed IT system B.2.2
distributed operating system C.2
distributed processing 5. B.1.2
distributed system B.2.2
distribution transparency B.4.2
distribution transparency utilities 24.2
DTO; DT'1; DT2; DT3: 24.2
early binding; static binding 22.2
Engineering viewpoint B.5

- 1006 -

Enterprise viewpoint B.5S
export 212 D2
exporter 212 D.2
extended distribution transparencies 23.2
failure transparency B.4.2
federated trading systems D.2
final form model 13.2
import 21.2 D.2
importer 21.2 D.2
information system B.2.2
information technology system B.2.2
Information viewpoint B.5
instance D.2
inter-process communication (IPC) 20.2
interaction B.6
interface adaptor 23.2
interface object 13.2
interface specification D.2
interpreter 19.2
IT system B.2.2
joint action B.6
late binding; dynamic binding 22.2
location transparency B.4.2
management utilities 24.2
migration transparency B.4.2
model B.6
name 22.2
naming context 22.2
naming tree. 22.2
native component 13.2
native interpreter 19.2
native name 22.2
natural system B.2.2
network operating system C.2
networking G2
networking facilities .2
nucleus 24.2
object B.6
object diagram B.6
object factory 23.2
object factory utilities 24.2
object group 23.2
object model B.6

ODP association 222

- 107 -

ODP component 13.2
ODP interface 13.2
ODP name 22.2
open distributed processing (ODP) 5. B.1.2
operating system c2
processing 5. 19.2 B1.2
processing component 13.2
producer 21.2
producer-consumer interaction 21.2
producer-consumer model 21.2
Reference Model of Open Distributed Processing (RM-ODP) B.1.2
replication transparency B.4.2
SE-ODP interpreter 19.2
SE-ODP logical unit 24.2
SE-ODP processing model 19.2
SE-ODP runtime 24.2
SE-ODP utility 24.2
security utilities 24.2
server 21.2
service 21.2
service interaction 21.2
social system B.2.2
socio-technical system B.2.2
specification D.2
subsystem B.2.2
Support Environment for Open Distributed Processing (SE-ODP) - 5.
system B2.2
technical system B.2.2
Technology viewpoint B.5
trader 212 D2
trading 212 D.2
trading context D.2
trading domain D.2
trading scope D.2
trading service 21.2 D.2
trading system D2
trading utility 24.2
type D.2

viewpoint B.5

e

-

