ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

| COMPUTER-SUPPORTED
® TELECOMMUNICATIONS APPLICATIONS

ECMA TR/52

June 1990




Free copies of this document are available from ECMA,
European Computer Manufacturers Association
114, rue du Rhone - CH-1204 Geneva (Switzerland)

Phone: +41 22 735 36 34 Fax: +41 22 786 52 31




ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

COMPUTER-SUPPORTED
TELECOMMUNICATIONS APPLICATIONS

ECMA TR/352

June 1990







!

BRIEF HISTORY

This Technical Report is the foundation for the OSI Layer 7 service Protocol Message Interface between
Computing Functions and Switching Functions. The report introduces an Architectural and Operational

Model to provide functional integration of applications using a computing network and private telephony
network.

This Technical Report is based on the practical experience of ECMA member companies and results of
their active and continuous participation in the work of ISO, CCITT, ETSI and various national
Standardisation Bodies in Europe and North America.

Adopted as Technical Report TR/52 by the General Assembly of 28th June 1990.







Table of Contents

Page

SECTION I - OVERVIEW 1
1. SCOPE 1
2. FIELD OF APPLICATION 1
3. REFERENCES 2
4, DEFINITIONS AND ACRONYMS 3
4.1 Agent 3

4.2 Application 3

4.3 Application Domain 3

4.4 Application Environment 3

4.5 Basic Call 3

4.6 Call 3

4.7 Complex Call 3

4.8 Computing Domain 3

4.9 Computing Function 4

4.10 Computing Sub-domain 4

4.11 Customer 4

4.12 Device 4

4.13 Directory Number 4

4.14 Event 4

4.15 Interconnection Service Boundary 4

4.16 Object 4

4.17 Party 4

4.18 Service 4

4.19 Service Boundary 4

4.20 State 4

4.21 Switching Function 4

4.22 Switching Domain 5

4.23 Switching Sub-domain 5

4.24 User 5

5. INTRODUCTION 6
SECTION II - USES AND REQUIREMENTS 8
6. APPLICATION EXAMPLES 8
6.1 Personal Telephone Support 9




6.2 Telemarketing 10

6.2.1 OQutbound Calls 10

6.2.2 Inbound Calls 12

6.2.3 System Supervision 15

6.3 Customer Support Environment 15
6.3.1 Typical Application Modes 15

6.3.2 Typical Interactions 16

6.4 Integrated Message Desk 18
6.5 Emergency Call Applications 20
6.5.1 Industrial Alarm System 20

6.5.2 Fire Service Control 20

6.6 Data Collection/Distribution 21
6.6.1 General Scenarios 21

6.6.2 General Functions 21

6.6.3 Typical Examples 21

6.7 Data Access 23
6.7.1 Typical Application Modes 23

6.7.2 Typical Interactions 24

6.8 Hotel Application 24
6.9 Switched Data Applications 25
6.9.1 Computer Data Port Configuration , 25

7 CSTA REQUIREMENTS 26
7.1 Standardization Requirements 27
7.2 System Requirements 27
7.2.1 System Integrity 27

7.2.2 System Reliability 28

7.2.3 System Independence 29

7.2.4 System Enhancements 29

7.2.5 Dispersion 30

7.2.6 Flexibility 30

7.2.1 Security 30

7.2.8 Compatibility 30

7.2.9 Distribution Transparency 30

7.2.10 Error Management 31

7.2.11 Performance 31

7.2.12 Telecommunications Configurations 32

7.2.13 Service Requirements 32
SECTION III - CSTA DESCRIPTIONS 33
8. FUNCTIONAL ARCHITECTURE 33

8.1 General Concepts 33




8.1.1 CSTA Application 33

8.1.2 Distribution of Computing and Switching Functions 35

8.1.3 CSTA Service 36

8.1.4 Client/Server Model 37

8.1.5 Service and Objects 37

8.1.6 Multi-Server/Multi-client Relationships 37

8.1.7 Application layer Relaying and Service Granularity 37

8.1.8 Service Boundaries 38

8.2 Distributed CSTA Functionality 39

8.3 Configuration Scenarios 40

8.3.1 Topologies 40

8.3.2 Reliability of CSTA configurations 42

9. OPERATIONAL MODELS 45
’ ' 9.1 CSTA Domains and Sub-domains 45
9.1.1 Definitions 46

9.2 Switching sub-domain Model 47

9.2.1 CSTA Switching Model Objects 47

9.3 Computing sub-domain Model 55

9.3.1 Introduction 55

9.3.2 CSTA Computing Model Obijects 55

9.4 Dynamic Identifier Management 56

10. CSTA SERVICE DESCRIPTIONS 57
10.1 Introduction 57

10.1.1 General Procedures 57

, 10.1.2 Categories of CSTA Services 59
b {. 10.1.3 Graphical Representation 59
10.1.4 CSTA Application Private Information 60

10.1.5 Other Parameters 60

10.2 Switching Function Services 60

10.2.1 Make__Call Service 60

10.2.2 Clear__Call Service 63

10.2.3 Clear__Connection Service 64

10.2.4 Hold__Call Service 65

10.2.5 Retrieve__Call Service 66

10.2.6 Consultation__Call Service 67

10.2.7 Alternate__Call Service 69

10.2.8 Reconnect__Call Service 71

10.2.9 Transfer__Call Service 72

10.2.10 Conference__Call Service 74

10.2.11 Answer__Call Service 76

10.2.12 Call__Completion Service 76

10.2.13 Make__Predictive__Call Service 77




11.

10.3

10.4

10.5

10.6

_iv..

10.2.14 Divert__Call Service
10.2.15 Feature Access Service

Input/Output Services

10.3.1 Collect__Data service

10.3.2 Data__Input Notification

10.3.3 Provide__Data Notification

10.3.4 Activate__Data__Path notification
10.3.5 Start__Data__Collection service

Computing System Services
10.4.1 Database Services
Bidirectional Services

10.5.1 Escape Service
Status Reporting Services

10.6.1 Snapshot Service
10.6.2 Monitor Service

CSTA.STATES AND EVENTS

11.1
11.2
11.3
11.4

11.5

Introduction

Goals

Interpretation of call state

CSTA Telecommunications Scenarios

11.4.1 Making and Clearing a Call

11.4.2 Incoming Call

11.4.3 Holding Calls

11.4.4 Multiple Call Support

11.4.5 Tracking a Call

11.4.6 Events Prompted by the Remote Device
11.4.7 Queueing (inbound)

11.4.8 Predictive Dialling

CSTA Events

SECTION 1V - CSTA APPLICATIONS

12.

13.

CSTA SERVICE BOUNDARY

12.1
12.2
12.3

Introduction
Service Decomposition Functional Elements
Location of Decomposition Functional Elements

APPLICATION LAYER STRUCTURE

13.1
13.2

Introduction
OSI Reference Model

13.2.1 General

79
80

81

82
84
85
86
86

88
88
92
92
93
93
94
97

97
97
97
98

99
102
103
104
107
109
110
111

111

118

118

118
119
119

121

121
121

121




13.2.2 Application Process 121

13.2.3 Application Entity 122

13.2.4 Application Service Elements 123

13.2.5 Application Associations 123

13.2.6 Application Context 123

13.3 CSTA Application Layer Structure 123

13.3.1 CSTA Application Process 124

13.3.2 CSTA Application Entities 124

13.33 CSTA Association and Context 124

13.3.4 CSTA Application Service Elements 124

13.3.5 CSTA Specification 124

13.4 Examples of common ASEs 124

’ ‘ I 14. INTERCONNECTION SERVICE ARCHITECTURE 125

14.1 General 125

14.2 Interconnection architecture modelling concepts 126

14.2.1 Convergence Functions _ 126

14.2.2 Subnetworks and their Interconnection 127

14.3 Criteria for the selection of lower layer protocols 128

14.4 Protocol stacks 129

14.4.1 OSI protocols 129

14.4.2 ISDN Interfaces 129

14.5 Consequences of the use of "reduced’ stacks 132

14.6 Management of Communication Functions 132

14.6.1 Reliability/redundancy 132

14.6.2 Congestion management - Recovery procedures 133

' 15. SECURITY AND MANAGEMENT IN CSTA 133
"

' 15.1 Security in CSTA 133

15.1.1 Overview 133

15.1.2 Authentication and access control 133

15.1.3 Security Policy 136

15.2 CSTA Management 135

15.2.1 Charging Information 136

15.2.2 Load Management 136

SECTION V - APPENDICES 137

APPENDIX A - REDUNDANCY 139

APPENDIX B - RELATING CSTA TO OSI LAYER 7 - ARCHITECTURE 143

APPENDIX C - VIRTUAL DEVICE CONCEPT 147




S i -

APPENDIX D - TRANSFER CONTEXT IN CSTA 151

APPENDIX E - OPEN DISTRIBUTED PROCESSING 153




SECTION I - OVERVIEW

1. SCOPE

This Technical Report defines an architectural framework suitable as a basis for the development
of standards in the area of Computer-Supported Telecommunications Applications (CSTA). This
edition of the report introduces a client-server Architectural Model and defines an Operational
Model of the Switching Function acting as the server. This model is used as a basis for the defini-
tion of Switching Function Services.

This architectural framework is focused on the provision of an application interface between a

Switching Function and a Computing Function. This application interface is not specified as being

associated with a specific user-network interface or network-network interface. Hence the CSTA

interface does not have to exist in the same physical interface as the objects with which it interacts.

Therefore, CSTA is not intended to incorporate direct support for the user-to-network interface.

Applications may incorporate support of user-to-network interfaces separately from CSTA but this
‘ is not within the scope of CSTA.

The definitions of an Operational Model for the Computing Function and the related Computing
Function Services are provisional and will be completed in a future edition of the report.

Within the scope of the Operational Model embracing the Switching Function as server this
edition of the report covers the following subject areas:

- types of CSTA application currently envisioned;
- overall system operational and functional requirements met within the framework;

- a functional architecture as it relates to a Telecommunications Application environment viewed
as a whole;

- types of CSTA configurations envisaged;

- an operational architecture defined in terms of the Switching Function objects visible to, and
capable of being acted on, by the Computing Functions;

- the individual Switching Function Services needed to support the CSTA applications envisaged;

- examples of some possible state transition scenarios as they relate to the Switching Function
w. server interface to the Computing Function;

- the distribution of CSTA application functionality between the Switching and Computing
Functions;

- Application Layer structure;
- the interconnection architectures existing to support the Application layer structure; and

- security and management within a distributed CSTA application domain.

2. FIELD OF APPLICATION

This Technical Report defines how to provide functional integration between a computing network
and a private telecommunications network. The possibility of expansion is available, at a later
stage, to cover public telecommunications networks.

The functions defined in this Technical Report allow for communication between the computing
and switching networks to take place via intervening networks which range from a simple point-to-
point connection to a local or wide area communications network.




In this Technical Report, the bias is towards:
- private networks,
- telephony services,

- uni-directional operations between computer and telecommunications networks with the
telecommunications network as the server.

This Technical Report also introduces bi-directional services and non telephony services but these
types of services have not been explored as extensively.

REFERENCES

ECMA

TR/44 An Architectural Framework for Private Networks

TR/45 Information Interchange for Remote Maintenance at the Interface between
Data processing Equipment and Private Switching Networks

TR/46 Security in Open Systems - A Security Framework

TR/49 Support Environment for Open Distributed Processing

ISO

ISO 7498 Information Processing Systems - Open Systems Interconnection - Basic
Reference Model

ISO 8648 Data Communications - Internal Organisation of the Network layer

ISO 8649 Open Systems Interconnection - Association Control Service Element

ISO 8824 Open Systems Interconnection - Specification of Abstract Syntax Notation
One (ASN.1)
(Note: This corresponds to CCITT X.208)

ISO 8825 Open Systems Interconnection - Specification of Basic Encoding Rules for
ASN.1
(This International Standard corresponds to CCITT Rec. X.209)

ISO 10031-1 Telecommunications - Distributed Office Applications Model Part 1:
General Model

1ISO/DIS 9072/1 Text Processing - Remote Operations Part 1: Model, Notation and Service
Definition

ISO/DIS 9072/2 Text Processing - remote Operations Part 2: Protocol Specification

ISO/DP 9545 Open System Interconnection - Application Layer Structure

ISO/DIS 10026/1 Open Systems Interconnection - Distributed Transaction Processing Part I:
Model

ISO/DIS 10026/2 Open Systems Interconnection - Distributed Transaction Processing Part 2:
Service Definition

DIS 10026/3 Open Systems Interconnection - Distributed Transaction Processing Part 3:

Protocol Specification




CCITT

Rec. 1.210 Principles of telecommunications services supported by an ISDN and the
means to describe them

Rec. Q.65 Stage 2 of the Method for the Characterization of Services Supported by an
ISDN

Rec. 1.130 Method for the Characterization of Telecommunication Services Supported
by an ISDN and network Capabilities of an ISDN

Rec. Q.700 Introduction to CCITT Signalling System No. 7

Rec. Q.931 ISDN User-Network Interface Layer 3 Specification for Basic Call Control

Rec. Q.932 Generic Procedures for the Control of ISDN Supplementary Services

Rec. Q.940 ISDN User-Network Interface Management-General Aspects

(. Rec. X.25 Interface between DTE and DCE for Terminals operating in the packet

mode and connection to public data networks by dedicated circuits.

Rec. X.75 Packet-Switched signalling between public networks providing data trans-

mission services.

4. DEFINITIONS AND ACRONYMS
For the purpose of this Technical Report the following definitions apply.
CSTA Specific Definitions
] The prefix CSTA applies to all terms included in the following list.
4.1 Agent
A CSTA user that is authorised to act on behalf of the provider of the CSTA application.
4.2 Application

A co-operative process between a Switching Function as performed within a telecommunications
network and a Computing Function as performed within a computing network.

(’ 4.3 Application Domain
The union of one switching sub-domain and one computing sub-domain.
4.4 Application Environment
The set of application domains for an application.
4.5 Basic Call
A call that relates exactly two associated devices.
4.6 Call

A Switching Function communications relationship (generally) between two or more parties.
During some circumstances, including set-up and release, there may be only one party.

4.7 Complex Call
A call that relates more than two associated devices.

4.8 Computing Domain

The set of computers and their objects which may be reached directly or indirectly by a CSTA
application from a switching domain.




4.9

4.10

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

Computing Function

That part of the function needed to support CSTA applications implemented within a Comput-
ing Network.

Computing Sub-domain

Any configuration of inter-connected computers which present the external appearance and
functionality of a single computer to the switching domain.

Customer

A person, process or piece of equipment that makes use of the services provided by an organisa-
tion on a regular basis.

Device

A logical entity which translates between the actions of a party and the (signalling) information
transfer capabilities of the Switching Function.

Directory Number

A logical concept that translates to party or device. It is associated with a line circuit.
Event

A stimulus that causes a change in the state of a CSTA object.

Interconnection Service Boundary

The abstract service boundary within a system supporting a CSTA Application, separating the
communications component of the application from the networking support functions of the
system.

Object

An abstract entity assumed for modelling purposes to embody some aspect of the externally
visible functional characteristics of a physical entity.

Party

An entity outside the Switching Function which has the intelligence to use the Switching
Function.

Service
The benefit provided by one CSTA application process to another.
Service Boundary

The boundary existing between a CSTA Computing Function and a CSTA Switching Function as
it is established via their Interconnection Service Boundaries over some underlying interconnec-
tion medium.

State

An indication of an object’s current condition based on its passed events, permitting a prediction
of its future behaviour.

Switching Function

That part of the function needed to support CSTA applications implemented within a telecom-
munications network.




4.22

4.23

4.24

Switching Domain

The set of all the switches and their objects which may be reached directly or indirectly by a
CSTA application from a computing domain.

Switching Sub-domain

Any configuration of inter-connected switches which presents the external appearance and
functionality of a single switch to the computing domain.

User

A person, process or piece of equipment that receives direct benefit (e.g. added functionality,
improved performance) from the services provided by the CSTA application.

Terms Defined Elsewhere
I1SO

ISO 7498 Application Layer
Application-process
Application-entity
Application-entity-title
Application-service-element

ISO 8648 Intermediate System
Interworking Unit

ISO 8649 Application context
Association
Association Control service Element

1ISO 9072/1 Remote Operations

ISO 10031-1 Client
Server

List of Acronyms

ACK Acknowledgment

ACSE Association Control Service Element
ACD Automatic Call Distribution

AE Application Entity

AP Application Process

APDU Application Protocol Data Unit

API Application Programming Interface
ANI Automatic Number Identification
ASE Application Service Element

ASN Abstract Syntax Notation

CASB CSTA Application Service Boundary
CO Central Office

CSTA Computer-Supported Telecommunications Applications
CF Computing Function

€Ll Calling Line Identification

DDI Direct Dial Inward

DND Do Not Disturb

DNIS Dialled Number Identification Service
DP Data Processing

DTE Data Terminal Equipment




-6 -
DTMF Dual Tone Multi-Frequency
FE Functional Entity
FTAM File Transfer Access and Management
HDLC Yigh-Level Data Link Control Procedure
1D Identifier
ISDN Integrated Services Digital Network
IWU Inter-Working Unit
OSI Open System Interconnection
PBX Private Branch Exchange
POTS Plain Old Telephone Service
SDFE Service Decomposition Functional Element
PSTN Public-Switched Telecommunications Network
PTT Postal Telecommunications Telegraphics Administration
QoS Quality of Service
RO Remote Opération
ROSE Remote Operation Service Element
SCCP Signalling Connection Control Part
SF Switching Function
SMDR Station Message Detail Recording
SS7 Signalling System 7
TP Transaction Processing
INTRODUCTION

This Technical Report provides an Architectural Framework within which to develop ECMA
Standards in the area of Computer-Supported Telecommunications Applications (CSTA).

The basic aim of CSTA is the mutual enhancement of the individual capabilities of co-operating
computing and switching networks to the extent that each may exploit the services provided by the
other for the purpose of supporting applications that neither could provide individually without
significant enhancement or redesign.

For example, a computer program running on a general purpose computer may make use of an
attached voice switching network for the purpose of making and clearing calls in support of an
integrated application involving both voice and data communication, an application unable to be
supported by the computer alone.

Conversely, an application running on a switching network may make use of a database manage-
ment system available on a connected computing network, an application unable to be supported
by the switching network alone.

With respect to the second of these examples, it is recognised that most modern switching net-
works have their own database handling systems. For some applications, however, it may be
advantageous to allow the network access to the more powerful and flexible database management
systems available on a general purpose computer.

CSTA may be seen as representing a new area of Information Technology development for which
Internationally agreed standards have yet to be defined. The purpose of this Technical Report is to
establish an architectural framework within which to progress this work. The material making up
the framework is presented in the following sequence:

Section II

Clause 6 deals in more detail with the types of application seen as being supported within a CSTA
environment. It gives a number of application examples and illustrates for each the basic interac-




tions between terminal, computer and telecommunications network components needed to support
the application.

Clause 7 deals with the general operational, functional and engineering requirements to be covered
by the framework. It also deals with the subject of conformance to the CSTA standards to be
developed in accordance with this framework.

Section III

Clause 8 deals, under the heading of functional architecture, with basic concepts as they relate to a
CSTA environment considered as a whole. It develops a model for the environment and identifies
within the model the service boundaries seen as being the subject of CSTA standardization.

This clause also enlarges on the network configurations covered by the model.

Clause 9 defines, for each of the co-operating networks of the global model, an operational model.
These models are defined in terms of the objects going to make up the networks as they are
perceived and capable of being operated on by their companion networks.

On the basis of the models defined in clause 9, clause 10 defines the services provided by each
network to the other and clause 11 the states and events relating to their service interfaces.

Section 1V

Clause 12 considers in more detail the service boundary between co-operating computing and
telecommunications network Application layer entities. It is concerned specifically with the distri-
bution of CSTA Application layer functionality about the boundary and the way in which different
distributions affect the definition of the service primitives exchanged over the boundary.

Clause 13 is concerned with defining the structure of CSTA Application layer entities in terms of
their lesser functional components.

Clause 14 deals with the interconnection services required to support computer/telecommunication
network interworking at the Application layer. It identifies the OSI and other lower layer protocol
stacks able to provide the necessary interconnection services.

Clause 15 is concerned with security, including authentication and access control, within CSTA
together with CSTA management.

Section V
Appendix A enlarges on the provisions of clause 8 dealing with interconnection scenarios.

Appendix B takes a practical CSTA Application example and illustrates how the provisions of the
different clauses of the framework should be seen as being related.

Appendix C introduces the notion of a "virtual device" which may be an implementation mecha-
nism for certain scenarios.

Appendix D introduces the concept of a Transfer Context service, which can be requested of the
Computing Function by the Switching Function, to transfer the context of an application from one
terminal to another.

Appendix E briefly summarises the concepts embodied in Open Distributed Processing and relates
that work to the development of CSTA.




SECTION II - USES AND REQUIREMENTS

6. APPLICATION EXAMPLES

A CSTA application is a co-operative process between a telecommunications Switching Function
and a Computing Function. It is presented to the user as a single application providing enhanced
services. Typically the Computing Function may be distributed among a network of computers
while the Switching Function may be distributed among a network of switches. The interactions
between the computing and Switching Functions can be bi-directional such that the Computing
Function provides services to the Switching Function and vice versa. In general, the user may be a
human or some automatic entity.

The following application examples demonstrate the potential for CSTA. Although the list is not
exhaustive, and does not address every category, it does identify the general types of interaction
required. The applications described are as follows.

- Personal telephone support: provides improved human interface and support for users.
- Telemarketing:

a. outbound calls: assists agents in making calls to customers

b. inbound calls: assists agents in handling incoming calls from customers

c. supervision: of the telemarketing activity
- Customer support environment: provides support for handling customer enquiries.

- Integrated message desk: integrates the telephony message desk facility with computer based
electronic mail.

- Emergency call applications: including Industrial Alarm System and Fire Service Control
examples.

- Data collection/distribution: exploits the voice terminal for the collection and distribution of
data.

- Data access: supports the Switching Function accessing data held on a computer and vice versa.
- Hotel application: which identifies typical hotel telephony functions.
- Switched data application: provides support for configuration of data ports.

Typical examples of CSTA applications are described using a simplified configuration shown in
Figure 1 where:

- a computer provides the Computing Function
- a switch provides the Switching Function
- a human CSTA user accesses CSTA enhanced services via a data terminal and a voice terminal

- the CSTA application uses a Public Switched Telephone Network (PSTN) to communicate with
a remote user (termed customer in these examples).

Some examples of possible logical interactions are also provided. Although they indicate a potential

distribution of function (among several possibilities) they do not imply that this is the optimum

case. The logical interactions between the Computing and Switching Functions are contained in the
 CSTA Service Descriptions clause.

These examples refer to outbound (or outgoing) and inbound (or incoming) calls. These are with
respect to the switch.




6.1

Computer Network/Telephony Network

interface

! ]

| | |

| | |

| N |

[ Terminal Computer | | Switch |

| i ,

| | |

| l [

| | |

| l |

|

| 6 |

| O |

! extension |

1
CSTA User Customer
interface interface

Figure 1 - Typical Simplified Configuration
Personal Telephone Support

This is concerned with providing the best human interface to users of the system while also
monitoring user actions.

1. Users are presented with a simple, coherent and friendly screen-based interface to the
system. Telephony functions, including call handling and feature invocation, can be
invoked by the user interacting with his computer terminal. In addition to making the
system easier to use, an application which presents a user-friendly interface will also
reduce errors (such as mis-dialling etc.).

2. The application monitors the status of the individual user to provide improved co-
ordination (including displaying call-related information on the data terminal).
Examples of call status include:

- detailed call progress states for outbound calls including indications that:
. the call has been initiated
. the call has been delivered (i.e. the far end is ringing)
. the call has been answered (by the far end)
- indications of failed calls (e.g. the called party is busy)
- reports on changes to established calls (such as Call__Held or Call__Cleared)
- incoming call indications (e.g. a.call has arrived for a particular user)

- status of the user’s voice terminal (such as being in a do not disturb state)

3. The collection of adequate statistics on the activity and the performance of the system.




6.2

6.2.1
6.2.1.1

- 10 -

Telemarketing

This provides support for telemarketing agents (who become the CSTA user) in handling calls
with customers. This type of application is normally telephony-intensive.

Outbound Calls

Typical Application Modes

Typically the application maintains a database of customer details (including contact tele-
phone numbers, names, recent ordering activity, when next to call the customer, etc.) and
uses this information to establish outbound calls. This operation can be done in various

ways:

1.

The simplest mode is where the application initiates a call, on behalf of an avail-
able agent, to the external number. Note that for simple telephones, the switch will
normally prompt the local user to physically take his telephone off-hook; for more
sophisticated voice terminals (such as hands-free voice terminals) this will not be
needed. When appropriate the switch will initiate the outgoing external call. The
extension user would typically hear call progress tones in the normal way. Usually
the applications would also monitor the call progress by receiving event notifica-
tions as the call progresses through the various call establishment states. This call
status information would typically be presented in an individual window on the
computer terminal associated with the agent.

Some applications may have synchronisation requirements:

- a request may only be valid under certain conditions. An example would be
placing a new outbound call only for telemarketing agents in the idle condition
(note that this is application dependent because there may be data terminal
cleanup associated with the call becoming idle; in these cases, it may be best
for the agent to explicitly indicate that he is ready for the next call);

- it may be useful to defer a request such that it is only performed on the occur-
rence of certain events or at a certain time (an example would be to place a
call every evening to report on the day’s business).

Some applications prefer to use predictive dialling which requires access to
detailed call progress indications. This mechanism initiates an outbound call with-
out first assigning a telemarketing agent, but with the prediction that a suitable
agent is likely to be available when the call is established. After initiating the call,
the application monitors call progress and can detect call delivery (i.e. listening to
ringback), call connection (i.e. the called party answers) and call failure (e.g. the
called user is busy, number unobtainable etc.). At a suitable point within call
establishment (depending on the application), the call is assigned by the applica-
tion to an appropriate, available agent. Alternatively, if the application detects that
the call has been unsuccessful (e.g. the called number was busy) then it records the
information for a later attempt and moves on to the next customer with no inter-
action required from the agent. This type of sophisticated calling clearly requires
extra functionality:

- the ability to initiate a call that is not yet related to a particular extension;
- access to detailed call progress signals;

- the facility of assigning the completed (or partly completed call) to a free
agent.




6.2.1.2

= 11=

Although predictive dialling is more complex, the extra efficiency and the higher proportion
of successful calls make it an important feature of telephony-intensive applications.

Typical Interactions

Typical logical interactions for an outbound call from an agent are shown in Figure 2. The
particular interactions shown are intended only to indicate some possible types of
exchanges; the actual interaction will, of course, depend on the application. Note that steps
(1) and (2) are session initialisation and would normally only occur once for each individual
agent session. The subsequent steps (3) to (12) are concerned with actually supporting
outbound telephony and will normally occur once for each call involving the agent. Only
the logical interactions between the computing and Switching Functions (i.e. steps 2, 3, 5, 8
and 11) are actually within the scope of CSTA.

Note that this example assumes call progress signals are provided by the network.

1. The agent logs on to the application. At this time, the application sets up the asso-
ciation between the user’s voice terminal and his data terminal (this is typically
operating system and configuration dependent).

2. The computer application, in this example, is interested in outgoing calls for this
particular user. It requests notification of specified events associated with outgoing
calls for the agent. Note that the control of which events are reported may also be
effected by other means (such as administration).

3. The application requests the switch to initiate a call between the agent and the
next customer in the list.

4. The network attempts to make the requested call between the agent and the
customer.
5. The switch sends a report to the application indicating that the call has been

delivered to the customer.

6. The application updates the relevant agent’s data terminal with details of the
called customer.

7. The called customer answers the ringing call.

8. The switch sends a report to the application indicating that the call has been
answered by the customer.

9. The application now knows that the voice call (handled by the switch) is estab-
lished.

10. The customer clears the call by hanging up.

1. The switch sends a report to the application indicating that the call has been

cleared by the customer.

12. The application updates the agent’s data terminal with full details of the
completed transaction (including confirmation of order, length of telephone call,
etc.).




12 -
I
' i switchin
data voiea comptfhng "9 ustomer
terminal ~ terminal  function function
log on > 1
Montor_On > | 2
Make_Call(agent, customer) 3
Initiates call from agent to customer
< > 4
svenl (cal deliversd lo customer) 5
<updatesaeen customer | 6 .
g orsers :|
7
event (cal connedted)
8
i I 9
voice call :Mom:'
T T H
H : avent (customer clsared call) -
! g | 11
! updals screen I
e 12
Figure 2 - Outbound Call Handling
6.2.2 Inbound Calls .

6.2.2.1 Typical Application Modes

This type of application handles incoming calls and often exploits the call distribution
functions offered by switches. Typical examples would include the use of Automatic Call
Distributors (ACDs), based in the switch, to route an incoming call to the most suitable
ACD agent out of a group of such agents. The application maintains a database of customer
and/or product details which can be used to assist an agent in responding to incoming calls.

1. When an incoming call is received, the ACD application may make use of any
information provided by the network on Calling and Called Line Identification to
route the call to a particular agent.

NOTE 1

In some environments, the selection of the agent may be done by the computer using
the Calling/Called Line information supplied by the switch, together with the
monitored status of the individual agent.

2. When an incoming call is reported, applications may also make use of any infor-
mation available on the calling or called number (if this type of service is provided
by the network). People frequently make calls from places other than their normal




6.2.2.2

telephone so the calling number alone is often not sufficient to identify the actual
calling person and in these cases, it may be necessary for the caller to identify
himself by some other means. Examples of how calling and called number identi-
fication may be used are:

- o route the call to a particular agent and to simultaneously retrieve particular
information from a database and display it on the agent’s associated computer
terminal;

- to prioritize calls such that VIP customers are placed at the front of the list
and given to the first available agent (or even to an agent who specialises in
important customers);

- to ascertain the reason for the call;

- to display the appropriate application screen in an environment where an
agent supports multiple applications with each application having its own
distinct pilot telephone number.

When an incoming call is delivered to a hands-free voice terminal (often used in
telephony-intensive applications) the application might want to request that the
switch answer the call on behalf of the agent.

On occasions, it may be that the call is delivered to an unmanned extension. In
these circumstances, another agent would pickup the ringing call by interacting
with his computer terminal.

It may also happen that the call is delivered to an agent who for some reason does
not wish to accept the call. In this case, the agent can deflect the call to another
specified agent by interacting with his computer terminal.

Under some conditions there may be no available agent when an incoming call is
received. In this case, the call is redirected to an extension connected to a voice
response unit. This operation will often be executed by the switch, but in some
environments it may be the application that detects the call and requests the
redirection. In either case, the voice response unit, under direction from the appli-
cation, can respond to the caller and typically might record the caller’s message
for subsequent replay when an agent becomes free.

Typical Interactions

Typical interactions for an inbound call are shown in Figure 3. Only the interactions
between the Computing and Switching Functions (ie steps 2, 4, 6 and 7) are within the
scope of CSTA. The particular interactions shown are intended only to indicate some
possible types of exchanges; the actual interaction will, of course, depend on the application.
Note that steps (1) and (2) are session initialisation and would normally only occur once for
each individual agent session. The steps (3) to (8) will normally occur once for each call
involving the agent.

Note that this example assumes call progress signals are provided by the network.

1.

The agent logs on and establishes an application session. The application sets up
the association between the user’s voice terminal and his data terminal (this is
typically operating system and configuration dependent).

The computer application, in this example, is interested in incoming calls for this
particular user. It requests notification of specified events for incoming calls for
the agent. Note that the control of which events are reported may also be effected
by other means (such as administration).




S 14 - \
3. An incoming call indication is received by the switch which rings the agent’s voice
terminal.
4. The switch sends a report to the application indicating that a call has been

received on this voice terminal. The switch will supply information about the call
such as the Calling/Called Line Identification (if available) and whether the call
had been forwarded, and if so, where from.

5: The application uses the supplied information to access a computer database and
to update the called user’s data terminal with the appropriate call details (e.g.
caller, call forwarded details, etc.).

6. The application requests the switch to answer the agent’s voice terminal. Alterna-
tively the agent might physically answer the ringing call himself (in which case
there is no direct synchronisation between the data terminal screen update (step 5)
and the agent answering).

7. The switch sends a report to the application indicating that the incoming call has .
been answered.

8. The data session (handled by the computer) and the voice call (handled by the
switch) are now established.

i‘

i > svent (cal conngdad)

data voice  computing switching
; ; . , customer
terminal ~ terminal  function function
log on .! 1
Monitor_On DJ i 2
Incoming cal
ring agent 3
- > evenl (incoming call) 4 .
Jadala screen '
5
answer for agent
answer ringing call 6
7
8

voice call

SRR N W, AU

Figure 3 - Incoming Call Handling

.




- 15 -

6.2.3 System Supervision

would have a voice and a data terminal where the main interaction is via the computer
terminal. Supervision can include:

1. Monitoring of each user and of their calls. A supervisor would want to be able to see
individual actions and check their status via requests and displays on their computer
terminal. As an example, agents sometimes simply go off-hook without placing a call
as a means of rejecting any further calls and this type of action is of interest to the

|
|
|
i
i
| Supervision is usually provided by sophisticated telecommunications applications. A supervisor
l
|

supervisor.
2 Monitoring of calls by type (so for example all calls to a particular pilot number are
supervised irrespective of which agent is assigned to the call).
3. Many applications require the supervisor to participate in a call. This participation
can be:
. - active: where the supervisor intrudes and talks;

- passive: eavesdropping on the conversation by invoking some form of "silent"
intrusion facility.

4. Silent intrusion (or conversation monitoring) is also useful when coupled with a
digitised recording device. Many applications ask the customer if they may record the
verbal transaction as verification of a sale or as a security check. In this case, a
digitised recording devices is instructed to intrude into the connection and records
the conversation along with pertinent customer information.

3. Statistics collection is also an important part of the overall application. Statistics
collected (both on an individual customer and agent basis) include successful calls,
unsuccessful calls and precise call durations.

6.3 Customer Support Environment
6.3.1 Typical Application Modes

This type of application is involved in handling customer enquiries. In many applications an

agent is provided with an associated voice and data service. This is where the application
. provides a logical association between the agent’s voice terminal call and his computer appli-

cation session, such that the data displayed on his data terminal is related to his current tele-

phone conversation. The application allows the agent to manipulate the two (voice and data)

calls as though they were a single logical entity. A typical example is where an incoming call

arrives for an agent together with the display of the customer’s data on the computer terminal.
| During the conversation, this computer based customer record is updated by the agent inter-
acting with his computer terminal. The typical types of operation that an agent would use in
this scenario are:

1. placing the existing call on hold and making an enquiry call to a specialist. When the
specialist answers the enquiry call, the application automatically displays the
computer data on the specialist’s data terminal,

2. retrieving the held combined transaction (voice and data) to resume conversation
with the customer;

3. alternating between held and active transactions (where transaction includes voice
and data);




- 16 -

4. it often happens that the agent will want to transfer the entire customer transaction
(e.g. the voice call and the computer session) to a more appropriate agent (perhaps a
specialist or supervisor);

5. clearing the customer’s call (or any new enquiry calls) and simultaneously terminat-
ing the data session;

6. including additional agents into the transaction by forming a telephony conference
where each conference member is also simultaneously presented with the details on
their computer terminal screens. This means that the transaction details could be
displayed on the data terminals of all the conference parties at the same time. Each
conferee could independently scroll through pages of the transaction. This type of
operation, as well as control over the database record and their update, would be
application dependent. ‘

Customer support environments are sometimes augmented by the inclusion of a voice ‘
response unit (providing voice functions such as speech recording, speech synthesis and speech
recognition) as shown in the following figure. .

Computer Networl/Telephony Network ‘

Interface "
! | i
' |
| | |
| Terminal Computer Switch :
' |
' [
' |
| , ‘
I Volce |
| Functions |
| oA |
| extenslon : }

CSTA User Cuslomer \
Interface Interface

Figure 4 - Inclusion of a Voice Response Unit l‘

6.3.2 Typical Interactions

Typical logical interactions for an application using a voice response unit are shown in the
figure above. Only the interactions between the Computing and Switching Function (i.e. steps
2,4,17,10, 11, 13, 15, 16 and 19) are actually within the scope of CSTA. This example covers
an incoming call for a busy agent which is redirected to a voice response unit. This delivers an
announcement followed by recording the caller’s message. This message, together with associ-
ated information such as Calling/Called line identification, is stored by the application and the
agent informed on his data terminal. When the agent becomes free, the application connects
the agent’s voice terminal to the voice response unit and replays the caller’s message. The

.




=17 =

application then uses the recorded CLI data to place the return call to the original caller on
behalf of the agent.

Note that this example assumes call progress signals are provided by the network.

Initialisation of the system is not shown but includes programming the switch to effect
redirection of incoming calls when an agent is busy and the application requesting event noti-
fications for the relevant extension lines.

1.

U

©w o o»

10.
11.

12.

13.
14.

15:

16.

17,

18.
19.

The incoming call arrives at the switch for the (busy) agent.

The switch redirects the call to the voice messaging unit and notifies the application.
The application instructs the voice response unit to answer the call.

When the call becomes active, the switch notifies the application.

The application instructs the voice response unit to issue an announcement and
record the caller’s message. The application then retrieves and stores the message left
by the caller.

The caller hangs up having left his message and expects an agent to call him back.
This call clearing by the customer is reported to the application.

The application informs the agent that a message is waiting for his attention (via his
data terminal here, but it could be via his voice terminal if appropriate).

The agent clears his existing call.
The application is informed that the agent is now free.

The application requests the switch to establish a call from the agent to the voice
response unit.

The switch attempts the Make__Call request by calling the specified agent and the
voice messaging service.

The application is informed when this call is established.

The application instructs the voice messaging service to replay the message left by
the caller.

When finished the application requests the switch to clear this call between the agent
and the voice messaging service.

The application requests the switch to establish the return call from the agent to the
original caller (using the stored Calling Line Identity).

While the call is being established, the application updates the agent’s data terminal
with data about the caller (retrieved from a database using the caller’s identity).

The switch attempts to make the call from the agent to the customer.

The application is informed when the call is established between the agent and the
original caller.




- 18 -
data voice  computing switching me\églgging ——
terminal terminal function function service
(VMS)
i i i i Incoming call i | 1
i i i i | !
i | wem (Incoming call) l | | 5
| i i i i i
i | l< answer i 4” | 3 |
| | l avent (call connected) | ' |
! i ~ i i 4
i | | lservlce customer | r | ! 5
i i | | customer | ! f
i | | |< hangs up l I 6
I | l event (customer | | | .
i | |‘< cleared call) l | | 7
i Uﬁiialescreen | | | | | 8
! ! ! ! i i
i ! l agent hangs up F‘l | i 9
i | l event (agent I | |
i | |< cleared call) Jl | | 10
i i R S ! !
i ] ! g ! | 1
i | call lnllialed from agent to VMS ! | |
i I i i 1
i | event (call connected) l | | 13
i i i i i i
i i i" replay message i ” | 14
| ! | Clear_Call (for agent) | | ! 15
! ! !Ike_Call (agent, >! I I Q
! ! | cuslomer),! l | 16
! update screen I I I I l
It ! | ! ! b 17
i i i i I i
i '4 call lnhlate? from agent to customer i [ 18
| l | event (call connected) | | I
i i ! [ i 19
Figure 5 - Integrated Call Handling
6.4 Integrated Message Desk
Typically, a user invokes the service by providing information about projected absence (as
described in Service invocation). Incoming calls are redirected to the appropriate attendant or

R




- 19 -

answer point (as described in Message forwarding). The attendant handles the call on behalf of
the called user as described in Attendant actions.

1.

Service invocation:

This can be via the user’s voice or data terminal. The CSTA application conducts a
dialogue with the user to ascertain such things as:

- the user’s schedule indicating where he will be at various times during the day;
- the preferred message attendant to handle his calls;

- if there are any callers that he would like to speak to urgently (rather than taking
a message);

- any particular messages he would like given to particular callers;
- an emergency number (perhaps his manager’s number).

If the service was invoked via the voice terminal, then the switch effects the necessary
call forwarding and informs the computer application about the details. If the service
was invoked via the data terminal, then the computer requests the switch to effect the
necessary call forwarding. In either case it may be necessary to ensure that the data
held on the switch is consistent with that on the computer. Typically this would be
done by one side (for example, the switch) requesting an update of all stored informa-
tion held by the other side.

Message forwarding:
This handles the redirection of incoming calls:

= the application requests notification of incoming calls for the selected
attendant(s);

- the switch call forwards the incoming call to the attendant and notifies the
application:

that a call has arrived (i.e. is ringing on an identified attendant’s voice
terminal;

that the call has been forwarded from another extension (together with the
number);

any calling or called line identification information that is available;

- the application will use the supplied information (particularly the originally called
extension number) to update the computer screen of the attendant with the
appropriate data for the called user (i.e. the information originally entered by the
user). Any data available about the caller would also be displayed.

Attendant actions:

This will be based on the caller and the user supplied data (displayed on the attendant’s
screen). The attendant will often be attempting to make internal calls and would benefit
from being able to invoke call completion features (such as recall when free) on
encountering busy, or absent, users. The attendant’s telephony operations (such as
transferring the call) should ideally be invoked by the attendant interacting only with
the computer terminal. Depending on the caller and the user’s instructions the
attendant might:

- give the caller a specified message;




=20 -

- take a message and forward to the user (for example via electronic mail including
the caller’s number in the mail header). The user could subsequently access items
(in any order) from a single menu of electronic mail and telephone messages,
giving the time received, the called number and the calling number. When a voice
response unit is available, the application may be able to provide recording of the
voice message as text, voice synthesis of the recorded text for playback, etc. The
user may have the ability to place telephone calls directly from electronic mail
messages generated by the attendant;

- if necessary, the user can be made aware of messages via the message waiting
lamp on his voice terminal,

- transfer the incoming call to the user as indicated by the user’s schedule;
= transfer the call to the supplied emergency number.
6.5 Emergency Call Applications
651  Industrial Alarm System 0

An industrial plant control computer system may be configured to include a capability to
detect abnormal operation of the controlled plant and forward data to an alarm function. It is
the purpose of the alarm function to analyse the data and, based on an exceptions database,
take some action involving telephony communications. l

In this case, we are concerned with an emergency scenario which requires a predetermined
group of personnel to be contacted, the group being determined from the exceptions database
dependent on the nature of the malfunction and other conditions, e.g. time of day. From this
point, the following actions result:

1. A group of telephone numbers are retrieved from the database (a calling list).

2. Speech to be output to describe the emergency condition (e.g. type of fault, action
within the plants, progress stage, etc.) is assembled. In the voice response unit this
may be generated from text or segments of pre-recorded speech. Note that the voice
response facility may be an option; live operator(s) are also possible and this would
be analogous to "agents" in an outbound commercial telephony application.

3. The calling list and voice output being available, it is necessary to deliver the message '
in the minimum time. The use of CSTA offers an opportunity to minimise any delay.
Some aspects for consideration are:

- it may be necessary to invoke a particular outcalling algorithm (for example,
those specified by PTTs) in order to differentiate emergency calls from routine
calls;

- it is desirable that emergency calls are given precedence, particularly when
outgoing trunks are busy;

- it may be desirable to override conditions such as "busy" or "do not disturb" at
the called number.

6.5.2 Fire Service Control

A fire service Command and Control system may usefully employ CSTA principles to
efficiently handle the inbound and outbound telephony activities concerned with a fire alert. A
typical application scenario is:

1. Inbound: A fire alert is raised by dialling a fire emergency number with the call
identified as an emergency call either by the called number (e.g. 999) or by operator
intervention. The inbound call is delivered to the Command and Control console and

. h




-21 -

CSTA enables a pre-formatted data collection screen to be presented to the operator
handling the call. Information to be collected includes caller’s name and location,
location and type of incident, etc. Ideally, the CSTA application should also be
provided with the calling line identification allowing for some verification of the
cited location and also permitting the identification of a suitable responding station.
Automatic call recording is also invoked on all incoming emergency calls.

2. Outbound: When an incident has been reported and the location established, an
optional, outbound "pre-alerting" call may be placed to all stations and units likely
to be affected. Typically, these outbound calls are carried on leased lines in order to
provide rapid call setup and to ensure availability for emergency applications. Fall-
back to the PSTN is also provided. Having determined one or more responding sta-
tions, the incident data collected by the operator is transferred and a full alert raised.

6.6 Data Collection/Distribution
6.6.1 General Scenarios
. This type of application can involve:
1. Using ordinary voice terminals to input (small) amounts of data for collection and

analysis by a computer application.

2. Using special purpose devices (e.g. ID card reader) that sometimes contain a screen
for output. These specialised terminals support a two-way dialogue between a user
and the computer application:

- the user enters information on the device which is conveyed, via the switch, to the
application;

- the application requests the switch to send output data to the device which is
displayed on the screen.

6.6.2 General Functions

Various types of application are possible including Hotel: Room service; Hospital: Patient data
entry; Wholesale: Ordering and inventory control; Administration: Identification and user
guidance. Typical functions are:

. 1. Establish the connection.
2. Check access rights.
3. Transfer data to the computer.
4. Display data from the computer (including voice "data").
5. Park the "data collection/distribution" call to enable the use of the voice terminal for
making another call.
I 6. Retrieve the "data collection/distribution" call and continue the data dialogue with
i the computer.
7. Release/cancel the connection (from user, switch or computer).

' 6.6.3 Typical Examples
6.6.3.1 Security Support System

A particular example of using ordinary, installed voice terminals to collect small amounts of
input would be a Security Support System. This application is used to monitor a security
guard as he patrols a building at night:




6.6.3.2

-2 -

1. Certain voice terminals distributed within the premises are selected as input
devices.

2. The application maintains a "geographical map" of these voice terminals and

requests the switch to use them as input devices. All input entered at these voice
terminals is collected by the switch and passed to the application. The patrolling
guard uses each selected voice terminal in turn to report his progress (simply by
using the voice terminal to dial an agreed number). Of course, extra sophistication
can be easily added so that particular digits are used for defined messages (e.g.
reporting on dirty offices, broken furniture, etc.).

3. The application logs the guard’s report including location, time and message (if
any).
4. The application monitors the guard’s progress. It can:

- automatically raise an alarm when an expected report is overdue (perhaps by
requesting the switch to initiate a call from a voice response unit to the police
station);

- interpret the coded messages for display on a supervisory terminal;

- keep track of the guard’s whereabouts and automatically redirect any calls to
the nearest voice terminal,

- automatically log the fact that a complete patrol has been carried out success-
fully.

5. This application runs only at night and uses the switch in a particular mode. It
would provide a more integrated solution if the application could also select
particular classes of service for the switch (e.g. DAY and NIGHT service). This
type of facility could also be generalised to allow access to other switch settings
(for example, it would be helpful if the time and date maintained in the switch
and the computer could be synchronised).

Although this example has the guard patrolling within a single building, there is no
requirement for this restriction. The CSTA application should be capable of providing this
service over standard interfaces to a public network.

If the voice terminal in this example had a display, then the guard could perform more
complicated interactions such as obtaining new directions or reading computer supplied
messages directly from the voice terminal. Manipulation of voice terminal displays would
also be useful for other types of application (for example, hotel room service where a guest
might interactively enter an order from a small voice terminal display).

The important common feature of these applications is that they could be implemented
using only the voice terminal’s signalling communications channel.

Voice Mail

Voice mail service integrated with a voice terminal that includes a display capability would
allow the user to select voice mail functions based on visual rather than audio menuing. For
example, a user might:

1: notice that their message waiting lamp was lit
2 press a voice mail softkey.
3. The CSTA application establishes:

- a voice path (call) between the voice mail system and the user’s voice terminal;




6.7
6.7.1

Data Access

-23 -

- a data path between the CSTA application and the user’s voice terminal;
- a data path between itself and the voice mail system on behalf of the user.

The application visually presents a menu of options to the user such as "replay
current message, listen to next message, listen to previous message, forward
current message, record message, delete message", etc.

The user selects the desired menu options via the voice terminal’s input facilities
(e.g. dial pad, softkeys, touch screen, etc.).

When finished, the user exits the CSTA application.

The CSTA application disconnects the various paths established when the user
invoked voice mail.

A similar application might allow the user to record a conversation on a voice mail system
by selecting a "record" option from the display voice terminal.

The important common feature of these applications is that they require both voice and
data paths to the voice terminal.

Typical Application Modes

The switch and the computer can both support databases. The ability for one peer to access
data held on the other peer could be exploited to develop integrated applications.

1.

Synchronised directories: In Computer-Supported Telecommunications Applications
it is likely that multiple directories will appear. The computer will, typically, main-
tain a database where some (or possibly all) of the same data is maintained. It is
clearly preferable that the system manager only needs to update the system data at
one place. In this example, we assume that the single management terminal is con-
nected to the computer and is used for all administrative changes. The computer
application maintains its own database and automatically sends requests to the switch
to update the database held there. This could be extended to support "moves and
changes" entered via a computer terminal to an application which generates the
necessary requests for the switch. Examples of electronic directories, listed in hierar-
chical order from the terminal user’s perspective are:

- a personal directory of frequently called numbers;

- a centrally maintained directory for the functional group (100 or so people) that
one works with;

- adirectory for the corporate site where one works (a few thousand people);
-+ the corporate directory made up from a concentration of all the site directories.

Directory access using dialled number: it is possible that a directory could be located
on a computer and accessed, when required, by the switch. The switch would supply
the computer application with a dialled number (which could in principle be
inbound or outbound) and the computer application responds with the actual
number to be used by the switch. A particular example, already in use, is support for
"800" numbers. These are typically logical identifiers chosen to reflect some relevant
aspect of the call (such as product range, geographical details, etc.) and a particular
800 type number is given to a customer who uses it as an ordinary telephone number
when placing his call. This number can be used to ascertain information about the
call and then converted to an actual telephone number.




6.7.2

6.8

- 24 -

Directory access using CLI: here the switch supplies the calling line identification,
instead of the dialled number, to the computer in order to obtain the target directory
number, i.e. the call routing is based on who is calling. For example, for emergency
calls (e.g. 999 or 911) the call can be directed to the call handling centre nearest the
caller’s location. Another example is in departmental, or tenanting environments,
where an operator call (e.g. 0), or message centre call, is directed to the person
serving the department to which the caller belongs. A further example that would
require this mechanism is in situations where a person only wishes to receive calls
from a set of predesignated callers. All other calls are to be rejected or "deflected" to
some alternate point.

Typical Interactions

Typical logical CSTA interactions to support the directory access examples are:

1.

4.

The switching system maintains a "trigger table" database which is checked when
incoming calls arrive. Entries in the trigger table could be, for example, all calls to a
particular telephone number or all calls from a particular trunk or set of trunks. This
trigger table can be built up via switch administrative procedures or via dynamic
registration procedures between the switch and computer.

When a "trigger" is activated, call processing is suspended and a request is sent to
the computer with parameters such as CLI, a dialled number if any, and the associ-
ated "trigger point".

The computer can reply with instructions for the call to proceed and provide
parameters such as target directory number, facility to be used and perhaps some
identifying information to be supplied to the called party (e.g. caller’s name). Alter-
natively, the computer may instruct the switeh to reject the call and play an error
tone.

The call proceeds as instructed.

Hotel Application

Typical hotel functions are supported by a "Front Office Computer" and a switch. Many of the
functions can be performed independently but typical areas for integration are:

1.

Room status modification: the maid dials room status changes using the room tele-
phone and these can be passed on by the switch to the computer. Options are available
to include identification of the maid together with monitoring of performance.
Typically the maid might enter a code on entering the room (e.g. maid A, in room B,
cleaning room) followed by a code when leaving (e.g. maid A, leaving room B, clean
and empty, etc.).

Message waiting: the computer can request the switch to control the message waiting
lamp on individual telephones.

Wake-up call: the computer can also manage the wake-up calls by requesting the switch
to place the call to the designated telephone at the appropriate time.

Call accounting: in some environments it may be useful for the switch to send the
computer call accounting information at the end of each call. Similarly, existing
accounting information (for example, Station Message Detail Recording) can be sent
from the switch to the computer.

Check-in/Check-out: these commands are entered from the front desk and sent to the
switch to initialise data for the guest. This might include enabling/disabling the voice
terminal, setting room meters to zero, passing invoice information, etc.




225 -

6. Directory: the computer can update the directory of the switch to reflect current occu-
pation, etc.

7. Phone pre-payment: the handling of "pre-payment" for phones can be handled in the

computer or the switch. In either case exchanges can take place to improve the opera-
tion of the system:

- if the switch handles it, the computer can send the original amount (or modifica-
tions);

- if the computer is handling it, the computer can send a request to disable the tele-
phone when necessary.

8. Do not disturb: the computer can send requests to the switch to invoke these functions
on behalf of guests.

9. Minibar/TV management: the initial input (such as entering consumption) is normally
done via the room’s telephone. This information can be passed to the computer for
. collation/action, etc.

6.9 Switched Data Applications
6.9.1 Computer Data Port Configuration
6.9.1.1 Background

Digital switches are commonly used to switch both voice and data. The data terminals are
connected to the switch and then the switch to the computer ports.

Data terminals are connected to the switch using standard switch wiring. In this way a
number of terminals can share access to the same computer ports resulting in port
contention. The data terminal is usually connected to the switch via a data modem or direct
interface. There are many types of data terminals and the switch would support a variety of
Data Terminal Equipment (DTE) interfaces e.g. RS232, RS$422, synchronous/asynchronous,
etc.

To connect the switch to the computer data ports various types of interface are also avail-
able either RS232, RS422, Coax, etc.

. 6.9.1.2 Data Port Characteristics

Each type or model of data terminal has different characteristics and requires a different
configuration of the computer port to which it is to be connected by the switch. To make
the switched connection of data terminals more flexible it would be necessary to inform the
computer, on a call-by-call basis, of the type of characteristics required at a given port.




- 26 -
6.9.1.3 CSTA Application Scenario
CSTA
= Link —|
| === | | =——=]
p p
e} O
o R R
Switch T T Computer
o/ —"\\ s s ('}
Type-2 Characteristics Table
Data Terminal
- Type
X - Model
OEm = - Baud Rate
HHITT=SS)
¢ Z :D‘ Data Terminal
Type-3 - Type
- Model
- Baud Rate

Figure 6 - Computer Data Port Configuration

The above diagram shows three data terminals of different types having access through the

switch to data ports on the computer. The switch may determine some terminal characteris-

tics automatically at the switch data interface (autobaud, parity etc.). Other terminal char- 0'
acteristics could be maintained in the switch by administration (type, model etc.). When a
terminal initiates a data call, the switch will select the computer port. CSTA is used so that

the switch can pass information on terminal characteristics and the port identifier to the
computer so that the selected computer port can be configured appropriately. The data call

can then go ahead.

With CSTA, data port configuration can be done on a call-by-call basis providing greater
flexibility for switching data calls. The same service could also be used for selecting between
various proprietary protocol emulations at the computer port. .

7. CSTA REQUIREMENTS

Primarily the aim of the ECMA Interface Standard(s), which will eventually be written, is to define
a list of common services together with interface protocol to assist computer and switch manufac-
turers in the support of CSTA. An additional aim is that the architectural structure of the interface
will satisfy system performance and usage issues. The purpose of the CSTA Requirements clause is
to set out the principles that will produce a robust, reliable and flexible interface.

.



7.1

7.2

7.2.1

= =

These two aspects are covered below in two subclauses, the first covers the requirements on the
standards and the second the overall system requirements.

Standardization Requirements

1.

Scope: there is no attempt to standardise the applications. This means the standard(s)
will define the services but not how they are used.

Independence: the CSTA services are implementation independent. That is the
standard(s) are independent of the switch and computer type but also flexible enough
to enhance existing telecommunications applications regardless of their implementation.

NOTE 2
There are different views on whether it is practical to strive for switching systems or
computing systems presenting a common image across the switch to computer boundary.

Functionality: the integration of switch and computer within CSTA uses a peer-peer
communication between an application process on the switch and an application
process on the computer. This integration provides:

a. Service Functionality independent of any particular application in the form of a
set of services.

b.  Application Functionality which uses the services in a particular way.

For a given CSTA application there will generally be several possible ways of
splitting application functionality between switch and computer. In fact, the
services imply a distribution of functions but it is beyond the scope of the CSTA
standard(s) to define any split in application functionality. This is left to the
discretion of the application developer.

Conformance: the purpose of the CSTA protocol standard(s) is to provide a list of
standard services as introduced in clause 10. The structure of each service would be
defined. There may be mandatory or optional information items and protocol proce-
dures within each service. The question of defining platforms or collections of services
and standardising those groupings is for further study.

System Requirements

The following considerations are important for the development of a robust and reliable inter-
face. The standard list of services and any examples of their use will reflect these system
requirements.

System Integrity

Telecommunication network users expect a level of service from network systems that must be
maintained by any CSTA application. Requirements in this context are:

1.

w

sa I A

Normal audible call progress indications (e.g. dial tone, recorded announcement,
music on hold etc.) must still be available.

CSTA should not add any avoidable delay to call handling procedures.
There should be a reliable fall-back action in the event of system failures.
Normal telephony should not be precluded by a failure of the CSTA system.
Partial CSTA service should still be possible under some failure conditions.
CSTA message flow should, as a general principle, be kept to a minimum.

A load control mechanism between the CSTA functions will be required.




7.2.2

- 28 -

Central offices and trunk types vary by PTT and locale. Trunk supervision signals depend
upon several network dependent factors such as whether the trunk is digital or analogue,
whether the network is fully or partly digital, the type of call, how the network sets up and
clears calls, the type of DDI trunk signalling and so on. Certain applications (such as predic-
tive outbound telemarketing requiring trunk supervision) would not be possible on some net-
works. This suggests the following requirements:

L CSTA call models should consider the different network signalling types that will be
encountered.

2. It should be stated which CSTA services rely upon trunk supervision.

3. It should be stated which CSTA services might be used in applications subject to

PTT regulations.
System Reliability

CSTA systems should be robust, dependable and fault tolerant. The perceived reliability of
telephone systems should not be affected by the presence of a CSTA application. In particular,
CSTA should allow designs that include duplication in order to withstand individual failures.
Distributing the server and client has particular implications for system reliability:

1. Independent failures can mean that one part of the distributed application can fail
leaving the surviving part unsure of the precise status (e.g. whether a requested oper-
ation was performed or not, etc.). This introduces a requirement for an agreed
recovery mechanism to cater for such independent failures (for example, tidying up
incomplete service requests, etc.).

2. Partial overload can arise when one part of the distributed application becomes
overloaded. This introduces a requirement for:

- a technique for other parts of the application to detect this situation;
- some form of backoff mechanism to allow the overloaded part to recover.

3. Communication failures can be hidden but prolonged, or total failures (such as
network partitioning,) will be visible to the applications.

This introduces a requirement for agreed procedures for when communications
between the client and server is no longer possible.

4. Compatibility problems (e.g. version control) are exacerbated when the system is
distributed. This introduces a requirement for compatibility checking.

S. Error management related to errors particular to distributed systems is required.
There are various execution semantics to be considered. In decreasing implementa-
tion difficulty these are:

- remote execution occurs exactly once;
- remote execution occurs at most once including none or incomplete;

- remote execution occurs at least once (including multiple incomplete and
complete operations).

CSTA should allow choices a. (e.g. for requesting functions) and b. (e.g. for reporting
events).

Reliability means ensuring operation of the application and services to users. The CSTA
design should account for the fact that the components within the system may have different
levels of reliability. The details of redundancy, for example, are discussed in Appendix A, but




7.2.3

7.24

29 -

several conclusions can be drawn from an analysis of the basic computer-switch system. In the
event of a switch failure the reliability factor is solely dependent upon the redundancy in the
switch - in many private switches and all central office switches this capacity is a pre-requisite.
In the event of the computer, or the communications infrastructure failing, there are two
stages to default functionality on the switch. Firstly, the operation of call handling functions
must remain intact; secondly, the operation of the telephone sets must not be affected. With
these considerations built into the CSTA standard, the service to users will be best maintained.
These considerations suggest the following requirements:

1. Redundancy issues should be resolved from a system viewpoint.

2. Default functionality for applications must maintain switch service to users.

3. The status of the CSTA system should be checkable from both the computer and the
switch.

4. In the event of a failure of the CSTA communications:

- computer terminals should still operate

- terminals in the switching network should still operate

- normal telecommunications should still be possible.
System Independence

The CSTA architecture must be independent of the design of the switch and computer. In
particular, it should allow the development of portable applications. A single application
would clearly execute in a single piece of equipment. When it becomes distributed, the defini-
tion of the interactions between the parts must allow for heterogeneous environments (e.g.
different languages, operating systems, data representations, etc.). To solve the problems
introduced by these different environments it is required that the remote interactions are
specified in an implementation-independent form. This requires the use of a formal interface
specification language and an agreed external data representation which are independent of
the choice of programming language, operating system, computer, switch and networks.

The CSTA architecture should also be independent of:

1. The network topologies.
2. The mechanism used to implement the requested service.
3. The type of network transport mechanism.

The type of service user.

The system ownership.

S O

The interface to the public telephony network (e.g. PSTN trunk type).
System Enhancements

In order to achieve the required level of co-operation between the computer and switching
networks, it will be necessary to enhance the operational facilities of both networks. In this
context the term "operational facilities" is taken to include not just the traditional operating
system functions (scheduling, I/O handling, etc.) but also the various utilities and applications
(e.g. terminal handlers, database management systems, etc.) which are "layered" on top of the
operating system and are available for use by the CSTA Application. Two categories of
enhancement will be required:

1. Internal: each network may be required to perform new functions, usually invoked as
a result of requests from the other network. For example, the switching network will




7.2.5

7.2.6

7.2.7

7.2.8

7.2.9

need a new function to provide monitoring of extensions as a result of a Monitor
service request from the computing network.

2. External: each network will require the ability to form and send service requests and
responses to the other network and to receive and interpret them in return.

Dispersion

A CSTA application process must be able to control and monitor terminals on widely
distributed networks, not just on the machine on which it is located.

Flexibility

The architecture for CSTA should be flexible and extendable. In particular, it must be suffi-
ciently flexible to support both Plain Old Telephone Service (POTS) and ISDN terminals. It
must also be capable of supporting different network types (e.g. voice networks, data net-
works). The architecture must be extendable to allow for timely introduction of new applica-
tions. It must be unrestricting, allowing a wide breadth of application solutions.

Security

CSTA will approach the notion of security as outlined in ECMA TR/46 (Security in Open
Systems). In this case, "security" will refer to characteristics of distributed applications that
give resistance to accidents, failure and misuse, intentional or otherwise:

1. Protection of access: this controls access to defined resources for certain known users
and includes:

- authentication which is concerned with proving the user’s identity;

- access authorisation which is concerned with granting access to protect the confi-
dentiality and integrity of security objects. Various methods may be used to
authorise access (such as access-control lists, capabilities and other security
attributes, singly or in combination).

2. Protection of information: interchanged or stored within distributed applications
from external attack.

3. Protection of usage of resources: this is concerned with the usage of resources
including secrecy and preventing denial of service.

4. Accountability of usage of resources: this includes selective logging of an audit trail
of operations.

5. Management: this provides tools to manage the security facilities.
Compatibility

The CSTA architecture must be compatible, where appropriate, with related standards,
including CCITT Recommendations for telecommunications and ISO International Standards
for computing.

Distribution Transparency

The client/server model allows for a single application to be distributed via a "services defini-
tion". A major issue in this distribution of function is whether or not to hide distributedness
and its consequences. There are arguments for (primarily simplicity for the user) and against
(mainly performance and implementation complexity) the provision of full transparency.
Different transparency requirements are likely and CSTA should not preclude implementation
choices (for example, it would be possible to present transparency but allow visibility of
distributedness via optional parameters, etc.). Particular aspects of transparency to be
considered are:



7.2.10

7.2.11

1. The distribution may be via an intervening network of any level of complexity (e.g.
from a simple point to point link to a local or wide area network).

2. There should be an option of automatic recovery attempts from any failure of the
underlying connection.

3. Since different parts of the application are executing in different environments, there
are particular problems associated with one of the parts becoming overloaded. It
should be possible, therefore, for such conditions to be reflected in the definition of
the interactions.

4. Support of multiple client/server relationships (i.e. by multiplexing) over a single
underlying connection.

5. It should be possible to provide redundancy in the connections supporting the
client/server such that if one connection becomes unavailable another can be used.
This also gives the possibility of load sharing.

6. The distribution mechanism should not impose any operational constraints on the
interface (i.e. either partner must be able to request a function at any time).

7. The distribution mechanism should deliver requests in the order they were issued.
Error Management

When dealing with a distributed application it is possible to distinguish between:

1. Execution errors which are related to the execution of the function itself. These
errors are independent of the distribution of the parts and include the following
categories:

- normal: denoting successful operation;

- warning: denoting that the operation completed but detected a situation of inter-
est to the invoker (e.g. parameter ignored, end-of-file encountered);

- abnormal: denoting a serious error which prevented successful completion. Not all
output may be returned but termination is orderly (e.g. missing output is
indicated);

- error: denoting execution failure and no output (e.g. invalid input parameters).

2. Environmental errors which are related to the distributed nature of the system.
Examples are:

- remote system crash;
- unrecoverable communications problems;

- naming and binding problems (e.g. the remote application cannot be located, is
currently not available, etc.);

- security problems (e.g. the client is not allowed access to the requested service);

- protocol or syntax problems (e.g. invalid syntax, invalid request, non-supported
feature, etc.).

These errors must be handled in the definition of the interaction between the
distributed parts of the application.

Performance

The CSTA architecture must be such that the performance of applications can be specified in
terms of switch and computer real time efficiency.




7.2.12

7.2.13

Telecommunications Configurations

In order to support a wide range of application types in a flexible manner, a range of
telecommunications configurations and resources need to be supported in CSTA. Different
application scenarios will require different configuration arrangements and resources. For
example, a simple screen assisted telephony application may request CSTA services on behalf
of a particular extension whereas a sophisticated outbound telemarketing application may
require visibility of a set of agents, calls and potentially of a set of trunks as well.

Telecommunications resources of interest to CSTA applications can be physical interfaces (e.g.
lines, trunks, etc.) or logical constructs such as agent groups, inbound call queues or trunk
groups. The types of telecommunications resources of interest to CSTA includes:

L Simple voice terminals where calls can be originated, answered or manipulated.
These devices are typically identified by a unique directory number and are capable
of handling one or more related calls (e.g. an active call and a call on hold).

2. Multi-line sets are terminals with many "lines" or "buttons" each addressable by a
directory number and equipped with a call indicator (e.g. LED, LCD or lamp). These
sets can thus handle, or have access to, many different calls simultaneously.

Multi-line sets can be configured in various ways. In the simple case, each line
"appearance" or "button" has a unique directory number. In the more complex case,
the sets are arranged in work groups where a given directory number has
"appearances" on more than one set (e.g. key systems). Thus, there is a "one to
many" relationship between directory numbers and physical sets (i.e. a line appear-
ance cannot be uniquely identified by a directory number). CSTA applications may
need to address individual line appearances. This will then allow CSTA to originate,
or answer, calls at a particular physical set while preserving the inherent flexibility
offered by multi- appearance directory numbers.

3. Trunks are the interface points to other switching domains in the network; they are
also used for connectivity within the domain. For incoming calls, the identity of the
trunk is useful in determining where in the network the call has originated, or the
kind of service requested. A telemarketing application could use the trunk identity to
route a call to the appropriate agent queue, or allocate appropriate priorities. For
outbound calls, the application may wish to select the trunk. To cater for these
applications, when trunks are an access to another domain they need to have an
identifier or number available to the CSTA application.

4. Groups such as hunt groups or agent groups are call distribution mechanisms.
Typically when all agents are busy, queueing is supported. Telemarketing applica-
tions will require visibility of groups, available agents, and associated queues to
flexibly manage a call handling operation. Groups are typically identified by a
directory number.

5: Calls are associations between a set of CSTA devices. They are the primary service of
the Switching Function, and usually have costs associated with the amount of time
they exist. Because they are a convenient way to refer to a group of devices that
interact with one another, and because they can be deflected, routed, queued and
terminated, they are of interest to CSTA applications.

Service Requirements

There are two general types of interaction required between the functions:

1, The ability to ascertain what is happening in the remote function (an example of this
type of interaction is shown via event reporting in clause 6).




=33 -

2. The ability to request services to be performed by the remote function (an example
of this type of interaction is also shown in clause 6).

SECTION III - CSTA DESCRIPTIONS

8. FUNCTIONAL ARCHITECTURE
8.1 General Concepts

This clause introduces the concept of a client/server relationship as it applies generally to CSTA
Application functions performed within co-operating computing and switching networks,
irrespective of the direction in which the relationship is established.

8.1.1 CSTA Application

A CSTA application is defined as a co-operative process between a telecommunications net-
work Switching Function (SF) and a Computing Function (CF).

CF SF

Computing Telecommunications
Network Network

CSTA Application

Figure 7 - Co-operation between CF and SF

The objective of the proposed CSTA Architecture is to define the interworking mechanisms
between these functions in a way which is independent of their physical implementation.

The CSTA application will be supported by a computing component (normally based in the
computing network) and a switching component (normally based in the telecommunications
network). The operation of these components is defined by one or more interactions between
them as shown in Figure 8.




8.1.2

Computing Defined Switching

Component ) Component
Interactions

Figure 8 - Interaction between Computing and Switching Components

Distribution of Computing and Switching Functions

Typically, but not necessarily, most of the Computing Functions are implemented by one or
several computers in a computing network, while the Switching Functions are implemented by
one or several switches in a telecommunications network. It is, however, possible for some
Computing Functions to be performed within the telephony network and some Switching
Functions within the computing network:

CF SF

CF

SF

CF SF

SF CF
CF SF

Figure 9 - Distribution of Computing and Switching Functions

All Switching Functions performed within the computing network are regarded as being
outside the scope of this edition of the Technical Report.

In practice, CSTA is designed to allow "users" of either computing or telecommunications
networks to have access to an enhanced set of functions which will be provided by the other
network. Thus a computer "user" who was previously able to make use of the facilities avail-
able on a conventional computer, is now able to use programs which make phone calls and
perform other telecommunications functions. Conversely, a "user" of the telecommunications
network is now able to make use of facilities available on the computer, such as access to
database systems of greater power and flexibility than those on the telecommunications net-
work.

In both cases a "user" can be human, but it is also possible for the term to relate to an auto-
matic entity within one or other network. For instance, a screen based Directory program or a
telemarketing package driven (largely) by a human user. On the other hand, in an automatic




- 35-

call distribution package (a system for interpreting incoming telephony addresses to decide to
which telephone to deliver a call) the "user" is an application program within the switching
network.

The CSTA system will appear to the user, human or machine, as a single application on a
single network, not as two separate applications on two separate networks (as it will, in fact,
be implemented). This fact is expressed by referring to this single application as the CSTA
application.

Since the components of the CSTA applications will (in most situations) be distributed, some
form of communications support is required. This can be shown by expanding each of the
components (identified earlier) into application functionality (to support the defined interac-
tions), CSTA services (to support the necessary exchange of messages) and lower layer inter-
connection service provider. The relationship is shown in the following figure.

Processing CSTA Service Definitions Processing

Component Component

Local representation of CSTA Service Definitions

Comms CSTA Protocol Comms

component component

Local representation of CSTA Protocol

Networking Support

Figure 10 - Relation between Processing, Communications, and Network Support

From the figure it can be seen that the distributed application functionality interact with their
peers in accordance with a CSTA service definition. In the standardization phase, these service
descriptions will be formulated in a formal, abstract notation to precisely define these interac-
tions. This formal, abstract definition can then be used to derive the service interface between
the application functionality and the local CSTA service via which the peer to peer service
interaction is supported. The CSTA service will communicate with its peer via a CSTA
protocol (i.e. a set of messages and associated sequencing rules, etc). Each CSTA service
effects this protocol via a standardized interface to local network support software.

In an OSI environment, the applications functionality and CSTA service together form an
application process invocation; the necessary communications aspect would be provided by an
application entity invocation considered to reside in the OSI application layer. The underlying
networking support would typically be provided by OSI lower layers.

CSTA Service

In the context of the OSI Reference Model and excluding the Application layer, the word
’service’ is used to refer to the benefit provided by one layer to its adjacent higher layer.




8.1.4

- 36 -

In the context of the CCITT definition of the services provided by a real network, eg. an
ISDN, the term ’service’ applies to that which is offered by the network to a user at a given
reference point, eg. the S reference point.

In the latter context, CCITT Rec. 1.120 classifies ISDN services as either bearer services or
teleservices. Each of those categories is subdivided into basic services and supplementary
services. Bearer services include layer 1-3 attributes, while teleservices include those plus layer
4-7 attributes. Telecommunications services exist in the Teleservices category. Teleservice
functionality can reside either within a network or within a terminal associated with the
network.

The figure below shows, in simplified form, how the OSI layer and CCITT network notions of
'service’ relate to one another. OSI layer services have a vertical orientation. ISDN Basic and
Teleservices, as the latter also embrace those of the Application layer have a horizontal
orientation.

As between these orientations, this Technical Report defers to that of CCITT and, unless
otherwise qualified, uses the term ’'service’ to refer to the benefit provided by one application
layer process to another, where the providing process may reside either fully within the switch
or fully within a computer associated with the switch.

Computer/Switch

CSTA Service
Computer Boundary
application Switch Computer application

layer | layer
functionality | gopvices servioss functionality
A
Application| Layer

OSl Interconnect|service boundary

Lower Layer |nterconnection System

Figure 11 - Illustrating the OSI and CCITT Uses of the Term Service

Client/Server Model

The communications mechanism (as opposed to the processing) required to support the CSTA
application can be modelled as a client/server relationship (such as described in ISO 10031-1).
A processing component (identified in ISO 10031-1 as the User) requests a service. Its local
communications component, termed a client, invokes that particular service by communication
with its peer, termed a server. The client/server relationship models application level commu-
nication and hence can be considered as belonging to the OSI application layer.

Because the scope of CSTA architecture is to provide bi-directional capabilities, the
client/server relationship will be possible in both directions as depicted in the following figure.




8.1.7

- 37 -

Computing Function Switching Function

Switching
Function

client |<= server
Service L

Definition

|
Computing

Function -
server i client

Service
Definition

Figure 12 - Bi-Directional Service Definitions

Service definitions in which the Computing Function is the client and the Switching Function
the server are defined as-Switching Function Service definitions. An example of a Switching
Function service is the request to establish a Call.

Service definitions in which the Switching Function is the client and the Computing Function
the server are defined as Computing Function service definitions. An example of a Computing
Function service is a request to convert an address.

Service and Objects

The service provided by.a server to a client will consist of observing and acting upon objects
which can be observable and accessible by the server on behalf of the client. Some examples of
objects that can be involved in call requests are, the calls themselves, the terminals (devices)
involved in the calls and the parties making and receiving the calls.

In order to fully define the services expected by a client from a server, there is a need to
define which objects can be made visible to the client. For example, to request the establish-
ment of a call a client needs visibility of the parties but does not need to be aware of other
elements (objects) involved in the call, such as trunks.

The objects and their behaviour, as perceived over the client to server interface, will be
expressed in implementation independent terms in an Operational Model (see clause 9). For
example, the request to establish a call between two parties may be translated into a generic
request 'Make__Call from DI to D2’. The way the call is established might be switch depen-
dent but any call progress information will be reported in a generic way.

Multi-Server/Multi-client Relationships

The definition given to the term "CSTA application" places no constraint on the way in which
a client process may exploit the services of a server. Thus, a server may support multiple
clients supporting one or more CSTA applications. Conversely, a single client may exploit the
services of a number of servers for the purposes of supporting a single CSTA application.

Application Layer Relaying and Service Granularity

As described previously, a CSTA application can be distributed. In this context a number of
OSI Application layer entities can cooperate to provide the end to end service. These entities,
called Application layer relays, act both as servers to preceding entities and clients to
succeeding entities.




In any client/server arrangement both the client and the server can, at least in principle, be
indefinitely distributed in such a way that, except at the start of the chain, all entities in the
chain become servers to their immediately preceding client entities.

This chained arrangement is always defined in such a way that any client does not need to
know the chained (distributed) arrangement that may exist behind the server.

When the underlying communication stacks are different the application layer relay may be
viewed as providing a protocol conversion.

For completeness, the concept of Application layer protocol conversion needs to be under-
stood as embracing the concept of conversion of service granularity as observed by the differ-
ent members in a client/server chain. Thus, the ultimate client may, for example, perceive the
object of a service as being the end to end connection, or call, established by the server on its
behalf. The server, acting in the role of client to second order servers, may see it in terms of a
concatenation of lesser connections, and so on.

In the most complex arrangements a CSTA application may be viewed as a chain of applica-
tion layer relays that cooperate to fulfil the application requirement as depicted in the follow-
ing figure.

client/server client/server
service boundary service boundary

Application Relay

client - server | client =t server

client

server | | client | server

Interconnection | service |boundary

Figure 13 - Application Relay as Combination of Client/Server Functions

This figure illustrates both the concepts of Application layer relaying and the orthogonal uses
of the term service.

Service Boundaries

The following figure depicts the service boundaries that are subject to standardization. It also
shows the two domains for which an operational model is defined in clause 9.

Not shown in the following figure are the Application Programming interfaces (APIs) existing
in both the Computing and Telecommunications network domains. These interfaces separate
User Application Functions from the client/server functions of the Application layer existing
to support them. These APls are not regarded as being subject to standardization in this
document. They are considered in more detail in clause 13. An example enlarging on the
material of clause 13 is given in Appendix B.




l Distributed CSTA

Perspective
CSTA Service
Computing
Application Network Boundary

Domaln

Layer

Domaln of
Computing Function

- Telecommunlcation
Network
i

Domaln

~

Interconnection

= Sy :_ Domaln of S .
A / Telecommunlcation Functlon ervice
Interconnectio Objects Bou ndary

Layers

Interconnection

. Global CSTA Environment
Perspectives

and Boundaries Subject
to Standardisation

Figure 14 - Global CSTA Environment

8.1.8.1 CSTA Service Boundary

As given previously, a focus of interest of this Technical Report is the boundary between
co-operating computer and telecommunications networks, both being considered as a whole
and each being regarded as a peer of the other.

This boundary is an integral part of the Operational Models (clause 9).
8.1.8.2 Interconnection Service Boundary

. An inherent feature of the model, given by the orthogonal relationship between the inter-
connection and CSTA Application layer architectures, is their potential independence one
from the other.

Given this feature, no requirement exists in principle to maintain throughout a CSTA
system a uniform interconnection architecture, OSI conformant or otherwise. It could, for
example, be SS7 or, for that matter, any other proprietary interconnection architecture.

However, to meet the requirement for transportability of CSTA functions between different
interconnection environments it becomes necessary to adopt, as a feature of the model, a
standardized interconnection service boundary through which the inherent potential of the
model can be fully realised in practice.

This boundary is regarded as a part of the Interconnection Service Architecture (clause 14).
8.2 Distributed CSTA Functionality

The functionality at the CSTA application service boundary (as shown by the large arrow of the
previous figure) may be impacted by the definition and location of the Functional Entities (FEs)
as a result of the application of the stage 2 methodology such as defined by CCITT Rec. 1.130
and Rec. Q.65.

L]




8.3

8.3.1

- 40 -

Stage 2 identifies the functional capabilities and the information flows needed to support a given
service. A functional model is derived for each service. The functions required to provide the
service are grouped into functional entities (FEs). The functional model is the aggregate of the
functional entities and their relationship.

The FEs may reside in either the computer application or the switching application or both.

The mapping of the FEs onto physical locations will lead to the definition of different sets of
CSTA services primitives for a given CSTA service. Clause 12 deals in more detail with this
subject area.

The CSTA protocol will be designed to support the various approaches. As a consequence, some
of the protocol elements will be optional and their use will be implementation dependent.

Configuration Scenarios

CSTA applications have been defined by previous clauses as distributed applications. Their relia-
bility is ultimately determined by the reliability and topological configuration of the network
components supporting them. The following considers the various configuration possibilities and
their individual attributes.

Topologies

The topologies considered in this sub-clause should be taken as examples only and not as
covering the complete set of all possible topologies.

Co-operating computing and switching networks (or their elements) may be connected in a
number of ways that will not only provide different capabilities, they will also impose different
constraints. In this respect all CSTA interconnection scenarios should be downwards
compatible, i.e. they should be designed as true supersets of the simplest topology comprising
one switch connected to one host.

Various configurations can actually be obtained as a combination of a basic set of configura-
tions. We are primarily interested by the number of communication endpoints that reside at
the edge of the computing and switching networks, not by the number of computing or
switching nodes. The communication links that are used to compose the CSTA network will in
fact be key elements of the topology. These will be used to implement a relationship that can
be of the type one to one, one to many, many to one or many to many. It has to be noted that
each link can itself be duplicated as further described in 8.3.2.1

The "one-to-one" type of scenario corresponds to the case of a point to point connection
between two gateways as depicted in the following figure.




= A =
—ee ———
G G
| |
| —_—
Computer Network Telecommunications Network
_____ A S
: | Intervening |
G | Network | G
' |
| I

Figure 15 - Single Point to Point Configuration

The point to point connection can be implemented in various ways, e.g. via a dedicated physi-
cal link or by use of circuit or packet switched connections. This choice will affect the selec-
tion of the lower level protocols as described in clause 14.

In a "one-to-many" or "many-to-one" type of an arrangement, one gateway on one side is
connected by point connections to several gateways on the other side. One server will be
connected separately to several clients or one client to several servers as illustrated by the
following figure.

- e e e = —— —_—————

| |
| 1 Client
. | I G (Server)
Server L | i
(Client) G \ o
| lient
| CI:\' (Server)
' !
| : g
Computer Network | : Telecommunications Network
Server : |
(Client) G |
! Client
! G (Server)
Server G |
(Client) - |
I

o — . i e —— -

Figure 16 - One-to-Many and Many-to-One Configurations




8.3.2

- 42 -

This type of configuration does not prejudge the relative roles of the individual servers in a
multi- server arrangement. These may be:

1. functionally different

2: functionally identical but logically different when they are in charge of different
domains

3. functionally identical and logically identical in a redundant arrangement

4. organised to appear as one virtual server or client system (x-server, x-client in 1SO
10031- 1).

In all four cases a problem needing to be solved is that of the server and client identification
and addressing.

In the "many-to-many" type of scenario several gateways on one side are connected to several
gateways on the other side. This can be accomplished via parallel links or via a communication
subnetwork. We shall call the rest of communication facilities the communication subnetwork.

|

|
[T g,
Sub-Net |
|

Figure 17 - Multiple Point-to-Point and CSTA Communications Sub-Network

In this latter case the communication subnetwork provides its own addressing and routing
mechanisms to allow any client on one side to access any server on the other side.

Reliability of CSTA configurations

When computers and switches are closely interworking to provide a CSTA service to the end
user, the arrangement is seen by the user as a single CSTA system. As such it is expected that
this system will provide the same QoS as is normally found in either computing or telecom-
munications worlds. One characteristic of the telecommunications systems is high reliability.

For CSTA applications demanding high reliability, adequate solutions have to be identified.
One of the standard approaches to this question is the provisioning of redundancy at various
levels.




9

8.3.2.1

- 43 -

This Technical Report is mainly concerned with the communication aspects and will only
briefly present what are the various aspects of, and questions raised by, the introduction of
redundancy in the communication paths. These questions remain for further study. Solutions
will need to be developed that allow downwards compatibility in the sense that most compli-
cated configuration scenarios will be designed as supersets of the simpler ones.

The choice to implement one or another scenario must be part of a global strategy that
depends on the actual QoS requirements for a given CSTA application. It will also integrate
the reliability of each individual component. Therefore it is not the aim of this Technical
Report to recommend a particular solution but rather to identify the issues and propose early
directions.

The question has to be considered from two perspectives: static (meaning as a matter of
physical configuration choice) and dynamic (meaning as a matter of operational status).

Static Aspects

A certain degree of redundancy can be introduced in the various configurations described in
8.3.1.

1. At the lower level, redundancy may be provided by duplicating the transmission
media (most probably at link level). Multi-link procedures could adequately be
used with or without a transport layer.

Figure 18 - Multi-Link Arrangement

2. Alternatively, redundancy can be provided at gateway level. The gateways are
linked by point to point logical links that can either be multiplexed on one
physical link or make use of independent physical links. One of the questions to
be further discussed is the issue of accessing (i.e. naming and addressing) the
gateways.




8.3.2.2

Computer Network

- 44 -

Figure 19 - Multi-Link Multi-Gateway Arrangement

At the communication level, further levels of reliability can be provided by
installing a fully meshed communication subnetwork between the gateways. Once
the naming issues, raised above, are resolved this approach is not necessarily more
complicated than the previous one. It would however be more costly since it
assumes the existence of an OSI network service.

| Node Telecommunications Network

Figure 20 - Fully Meshed Communications Sub-Network

CSTA application processes may also be functionally duplicated, i.e. in charge of
the same domain of switching objects. These will channel their commands through
one or several gateways. This scenario, although more complicated than the
previous ones, does not diverge from the previous ones from the communications
viewpoint (and therefore standardization viewpoint). This will have to be
addressed as a part of a more general question on objects belonging to overlapping
domains.  The interaction and potential conflicts between two Application
Processes that control overlapping domains will also have to be studied.

Dynamic Aspects

In the absence of failures, all the redundant paths can be permanently active. Alternatively,
only a sub-set may be defined as being active at any one time. Scenarios can range from
load sharing with hot backup procedures to standby mode with change over procedures.




9.
9.1

- 45 -

This topic merits some attention but is not considered as a major deliverable of this
Technical Report.

It must be noted that independently of any redundancy considerations, the dynamic aspects
imposed by communication failures (transient situations) will have to be encompassed by
the proposed solutions, i.e. error messages and recovery procedures will have to be defined
that will allow an application to cater for the loss of information messages. This is an issue
that pertains to communication management, as such it will be discussed in the relevant
clause.

As a general principle, solutions will have to be developed that will allow backwards and
downwards compatibility with the simple configuration which is the prime object of this
Technical Report.

OPERATIONAL MODELS
CSTA Domains and Sub-domains

Due to the limitations of existing signalling systems, a computer or a switching network may not
present the appearance and functionality of a single computer or switch in terms of the way in
which it responds to CSTA service requests.

Consider the situation of an application on a single computer which monitors two devices on two
switches. The computer is not connected to any other computers. The two switches are connected
to each other by a signalling system such that they do not present the appearance and function-
ality of a single switch to the computer. They are not connected to other switches. The applica-
tion process in the computer is monitoring the devices D1 and D2. A CSTA Make__Call request
is issued such that a call is initiated from D1 to D2.

Computing Domain Switching Domain

D1
Association

Switching Domain

Association
D2

Figure 21 - Consideration of Computing and Switching Domains

Due to the nature of the signalling systems between the switches, S1 and S2, it will be known at
S1 that D1 is connected to a trunk, similarly it will be known at S2 that D2 is connected to a
trunk. It will not be known that D1 and D2 are connected.




- 46

It should be noted that similar situations can arise in the computing domain.

The introduction of additional terminology provides a framework to express the problems which
arise as a result of the limitations of some signalling systems.

9.1.1 Definitions
A switching domain is the set of all the switches and their objects which may be reached
directly or indirectly by a CSTA application from a computing domain.
A computing domain is the set of computers and their objects which may be reached directly
or indirectly by a CSTA application from a switching domain.
A switching sub-domain is any configuration of inter-connected switches which presents the
external appearance and functionality of a single switch to the computing domain.
A computing sub-domain is any configuration of inter-connected computers which presents
the external appearance and functionality of a single computer to the switching domain.
Computing Domain Switching Domain
Computing P 1 - ~ -
Sub-Domain .~ ~.
’ sTTION Switching
o / Q,./ Sub-Domain
---------- \-\'\_\_ l | ‘\
N . \ i
e, N / \l
\,\ ~ |
R ;
E /
_ - / \'\_ P Application
) /-x.\ Domains
"~ T /
Computing T T - \,
Sub-Domain \‘\
T
/\ O\, , s N \.\
/ NN y \ « Switching
/ \ N / A\)( Sub-Domain
/ \ .
| | 5 [ ! \
| . \ | \
\ s, ;
/ ~ \ / \
\ -\ .
~ \ / \
\ / Ty
N / ~a P 7 \
\\-’// -\,\_\. D \

' et e e

Figure 22 - Domains and Sub-Doemains

An application domain is the union of one switching sub-domain and one computing sub-
domain. A sub-domain can exist in any number of application domains.

The set of application domains for an application is called the application environment. An
application domain may exist within more than one application environment. The mechanism
for developing a consistent view within an application environment is not within the scope of
CSTA. In the example given at the start of this clause it is beyond the scope of CSTA, for
example, to deduce that D1 is connected to D2, since although D1 and D2 are in the same
Application Environment they are in different Applications Domains.

(




9.2

9.2.1
9.2.1.1

- 47 =

A computing network corresponds to either a computing domain or a computing sub-domain.
Similarly a switching network may correspond to either a switching domain or a switching sub-
domain. If the signalling within a network is such that it represents the appearance and
functionality of a single switch or of a single computer, that network is a sub-domain.

A Computing Function corresponds to a computing sub-domain.
A Switching Function corresponds to a switching sub-domain.

The model introduced in Clause 8 (Functional Architecture) defines the CSTA objects and
their behaviour as perceived at the client/server interface.

In the example given at the start of this clause, the union of S1 and S2 is the switching
domain. S1 and S2 are said to be in different sub-domains. The single computer represents
both the computing domain and the computing sub-domain. The union of the computing sub-
domains and the switching sub-domains form the CSTA application environment.

Switching sub-domain Model

CSTA defines the ability for an application to act on behalf of one or more users. To accomplish
this for users of a telecommunications network it is recognised that some applications will need
to monitor telecommunications activity to operate intelligently. Consequently, many possible
indications given to users of a telecommunications network may also be of interest to CSTA
applications.

The Switching sub-domain Model defines the tools needed to provide an abstract view of the
telecommunications network. This model allows application conceptualisation of the telecommu-
nications network’s operation. To provide this abstract view CSTA defines several CSTA
Switching sub-domain Model Objects that may be observed and acted upon by the Switching
Function on behalf of the Computing Function.

CSTA Switching Model Objects
CSTA Device

CSTA will not be able to influence and provide unambiguous information about parties
participating in calls. It will, however, be able to influence and provide information about
the access points of the telecommunications network. Access points in general are known as
CSTA Devices, and these telecommunications access points are known as CSTA telecom-
munications Devices.

Definition: A Device is a logical entity which interfaces the actions of entities external to
the telecommunications network (typically a Party or User) to a telecommunications service
providing application (e.g. telecommunications sub- domain).

The CSTA telecommunications Device is used to refer to both physical and logical devices
(such as buttons, keypads, lines, trunks, telephones, etc.) and logical entities (such as exten-
sions, hunt groups, ACD groups, etc.). Examples of various types of telecommunications
devices are given below.

9.2.1.1.1 Device Attributes

1. Device Type - a number of different types of device have been identified as
being important to CSTA:

- Public Directory Number - a number assigned to various physical devices to
allow them to become addressable by the public network. An E.164 number.

- Private Directory Number - a number (extension) assigned to various physi-
cal devices within a private network.




_ 48 -

Button/Line/Station - it is desirable to be able to identify an individual
station. In some situations it may be desirable to identify a given button or
line on a multi-line station or an individual station where several stations
share a single Directory Number. The method for identifying these is for
further study, but may involve the use of sub-addressing.

Trunk/Trunk Group - in order to manipulate and view calls that cross a
CSTA switching sub-domain it may be desirable to address the point at
which the call crosses the boundary. This point will generally be a trunk or
trunk group. The method of identifying trunks and trunk groups is for
further study.

ACD/Hunt Group - in order to interact with mechanisms that distribute calls
within a telecommunications network, it may be desirable to address the
group as a whole, or the distribution mechanism as a part. These groups are
often assigned Directory Numbers (Pilot Numbers). The static identification
of ACD/Hunt groups with no single Directory Number is for further study.

Device Identifier - each of the different device types will need to be referenced
across the CSTA Service boundary. To accomplish this, each will require a
device identifier. Two types of device identifiers may be required:

a.

Static Device Identifier

In some cases the identifier is stable over time. This identifier remains
constant and unique between calls, associations and perhaps even
CSTA application domains. This Static Device Identifier is a form of
identifier which is known a-priori by both the Computing and Switch-
ing Functions. An example of a Static Device Identifier is a Directory
Number.

It may also be useful for the Switching Function to convert this identi-
fier to another static form for subsequent use in service interaction.
An example of this would be the transformation of a Public Directory
Number to a Private Directory Number. This transformation allows:

- service interactions to be independent of the identification
mechanism

- optimisation in the amount of data exchanged.

A Static Device Identifier is normally applicable throughout the CSTA
application domain. Having received a Static Device Identifier, the
Switching Function may have to undertake a number of steps before
an actual physical device is selected. As an extreme example, if the
Static Identifier is a hunt group pilot number, then the Switching
Function will start by resolving it to a particular member of the hunt
group. The Switching Function may then resolve diversion assigned to
that member of that hunt group. Finally, if the terminal endpoint is a
multi-line set, the Switching Function may have to select a particular
line before the actual physical device is determined.

Dynamic Device Identifier

Once a device has been included (resolved) in a call, it may be desir-
able to continue to refer to it for the purpose of manipulation or
tracking. The Static Device Identifier may not always be sufficient for
this purpose because:




9.2.1.2

9.2.1.2.1

CSTA Call

- 49 -

- for various reasons a Static Device Identifier is not available.
(There is no a-priori identifier for the particular device)

- the Static Device Identifier is too long and cumbersome for effi-
cient use.

In these cases the Switching Function assigns a Dynamic Device
Identifier to be used as a handle for the duration of the call. Manage-
ment of the Dynamic Device Identifier is discussed later in this clause.

Device State - the set of connection states which are associated directly with a
particular device. For information about connection states see the sub-clause on
Connections later in this clause. For more information about Device States, see
Clause 11 - States and Events.

Definition: A Call is a Switching Function communications relationship (generally) between
two or more parties. During some circumstances, including set-up and release, there may be
only one party.

Calls, including their establishment and release, may be observed and manipulated across
the CSTA boundary. During some phases of the call (e.g. establishment and release) the call
is not completely formed and there is often a single device involved (for example, the device
that requested the call). In many operations, such as transfer, one device in a call is replaced
with another device. In these situations, a CSTA call is maintained as long as the telecom-
munications relationship remains across each operation.

Call Attributes

1.

Call Identifier - a Call Identifier is allocated to each call by the Switching
Function when it first becomes visible across the CSTA Service Boundary. It
may or may not be globally unique within a switching sub-domain. To allow
reference to a nascent call, the call identifier may be assigned before the call is
established. For example, an incoming call may be assigned a call identifier
when the called device is alerting and before the call has been answered. This
call identifier references the entire call within the sub-domain.

The CSTA call may pass through various stages involving many and different
devices before it finally terminates. Examples of CSTA services that cause this
evolution are Transfer and Conference. During these operations the call identi-
fier may change. The management of the call identifier is described in a
following sub-clause.

The Call Identifier is made visible across the CSTA service boundary in (at
least) three ways:

- it is returned by the Switching Function on acceptance of CSTA requests
that initiate calls (such as Make__Call)

- it is provided in Monitor service event reports about a call (a new incoming
call would be identified this way)

- it can be obtained by using the Snapshot service on a Device.

Call State - the set of Connection states for those connections which comprise a
call. For more information on Connection states, see the following sub-clause
on Connections. Call States are described in more detail in Clause 11 - States
and Events.



9.2.1.3

9.2.1.3.1

This set of connection states will be encoded in a form which is easily inter-
pretable as a call state.

CSTA Connection

Definition: a Switching Function relation between a device and a call.

This relationship is both observed and manipulated. In fact, observation and manipulation
of these relationships make up many CSTA services (e.g. hold, reconnect, drop). Connec-
tions are CSTA Objects.

Connection Attributes

1.

The connection identifier is defined as a tuple of the Call Identifier and Device
Identifier. It is unique within a sub-domain. For a single association there will
be a unique Connection ldentifier. Different associations may have different
Connection Identifiers for the same connection.

For a call there are as many connection identifiers as there are associated
devices, and for a device there are as many connection identifiers as there are
associated calls.

Connection State - one of a set of states a connection may have. Connection
states are reported by Snapshots on either calls or devices, and changes in
connection states are reported as events by Monitors. The connection state
refers to a single Call/Device relationship. A simplified connection state model

is given below.

Queued

Figure 23 - Connection State Model

In this figure, the states presented are envisioned as a basic set. The transitions between
states, shown by arrows, show the states possible to enter from a given state and form the
basis for providing events when they occur. These states are not equivalent to ISDN
access states. They are a derivation of the state machine on one side of an ISDN access. A
brief description of these states follows, but for more information about states and events,
see Clause 11 on States and Events.




9.2.14

- 51 -

Null - the state where there is no relationship between the call and device.

Initiate - the state where the device is requesting service. Usually this will result in the
creation of a call. Often this is the "dialling" state.

Alerting - the state where a device is alerting (ringing). This usually indicates that a call
wishes to Connect to a device.

Connect - the state where a device actively participates on a call. This state includes the
notion of a logical participation with a call as well as a physical participation to that call.

Hold - the state where a device inactively participates on a call. This state embodies the
notion of a logical participation with a call with a suspended physical participation to that
call.

Queued - the state where normal state progression has been stalled. This state generally
refers to two conditions but can apply to others as well. One condition is when a device is
trying to establish a connection with a call, and the process is stalled. The second condi-
tion is when a call tries to establish a connection with a device and that process is stalled.

Fail - the state where normal state progression has been aborted. This state generally
refers to the condition when a device tries to establish a connection to a call and the
attempt fails. This ¢an fail because of many reasons including: failure on connection
between calling device and call; failure on connection between called device and call;
failure to create call.

Note once again that these states are preliminary. These states apply to one device on one
call, and not to any other devices that may be involved in that call. Also, states like Fail
and Queued are for further study.

Relationship between Switching Sub-domain Objects

An overall model of a switching sub-domain is composed of a set of relationships between
all calls and devices within that sub-domain. If this set is organised so that calls appear as
rows of a matrix, and devices appear as columns, all relationships between calls and devices
for a telecommunications sub-domain are described. For example:

Calls
Devices| C1 |C2|C3| C4| C5| .. | .. [Cm
D1
D2
D3
D4
D5 A

Dn

Figure 24 - Device/Call Matrix

The matrix above describes a telecommunications network comprised of n devices (D1-Dn)
and m possible calls (C1-Cm). Device DS is related to call C4 in the way described by their
connection (D5:C4). In this example the state of the connection (D5:C4) is Alerting .




9.2.1.5

- 52 -

Using this model, devices can be described by the number and type of relationships that can
be supported. The simplest devices in a telecommunications network can have only one
non-null state. That is, they can be related to no more than one call. Other devices can be
related to more than one call, but have restrictions in the state of those relationships. Some
devices can actively participate in many calls in any connection state.

Most telecommunications networks have similar, but less well known limitations for calls.
For example, basic calls relate exactly two associated devices, while more complex calls may
relate a larger but generally fixed number of devices.

It may be sufficient for applications in the computing domain to identify a connection by
specifying only the call or device identifier (static or dynamic) part of the connection id
provided that the information provided satisfies the requirement that the connection be
uniquely identifiable within the switching sub-domain. In these cases it is possible for the
switching sub-domain to infer the proper paired identifier from the context of the request.
For example, for a telephone that can only participate in a single call, it may be possible to
refer to the connection between that telephone and call using only the device identifier.
Such a telephone which could only participate in a single call might be represented by the
following matrix:

CALL
C1

Device D1 Any State

Figure 25 - Typical Matrix Representation

For device D1, call C1 is the only call for which a connection relationship is present. Any
operations for this connection can be inferred by giving the device identifier and operating
on the only associated call.

Similarly the switching sub-domain is free to construct the Connection__id in any form it
chooses, provided that it satisfies the requirement that the connection be uniquely identifi-
able in the switching sub-domain. Therefore the switching sub-domain could construct
Connection__ids containing only a call identifier part or a device identifier part given that it
satisfies this uniqueness requirement.

Derivation of Call Events and States

The purpose for the switching model just presented is to provide an abstract of actual states
and events that are communicated via underlying signalling systems. This abstract view is
probably more detailed than required by CSTA applications, but is presented to introduce a
more exact language for describing CSTA events, states and service actions.

Because of the topology of the telecommunications network, the signals that report events
and changes in states have definite sources. Providing a telecommunications object (the




-53-

connection) that can be associated with the source of these signals helps in describing the
meaning of the events and the operation of CSTA (and other) telecommunications services.

On a typical ISDN access to a network there exists a distributed state machine. One part of
this access state machine resides in the ISDN device. Another part resides on the other side
of the ISDN access. There is another similar distributed access state machine which resides
across the ISDN network at a similar device. One of these access state machines was
abstracted and just presented.

Using this concept, a call can be modelled as a collection of connection state machines
communicating with one another using signalling. When this communication occurs, a
CSTA event can be generated. In the following example, this concept of communication
between two state machines is demonstrated for the case of establishing a simple call.
Additionally, on either side of the example the ISDN call states have been provided.

. T1 Null Null Null Null

T2 Setup Initiate P Null Null

T3 Proceeding Connect ———| Null Null

T4 Delivered Connect I Alerting Receive

T5 Connected Connect l@—|  Connect Connected

ISDN Call State Device D1 Call C1 Device D2 ISDN Call State
CSTA Connection CSTA Connection
States States

Figure 26 - Call Progression Example

Each of the states in this progression can be shown in the compact form demonstrated in
the matrix shown here:

Call C1 at time:
t1 t2 t3 t4 t5

Devices D1 | N | I | C | C
D2 | N|I N| N| A| C

@

Figure 27 - Call State Progression

In this matrix the rows show devices and columns show the progression of call C1 over
time. From this a simple table can be constructed that relates the pairwise states of two
devices to the ISDN call states.




- 54 -
Connection State ISDN Call State

N N Null

I N Setup (Initiate)

C N Proceeding

c A Delivered (or Received)
C C Connected

Figure 28 - Relation between Connection States and ISDN Call States

Many connection events are of interest to CSTA applications. Typically, however, a CSTA
application is interested in atomic telecommunications activities, and often these involve
many connection events. Generally, telecommunications operations embody changes to
many connections. These events can be summarised in a single call event. For instance, the
telecommunications services transfer, conference and clear call all perform changes in ‘
multiple connection state machines. To make this relationship clearer, the following

examples are provided:

This example shows how the event Call__Cleared relates to multiple connection events for
multiple devices on a single call.

Call C1 at times:

tl 2

. D1 C| N
Devices D2 C N
D3 C | N

Figure 29 - Clear__Call CSTA Event

This example shows how the event Call__Conferenced relates to multiple connection events .
for multiple devices on multiple calls. Because this event affects 2 calls, two matrices have
been provided to show before and after times.

Calls at time t1 Calls at time t2
Cl | C2 | C3 Ccl1| C2 | C3
Devices i H & L Devices D N N =
D2 C N N D2 N N C
D3 N C N D3 N N C

Figure 30 - Call__Conferenced CSTA Event

In clause 11, a set of CSTA events will be presented and defined using the connection ‘
matrix format. These events are presented to show the types of interactions of interest to |
CSTA applications and are not intended to constrain the definition of the Monitor service 1‘
|
|

in clause 10.




- 55-

9.3 Computing sub-domain Model

A mature computing sub-domain model will be provided in Edition 2. The following material is
a collection of preliminary information from discussions that have taken place up to now.

9.3.1

9.3.2

9.3.2.1

9.3.2.1.1

Introduction

The computing model is envisioned to support CSTA services that are not currently defined or
subject of standardization in other areas. For example, it is not the purpose of the computing
model to re-standardise existing methods for remote file access, database manipulation and
message handling. It is envisioned that there are a set of computing services that are specific to
CSTA (like Routing and Data 1/0) which require a reference model to support. This comput-
ing model is intended to provide the reference model for support of those services.

The computing model describes the abstract CSTA Objects that may be observed and acted
upon by the Computing Function on behalf of the Switching Function. The definition and
description of these objects and their general behaviour and attributes are now described.

One aspect of the computing model is the requirement to include within it the equivalent of
the switching model device for the purposes of supporting the integrated Switching/Computing
Function interface to the CSTA user interface as illustrated in Fig 1.

CSTA Computing Model Objects
Criteria for selecting CSTA Computing Objects:

CSTA objects forming part of the computing model must be either visible or capable of being
influenced across the CSTA service boundary.

Definition: Switch-party: An entity outside the Computing Function which has the intelligence
to use the Computing Function.

The CSTA computing objects include the following:

- Software Applications. These are software programs residing on top of the Computing
Function. Every application has a unique global identifier.

- File Directories. Every file directory has a unique identifier.
- Files. Every file has an identifier that is unique within a file directory.
- File Systems
- Databases
- Terminal/End Points/Computer Ports
Computing Device

CSTA will be able to provide information about the points of access of the Computing
Function. These points of access are modelled as CSTA computing Devices. Devices can be
either physical or logical. Examples of devices include:

- Terminals
Printers

- Ports
Systems

Device Attributes

Device Identifier - the device identifiers for computing devices are envisioned to be
similar to those of the telecommunications network. Static Device Identifiers are long
term identifiers that refer uniquely to a device, and Dynamic Device Identifiers are




- 56 -

"handles" provided by the computing network as a short form identifier for a device. As
with the telecommunications network, Dynamic Device ldentifiers are valid only within
the context of the association in which they are provided.

NOTE 3
Dynamic device identifier will be investigated during the later development of the comput-
ing model.

9.3.2.2 Data

CSTA will be able to provide as well as manipulate data as a Computing Function. Data can
be modelled as an attribute of a device, (for example, data could bé the attribute of a file)
but in the general case, data can be distributed across many devices and still represent a
single observable, manipulable object. In this case data is a CSTA object.

Examples of Data Objects are:

- Database

- Record ‘
- Field

- Application Instructions

CSTA will allow service requests from the switching domain to read and write data in the
computing domain. This will require the switching domain to have a model of the data
within the computing domain.

An object oriented view of data is one possible approach.

The switching domain views data within the computing domain as objects and sets of
objects. An object orientated view of data gives a high level of independence from the
database structures and the type and configuration of computers used.

An object possesses data and the operations which may be performed upon it. For example,
a list of names which a user may read and write is an object whose data is the name list and
whose operations are read and write.

9.3.2.2.1 Data Attributes

Data Identifiers - data can be identified with the same scheme of Static and Dynamic
identifiers that is used for Devices. '

94 Dynamic Identifier Management

Management of Dynamic Device ldentifiers and Call identifiers is provided in the following
manner. Management of connection IDs is provided through management of dynamic device
identifiers and call identifiers. The management scheme applies to both the switching and
computing models.

Identifiers are provided when they are created. When a call is made its identifier is provided. It is
also provided in event reports that pertain to the call. When a device becomes involved in a call
the dynamic device identifier is provided in the events that occur at that device.

Identifiers are updated when needed. If a call changes its identifier when a conference or transfer
occurs, an indicator is provided that links the old call identifier to the new identifier. Similarly, if
a dynamic device identifier is changed, the new identifier is provided and linked to the old identi-
fier.

Management of identifiers is for further study. l

4




10.
10.1

10.1.1

-57-

Identifiers cease to be valid when their context vanishes. If a call ends, its call identifier is no
longer valid to refer to that call. Similarly, if a device is removed from service or from a call, its
dynamic device identifier may become invalid.

Identifiers can be reused. Once an identifier has lost its context it may be re-used to identify
some other call, device or data.

Call and Device Identifiers are not guaranteed to be globally unique. CSTA requires that the
combination of Call and Device Identifier be globally unique within a CSTA switching sub-
domain. To accomplish this, either the Call Identifier, or the Device Identifier (or both) should
be globally unique.

CSTA SERVICE DESCRIPTIONS

Introduction

This clause provides the Stage 1 definition of CSTA services. It is concerned with the interactions
at the CSTA Service Boundary of CSTA messages that flow between the computing sub-domain
and the switching sub-domain. The services are defined in terms of "what" the service
accomplishes, not "how" the service is provided.

The services are modelled, where appropriate, on the CCITT stage 1 descriptions of ISDN
Supplementary Services contained in the I series Recommendations.

General Procedures

10.1.1.1 Requirements for Service Descriptions

The following requirements are distilled from the Application Examples clause. The set of
switching sub-domain and computing sub-domain services provided within the overall CSTA
architecture, should be extensive enough to satisfy these requirements. There is no implica-
tion in this text that all of these services and service parameters are available in conjunction
with all applications either on the switch or the computer. The requirements are:

1. The operations supported, and the way in which they work, should be independent
of any particular switch and reflect the defined operational model.

2, Each operation should conform to a service description that defines:
- the valid conditions for use of the service;

- the possible results of invoking the service (including what events may be
reported);

- the possible exception conditions (e.g. what can go wrong);
- the interaction with other CSTA operations;
- the example interaction with other network conditions;

- The service definition should not depend on the switch to computer, signalling
nor a particular voice terminal communications signalling protocol.

3. It should be possible to issue requests on behalf of an extension (e.g. initiate a call
from a specified voice terminal, invoke Do Not Disturb for a particular extension).

4. It should be possible to issue requests that operate on a particular call (e.g.
retrieve a specified held call, clear one (of several) calls associated with a particu-
lar device).

5. It should be possible to execute concurrent requests for different objects. The

results of executing concurrent requests for a particular object are undefined.



10.1.1.2

10.1.1.3

10.1.1.4

- 58 -

6. It should be possible for an application to exploit a particular feature unique to
the individual switch so that switch independence becomes the responsibility of the
application (an example of such a feature is where a preset conference can be
established via a single request).

7. Requested functions should operate the same way irrespective of whether Event
Reporting has been selected for the associated extension.

8. It should be possible to designate calls in priority mode. Examples of this are:

- the ability to differentiate between priority calls and routine calls, because
emergency calls may require different outgoing call algorithms;

- the ability to select a level of precedence for the request (for example, to cater
for busy trunks);

- the ability to force delivery of the call to the destination (for example, when
encountering busy or "Do Not Disturb" conditions).

Operation of the CSTA Protocol

If a service is available within a particular application domain, then a service request can be
issued by the client. The server verifies that a service request is valid and correct, and
notifies the client in order to acknowledge or reject the service request. Verification of
correctness means that the request is syntactically correct (i.e. the parts are consistent with
one another and consistent with other system information, like directory numbers, and with
the states of the CSTA objects involved). For the situation where the server cannot
complete the service action once having acknowledged the service request, the protocol
must support an event report that will indicate that the service cannot be completed.

Correlation of Responses and Events with Requests
The CSTA service requires two distinct types of correlation:

1. Relating a single response to the original request (for example, in all the call-
related services).

2. Relating multiple reports to the original request (for example, in the Monitor
service).

This correlation support can be provided by the underlying protocol infrastructure (for
example, the ROSE Invoke ID and the ROSE child operations). The adoption of this
underlying support or the provision of other mechanisms, is for further study during the
standardization phase.

Control and Management of CSTA Services

CSTA identifies two methods for the control and management (i.e. activate, deactivate or
reconfigure) of CSTA services. The first method is that the control of the service is
provided by the application process on the server (e.g. a control and management capability
is within the server domain). The provision of the control capability in such a context is
known to the client by pre-arrangement. The second is that the control of a service is by an
explicit service request from the application process on the client. Both methods can be
used for CSTA applications.

For the case of reporting CSTA events between the Switching Function and the Computing
Function, these two methods can be described as follows:

1. Event reports may be provided according to an established application context,
such that the control of event reports is provided by the server application process
(AP). The AP receiving the event reports does not request the service; the request




10.1.1.5

- 59 -

is implicit. For example, in the case of the monitor service, the switching AP could
send event reports over the CSTA interface without the computing AP invoking
the Monitor request.

2; Event reports may be requested dynamically, such that when event reporting is
required, the AP wishing to receive event reports explicitly requests the service
from the AP providing the event reports. For example, the computing AP could
use the Monitor Request to request that the switching AP report events.

Note that according to the client/server model, the AP providing the event report
would be the server and the AP receiving an event report would be the client.

Opinions Regarding Server Method of Operation

There are divergent opinions on how a service should be provided. One opinion is that all
servers have to provide a CSTA service in exactly the same way. Another opinion is that
individual servers may react differently and inform the client what was actually done. The
general approach of this clause is to provide parameters for such options so that the user of
CSTA can choose the desired method of operation, and it is up to the service provider to
determine whether it can provide the explicit service. It is for further study whether param-
eterisation of options is adequate for a particular service or whether the distinction between
those options can only be accomplished by distinct services. The Technical Report currently
assumes that parameterisation is adequate.

The determination of mandatory versus optional information elements will be determined in
the next stage of standards definition.

10.1.2 Categories of CSTA Services

The CSTA services are divided into the following categories:

1.

Switching Function Services are those provided by a switching network application,
implemented in one or more telecommunication switches.

Input/Output Services - this category contains services that involve using a Switching
Function terminal as a data input/output device.

Computing Function Services are those provided by the Computing Function and
invoked by the Switching Function.

Bi-directional Services can be provided by either the Switching Function or by the
Computing Function.

Status Reporting Services - these relate to overseeing the progress of a call-related
service.

10.1.3 Graphical Representation

This sub-clause describes the graphical conventions used in the service descriptions.

A FULL STOP character stands for a CSTA device.

A capital letter "D" followed by a number is the CSTA device identifier.

A line of any sort represents a connection; the state of the connection is indicated by the form
of the line:

1.
2.
3

A dotted line represents the connection in the initiating state.
A solid line represents a connection in the connect state.

A dashed line represents a connection in the hold state.



- 60 -
4. An arrow represents a connection in the alerting state.
5. The absence of a line represents a connection in the Null state.

An ASTERISK character represents a CSTA call.
A capital letter "C" followed by a number is the call identifier.

A two-device call configuration between devices D1 and D2 is shown in the following figure.

Callid=C1
D1 D2

D1 and D2 are the devices (user end of connections in call C1
C1is the CSTA identifier of this particular call

Figure 31 - An Active Call between Devices D1 and D2

The hold relationship of a call to a device is shown in following figure as a dashed line.

Callid=C1
D1 D2

Call C1is on hold at device D1

Figure 32 - A Call Held at Device D1

10.1.4 CSTA Application Private Information

Each CSTA service request will allow the inclusion of information that has not been
standardized. This allows private information to be passed between the application processes
involved in the call. Examples of such information are authorisation codes, security informa-
tion, account code or other billing information.

10.1.5 Other Parameters
The service parameter lists are not exhaustive. Other parameters are for further study.
10.2 Switching Function Services

10.2.1 Make__Call Service

The Make__Call service establishes a CSTA call between two devices. The Make__Call service
establishes a CSTA call identifier that lasts for the life of that call.




10.2.1.1

10.2.1.2

10.2.1.3

-61 -

Service Request
The request for the Make__Call service includes the following information.

Calling Device Identifier - this parameter indicates the static device identifier of the device
from which the call is originated.

Generally, the calling device must be in either idle state (on hook) or in pending state (off
hook, but not yet dialling a number). It should be valid for the calling device to be off hook
and then invoke (by way of the associated data terminal) a voice terminal service, such as
directory dialling.

Called Device Identifier - this parameter indicates the static device identifier of the device
to be connected after the calling device has been successfully connected.

Type of Call - this information indicates the use that the client intends for the call.
Examples are voice and data. Others are for further study.

In an ISDN environment where different types of devices (for example voice terminals, data
terminals, etc.) attach to the Switching Function, this configuration information is not
known ahead of time by the server. When such a device initiates a call request, it supplies
this type information (in a protocol information element) and the server transmits it
onwards for subsequent compatibility checking.

The question of checking for compatibility of higher layer capabilities and lower layer
capabilities is for further study.

Non-standard Information - see "CSTA Application Private Information" (10.1.4).
Service Response

The server verifies that a service is correct and notifies the client application in order to
acknowledge or reject the service request. No assumption is made about the state of the
called device.

1. Acknowledgement

If the information in the request is correct, and resources can be allocated for the
operation, and the calling device is in a state that allows it to participate in the
call, a CSTA call identifier is allocated by the server and then a CSTA Connection
identifier is allocated by the server and returned to the client in the application
acknowledgement response. The service is initiated.

Note that the establishment of the call has not yet begun. Call progress events may
be sent by the server application as the connection establishment progresses, as
selected by the client application by way of the Monitor service.

2. Rejection

See 10.1.1.2 "Operation of the CSTA Protocol" for general conditions for reject-
ing the request.

Service Action

The service action is to create a call between the designated devices. When the service is
initiated, the calling device is prompted if necessary (implementation dependent) and when
that device acknowledges (implementation dependent) a call to the called device is initiated.

The following figure illustrates the results of a Make__Call (Calling device = D1, Called
device = D2). A call is established as if D1 had called D2.




10.2.1.4

10.2.1.5

10.2.1.6

- 62 -

Before Make_call (Calling=D1, Called=D2)

D1 D2

After

D1 D2

Y

Figure 33 - Call on Hold at Device D1

Interaction with Other CSTA Conditions

To be addressed in the next stage of standards development.

Interaction with other Network Conditions

The Make__Call service acts identically to a manually-initiated call. Some of the interactions
with other network conditions are:

1. Busy Condition Encountered - if the device was set to busy-forwarding, then
forwarding takes place.

2. Did Not Answer Condition Encountered - if the device was set for No-Answer
Forwarding, then forwarding takes place. If a No-Answer-Forwarding was not set,
then the device continues to ring until disconnected by the application, or when all
the existing devices have been cleared.

3. Do Not Disturb (DND) condition encountered -the service should provide the
option of whether to honour DND forwarding for call initiated by a computer.

If the device was set for DND forwarding, then forwarding takes place.

Comments

1. There are PTT requirements to limit nuisance calls to a number in a period of
time. This requirement must be satisfied outside CSTA.

2. Do Not Disturb Override is provided in CSTA by the Call__Completion Service.

3. Preemption is provided in CSTA by use of the Non-Standard Information
parameter.

4. Any function that can be accomplished by a user dialling directly can be provided
in CSTA by the proper choice of the called party digits. Examples are:

- Direct Trunk Select;
- Direct Extension Select.
5. Priority service is designated by the use of the Non-Standard information

parameter.




o

10.2.2

10.2.2.1

10.2.2.2

10.2.2.3

- 63 -

Clear__Call Service

The Clear__Call service releases all of the devices from the specified call. The call ceases to
exist and the CSTA Call identifier is released.

Service Request
The request for the Clear__Call service includes the following information:
1. CSTA Connection Identifier:

- Call Identifier identifies the call that is being cleared.
- Specified device Identifier: this identifies the specified device.

2. Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
Service Response

No parameters have yet been identified. The server verifies that a service is correct and
notifies the client in order to acknowledge or reject the service request.

Service Action

Each device in the call is released and the connection identifier(s) (and their components)
are freed. As an example, for one ISDN device of the many devices in the call, "released"
means that the sequence:

- disconnect
- release
- release complete

has been completed. The following figure illustrates the results of a Clear__Call (call__id =
C1, device__id = D1), where call C1 connected devices D1, D2 and D3.

Before Call_Clear (Callid=C1)
D1 (03] D2
Conference
Controller
D3
After

Di D2

D3

Figure 34 - Result of Successful Clear__Call Service




- 64 -

10.2.2.4 Interaction with other CSTA Conditions

To be supplied in the next stage of standards development.
10.2.2.5 Interaction with other Network Conditions

To be supplied in the next stage of standards development.
10.2.3 Clear__Connection Service

The Clear__Connection Service releases the specified device from the designated call. The
connection is left in the Null state.

10.2.3.1 Service Request
The request for the Clear__Connection service includes the following information:
1. CSTA Connection Identifier:

- Device Identifier - this information indicates the device that is to be discon-
nected.

- Call Identifier - this information indicates the call (from among many) that the
device is associated with.

2. Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
10.2.3.2 Service Response

No parameters have yet been identified. The server verifies that a service is correct and
notifies the client in order to acknowledge or reject the service request.

10.2.3.3 Service Action
This service releases the specified connection from the designated call.

The connection must be part of some call. As an example, for one ISDN device of the many
devices in the call "release" means that the sequence

- disconnect
- release
- release complete

has been completed. .

Generally, if only two connections are in the call, the effect of Clear__Connection is the
same as Clear__Call.

The following figure is an example of the results of a Clear__Connection (call__id - C1,
device__id = D3), where call C1 connected devices D1, D2 and D3.




10.2.3.4

10.2.3.5

10.2.4

10.2.4.1

- 65 -

Before

D1

After

D1

Clear_Connection (device=D3)

C1

D2
D3
D2

D3

Figure 35 - Result of Successful Clear__Connection Service

Interaction with other CSTA Conditions

To be supplied in the next stage of standards development.

Interaction with other Network Conditions

To be supplied in the next stage of standards development.

Hold__Call Service

The Hold__Call service temporarily interrupts communication on
Hold__Call acts as if the indicated device had put the call on hold.
device on whose behalf the call is being placed on hold. The

remaining devices in the original call.

This service is commonly known as "Consultation Hold" service in

Service Request

an existing call at a device.
The "holding device" is the
"held call" consists of the

many PBXs.

The request for Hold__Call service includes the following information:

1. CSTA Connection Identifier:

- Device Identifier - designates the device for which hold is to be executed, i.e.
the holding device.

- Call Identifier - indicates the specific call (from among the many that the
device may be involved with) for which hold is executed.

2. Connection Reservation - in an ISDN environment, a terminal requesting the hold
service can optionally reserve the bearer channel for reuse by the held call. It
should be possible for the CSTA service to support this option, where appropriate.

3. Non-Standard Information - see "CSTA Application Private Information" (10.1.4).




- 66 -

10.2.4.2 Service Response
No parameters have yet been identified.
10.2.4.3 Service Action

This service interrupts communications on an existing call at a device. A call may be placed
on hold on a user’s interface, by the user at any time after completion of dialling.

The associated connection is made available for other uses, depending on the reservation
option. As an implementation option, the network may send a notification to the held
device(s) indicating that the call has been placed on hold.

As shown in the following figure, if the Hold__Call service is invoked for device D1 in call
C1, then call C1 is placed on hold at device D1. The hold relationship is remembered
relative to the holding device.

After Hold_Call (device=D1, Callid=C1)

D1 C1 D2

Call C1 is on hold at device D1

Figure 36 - Call on Hold at Device D1

Hold__Call maintains a relationship between the holding device and the held call that lasts
until the call is retrieved from the hold status, or the call is cleared.

10.24.4 Interaction with other CSTA Conditions
To be supplied in the next stage of standards development.

10.2.4.5 Interaction with other Network Conditions ‘
To be supplied in the next stage of standards development.

10.2.5 Retrieve__Call Service

1 Retrieve__Call is used to re-establish interrupted communications on an existing held call at
the specified holding device.

The Hold__Call service may have reserved the held connection. The Retrieve__Call service
should use the reserved connection if any.

10.2.5.1 Service Request
The request for Retrieve__Call service includes the following information:
1. CSTA Connection Identifier:
- Device Identifier - identifies the device for which the call is to be retrieved.

- Call Identifier - identifies the call at that device with which the operation
relates.

: 2. Non-Standard Information - see "CSTA Application Private Information" (10.1.4).




10.2.5.2

10.2.5.3

10.2.5.4

10.2.5.5

10.2.6

10.2.6.1

- 67 -

Service Response

No parameters have yet been identified. The server verifies that the request is correct and
notifies the client in order to acknowledge or reject the service request.

Service Action

The indicated device is restored into the indicated call.

Retrieve_Call (device=D1, Callid=C1)
Before
Callid=C1
D1 D2
After
D1 C1 D2

Figure 37 - Result of Successful Retrieve__Call Service

Interaction with other CSTA Conditions

To be supplied in the next stage of standards development.

Interaction with other Network Conditions

To be supplied in the next stage of standards development.
Consultation__Call Service

This service places an existing call on hold and makes a new call to a third device. The basic
scenario is that the "served user", denoted as using device D1, wants to place his existing call
to device D2 on hold and immediately make a new call to device D3.

Service Request

The request for the Consultation__Call service identifies the CSTA connection to be held
(via a tuple formed from the device identifier for D1 and the associated call at device D1
which is to be held) and the consulted device identifier. The request therefore includes the
following information:

1. connection to be held specified by:

- Specified device Identifier. This identifies the user who, already having a call to
device D2, wishes to make a consultation call to device D3. It is analogous to
the Calling Device Identifier in the Make__Call service.

- Existing Call Identifier; This identifies the existing call to be placed on hold
prior to making the new call.

2; Consulted Device Identifier - this identifies the device to be consulted (i.e. device
D3). It is analogous to the Called Device Identifier in the Make__Call service.

3. Non-Standard Information - see "CSTA Application Private Information" (10.1.4).




10.2.6.2

10.2.6.3

- 68 -

Service Response
On acceptance, a CSTA connection identifier is allocated for the new consultation call.

The server verifies that a service is correct and notifies the client application in order to
acknowledge or reject the service request. No assumption is made about the state of the
called device.

I Acknowledgement

If the information in the request is correct, resources can be allocated for the
operation, and the calling device is in a state that allows it to participate in the
new consultation call, a CSTA call identifier is allocated by the server and then a
connection identifier is allocated by the server and returned to the client in the
application acknowledgement response. The service is initiated.

Note that the establishment of the new call has not yet begun. Call progress events
may be sent by the server application as the connection establishment progresses,
as selected by the client application by way of the Monitor service.

2. Rejection

See 10.1.1.2 "Operation of the CSTA Protocol" for general conditions for reject-
ing the request.

Service Action

The service performs the compound action of placing the current, existing call on hold and
then immediately initiating a second call to a third device. It may be possible to issue the
Consultation__Call request with respect to a call being established (i.e. during call progress).

A Consultation__Call is similar to the Make__Call service but has some important differ-
ences. It is only valid when the user has an existing call. For this original call, the user may
have been either the calling or called device (i.e. it may have been either an incoming or
outgoing call). The existing call need not necessarily be in the active state; in particular it
may also be possible when the user currently has a call which is already on hold.

The existing call is automatically placed on hold (if necessary) prior to the new call.
The operation of Consultation__Call is depicted in the following figure.

A rejected request leaves the existing call in its original state.

Operation of Consultation_Call
Before
Callid=C1
D1 D2
After
D1 Ci D2
Callid=C2 D3

Figure 38 - Operation of Consultation__Call




- 69 -

10.2.6.4 Interaction with other CSTA Conditions

Make__Call Service: the consultation call could be effected by the Hold__Call and
Make__Call service.

Clear__Call/Clear__Connection: the held call (to device D2) remains held.

Alternate/Reconnect__Call: these two services are used to manipulate the two calls - the
held call between device D1 and D2; the consultation call between device D1 and D3.

Hold__Call/Retrieve__Call Service: the two associated calls may also be manipulated by the
Hold and Retrieve operations described in the Hold service.

Transfer__Call: the Transfer service may be used after establishing the consultation call (as
described above) to effect a two device call between device D2 and D3.

Conference__Call: the Conference service may be used after establishing the consultation '
call (as described above) to effect a three device conference call involving D1, D2 and D3.

. 10.2.6.5 Interaction with other Network Conditions
To be supplied in the next stage of standards development.
10.2.6.6 Application Examples [

Clause 6 on Application Examples describes a type of application, called Customer Support ‘
Environment, where the agent is presented with a compound transaction formed from a

voice call and an associated computer terminal screen. In handling this combined voice and

data call, the agent often wants to establish a new call to involve a third device (typically for

consulting another agent or an expert, etc.) while placing the original call on hold. The

CSTA application will invoke this service and typically will simultaneously update the

computer terminal screen of the consulted device. Consultation__Call service is aimed at

this type of application.

10.2.7 Alternate__Call Service

This service provides a compound action, that causes the active call of the specified device to
be held, followed by the retrieval of a previously held call. For this service to be valid, it is
necessary that the specified device have at least one active call and at least one held call.

0 10.2.7.1 Service Request

These descriptions use the terminology adopted in the description of Consultation__Call, ‘
where the specified device, device D1, has an active call to device D3 and a held call
involving device D2.

The request for the Alternate__Call service identifies the two connections to be alternated.
The actual device in both connections is the same, but provision is made for identifying it
twice to accommodate the use of a dynamic device identifier (which may be different in the
context of each call).

Consequently, the service request includes the following information:
Active connection specified by:

- Specified Device Identifier - this identifies the user which has an active call to device D3
and a held call to device D2.

- Active Call ldentifier - this identifies the active call (i.e. involving device D3) to be
alternated. The information is always required when the specified device can support
multiple active calls. It is not required when the specified device can only support a
single active call.




10.2.7.2

10.2.7.3

10.2.7.4

=70 -

Holding connection specified by:
- Holding Device ldentifier - this identifies the user (as in the Active connection above). It
is normally only required when using dynamic device identifiers.

- Held Call Identifier - this identifies the associated held call (i.e. involving device D2) to
be alternated. The information is always required when the specified device can support
multiple held calls. It is not required when the specified device can only support a single
held call.

Non-Standard Information - see "CSTA Application Private Information" (10.1.4).

Service Response

No parameters have yet been identified.

Service Action

An accepted request causes the specified device’s held and active calls to be swapped. The
Alternate__Call service places the user’s active call to device D3 on hold and, in an atomic
action, re-establishes the call between device D1 and device D2 as the active call. In a
similar way to Consultation__Call, device D3 can be considered as being automatically
placed on hold immediately prior to the retrieval of the held call to device D2.

The operation of the Alternate__Call service is depicted in the following figure.

Operation of Alternate_Call
Before
Callid=C1 (held)
D1 D2
Callid=C2 (active) D3
After callid=C1 (active)
D1 D2
|
|
|
| Callid=C2 (held) b3
b o e o o s v ey = * .

Figure 39 - Operation of Alternate__Call

Interaction with Other CSTA Conditions

Hold__Call service - the first part of this service (placing the active call on hold) could be
provided by the Hold__Call service.

Retrieve__Call service - the second part of this service (restoring the held call to the active
state) could be provided by the Retrieve__Call service.




- 71 -

10.2.7.5 Interaction with other Network Conditions
To be supplied in the next stage of standards development.
10.2.7.6 Application Examples

Clause 6 on Application Examples describes a type of application, called Customer Support
Environment, where the agent is presented with a compound transaction formed from a
voice call and an associated computer terminal screen. In handling this combined voice and
data call, the agent often wants to establish a second telephony call to consult with a
colleague. The CSTA application will invoke this call and simultaneously update the data
terminal screen of the consulted colleague. A common feature in this type of application is
for the original agent (i.e. the specified device) to swap between his two calls, normally
maintaining privacy between the two calls. The Alternate__Call service is aimed at this type
of application.

10.2.8 Reconnect__Call Service

. This service provides a compound action, on behalf of the specified device, that causes the
active call (in any state) of the specified device to be cleared, followed by the retrieval of a
previously held call.

10.2.8.1 Service Request

These descriptions use the terminology adopted in the description of Consultation__Call,
where the user, termed device D1, has a consultation call to device D3 and a held call
involving device D2.

The request for the Reconnect__Call service identifies the connection to be cleared and the
connection to be retrieved. Each connection is specified, in principle, by the tuple of device
identifier (device D1) and the relevant call identifier (one to be cleared, one to be
retrieved). The actual device in both connections is the same, but provision is made for
identifying it twice to accommodate the use of a dynamic device identifier (which may be
different in the context of each call).

Consequently the service request includes the following information:
Connection to be cleared specified by:

. - Specified Device Identifier - this identifies the specified device which has a consultation
call to device D3 and a held call to device D2. The specified device must have an existing
call (either active or in some stage of call establishment) and an existing held call.

- Call Identifier - this identifies the call to be cleared.
Connection to be retrieved specified by:

- Device Identifier - this identifies the user (as in the connection above). It is normally
only required when using dynamic device identifiers.

- Call Identifier - this identifies the associated held call to be reconnected.

Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
10.2.8.2 Service Response

No parameters have yet been identified.

10.2.8.3 Service Action

An accepted request causes the existing call to be cleared. Having cleared the call, the held
call involving device D2 is retrieved and becomes active. This service will typically be used
to clear ‘an active call and return to a held call; however, it can also be used to effect a




-T2 -

cancel of a consultation call (because of no answer, called device busy, etc.) followed by
returning to a held call.

Operation of Reconnect_Call
Before

Callid=C1 (held)
D1 D2
Callid=C2 (active or proceeding) D3

Atter callid=C1 (active)
D1 D2
D3

Figure 40 - Operation of Reconnect__Call

10.2.8.4 Interaction with other CSTA Conditions

Clear__Call Service - the initial clearing of the active call may be achievable by the
Clear__Call service.

10.2.8.5 Interaction with other Network Conditions
To be supplied in the next stage of standards development.
10.2.8.6 Application Examples

Clause 6 on Application Examples describes a type of application, called Customer Support
Environment, where the agent is presented with a compound transaction formed from a
voice call and an associated computer terminal screen. In handling this combined voice and
data call, the agent often wants to establish a second telephony call to consult with a
colleague. The CSTA application will invoke this call and simultaneously update the data
terminal screen of the consulted colleague. A common feature in this type of application is
for the original agent (i.e. the user) to want to release the consultation call and return to the
original held call. The Reconnect__Call service is aimed at this type of application.

10.2.9 Transfer__Call Service

This service initiates the transfer of an existing held call between devices D1 and D2 into a call
from device D2 to a device D3 which was previously consulted by device D1.

10.2.9.1 Service Request

The request for the Transfer__Call service includes the following information:

Held Connection




10.2.9.2

10.2.9.3

- 73 -

- Specified Device Identifier 1: this identifies the specified device D1, which has already a
held call to D2 and which wants to make a transfer of this call.

- Call Identifier: designates the 2- device call D1 to D2 which has to be transferred.
Active Connection

- Specified device Identifier 2: this identifies the specified device D1, which has already a
consultation call to D3.

- Call Identifier: designates the consultation call from D1 to D3, which was initiated from
device D1, or which is active at device D1.

Non Standard Information - see "CSTA Application Private Information" (10.1.4).

Service Response

If the information in the request is correct and resources can be allocated for the operation,
then a CSTA Connection__id for the new call D2 to D3 is allocated and the service is
initiated.

Return parameters:

1. Connection__id of call

2. Device__id of device

This Connection__id is a Connection__id for any device in the new call.

The return of these parameters is not always possible or does not always make sense: if the
call is to be transferred out of the sub-domain, the Connection__id cannot be returned. Or,
because D1, after the transfer is no longer involved in the transferred call, the application
may not be interested in the parameters. Generally, the CSTA reporting mechanisms, e.g.
the Monitor service, can be used to acquire the needed information on the results of the
performed services. This is for further study.

Service Action

If the service request was rejected, then there is no service action. If the service request was
acknowledged, then the following actions are taken.

The starting conditions are: the call C1 from D1 to D2 is in held state. A call C2 from D1
to D3 is in progress.

If the request is used in the situation where the call from D1 to D3 is established or if the
call is in any state other than error/null state then the transfer can be completed.

If the transfer service successfully completes, then D1 is released from the call.




- 74 -

10.2.94 Interaction with other CSTA Conditions

Operation of Transfer_Call
Before
Callid=C1
D1 D2
___________ - 3
Callid=C2 D3
After
D1 D2
. ( |
Callid=C3 ] l
D3
i

Figure 41 - Operation of Transfer__Call

The CSTA Reconnect__Service can be used to clear the call C2 (in any state) and to
reconnect D1 to D2.

10.2.9.5 Interaction with other Network Conditions
To be supplied in the next stage of standards development.
10.2.9.6 Application Examples

Clause 6 on application descriptions contains the description of the Customer Support
Environment application. In this application the agent often has established a second call to ‘
a third device (e.g. having a consultation call to another person). Sometimes the call has to

be transferred to the third person, which continues the customer transaction and device D1
leaves the call. This situation can be handled by the CSTA application issuing the
Transfer__Call service request.

10.2.10 Conference__Call Service

This service initiates the conference with an existing held call between devices D1 and D2 and
a call from device D1 to a device D3 which was previously consulted by device DI1.

10.2.10.1  Service Request
The request for the Conference__Call service includes the following information:
Held Connection

Device Identifier 1: this identifies the specified device D1, which has a held call to D2 and
which wants to make a conference with this call.

Call Identifier: designates the 2- device call D1 to D2 which has to be conferenced.




10.2.10.2

10.2.10.3

=75 =

Active Connection
Device Identifier 2: this identifies the device D1, which has a consultation call to D3.

Call Identifier: designates the consultation call from D1 to D3, which was initiated from
device D1, or which is active at device D1.

Non Standard Information - see "CSTA Application Private Information" (10.1.4).
Service Response

If the information in the request is valid and resources can be allocated for the operation,
then a CSTA connection ID for the new call involving D1, D2 and D3 is allocated and the
service is initiated.

Return parameters:
- Connection__id of call

Device__id
Call__id

This connection__id is a connection__id for any device in the new call.

The return of these parameters is not always possible or does not always make sense.
Generally, the CSTA reporting mechanisms, e.g. the Monitor service, can be used to acquire
the needed information on the results of the performed services. This is for further study.

Service Action

If the service request was rejected, then there is no service action. If the service request was
acknowledged, then the following actions are taken.

The starting conditions are (following figure): the call C1 from D1 to D2 is in held state. A
call C2 from D1 to D3 is in progress.

Before
D1 C1 D2
C2 D3
After
D2
D1 ca
D3

Figure 42 - Operation of Conference__Call




- 76 -

If the request can be used in the situation where the call from D1 to D3 is established then
the conference can be completed.

If the Conference service successfully completes, D1, D2 and D3 are conferenced together.

10.2.10.4 Interaction with other CSTA Conditions

The CSTA Reconnect__Service can be used to clear the call C2 and to reconnect D1 to D2
before the conference is complete.

10.2.10.5 Interaction with other Network Conditions
To be supplied in the next stage of standards development.
10.2.11  Answer__Call Service

The Answer__Call service answers the specified call on the specified device. For example,
Answer__Call activates the speaker or headset at a phone, thus allowing hands-free operation
of the phone.

The device should be one that can be auto-answered by an application. ‘

10.2.11.1  Service Request

The request for Answer__Call service includes the following information:

Call to be answered

Call Identifier -indicates the call to which the operation applies.

Device Identifier - indicates the device to which the connection is to be activated.

Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
10.2.11.2  Service Response

No parameters have currently been identified.
10.2.11.3  Service Action

The Answer__Call is expected to occur after the incoming call has been presented to the
user.

10.2.11.4 Interaction with other CSTA Services

To be supplied in the next stage of standards development. ‘
10.2.11.5 Interaction with other Network Services

To be supplied in the next stage of standards development.
10.2.11.6  Application Examples

The client may wish to request that a voice terminal be answered on behalf of a party who
is physically impaired or for ACD agents equipped with headsets but not handsets.

10.2.12 Call__Completion Service

The Call__Completion Service provides a mechanism to invoke features that complete a call
which may otherwise fail. Generally these services are invoked when a call is set up and
encounters a busy far device or no answer.

10.2.12.1 Service Request

The service request should include the following elements:




L

10.2.12.2

10.2.12.3

10.2.12.4

10.2.13

10.2.13.1

-7 -

Connection Identifier

call__id - indicates the call on which the feature is requested.

device__id - indicates the device for which the feature is requested.

Feature - identifies the feature to invoke on the call. Possible features include:

- Camp On - allows queueing for availability. Generally this service has the caller wait
until the called party finishes the current call and any previously camped on calls.

- Call Back - allows requesting the called device to return the call when it returns to idle.
This service works much like Camp On, but the caller is allowed to hang up after
invoking the service, and the CSTA Switching Function calls both parties when the
called party becomes free.

- Intrude - allows the caller to be added into an existing call.

Non Standard Information - see "CSTA Application Private Information" (10.1.4).

Service Response

No parameters have currently been identified.

Interaction with other CSTA Conditions

To be supplied in the next stage of standards development

Interaction with other Network Conditions

To be supplied in the next stage of standards development.
Make__Predictive__Call Service

The Make__Predictive__Call service establishes a basic CSTA call between two devices. The
results of the Make__Predictive__Call service and the Make__Call service are very similar in
that they connect the calling device and the called device. They differ, however, in the order
that the devices are joined to the call. Make__Call begins by joining the calling devices to the
call, while Make__Predictive__Call begins by joining the called device to the call.

The Make__Predictive__Call service establishes a CSTA call identifier that lasts for the life of
that call.

This service will often be used to initiate a call from a group of devices (or a logical device).
This service will allocate the call to a particular device within that group at some time during
the progress of the call.

Service Request
The request for the Make__Predictive__Call service includes the following information:

Calling Device Identifier - this parameter indicates the static device identifier of the device
from which the call is originated.

Generally, the calling device must be in either idle state (on hook) or in pending state (off
hook, but not yet dialling a number). It should be valid for the calling device to be off hook
and then invoke (by way of the associated data terminal) a voice terminal service, such as
directory dialling.

Called Device Identifier - this parameter indicates the static device identifier of the device
to be connected after the calling device has been successfully connected.

Type of Call - this information indicates the use that the client intends for the call.
Examples are voice and data. Others are for further study.




10.2.13.2

10.2.13.3

=T =

In an ISDN environment where different types of devices (for example voice terminals, data
terminals, etc.) attach to the Switching Function, this configuration information is not
known ahead of time by the server. When such a device initiates a call request, it supplies
this type information (in a protocol information element) and the server transmits it
onwards for subsequent compatibility checking.

The question of checking for compatibility of higher layer capabilities and lower layer
capabilities is for further study.

Non-standard Information - see "CSTA Application Private Information" (10.1.4).

Allocation - this information specifies the condition when the outbound call is allocated to
the client:

- Call__Delivered: this means that the called number is at least not busy and may
eventually be answered. For some applications, an agent can be allocated to anticipate
the answer.

- Call__Established: this means that the called number has actually answered.

NOTE 4
If the Computing Function wishes to allocate the call to a specific agent, then the Make__Call
service in conjunction with the monitor service, hold service and transfer service may be used.

Service Response

The server verifies that the request is correct and notifies the client application in order to
acknowledge or reject the service request. No assumption is made about the state of the
called device.

1. Acknowledgement

If the information in the request is correct, resources can be allocated for the
operation, and the calling device is in a state that allows it to participate in the
call, a CSTA call identifier is allocated by the server and then a CSTA Connection
identifier is allocated by the server and returned to the client in the application
acknowledgement response. The service is initiated.

Note that the establishment of the call has not yet begun. Call progress events may
be sent by the server application as the connection establishment progresses, as
selected by the client application by way of the Monitor service.

2. Rejection

See 10.1.1.2 "Operation of the CSTA Protocol" for general conditions for reject-
ing the request.

Service Action

The service first initiates a call to the called device. Depending on the Allocation parameter,
the call is allocated to an actual physical device during the progress of the call. The allo-
cated device will be prompted (implementation dependent) if necessary.

The following figure illustrates the results of a Make__Predictive__Call (Calling device =
group containing device D1, Called device = D2, Allocation = Call__Established).




10.2.13.4

10.2.13.5

10.2.14

10.2.14.1

-79 -

Make_Predictive_Call (Calling device=group G1. Called device=D2
Allocation=Established).

Before
D1
D2 . D4
D3

After
Cc1

D2 * D4

Figure 43 - Operation of Make__Predictive__Call

Interaction with Other CSTA Conditions
To be addressed in the next phase of standards development.
Interaction with other Network Conditions

1. Busy Condition Encountered - if the device was set to busy-forwarding, then
forwarding takes place.

2. Did Not Answer Condition Encountered - if the device was set for No-Answer-
Forwarding, then forwarding takes place. If No-Answer Forwarding was not set,
then the device continues to ring until disconnected by the application, or when all
the existing devices have been cleared.

3. Do Not Disturb (DND) Condition Encountered -If the device was set for DND
forwarding, then forwarding takes place.

Divert__Call Service

The Divert__Call service changes the destination of an incoming call from one device to
another. The Divert service can complete successfully only if the specified connection is in the
alerting state.

Service Request

The request for Divert service includes the following information:

Connection Identifier:

- Call Identifier - contains the identifier of the call to which the operation applies.

- Called Device ldentifier - contains the identifier of the original called device, that is, the
device from which the call is being diverted.




New Device Identifier - indicates the static device identifier of the device that is to become
the new called device as a result of this service.

Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
10.2.14.2  Service Response

No parameters have yet been identified.
10.2.14.3  Service Action

The Divert service replaces the original called device, as specified in the Called Device
Identifier, with a different called device, as specified in the New Device Identifier.

Before Call_Divert
D1 C1 D2 (
* o
D3
After
D D2
- D3
Figure 44 - Operation of Divert__ Call (

10.2.14.4 Interaction with Other CSTA Conditions

To be addressed in the next phase of standards development.
10.2.14.5 Interaction with other Network Conditions

To be addressed in the next phase of standards development.
10.2.15 Feature Access Service

The Feature Access Service provides a query mechanism to determine the state of device
features, like do not disturb and message waiting indicator, and a request mechanism to set
those features as well. Currently the service is focused on those features that are accessible to a
user of the Switching Function. Administration is outside the scope of CSTA.

10.2.15.1 Service Request
The service request should include the following elements:

static device__id: indicates the telecommunications endpoint to which the query/set applies.




- 81-

set/query: flag that indicates whether to set or query the feature.

NOTE 5
The features that can be set and queried, is for further study.

feature: identifies the requested feature. Possible features accessed in this manner may
include:

- message waiting indicator indicates messages available
- do not disturb indicates that the device is in the do not disturb mode

- forward indicates whether the device is forwarding calls along with the type of forward-
ing and the forwarding number

- last number indicates the last number dialled.

- device type indicates the type of device. This can include one or more of the following
attributes e.g.:
9 . Voice
Hands free
Data
ACD

Group
Other

- Agent State indicates ACD agent state if the device is part of an ACD group. This state
may include the following values:

On Call

Idle

After Call Work
Logged Out
Other Work

Non-Standard Information - see "CSTA Application Private Information" (10.1.4).
10.2.15.2  Service Response

O The service response will simply acknowledge or refuse requests to set features. Non-
) refused requests to query feature states will also include the requested feature state as part
of the response.

10.2.15.3 Interaction with Other CSTA Conditions
To be addressed in the next phase of standards development.
10.2.15.4 Interaction with other Network Conditions
To be addressed in the next phase of standards development.
10.3 Input/Output Services

A mature Input/Output Services description will be provided in Edition 2. The following material
is a collection of preliminary information from discussions that have taken place up to now.

The Input/Output services allow the CSTA application to use terminals of the switching system
(telephone, card reader etc) for data entry and display.

Applications for such services are described in Clause 6.




- 82 -

To initiate and terminate the Collect__Data service from the computer, the Collect__Data service
request is used. To initiate and terminate the service from the switch the Start-Data-Collection
service is used.

The actual input data is transmitted from the switching system to the computing system via the
Input__Data notification (event) (see following figure). Input is solicited from the user by writing
text and prompts on the set’s display via the Provide__Data notification (event).

A speech path may be used concurrently with input/output services. In order to accommodate
interactions with associated and non-associated speech paths and with other data paths, the
switch may be required to dynamically alter characteristics of the data path. The
Activate__Data__Path notification (event) is used for this purpose.

Collect Data Service
- Computer
Input data Notification
=

i ie Switch Provide Data Notification
-
CSTA
‘ > Appl

Activate Data Path
Notification

Start Data Collection
Service

Figure 45 - Operation of Input/Qutput Service

10.3.1 Collect__Data service
10.3.1.1 Service Request

This request is sent from the computer application to the switch. It informs the switch that
data input from a specified terminal is to be sent to the application (via Input__Data event),
and that the application may subsequently use Provide-Data to write to the device.

Device:
It designates the device from which the data is to be collected.

Start/Stop Data Entry:

It specifies whether data collection is to be initiated or terminated.




10.3.1.2

10.3.1.3

Additional Control Information:

It is used to specify additional control information sent to the switch which generates
actions at the designated voice terminal in preparation of the data entry e.g.

- giving audible tones;
- displaying a message

Call:

If the application is requesting an association between a voice path (a call) and a data path
(the device’s video display screen), then this parameter will indicate the voice connection
with which to establish the association.

Thus if the user places a call with a data path association on hold and the call is subse-
quently retrieved from hold; the switch will be able to inform the computer application that
the device’s screen is once again available.

Service Response

The request has to be acknowledged to inform the application of the proper initiation or
termination of the service.

The service response also returns the following information:
Device Type:

This information designates the type of device upon which the collect__data service is being
initiated. Potential devices are:

- analogue voice terminal (sub-types possible);
- digital voice terminal (sub-types possible);

- analogue trunk;

- digital trunk.

The computer application can thereby be informed if the terminal from which the service is
being used has for example, a character display for visible output of data and the dimen-
sions of that display if one is present.

Currently Active Indicator

This information field, in conjunction with the activate__data__path event, provides a
mechanism for synchronizing the data path with the voice path.

This information indicates whether the Collect__Data service is currently active or
suspended. A Collect__Data service may be established in a suspended mode if a voice path
association was specified and that voice path is itself currently inactive (on hold).

The switch may deactivate the data path as a by-product of the user making a call (via the
Make__Call service or via the direct action on the set itself) or by placing the data path or
associated voice path on hold.

Service Action

If the service request was rejected, there is no action.

If the service request was accepted, the switch is ready to receive and collect data entered at
the voice terminal. Depending on the Additional Control Information (see above), specific
actions may be taken to give the user at the Switching Function terminal some guidance.
Information collected would be sent to the computer. (See "Data__Input Notification"
below). The switch is also ready to display data supplied by Provide__Data (see
"Provide__Data notification" below).




10.3.1.4

10.3.1.5

10.3.2

10.3.2.1

-84 -

Interaction with other CSTA Conditions

Make__Call Service: The invocation of the service can occur independent of a call. If the
service is activated, and subsequently a call to a device D2 has been made from the tele-
phone (device D1) where the data was being entered, then the Collect Data Service will be
parked ("Suspended"). No data can be entered during this phase. The logical connection
between the switch and the application will not be cleared so that data collection can
resume after the call.

Hold__Call Service, Retrieve__Call Service: The invocation of the service can also be
synchronized with a call. If the service is activated with an associated call, and subsequently
the call is placed on hold, the Collect Data Service will be parked ("Suspended"). No data
can be entered during this phase. The logical connection between the switch, the applica-
tion, and the call will not be cleared so that data collection can resume after the call is
retrieved.

Interaction with other Network Conditions
To be addressed in the next phase of standards development.
Data__Input Notification

This notification is an event sent from the switch after the computer has requested the data
entry via the Collect__Data request.

It conveys user data messages entered from a voice terminal to the CSTA application.

The notification for Data Input from the switch to the computer includes the following
information.

Device: This information designates the endpoint from which the data is entered.
Call: This information designates the voice path with which the data path is associated.

Time/Date: It can be used to give the actual time and date when the data was entered at the
terminal.

User Data: It contains data entered either directly by the user and/or by the peripheral and/or
by the switch on the user’s behalf. The data includes the following information at least one of
which must be present.

String: The end of the character string is defined by an "End Of Text" character (e.g. Return).
It could also be provided in a separate length parameter. In that case the switching system
would be responsible for detecting the end of message and for generating the correct length
indication. A single keystroke would be represented as a string of length "1".

Mobile User Number: In cases where a mobile user can be determined by the switch, by a card
reading device or by another peripheral, it could be presented here. Mobile user number is
applicable in the case where a 'mobile user’ with a directory number different from the
number at which the data was entered, is using the service.

User ID: In cases where a user 1D can be determined by the switch, by a card reading device
or by another peripheral, it could be presented here. The User ID information contains an
identity code which is entered at the Switching Function terminal (manually or with a card
reader) prior to entering the user data. The application (in the switch and/or the computer)
can then check if the user is allowed to use the Collect__Data service.

Interaction with Other CSTA Conditions

To be addressed in the next phase of standards development.




10.3.2.2
10.3.3

10.3.3.1

10.3.3.2

-85 -

Interaction with other Network Conditions
To be addressed in the next phase of standards development.
Provide__Data Notification

Provide__data notification is sent from the computer to the switch after the computer has
requested data entry via the Collect__Data request.

It allows the CSTA application to display data (characters) and/or voice information at the
Switching Function terminal. The display of data requires the availability of a display at the
terminal or device. Voice information can be displayed in the form of voice prompts or tones.

The notification for provision of data from the computer to the switch includes the following
information. Zero or more occurrences of each information field may be present in a single
message, and these fields should be displayed (visually or acoustically) sequentially by the
device.

Device: It designates the terminal to which the user data are to be transmitted.
Call: This information designates the voice path association for which the data are provided.

Voice Prompt Number: If a voice prompt is to be displayed at the designated voice terminal,
then the selection is performed by using a prompt number. A voice prompt may be used with
or without a text prompt.

Text Prompt: If a prompt is to be displayed on the character display, then this information can
be used to control that action. A text prompt may be used with or without a voice prompt.

This information includes a prompt identifier (which will map to a vendor/device specific
location), the prompt text and an indicator of whether the item is currently selected (i.e. a
particular vendor may show selected items in highlight, reverse video etc).

Display Tone Control: It is used for control of the tones to be displayed. Details are for
further study.

Move Cursor: It contains the row and column co-ordinates of the location at which a digit
string or character string will begin.

Number of Digits: It is used to specify the number of digits to be displayed acoustically or
optically at the terminal.

Digit String: It contains the sequence of digits to be displayed.

Number of Characters: It is used to specify the number of characters to be displayed at the
terminal.

Characters: It contains the sequence of characters to be displayed, possibly including new lines.
Clear Display: It is used to clear the device’s entire display.

Clear to End of Line: It is used to clear from the current cursor position to the end of the
current row.

Local Echo: It is used to indicate that characters entered at the device should be locally echoed
either as text beginning at the current cursor location and/or over the audio path as tones.

Interaction with Other CSTA Conditions
To be addressed in the next phase of standards development.
Interaction with other Network Conditions

To be addressed in the next phase of standards development.




10.3.4

10.3.4.1

10.3.4.2

10.3.5

- 86 -

Activate__Data__ Path notification

Activate__data__path is an event sent from the computer to the switch after the computer has
requested data entry via the Collect__data request.

It informs the computer based CSTA application of changes in data path’s characteristics. The
event is used to synchronise the data path availability with voice path(s).

The event is initiated by the switch to indicate that the application’s data path has been
temporarily deactivated ("suspended", "parked"). This may be as a consequence of placing a
call (either via the Make__Call service or by direct action on the set) or as a consequence of
the user placing the data path or the associated voice path on hold.

The event is also initiated by the switch to indicate that the application’s data channel has
been re-established ("retrieved"). This may be a consequence of the invocation of a
Retrieve__Call service or of direct user action on the set.

The event is initiated by the computer to "request" the allocation of scarce physical devices
such as tone receivers and generators in the event that the device is a trunk. The switch may
refuse this request (and so inform the computer).

The Activate_ Data__Path event does not involve the overhead of a device/call monitor being
either established on the switch or understood by the computer application.

The requirement for such an event is described in clause 6 (Data Collection/Distribution).

The Activate__Data__Path notification from the switch to the computer includes the following
information:

Device: It designates the terminal to which the user data are to be transmitted.
Call: This information designates the voice path association for which the data are provided.

Active: It indicates whether the data path has been activated or deactivated. The switch is not
required to maintain an image of the data display. It is therefore incumbent upon the
computer application to re-draw the display after being informed of its reactivation.

Trunk Resources: It indicates the physical resources requested by the computer in the event
that the device is a trunk. These resources may include a tone generator and/or a tone
receiver.

Interaction with Other CSTA Conditions

To be addressed in the next phase of standards development.

Interaction with other Network Conditions

To be addressed in the next phase of standards development.
Start__Data__Collection service

The Start__Data__Collection service informs the computer that a CSTA Collect__Data service
has been requested by a switching system terminal (voice terminal, card reader, etc).

This service functions as a switch invoked version of the Collect__Data service and shares the
data__input, provide__data and Activate_ Data_ Path notification (events) of the
Collect__Data service.

The requirement for this service stems from the requirement that Input/output services should
not require dedicated devices. Examples are presented in Clause 6 (Data
Collection/Distribution).




10.3.5.1

Switch Invoked
Collect_Data_Service

Switch

Start_Data_Collection (Start Deta Entry)

Computer

==
Provide_Data

=

Date_[nput_Notification

-

Activate_Deta_Path (DeActivate)

|
Aclivate_Deta_Peth (Activate)

-

Start_Data_Collectlon (Stop Data Entry)
-

Computer Invoked
Collect_Data_Service

Switch Computer
Collect Data (Start data entry)
<=}
Provide_Data
<t}
Data_Input_Notification
.
Activate_Deta_Peath (DeAclivate)
-
Activate_Deta_Peth (Activate)
|

Collect_Data (Stop Data Entry)

<=}

In either case zero or more Provide_Data, Data_Notification
and Activate_Data_Path messages may be exchange

Figure 46 - Message Flow Examples

Service Request

The request for Start__Data__Collection from the switch to the computer includes the
following information.

Device: It designates the terminal which is requesting a collect__data service.

Call: This information designates the voice path association for the collect__data service’s
use. Both the switch and the computer must have a-priori knowledge whether or not a call
path is required for the commencement of this particular collect__data service. This would
be established by system administration functions in both environments.

Service__id: It indicates the particular Collect__Data service which is requested. Both the
switch and the computer must have a-priori knowledge of the meaning of particular values
of the Service__id. This would be established by system administration functions in both
environments.

Currently Active Indicator: It indicates whether the data path is active or inactive.

Trunk Resources: It indicates the presence of physical resources in the event that the device
is a trunk. These resources may include a tone generator and/or a tone receiver. Once again
both the switch and the computer must have prior knowledge of the meaning of particular
values of the Service__id. This would be established by system administration functions in
both environments.




- 88 -

Device Type: This information designates the type of device which requested the
Collect__Data service. As for the Collect__Data service, the potential devices are:

- analogue voice terminal (sub-types possible);
- digital voice terminal (sub-types possible);

- analogue trunk;

- digital trunk.

The computer application can thereby be informed if the terminal from which the service is
being used has for example, a character display for visible output of data and the dimen-
sions of that display if one is present.

10.3.5.2 Service Response

The computer should acknowledge the message and begin the proper Collect__Data service
using the Data__Input notification and Provide__Data events. The Collect__Data service
should subsequently be terminated by using a stop data entry request from the
Collect__Data service.

10.3.5.3 Service Action
If the service was acknowledged, the service is (depending on the context of the request):
1. to allocate the tone receiver and/or tone generator;
2. to re-draw the display (if the service was invoked by the switch).

10.3.5.4 Interaction with Other CSTA Conditions
To be addressed in the next phase of standards development.

10.3.5.5 Interaction with other Network Conditions
To be addressed in the next phase of standards development.

104 Computing System Services

Mature Computing System Service descriptions will be completed in edition 2 of the Technical
Report. The following material is a collection of preliminary information from discussions that
have taken place up to now.

The computing capabilities provided to the Switching Function includes the following:

1. Invoking computer application software. This allows the Switching Function to invoke
by "Invoke__Application" the application to do a specific function and obtain a return
result.

2. Creating and deleting files by invoking "Create__file/Delete__file".

3. Accessing (read/write) a file by using the index of the file in the file directory or by

time stamp (the time of creating the file). Other possibilities are for further study.

4. Dynamically activating/deactivating the computing servers that provide the above
capabilities.

5. Monitor all computer objects.
10.4.1 Database Services
104.1.1 Routing Service

The Routing Service provides a destination for a call to be routed when the Switching
Function requests more information to route the call.




104.1.1.1

- 89 -

Service Requests and Responses

The Routing service provides the following interactive set of requests and responses:

I.

LA

Route Request
Re-Route Request
Route Select
Route Used
Route End

It is envisioned that a request for a call to be routed is made using a Route Request. This
request will be satisfied with a Route Select reply. If the route provided is not usable, a
Re-Route Request may be made to access alternative routes. Once routed, information
detailing the final destination may be provided using a Route Used service. Finally, the
Route Ended services allows ending the transaction from either function.

1.

Route Request

The Route Request is sent from the Switching Function to the Computing
Function and requests a route selection for a call under control of the Switching
Function. The Computing Function will provide a preferred route to use based
on the input data it receives, and using the Route Select service that follows.

Information that can be included with the Route Request includes:

static device__id: indicates the intended destination of the call for which a route
is requested.

calling__static device__id: provides the originating number of the call.

type: indicates the type of facilities used (i.e. ISDN bearer) for the incoming
call.

route__type: indicates the type of routing algorithm requested. This parameter
may include values such as: Normal, Least Cost, Emergency, and ACD.

priority: indicates the priority of the call, and may affect selection of alternative
routes.

setup: provides the information contained in an ISDN call setup message if
available. This information may include the following:

- Bearer Capability

- Channel Identification

- Network Facilities

- Called Party Subaddress

- Redirecting Number

- Transit Network Selection
- Low-Layer Compatibility
- User-User

- Network Specific

- User Specific

Re-Route Request

The Re-Route Request is sent from the Switching Function to the Computing
Function and requests another route selection for a call under control of the
Switching Function. The Computing Function will provide the next preferred




-90 -

route to use based on the input data it receives, and using the Route Select
service that follows.

Information that can be included with the Re-Route Request is identical to that
provided in the Route Request.

Route Select

The Route Select is sent from the Computing Function to the Switching
Function and provides a route selection for a call under control of the
Switching Function. The Computing Function will provide a preferred route to
use based on the input data it receives from the Route Request or Re-Route
Request services that preceded this one.

Information that can be included with the Route Select includes:

static device__id: indicates the endpoint to which a route is provided. The
Switching Function should attempt to route the call to this endpoint.

calling__static device__id: provides the originating number of the call.
type: indicates the type of facilities used (i.e. ISDN bearer) for the outgoing call.

route__type: indicates the type of routing algorithm used. This parameter may
include values such as: Normal, Least Cost, Emergency and ACD.

priority: indicates the priority of the call, and may affect further routing done
by the Switching Function.

setup: provides the information to put in the ISDN call setup message. This
information may have been altered from that provided in the Route Request or
Re-Route Request. See the Route Request service for a list of information
elements included in this parameter.

remaining__retries: indicates the number of alternative routes remaining. This
element may be a non-negative integer, or may be the value 'no information’
indicating that the server does not keep count, or that there is no fixed list.

feedback__request: indicates a request to receive a Route Used information
element after providing the route. This can help in determining deflections or
ACD-pilot-to-agent resolutions provided by the Switching Function while
routing the call.

Route__Used

Route__Used is sent from the Switching Function to the Computing Function
and provides the actual route selected for a call that has been routed using the
Route__Select service. This element is optional, but can be desirable if the
computing server wishes to be informed of the Switching Function resolved
route. Often the route returned by the computing server will be altered by
forwarding or do not disturb features, or will be resolved by an ACD from the
pilot to a particular agent.

Information that can be included with Route Used includes:

static device__id: indicates the endpoint to which a route is resolved. The
Switching Function has routed the call to this endpoint.

calling__static device__id: provides the originating number of the call.

type: indicates the type of facilities used (i.e. ISDN bearer) for the outgoing call.




10.4.1.1.2

10.4.1.1.3

10.4.1.2

10.4.1.2.1

10.4.1.2.2

10.4.1.2.3

10.4.1.2.4

-9 -

Switching sub-domain: indicates whether the endpoint resolved to a point within
the CSTA Switching sub- domain or whether the call has been routed outside
the CSTA Switching sub-domain.

5. Route End

Route End is sent from either function to the paired function and signals an
end to the routing interaction. It can be provided by the Switching Function
when a call has been successfully routed, dropped, or when the Computing
Function has failed to provide a route within a time limit. It can also be
provided by the Computing Function to indicate that no (more) routes are
(currently) available for the requested number.

Interaction with Other CSTA Conditions

To be addressed in the next phase of standards development.

Interaction with other Network Conditions

To be addressed in the next phase of standards development.
Database__Access Service

The Database__Access Service provides interactions between a Computing Function
database and an object within the Switching Function. The need for three forms of
Database__Access Service to Read, Append and Update databases has been identified.

Service Request

The service request can include the following elements:

object__id: indicates the telephony object which requested the computing database service
database__id: the object identifier for the database which is to provide service

service__id: identifies the database service requested. Possible services requested in this
manner include:

- Database__Read allows the switching domain to read data in the computing domain.
- Database__Update allows an existing entry in a database to be amended.

- Database__Append allows new information to be added to a database.

Service Response

The various services will typically provide different responses. For the example services
listed above, the responses could be:

- Database__Read response provides the information requested by the database query
- Database__Update response provides acknowledgement of the database update.

- Database__Append provides acknowledgement of the append.

The need to relate the Database Services to e.g. Rec. X.500,FTAM is for further study.
Interaction with Other CSTA Conditions

To be addressed in the next phase of standards development.

Interaction with other Network Conditions

To be addressed in the next phase of standards development.




-92 -

104.1.3 Transfer__Context Service

A need has been identified for a Transfer__Context Service. This Service is not yet fully
defined. A brief description is given in Appendix D.

10.5 Bidirectional Services
10.5.1 Escape Service

While most of the common switching and computing services required by CSTA are
standardized, there is a requirement to be able to "escape" from standard operations in order
to exploit some special feature of a manufacturer’s switch or computer. A mechanism is also
required to give manufacturers an opportunity to experiment with new services which may, at
a later date, be standardized.

The Escape Service, described below, uses the concept of Object Identifiers, as described in
ASN.1 (see CCITT Rec. X.208 and Rec. X.209, 1ISO 8824 and ISO 8825). Amongst other
things, Object Identifiers can be used to identify a given manufacturer’s equipment and
services. ‘

1. Each company and organisation, affiliated to ECMA, may apply to be allocated an
Object Identifier. Further "sub-identification" of businesses and products is then left
to the discretion of that company or organisation.

2 A similar mechanism may be provided for an "Escape Information Element" within
other standard services. This would allow a standard service to be performed but
with a manufacturer specific addition to it (for example, a Make__Call service might
be made in a standard way, but with a manufacturer specific message being sent to
certain sets). This subject is for further study.

10.5.1.1 Service Request

The Escape Service request contains the following information:

1. Service/Object Identifier - this will be a manufacturer/equipment/etc. identifier for
the required service.
2. Data - this unrestricted set of information is necessary for the service to be carried
out.
10.5.1.2 Service Response ‘

The server function is required to "parse" the Object Identifier as far as it needs to in order
to determine whether the service is relevant to it or not.

1. If the Object Identifier can be recognised as being relevant to the server network,
then it will be acknowledged and processed.

2 If the Object ldentifier is not relevant to the server network, it is rejected, with an
appropriate cause indication.

10.5.1.3 Service Action

If the switch is able to perform the service it will do so, in its own way, using the Service
Data provided. The provision of a mechanism for returning data is for further study.

10.5.1.4 Interaction with Other CSTA Conditions

If the requested service is not relevant to the server, then there will be no interaction with
other (standard or non-standard) services on the server. If the request is accepted, however,
then the non-standard service may well interact with other services in a manner which is
beyond the scope of this Technical Report and any subsequent CSTA standard(s).




-93 -

10.5.1.5 Interaction with other Network Conditions
To be addressed in the next phase of standards development.
10.6 Status Reporting Services

Status reporting is an area of CSTA services that allow following or checking of CSTA objects.
These services provide no action and effect no changes in state on the objects that they operate
on. They are intended to provide information necessary to synchronize co-operating applications
so that real time value added services can be provided. Two services are presented here: Snapshot
and Monitor.

10.6.1 Snapshot Service

The Snapshot service is intended to provide information about objects that makes further

monitoring more meaningful. For example, if a CSTA application were to start working with a

call or device, the events that will eventually provide synchronisation may not occur for some

time. To facilitate operations before an event report synchronises the monitor, it is necessary
Q to be able to query the current state of CSTA objects. Snapshot provides that service.

It is envisioned that the Snapshot service work for all CSTA objects. For now, this includes
calls and devices. Providing this service for processes and Computing Function devices is for
further study.

10.6.1.1 Service Request
The Snapshot service can be requested for either a device or a call.
If requested for a device, the request would provide:
1. static device__id: the CSTA static identifier of the device
If requested for a call, the request will provide:
1. CSTA Connection Identifier:

- Call__id: the call identifier;
- Device__id: the device identifier.

10.6.1.2 Service Response

The responses for the requests of a device and a call differ. In both cases however, the
’ response is in the form of a list. Each entry in the list has three information elements.

If the request is made for a device, the response will include the device state. Each entry in
the service response list will correspond to a call at the device. The service response will
return the following information for each call in the list.

1. CSTA Connection Identifier:

- Call__id: the call identifier;
- Device__id: the device identifier.

2 Connection state.

If the request is made for a call, the response will include the call state. Each entry in the
service response will correspond to a device in that call. The service response will return the
following information for each device in the list.

1. Static device__id: The CSTA static identifier for the device. A null value (0)
specifies that the identifier is not available.




2 CSTA Connection Identifier:

’ - Call__id: the call identifier;
- Device__id: the device identifier.

‘ 3. Connection state.
; 10.6.1.3 Service Action

The nature of Snapshot is to obtain status and return it in a response. This does not affect
the states of any objects in the Switching Function.

In addition, it will often be useful for an application to ascertain the state of all calls (as
opposed to connections) associated with a particular device. This can be considered as an
additional mode of Snapshot (device) which returns the list of all calls (associated with the
device) and their call states. This is a compound operation formed from a single Snapshot

‘ (device), to retrieve the connections, followed by a Snapshot (call) for each returned
connection. Two modes of operation are anticipated, dependent on where this functionality
is implemented.

i 1. The server will, on request, automatically provide this extended information as
‘ part of the Snapshot service.

‘l 2. The client will repeatedly use the basic Snapshot services to build up the complete
! context for the device of interest.

The justification for the first alternative is an issue for further study.
10.6.1.4 Interaction with other CSTA Conditions

I Snapshot will not affect the outcome or operation of any other service. It is expected to be
used in conjunction with monitoring, to provide existing state information after a monitor
| has begun to add meaning to further monitored event reports.

10.6.1.5 Interaction with other Network Conditions
i To be addressed in the next phase of standards development.
10.6.1.6 Application Examples

Snapshot requires a-priori knowledge of either the static device__id or call__id that identi-
fies the device or call that should report status. Because of the constant nature of static
device__ids, it is assumed that a computing application will keep records of the device/static
device__id mappings or will consult a Directory service that does. Call__ids are temporal,
and assigned by the Switching Function, therefore a computing application must reference a

; prior CSTA transaction to obtain the call__id before using it as a parameter for a Snapshot
of that call. The call__id can be obtained from: Make__call, Routing, Monitor, Conference
and Transfer, and Snapshot on a device.

10.6.2 Monitor Service

CSTA needs the ability to monitor events that occur in the Switching Function. To achieve
this, two CSTA objects can be monitored, devices and calls. Both provide the same event
report messages, but may not behave the same way.

Different applications may require differing levels of notification of event reports, so monitor
also includes a filtering capability, which allows the client to specify the level of notification
required. (See sub-clause in 10 entitled "Control and Management of CSTA Services".)




10.6.2.1

10.6.2.2

10.6.2.3

- 95 -

Service Request

The object that is to be monitored should be specified in the service request. The switching
model objects can be devices and calls. Computing objects may be defined by the computing
models.

Devices are identified by their static device__id, but in cases where the identifier is not
known, it may be necessary to identify a device using call__id and dynamic device__id.
Whether providing call__id and dynamic device__id to specify a device to allow monitoring
is for further study.

Calls are identified by the connection id of any connection within the call.
The initiating request must include the following:

1. Object__id: the object to start monitoring (call or device):

For switching objects:

2. CSTA Connection Identifier:

- Call__id: the call identifier;
- Device__id: the device identifier.

3 Filter: specifies the amount of information requested by the client. It may be as
little as a single event, or as much as all available events. The exact nature of the
filter mechanism is for further study.

The terminating request must include the following:
1. Object__id: the object to cease monitoring

It should be noted that only the client can issue the terminating request, but the service can
also be terminated by an abort from the server.

Service Response
The service response will simply acknowledge or refuse requests.
Service Action

Once a request has been acknowledged, a set of reports describing the events that occur will
be sent to the client by the server on the association that requested the monitor (See Clause
11 for examples of events). These reports will cease after the client requests termination or
the server aborts. The server should abort the monitor if the object being monitored is
destroyed, which can happen for call or process, or if the object leaves the CSTA domain,
which can happen for all objects.

For each device monitor, all events passed by the filter will be sent for the connection state
changes in all the calls that are present at the device. If a call is forwarded or transferred,
the device ceases to participate in that call, and no further events are reported.

For each call monitor, all events passed by the filter will be sent for all the connection state
changes that are present in the call. If a call is forwarded or transferred, devices may cease
to participate in that call, but all subsequent events at the new devices are reported. It
should also be noted that a call that is being monitored may have a new call__id assigned to
it after a conference or transfer, and that the monitor will report the assignment of a new
call__id and continue reporting events on that call.

Following the service response, event report messages will arrive. Each message will contain
information requested by a monitor.




10.6.2.4

10.6.2.5

10.6.2.6

10.6.2.7

- 96 -

Event messages will typically indicate a new state a particular connection (or set of connec-
tions) has entered on a particular call and are described in more detail in clause 11. The
information in this report can include only the connection(s) that have changed state, or the
complete new call state. Which of these options to support, is a subject for further study.

It will often be useful when receiving event reports for devices to gain a fuller picture of the
current state of the device. In particular:

1. The current device state (i.e. all connection states associated with the device).
2. The state of all calls currently associated with the device.

This information can be ascertained by using the Snapshot service and it is anticipated that
there will be two modes of operation:

1. The Monitor service will have an option for requesting the server to retrieve this
extended information and automatically provide it in every event report related to
a device (thus imposing a general server overhead on all events).

2. The Client will maintain the required extended information from previous event
reports and will explicitly invoke the necessary Snapshot services only when resyn-
chronisation is desired. This will introduce extra load in the client, but may reduce
server load and communications traffic.

The justification for the first alternative is an issue for further study.

Interaction with Other CSTA Conditions

Monitoring does not interact with other Switching Function services. Monitoring is
required, however, to provide information that allows the proper use of other CSTA
services. For instance, monitoring is required to obtain the proper information to determine
when an ACD agent can be given another call via a Make__Call request.

Interaction with other Network Conditions
To be addressed in the next phase of standards development.
Application Examples

Monitoring will be used in applications that have interest only in watching particular calls
or devices. It will also be used in applications that wish to operate or affect calls automati-
cally under conditions that are determined using the monitor.

Requirements for Service

Some of the requirements for the event monitoring service that were drawn from the appli-
cation scenarios in clause 6 are:

1. It should be possible to turn on and off monitoring as part of the service. It should
also be possible to set a filter for the reported events so that a subset of the events
are reported.

2. It should be possible to monitor different CSTA objects, like call, device, and
process - including groups.

3. There should be a generic set of events which is independent of function
implementation.

4. For the Switching Function, the event reports should indicate the new state
entered by an endpoint in a call.

S. It should be possible to determine the CSTA objects that can be monitored.




11.
11.1

11.2

6. It should be possible to receive events from both manually initiated and CSTA
initiated calls or processes.

7. There should be an operational model that abstracts physical implementations, yet
provides wide applicability. The abstraction should hide implementation differ-
ences between networks, yet provide as much of the common functionality as
possible.

8. Multiple clients should be able to monitor the same CSTA object.

CSTA STATES AND EVENTS

Introduction

The material in this clause is included for tutorial purposes only and to reflect some potential
approaches. Various examples of telephony scenarios with associated CSTA states and events are
presented. Since these are only examples of an approach, it is not anticipated that the subsequent
development of the protocol will necessarily conform to the particular states and events identi-
fied. The scenarios considered are not exhaustive and consequently not all potential CSTA states
and events are necessarily identified. The information does show, however, the possibility of
representing different environments and procedures with a generic set of states and events. The
scenarios have been chosen to demonstrate some of the key CSTA services.

Goals

1. Switching Function independent: events should be independent of the Switching
Function (to allow applications portability).

2 Device independent: events should, as far as possible, be independent of the actual
telephony device (to present a simple model with wide applicability). In some cases,
such as the distinction between "en-bloc" and "overlap sending" call establishment, this
goal may not be appropriate.

3. Implementation independent: events should represent the function rather than the
implementation mechanism (which will vary).

4. Application independent: events should represent the services and not how those
services are used by any particular application.

5. Invocation independent: events should be independent of the way the service was
requested. This means that a human user making a telephone call from a device gener-
ates the same events as the CSTA Make__Call service operating on behalf of that
device.

NOTE 6

These are goals for generic events. CSTA may also be concerned with implementation-dependent
events that provide additional information. This type of event information is not considered here.

Interpretation of call state

The switching model, developed in clause 9, Operational Models, provides a notation for
describing connection states. It also illustrates how a set of connection states can be interpreted
as a call state. Whether the mechanism to support this interpretation is a vital part of the opera-
tional model is for further study.

The diagram that follows shows an interpretation of the set of connection states as call states in a
simple call scenario as call states using the same format as was used in clause 9.




114

T

T2

T3

T4

T5

- 98 -

Null Null Null
Initiate Pending Null
Connect l——— Originated Null
Connect Delivered/Received Alerting
Connect Established Connect
Device D1 Device D2

Figure 47 - Interpretation of Call State

CSTA Telecommunications Scenarios

Various telecommunications scenarios are considered for different environments. The events
reported by the Monitor service are an abstraction of the actual signalling employed and can be
used to construct a CSTA state diagram. The intention of the following text is to investigate sets
of CSTA events and states at different levels of abstraction and determine whether those events
and states can be applied to a range of situations. Each scenario assumes that the necessary
CSTA conditions have been established (e.g. appropriate association, monitor initialisation, etc.)
and shows typical events representing the telecommunications activity.

In general, the scenarios can be considered at two levels of abstraction:

1.

A level of abstraction showing how call states and events can be presented in relation to
a particular device.

A level of abstraction showing how call states and events can be presented indepen-
dently of any particular device.




11.4.1 Making and Clearing a Call

11.4.1.1 Successful Outgoing Call

call cleared types:

1
2
3
4

Time T1 Time T7
service_initiated device_dropped4
Time 12 call_originated s
call_originated
Time T3

l call_failed

call_delivered

\/

network_reached

device_dropped3

Time T4

N

. 2
call_estabLshed device_dropped
(far end answered) >

Time T5

. 1 —
clear request from either end device_dropped
caller abandons on no answer
caller abandons on failure
calling device goes "on hook"

|

Note: The annotated times relate the diagram to the following descriptions

Figure 48 - Making and Clearing a Call




11.4.1.2

11.4.1.3

- 100 -

Call C1 at time:
tl t2 t3 t4 t5 t6 t7

Devices DI | N | I |C|C|C|N|N
D2 | N(IN|N|J]A|C|C|N

Figure 49 - Successful Outgoing Call

At time tl both connections are in the Null state. Typically, a voice terminal
would be on hook.

At time t2 the call initiator will be off hook and possibly dialling digits. This state
is entered by receiving a Service__Initiated event. The event says that device D1
has changed to the Initiate state.

If device D1 aborts the call then the state returns to t1 and is indicated via the
Call__Cleared event. The event says that all connections in call C1 have returned
to Null.

At time t3 the call initiator will have finished dialling and will be receiving
feedback from the CSTA telecommunications network. The event
Call__Originated indicates that the device D1 moves to the Connect state.

The Call__Delivered event indicates that device D2 enters the Alerting state. This
is depicted at time t4. At this stage, typically the caller is listening to ring back,
and the called party is listening to ringing.

When device D2 answers the call, the state shown at time t5 is entered. This is
reported by the Call__Established event. It indicates that device D2 entered the
Connect state. Typically, two parties would now be talking.

Clearing an Established Call

Using the same figure provided in "Successful Outgoing Call", call clearing can progress in
one of two ways. If one device drops, for example device D1, then a Device__Dropped
event would be received, and the state would match the one shown for the time t6. When
the call ends, either from the CSTA network nulling the device D2 connection, or if the call
had originally been cleared via the CSTA Clear__Call request, then the connection states
return to null, as depicted at time t7. Note that the states at times t1 and t7 are identical.

Call Failure

Call C1 at time:
tl t2 t3 t4 t5

Devices D1 | N I C F | N
D2 | N|N|N|N|N

Figure 50 - Call Failure at Device D1




- 101 -

The Call__Failed event can come during call establishment. Depending on different types of
diversion, the call can fail until the point that a Call__Established event is received. If the
call had failed, the initiating connection enters the Failed state and the caller typically
listens to a busy or reorder tone. After the caller hangs up, device D1 returns to Null. An
example of a call that fails is shown above. In this example, the call progresses to time t3. It
then encounters Call__Failed which indicates that device D1 failed to create the call, and
that the state shown at time t4 is in effect. Similarly, as shown below, Call__Failed may
have been the event, which might indicate that device D2 is busy. These states differ, and
allow an application to decide whether it can use a call completion feature like Camp-on or
Intrude.

Call C1 at time:
t1 22 3 t4 5

Devicess D1 | N I C
D2 | N|N|N| F | N

Q
2

Figure 51 - Call Failure at Device D2

11.4.1.4 Call Abandonment After No Answer

Call C1 at time:
tl t2 t3 t4 t5 t6

Devices Dl N I C C| N|N
D2 | N|N|N|A|A|N

Figure 52 - Call Abandonment after no Answer

The above matrix shows a normal call progression up until time t4. At this point a
Device__Dropped event is reported, indicating that device D1 has returned to the Null state.
Soon after this the CSTA telecommunications domain will set the remaining device D2 to
Null as well and report a Call__Cleared event. This is depicted in the state at time t6.

11.4.1.5 Network__Reached

Call C1 at time:
tl t2 t3 t4 t5

Devices DI | N | I | C | C | N
D2 | N|N|N|C]|N

Figure 53 - Network__Reached




11.4.2

-102 -

In the above matrix, the state at time t4 was entered because of a Network__Reached event
report. This event report indicates to the application the possibility that no event reports
will be provided for connections outside the CSTA telecommunications domain. The appli-
cation should assume (as is shown in the figure) that the connections in the other network
are in the connect state until a Call__Cleared event is received (as shown at time t5).

Incoming Call

Time T1 -
Time T3
call_received call_diverted
or
device_dropped ( by caller)
Time T4 df?vice_dropped by € RE
either end)
Time T5

Note: The annotated times relate the diagram to the following descriptions

Figure 54 - Incoming Call

The events and states reported for an incoming call are exactly those shown and reported
for an outgoing call. After all, they are but one call. Differences in the operation of CSTA
applications may come from the time at which applications start receiving the event reports.
For example, in the "Successful Outgoing Call" scenario, an application that uses a monitor
defined to give events in calls for all calls associated with a device would receive different
events if it monitored calls at device D1 or calls at device D2. The figure was shown for the
events visible to a monitor for calls at device D1 (and, of course, for any monitor for Call
C1). If the application had been monitoring calls at device D2, the figure would have started
at time t4 and progressed identically from that point onward.

This demonstrates a more general problem with monitoring - that of applications starting to
monitor the call at some time after the call has started. These applications will start receiv-
ing event reports that indicate the current state of different endpoint within that call.
Building the call state image will require an event from each connection participating in the
call. This may take time, so the Snapshot service allows an application to build that state
image at once. At any time, an application can ask for the snapshot of a call and be pro-
vided the state information for that call at that time.




11.4.3

- 103 -

Holding Calls

call_originated

v

call_delivered

(held) call_cleared

I call_hold request
(held) call_retrieved (by monjtored device) f

! =

v

Figure 55 - Holding Calls

These scenarios introduce the notion of an auxiliary state to represent the held condition of
the call. This idea has been adopted from the "dimensioned state space" described in CCITT
Rec. Q.932. The Held state is a pervasive state and the precise details (such as when a call can
be placed on hold) can vary between switches. To demonstrate the holding of a call, the
scenario shows an outgoing call which reaches the Delivered CSTA state when it is placed on
hold. The events and states are for the party performing these operations (either itself or via a
CSTA request). Many other scenarios can be considered where the hold request is issued at a
different time (in particular, when the call is established). In the following matrix description
of the holding scenario, the auxiliary state is contained in the matrix, which is a multi-dimen-
sional state representation.




- 104 -

| Call C1 at time:
t1 2 t3 t4 t5 t6 (7

Devices DI |C|H|C|C|H|H]|C
pD2|CcC|C|C|H|H]|C]|C

Figure 56 - Three Hold Services

The above table shows the interaction of three Hold services on a simple call. At time t1 both
parties are connected. The Call__Held event puts the call in the state at time t2. At this time
device D1 has device D2 "on hold". Call__Retrieved indicates that device D1 has rejoined the
call and the state is at time t3. The remaining states are traversed as follows: Call__Held yields
t4; Call__Held yields t5 (both parties are holding); Call__Retrieved yields t6; and finally
Call__Retrieved yields t7. At this time both parties are speaking once again.

1144 Multiple Call Support

— original call

‘ call_hold request

normal call progress events

consultation
call
call_transferred A4
2 ca"_conferenced2

‘ call_cleared device_dropped

1: This is a new call
2: Two calls are merged into one

\ Figure 57 - Multiple Call Support

The figure shows typical CSTA states and events supporting multiple calls. The diagram shows
two calls; the established call (on the left) is placed on hold and a new consultation call is
initiated (shown on the right). This operation may have been initiated manually or via CSTA.
The new consultation call will proceed in the same way as any other outgoing call and is not
detailed on the diagram. The first scenario considers a supervised transfer where the consulta-




- 105 -

tion call is established before the transfer operation is used. Other types of transfer (for
example blind transfer) can be achieved by requesting the transfer prior to the establishment
of the consultation call. In this case the Call__Transferred event occurs in other CSTA states
such as Delivered. In either case, transfer joins the two calls with the initiating device dropping
out. The second scenario shows a conference request which results in a Call__Conferenced
event.

The following set of matrices show relationships between multiple devices and multiple calls.
Unlike previous columns, these columns show calls. The states at different times are shown as
entire matrices labelled with their time. Finally, this example assumes an established call
between device D1 and D2 at time t1.

Calls at time t3

Calls at time t1

Calls at time t2

Cl|C Cl | C Cl|

Devices AN Devices o1 c N Devices & A
D2 | C N D2 | C N D2 C N

D3 | N N D3 | N C D3 [ N C

Figure 58 - Device D1 receives a 2™d Call, C2

In the above matrices, a call exists between devices D1 and D2 at time t1. The event report
Call__Originated moves the state diagram to time t2. The next event report, Call__Delivered,
shows the transition to the state diagram for time t3. Note Call__Delivered indicates that the
device D1 changes to the Alerting state. At this point D1 and D2 are still talking, but D3 is
ringing D1 as well.

Calls at time t4 Calls at time t5 Calls at time t6
Cl | C2 Cl | C2 Cl | C2
H | A DI | H C H | N
. : Devi
Devices R N Devices RN N evices R N
D3 | N C D3 | N C D3 | N C

Figure 59 - Device D1 answers Call C2, then Drops it

In the set of matrices above, the next three events are depicted. First, D1 puts Call C1 (with
D2) on hold which yields a Call__Held event report and moves to time t4. D1 then answers
the ringing call from D3, which results in a Call__Established event report and moves to time
t5. At this point D1 and D3 are talking and D1 has D2 on hold. Three examples follow on
from this point:

o




w

Devices

Devices

D1 and D3 finish their conversation, D1 hangs up as shown at time t6 and indicted
by a Device_ Dropped event report. Next Call__Cleared is reported and probably
Call__Retrieved is also reported (state matrices are not shown for these two events).

Once again, starting with state t5 as shown above it is also possible to establish a
conference. This is shown below.

Calls at time t6 Calls at time t7
c1|c2|c3 ci1|c2|c3
N | N | C , N | N | N
D2 | N | N | C Devices — > TN | N | N
D3 | N | N | C D3 | N | N | N

Figure 60 - D1 conferences, then clears the Call

D1 conferences the calls with D2 and D3. This is indicated by Call__Conferenced
event which moves to state t6 shown above. At some later time t7 in this example,
D1 clears the entire call (as opposed to dropping off) and Call__Cleared event is
reported.

Finally, starting with state t5 as shown above, it may also be possible to transfer the
call. This is shown below.

Calls at time t6 Calls at time t7
Cl|C2]| C3 Cl|C2]|C3
N N = Devices N N N
D2 N N L& D2 N N N
D3 N N C D3 N N N

Figure 61 - D1 transfers the Call, then the Call clears

D1 transfers the call from D2 to D3. This is indicated by a Call__Transferred event
which moves to state t6 shown above. At some later time t7 in this example, D2
clears the call and a Call__Cleared event is reported.




11.4.5 Tracking a Call

devices and calls

pi_ Callld=1_

D2
Callld =2

D3

CallID =3

D3 D2

Callld = 3
D3~~~

Callld =4

D4

Callld=5 D2
D3

D4

- 107 -

states and events

Callld=1 ‘ Callld =2

call_transferred
(old=1, new=3)

call_transferred
(old=2, new=3)

“Callld =3

consultation call from D3 to D4

conferenced
(old=3,new=5)

conferenced
(0ld=4, new=5)

Callld =5

Figure 62 - Tracking a Call

The previous figure demonstrates the tracking characteristic of a call monitor applied at device
D1. On the left are the CSTA Devices and Calls; on the right are device abstracted CSTA

states and events.

Tracking a call is an important ability that CSTA applications need to have. The following
scenario demonstrates a method that can be used to track calls within a CSTA switching sub-
domain. Assume that a call is established between D1 and D2, and that D1 is holding that call.
Assume also that a second call is established, this one from D1 to D3. This state is that at time
tS in the previous text, and is repeated as the initial state, t1, below.




- 108 -

Calls at time t1 Calls at time t2
Cl |C2]| C3 Cl | C2 | C3
Devices D1 H c N Devices
D2 C N N D2 | N N C
D3 | N & N D3 | N N C

Figure 63 - D1 transfers the Call with D2 to D3

D1 transfers the call from D2 to D3. This is indicated by a Call__Transferred event which
moves to state t2 shown above. At some later time, t3 in this example, D2 executes a Direct, (
Unsupervised Transfer of the call to D4. This results in a Call__Transferred event report.

Finally, D4 answers the call, as shown at t4, a Call__Established is received and D3 and D4 are
talking.

Calls at time t3 Calls at time t4
C3 | C4 C4
Devices N N Devices
D3 N (€ D3 C
D4 | N A D4 C

Figure 64 - D2 transfers the Call to D4

The previous example shows how a call, originally between D1 and D2 is tracked to a call
between D2 and D3 and then to a call between D3 and D4. In this final permutation, none of
the original participants are left on the call, but the context or voice path has been followed.
This tracking would continue until the Call__Cleared (e.g. a Call__Cleared event was

reported), or until the call left the CSTA sub-domain (e.g. Network__Reached followed by
Device__Dropped).




- 109 -

11.4.6 Events Prompted by the Remote Device

v

call_onhold (requested from other end)

v

(onhold) call_conferenced
(onhold) call_retrieved (by other end)
(by other end)

(onhold) call_transferred
(by other end)

call_transferred /call_conferenced

Figure 65 - Events Prompted by the Remote Device

Events can be prompted by the other end of the call as shown in the figure. This shows an
incoming call to a monitored device which is placed on hold by the caller. Various scenarios
are shown to reflect events prompted by actions at the calling device (at the other end of the

call).

These scenarios show events and states reported (for a monitored device) due to Switching
Functions initiated at the remote end of the call. The initial scenario is that an incoming call
arrives at the monitored device and is subsequently answered. The figure shows events
reporting various changes in CSTA state that have been initiated at a far end of the call (as

opposed to requested by this monitored device).




11.4.7 Queueing (inbound)

call_received (at group) gZI'IIiF;I:;;?:e§by

v

call_queued

\ 4

A 4

call_received (at device)

Figure 66 - Queueing (inbound)

The figure shows a typical scenario involving an incoming call arriving at a group (which
assumes that monitoring has been initiated for the group). Three typical cases are shown:

1 The call arrives at a group and is distributed to a particular device.

2. The call is queued, typically because no agents are available, before distribution to a
particular device.

3. The caller abandoning the call when (queued) in the group.




- 111 -

11.4.8 Predictive Dialling

call_orjginated

specified condition was Call_delivered (to customer)

"ringing customer" sppcnfxed condition was

'customer answers"

Call_established

. Call_established
(either end answers) - ¢

(customer answers)

Call_established Call_established
(remaining device answers) (ager_lt answers)

‘Q Figure 67 - Predictive Dialling

11.5 CSTA Events

Event report messages will be sent from server to client. For the Telecommunications domain
service, those events are sent from the telecommunications network to the computing network.
Each event is a message that indicates a change in state of one or more connections in the CSTA
network. Generally, the event report messages will contain call__id and device__id to indicate the
connection that has changed state.

The messages described can apply to:

1. A single connection.
2. Multiple connections within a call.
3. Multiple connections within multiple calls.

The following list describes the events and the information they provide. Each event relates to
the example connection state matrices in the following way:

- The event specifies the resultant state has been achieved regardless of any previous state.




- 112 -

- The initial state(s) is given purely for example to put the event into normal telecommunica-
tions context.

- Each event report is a name (macro) for the new set of connection states.

1. Call__Delivered - this event is sent when the first "alerting" (tone, ring, etc.) is applied
to a device or when the server detects that "alerting" has been applied to a device.

Server features might <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>