

ECMA TR/90
1st Edition / December 2005

Session Management,
Event Notification, and
Computing Function
Services - Amendments
for ECMA-348

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC TR-090.doc 08/12/2005 16:22:00

Session Management, Event
Notification, and Computing
Function Services -
Amendments for ECMA-348

Technical Report
ECMA TR/90
1st Edition / December 2005

.

Introduction

ECMA-348 provides a Web Service (WS) interface for CSTA using Web Service Description Language
(WSDL) 1.1.

CSTA (ECMA-269) requires applications to establish a session, which provides the context for all services
and event transactions. ECMA-366 specifies Services for Web Service (WS) based session management.
This Technical Report proposes to amend ECMA-348 to use ECMA-366 for session management.

WSDL 1.1 does not support concrete bindings for Notification operations. ECMA-348 uses these
operations for CSTA events. This Technical Report proposes to amend ECMA-348 to establish an event
channel and three event-sink types using WS-Addressing and WS-Eventing.

WSDL 1.1 does not define fault messages with one-way operation types that are needed for switching
function services without a positive acknowledgement. ECMA-348 uses notification operations to convey
the fault to those service requests. This Technical Report handles such notifications in the same way as
events.

WSDL 1.1 does not support concrete bindings for Solicit-response operations. To allow proper
implementation of the Computing Function Services, this Technical Report proposes to add a WSDL
interface to ECMA-348 for the Computing Function in addition to the Switching Function WSDL.

When the WS-Addressing and WS-Eventing specifications have become stabilised, a next edition of
ECMA-348 should be drafted.

This Ecma Technical Report has been adopted by the General Assembly of December 2005.

- i -

Table of contents

1 Scope 3

2 References 3

3 Definit ions 3

4 Acronyms and Abbreviations 3

5 Web Service Based Application Session Management 3

6 Event Sink Interface Definit ions for ECMA-348 3

6.1 Loosely Coupled (gener ic) Event Sink Interface 3

6.2 Tight ly Coupled (typed) Event Sink Interface 3

6.3 Combined (typed+gener ic) Event Sink Interface 3

6.4 Event Sink Interface Design 3

7 WS Interface for Computing Function Services 3

8 Subscription Patterns for ECMA-348 3

8.1 Source-Sink Subscr ipt ion Pattern 3

8.2 Sink-Source Subscr ipt ion Pattern 3

8.3 Default Subscr ipt ion 3

8.4 Life Cycle of Subscr ipt ions 3

8.5 SOAP Subscr ipt ion Messages 3

8.6 Examples of SOAP Subscr ipt ion Messages 3

- 1 -

1 Scope
ECMA-348 2nd edition specifies a Web service interface for CSTA (ECMA-269) in Web Services
Description Language (WSDL) version 1.1. It provides WSDL definitions for solicit-response and
notification operations, referred in this Technical Report as outbound operations. These operations
are used in ECMA-348 to convey events, some negative responses and computing function
services. However, WSDL 1.1 does not specify concrete bindings for those outbound operations.

In particular, WSDL 1.1 does not provide a mechanism for transmitting events, e.g. specifying
where the switching function should send CSTA events. This Technical Report proposes to amend
ECMA-348 to establish an event channel and event-sink interface using WS-Addressing and WS-
Eventing.

This Technical Report proposes to add a Computing Function WSDL interface for proper support of
the Computing Function Services of ECMA-348.

CSTA also requires an application context before any services or events can be exchanged, to that
end, this Technical Report proposes that the next edition of ECMA-348 uses WS-Session
(ECMA-366) Services.

This Technical Report describes amendments to the 2nd edition of ECMA-348 to be effectuated
when the WS-Addressing and WS-Eventing specifications become stabilised.

2 References
ECMA-269 Services for Computer Supported Telecommunications Applications (CSTA)

Phase III, 6th Edition (June 2004):
http://www.ecma-international.org/publications/standards/Ecma-269.htm

ECMA-323 XML Protocol for Computer Supported Telecommunication Applications
(CSTA) Phase III, 3rd Edition (June 2004):
http://www.ecma-international.org/publications/standards/Ecma-323.htm

ECMA-348 Web Services Description Language (WSDL) for CSTA Phase III, 2nd
Edition (June 2004):
http://www.ecma-international.org/publications/standards/Ecma-348.htm

ECMA-354 Application Session Services (June 2004):
http://www.ecma-international.org/publications/standards/Ecma-354.htm

ECMA-366 WS-Session - Web Service Specification of Application Session Services
(June 2005):
http://www.ecma-international.org/publications/standards/Ecma-366.htm

W3C-SOAP Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

W3C-WSDL Web Services Description Language (WSDL) 1.1, W3C Note 15 March
2001: http://www.w3.org/TR/wsdl

WS-Eventing Web Service Eventing (WS-Eventing) from Oasis, August, 2004, by IBM,
Microsoft, BEA, Computer Associates, TIBCO Software, and Sun
Microsystems
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-eventing.asp

WS-Eventing-XSD WS-Eventing XSD: http://schemas.xmlsoap.org/ws/2004/08/eventing

WS-Eventing-WSDL WS-Eventing WSDL:
http://schemas.xmlsoap.org/ws/2004/08/eventing/eventing.wsdl

WS-Addressing Web Service Addressing (WS-Addressing) from W3C:
WS-Addressing 1.0 Core: W3C Working Draft (February 15, 2005):
http://www.w3.org/TR/2005/WD-ws-addr-core-20050215

- 2 -

WS-Addressing 1.0 SOAP Binding: W3C last call Working Draft (February
15, 2005): http://www.w3.org/TR/2005/WD-ws-addr-soap-20050215/
WS-Addressing 1.0 WSDL Binding: W3C Working Draft (February 15,
2005): http://www.w3.org/TR/2005/WD-ws-addr-wsdl-20050215/

3 Definitions
Outbound operations - solicit-response and notification operations as defined in 6.4 of ECMA-348.

4 Acronyms and Abbreviations
CF Computing Function as defined in ECMA-269

CF-SP Computing Function - Service Provider

CF-SR Computing Function - Service Requester

SF Switching Function as defined in ECMA-269

SF-SR Switching Function - Service Requester

SF-SP Switching Function - Service Provider

SP Service Provider as defined in ECMA-348

SR Service Requestor as defined in ECMA-348

WS Web Service as defined in W3C-WSDL

WSDL Web Services Description Language as defined in W3C-WSDL

5 Web Service Based Application Session Management
ECMA-269, on which ECMA-348 is based, requires a computing function (CF) to establish a
session (i.e. application association) with the switching function (SF) before any CSTA message
can be exchanged.

ECMA-366 defines Web services for application session management. This Technical Report
proposes to use these services in ECMA-348.

6 Event Sink Interface Definitions for ECMA-348
ECMA-348 describes four categories of operations from the perspective of the switching function, in
which it performs the role of service provider.

The computing function receives three types of outbound operations from the service provider:

1. Event (Notification)

2. One-way fault notification with no acknowledgement (Notification)

3. Request with acknowledgement (Solicit-response)

This Technical Report proposes to add a computing function WSDL to ECMA-348, which leads to
the situation that computing function and switching function can be both a service requester and a
service provider (i.e. CF-SR, CF-SP, SF-SR, and SF-SP).

The service requester has to specify the event sink to service provider in order to receive event
notification. Two general approaches can be used to define these outbound operations for the
service requester interface, namely a Loosely Coupled interface and a Tightly Coupled interface.

- 3 -

6.1 Loosely Coupled (generic) Event Sink Interface
Loosely coupled event sink Interfaces define operations for the categories of events they receive.
The loosely coupled event sink interface is based on a “wrapped” message delivery model as
defined in WS-Eventing. Events from each category are delivered to their specific event sink
interface inside category specific SOAP message. It has the advantage that the computing
function interface is loosely-coupled with the switching function interface. It only needs to expose
one operation per event category.

The loosely coupled generic event sink defines one operation for all categories of events it
receives. The loosely coupled generic event sink is defined as follows:

6.2 Tightly Coupled (typed) Event Sink Interface
The tightly coupled interface defines operations that are exact reversal of the outbound
operations as defined in ECMA-348. Each solicit-response operation in ECMA-348 is reversed
into a request-response operation, and each notification operation is reversed into a one-way
operation for CF service requester interface.

Instead of providing a complete CF service requester side interface, we illustrate the tightly
coupled event sink interface for two notifications:

<operation name="CSTA-DisplayUpdated-event">
 <input message="tns:displayUpdatedEvent"/>
</operation>

<operation name="CSTA-Delivered-event">
 <input message="tns:deliveredEvent"/>
</operation>

<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://www.ecma-international.org/standards/ecma-366/ws-session/generic_sink"
 targetNamespace="http://www.ecma-international.org/standards/ecma-366/ws-session/generic_sink">
 <types>
 <xs:schema targetNamespace="http://www.ecma-international.org/standards/ecma-366/ws-
session/generic_sink">
 <xs:complexType name="EventType" mixed="true">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>
 </types>
 <message name=”notifyEvent”>
 <part name="parameter" type="tns:EventType"/>
 </message>
 <portType name="GenericSinkPortType">
 <operation name="NotifyEvent">
 <input message="tns:notifyEvent"/>
 </operation>
 </portType>
</definitions>

- 4 -

This is a reversal of the following outbound operations defined in ECMA-348:

Both the service requester and the service provider can perform message (type) validation. But
any change to the service provider interface will require the corresponding change in the service
requester interface.

6.3 Combined (typed+generic) Event Sink Interface
The event sink can be a combination of typed and loosely coupled event interfaces. The switching
function service provider should send the event notifications only to the matched typed event sink
interface of the computing function, if existing. Otherwise, the event notification should be
delivered to the loosely coupled event interface of the computing function.

A combined (typed+generic) event sink interface is illustrated below in which the generic interface
WSDL is imported to a typed interface WSDL.

<operation name="CSTA-DisplayUpdated-event">
 <output message="tns:displayUpdatedEvent"/>
</operation>

<operation name="CSTA-Delivered-event">
 <output message="tns:deliveredEvent"/>
</operation>

<definitions
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:csta=”http://www.ecma-international.org/standards/ecma-323/csta/ed3”
 xmlns:tns="http://www.example.com/csta_combined_sink"
 targetNamespace="http://www.example.com/csta_combined_sink">

<import namespace="http://www.ecma-international.org/standards/ecma-366/ws-session/generic_sink"
location="http://www.ecma-international.org/standards/ecma-366/ws-session/generic_sink/ws-session-
generic-sink-wsdl.wsdl" />

<types>
 <xs:schema targetNamespace="http://www.example.com/csta_combined_sink">
 <xs:import namespace="http://www.ecma-international.org/standards/ecma-323/csta/ed3"
schemaLocation="http://www.ecma-international.org/standards/ecma-323/csta/ed3/csta.xsd"/>
 </xs:schema>
</types>

<message name="displayUpdatedEvent">
 <part name="parameter" element="csta:DisplayUpdatedEvent"/>
</message>
<message name="deliveredEvent">
 <part name="parameter" element="csta:DeliveredEvent"/>
</message>

<portType name="CSTATypedSinkPortType">
 <operation name="CSTA-DisplayUpdated-event">
 <input message="tns:displayUpdatedEvent"/>
 </operation>
 <operation name="CSTA-Delivered-event">

 <input message="tns:deliveredEvent"/>
 </operation>
</portType>
</definitions>

- 5 -

6.4 Event Sink Interface Design
Both loosely coupled and tightly coupled event sink interfaces can be used for event notification.
But they are based on two different architectures. In tightly coupled event sink interface, the event
sink interface is a mirrored reversal of the service provider interface. Changes made to the
service provider interface can impact all its service requesters.

On the other hand, loosely coupled event sink interface can allow the service requester and
service provider to evolve separately as long as they maintain the loosely coupled event interface
relation. A resource constrained service requester may dispatch the service event notifications
received to a more resource rich platform for processing, and it needs only a very light and stable
event sink interface for the event notification to pass through.

The tightly coupled event sink interface has the advantage of strict type checking by both the
service provider and service requester. On the other hand, the loosely coupled event sink
interface allows the service requester to do late binding with other distributed processing
resources.

Both tightly coupled and loosely coupled event interfaces can be applied, and in many cases, a
combined (typed+generic) event sink interface is preferred. The tightly coupled event sink
interface can be used for operations which are more stable and loosely coupled event sink
interface can be used for operations which are more dynamic and subject to change. WS-Session
Annex C specifies a default generic (loosely coupled) event sink interface for all subscribed
events within the session, and the typed (tightly coupled) event interface as optional.

Service providers should support the combined (typed+generic) event sink interface, and the
service requester should specify its event sink interface type declaratively to the service provider
during the event subscription as defined in Clause 6. A use case of combined event sink interface
is provided in WS-Session Annex C for ApplicationSessionTerminated service subscription, and
the event sink interface type should be declared in the event sink endpoint reference as specified
in WS-Addressing.

- 6 -

7 WS Interface for Computing Function Services
ECMA-348 defines solicit-response operations for computing functions services such as Call Detail
Report Services. WSDL 1.1 does not provide the concrete binding for these operations.

In addition to the WSDL definition for the switching function in 2nd edition of ECMA-348, the
computing function should also have its WSDL definition. Only those operations, which are
modelled in ECMA-348 as solicit-response operations, are included in the computing function
WSDL. The computing function WSDL contains the operations, which are the reversal of the
corresponding operations defined in the switching function WSDL.

Reversal means that the solicit-response operation that contains an output element followed by an
input element as defined in ECMA-348 must be reversed into an input element followed by an
output element in the computing function WSDL.

For instance, ECMA-348 defines CSTA-Call-Data-Recording-Services operation as follows:

The corresponding CF operation is defined as follows, which is the reversal of the operation defined
in the service provider WSDL interface of ECMA-348.

<operation name="CSTA-CDR-Notification">
 <input message="tns:cDRNotificationResponse"/>
 <output message="tns:cDRNotification"/>
 <fault name="FaultName" message="tns:negResponse"/>
</operation>

<operation name="CSTA-CDR-Notification">
 <output message="tns:cDRNotificationResponse"/>
 <input message="tns:cDRNotification"/>
 <fault name="FaultName" message="tns:negResponse"/>
</operation>

- 7 -

8 Subscription Patterns for ECMA-348
CSTA switching functions can be viewed as hosting various event sources, such as WS-Session,
CSTA monitors, and registrations. Event sources can be enabled using a CSTA Service Request,
e.g. a MonitorStart Service Request creates a monitor. Switching functions may notify computing
functions of these events following subscription. The computing function may link each of these
event sources to its event sink.

WS-Eventing can be used to manage the many-to-many relationships between the Event sinks and
sources through subscriptions as illustrated in Figure 1.

Figure 1 - Subscription patterns for ECMA-348

The two subscription patterns for using CSTA with WS-Eventing, without requiring any modification
to the XML Schemas of ECMA-348 or Application Session Services (WS-Session, ECMA-354) are:

1) Source-Sink: In this pattern, the computing function creates the CSTA sessions, monitors,
 and registrations using CSTA Service Requests before it subscribes to these
 entities one by one and it provides event sink for each subscription.

2) Sink-Source: In this pattern, the CF Service Requester enables a pool of event sinks by
 using the Subscribe message of WS-Eventing before the computing function
 creates the CSTA event sources using CSTA Service Requests augmented with
 references to the subscription managers from the preceding subscriptions.

8.1 Source-Sink Subscription Pattern
WS-Eventing defines the semantics for the Source-Sink pattern.

However, when a monitor is created and it begins to fire events before the Subscribe operation is
completed, the events for the monitor may be lost because the switching function has no place to
send the events. If the events were to be queued until an event sink would be linked to it, not only
would it consume resources but also events might lose their critical time value in real-time
communication. Using Snapshot Service Requests, computing functions can “catch up” with the
state of calls and devices, as illustrated in Figure 2 where the X in
SnapShotX/SnapShotXResponse can either be “Call” or “Device” (dotted lines indicate optional
messages).

Event Sinks Subscriptions Event Sources

- 8 -

MonitorStart(…)

MonitorStartResponse(Body: monitorCrossRefID=n)

Subscribe(Header: monitorCrossRefID=n)

SubscribeResponse(Body: SubscriptionManager=m)

SnapShotX(…)

SnapShotXResponse(…)

Unsubscribe(Header: SubscriptionManager=m)

UnsubscribeResponse(…)

MonitorStop(Body: monitorCrossRefID=n)

MonitorStopResponse(…)

Computing Function Switching Function

Figure 2 - Source-Sink Subscription Pattern

The use of Application Session Services as defined in ECMA-366 is the exception to the rule,
where StartApplicationSession must be used to create a Session before Subscribing to the
ApplicationSessionTerminated event. If the application session were to terminate abnormally
before the ApplicationSessionTerminated event can be subscribed to, later subscriptions to this
event will result in a corresponding Fault message that hints to the occurance of the
ApplicationSessionTerminated event.

8.2 Sink-Source Subscription Pattern
The Sink-Source pattern avoids the timing problem of the Source-Sink pattern because
computing functions subscribe to event sources before they create and enable event sources. In

- 9 -

this pattern, the switching function uses the SubscriptionManager in the SOAP header of the
CSTA Request such as MonitorStart, to link the event source, such as a monitor, to its sink or
sinks.

In sink-source pattern subscriptions within a session, the session is not the intended event
source but a context for the subscription message. To make such distinction within the framework
of WS-Eventing, additional elements must be used in the SOAP header of subscription messages
to identify the intended event source. Detailed SOAP message examples are given in 8.6.

The loosely coupled event sink interface as specified in 6.1 is needed when one CSTA message
can create several sources. The sink-source interaction pattern is illustrated in Figure 3.

Subscribe(...)

SubscribeResponse(Body: SubscriptionManager=m)

MonitorStart(Header: SubscriptionManager=m)

MonitorStartResponse(Body: monitorCrossRefID=n)

SnapShotX(…)

SnapShotXResponse(…)

MonitorStop(Body: monitorCrossRefID=n)

MonitorStopResponse(…)

Unsubscribe(Header: SubscriptionManager=m)

UnsubscribeResponse(…)

Computing Function Switching Function

Figure 3 - Interaction of the Sink-Source Subscription Pattern

- 10 -

A loosely coupled generic event sink using the sink-source subscription model can be established
easily through the mechanism of default subscription as defined in 8.3.

8.3 Default Subscription
The loosely coupled generic event sink interface for ApplicationSessionTerminated event of WS-
Session may be used as the default sink for other event sources within the Application Session
(monitor, registration, etc.) for which a subscription is not (yet) defined.

8.4 Life Cycle of Subscriptions
For the Source-Sink pattern, an event subscription becomes effective once the WS-Eventing
Subscribe message returns with a positive response. For the Sink-Source pattern, an event
subscription becomes effective when the CSTA message with reference to the subscription
returns with a positive response.

A subscription for an event source can be deleted once its source is removed. For instance, if a
monitor is removed for any reason, all subscriptions on the monitor are deemed invalid and
cannot be renewed. A subscription can be deleted explicitly by using the WS-Eventing
Unsubscribe message before or after the event source is removed.

8.5 SOAP Subscription Messages
As discussed in previous sections, the subscription to WS-Session follows the source-sink
pattern, and the subscriptions to CSTA event sources can follow the sink-source pattern. Figure 4
illustrates using both patterns of subscriptions, to establish sessions and many-to-many
relationships among event sinks and sources.

- 11 -

StartApplicationSession(…)

StartApplicationSessionPosResponse(sessionID=s_i)

Subscribe(Header: sessionID=s_i)

SubscribeResponse(Body: SubscriptionManager=m_i)

Subscribe(Header: sessionID=s_i)

SubscribeResponse(Body: SubscriptionManager=m_j)

MonitorStart(Header: SubscriptionManager=m_j)

MonitorStartResponse(Body: monitorCrossRefID=n_j)

Computing Function Switching Function

Figure 4 - combined Source-sink and sink-source Subscription pattern with WS-Session

- 12 -

8.6 Examples of SOAP Subscription Messages
The following is an example WS-Eventing Subscribe message to create a source-sink
subscription pattern to an Application Session. The event source is identified by the
aps:sessionID element.

A positive response to the Subscription request returns a SubscriptionManager element that
uniquely identifies the subscription with a wse:Identifier element.

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session"
 xmlns:esi="http://www.ecma-international.org/standards/ecma-366/event_sink_interface">
 <S:Header>
 <wsa:To>http://www.example.com/CSTA_Server</wsa:To>
 <aps:sessionID>5555</aps:sessionID>
 <wsa:MessageID>abcd</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://www.example.com/CSTA_requester</wsa:Address>
 </wsa:ReplyTo>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe</wsa:Action>
 </S:Header>
 <S:Body>
 <wse:Subscribe>
 <wse:Delivery>
 <wse:NotifyTo>
 <wsa:Address>http://www.example.com/CSTA_sink</wsa:Address>
 <esi:interface type="generic|typed|typed+generic" />
 </wse:NotifyTo>
 </wse:Delivery>
 </wse:Subscribe>
 </S:Body>
</S:Envelope>

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session" >
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <wsa:To>http://www.example.com/CSTA_requester</wsa:To>
 <wsa:RelatesTo>abcd</wsa:RelatesTo>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/08/eventing/SubscribeResponse</wsa:Action>
 </S:Header>
 <S:Body >
 <wse:SubscribeResponse>
 <wse:SubscriptionManager>
 <wsa:Address>http://www.example.com/CSTA_Subscription</wsa:Address>
 <wsa:ReferenceParameters>
 <wse:Identifier>1234</wse:Identifier>
 </wsa:ReferenceParameters>
 </wse:SubscriptionManager>
 </wse:SubscribeResponse>
 </S:Body>
</S:Envelope>

- 13 -

For the sink-source subscription pattern, the following SOAP message should be used within a
session to create a subscription for Monitors. The empty csta:monitorCrossRefID element in the
SOAP header designates that the subscription is for a type of event source within the session.

The positive response to the subscription request above returns a SubscriptionManager element
that uniquely identifies the subscription with a wse:Identifier element. An example of a
subsequent MonitorStart Service Request whose SOAP header contains a reference to the event
subscription is illustrated below.

<S:Envelope
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session" >
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <invokeID>1</invokeID>
 <wse:SubscriptionManager>
 <wsa:Address>http://www.example.com/CSTA_Subscription</wsa:Address>
 <wsa:ReferenceParameters>
 <wse:Identifier>1234</wse:Identifier>
 </wsa:ReferenceParameters>
 </wse:SubscriptionManager>
 </S:Header>
 <S:Body >
 <csta:MonitorStart><!-- omitted --></csta:MonitorStart>
 </S:Body>
</S:Envelope>

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session"
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3"
 xmlns:esi="http://www.ecma-international.org/standards/ecma-366/event_sink_interface">
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <csta:monitorCrossRefID />
 <wsa:To>http://www.example.com/CSTA_Server</wsa:To>
 <wsa:MessageID>abcd</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://www.example.com/CSTA_requester</wsa:Address>
 </wsa:ReplyTo>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe</wsa:Action>
 </S:Header>
 <S:Body>
 <wse:Subscribe>
 <wse:Delivery>
 <wse:NotifyTo>
 <wsa:Address>http://www.example.com/CSTA_sink</wsa:Address>
 <esi:interface type="generic|typed|typed+generic" />
 </wse:NotifyTo>
 </wse:Delivery>
 </wse:Subscribe>
 </S:Body>
</S:Envelope>

- 14 -

CSTA registration requests, such as RouteRegister, can refer to the subscription (manager) in
the same way. A successful completion of the request indicates that the event sink or service
requester service of the object (session, monitor, or registration) is defined in the subscription. If
the SubscriptionManager is invalid, a negative response should be returned.

A sink-source pattern subscription within a session for subsequent CSTA RouteRegister message
is illustrated below.

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session"
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3"
 xmlns:esi="http://www.ecma-international.org/standards/ecma-366/event_sink_interface">
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <csta:routeRegisterReqID />
 <wsa:To>http://www.example.com/CSTA_Server</wsa:To>
 <wsa:MessageID>abcd</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://www.example.com/CSTA_requester</wsa:Address>

 </wsa:ReplyTo>
 <wsa:Action>http://schemas.xmlsoap.org/ws/2004/08/eventing/Subscribe</wsa:Action>
 </S:Header>
 <S:Body>
 <wse:Subscribe>
 <wse:Delivery>
 <wse:NotifyTo>
 <wsa:Address>
 http://www.example.com/CSTA_client
 </wsa:Address>
 <esi:interface type="typed" />
 </wse:NotifyTo>
 </wse:Delivery>
 </wse:Subscribe>
 </S:Body>
</S:Envelope>

- 15 -

An example of CSTA RouteRegister message associated with a subscription created by sink-
source pattern subscription is given below.

An example of notification message of CSTA DeliveredEvent event to a generic event sink is
given below.

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session"
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3">
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <invokeID>9999</invokeID>
 <wsa:To> http://www.example.com/CSTA_sink </wsa:To>
 <wsa:Action>http://www.ecma-international.org/standards/ecma-366/generic_sink/GenericSinkPort
Type/NotifyEvent</wsa:Action>
 </S:Header>
 <S:Body>
 <csta:DeliveredEvent>

<csta:monitorCrossRefID>1</csta:monitorCrossRefID>
<!-- omitted

</csta:DeliveredEvent>
 </S:Body>
</S:Envelope>

<S:Envelope
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session" >
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <invokeID>2</invokeID>
 <wse:SubscriptionManager>
 <wsa:Address>http://www.example.com/CSTA_Subscription</wsa:Address>
 <wsa:ReferenceParameters>
 <wse:Identifier>5678</wse:Identifier>
 </wsa:ReferenceParameters>
 </wse:SubscriptionManager>
 </S:Header>
 <S:Body >
 <csta:RouteRegister><!-- omitted --></csta:RouteRegister>
 </S:Body>
</S:Envelope>

- 16 -

An example notification operation carrying a DeliveredEvent to a typed event sink is given below.

<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2005/02/addressing"
 xmlns:aps="http://www.ecma-international.org/standards/ecma-354/appl_session"
 xmlns:csta="http://www.ecma-international.org/standards/ecma-323/csta/ed3">
 <S:Header>
 <aps:sessionID>5555</aps:sessionID>
 <invokeID>9999</invokeID>
 <wsa:To> http://www.example.com/CSTA_sink </wsa:To>
 <wsa:Action>http://www.example.com/csta_combined_sink/CSTATypedSinkPortType/CSTA-
Delivered-event</wsa:Action>
 </S:Header>
 <S:Body>
 <csta:DeliveredEvent>

<csta:monitorCrossRefID>2</csta:monitorCrossRefID>
<!—omitted

</csta:DeliveredEvent>
 </S:Body>
</S:Envelope>

