ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

FORMAL DEFINITION
of the
SYNTAX OF COBOL

September 1970

Free copies of this document are available from ECMA,
European Computer Manufacturers Association,

114 Rue du Rhone — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

Y
FORMAL DEFINITION
of the
SYNTAX OF COBOL
»

Hcptemher 1970

FORMAL DEFINITION
of the
SYNTAX OF COBOL

PREFACE

CONTENTS

INTRODUCTION TO THE NOTATION

FORMAL DEFINITION OF COBOL SYNTAX

G'

Syntactic Definitions of General

Nature

EMPTY
COBOL GRAPHICS
COBOL CONTROLS

SOME FREQUENTLY USED SEPARATORS

WORD

PROPER NONNUMERIC LITERAL
PROPER NUMERIC LITERAL
FIGURATIVE CONSTANT
LITERAL

ARITHMETIC OPERATOR

PROPER RELATIONAL OPERATOR
PICTURE CHARACTER STRING
COMMENT STRING

OTHER LANGUAGE STRING

COBQOL Text

SEPARATORS

GENERALIZED CHARACTER STRING

STRUCTURE OF COBOL TEXT

Page
8

xiii

L N o RN

dd
12
13
14
15

16
17
18

N.

- 11 =

Names defined by the Implementors

HARDWARE NAMES
OTHER NAMES

COBOL Program

COBOL PROGRAM STRUCTURE

Identification Division

IDENTIFICATION DIVISION STRUCTURE
PROGRAM-ID PARAGRAPH

DATE COMPILED PARAGRAPH

OTHER PARAGRAPHS

COMMENT PARAGRAPH BODY

Environment Division

ENVIRONMENT DIVISION STRUCTURE
CONFIGURATION SECTION STRUCTURE
INPUT-OUTPUT SECTION STRUCTURE
SOURCE COMPUTER PARAGRAPH
OBJECT COMPUTER PARAGRAPH
SEGMENT LIMIT CLAUSE
SPECIAL-NAMES PARAGRAPH
SPECIAL-NAMES CLAUSE
CURRENCY-SIGN CLAUSE
DECIMAL-POINT CLAUSE
FILE-CONTROL PARAGRAPH

SELECT CLAUSE

ASSIGN CLAUSE

MULTIPLE REEL/UNIT CLAUSE
ALTERNATE AREA CLAUSE
FILE-LIMIT CLAUSE

21

22
23
24
25
26

T
28
29
30
31
32
33
34
37
38
39
41
42
43
44
45

- 1ii -

ACCESS MODE CLAUSE 46
PROCESSING MODE CLAUSE 47
KEY CLAUSE 48
I-0-CONTROL PARAGRAPH 49
RERUN CLAUSE 50
SAME CLAUSE 51
MULTIPLE FILE CLAUSE 52
Data Division

DATA DIVISION STRUCTURE 53
FILE SECTION 54
WORKING STORAGE SECTION 55
REPORT SECTION 56
FD SKELETON 57
SD SKELETON 59
RD SKELETON 61
FILE AND SORT FILE RECORD

DESCRIPTION SKELETON 63
WORKING-STORAGE DATA DESCRIPTION
SKELETON 71
REPORT~-GROUP DESCRIPTION SKELETON 75
BLANK WHEN ZERO CLAUSE 81
BLOCK CLAUSE 82
CODE CLAUSE 83
COLUMN NUMBER CLAUSE 6¢
CONTROL CLAUSE 85
DATA RECORDS CLAUSE 86
GROUP INDICATE CLAUSE 87
JUSTIFIED CLAUSE 88
LABEL RECORDS CLAUSE 39
LINE NUMBER CLAUSE 90
NEXT GROUP CLAUSE 91

OCCURS CLAUSE 92

PAGE LIMIT CLAUSE
PICTURE CLAUSE
RECORD CONTAINS CLAUSE
REDEFINES CLAUSE
RENAMES CLAUSE
REPORT CLAUSE

RESET CLAUSE

SOURCE CLAUSE

SUM CLAUSE
SYNCHRONIZED CLAUSE
TYPE CLAUSE

USAGE CLAUSE

VALUE CLAUSE

VALUE OF CLAUSE
IDENTIFIERS

Procedure Division

PROCEDURE DIVISION STRUCTURE
DECLARATIVE PORTION
NON-DECLARATIVE PORTION
SECTIONS

SECTION NAME

SECTION BODY

PARAGRAPH

PARAGRAPH NAME

PROCEDURE NAME

PARAGRAPH BODY

SENTENCES

IMPERATIVE SENTENCES
CONDITIONAL SENTENCE
COMPILER DIRECTING SENTENCES
DECLARATIVE SENTENCE

Page

94

95
100
101
102
103
104
105
106
107
108
109
110
111
112

119
120
121
122
123
124
125
126
127
128
129
130
15T
132
133

IMPERATIVE STATEMENTS
CONDITIONAL STATEMENTS
DECLARATIVE STATEMENTS
COMMON OPTIONS

COMMON TERMS
ARITHMETIC EXPRESSIONS
CONDITIONS

ACCEPT STATEMENT

ADD STATEMENT

ALTER STATEMENT

CLOSE STATEMENT
COMPUTE STATEMENT
DISPLAY STATEMENT
DIVIDE STATEMENT
ENTER STATEMENT
EXAMINE STATEMENT
EXIT STATEMENT
GENERATE STATEMENT

GO TO STATEMENT

IF STATEMENT

INITIATE STATEMENT
MOVE STATEMENT
MULTIPLY STATEMENT
NOTE STATEMENT

OPEN STATEMENT
PERFORM STATEMENT
READ STATEMENT
RELEASE STATEMENT
RETURN STATEMENT
SEARCH STATEMENT

SEEK STATEMENT

SET STATEMENT

Page

134
135
136
137
138
139
140
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

- vi -

SORT STATEMENT

STOP STATEMENT
SUBTRACT STATEMENT
TERMINATE STATEMENT
USE STATEMENT

WRITE STATEMENT

L. COBOL Library

STRUCTURE OF LIBRARY CALLS
LIBRARY NAME

R. Reserved Words

INDEX OF THE ECMA TC6 SYNTAX
DEFINITION OF COBOL

EXPLANATORY NOTES

Appendix: A METALANGUAGE FOR THE
DESCRIPTION OF PROGRAMMING
LANGUAGES

Page

167
168
169
170
171
172

175
174

175

177

195

199

PREFACE

_-ix.-.

PREFACE

This formal definition of the syntax of COBOL was prepared
by the ECMA Technical Committee on COBOL (TC6).

The work was initially undertaken at the request of the
CODASYL COBOL Publication Subcommittee. It resulted in the
publication in 1967 of a Preliminary Edition based on
COBOL Edition 65. This new edition is based on the IS0
Draft Recommendation 1989 on COBOL.

The document comprises four distinct parts and an appendix.
The first part briefly describes the notation used, the
second part is the formal definition of the COBOL syntax,
the third part is an index showing where each meta-variable
is defined and where it is used, the fourth part contains
explanatory notes for those definitions marked with an
asterisk, and the appendix is a complete and ricorous de-
scription of the metalanguage. The second part is divided
into three sections: syntactic definitions of ceneral na-
ture, level 1 syntax defining the COBOL text and level 2
syntax defining the COBOL program. The level 1 syntax de-
scribes the basic structure of the COBOL languace. It de-
fines a set of strings, called COBOL texts, in terms of
generalized words (including C0BOL words, literals, arith-
metic and relational operators, etc.) and word separators.
The lLevel 2 syntax describes the detailed structure of

the COBOL Llanguace. 1t defines a set of strincs, called
COBOL programs, in terms of specific sequences of ceneral-
ized words and word separators. Although a COBOL text and

a COBOL program have each been defined as a strinc of char-
acters, an attempt has been made to show the relationship
between such a string and the Reference Format.

The metalanguage used is an extension of the metalancuage
used in the ALGOL 60 Report, known as the Backus normal
form. It is introduced in the first part: "Introduction

to the notation used" and described in detail in the ap-
pendix under the title "Formalism for syntactical defini-
tion". Most extensions have been introduced to reduce the
number and complexity of production rules constitutinc the
formal definition of the COBOL syntax. For example certain
extensions greatly simplify the description of the nested
structure of records. Whenever these extensions are used,
the usual Backus notation, based on Chomsky context-free
grammars (type 2), could have been used. However, the
convention adopted to show relationship between declara-
tion of data—-names and the subsequent use of those data-
names is different in that this relationship could not be
expressed in Backus notation. This is a well known context-
dependent aspect of programming languages. English text has
been used where needed to adequately supplement the meta-
language.

It has been difficult to decide whether some COBOL rules
should be included in the syntax and somewhat arbitrary de-
cisions had to be made. The level of detail expressed in
the production rules is also somewhat arbitrary. It is
often founded on an attempt to facilitate the use of this
formal definition by the human reader, in conjunction with
the existing descriptions of COBOL. For the same reason,
the names of metavariables have been chosen to reflect
their meaning, and the names defined in the draft IS0
Recommendation on COBOL have been used wherever feasible.

The application of the production rules given in level 2
syntax will generate all valid COBOL programs. However,
invalid programs will also be generated. For example the
following is not reflected:

- uniqueness of names

- relationship between qualifiers and the corresponding
data herarchy.

= relationships between subscripts or indices and the cor-
responding table declarations

- some relationships between clauses and/or statements
- possible indentation of data description entries.

With the exceptions mentioned above, this formal defini-
tion is believed to be in agreement with the ISO Recommen-—
dation on COBOL.

However, the modular structure of the IS0 Recommendation
is not reflected; the syntax shown applies to the combina-
tion of the upper levels of all modules.

INTRODUCTION
TO THE NOTATION

a

b)

c)

- Xiii -

Introduction to the NOTATION

1. General

In the following it is assumed that the reader is familiar with
the standard COBOL specification. This informal explanation is
intended to further the understanding of the notation used in
this Formal Syntactic Definition by way of examples where the
new symbols are described in the order of appearance. It is
followed by a summary of all the symbaols concerned (%),

Observe that the standard COBOL specification already takes
advantage of the existence of a kind of formal syntactic de-
finition as shown by the Formats. The present Formal Syntactic
Definition is intended to be merely more rigorous, leaving
less or (hopefully) no place for ambiguous interpretation of
the syntax.

2. Informal Approach through Examples

.1 As a first example consider entry D12+ (page Z2):

D124 <blogk-clause>::=
BLOCK # [CONTAINS #]
[<positive-integer> # TO #]
<positive-integer>
€[# CHARACTERS] | # RECORDS 3

and the corresponding format of the COBOL specification (ref.
2 SEQ, chapter 7, 2.3.2)

: b
BLOCK CONTAINS [integer=1 TO]l integer-2 {FHARACTERS

RECORDS

Now, compare these two descriptions element by element

Formal Syntactic Definition COBOL Specification Format
BLOCK # BLOCK
[CONTAINS #] CONTAINS
[<positive-integer># TO #] linteger-1 TO]
<positive-integer> integer-2
<(# CHARACTERS] I!# RECORDSY> {FHARACTERS}
RECORDS

It will be seen that the formal notation has been designed to
be as closely related as possible to the COBOL specification

formats. Thus

the appearance of upper-case letters means, in both descrip-

tions, the actual occurrence of these letters in program text;

in both descriptions, square brackets [] mean that the con-
option;
Note, however, some differences

underlined upper-case words of the COBOL specification are not

underlined in the formal notation, whereas

* A more formal and complete description of the notation is to
be found in the Appendix.

d)

e)

f)

g)

h)

=~ Xy -

noise words, shown with non-underlined upper-case words in

the COBOL formats, are described in the formal notation by
upper—-case words enclosed in square brackets (comprising only
the noise word and possibly the smbol #, which is explained
below),
e.g. [CONTAINS #] instead of CONTAINS
[# CHARACTERS] instead of CHARACTERS

the symbol | ('or’ represented by exclamation mark) has been
introduced to express that an alternative has to be selected
from two or more possibilities; thus

[# CHARACTERS] | # RECORDS
means that either # CHARACTERS or # RECORDS exclusively, may

appear in the program text. If the former, it may be omitted
as shown by the surrounding square brackets.

It will be noticed that the right hand part of D124 shows
the exact punctuation allowed or required in the COBOL text

means the actual occurrence of one or more spaces. Note
also the introduction of the symbols

< > € 3
These are various types of delimiters.

Syntactic units representing parts of the program text to

be filled in at the user’'s option from a given set of possi-

ble words, strings of words or other entities are represented
by lower-case words (or hyphenated words) enclosed in Backus

brackets < >. In the above example 77777

<positive-integer>

is such an instance. In fact such a lLower-case word enclosed
in Backus brackets can be considered as a variable, that is,
a notation to be replaced by a variable content; "variables”
of this kind have been given the name meta-variables.

As will be seen a meta-variable can be used to represent not

only an element (like positive-integer), but any specified
portion of a COBOL program. For instance, the whole compound

BLOCK # [CONTAINS #1]
[<positive-integer> # TO #]
<positive-integer>

<[# CHARACTERS] ! # RECORDS >

is represented in the example by the single meta-variable
<block-clause>

This is possible because at entry D 124 <block-clause> has
been precisely defined as being equivalent to the above com-
pound.

This equivalence is specified by the symbol ::= separating
<block=-clause> from its definition which is given by the com-
pound.

The symbol ::= means "is defined by" and the whole entry is
called a meta-definition.

i) Notice in addition that the alternatives
[# CHARACTERS] | # RECORDS
appear enclosed in the special braces ¢ % as follows :
<[# CHARACTERS] | # RECORDS »
The aim of the special braces
€ >

is to delimit a specific portion in the formal notation. In
this particular case the function of the braces is to deter-
mine the scope of the alternatives defined by the ! operator.
Later, other uses of delimitation by braces will be described

(in particular in connection with the ellipsis).
) 2.2 As a second example, consider the D 16 entry (page 57):
D 16 <fd-clauses> ::= ’

¢l<;><block-clause>] t
[<;><record-contains-clause>] t
<;><label-records-clause> %
[<;><value-of-clause>] 1

tl<;><data-records-clause>] |
<;><report-clause>>}

Here is a whole structure named (i.e. ggjiging) <fd-clauses>,
of which the above mentioned <block-clause> is just one con-
stituent part, and moreover an optional one, since it is en-

closed in square brackets.

This second example introduces some new symbols.

i) There is the symbol <;> representing the occurrence of one
or_more spaces optionally preceded by a semicolon.
% Vhem there are the permutation brackets
) ¢
and the permutation separatols
+

meaning that all syntactic units contained between the per-
mutation brackets and delimited by the permutation separators
may appear in any order in the program text, at the user’s
option. T T TTT7

It is now possible to interpret the meta-definition D 16. Re-
member that the | designates (and separates) two possible al-
ternatives. Thus, D 16 means that

<fd-clauses>

represents a compound of clauses optionally preceded by a
semicolon, where the compound comprises one mandatory clause,
namely

<label-records~clause>

three optional clauses, namely

<block-cl ause>
<record-contains—clause>
<value-of-clause>

e ——————————————————————————— —————————|

L)

m)

n)

- Xvi =

and either the <data-records-clause> which is optional or

the <report-clause> and, further, that these clauses may
appear in any order by virtue of the permutation brackets.

In the same way as <block-clause> was defined in the first
example as D124, the other meta-variables

<record-contains-clause>
<label-records-clause>
<value-of-clause>
<data-records-clause>
<report-clause>

are defined elsewhere in the book, that is at their proper
entries.
In D 16 only the meta-variable <fd-clauses> is defined.

Going one more step backwards consider now the entry D 15
(page57):

D 15 <ms-file-description>

“~FD # 7
t<sequential-ms-file-name-declaration>|
<random-ms—file-name-declaration>?
€<;><copy-clause>!
<fd-clauses>¥<.>

In this third example new symbols are introduced, namely
<.>, & and 7T

The symbol <.> represents the actual occurrence of a_period
followed by one or more spaces.

The symbol « (horizontal arrow) means that the next character
must be in area A of a new Line of the reference format.

The symbol * (vertical arrow) means that the next character
must be in area B of either the same lLine or the following
one of the reference format.

Thus, this third example reads

<ms—-file-description> 1is defined by the letter F in area
A of a new Line, followed by the letter D, followed by one
or more spaces, then, beginning in area B,

then

either one or more spaces optionally preceded by a semi-
colon, and followed by a <copy-clause>
or the <fd-clauses>

in each case, followed by a period and one or more spaces.

Looking further backwards it will be seen that <ms-file-
description> appears in the definition of <file-specification>

o)

- xvii -

D 5 <file-specification> ::=

<non-ms—-file-description>
[<non=ms=record-description>]...!
<ms—file—-description>
[<ms-record-description>]...

This meta-definition demonstrates the usage of the last symbol
to be described in this introduction, namely the repetition
symbol, called ellipsis, and represented by three dots ...

The ellipsis specifies that the immediately preceding syntac-
tic unit may be repeated any number of times at the user’s
option, exactly as stated in the familiar COBOL specification.
The delimitation of the "immediately preceding syntactic unit”
may be found by searching for the immediately preceding closing
brace, bracket or Backus bracket and finding the logically
matching opening brace, bracket or Backus bracket. Between
these two lies the syntactic unit concerned.

Examining D 5, it will easily be seen that <file-specification>
is defined as one of two alternatives. For instance, the se-
cond alternative (after the ! symbol) consists of

the appearance of <ms-file-description> followed
by no, one, or more occurrences of <ms-record-
description>

Notice also that since the latter is a meta-variable these
successive occurrences will in general represent successive
gijnggQE representations of <ms—-record-description>.
Following the track still further backwards, it will be seen
that <file-specification> appears in the definition of
<file-section-body> (D4), which, in turn, appears in
<file-section> (D3), and so on through <data-division-body>

(D2), back, eventually, to <data-division> (D1).

So, the Data Division is defined by means of a chaining of
successive meta-definitions, forming a completely determined
tree and showing the exact layout of the Data Division of
every syntactically correct COBOL program.

Having acquainted himself with the notation by working through
the above examples, the reader will then find no difficulty
going through the following summary thereby recapitulating

and refining the knowledge gained.

Summary of the NOTATION used in the Formal Syntactic Defini-

The Meta-Definition

A meta-definition is a syntax rule expressed in a formal no-
tation. Each meta-definition defines a new syntactical entity
as a specific arrangement of COBOL characters and other syn-
tactical entities. The name of the syntactical entity to be
defined appears on the left-hand side of the definition symbol
which is followed by the definition.

5.2

3wl

r

= WVIT] =

The Metalanguage

2

3.2.1 Definition Symbol

The following symbol, ::=, is used as definition symbol.
Meta-Variables (Syntactical Entities)

Lower—case words and other symbols enclosed in Backus
brackets represent parts of the COBOL text, whose per-
missible structures are defined outside the containing
meta-definition.

Meta—-Constants

Upper-case words, numbers and special characters not
enclosed in Backus brackets represent the actual oc-

currence of these upper-case words, numbers and special

characters in the COBOL text.

3.2.4 Meta-Operators and Meta-Delimiters
3.2.4a Alternatives

The OR Symbol, !, indicates and separates alternatives.

3.2.4b Braces

Braces, € », enclosing a portion of a meta-definition,
are used for two different functions:

id to indicate that a selection of one of the options
listed between the braces and separated by the OR
symbol, |, must be made;

ii) to delimit a portion of the meta-definition, for
instance in connection with repetition (see 3.2.4c
below).

F2shc Repitition

An ellipsis, ..., indicates possible repitition of the
preceding element. The preceding element may be a
COBOL character, a meta-variable or a group of such
elements enclosed in brackets or braces.

3.2.4d Permutation

When the order of elements is immaterial these elements
are separated by the permutation—separator,f , and
grouped within permutation-brackets { *.

Unless otherwise specified the sequence of elements
shown is compulsory.

Other Conventions

The following symbols are used

b
#
e.

to represent the COBOL character “space”
to represent one or more b

to show that the following element must start in area A
of a new Lline of the reference format

to show that the following element must start in area B
of the reference format.

FORMAL DEFINITION
OF COBOL SYNTAX

EMPTY

G1

G. SYNTACTIC DEFINITIONS OF GENERAL NATURE

{empty>

. .=
. »

COBOL GRAPHICS
G2 {non-zerc-digit)> ::=
112131 415161718129

63 <zero-diglt) ::=
0

Gl {digit) ::=
{zero-digit)> | <{non-zero-digilt)>

G5 <letter> ::=

<oua
<m R
N
s
czo

1l

G7 <arithmetic-expression-character> ::

+ 1 -1 %1/
* (8 (relatiog-character) : o
S 1 | =

* G9 <cur§sncy—sign> D=

G10

G11

G12

G13

G14

&l5

G16

{terminating-character> ::=
i b, 1

.
3

{quotation-marlky ::=
{parenthesis)> ::=
!

{proper-punctuation-character)> ::=
{terminating-character) !
{quoctation-mark> !
{parenthesis>

{special-character) ::=
{arithmetic~-expression-character>
{relation-character> !
{eurrency-sign> !
{proper-punctuation-character>

{cobol-character) ::=
{digit> |
{letter> |
{space> |
{special-character>

{computer-character) ::=
{cobol-character)> |
{additional-data-character)

!

-

COBCL CONTROLS

* G17 <strophe-mark>
o

* 018 <skip-into-area-b> ::

T

Il

alle

SOME FREQUENTLY USED SEPARATORS
G19 <spaces)> ::=
{spaced...

For readabllity purposes, the abbreviation # will
be used for {spaces) ,

G20 <.> ti=
.
621 <,> T =
[,] #
Gea XKi> ji=
) (i1 #

6=
WORD

Ge3 <{word-element)> ::=
{digit> | {letterd ! =

G24 <word-terminator) ::=
<digit)> | <letter)

ges5 <word> :i:=
{word=-termina tor)
[[{word-element>...]
{word-terminator)]
The maximum number of characters 1s 30.

G26 <alpha-word) ::=
{word> contalning {letter)

G27 <non-reserved-word> ::=
{word)> diff <{reserved-word>

028 <non-reserved-alpha-word) ::=
{alpha=-word> diff {reserved-word>

PROPER NONNUMERIC LITERAL

G29 <literal-string) ::=
{computer-characterd,,.
not containing "
The maxlmum number of characters 1s 120,

G30 <proper-nonnumeric-literald> ::=
" {literal-string> "

PROPER NUMERIC LITERAL

G31

G32

G33

G34

G35

G36

{integer)> ::=
s BT 5
The maximum number of digits is 18,

{decimal-fractiond ::=
{deciml-point> {integer)

{unsigned=-proper-numeric-literald> ::=
{integer> |
{decimal-fractiond> !
{integer> {decimal-fractiond
The maximum number of digits is 18,

{sign> ::=
+ 1 =

(prOfer-numeric-literal> 3=
{sign>] <unsigned-proper-numeric-literal>

{positive-integer) ::=
{integer)>
containing <{non-zero-digit)>

FIGURATIVE CONSTANT

G37 <simple-figurative-constant) ::=
ZERO | ZEROS | ZEROES |
SPACE | SPACES |
HIGH=VALUE | HIGH=VALUES |
LOW=VALUE | LOW=VALUES |
QUOTE | QUOTES

G38 <{compound-figurative-constant) ::=
ALL # <{simple-figurative-constant)> |
ALL # <{proper-nonnumeric-literal)>

G39 <figurative-constant) ::=
{simple-figurative-constant) |
{compound=figurative-constant>

c40 <zero-figurative-constant) ::=
ZERO | ZEROS | ZEROES

<10
LITERAL

641 <nonnumeric-literal) ::=
{proper-nonnumeric-literal) |
{figurative-constant)

Gh2 <numeric-literald ::=
{proper-numeric-literal> |
{zero-figurative=-constant)

G43 <literald> ::=
{nonnumeric-literal> |
{numeric-literald>

k]

G
ARITHMETIC OPERATOR

chly <arithmetic-operatord ::i=
+|_|*|/!*a¢-

PROPER RELATIONAL OPERATOR

* gLs {proper-relational-operatord

>1 <1 =

=12=

PICTURE CHARACTER STRING

G46

{picture-character-string> ::

{pilcture>

COMMENT STRING

G47 <{comment-string> :
{computer-chara

ct
not containing <.

“1lm

er>.es
>

¢

OTHER LANGUAGE STRING

G48 <other-language-string>
{computer=character>., ..

~16

T. COBCL TEXT
SEPARATORS

ik {separatory ::=

#1040 GH

T2 <other-language-string-terminator)> ::=
{empty>
T3 {generalized-separator) ::=

{separatord |
{other-language=-s tring-terminatord>

o T
GENERALIZED CHARACTER=-STRING

T4 {generalized-character-string=-type-one) ::=
{word> |
{proper-nonnumeric=literal> !
{rroper-numeric-literal> |
{arithmetic-operator)> |
{proper-relational-operator)>

T5 <generalized-character-string-type-two> ::=
{pleture-character-string> |
{comment-string> !
{other-language-string>

76 {generalized-character-string> ::=
{generalized-character-string-type-one> |
{generallzed-character-string-type=-two)>

-18-
STRUCTURE OF COBOL TEXT

7 {structure)> ::=
{generalized-character-string> |
{structure>
{generalized-separator)> [<{skip-into-area-b>]
{structure> |
(<{structure>)

T8 <{strophed> ::=
{strophe-mark>
{structure)
{separator)

T9 <cobol-texty ::=
{strophe>...

"~ [

N, NAMES DEFINED BY THE IMPLEMENTOR

HARDWARE NAMES

N1

N2

N3

N4

N5

{computer-name> ::=
{word>
speclfled by the lmplementor

{implementor-name-for-type-of-io-unit> ::
{word)>
specified by the implementor

{implementor-name-for-individual-io-unit)>
{word>
specified by the implementor

{implementor-name=for-rerun-medium) ::=
{word>
specified by the implementor

{implementor-name-for-individual-switch>
{word>
specified by the implementor

Il

420

OTHER NAMES

N6

N7

N8

N9

{additional-data-character)> ::=

This proper-meta-variable 1s specified
by the implementor.

{implementor-name-for-paper-advanced ::=
{word>
specified by the implementor

]

{implementor-name=for-code~for-revort-grouss>
{word>
specified by the implementor

{other-language-name)> ::=
{word)>
speclfied by the implementor

C. COBOL PROGRAM
COBOL PROGRAM STRUCTURE

C1 {cobol-programy ::=
{identification-division>
{environment-division>
{data-division)
{procedure~-division>

R

=-22=

I. IDENTIFICATION DIVISION
IDENTIFICATION DIVISION STRUCTURE

T1 {identification-division> ::=
«IDENTIFICATION # DIVISION <.>
{identifilcation-division~body>

I2 <identification-division-body> ::=
{program-id-paragraph>
{author=-paragraphd]

{installation-paragraphd]
[{da te-written-paragraph>]
[{date~compiled-paragraphd]

[{security-paragraphd]
[{remarks-paragraph]

=23

PROGRAM=TID PARAGRAPH

I3

I4

15

16

{program-id-paragraph> ::=
«~PROGRAM=ID <.>
{program-1d-paragraph=-body>

{program-id-paragraph-body)> ::=
{program-1id-entry>

{program-id-entry> ::=
{program-name-declaration)> <.>

<pro%ram-name-declaration) te=
non-reserved-word>

=2la
DATE=COMPILED PARAGRAPH

I7 {date-compiled-paragraph> ::=
«DATE-COMPILED <.>
[{comment~paragraph-body>]

OTHER PARAGRAPHS

18

19

I10

I11

I12

{author-paragraph) ::=
«AUTHOR <, >
[{comment-paragraph-body>]

{installation-paragraphd ::=
«INSTALLATION <.>
[{comment-paragraph-body> |

{date-written-paragraph) ::=
«DATE=WRITTEN <.>
[{comment=paragraph-body>]

<secur1ty-para%raph> ta=
~SECURITY <.>
[{comment-paragraph-body]

{remarks-paragraphd> ::=
“REMARKS %.)
[<comment-paragraph=body>]

r

26w
COMMENT PARAGRAPH BODY

I13 <{comment-paragraph-body> ::=
{comment-entry>...

I14 <comment-entryd ::=
{comment-string> {.>

=27

E. ENVIRONMENT DIVISION
ENVIRONMENT DIVISION STRUCTURE

E1 {environment-division> ::=
«INVIRONMENT # DIVISION <.>
{environment-division-body>

E2 <{environment-division-body)> ::=
{configuration-section>
[<{input-output-sectiond]

=28
CONFIGURATION SECTION STRUCTURE

E3 {configuration-section) ::=
«~CONFIGURATION # SECTION <.>
{configuration-section-body>

E4 {configuration-section-body) :=
{source-computer-paragraph)
{obJect-computer-paragraph)>
[{special-names-paragraph)]

-20-

INPUT=0UTPUT SECTION STRUCTURE

E5 {input-output-section) ::=

«INPUT=0UTPUT # SECTION <.>
{input-output-section-body>

E6 <{input-outout-section-body>
{file-control-paragraph>

[{i-o=control-paragraphd]

-30=
SOURCE=COMPUTER PARAGRAPH

E7 {source-computer-paragraph> ::=
«SOURCE-COMPUTER <, >
{<copy-entry> |
{source-computer-paragraph-body>}

E8 (source-computer-paragraph—body> 3=
{source-computer~-entry>

E9 <{source-computer-entry> ::=
{ecomputer-name> <,>

-31=
OBJECT=-COMPUTER PARAGRAPH

E10 <object-computer-paragraphd ::=
«0OBJECT=COMPUTER <.>
{<copy-entry> |
{ob ject-computer-paragraph~body>4

E11 <object-computer-paragraph-body> ::=
{obJject-computer-entry)>

E12 <obJect-computer-entry)> ::=
{computer-name> [<{,> <{memory-size-clause)]
[€;2 (segment~limit-clause§% o

E13 <memory-size=-claused ::=
MEMORY # [SIZE #]
{integer> # 4WORDS | CHARACTERS ! MODULES)

= 32 -
SEGMENT=-LIMIT CLAUSE

E14 <{segment-limit-claused ::=
SEGMENT-LIMIT # IS #
{priority-number-limit>

E15 <priority-number-limity ::=
[0].., 4<empty> | 1 1 2
diff £03...

I 3 1 43 {digit>

-33=-
SPECTIAL-NAMES PARAGRAPH

E16 <special-names-paragraphd> ::=
«~SPECIAL-NAMES <.>
{<{copy-entry> |
{special=-names=-paragraph-body>7

E17 <{specilal-names-paragraph-body> ::=
{specilal-names-entry>

E18 <special-names~entry> ::=
{special-names-clauses)>
[¢(,> <currency-sign-clause)]

[{,> {decimal-point-clause>] <.> !

{ecurrency~silgn-clause)

[&> {decimal-point-clause>] <{.> |

{decimal-point-clause> {,>

E19 <special-names-clauses> ::=
{specilal-names-clause)
[{,> {speclal-names~-clause>]...

SPECIAL-NAMES CLAUSE

E20 {special-names=claused ::=
{non-switch~special-names-clause, !
{switch-special-names=-clause>

E21 <non-switch-special-names-clause> ::=
{implementor-name-for-individual-io-unit> #
IS8
{mnemonlc=-name-declaration=for-individual-io-unit>
|
{implementor-name-for-type-of-io-unit) #
IS
{mnemonic=name-declaration-for-type-of-io-unit)> !
{implementor-name-for-paper-advance> #

%ﬁngmonic-name-declaration—for-paper-advance) |
{implementor-name-for-code-for-report-groups> #
IS
{mmemonic-name-declaration~for-code=for-report-
groups)

E22 <{switch-special-names-claused> ::=

{implementor-name-for-individual-switch> #

IS ;7

fgnemonic-name-declaration-for-individual—switch)
>

<s&1tch-status-name—assignment)] l

{implementor-name-for-individual-switch> #

{swiltch=-status-name-assignment)

=35

E23 <{mnemonic-name-declaration-for-individual-lo=-unitd> ::=
{non-reserved-word>

E2l4 <{mnemonic-name-declaration-for-type-of=lo-unit> ::=
{non-reserved-word)

25 <mnemonic-name-declaration-for-paper-advanced ::=
{non-reserved-word>

E26 <{mnemonic-name-declaration-for-code~-for-report-groups>

{non-reserved-word>

E27 <mnemonic-name-declaration-for-individual-switch) ::=
{non-reserved-word>

E28 <{maemonilc-name-for-individual-lo-unit) ::=
{non-reserved-word> which appears as a
{mnemonic-name-declaration-for-individual-io-unit)>

E29 <memonic-name-for-type-of-lo=unitd ::=
{non-reserved-word> which appears as a
{mnemonlc-name-declaration=-for-type=-of-io=unit)

E30 <mnemonic-name-for-paper-advanced ::=
{non-reserved-word> which appears as a
{mnemonic-name~declaration-for-paper-advance>

£E31 <{mnemonic-name-for-code-for-report-groups)> ::=
{non-reserved-word> which appears as a
{mnemonic-name-declaration=for-code~for-report-
groups>

E32

E33

E34

E35

E36

-36-

{switch-status-name-assignment> ::=
{on-status> [{,> {off-status>] !
Coff-statusd> [{,> <{on-status>]

{on-status> ::=
ON # [STATUS #] IS #
{switch-status-name-declaration>

{off-status> ::=
OFF # [STATUS #] IS #
{switch=status~name-declaration>

{switch-status-name-declaration> ::=
{non-reserved-alpha-word>

{switch-status-name> ::=
{non.reserved-alpha-word> which appears as a
{switch-status-name-declaration>

-3
CURRENCY=SIGN CLAUSE

E37 <currency-sign-clause> ::=
CURRENCY # [SIGN #] IS #
" {eurrency-sign-declaration> "

38 <currency-sign-declaration> ::=
{possible-character-for-currency-sign>

£E39 <possible-character-for-currency-sign> ::=
{computer-character> diff

{digit> !
AIBICIDIPIRISIV!I X! Z! {spacedy !
1l =1l * 1, 1,03t (1)3

E40 <currency-symbol)d ::=
| {possible~-character-for-currency-sign>
which appears as a {currency-sign-declaration> .

This language element 1s dependent on the
individual COBOL source program,

It equals g,

1f no {currency-sign-declaration> 1is present
in the {special=names-paragraph> .

It equals
{possible-character-for-currency-signy
which appears as a
{currency-sign-declaration> ,

1f a {currency-sign-declaration> 1s present
in the {special-names=-paragraph> .

E41 <esd> ::=
{currency-symbol>

-38-
DECIMAL-POINT CLAUSE

E42 <decimal-point-claused ::=
DECIMAL-?0INT # IS # COMMA

E43 <{decimal-=pointd> ::=
|

. 3

This language element 1s dependent on ths
individual COBOL source program,

It equals . (period) ,

if no <{decimal-point-clause) 1s present
in the <{special-names=-paragraoh> ,

It equals , (comma) ,

if a {decimal=point-clause)> 1is cresent

in the {(speclal-names=-paragrarh> ,

E4Y <digit-separator) ::=

= 3

Thils language element 1s dependent on the
individual COBOL source program,

It equals , (comma) ,

if no {decimal=-point-clause> is present
in the <{speclal-names-paragraph> .

It equals ., (period) ,

if a {decimal-point-clause> 1s present

in the <{special-names-paragraph> .

r

FILE-CONTROL PARAGRAPH

E45 <{file-control-paragraphd> ::=
«FILE-CONTROL <.>
{<{copy-entry> |
{file-control-paragraph-body>s

E46 <file-control=paragraph-body> ::=
{file-control-entry>...

E47 <file-control-entry) ::=
{f1le-control-entry-for-non-ms-ile> !
{file-control-entry-for-sequential-ms-£file> !
{file-control-entry-for-random-ms-£file> |

‘ . {file-control-entry-for-sort-file>

E48

E50

51

iTer™

{file-control-entry-for-non-ms=£ile> ::=
{select-clause-for-non-ms~-£ile>
{<assign-claused> | {sort-outputeassign-clause>s
[# <{multiple-reel-clause)]
2(,) {alternate-area-clause)]
.>

{file=control-entry-for-sequential-ms-file)> ::=
{select-clause-for-sequential-ms-£ile>
4<assign-clause> ! <{sort-output-assign-clause>
(# <{multiple-unit-clause)>]
[<{,> <alternate-area-clause)]

[{,> {file-limit=clause}]

{,> <access-mode-sequential-clause,

[{,> <{processing-mode-sequentlal-clause)]

E(,) {actual-key=-clause)]

o>

{file-control=entry-for-random-ms-file> ::=
{select-clause-for-random-ms-file>
<{assign-clause>

[{,> {file-limt-clause>]

{,> <access-mode-random-clause)

{,> <{processing-mode-sequential-clause)

{y> <actual-key-clause>

Ks D

{file-control-entry-for-sort-file)> ::=
{(select-clause-for-sort-rile)
<assign-claused <.>

'‘FllllllllllllllllIIII-------..._1

U] -

SELECT CLAUSE

E52 <select-clause-for-non-ms-file) ::=
SELECT
[# <optional-phrase>]
<{non-ms-file-name)

il

E53 <{select-clause-for-sequential-ms-file>
SELECT
[# <optional=phrased]
{sequential-ms=file-name)

1]

E54 <{select-clause-for-random-ms=-file)
SELECT
. # {random-ms=-file-named

E55 <select-clause-for-sort-file> ::=
SELECT
{sort-file-named>

E56 <optional-phrased ::=
OPTIONAL

mw

v
ASSIGN CLAUSE

E57 <assign-claused ::=
{assign=-type-clause> |
{assign-individual=units-clause)>

E58 <assign=type-clause) ::=
ASSIGN [# TO]

[# <{integer>]
{implementor-name-for-type-of-io-unit>

E59 <assign-individuval-units-clause) ::=
ASSIGN [# TO]
{implementor-name-for-individual-io=-unit)
[<{,> <implementor-name-for-individual-io-unit>]...

E60 <sort-output-assign-clause) ::=
ASSIGN [# TO]
<{implementor-name-for-individual-io-unit)
#(,) {implementor-name-for-individual=io-unit>l...
OR
{implementor-name-for-individual-io-unit>
[{,> {implementor-name-for-individuval-io=unit)>)...

MULTIPLE REEL/UNIT CLAUSE

E61 {multiple-reel-claused
[FOR #] MULTIPLE
REEL

E62 <{multiple-unit-claused ::=
[FOR #] MULTIPLE
UNIT

.
ALTERNATE AREA CLAUSE

E63 <alternate-area-claused ::=
RESERVE # {<{integer> | NOJ
| # ALTERNATE]

{1# AREA] | [# AREAS])

r

15
FILE-LIMIT CLAUSE

E6L {file-limit-claused> ::=
FILE-LIMIT # IS | FILE-LIMITS # AREJ
{fille-limit> # 4THROUGH | THRU$} # <{file-limit)>
&iﬁit<€ile-limit> # LTHROUGH | THRU} # <{file-
> L

E65 <file-limit) ::=
{data-name=identifier> | <{literal)

-46-
ACCESS MODE CLAUSE

E66 <{access-mocde-sequential-claused ::=
ACCESS # [MODE #] IS # SEQUENTIAL

E67 <access-mode-random-claused :i=
ACCESS # [MODE #] IS # RANDQN,

PROCESSING MODE CLAUSE

E68 <{processing-mode-sequential-claused ::=
PROCESSING # [MODE #] IS # SEQUENTIAL

-48-
KEY CLAUSE
E69 {actual~key-claused> ::=
ACTUAL % [KEY #] IS #

{data-name-identifier>

~[Qm
I-0-CONTROL PARAGRAPH

E70 <i-o=control-paragraphd ::=
«I=0=CONTROL <.,>
{<copy-entry> !
{i-o0=control=paragraph-body>+

E71 <l-o-control-paragraph.body)> ::=
{i-o=control-entry>

E72 <i-o-control-entry> ::=
{rerun-clauses>
[{;> <{same=clauses>]
[{;> <multiple-file-clauses>] <{.> !
{same=clauses>
[{;> {multiple-file-clauses>] <{.> !
{multiple=file-clauses> {,>

E73 <{rerun-clauses) ::=
{rerun-claused>
[{;> {rerun-clause>]...

E74 <same-clausesd ::=
(same-clause)
[{;> {same=-claused]...

E75 <multiple-file-clauses)> ::=
{multiple-file=clause>
[{;> <{multiple-file-clause>]...

=50
RERUN CLAUSE

E76 <rerun-clause) ::=
RERUN # [<rerun-medium> #] <{rerun-condition-1> !
RERUN # <{rerun-medium> # {rerun-condition-2>

E77 <rerun-medium> ::=
ON # <non-sort-file-name)> !
ON # <{implementor-name=for-rermm-medium>

E78 <{rerun-condition-1> ::=
{end-of=reel=rerun=-condition>

E79 <{end-of-reel-rerun-conditiond> ::=
[EVERY #]1 [END # [(OF #]] 4REEL ! UNITH #
(oF #] <{non-sort-file-name>

E80 <rerun-condition-2> ::=
{integer-records-rerun-condition> !
{elock-units=rerun-condition> |
{switeh~-rerun-condition>

E81 <integer-records-rerun-conditiond ::=
[EVERY #] <{positive-integer)> # RECORDS #
[OF #] <non-sort-file-name>

E82 <clock-units-rerun-condition> ::=
[EVERY #] <positive-integer> # CLOCK=-UNITS

E83 <{switch-rerun-conditiond ::=
[(EVERY #] <{switch-status-name>

=51=
SAME CLAUSE

E84 {same-claused> :=
{same-record-area-claused !
{same=block-area-claused> !
{same=sort-area=clause)

E85 <{same-record-area-claused ;::=
SAME # RECORD # [AREA #] [FOR #]
{file-name> -((,) (i‘ile-name)-} o0

E86 <same-block-area=claused> ::=
SAME # [AREA #] [FOR #]
{non~-sort-file-name> £<,> <{non-sort-file-name>J,..

E87 <same-sort-area-claused> ::=
SAME # SORT # [AREA #] [FOR #]
{file-name> £<,> <{file-named>3..,.

MULTIPLE FILE CLAUSE

E88 {multiple-file-claused ::=
MULTIPLE # FILE # [TAPE #) [CONTAINS #]
<{non-sort-file-name> [# POSITION # <{integer>]
[{,> <{non-sort-file-name> [# POSITION #
{integer>]l...

D. DATA DIVISION
DATA DIVISION STRUCTURE

D1 {data-division) ::=
«DATA # DIVISION <.>
{data-division-body)>

D2 {data-division-body) ::=
{file-section>
[{working-storage-sectlond]
[{report-section>] !
[{working-storage=-section)]

-5l
FILE SECTION

D3 {file-section> ::=
«FILE # SECTION <.)>
{file-section-body>

D4 <{file-section-body> ::=
*(<{f1le-specificationd !
sort-flle-specificationdd...

D5 <file-specification> ::=
{non-ms-file-descriptiond
[{non-ms-record-description> .., |
{ms=-file-description>
[{ms-record-description>]...

D6 <sort-file-specification> ::=
{sort-fille-description>
{sort=record-descriptiond...

WORKING=STORAGE SECTION

D7 {working-storage-section, ::=
«WORKING=STORAGE # SECTION <.>
{worklng-storage=-section-body>

D8 <working-storage-section-body)> ::=
[{77=descriptions>]
{ws-record-descriptions)> !
{T7=-descriptions)

D9 {T7=descriptions) ::=
f{??-description)
{redefining-T77-descriptiond>]ee.dees

D10 <ws-record-descriptions) ::=
{ws=record-description)
<redefining-ws-record-description}]...4...

~56m
REPORT SECTION

D11 {report-sectiond ::=
~REPORT # SECTION <.>
{report-section-body>

D12 <report-section-body> ::=
{report-specificationd...

D13 <report-specification> ::=
{report-descriptiond
{report=group~descriptiond...

FD SKELETON

D14 <{non-ms-file-description) ::=
«FD # 1t
{non-ms-file-name-declaration>
£<;> <copy-clause> !
{fd-clauses>} <D

D15 <ms-file-description> ::=
«FD # 1
{<{sequential-ms-file-name-declaration) !
{random=ms-file-name-declaration)>}
£ <copy-clause> !
<fd-clauses>}

D16 <fd-clausesd> ::=
{[<;> <block-clause>] +
[{;> {record-contalns-clause>] +
<,> {label-records-clause> +
£<, > {value-of-clause>] &
[{;> {data=-records=-clause)>] |
LD <report—clause>}}

I

‘ D17

D18

D19

D20

D22

D23
Dl
D25

D26

=58

<{non-ms-file-name-declaration> ::=
{non=-reserved=alpha=word>

{non-ms=file-named> ::=
<{non=reserved=alpha~-word>
which appears as a
{non-ms-file-name=-declaration>

{sequential-ms-file-name-declaration> ::=
{non-reserved-alpha-word>

{sequential-ms-file-name> ::=
{non-reserved-alpha-word>
whlch appears as a
{sequential-ms-file-name-declaration>

{random-ms=-file-name-declaration> ::=
{non-reserved-alpha-word)

{random-ms-file-name> ::=
{non-reserved-alpha-word>
which appears as a
{random-ms=f1le-name-declarationd

{sequential-file-named> ::=
{non-ms=file=named> !
{sequential-ms-file-name)

{ms=file-name> ::=
{sequential-ms-file-name> |
{random-ms=file-name>

{non-sort-file-name> ::=
{non-ms-file=name> !
{ms=file-name>

{flle-name> ::=
{non=g8ort-file-name> !
{sort-file-name)>

\lf"

SD SKELETON

D2y <sort-file-description) ::=
«SD # 1
{sort-file-name-declaration>
{<;> <copy-claused> !
{sd-clausesds <{.>

D28 <sd-clauses> ::=
{[{;> {record-contains-clause>] &
{(;> {data-records-claused>}

_

=60

D29 <sort-file-name-declarationd ::=
{non-reserved~-alpha-word>

D30 <sort-file-name> ::=
{non-reserved-alpha-word>
which appears as a
{sort-file-name-declaration>

|

-61=-
RD SKELETON

D31 {report-descriptiond ::=
«RD # 1T
<revort—name-declaration)
£<;> <{copy-clause> !
I’d-CIaUae.J); <o>

D32 <rd-clauses) ::=
{[<{;> <code-claused] +
[<; 3 Ceontrol-clause>] +
[(> {page-limit-clause)]}

—-H0

D33 <report-name-declarationd ::=
{non=reserved-alpha-word>

D34 <report-named> ::=
{non-reserved-alpha-word)
which appears as a
{report-name-declarationd>

-63-
FILE AND SORT FILE RECORD DESCRIPTION SKELETON

D35 <non-ms-record-descriptiond ::=
4 1 0} 1 #1
<{non-elem-non-ms-record-name=-declaration>
£<$;> <covy-claused <{,> |
(non—elem-record-Spec>) !
c 4B 1031 # T
{elem-non-ms=record-name-declaration)
£<{;> <copy-clause> <.> |
{elem-record-spec>9

D36 <ms-record-description> ::=
— k¥ 1 0} 1 # 1
{non-elem-ms=record-name-declaration)
£<;> <copy-clause> <{.> |
{non-elem-record-specdy |
(¥ 101 #
{elem-ms-record-name-declarationd>
£<;> <copy-claused <{,> |
<e1em—record-spec>}

D37 <sort-record- deacription> ik

«4{F 10y 1 #1
non-elem-sort-record-name-declaration)
{;> <copy-clause> <{.> !
non-elem-record-spec>} |

B 1 031 #1
{elem=sort-record-name-declaration>
{;> <ecopy-claused <{.> |
{elem-record-specsd

Bl

D38 <non-elem-record-specd ::=
{non-elem-01-clauses)> <.>
[<88-entry>] L]
{subordinate-entries>
[<66—ent1’y>] eae]
{;> <usage-is-index-claused> <{.>
{subordinate~-entries>
[<66=entry>]...

D39 <elem-record-specd> ::i=
{elem-01=T7=clauses)> <.>
[(88=entry>].e.. |
{;> <usage-1ls-index-clause} {.>

-65=

DUo <bb=entry> ::=
«66 # 1
| {non-elem=66-1tem-name-declaration>
I {;> <{non-elem-renames=-clause> !
l «66 # 1
I {elem-66-1item-name-declarationd
{;> <elem-renames-clause>

*-883 1

{condition-name-declaration)
{;> <B88=value-clause> <.>

-66=

D42 <subordinate-entries> ::=
« # <{sub-number> # 1
{sub-spec>
« # <{sub-number> # 1
{sub-spee> |
{redefining=sub-spec>I]. ..

D43 <sub-specd> ::=
{non-elem-spec>
{subordinate-entries> !
{index-non=-elem=-spec>
{subordinate-entries> !
{elem~-spec> |
{index-elem-spec>

D44 <redefining-sub-spec) ::=
{redefining-non-elem-spec>
{subordinate-entries> |
{redefining-1index-non-elem-spec>
{subordinate-entries> !
{redefining-elem-spec> |
{redefining-index-elem=spec)

D45 <sub-number) ::=
{level=number>
with a value increased with respect to the entry to
which the {subordinate-entries> are subordinate

D46 <{level-numberd> ::=
1121 31 43 <digity !
¥ | 0} <non-zero=-digltd>

D47

D48

DAY

D53

R D54

~67-

{non-elem-specd> ::=
{non-elem=02=48=1tem-name~declaration>
{non-elem-clauses> <,>
[<88-9ntr'y>] * 00

{redefining-non-elem=specd ::=
{non-elem-02=48=1tem-name-declaration>
{;> <{redefines-clause)
(non-elem~red-c1auses> ol
[<8B=entry>l...

{elem=spec> ::=
{02=49=name-declaration>
{elem-clauses> <,>
[<88-entw>] o0 e

{redefining-elem-specd> ::=
{02=49-name-declaration>
{;> <redefines-clause)
{elem=red-clausesd> <{.>
[<88-entr'y>] e e

{index-non-elem=spec)> ::=
{non-elem-02=48~1tem-name-declaration)
[{;> <usage-is-index-clause>] <{.>

{redefining-index-non-elem-spec)> ::=
{non-elem-02=48=1item-name~-declarationd
{;> <redefines-clause)
[<,> {usage-ls-index-clause>] {.>

{index-elem=-specd> ::=
{02=l49=name-declaration)
[{;> {usage-is-index-claused>] {.>

(redefining-index-elem-spec) s o=
{02=-49-name-declaration>
{;> <redefines-clause)
&> (usage-1s-index-clause>] <.>

D55

D56

D57

D58

D59

| D60

D61

D62

«68-

<{non-elem-clauses> ::=
{non-elem=01=clausesd> !
{non=-elem-red-clauses> |
{var-occurs=non-elem-clauses>

{non-elem-01=clausesd> ::=
{[<;> <usage-clause>] &
[{;> <value=-claused]}

<{non-elem-red-clauses) ::=
{[<{;> {usage-claused>] &
[{;> {fixed-occurs-clause)>]}

{var-occurs-non-elem-clauses> ::=
{[<{;> {usage-clause>] &
{;> <variable-occurs-clause>}

{elem~clauses> ::=
{elem-01=77=-clauses)d !
{elem-red-clauses> !
{var-occurs-elem-clauses>

{elem-01=77=clausesd> ::=
{[<;> {usage-clause>] +
{;> {picture-clause> +
;2 {Justified-claused] +
;> <blank-when-zero-clause>] &
;> <synchronized-clause)>] &
;> <value-clause>]d

red-clausesd> ::=

{;> {usage-clause>] +

;> <pilcture-claused> &

;> {Justified-clause>] +

{(;> <blank=when-zero-claused>] &
{;> <synchronized-clause>] &
;> {fixed-occurs-claused]}

{var-occurs-elem-clauses> ::=
{[<{;> <usage-clause>] &
> {pilcture-claused +
> {Justified-claused>] &
> <blank-when-zero-claused>] &
> <{synchronized-clause>] &
{variable-occurs-claused>}

&3
[<
L€
I
<3

.
2
L3
s
»
L
>

k.

-69-

D63 <non-elem-non-ms=-record-name=-declarationd ::=
{non-reserved=-alpha~word)

D64 <{non-elem=-non-ms-record-named ::=
<{non-reserved-alpha-word)
which appears as a
{non-elem-non-ms-record-name~declaration>

D65 <elem-non-ms-record-name-declaration> ::=
{non-reserved-alpha-word>

D66 <elem-non-ms-record-named> ::=
{non-reserved-alpha-word)>
which appears as a
{elem-non-ms=record-name-declarationd>

. D67 <non-elem-ms-record-name-declaration)> ::=
{non=reserved-alpha=-word>

D68 <non-elem-ms-record-named ::=
{non-reserved-alpha-word>
which appears as a
{non-elem-ms=record-name~-declaration)

D69 <elem-ms-record-name-declarationd> ::=
<{non-reserved~-alpha~-word)

D70 <elem-ms-record-named ::=
{non=-reserved-alpha-word)
which appears as a
{elem-ms=record-name-declaration)

D71 <{non=-elem-sort-record-name-declaration) ::=
{non-reserved-alpha-word)>

|. D72 <non-elem-sort-record-name> ::=
{non-reserved-alpha=-word)>
which appears as a
{non-elem-sort-record-name=-declaration)>

D73 <elem=sort-record-name-declaration) ::=
{non-reserved-alpha~-word)

D74 <elem=sort-record-named ::i=
<{non-reserved-alpha-word)
which appears as a
{elem-sort-record-name-declaration>

D75 <non-elem-02-48-1tem-name-declaration)d ::=
{non-reserved~alpha-word)>

=70

D76 <non-elem-02-48=item-name> ::=
{non-reserved-alpha-word>
which appears as a
<{non-elem-02=48=1item-name-declaration>

D77 <02=49-name-declarationd ::=
{elem-02=49-item=-name-declaration> !
FILLER

D78 <elem=02-49-item-name-declaration> ::=
{non-reserved-alpha-word>

D79 <elem=02=49-item-named> ::=
{non-reserved-alpha-word>
which appears as a
(elem-02-49~1item-name-declaration>

D80 <non-elem-66-1tem-name-declarationd> ::=
{non-reserved-alpha-word>

D81 <non-elem-66-1item=named> ::=
{non-reserved~alpha-word>
which appears as a
{non-elem-66=1item-name-declarationd

D82 <elem-66-item-name-declaration> ::=
{non-reserved-alpha~-word>

D83 <elem-66-1tem=named ::=
{non-reserved-alpha-word>
which appears as a
{elem-66=1tem-name-declaration>

D84 <condition-name-declaration> ::=
{non-reserved-alpha-wordd

D85 <condition-named> ::=
{non~reserved~alpha-word>
which appears as a
{conditlon-name-declaration>

=Fi=

WORKING=-STORAGE DATA DESCRIPTION SKELETON

DE6

DE8

{T7-descriptiond> ::=

77 # 1
{77=item-name=-declaration>
{elem=01=T77=clauses)> <{.>

[<88—entry>] eoe l

<77 # 1
{T7=1item-name-declaration>

{;> <usage-is-index=-clause> <{.>

{redefining-77-descriptiony ::=

77 # 7
{77=-1tem=-name~declaration)

{3> {77-redefines=-clause>
{elem=01=T7=red-clauses) <.>
[<88-entl"y>] eoe I

T # 1T
{T7=1item=-name-declaration)

{3> {T77=-redefines-clause)

{;> {usage-is=-index-clause> <.>

{ws-record-descriptiond ::=

« 4F 1 03 1 # 1
{ncn=elem-ws=record-name-declaration>
£{<;> <copy-claused> <.> |
{non-elem-record-spec>} |

&6 1oy 1H#
{elem-ws~-record-name-declaration)
£{;> <copy-clause> <.> !
{elem-record-spec)>s

{redefining-ws=record-description> ::=

- &F 10} #1
{non-elem-ws=-record-name-declaration>
£<{;> <copy-claused> <{.> !
{redefining-non-elem-record-spec>} |
(P 1oy TH#
{elem-ws=record-name=declaration>
£<;> <copy-clause> <> |
{redefining-elem-record-spec>+

TP

D90 <redefining-non-elem-record-speed ::
{;> {redefines-record-clause)
[{;> {usage=clause>] <.>
[{88-entry>]...
{subcrdinate~entries>
[<66-entw>] « 00]
{;> <redeflnes-record-claused>
<;> <usage-is-index=-claused> <{.>
{subordinate-entries>
[{6-entry>]...

DG1 <redefining-elem-record-spec) ::=
{;> <redefines-record-clause)
{elem-01=77=red-clausesd <,>
{;> {redefines=-reccrd-claused
{;> {usage-is-index-claused> <{,>

rIll'-"'--""""'-'-----------------------------
|

T

D92 <elem-01=77=-red-clauses) ::i=
{[<{;> <usage-clause>] +
(s> <{picture-claused> &
(3> {Justified-clause>] +
% {blank-when-zero-clause>] +

<
3>
;> <{synchronized-clause> |}

.
2
2
"
3

D93

DY

D95

D96

DI7

D98

.

{7T7-1tem-name-declarationd> ::=
<{non-reserved=-alpha=-word>

{77=item=name)> ::=
{non-reserved-alpha=word)
whilch appears as a
{TT7=-1tem-name-declaration>

{non-elem-ws-record-name-declaration> ::=
{non=-reserved-alpha-word>

{non-elem-ws=record-name> ::=
{non-reserved-alpha-word)>
which appears as a
{non-elem-ws-reccrd-name-declaration>

{elem-ws=record-name-declarationd> ::=
{non-reserved-alpha-word>

{elem-ws=-record-name)> ::=
{non=reserved~alpha-word>
which appears as a
{elem-ws=record-name-declaration>

rF

REPORT=GROUP DESCRIPTION SKELETON

=T5=

D99 <report-group-description> ::=
LB 101 #1
[{non-elem-report-group=name-declarationd)
£{<{;> <copy-claused <,> |
{non=-elem=-report-group=spec>4 |
t—{-ﬁ!o.}1#§T
{sum~-report-group-name~-declaration>]
{;> <copy-clause> <{.> !
{sum-report-group=spec>4 |
<—4]d10-}1§1~
£<elem-non-sum-report-group-name-dec1aration)]
;> <copy-claused <.> !
. {elem-non-sum-report-group-spec>9

=76

D100 <non-elem-report-group-specd> ::
{non-elem-group=-clauses> <,>
{subordinate-report-entries>

D101 {sum-report-group=spec) :s=
sum-group-clauses> <{,>

D102 {elem=non-sum=report-group=specd ::=
{elem=-non-sum-group~-clauses> < >

==

D103 <{subordinate-report-entriesd> ::=
{{sub-number> # 1
{sub-report-spec>3...

D104 <{sub-report-specd> ::=
{non-elem-report-specd>
{subordinate-report-entries) !
{elem=-report-specd>

-78=

D105 <non-elem-report-specd ::=
[<non~elem-field-name-declaration]
{[<;> <line-number-clause>] 4
[(,> {usage~ls-display-claused b {,>

D106 {elem-report-specd> ::=
{sum-spec> |
{elem=non-sum-spec>

D107 {sum-spec) ::=
[{(sum~fileld-name-declaration>]
{[{;> <{line-number-claused] &
;> <{column-number-clause)> +
{;> <{usage-ls-display-clause)>] +
;> <pleture-clause) +
{;> <{Justified-clause>] +
o (blank—when—zero-clause)] +
> {sum=clause> +
;> {reset-claused>]p <{.> !
~field-name-declaration>
{;> <{line-number-clause>] 4+
3> (usage-is-display-clause)] $
> {plcture-clause> 4
:> {sum-clause> ¢
3

<$;
[
<
(
[
$
(
{sum
{
[
é
[<;> {reset-claused]d <{.>

G
sum
[
<
<

non=sum=spec> ::=
elem-non-sum-field-name-declaration)]
{;> <{line-number-clause>] +

>’ {colum-number-clauses &

;> {group-indicate-clause>] &

s> {usage-ls-display-claused>] +

;> <{pilcture-clause)> +

;> <blank-when-zero-clause)>] +

;> <{source-clause> |

+> {value-claused3p <{.> |
elem-non-sum-field-name-declaration]
> {source-clause> <.>

==

D109 <non-elem-group-clausesd ::=
{{;> <{type-clause> +
[(> <{next-group-claused>] &
[<,> {line-number-clause>] +
[{;> <{usage-is-display-clause)]}

D110 {sum-group-clausesd ::=

{{;> <type-clause)> &
;> <{next-group-claused>]
5D <1ine-number-clause> 18
;> <{colum-number-clause> &
{usage-is-display-clause)>] &
<picture-clause> 4
{Justified=clause>] ¢
{blank-when-zero-claused>] &
{sum~clause> &
{reset-claused>]} |
{type-clause)> ¢
{next-group=claused>]
<line-number-clauue> i
{usage- is-display -claused>] &
(picture-clause>
;> {sum-clause> +
[{;> {reset-clause)>]}

NS e e NS e Ve

e /\" NN\ AN\ e e /\
\/ VNV VNV N

.-

D111 <{elem~-ncn-sum-group=clauses)> ::=
{{;> <{type=-clause) #+

;> <next-group=clause)>] 4

:> {line-number-claused>

{eolum-number-clause> +
{group=indicate-clause>] +
{usage-1ls-display-clause)>] +

{plcture-clause> +
{Justified-clause>] +
{blank-when-zero-claused>] &

<
G
o
>
o
> {source=-clause) !
>
3D
3>

3
<3
<;
<
{value=-clause>3} |
{type-clause> +
<{next-group=-claused>] +

{line~-number-clause> +
{source-claused>]}

[
<3
9
(
[
$3
[
[
{
<3
£<;
[<;
<
(<

>
E
.
>
.?
E
>
)
L
>

D112

D113

D114

D115

D116

D117

D118

D119

D120

D121

D122

=80=

<{non-elem-report-group-name-declarationd ::
{non-reserved-alpha=word>

{non-elem=report-group=named ::=
{non=-reserved=-alpha-word>
which appears as a
{non-elem~report-group-name-declaration>

{elem-non-sum-report~-group-name-declaration> ::=
{non-reserved=-alpha-word>

{elem-non-sum-report-group-named> ::=
{non-reserved-alpha-word>
which appears as a
{elem=non-sum-report-group=name-declaration>

{sum=report-group-name-declaration> ::=
{non-reserved-alpha-word>

{sum-report-group~-named ::=
{non~reserved~alpha-word>
whlch appears as a
{sum=-report-group-name~declaration)

{non=-elem-field-name-declarationd> ::=
{non-reserved-alpha=-word>

{non-elem-fleld-name> ::=
{non-reserved-alpha-word>
which appears as a
{non-elem-field-name-declaration>

{elem-non-sum-field-name-declaration> ::=
{non=-reserved-alpha-word>

{sum-field-name-declaration> ::=
{non-reserved-alpha-word>

(sum-field-name> ::=
{non=reserved-alpha-word)>
which appears as a
{sum-field-name-declaration>

=81=

BLANK WHEN ZERO CLAUSE

D123 <blank-when-zero=clause>
BLANK [# WHEN] # ZERO

=82
BLOCK CLAUSE

D124 <block-claused ::=
BLOCK # [CONTAINS #]
[{positive-integer> # TO #]
E osltive=integerd>
F# CHARACTERS] | # RECDRDS}

F

CODE CLAUSE

D125 <code=-claused ::i=
CODE #
{mmemonic=name-for-code-for-report=groups>

-8l
COLUMN NUMBER CLAUSE

D126 <colum-number-claused> ::=
COLUMN # [NUMBER #] [IS #]
{positive-integer>

=55
CONTROL CLAUSE

D127 <econtrol-clause) ::=
L{CONTROL # [Is #] !
CONTROLS # [ARE #19
{FINAL |
{item-name~ldentifier>s
[{,> {item~-name-identifier>]...

=86
DATA RECORDS CLAUSE

D128 <data-records-clause> ::=
DATA #
{RECORD {IS #}; !
RECORDS ARE #13
<{non-ws-record-named
[{,> <{non-ws-record-name>]...

~87-
GROUP INDICATE CLAUSE

D129 <group-indicate-claused ::=
GROUP [# INDICATE]

-88=
JUSTIFIED CLAUSE

D130 <{Justified-claused ::=
{JUSTIFIED | JUST} [# RIGHT]

)

LABEL RECORDS CLAUSE

D131 <{label=records-clause) ::=
LABEL #
{RECORD # EIS #1 1
RECORDS # [ARE # 19
{OMITTED ! STANDARD |
{non=-vis-record-name>
[{,> <{non-ws-record-name> ...}

- -

~90=

LINE NUMBER CLAUSE

D132 <line-number-claused ::=

LINE # [NUMBER #)] (IS #]
{<positive-integer> |

PLUS # <{positive-integer> |
NEXT # PAGE$

NEXT GROUP CLAUSE

D133 <next-group-clause) ::=
NEXT # GROUP # (IS #]
{<{positive-integer> |
PLUS # {positive-integer)> !
NEXT # PAGE$

OCCURS CLAUSE

D134 <fixed-occurs-claused ::=
OCCURS #
(ﬁositive-integer> [# TIMES]
[# <{key=-optiondl...
[# <{index-optiond]

D135 <{variable-occurs-clause)> ::=
OCCURS #
{integer> # TO #
{positive-integer> [# TIMES]
[# DEPENDING # [(ON #]
{elem-item-name-qualified)]
[# <{key=-optiond>l...
[# <{index-option>]

D136 <key-option) ::=
ASCENDING | DESCENDINGY #
KEY #] [IS #]
{elem-item-name-qualified>
[<{,> {elem-ltem=name-qualified>]...

D137 <{index-optiond> ::=
INDEXED # [BY #]
{index~-name-declaration)
[<,> <{index-name-declaration>]...

-3

D138 <{index-name-declaration> ::=
{non-reserved=alpha-word>

D139 <{index-name)> ::=
{non-reserved-alpha-word)>
which appears as a
{index-name=-declaration>

=9l

PAGE LIMIT CLAUSE

D140 <page-limit-claused ::=
PAGE #
f[LIMIT] EIS #] 1
LIMITS #] [ARE #19
{positive-integer> #
LINE | LINES
{y> HEADING
{positive~-integer>]
[{,> FIRST # DETAIL #
{positive-integer>]
[<{,> LAST # DETAIL #
{positive-integer)]
[<,> FOOTING #
{positive-integer>]

PICTURE CLAUSE

D141 <plcture-clause) ::=
{PICTURE | DIc; # [1Is #]
{piecture>

D142 <{picture)> ::=
{numeric-victured |
{numeric-edited-picture>
not ending with a period or a comma |
{nonnumeric=-picture)

D143 <{numeric-zictured ::=
[s] <dig-sea>
[V (<dig-sea>]] |
(S] (dig-seq)
[<U> lll [V] l
[s) [V] [<p>lese
{dig-seq>

D144 <{numeric-edited-picture) ::=
{sign-float=plct> !
{es=-float=plct) !
{supp=-pict> !
{fixed-insert-plctd>

D145 (nonnumeric-cicture) 1=
<b09> J.s
<ax>'ll t<h09>]oo.;n|o

~96-

D146 {sign-float-plct) ::=
[{es>] <{+-seqd>
{point> <{+=seqd> |
[{es>] {-=seq>
{point) {-=seg> !

[{es>] <{sign-floatd>

[{9=seq>] <{point)>

[{9=seq-or=b0,>] |

[<es>] (si%n-float>

=<9"'seq,>] p>]-u- [V] !

(%) [<0> e

{es>] <{sign-float)

D147 <{cs=float-picty ::=
[+ | =] {cs=seq>
{point)> <{es-seq> |
[+ ! =] <{es-float)
{9-seq>] <point>
[(9=seqg=or-b0,>] |
+ | =] {es=floatd
<9"SEQ>] [<p>]'¢n [V] I

> .

+ I -? (cs-float> !
{es=-seq> <point)

{es-seq> &+ | = | CR | DB} |
{es-floatd> [{9=-seq>]

{point> [{9=-seq~ or—bO >]
{+ 1 = 1 CR | DB} |

{cs- float) [<9-se?
'{'+ ! "' p>] o

{es=Ffloat) [(9-seq>

CR | DB} [<p>less !

v] [{p>l...

{ecs-float> é+ ! - | CR ! DB}

D148 {supp=plet) ::=
f+ | =] [Kes>] {z=-seq>
{point> <{z=seq> !
[+ 1 =] [Kes>] <{*=seq>
{point) {*=szeq)> |
[+ | =] [{es>] <{z=-or=*=seq>
[{9=-s5€eq>] (point>
_(9-33? =Or=Db0 > I

[+ 1 = (cs) <z-or- -5eq>
[{9=seq>] [<p>les. [V] |

[V] [<DD)ees

[+ 1 =] [<es>] {z=or-*-seq> !
{es>] <z-seq> <{polnt)>
{z-seq> &+ | = | CR | DB} |
[<es>] <*-seq> {point>
{*-seq> £+ | = | CR | DB} |
[<cs>? {z=or-*=8eq> [{9=seq)>]

{point> [{9-seq-or-b0,>]
£+ 1 = 1 CR | DB} !

= QT

continued. ...
[<es>] {z=-or-*-seq> [<9-seq>]
+ [-; [<p>]loc [V]
{es>) {z-or-*-seq> [{9-seq>]
CR | DB} [<p>l.e. !
v] [<]3> o0 e <CS>]
{z=0Op=-*=5eq> &+ | = | CR | DB}

D149 {fixed-insert-plct> ::=
[+ 1 =] [<es>] <{9=-seq>
{point> [{9=seq-or-b0,>] !
[+ | =] [<es>] (9-seq>
<€>J... (vl 1

>]

[+ ! -ﬁ <cs>] {9-seq> |
. [<es>] <9=sead>

9 {point)> [<{Q=seq=or-b0,>]
+ ! = ! CR ! DB} |
{es>] {9=seq)

+ 1 =3 [<p>lee. (V]!
<es>] <§-seq>

CR ! DB [<p>less !

v] | ap>i . [<esd>]

{g=seq> &+ ! = | CR ! DBJ
D150 {sign-float) ::=

[<B0,>]ese + <+-seq)> |

[<bO,>].0es = {~=se€q> !

[(bo,:)],..

+ (<{positive-integer>)
[{+=-seq-o0r=b0,>] I
[<00,>]e0s

- (<{positive-integer>)
[{~=segc=0r=-b0,>]

|
" D151 {cs= float> sg=
<{00,>]... <cs> {cs=seq> !
r<bo >loe
{es> ((positive-integer))
[{es=seg=or-b0,>]

D152

D153

D154

D155

D156

D158

D159

D160

D161

D162

D163

D164

{z=0pr-

«38=

*-seq> i:=

{z=seq> !
(*=seq)

{9=seq
<9

-or-b0,> :
=seq> |

il

<b0s>eee

{t+=seq-or-b0,> ::

<+

-seq)> |

<b0,>e0e

{==8eq

]

~or-b0,> ::

{-=seq> |
<b0,>0oc

{cs=-seq=0r-b0,> ::=

<e

s=seq> |

<bo,>..l

D157 {dig-seqd> ::=
<O>]...
<9>." [<O>]...;.‘.

{9=seq)> ::=
£<b0,>]...
<z DR [s 06,) (SR .

{+=s€eq> ::=
£<b0,>]...
<+>toc [<b0’>]oo-}o-o

{==5€Q> ::=
£<b0,>]loo
<->-oc [<b03>]¢-¢;o-c

{es-seq> ::=

£§§p,>]

Seee 1<00,5]00edens

{z-8€q> ::=
<b0,>]ooo
<Z>"l [’bo,>]..'}lil

{¥ugeqd> i1:=
£<b0’>].'.
<*>lll [<b0’>].l.}lil

<b0,> ::

B
(

1 01 {diglt=-separator>y)
{positive-integer))]

D165

D166

D167

D168

D169

D170

D171

D172

D173

D174

D175

1 01 9)
ositive-integer>) |

A=\
—Id
A\ .o
g e—

| X
{positive-integer>)]

({positive-integer)>)]

<0> s
[({positive-integer))]

<p> ::=

P
[({positive-integer>)]

4> 11=
+
[({positive-integer>)]

=> 1=

[({positive-integer))]

B> 1=
{es>
[({positive-integer))]
<z> é:=

[({positive-integer))]

{HS 8=

#*

[({positive-integer>)]

{point) ::=
V!
{decimz.l-point>

-100=
RECORD CONTAINS CLAUSE

D176 <record-contains-clause> ::=
RECORD # [CONTAINS #]
[{positive-integer>] # [TO #]
{positive-integer>
[# CHARACTERS]

=101=
REDEFINES CLAUSE

D177 <redefines-clause) ::=
REDEFINES #
{02-49-item-name~-qualified>

D178 {redefines-record-clause> ::=
REDEFINES #
{ws-record-name)>

D179 {77-redefines-clause) ::=
REDEFINES #
{77-1tem-name>

-102=
RENAMES CLAUSE

D180 <elem-renames-claused ::=
RENAMES #
{elem-item-name-qualified>

D181 <non-elem-renames-clause> ::=
RENAMES #
{ltem-name=-qualified)

[# £THROUGH | THRUJ) #
{item-name-qualified>]

=103=

REPORT CLAUSE

D182 <report-claused> ::=
EREPDRT # [Is #] |
REPORTS # [ARE #]9
{report-name>
[{;> <report-named>]...

=104=
RESET CLAUSE

D183 <reset-clause> ::=
RESET # [ON #]
L{FINAT, |
{item-name-identifier>)
[{,> <{item~name-identifier>]..,.

=105=

SOURCE CLAUSE

D184 <{source-clause> ::=
SOURCE # [IS #]
{source~item-name-ldentifier>

-106-
SUM CLAUSE

D185 <{sum=claused ::=
SUM #
{summed-ltem-name~identifier>
[<{,> <{summed-1tem-name-identifier>]...
UPON #
{report-group=name-qualified]

=107=

' SYNCHRONIZED CLAUSE

D186 <synchronized-claused> ::
SYNCHRONIZED | SYNC9
{LEFT | RIGHT)]

=108=-
TYPE CLAUSE

D187 <type-clause) ::=
TYPE # [IS #]
{REPORT # HEADING |
RH |
PAGE # HEADING |
PH |
CONTROL # HEADING #
{FINAL |
{item=-name-identifierd>) |
CH #
£FINAL |
{item-name-identifier)>) |
DETATL !
DE |
CONTROL # FOOTING #
{FINAL |
{item-name-identifier>) |
CF #
{FINAL !
{item-name-identifierd) |
PAGE # FOOTING |
PF |
REPORT # FOOTING |
RF3

F

=109=
USAGE CLAUSE

D188 <usage-clause) ::=
USAGE # [IS #]]
COMPUTATIONAL |

CoMP !
DISPLAYY

D189 <usa%e-is-dis lay-clause) ::=
USAGE # fIs #1] DISPLAY

D190 (usa%e-is index-clause) ::=
USAGE # [IS #]] INDEX

=110=
VALUE CLAUSE

D191 <value-clause)d ::=
VALUE # [IS #] {literal>

D192 <88-value-clause> ::=
{VALUE # [IS #] |
VALUES # [ARE #]3

{numeric=literal>

¢THROUGH | THRU}
{numeric=literald]
[<,> <numeric-literal>
[# €THROUGH ! THRU% d
{numeric-literal>d]]... !
{nonnumeric-literal>

[(# {THROUGH ! THRU} #
{nonnumeric-literald]
[{,> <{nonnumeric-literal>
(# £THROUGH ! THRU} #
{nonnumeric-literal>]],..}

rF

VALUE OF CLAUSE

-111=

D193 <value-of-claused> ::=

VALUE # OF #

{elem-1ltem-name-qualified> #

-EIS it
{elem-1ltem-name-qualified> !

{literald>9

[{,> elem-item-name-qualified>

(IS #]

{<{elem-item-name-qualified> |

{literal>}]...

=112=

IDENTIFIERS

D194 <non-ws-record-named ::=
{non-elem=ncn-ms=-record-named> !
{non-elem-ms=record-name> !
{non-elem-sort-record~-named> |
{elem-non-ms=record-name> !
{elem~ms=record-named> !
{elem-sort-record-name>

D195 {ws-record-name)> ::=
{non-elem-ws=record-name> !
{elem-ws~record-name>

“11%=

D196 {in-of> ::=
IN# | #OF

D197 <non-elem=-non-ms-record-name-qualified> :
{non=-elem-non-ms-record-name>
[{in-of)
{non-ms=~f1le-named]

Il

D198 {elem=non-ms-record-name-qualified> :
{elem=non-ms-record-name>
[{in-of)
{non-ms-file-named]

ee
i

D199 <{non-elem-ms-record-name-qualified> :
{non-elem=ms=-record-name>
[{in-of
{ms-file-name>]

oo
]

D200 {elem-ms-record-name-qualified) ::=
{elem-ms=-record-name
[{in-of>
{ms=~file-name>]

I

D201 <non-elem~sort-record-name-qualified> ::
{non-elem-sort-record-name)>
[{in-of)
{sort-fille=-name]

D202 <{elem-sort-record-name-qualified) ::=
{elem=-sort-record-named
[{in=-of>
{sort=file-name)]

-114=

D203 <{sum-report-group=name-qualified)d ::=
{sum=report-group=-name)>
[{in-of>
{report-name>]

D204 <non-ms-record-name-qualified) ::=
{non=-elem-non-ms-record-name-qualified)> |
{elem=-non-ms=record-name=-qualified)

D205 <{ms-record-name-qualified) ::=
{non~elem-ms-record-name=-qualified) !
{elem-ms-record=-name-qualified>

D206 <{sort-record-name-qualified> ::=
{non-elem-sort-record-name-qualified> |
{elem-sort-record-name-qualified>

D207 <non-elem-record-name-qualified)> ::=
{non-elem-non-ms-record-name-qualified) |
{non=elem-ms-record-name=qualified> !
{non-elem-sort-record-name=qualified> |
{non-elem-ws=record-name>

D208 <{elem-record-name-qualified> ::=
{elem~-non-ms-record-name-qualified> !
{elem-ms=record-name-qualified> |
{elem-sort-record-name-qualified> |
{elem-ws-record-name>

D209 <non-elem-report-group=-name-qualified> ::=
{non-elem-report-group-name)
[<in-of>
{report-name>]

D210 <{elem-non-sum-report-group=name-qualifiedd ::=
{elem-non-sum-report-group=name>
[{in-of>
{report-name>]

D211 {report-group=name-qualified> ::=
{non=elem-report=group-name~-qualified> !
{elem-non-sum-report-group-name=-qualified> !
{sum-report=group=name-qualified>

|

T 155

D212 <non-elem=-02-48=1tem-name-qualified> ::=
{non-elem-02=48=1tem-name)
[{in-of>
{non-elem=02=48=1tem-named>]...
[{in-of>
{non-elem-record-name=qualified]

D213 <elem=02=49-item-name=-qualified)> ::=
{elem-02=49~1tem-name>
[{in-of>
{non-elem-02-48~1item-name-qualified)]

D214 <02-49-item-name=-qualified) ::=
{non-elem-02=48~1tem-name-qualified)> !
{elem-02=49=1tem-name-qualified>

’ D215 <non-elem-66=-1item-name-qualified> ::=
§non—elem—66-1temrname>
[n-of>
{non-elem-record-name-qualified)]

D216 {elem=-66=1item=-name-qualified> ::=
{elem-66=-item-name>
[{in-of>
{non-elem-record-name-qualified)>]

-116=

D217 {sum=-field-name-=-qualified) ::=
{sum-fleld-name>
[{in=of>
{non=elem-field-name>J...
[{non=elem-report-group=-name-qualified>]

D218 <non-elem-litem-name-qualifiedd> ::=
{non=elem-record=-name-qualified> !
{non=-elem-02=48=1tem-name-qualified> |
{non-elem-66-1tem-name-qualified>

D219 {elem-item-name-qualified> ::=
{elem-record-name-qualified> !
{elem-02=49=~1tem-name-qualified> !
{elem-66~1item=name-qualified> !
{T7-1tem-name> !
{specilal=1tem=name-qualified>

D220 {item-name-qualified) ::=
{non-elem-1tem-name-qualified> |
{elem-item=-name=qualified>

D221 <{sum-ltem-name-qualified> ::=
{sum-report-group=name-qualified> |
{sum-field-name-qualified>

D222 <{speclal=-item=name-qualified> ::=
TALLY !
LINE=COUNTER
[{in-of> <{report-name>] !
PAGE=COUNTER
[{in-of> <report-name>]

D223 <{condition-name-qualified> ::=
{econditlon-name>
[{in-of>
{02=49=1tem-name-qualified>]

D224 <{index-name-qualifiedd> ::=
{index-name>
[{in-of>
{02=49~1tem-name~qualified>]

117

D225 <{non-elem-02-48-1tem-name-identifier) ::=
{non-elem=02=48=1tem-name-qualified>
[({subscripts>)]

D226 {elem-02=49-item-name-identifier> ::=
{elem-02=49-1tem-name-qualified)
[({subscripts>)]

D227 <non-elem-ltem-name-ldentifier) ::=
{non-elem=record-name-qualified) !
{non-elem-02=48=1tem-name~identifier> !
{non-elem-66~1tem-name-qualified>

D228 <{elem-item-name=-ldentifiler) ::=
{(elem=record-name-qualified) |
{elem=02=49=1tem-name~identifier) |
{elem-66-ltem-name-qualified> !
{TT7=1item-name> !
{specilal=ltem=-name~-qualified>

D229 {item-name-identifierd ::=
{non-clem~-item-name-identifier> !
{elem-ltem-name-ldentifier>

D230 <{source-item-name-identifier> ::=
{item-name-identifier)> |
{sum=1tem-name-qualified)>

D231 <{summed-item=name-identifier> ::=
{elem-item-name-identifier) |
{sum=-1ltem-name-qualified>

D232 <{non-elem=data-name-identifier) ::=
{non-elem=1tem-name-identifier>

D233 {elem-data-name-identifierd ::=
{elem-ltem=-name-identifier> |
{sum-1ltem-name=qualified)>

D234 {data-name-identifierd> ::=
{non-elem-data-name-identifier)> |
{elem=data-name-identifier)>

D235 <{condition-name-identifiler) ::=
{condition-name-qualified)

[({<subseripts>)]

=118~

D236 <subscripts> ::=
{elem-item-name-qualified>
EéiZm-item—name—qualified>
<;éiaLive-index-name-qualified)
£§éiative-index-name-qualified)

D237 {relative-index-name-qualified> ::=
{index-name-qualified>
[# £+ 1 -3 #
{integer>

=1190=~

P, PROCEDURE DIVISION
PROCEDURE DIVISION STRUCTURE

P1 {procedure-division> ::=
«PROCEDURE # DIVISION <.>
{procedure-division-body>

P2 <{procedure-division-body> ::=
[{declarative-portion>]
{non-declarative-portion>
{paragraphd...

=120=

DECLARATIVE PORTION

P3 {declarative-portion) ::=
«DECLARATIVES <.>
{declarative-sectiond...
«END # DECLARATIVES <.>

=121=

NON=-DECLARATIVE PORTION

Ph {non-declarative-portion> ::=
{non-declarative-sectionde..

=122~
SECTIONS

P5 {declarative-section> ::=
« {sectlion-name-declaration) # SECTION <.>
{<{copy-sentence> !
{declarative=-sentence> <{section=body>)

P6 <{non-declarative-section> ::=
« {section-name-declaration> # SECTION
E# <priority-number>] <{.>
{copy=sentence)> !
{sectlon=pody>9

P7 <priority-number)> ::=
0l... £<empty> ! <non-zero-digit>} <digitd>

rF

-123=
SECTION NAME
P8 {section-name~-declarationd ::=
{non=reserved-word)
P9 {section-named> ::=

{non-reserved-word> which appears as a
{section-name-declaration)

~124-
SECTION BODY

P10 <{section=body)> ::=
{paragraph>...

=125
PARAGRAPH

P11 (para%mpm s g
« <{paragraph-name-declarationd <{.> 1t
{<copy~-sentence> |
{paragraph-body>)

-126=
PARAGRAPH NAME
P12 <{paragraph-name-declaration)> ::=
<{non-reserved-word)
P13 <paragraph-named> ::=
non-reserved-word> which appears as a
{paragraph-name-declaration

P14 <paragraph-name-qualifiedd ::=
{paragraph-name> [<{in-of> {section-name>]

FE

-127=

PROCEDURE NAME

P15 <procedure-named ::=
{section-name> !
{paragraph-name=-qualified)>

—

-128=

PARAGRAPH BODY

P16

PIY

P18

P19

P20

{paragraph-body> ::=
{note=paragraph-body> !
{exlt-paragraph=body> |
{alterable-go=to=paragraph=body> |
{regular=paragraph-body>

{note-paragraph-body> ::=
{note-sentence> [<{comment-sentence>]...

{exit-paragraph=-body> ::=
{exlt=-sentence)

{alterable-go-to=paragraph=body> ::=
{alterable-go-~to-sentence>

{regular-paragraph-body> ::
{<{regular-sentenced> |
{other-language-block)>
[{regular-sentence> !
{other=-language=block)> |
{note-sentence>]...

rF

=]120=
SENTENCES

P21 {regular-sentenced> ::=
%gegular-imperative—sentence) |
{econditional-sentence> !
{enter-routine-sentence>

pp2 <other-language-block) ::=
{enter=other-language-sentence>
{other-language=-string)>
{enter-cobol-sentence>

=130=
IMPERATIVE SENTENCES

P23 <{exit-sentenced> ::=
{exit-statement> <{,>

P2l <alterable-go-to-sentence> ::=
{alterable-go-to=-statement> <{.>

P25 <regular-imperative-sentence> ::=
{regular-imperative-statement> <{,>

l1rlllllIlII-IIIIIIIIIIllllllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

o

CONDITIONAL SENTENCE

P26 {econditional=sentence> ::=

[{continuable-imperative-statement)> <{;>]
{conditional=-statement> <{.>

|9

=132

COMPILER DIRECTING SENTENCES

P2l

P28

P29

P30

P31

<{note-sentence> ::=
{note-statement> <{.>

{comment-sentence> ::=
{comment-string> <.>

{enter-routine-sentence> ::=
{enter-routine-statement> <,>

{enter-other-language-sentence> ::=
{enter-other-language-statement> <.>

{enter-=cobol-sentence> ::=
{enter-cobol-statement> <,>

=]133=
DECLARATIVE SENTENCE

P32 {declarative-sentence> ::=
{declarative-statement> D

13-
IMPERATIVE STATEMENTS

P33 <regular-imperative-statement> ::=
continuable-imperative=-statement)
[{;> <{terminating-imp-verb-statement>] !
{terminating-imp=verb-statement>

P34 <{continuable-imperative-statementd ::=
{continuable-imp-verb-statement>
[<{econtinuable-imp=verb-statement>]...

P35 <eontinuable-imp=verb-statement> ::=
{imp-arithmetic-statement> |
{move-statement> !
{examine-statement> |
{alter-statement)> |
{go=-to-depending-statement> |
{perform-statement> !
{stop=-literal-statement> |
(set=statement) !
{imperative-i-o-statement> !
{release-statement> !
{sort-statement)> |
{generate-statement> |
{initiate-statement> !
{terminate-statement>

P36 <{imp=arithmetic-statement)> ::=
{imp-add-statement)> !
{imp=subtract-statement> !
{imp-multiply=-statement) !
{imp=-divide=statement> |
{imp-compute-statement>

P37 <imperative-l=o-statementd> ::=
{accept-statement)> |
{display-statement)> !
{open-statement> !
{close-statement> !
{imperative=write-statement)> !
{seek=statement)>

P38 <terminating-imp=verb-statementd> ::=
{simple-go-to=statement)> |
{stop=run-statement>

<155

CONDITIONAL STATEMENTS

P39

{conditional=statement) ::=
{if-statement> !
{dmp-arithmetlc-statement>
{;> <size-error-phrase)> !
{search-statement)> !
{read=-statement)> |
{wrlte-invalid-key-statement) !
{return-s tatement>

-136=

DECLARATIVE STATEMENTS

PLO {declarative-statement> ::=
{use=error-statement> !
{use~label~-statement) !
{use-before-reporting-statement>

“137=

COMMON OPTIONS

P41 {size-error-phrase> ::=
[ON #]1 SIZE # ERROR #
{regular-imperative-statement>

Plig <{at-end- hrase> ::=
[AT #] END #
{regular-imperative-statement)

P43 <invalid-key-phrase) ::=
INVALID # [KEY r“]
{regular-imperative-statement)

=138
COMMON TERMS

PLlL {result> ::=
{elem-item=name=-ldentifier> [# <{rounded>]

P45 <rounded) ::=
ROUNDED

P46 <numeric-operand> ::=
{elem-item-name-identifier> !
{numeric=literal)>

P47 <literal=for-dilsplay=stop)> ::=
{simple=figurative-constant)> |
{proper-numeric-literal> |
{proper-nonnumeric-literal>

F

ARITHMETIC EXPRESSION

-139=

P48 <{arithmetlic-expression> ::
{term> [# &+ | =3 # <{term>]l...

phg <term)> ::=
(factor> [# &* | /3 # <{factord>l...

P50 <factor) ::=
{primaryy> [# ** # <{primary>]l...

P51 <primary> ::=
[é+ | -} #] <{unsigned-primary>

| P52 <unsigned-primary> ::=
J ' {numeric-operand)> !
| (<arithmetic-expression))

~140-

CONDITIONS

P53
P54
P55
P56

P57

P58

P59

P60

P61

P62

P63

{condition> ::=
{condition-term> [# OR # <condition-term>]...

{condition-term> ::=
{condition-factor> [# AND # <{condition-factor>l...

{condition-factor> ::=
[<not> #] <{condition-primary>

<not> ::=
NOT

{conditlon=-primary)> ::=
{simple-condition> !
{abbreviated-relation-condition> !
(<condition>)

{simple-condition) ::=
{relation-condition)> !
{elass=condition> !
{condition-name-condition> !
{switch-status-condition) |
{sign-condition)>

{abbreviated-relation-condition> ::=
{relation-conditiond
[# AND # <{abbreviation>]...
[# OR # <abbreviation>
[# AND # <abbreviationdl...l...

{abbreviation) ::=
[[<not> #] <relational-operatord #]
{relatlon-operand)

{relation=condition) ::=
{relation-operand> #
{relational=operator> #
{relation-operand)

{relation-operand> ::=
{item-name-identifier> |
{index-name-qualified> |
<{nonnumeric-literald> |
{arithmetic-expressiond

{relational=operator)> ::=
[IS #] [<not> #] £> | GREATER [# THAN]} !
[IS #] [<not> #] < | LESS [# THAN]) |
(IS #] [<not> #] | EQUAL (# TOl3

POL

P65
P66

P67

=141-

{elass-condition) ::=
{item-name-identifier)> #
[1s #] [<not> #] {NUMERIC ! ALPHABETIC}

{conditlon-name-conditiond ::=
{condition-name-identifier>

{switch-status-condition)> ::=
{switch-status-name)>

{sign-condition) ::=
{elem=item-name-identifier> #
[Is #] [<not> #] {POSITIVE | NEGATIVE | ZEROJ}

=142~
ACCEFT STATEMENT

P68 <accept-statement) ::=
ACCEPT # <{item-name-identifier)>
E# FROM #
{mnemonic-name-for-individual-io-unit> !
{mnemonic-name=~for=type-of-io=tnit>}]

B A

-143-
ADD STATEMENT

P69 <{imp-add-statement) ::=
ADD # <numeric-operand>
[{,> <numeric~operanddl..,. #
T0 # <{result)
[{,> <resultd]... !
ADD # <{numeric-operand>
£<{,> <{numeric-operand>}... #
GIVING # <result) !
ADD # {CORRESPONDING ! CORR} #
{non-elem-data-name-identifier)> #
T0 # <{non-elem-data-name-identifier> [# <rounded>]

144«
ALTER STATEMENT
P70 <{alter-statement)> ::=
ALTER # <alterationd [<{,> <alteration>]...
P71 <alterationd> ::=

{paragraph-name-qualified> #
T0 # [PROCEED # TO #] <{destination>

=145

CLOSE STATEMENT

e

P73

P74
P75
P76

PTT

{close-statement) ::=
CLOSE # <closure> [{,> <closure>]...

{closured> ::=
{non-ms-file-name>
(# <reel>] [[# WITH] # 4<no-rewind> | <lock>3}] !
{sequential-ms-file-name)>
[(# <unit>] [[# WITH] # <lock>] !
{random-ms~file=name>
[[# wITH] # <{lock)]

{reel> ::=
REEL

<unit) ::=
UNIT

{no-rewind> ::=
NO # REWIND

{lock> ::=
LOCK

-146=
COMPUTE STATEMENT

P78 <{imp-compute~statementd> ::=
COMPUTE # <result)> # = # <{arithmetic-expression)

-147=

DISPLAY STATEMENT

P79 <{display-statement)> ::=
DISPLAY # {display-operand>

[{,> <display=operand> ...
[# UPON #

{<mmemonic-name-for-individual-io-unit> !
{mmemonic-name-for- type-of-1o=-unit>$]

P80 <display-operand) ::=
{item-name~ldentifier> |
{literal-for-display-stop)

~148=
DIVIDE STATEMENT

P81 {imp-divide-statementd> ::=
DIVIDE # <{numeric-operand> #
INTO # <result) |
DIVIDE # <{numeric-operand> #
INTO # <numeric-operand> # GIVING # <{result>
[# REMAINDER # <{elem-item=-name-identifier>] |
DIVIDE # <numeric-operand> #
BY # <{numeric-operand> # GIVING # <resultd
[# REMAINDER # <{elem-1tem-name-identifier>]

| |

=149~
ENTER STATEMENT

P82 <{enter-routine-statement)> ::=
ENTER # <other-language-name)> # <{routine-name>

P83 <enter-other-language-statement) ::=
ENTER # <other-language-name>

P84 <{enter-cobol-statement> ::=
ENTER # COBOL

P85 <routine-name> ::=
{non-reserved-word>

=150=
EXAMINE STATEMENT

P86 <examine-statement) ::=
EXAMINE # <{item-name-identifier> #
TALLYING #
{ALL | LEADING | UNTIL # FIRST} #
{one-character-literal>
[# REPLACING # BY #
{one~character-literal>] !
EXAMINE # <{item-name-identifier> #
REPLACING #
£ALL | LEADING | FIRST | UNTIL # FIRST)} #
{one-character-literal)> #
BY #
{one=character-literald

P87 <one-character-literal) ::=
{computer-character> diff {quotation-mark> " |
{aiglt> ! =
{simple-figurative-constant)

-] 5=

EXIT STATEMENT

P88 <{exit-statement> ::=
EXIT

| GENERATE STATEMENT

P89 <generate-statement> ::=
GENERATE # <report-name) |
GENERATE # <{report-group=name-qualified)

~153=
GO TO STATEMENT

P90 <simple-go-to-statement)> ::=
GO # TO # <{destination)

P91 <alterable-go=to=statement> ::
GO # TO [# <{destination)]

P92 <go-to=depending-statement)> ::=
GO # TO # <{destination> £<,> <{destinationd}... #
DEPENDING # [ON #] <{elem-item-name-identifierd>

P93 <destination) ::=
{procedure-name>

=154~
IF STATEMENT

POL {if-statementd ::=
IF # <{condition)
;> 4<statementd> | NEXT # SENTENCE?)
{;> ELSE # {{statement> ! NEXT # SENTENCE}

P95 <statement) ::=
{regular-imperative-statement) |
[{continuable-imperative-statement> <{;>]
{conditional=-statement)>

=155«
INITIATE STATEMENT

P96 <{initiate-statement) ::=
INITIATE # <{report-name> [{,> <{report-name>]...

=]56=
MOVE STATEMENT

P97 <{move-statement> ::=
MOVE # 4<literald> | <{item-name-identifier>) #
TO # <{item-name-identifier>
[éi tem-name-identifier>],,, |
MOVE # {CORRESPONDING | CORR} #
<{non-elem=ltem-name-identifier> #
T0 # <{non-elem-item-name-identifier>

MULTIPLY STATEMENT

=157

P98 {imp=-multiply-statementd> ::=

MULTIPLY
MULTIPLY

{numerlc-operand> # BY # <{result) |
{numeric-operand> #

BY # <{numeric-operand> # GIVING # <{result>

=158=

NOTE STATEMENT

P99 <note-statement) ::=
NOTE # <{comment-string>

D

~159=

OPEN STATEMENT

P100 <open-statement) ::=
OPEN <open-options)>

P101 <open-options)> ::=
{{input=option> +
[Coutput-option>] +
[{i-o0=o0ption)>]} !
{<{output-option> &
[{i=0=-0ptiond>]} |
{i-o=option)

P102 <{input=optiond> ::=
INPUT # <{input-filed> [{,> {input-file>]...

P103 <output=option> ::=
; OUTPUT # <{output-filed> [{,> <output-file>]...

P104 {i-o-optiond> ::=
‘# I-O # <i"0-file> [<, > <1-0-file>] o0 e

P105 <{input-filed ::=
{ms-file-named> |
{non-ms=-file-name>
[# {veversed> | [# WITH] # <no-rewind>]

P106 <output-file> ::=
{ms-file-name> |
{non-ms-file-name> [[# WITH] # <no-rewind>]

P107 {i=o-file)> ::=
{ms-file-name)

P108 <reversedd ::=
REVERSED

-160=-
PERFORM STATEMENT

P109 <perform-statement) ::=
PERFORM # <range>
[# {times-option> !
<{until-option) |
<{varying-option)]

P110 {range)> ::=
rocedure=-name)
[# {THROUGH | THRU} # <{procedure-name>]

P111 <times-option)> ::=
{integral=operand> # TIMES

P112 <{until=option) ::=
UNTIL # <condition)

P113 <varying-option> ::=
VARYING # <varying-control-phrased>
[ﬁ AFTER i {varying-control-phrase)>
[# AFTER # <varying-control-phrase>]]

P114 <{varying-control-phrase) ::=
{control=variable> #
FROM #
é(i#dex-name-qualified) | <{numeric-operand)>) #
BY
{numeric=operand> #
UNTIL # <condition)

P115 {integral-operand)> ::=
{integer)> |
{elem=-item-name-identifier)

P116 <{control-=variable) ::=
{elem=1item=name=-identifier) !
{index~-name-quallfied)

T =

-161=

READ STATEMENT

| READ # <{sequential-file-name)> [# RECORD]
. [# INTO # <{item-name-identifier>]

{;> <{at-end-phrase> |

READ # <{random-ms-file-name> [# RECORD]
[# INTO # <{item-name-identifier>]

{;> <{invalid-key-phrase)d

P117 <read-statementd> ::=

-162=

RELEASE STATEMENT

P118 <release-statement> ::=
RELEASE # <{sort-record-name-qualified>
[# FROM # <{ltem=name=identifier>]

r————

=163~

RETURN STATEMENT

P119 <return-statement) ::=

RETURN # <{sort-file-name> [# RECORD]
[# INTO # <{item-name-identifier>]
{;> <at-end-phrased

160

SEARCH STATEMENT

P120 <search-statement)> ::=
SEARCH # <02=49=-1tem-name-qualified>
[# VARYING # <control-variabled]
;> <at-end-phrase)]
;> {when-phrase>},.., !
SEARCH # ALL # (02-49-item_name-qualified>
[{;> <at-end-phrased]
(3> <{when-phrase>

P121 <{when-phrase> ::=
WHEN # <condition> #
{<{regular-imperative-statement> !
NEXT # SENTENCE?

SEEK STATEMENT

=165=

P122 <seek-statementd> ::=
{random-ms-£ile~name> [# RECORD]

SEEK #

-166=

SET STATEMENT

P123 <set-statement)> ::=
SET # <{control-variable)
[(,; {control=variabled]... #

TO
{{integral-=operand> | <{index-name-qualified>} !
SET # ﬁdex—mme—qualified)

£<,> {index-name-qualified>]... #

UP | DOWN) # BY # {integral-operand)>

=167
SORT STATEMENT

Pi124 <sort-statementd> ::=
SORT # <{sort-file-named> #
<key-clause> [{;> <key-clause>l... #
{sort-input-specificationd #
{sort-output-specification>

P125 <key-claused ::= _
[ON #] £ASCENDING | DESCENDING} # [KEY #]
{sort-key-identifier>
[{,> <{sort-key-identifier>]...

P126 <{sort-input-specificationd ::=
USING # <non-sort-file-name)> !
INPUT # PROCEDURE # [IS #] <{sort-procedure=-ranze>

P127 <{sort-output-specificationd ::=
GIVING # <non-sort-file-name)> |
OUTPUT # PROCEDURE # [IS #] {sort-procedure-range>

P128 {sort-procedure-ranged ::=
{section=-name>
[# §THROUGH | THRU} # <{section-named]

P129 {sort=key-identifier> ::=
{sort=-record-name-qualified> !
{non-elem=02-48=1tem-name-1dentifier)> |
{elem-02=49=~item-name-identifier>

-168=

STOP STATEMENT

P130 <stop=literal-statement) ::=
STOP # <{1literal-for-display-stop)

P131 <{stop=run-statement) ::=
STOP # RUN

r

=]169=
SUBTRACT STATEMENT

P132 <imp-subtract-statement> ::=

SUBTRACT # <{numeric=-operand>

[{,> <numeric-operand>l... #

FROM # <result> [{,> <{result>]... !

SUBTRACT # <{numeric-operand)
| [{,> <numeric-operand>l.., #

FROM # <numeric-operand> # GIVING i {result) !

SUBTRACT # 4CORRESPONDING | CORR
{non=-elem-1tem-name-identifierd>
FROM # <non-elem-ltem-name-identifier>
[# <rounded>]

=1 70w
TERMINATE STATEMENT

P133 <terminate-statement) ::=
TERMINATE # <report-name)> [{,> <{report-name>]...

F

w1 Tle
USE STATEMENT

P134 <use-error-statement> ::=
USE # AFTER # [STANDARD #] ERROR #
PROCEDURE # [ON #]
<{non-sort-file-=name>
{,> <{non-sort-file-named>]...
INPUT |
QUTPUT !
I-09

P135 {use~label-statementd ::=

USE # {BEFORE ! AFTER} # [STANDARD #]
<beginning> # | <ending> #] ,
[{reel> # | <{file> #] LABEL # PROCEDURE # [ON #]
<non-ms=file-name>
{,> {non-ms~file-name>].,,., !

INPUT !

OUTPUTY |
lunit> # | {f1le> #] LABEL # PROCEDURE # [ON #]
{sequential-ms-~file-name)
{,> <{sequential-ms-file-name>]..., |

INPUT |

OUTPUT !

I-04 !
{file> #)] LABEL # PROCEDURE # [ON #]
{random-ms=file-name>
{y> <{random-ms-file-name>].., !

INPUT |

OUTPUT !

I-093

P136 <{use=before-reporting-statement) ::=
USE # BEFORE # REPORTING #
{report=-group=name=qualified)

P137 <{file> ::=
FILE

P138 <beginning> ::=
BEGINNING

P139 <{ending> ::=
ENDING

=172
WRITE STATEMENT

P140 <imperative-write-statement)> ::=
WRITE # <non-ms=record-name=-qualified)
[# FROM # <{item-name-identifier)]
[# {advancing~phrase)]

P141 <write-invalid-key-statement) ::=
WRITE # <{ms=record-name-qualified)
[# FROM # <{item-name-identifier)]
{;> <{invalid-key=-phrase)>

P1l42 <{advancing-phrase) ;::=
BEFORE | AFTER} # ADVANCING #
{integral-operand> [# LINES] !
{mnemonic-name-for-paper-advance>}

=173~

L, COBOL LIBRARY

STRUCTURE OF LIBRARY CALLS

L1 {copy-entry> ::=
{copy-clause> <.>

12 <copy=clause) ::=
{library-call)>

L3 {copy-sentence) ::=
{copy=-statement> <{.>

14 <{copy-statement) ::=
{1ibrary-call>
15 <library-call) ::=
copPY # <library-name)
[# REPLACING
<word> # BY # <{replacement>
[<{,> <word> # BY # <replacement)>]...]

L6 <{replacement> ::=
{word> | {literal> !
{data-name-identifierd> |
{procedure-name>

"’1 7’-'--
LIBRARY NAME

I'7 (h.brary-name) s e=
{non-reserved-word>

| . —

«175=
R. RESERVED WORDS

R1 {reserved-word> ::=

ACCEPT | ACCESS ! ACTUAL ! ADD | ADDRESS !
ADVANCING | AFTER ! ALL ! ALPHABETIC ! ALTER !
ALTERNATE | AND | ARE | AREA | AREAS !
ASCENDING | ASSIGN | AT | AUTHOR ! BEFORE !
BEGINNING | BLANK ! BLOCK ! BY | CF | CH !
CHARACTERS | CLOCK-UNITS ! CLOSE ! COBOL | CODE !
COLUMN | COMMA | COMP | COMPUTATIONAL ! COMPUTE !
CONFIGURATION ! CONTAINS | CONTROL ! CONTROLS !
COPY | CORR | CORRESPONDING | CURRENCY ! DATA !
DATE-COMPILED ! DATE-WRITTEN | DE |
DECIMAL-POINT | DECLARATIVES | DEPENDING !
DESCENDING | DETATL | DISPIAY ! DIVIDE !

N DIVISION | DOWN ! ELSE | END ! ENDING | ENTER !
ENVIRONMENT | EQUAT, | ERROR | EVERY ! EXAMINE !
EXIT | FD | FILE | FILE-CONTROL | FILE-LIMIT |
FILE-LIMITS | FILLER | FINAL | FIRST ! FOOTING |
FOR | FROM | GENERATE | GIVING ! GO | GREATER !
GROUP | HEADING | HIGH-VALUE | HIGH=-VALUES !
I-0 | I-D-CONTROL ! IDENTIFICATION ! IF | IN !
INDEX | INDEXED | INDICATE | INITIATE | INPUT !
INPUT-OUTPUT | INSTALLATION ! INTO | INVALID |
IS | JUST | JUSTIFIED | KEY ! KEYS | LABEL !

q LAST ! LEADING | LEFT | LESS ! LIMIT ! LIMITS !

LINE | LINE-COUNTER ! LINES ! LOCK ! LOW-VALUE !

LOW-VALUES | MEMORY | MODE ! MODULES | MOVE !

MULTIPLE | MULTIPLY | NEGATIVE ! NEXT | NO !

NOT | NOTE ! NUMBER | NUMERIC | OBJECT-COMPUTER |

OCCURS | OF | OFF | OMITTED | ON ! OPEN !

OPTIONAL | OR | OUTPUT | PAGE | PAGE-COUNTER !

PERFORM | PF | PH ! PIC | PICTURE ! PLUS !

b POSITION | POSITIVE | PROCEDURE ! PROCEED !

W PROCESSING | PROGRAM-ID ! QUOTE ! QUOTES !

RANDOM | RD ! READ | RECORD | RECORDS !

REDEFINES | REEL | RELEASE | REMARKS | RENAMES !

REPLACING ! REPORT | REPORTING ! REPORTS |

RERUN | RESERVE | RESET | RETURN | REVERSED !

| REWIND | RF | RH | RIGHT ! ROUNDED ! RUN ! SAME !

SD | SEARCH | SECTION | SECURITY ! SEEK !

SEGMENT-LIMIT | SELECT | SENTENCE | SEQUENTIAL !

SET | SIGN ! SIZE | SORT | SOURCE !

SOURCE-COMPUTER | SPACE | SPACES !

SPECTAL-NAMES | STANDARD | STATUS | STOP !

SUBTRACT | SUM | SYNC | SYNCHRONTZED | TALLY !

TALLYING | TAPE | TERMINATE | THAN | THROUGH !

THRU | TIMES | TO | TYPE | UNIT ! UNTIL ! UP |

UPON | USAGE | USE | USING | VALUE ! VALUES |

VARYING | WHEN | WITH | WORDS | WORKING-STORAGE !

WRITE | ZERO | ZEROES | ZERDS

INDEX
OF THE FORMAL DEFINITION
OF COBOL SYNTAX

r

INDEX OF THE ECMA TC6 SYNTAX DEFINITION OF COBOL,

META-VARIABLE

202-&9-name-declaration>

0>

{66=entry>

| {T7=deseription)

. {77=descriptions)

| {T77=1tem~-name>

| {77=1tem-name-declaration}
(g -redefines~clause)

{E8=-entry>

\ {02=49=-1tem-nzame-gualified>

{B8-value-claused
»
{9-seq)

{9=-seg=0r=-b0,>
G2

<{*S

. {*aseqd
<>
{t-seqd>
{+=-seg=or-b0,>
Ly

DEFN

D214
D
Dii8
DL4O
D8
DS
DG4
D93
D179
DU

D192
D16
D15

D153
Ge2

D174
D163
D170
D15
D15
G21

USED

D177 De23
D49 DKO

D157

D38 Dg0

DG

D8

D179 D219
DE6 D87

D8

D3 D39

D49 D50

D90 D91

D41

D157 D158
D146 D147
D153

D146 D147
™ ET72

E75 D14

D27 D28

D35 D36

D39 Do

D0 D51

D54 DE6

D60 D61

D87 D88

DG1 Dg2

D107 D108
D111 D182
P39 P94

P119 P120
D163

D148 D152
D159

D146 D150
D150

71 E12

E22 E32

E50 E59

E85 E86

D127 D128
D137 D140
D192 D193
P70 P72

P96 P97

P104 P123
P133 P134

D224
D5

D228
D94

DL7
D86

D148

D148
ET3
D15
D31
D37
DL 1
D&2
D57
DE2
DE9
D99
D109
P26
P95
P124

D154

E18
E48
E60
E87
D131
D183
D236
P79
P102
P125
PI35

P120
D54

D48
D87

D149

D149
E74
D16
D32
D38
D48
D53

D86
DO
D105
D110
P17
P141

E19

E6
EB8
D1g6
D185
P69
P92
P103
P132
L5

-178=

META-VARIABLE

<=>

¢-=seq>
{-=seq=o0r-b0,>
<o

>

§§£breviated-relation-condition)
{abbreviation>
{accept-statement>
{access-mode~-random-claused>
{access-mode~sequential-claused
{actual=-key=-claused
{additional-data-character)>
{advancing-phrase>
{alpha-word>
{alter-statement>
{alterable-go-~to=paragraph~body>
{alterable-go-to=sentence)
{alterable-go-to-statement>
galteration>

altermate-area-claused>
{arithmetic-expression>
{arithmetic-expression-

character>

{arithmetic-operator>
{assign-clause)>
{assign-individual-unilts-clause>
{assign-type-clause)
{at-end-phrase>

DEFN

D171
D160

D155
G20

D172
P59
P60
PES
E6T
Eg6
EG9
N6
P142
G26
P70
P1
P2
PO1
P71

P48
G7

GLY
ES5T
E59
E58
P42

USED

D160

D146 D150 D155
D150

G447 T1 I1 I3
Is I7 18 19
IT0 I11 Il12 I14
E1 E3 E5 E7
E9 EI0 E12 E16
E18 E45 EU8 E49
E50 E51 E70 E72
D1 D3 D7 DIl
D14 D15 D27 D31
D35 D36 D37 D38
D39 D41 D47 DUS
D49 D50 D51 D52
D53 D54 DB6 D87
D88 D89 D90 DI1
D99 D100 D101 D102
D105 D107 D108 P1
P3 P5 P6 P11
P23 P24 P25 P26
P27 P28 P29 P30
P31 P32 LI L3
D161

P57

P59

P37

E50

E49

EL9 E50

G16

P140

Ge8

P35

P16

P1

P2
B8 Bl

P52 P62 P78
G14

T4

E48 E49 E50 E5I1
E5T

E57

P117 P119 P120

=179

META-VARIABLE

éguthor-paragmaph>
x>

<b09>

<b0,>

eginning>
bhlank=when-zero=-claused>

<{block=clause)
gclass-condition>
clock=units=-rerun=-condition>
{elose-8tatement)
{closure>
{eobol-character)
{eobol-program>
écobol—text)
code=clause>
§column—number-clause>
comment-entry>
{comment-paragraph-body>

{comment-sentence>

{comment=s tring>
{compound-figurative-constant)
{ecomputer-characterd

écomputeruﬂame)
condltion)

condltion-name>
condltlion-name-condlition>
{condition-name-declaration)>
{condition-name-identifier>
{condition-name-qualified>
écondition—primary)
condition~term>
{econditional-sentence>
gconditional-statement>
configuration-section)>
{eonfiguration-section-body>

gcondition-factor>

{econtinuable~imp-verb~statement)

{eontinuable-imperative=-
statement)
gcontrol-clauae>
control-variable>

DEFN

18

D166
D165
D164

P138
D123

D124
P6L
E82
P72
P73
G15
o1
T9
D125
D126

I2
D145
D145
D150
D155
D160
P135
D60
D107
D16
P58

72
G16

D32
D107
I13

I11
P17
T5

625
P87

P57
P121

D223
P58

P65
D235
P55
P53
P21
P26
E2
E3
P34
P26

D32
P114

USED

D151 D15g D154

D156 D15

D159

D161 D162 D163

D61

D62 D92

D108 D110 D111

D108 D110 D111

18
T12

I14
Gh7

El2
POM

D85

P95

P33

I9 I10

P28 P99
G48 E39

P112 P114

P95

P120 P123

META-VARIABLE
{copy-clause>

{copy=-entry>

écopy-sentence)
copy=s tatement)
{es>

{es=-float>
{es=float=pict>

{es-seq>

{cs=seq-or-b0,>
{currency-sign>
{eurrency-sign-clause>
{eurrency-sign-declarationd
{eurrency-symbol>
{data~-division>
{data=-division-body>
{data-name-identifier>
{data-records-clause)
{date~-compiled=-paragraphd>
{date=-written-paragraph>
{decimal-fraction>
{decimal-point>
{decimal-point-clause>
{declarative-portion>
{declarative-section>
{declarative-sentence>
{declarative-statement>
{destination>

{dig-seq>

{digit>

{diglt-separator>
{display-operand>
{display=-statement>
{elem-01=77=-clauses>
{elem-01=77=red-clauses>
{elem=02-49-1tem-name>
{elem-02~49-1tem-name-
declaration)
{elem=-02-49~1tem-name-
identifier)>

DEFN

L2

D128

I10
G32
Ei3
El42
23
P5
P32
PLO
53
G4

E44
P8O
P79
D60
Dge
D79
D78

D226

{elem=-02-49~1tem-name-qualified> D213

{elem=66-1tem~name>

D83

D14
D35
D89
E7
ET0
P5

L3
D146 D148

315
7
D144
D147
D151
Gl
E18
E37
E41
C1
D1
E65
D16
I2
I2
G33
G32
E18
P2
P3
PS5
b7
D143
G15
Eés
P37
D164
P79
7
D87
D213
D77

D228

D21l
D216

USED

D15
D36
D99
E10

P6

D151

E4O

E69
D28

D175
E43

P90

G23
E39

D59

D79
P129

D219

D27 D31
D37 D88

L
E16 E45
P11

D149 D151

D156

L6

E44

P91 P92

G24 G31
D46 P7

D86

D226

r

«-181<
META=-VARIABLE DEFN USED
{elem=66-1tem-name-declaration> D82 DLO D83
{elem-66=-1tem=name-qualifiedd D216 D219 D228
{elem=clauses> D59 D49
{elem-data-name-identifier> D233 D234
{elem-1tem=-name-identifierd> D228 D229 D231 D233 P44
P46 P67 PB1 P92
| P115 P116
{elem-item=name-qualified> D219 D135 D136 D180 D193
D220 D236
{elem=-ms=record-named D70 D194 D200
{elem-ms-record-name- D69 D36 D70
| declaration)
' {elem-ms-record-name-qualified> D200 D205 D208
i’ {elem-non-ms=-record-name> D66 D194 D198
{elem=non-ms-record-name- D65 D35 D66
declaration)
{elem~-non-ms-record-name~ D198 D204 D208
guwalified>
{elem-non-sum-field=-name- D120 D108
declaration)>
{elem-non-sum=-group-clauses) D111 D102
{elem-non=-sum=report-group-name> D115 D210
{elem-non-sum-report-group-name- D114 D99 D115
declaration)>
{elem-non=-sum=report-group=name- D210 D211
gualified>
{elem-non-sum-report-group=spec)> D102 D99
{elem-non-sum=spec> D108 D106
{elem-record-name-gualified> D208 D219 D228
{elem-record-specd> D39 D35 D36 D37 D88
{elem-red-clauses> D61 D50 D59
{elem-renames-claused D180 D4O
P {elem=-report-specd D106 D104
{elem=sort-record-name> DU D194 D202
{elem-sort-record-name=- D73 D37 D74
declaratlion)>
{elem-sort-record-name- D202 D206 D208
qualified)
{elem-spec> D49 D43
{elem-ws~-record-name> D98 D195 D208
{elem-ws-record-name- D97 D88 D89 D98
declaration)>
{empty> G1 T2 E15 P7
{end-of-reel-rerun-condition> E79 E78
{ending> P139 P135
{enter-cobol-sentence> P31 P22
{enter=-cobol=-statement> P8L P31

-182=

META=-VARIABLE

{enter-other-language-sentence)
{enter-other-language-statement)

{enter-routine-sentence>

{enter-routine-statement)

éenvironment-division)
environment-division~body>

éexamine-statement)
exit-paragraph-body>

{exlt-sentence)>

{exit-statement>

{factor>

{fd-clauses>
filgurative-constant>
file>

{file-control-entry)>

{file-control-entry=for-non-ms-

file>

{file-control-entry-for-random-

ms=-file>
{file=control-entry-for-
sequential-ms~-file)>
{file-control=entry-for-sort=-
file>
{file-control-paragraph>
{file-control=paragraph-body>
{file-limit>
{file-limlit-claused
{file~-named>
{file-sectiond
{file-section-body>
{file-specification)
{fixed-insert-pict>
{fixed=-occurs-claused
{generalized-character-string)>
{generalized~-character-string-
type=-one)>
{generalized=character-string-
type-twod>
{generalized-separator)>
{generate-statement)
{go-to-depending-statement)
{group=indicate-clause>
{i-o=control-entry>
{i-o-control=paragraph>
{1-o=control-paragraph-body>
{i1-o-file>

DEFN

P30
P83
P29
P82

E2

P86
P18
P23
P88
P50
D16
G39

D129

P107

USED

a2
P30
P21
P29

E1

P35
P16
P18
P23

b1l D15

el
P135
E46
ELT

E4T
EL7
E4T

E6

EL45

E64

EL9 E50
ES5 EB87
D2

D3

Dl

D144

D57 D61
7

T6

T6

T7
P35

P35

D108 D111
E71

E6

E70

P104

=183

META-VARIABLE DEFN
{i-o=o0ption> P104
{identification-division> T1
{identification-division-body> I2
{if-statement> PO

imp-add-statement) P69
imp-arithmetic-statement> P36
{imp-compute-statement> P78
{imp=-divide-statement) P31
{dmp-multiply=statement) P98
{imp=subtract-statement) P132
{imperative=1-o-statement) P3Z
{imperative-write-statementd P140

{implementor-name-for-code-for- N8

report-groups)
{implementor-name~for-individual N3
=lo-unit>
(implementor-name-for-individual N5
=switch)>
{implementor-name=-for-paper= N7
advance>
{imrlementor=name-for-rerun- N4
medium>
{implementor-name-for-type-of-io N2
-unit)>
{in-of> D196
{index-elem-spec> D53
{index~-name)> D139
{index-name-declaration> D138
{index=name-qualified> D224
{index-non-elem-spec)> D51
{index-option> D137
{initiate-statement) P96
{input=-file> P105
{input-option)> P102
{input-output=-section) E5
{input-output-section-body> E6
{installation-paragraph)> 19
{integer> G31
{integer-records-rerun- E81
condition)>

USED

F1e0
C1
I1
P39
P36
P35
P36
P36
P36
P36
P35
P37
E21

E21
E22
E21

ET7
E21

D197
D201
D210
D216
D22l
D43

D22l
D137
D237
P123

D134
P35
P102
P101
E2
E5
I2
G32
E58
D237
EBO

P39

E59 E60

E58

D198 D199 D200
D202 D203 D209
D212 D213 D215
D217 D222 D223
P14

D139
P62 P114 P116

D135

G33 G36 EI13
E63 E88 D135
P115

META=-VARTABLE

{integral~-operand>
{invalid-key-phrase>
{item-name-identifier>

{item-name-qualified>
{Justified-clause)

<{key-clause>
<{key=-option>
{label-records-clause)
{letter>
{level=number>
{library-call>
{library-name>
{line-number-clause>

{literal>

{literal-for-display-stop)

{literal-string>
{lock>
{memory=-size-clause>

=184=

{mnemonic-name-declaration-for-

code-for-report-groups)

{mnemonic-name~declaration-for-

individual-lo-unit)

{mnemonic-name~declaration-for-

individual-switeh>

{mmemonic-name~declaration=for-

paper-advance>

{mnemonic-name-declaration-for-

type-of-lo-unit)

{mnemonic-~-name=for-code~or-

report-groups>

{mmemonic-name=for-individual=io

-unit)>

{mnemonic-name~or-paper-

advance>

{mmemonic~name=for-type=-of-1o-

unlt>
<{move-statement)
{ms-file-descriptiond
{ms=file=name>

{ms=-record-description>

DEFN

P15
P43
D229

D220
D130

P125
D136
D131
G5
D46
L5
L7
D132
GU3
PUT7

G29
P77

525
E23
E27
E25
E24
E31
E28
E30
E29
POT
D24

D36

USED

P111 P123 P142

P117 P141

D127 D183 D187 D230

P62 P64 P68 P80

P86 sz P117 P118
P140 P14

D60 D61 D62 D32
D107 D110 D111

D134 D135

G15 G23 G24 G26
I2 14

D105 D107 D108 D109
D110 D111

E65 D191 D193 P97

P80 P130

E21 E31
E21 E28

E21 E30
E21 E29
D125
P68 P79
P142
P68 P79

P35

D5

D25 D199 D200 P105
P106 P107

D5

META=VARTABLE

{ms-record-name-qualified>
{multiple-file-claused
dmultiple-file-clauses>
{multiple-reel-claused
{multiple-unit-clause>
(next-group-clause)
{no=rewind>
{non-declarative-portion)
{non-declarative-section)
{non-elem=01-clauses>
{non~elem-02=48-1tem-name>
{non-elem-02-48-1item-name-
declaration)>
{non-elem-02=48=1tem-name~
identifier>
{non-elem-02-48-1tem-name~
qualified>
{non-elem-66-1tem-name>
{non-elem-66-1item-name-
declaration)>
{non-elem-66-1tem-name-
quallfied)
{(non-elem-clauses>
{non-elem-data-name-identifier>
{non-elem-field-name>
{non-elem-field-name~
declaration)
{non-elem-group~-clauses>
{non-elem-item-name-identifier>
{non-elem-1item-name-qualified)
{non-elem-ms=-record-named
{non=-elem-ms-record-name~
declaration)>
{non-elem-ms=record-name-
gualified)>
{non-elem-non-ms=-record-name>
{non-elem-non-ms=-record-name-
declaration)
{non-elem-non-ms-record-name-
gualified)>
{non-elem-record-name-qualified)

{non-elem=record-specd
{non-elem-red-clauses>
{non-elem-renames-claused
<{non-elem-report-group=-name>
{non-elem-report-group-name-
declaration)

D113
D112

USED

P141
Ehs
E49

D109 D110 D111
P73 P105 P106
P2

PL

D38 D55

D212

D47 D48 D51 D52
D76

D227 P129

D213 D214 D218 D225

D215
D4o D81

D218 D227

D47
D234 P69
D217
D105 D119

D100
D229 D232 P97 P132
25k o

D194 D199

D36 D68

D205 D207

D194 D197
D35 D64

D204 D207

D212 D215 D216 D218
D227

D35 D36 D37 D88
D48 D55

DL4O

D209
D99 D113

-186=

META-VARTABLE

<{non-elem-report-group-name=
qualified)>
non-elem=report-group-spec>
non-elem-report-specd
éﬁonpelemnsort-record-name)
on-elem-sort-record-name-
declaration)
{non-elem-sort-record-name=
gualified)>
{non-elem=-spec>
{non-elem~ws-record-named
{non-elem=-ws=record-name-
declaration)>
{non-ms=file=description)
<{non-ms-file-named>

ggon-ms-file-name-declaration)
on-ms-record-description)
{non-ms-record-name-qualified)
<{non-reserved-alpha-word)

{non-reserved-word>

{non-sort-ile-name>

{non-switch-special-names-
claused
{non=-ws-record-name)>
<{non-zero-diglt)
<{nonnumeric-literald>
<{nonnumeric-plctured

DEFN

D209
D100
D105
D72
D71
D201
D47
D96

D14
D18

D17
D35
D204
G28

G27

D25

E21
D194

G41
D145

USED

D211 D217

D99

D104
D194 D201
D37 D72

D206 D207

D43
D195 D207
D88 D83 D96

D5
E52 D23 D25 Di19
D198 P73 P105 P10
P135
D14 D18
D5
P140
E35 E36 D17 D18
D19 D20 D21 D22
D29 D30 D33 D34
D63 D64 D65 D66
D67 D68 D69 D70
D71 D72 D73 D74
Dgg D76 Dg D79
D D81 D82 3
D84 D85 D3 DIY
D95 D96 D97 D98
D112 D113 D114 D115
D116 D117 D118 D119
D120 D121 D122 D138
D139
I6 E23 E24 E25
E26 E27 E28 E29
E3C E31 P8 P9
P12 P13 P85 Lg
ES6

E E79 E81

Egg D26 P126 P127
P134

E20

D128 D131

G4 G36 D46
G43 D192 P62
D142

‘o
o |

-187-
META=VARIABLE DEFN USED
<not> P56 925 P60 P63 P6YL
POT
{note=-paragraph-body> P17 P16
<{note-sentence> P27 P17 P20
{note-statement> sz PEZ
{numeric-edited-pictured D144 D12
<{numeric-literald GL2 G43 D192 PL6
{numeric-operand> PL6 P52 P69 P81 P98
P114 P132
{numeric-picture> D143 D142
{object-computer-entry> E12 E11
<{ob ject-computer-paragraphd E10 E4
’ {object-computer=paragraph-body> E11 E10
{off-status) E34 E32
{on-status) E33 E32
{one-character-literal)> P87 P86
{open-options> P101 P100
{open-statement) P100 P37
{optional-rhrase> E56 E52 E53
{other=-language-block> P22 P20
{other-language-name) NE P82 P83
{other-language=-string> G48 TS5 P22
{other=language-string- T2 T3
terminator)
{output=file> P106 P103
. {output-option P103 P101
| <pd> D169 D}ﬂB D146 D147 D148
D149
' {page-limit-clause) D140 D32
{paragraph)> P11 P2 P10
| {paragraph-body> P16 P11
ﬁ ’ {paragraph-name)> P13 P14
| {paragraph-name-declaration) P12 P11 P13
} {paragraph-name-qualified) P14 P15 P71
; {parenthesis> Gl2 G13
{perform-statement) P109 P35
{picture> D142 Gh6e D141
i {picture-character-string> GU6 T5
L (gicture—clause> D141 D60 D61 D62 D92
| D107 D108 D110 Dit1
| {point> DIZ5 D146 D147 D148 D149
\ {positive-integer> G3 E81 E82 Di124 D126

D132 D133 D134 D135
\ D140 D150 D151 D164
D165 D166 D167 D168
| D169 DIT0 D171 DI72
D173 D174 D176

-188-

META=-VARTABLE

DEFN

{possible~character-for-currency E39

~-slgn>
{primary>
{priority-number>
<{priority-number-limit>
{procedure-division)
procedure-division-body)>
procedure=name>
processing-mode-sequential-
clause)
program-1id-entry>
program-id-paragraph)>
{program-1id-paragraph-body>
program-name-declarationd
<{proper-nonnumeric-literal)>
proper-numerlic-literal)
{proper-punctuation-character)
proper-relatlional=operator)
quotation-mark>
{random-ms-file-name>

{random-ms-file-name-
declaration)>
{range>
{rd-clauses>
{read-statement>
{record-contains-clause)
{redefines=-clause)
{redefines=record-claused
{redefining-77-descriptiond>
{redefining-elem-record-spec)
{redefining-elem=-spec)
{redefining-index-elem-spec)

{redefining-index-non=elem-spec>

{redefining-non-elem-record-
spec)
éredefining-nonpelemsSpec>
redef'ining-sub-spec)
{redefining-ws-record-
description)
éreel)
regular-imperative-sentence>
{regular-imperative-statement)>

{regular-paragraph-body>
{regular-sentence>
{relation-characterd>

P51
PT7
E15
21
P2
P1
E6

D50
D54
D52
D90

D48
DALY
D89

P74
P25
P33

P20
P21
G8

E38

P50
P6
E14
C1
P1
P93
ELQ

I4
12
I3
I5
G38
Glh2
a1y
T4
G13
E54
P122
D15

P109
D31
P39
D16
D48
D90
D9
D89

USED

P110 L6
E50

G41 T4 pLT7
T4 PAT

P87
Del P73 P117
P135
D22

D28
D50 D52 D54
DI1

P135

P41 Phza P43
P121

=189=
META-VARIABLE DEFN USED

{relation-condition> P61 P58 P59
{relation-operand> P62 P60 P61
{relational=operator> P63 P60 P61
{relative~index-name-qualified> D23 D236
{release-statement> P11 P35
{remarks-paragraph I12 I2
{replacement) L6 L5
{report-claused> D182 D16
{report-descriptiond D31 D13
{report-group=description> D99 D13
{report-group-name-qualified> D211 D185 P89 P136
{report-name) D34 D182 D203 D209 D210

D222 P89 P96 P133
{report-name-declarationd> D33 D31 D34
{report-section) D11 D2
{report-section-body> D12 D11
{report=specificationd D13 D12
{rerun-clause> E76 ET73
{rerun-clauses)> ET7 ET72
{rerun-condition=1> E E76
{rerun-condition-2> E80 E76
{rerun-medium> ET7 E76
{reserved-word> R1 G27 Ge8
{reset-clause> D183 D107 D110
{result> PLY P69 P78 P81 P98

P132
{return-statement> P119 P39
{reversed> P108 P105
{rounded)> P45 P44 P69 P132
{routine-name> P85 P82
{same=-block=area=-clause> E86 E84
{same=claused E8L4 ET74
{same-clauses> ET74 E72
{same-record-area-clause> E85 E84
{same-sort-area-claused E8 E8L4
{sd=clauses> D2 D27
{search-statement> P120 P39
sectlon-body> P10 P5 P6
sectilon-name)> P9 P14 P15 P128
{section-name-declaration> P8 P5 P6 P9
{security-paragraph> I11 I2
{seek-statement> Pl122 P37
{segment-limit-clause> E14 E12
select-clause=for-non-ms=file> E52 E48
select-clause-for-random-ms- E54 E50

file>

=190=

META=-VARIABLE DEFN USED
{select=clause~-for-sequentlal=ms E53 E49
={1led
{select-clause=for-sort-filed> E55 E51
{separator> T1 T3 T8
{sequential-file-named> D23 P117
{sequential-ms-file-name) D20 E?g D23 D24 P73
P135
{sequential-ms-file-name=- D19 D15 D20
declaration>
{set-statement) P123 P35
ésign> G34 G35
silgn-condition> P67 P58
{sign-float) D150 D146
{sign-float-pict) D146 D144
{simple-condition> P58 P5
{simple-figurative-constant) G37 G38 G39 P47 P8T
{simple-go-to-statement) P90 P38
{size=-error-phrase) P11 P39
sklp=into-area-b> G18 EZ
sort-flle-description) D27
{sort-file-name)> D30 E55 D26 D201 D202
P119 P124
{sort-file-name-declarationd D29 D27 D30
{sort-file-specification> D6 D4
{sort-input-specification) P126 P124
ésorb-key-identifier} P129 P125
sort-output-assign-clause) E60 E48 EUQ
{sort-output-specification) P12 P124
{sort-procedure-range> P12 P126 P127
{sort-record-description) D37 D6
{sort-record-name-qualified> D206 P118 P129
{sort-statement) P124 P35
{source~clause> D184 D108 D111
{source~computer-entry> E9 E8
{source=computer-paragraph> Eg E4
{source=computer-paragraph-body> E E7
{source-ltem-name-ldentifier) D230 D184
space> a6 G15 G19 E39
spaces> G19 G19
{special=characterd G14 G15
{special-item-name-qualified) D222 D219 D228
{specilal=-names-clause> E20 E19
{speclal-names-clauses) E19 E18
{special-names-entry> E18 E17
{special-names-paragraph)> E16 E4 E4O EU3 EL4
{special=-names-paragraph-body> E17 E16
{statement> P95 PoY

META=-VARIABLE DEFN
{stop-llteral=statement> P130
{stop-run-statement) P131
{strophe> T8
{strophe-mark> G17
{structure> P
{sub=-number> 5
{sub-report-specd> D104
{sub-speec> D43
{subordinate-entries> Di2
{subordinate-report-entries> D103
{subscripts> D236
{sum-claused> D185
{sum-field-name> D122
{sum-field-name-declarationd D121
{sum-field-name-qualified> D217
{sum-group~clauses> D110
(sum=item-name-qualified> D221
{sum=report-group-named> D11
{sum-report-group-name- D11

declaration>
{sum=-report-group-name- D203

gqualified>
{sum-report-group-specd> D101
{sum-spec)> D107
{summed-1tem-name-identifier> D231
{supp=pict) D148
{switch-rerun-condition> E83
{switch-special-names-claused E22
{switch-status-condition> P66
{switch-status-name> E36
éswitch—status-name-ass1gnment> E32
switch-status-name-declaration)> E35
{synchronized-clause> D186
{term> P49
{terminate-statement> P133
{terminating-character> G10
{terminating-imp-verb-statement> P38
{times=-option> P111
{type=-clause) D187
dunit) P75
{unsigned-primary> P52
{unsigned-proper-numeric- G33

literal>
{until=option> P112
{usage~-clause) D188

USED

P35
P38
T9
T8
T7 T8

2 D103
D103

D42
D3§ D43 D4 DU5

D9
D100 D104

D225 D226 D235
D107 D110
D217

D107 D122

D221

D101

D230 D231 D233
D203

D99 D117

D211 D221

D99

D106

D185

D144

E80

E20

P58

E83 P66

E22

E33 E34 E36
D60 D61 D62 D92
P48

P35

@13

P33

P109

D109 D110 D111

P73 PI35

P51

G35

P109
D56 D57 D58 D60
D61 D62 DI0 D92

-192-

META-VARIABLE DEFN USED
{usage-1ls-display-clause) D189 3105 D107 D108 D109
10 D111
{usage-is~-index-clause> D190 D38 D39 D51 D52

D53 D54 D86 D87
e 5
{use-before-reporting-statement)> P136 PLO

use-error-statement) P134 P4O
use=-label-statement) P135 P40
{value-clause) D191 D56 D60 D108 D111
value-of-claused> D193 D16
var-occurs-elem-clauses) D62 D59
{var-occurs-non-elem-clauses> D58 D55
varliable-occurs-claused D135 D58 D62
varying-control-phrase) P114 P113
{varying-option> P113 P109
when=phrase) P121 P120

word> G25 Ge6 @27 T4 NI

N2 N3 N4 N5
gz N8 N9 L5

word-element) G23 G25
word-terminator) G4 @25
working-storage-section) D D2
{working-storage-section-body> D D7
{write-invalid-key-statement) P141 P39
éws-record-description> D38 D10
ws=record-descriptions> D10 D8
éws-record-name) D195 D178
z> D173 D162
{z-or-*=seq> D152 D148
Z-3eq) D162 D148 D152
zero-diglt> a3 GY
{zero-figurative~constant) GLo Gl2

EXPLANATORY NOTES

Go6

G&

G9

G17

G18

G45

= 195 =~

EXPLANATORY NOTES

<space>

b represents the cobol-character "space"

<relation-character>

The symbols > (greater than), < (less than) are
different from Backus brackets.

<currency-sign»>

$ represents the currency-sign defined by the
implementor.

<strophe~mark>

« is a cobol-control-character.

In the cobol reference format the strophe-mark is
represented by a new line without a hyphen in the
continuation area and a skip into area A.

<skip-into-area-b>

+ is a cobol-control-character.

In the cobol reference format the skip-into-area-b
is represented by a skip into area B, if the current
position is in area A, otherwise by no skip.

<proper-relational-operator>

The symbols > (greater than), < (less than) are
different from Backus brackets.

APPENDIX

=« 199 -

APPENDIX

A METALANGUAGE FOR THE
DESCRIPTION OF PROGRAMMING LANGUAGES

| - 200 -

TABLE OF CONTENTS

Pages

(i Table of Contents 200

2. Introduction 201

5. Terminal=Symbols 201

4. Strings 201

4.1 The concept of a String 201

4.2 Concatenation of Strings 201

' 4.3 Substrings 202

|

| B Sets of Strings 202
‘ 5.1 The Concept of a set of Strings 202
| The Name of a Set of Strings 203
5.3 Constructive Definition of Sets 204

| 5.3.1 Terminal Sets 204
‘ 5.3.2 Steps of the Construction 204
| 5.4 Union-Operation for Sets 205
' 5.5 Concatenation-Operation for Sets 206
5.6 "Containing"-Operation for Sets 207

5.7 "Not-Containing“-Operation for Sets 208

5.8 Difference-Operation for Sets 210

5.9 O0Option—-Operation for Sets 210

5.10 Repetition-Operation for Sets 212

5.11 Operation of Permutations 213

5.12 Nested Operations 214

6. English Language Extensions of the Metalanguage 216

T Sets of Connected Examples. 216

- 201 =

INTRODUCTION

The syntax of a programming language can be described either
with plain English, or in e more formal way, using a formal-
ized metalanguage.

Below, the metalanguage is explained, using English language

and examples. Connected examples, demonstrating the use of
the metalanguage, can be found at the end of this appendix.

TERMINAL-SYMBOLS

The terminal-symbols are the irreducible elements of the
language to be described by the metalanguage. Usually the
terminal-symbols of a language are its character set and
some additional symbols that are used to denote controls and
other basic concepts of the language which cannot be defined
in terms of the character set.

STRINGS

4.1 THE CONCEPT OF A STRING

A string is a sequence of terminal-symbols.

If A and B are terminal-symbols, then A AA BAB are
strings.

Strings formed by terminal-symbols are written as such,
terminated by space or any symbol that is not a terminal-
symbol. ("b" is used to represent the terminal-symbol
"space”, and "space” is used to terminate strings.)

The empty string is a sequence which does not consist of
any terminal-symbol, that is, the string which is a
sequence of 0 terminal-symbols.

4.2 CONCATENATION OF STRINGS

If A and B are strings, then a new string A B, the
concatenation of A and B, is defined as the string,
consisting of the ordered sequence of symbols comprising
A followed by that comprising B.

Thus, if A is the string MN and B is the string PQR, then
the concatenation of A and B is the string MNPQR.

|

1S

SETS OF STRINGS

- ¢Qg -

Concatenation is associative: The string resulting from
first concatenating A and B and then concatenating the
string obtained with C is the same as that resulting

from concatenating A with the string obtained by concate-
nating B and C. To concatenate three or more strings, no
brackets of any kind are necessary to show any order of
concatenation.

Concatenation is obviously not commutative: The concate-
nation of A and B is not necessarily the same as the
concatenation of B and A. Generally the results will be
different.

The empty string is the "identity” string with respect

to concatenation: The concatenation of the empty string
with any other string is a string identical to the latter;
the concatenation of any string with the empty string is
a string identical with the former. '

SUBSTRINGS

The string A is a substring of the string C, if there
exist strings X and Y such that C equals the concatenatio
of X+ A and Y. It may be that either or both X and Y are
empty strings.

Thus the string RST is a substring of the string PQRSTUVHW
There are strings PQ and UVW such that the string PQRSTUV
is the concatenation of the strings PQ, RST and UVW.

Other examples: MN is a substring of MNPQR, FGH is a sub-
string of EFGH.

The substring relation is reflexive: Any string A contai‘
this same string A as a trivial substring.

The substring relation is transitive: If A is a substring
of B, and B is a substring of C, then A is a substring of

The substring relation is not symmetric: If A is a sub-
string of E,then B is not necessarily a substring of A.
Generally B will not be a substring of A.

5.1

THE CONCEPT OF A SET OF STRINGS

Any collection of strings is called a set of strings.

Thus each proper-numeric-literal, permitted in COBOL, is
a string of terminals-symbols. ALl proper-numeric-
Literals can be grouped together conceptionally to form
the set of all proper-numeric-Literals.

5.

- LS =

Further example: Each of the 26 letters A, B, C ... Z is
a string, consisting of exactly one terminal-symbol. The
26 letters can be grouped together to form the set of all
Letters.

The symbol “€" will be used between a string and the name
of a set, to indicate that the string on the left-hand
side is contained in the set on the right-hand side. Thus
"ABCE<p>" is an abbreviation for "the string ABC is
element of the set <p>". This will only be used in the
description of the metalanguage.

The null set of strings is that set that does not contain
any strings.

THE NAME OF A SET OF STRINGS

References to individual sets of strings will be by
assigned names. The term meta-variable is used interchange-
ably with name of a set.

Names of sets will be chosen in such a way that they have
some mnemonic relation to the specific set they are

assigned to. Any convenient symbols can be used: Terminal-
symbols (for instance: digits, period, comma, semi-colon,
plus-sign, hyphen, asterisk; upper case letters) or any
other additional symbols (for instance: lower case letters).
In order to rigorously indicate the begin and the end of

the name, each name begins with a left Backus bracket

(<) and ends with a right Backus bracket (>).

Examples of names for sets of strings are:
<integer>, <data-division>.

Remark:

The use of Backus brackets is necessary, because it is
frequently convenient to utilize terminal-symbols for the
formation of names for sets, and further, because it is
common practice not to introduce a concatenation operator
for sets (similar to multiplication in ordinary arithmetic),
thus eliminating the separator between the two operands

of concatenation.

Terminal-symbols can be considered as a string consisting
of exactly one terminal-symbol. And a set can be formed,
consisting of exactly this single string. Though the
terminal-symbol and the related set are conceptually

di fferent, the terminal-symbol will be used as name for the
related one-element set, provided that no misunderstanding
is possible.

This slightly extends the conventions for names of sets
given above.

#

S

- 204 -

Thus B is considered as the name of the set consisting
of the single one-character string B, 9 is considered
as the name of the set consisting of the single one-
character string 9.

Some names of sets have to be used frequently. In this
case, unique additional symbols are introduced as abbre-
viations for the names of the set.

Again, this further extends the conventions for names of
sets given above.

Thus # is used as abbreviation for <spaces>, representing
the set consisting of strings of one or more spaces.

<null> will be used as name for the null set of strings.

<empty> will be used as name for the set, consisting of
the empty string only.

CONSTRUCTIVE DEFINITION OF SETS

Sets of strings will be defined as intermediate steps
for the definition of the set of all syntactically correct
programs.

Sets chosen and defined will reflect the syntactic struc-
ture of the language being described, and possibly facili-
tate the description of its semantics in an accompanying
English-language document. In other words, sets chosen
usually will correspond to concepts or logical entities

in the language.

5.3.1 TERMINAL SETS

The construction starts with sets consisting of
exactly one string, which in turn consists of
exactly one terminal-symbol.

As described above, the terminal-symbol will be
used as name for the related terminal set.

5.3.2 STEPS OF THE CONSTRUCTION

Each individual step of the construction is the
definition of a new set of strings, in terms of
sets already known. It is represented by a meta-
definition: The name of the set to be defined,
followed by the definition-symbol (::=), which
means “"is defined as”, followed by names of sets
already defined and meta-operators representing
the principles of construction to be applied.

= 205 -

Example:
<number> ::= <unsigned-number> | <signed-number>

The detail explanation of the operators representing
the principles of construction follows below.

5.4 UNION-OPERATION FOR SETS

The union-operation permits the constructive definition
of a new set in terms of two other sets already known.
The principles of construction represented by the union-
operator are explained below.

If <a> and are sets of strings, then a new set <c>::=
<a>|, the union of <a> and , is defined as the set
consisting of exactly those strings, that are present
either in <a> or in or in both.

Or more formally:
X €<a>|, if and only if X & <a> or X €

Thus, if <set-1> consists of the 3 strings AB, CDE, F and
if <set-2> consists of the 2 strings X, YZ then

<neu-set>::=<set-1>|<set-2>
defines a new set consisting of the following 5 strings:

AB CDE F
X YZ

Further example:
<number>::=<unsigned-number>|<signed-number>

The concept “"number” is defined in terms of the concepts
“unsigned-number” and "signed-number”, that are assumed

to be known. The principle of construction is determined
by the union-operator: Any unsigned-number or any signed-

number is to be considered as number, that is as a string
of the set <number>.

The union-operation for sets is associative:

The set resulting from first cumbining <a> and and
then combining the set obtained with <c> is the same as
the set resulting from combining <a> with the set ob-
tained by combining and <c>. To combine three or
more sets with the union-operation, no brackets of any
kind are necessary to show any order of the union-
operations.

The union-operation for sets is commutative: The set

- 206 -

resulting from combining <a> and is the same as the
set resulting from combining and <a>.

The set <null> is the "identity” with respect to the union-
operation: The union of <null> and any other set is a set
identical to the latter.

Note. In the other parts of the present book, the union operator is represented by an exclamation
mark ! for typographical reasons.

CONCATENATION-OPERATION FOR SETS

The concatenation—-operation permits the constructive
definition of a new set in terms of two other sets already
known. The principles of construction represented by the
concatenation-operator are explained below.

If <a> and are sets of strings, then a new set
<c>::=<a>|, or abbreviated <c>::=<a>, the
concatenation of <a> and , is defined as the set
consisting of exactly those strings, that can be formed
by concatenation of any string of <a> with any string of
.

Or more formally:

Z € <a>, if and only if there are strings

X € <a> and Y € such that Z=XY.

Thus, if <set-1> consists of the 3 strings AB, CDE. F and
if <set-2> consists of the 2 strings X. YZ then

<new-set>::=<set-1><set-2>

defines a new set consisting of the following 6 strings:

ABX ABYZ
CDEX CDEYZ
FX FYZ

Further example:
<sjgned-number>::=<sign><unsigned-number>

The concept “"signed-number” is defined in terms of the
concepts "sign” and "unsigned-number”, that are assumed

to be known. The principle of construction is determined
by the concatenation-operator: Any sign (+ or =) followed
by any unsigned-number is a string that is to be consider-
ed as a signed-number, that is, as a string of the set
<signed-number>.

The concatenation-operation for sets is associative:
The set resulting from first concatenating <a> and
and then concatenating the set obtained with <c> is the
same as the set resulting from concatenating <a> with
the set obtained from concatenating and <c¢>.

-~ 20 -

To concatenate three or more sets, no brackets of any
kind are necessary to show any order of concatenation.

Concatenation of sets is obviously not commutative: The
concatenation of <a> and is not necessarily the same
as the concatenation of and <a>. Generally the
results will be different.

The set <empty> is the "identity” with respect to concat-
enation: The concatenation of <empty> with any other set is
a set identical to the latter; the concatenation of any

set with <empty> is a set identical to the former.

The set <null> is the“zero” with respect to concatenation:
The concatenation of <null> with any other set is z set
identical to <null>; the concatenation of any set with
<null> is a set identical to <null>.

Union-operation and concatenation-operation are distrib-
utive:

The set resulting from first forming the union of <a> and
 and then concatenating the set obtained with <d> is
the same as the set resulting from forming the union of
the set obtained from concatenating <a> and <d> and of the
set obtained from concatenating and <d>.

Similarly the set resulting from first forming the union
of <a> and and then concatenating <d> with the set
obtained is the same as the set resulting from forming
the union of the set obtained from concatenating <d> and
<a> and of the set obtained from concatenating <d> and
.

CONTAINING-OPERATION FOR SETS

The "containing”"—-operation permits the constructive
definition of a new set in terms of two other sets al-
ready known. The principles of construction represented
by the "containing”"-operator are explained below:

If <a> and are sets of strings, then a new set
<c>::=<a> |[containing] , or abbreviated

<c>::=<a> containing , is defined as the set consisting
of exactly those strings of <a>, that contain a substring
that belongs to .

Or more formally:

X € <a> [containing | , if and only if X € <a> and

there is a string Y such that Y substring of X and Y€ .

-~ 208 -

Thus, if <set-1> consists of the 5 strings AX, YBZ, 17YZ.
X32, Z3 and if <set-2> consists of the 2 strings X, YZ
then

<new-set>::=<set-1> [pontainingl <set-2>

defines a new set consisting of the following 3 strings
AX, 17YZ, X32

Further example:

<alphaword>::=<word> |[containing | <letter>

The concept “"alphaword” is defined interms of the concepts
"word” and "letter”, that are assumed to be known. The
principle of construction is determined by the "contain- ‘
ing” operator: Any word that contains a letter is to be
considered as alpha-word, that is as a string of the set
<alpha-word>.

The example above is representative for the main applica-
tion of the "containing“operator: To characterize sub-
classes of names in programming languages, the members

of which are requested to contain for instance at least
one letter, but not necessarily as the first or last
symbol .

<x> |containing| <null> equals <null>, for any set <x>.
The set <null> is a "right-hand zero" with respect to the
“containing’-operation.

<null> [containing]| <x> equals <null>, for any set <x>.
The set <null> is a "left-hand zero” with respect to the
“containing”"-operation.

<x> |containing| <empty> equals <x>, for any set <x>.
This is implied by the fact that every string contains
the empty string as a substring. The set <empty> is a
"right-hand identity” with respect to the "containing"-
operation.

<empty> |[containing| <x> equals <empty>, if <x> contains
the empty string.

<empty> |containing[<x> equals <null>, if <x> does not
contain the empty string.

NOT CONTAINING-OPERATION FOR SETS

The "not-containing”-operation permits the constructive
definition of a new set in terms of two other sets al-
ready known. The principles of construction represented
by the "not-containing”-operator are explained below.

-

= 208 =

If <a> and are sets of strings, then a new set
<c>::=<a> [not-containing| , abbreviated
<c>::=<a> not-containing , is defined as the set
consisting of exactly those strings of <a>, that do
not contain a substring that belongs to .

Or more formally:

X € <a> |not-containing| , if and only if X € <a> |
and there is no string Y such that Y substring of X and
Y € .

Thus, if <set-1> consists of the 5 strinags AX, YBZ, 17YZ,
X32, 23, and if <set-2> consists of the 2 strings X, YZ
then

<new-set>::=<set-1> [not-containing] <set-2>

defines a new set consisting of the following 2 strings:
YBZ, 23

Further example:

<special-label>::= <word> |not-containing| <letter>

The concept “special-label” is defined in terms of the
concepts “"word” and “"letter”, that are assumed to be
known. The principle of construction is determined by the
"not-containing”"-operator: Any word that does not contain
a letter is to be considered as special-label, that is as
a string of the set<special-LlLabel>.

The main application of the "not-containing -operator is
to characterize strings, that are terminated by a defin-
ite symbol, or a definite sequence of symbols (for in-
stance comments or non-numeric Literals).

<x> lnot-containing| <null> equals <x>, for any set <x>. The
set <null> is a "right-hand identity” with respect to
the "not-containing”-operation.

<null> [not-containing| <x> equals <null>, for any set
<x>. The set <null> is a "left-hand identity” with
respect to the "not-containing“-operation.

<x> [not-containing| <empty> equals <null>, for any set <x>.
This is implied by the fact that every string contains
the empty string as a substring.

<empty> [not-containing] <x> equals <null>, if <x>
contains the empty string.

<empty> [not-containing] <x> equals <empty>, if <x>

does not contain the empty string.

=2 =

5.8 DIFFERENCE-OPERATION FOR SETS

5.

The difference-or "different-=from”"-operation permits

the constructive definition of a new set in terms of two
other sets already known. The principles of contructions
represented by the difference-operator are explained
below.

If <a> and are sets of strings, then a new set
<c>::=<a> |diff]l, or abbreviated <c>::=<a> diff ,

is defined as the set consisting of exactly those strings
of <a>, that are not identical with any string of .

Or more formally:
X €<a> [diff] , if and only if X € <a> and X § .

Thus, if <set-1> consists of the 3 strings AX, YBZ, 17YZ ‘l
and if <set-2> consists of the 2 strings AX, YZ then

<new-set>::=<set-1> <set-2> |
defines a new set consisting of the following 2 strings: |
YBZ, 17YZ |

Further example:
<non-reserved-word>::=<word> <reserved-word>

The concept "user-defined-name” is defined in terms of

the concepts "word” and "reserved-word"”, that are assumed
to be known. The principle of construction is determined
by the difference-operator: Any word that is not identical
with a reserved-word can be utilized as a user—-defined-
name, that is it is a string of the set <user-defined- (J
name> .

The main application of the difference-operator is de-
monstrated by the example above.

<x> m <null> equals <x>, for any set <x>. The set
<null> is a "right-hand identity”. With respect to the
difference operation.

<nul > <x> equals <null>, for any set <x>. The set

<null> is a "left-hand zero” with respect to the differ-
ence operation.

OPTION-OPERATION FOR SETS

The option-operation permits the constructive definition
of a new set in terms of another set already known. The
principles of construction represented by the option-
operator are explained below.

If <a> is a set of strings, then a new set
<c>::=[<a>], is defined as the set consisting of the

. - J

= 29% =

strings of <a> and the empty string.
Or more formally:

X €l<a>], if and only if X € <a> or X is the empty
string.

Thus, if <set-1> consists of the 3 strings AB, CDE, F
then

<new-set>::=[<set-1>]

defines a new set consisting of the following &4 strinags:
AB. CDE. F, empty string

Further example:

<optional-sign>::=[<sign>]

The concept "optional-sign” is defined in terms of the
concept "sign"”, that is assumed to be known.

The principle of construction is determined by the option-
operator: Any sign, omitted or optionally present, is to

be considered as optional-sign, that is a string of the set
<optional-sign>.

Combined example:
<number>::=[<sign>] <unsigned-number>

The concept "number” is defined in terms of the concepts
"sign” and "unsigned-number”, that are assumed to be
known. The principle of construction is determined by
the option-operator and the concatenation-operator: Any
unsigned-number optionally preceded by a sign is to be
considered as number, that is as a string of the set
<number>.

The following 3 constructions are equivalent:

a) <number>::=<optional-sign><unsigned-number>
<optional-sign>::=<sign>\<empty>

b) <number>::=
<sign><unsigned—number>|<unsigned—number>

c) <number>::=[<sign>l<unsigned-number>
It is obvious, that construction c¢) is most convenient

for the reader. It is very close to the natural language
("optionally preceded by").

1t might be useful to note, that the unary option-
operation, an operation or the function with a single

B 2,

= 212 =

operand or argument, is represented in a way different
from the one conventionally used in algebra.

In algebra, the unary operators + and - usually refer

to the number following the operator, as for instance in
-112. 1f the operators are intended to refer to a more
extended expression, the scope of the operator has to be
indicated by parentheses, supplementing the operator,

as for instance in —-(112+0.5).

The same method would be possible for the option-operation
as well, and an operator-symbol "opt" could be introduced.
1f required, the scope could be indicated by some type of
meta-brackets.

However, it seems to be more convenient for the reader

to use option-brackets. In that way, the scope of the (]
operation is indicated for all cases, even for the

simple ones, and the form of the brackets defines the type
of operation to be performed (that is the option-oper-
ation and not any other unary set operation).

REPETITION-OPERATION FOR SETS

The repetition-operation permits the constructive
definition of a new set in terms of another set already
known. The principles of construction represented by
the repetition-operator are explained belouw.

If <a> is a set of strings, then a new set
<C>::=<a>eo00 is defined as the set consisting of the
string of <a> and all those strings, which can be
formed by concatenation of two or more strings, each of ‘
them belonging to the set <a>.

Or more formally:

X € <a> eoeo, if and only if there is an integer n31

and strings Xq, X2,... X, such that Xq € <a>, Xp € <a>,...
X, € <a> and X = X1 Xp... Xp.

It should be noted that the set <a> e®o is identical to
the set

<a>|<a><a> <a><a><a>|etc.
Thus, if <set-1> consists of the 2 strings AB, XYZ then
<new-set>::=<set-1>e000

defines a new set consisting of the following strings:

AB XYZ
ABAB ABXYZ XYZAB XYZXYZ
ABABAB ABABXYZ p—

«11

- 213 -

Further example:
<integer>::=<digit>eee

The concept "integer” is defined in terms of the concept
"digit", that is assumed to be known. The principle of
construction is determined by the repetition-operator:

A sequence of one or more digits is to be considered as
integer, that is as a string of the set <integer>.

It is important to realize, that<digit>eee consists of
all digit strings, not of just strings of all zeros,

all ones, etc.. Further it should be noted, that <digit>
eee does not include the empty string.

The following 3 constructions are gquivalent:
al <integer>::=<digit>l<integer><digit>

b) <integer>::=<digit>|<digit><digit>|<digit><digit>
<digit>| etc..

c) <integer>::=<digit>eee

It is obvious, that construction c¢) is most convenient for
the reader. It is very close to the natural language

("any number of"; "a sequence of"). Construction b) is
unconvenient because of the "etc”, construction a) be-
cause of the recursivity.

It might be useful to note, that the unary repetition-
operation, an operation or function with a single operand
or argument is represented in a way slightly different
from the one conventionally used in algebra.

In algebra, the unary operators + and - usually refer to
the number following the operator, as for instance in
=112 (pre-fixed operator).

The same method would be possible for the repetition-
operation as well. However, for the convenience of the
reader, the unary repetition-operator eee is defined to
refer to the set preceding the operator, as for instance
<set-1>eee (post-fixed operator).

OPERATION OF PERMUTATIONS

Concatenated sets can be permutated and the permutations
can be connected with the union-operator. This operation
permits the construction of new sets in terms of sets
already known.

The operation will be explained for permutations of two

- 214 -
sets and for permutations of three sets. Analogously,
the operationcan be defined for permutations of any
number of sets.
I1f <a> and are sets of strings then a new set
<p>::=4 <a>| }
is defined as being equivalent to
<p>::=<a>|<a>
I1f <a> and <c¢> are sets of strings then a new set
<p>::=4 <a>+l<c> be
is defined as being equivalent to

<p>::=<a><c>|<a><c> |
<a><c> [<c><a>|
<c><a> [<c><a>

The meta-symbols 4,% are called permutation-brackets, and
the meta-symbol | is called permutation-separator.

It might be useful to note that
<p>::=¢ [<a>1||<c> %

includes 6 triples and 2 doubles <c> and <c>,
that is, the set being defined is equivalent to
<p>::i=<a><c>| <a><c> |
<a><c>| <c><a> |
<c><a> | <c><a> |
<c>| <c>

5.12 NESTED OPERATIONS

AlLL the operations that have been defined for sets in

the previous chapters are complete. That is any set of
strings can be used as operand. The operation will always
be defined and there will always be a unique set of
strings that is the result of the operation.

Consequently, any result can be used as operand for
another operation, and any level of nesting is possible.

For instance,

<a> can be concatenated with , giving <a>. The

- 215 =

result can be combined by the union-operator with <c>,
thus giving <a>|<c>.

It becomes immediately clear, that meta-brackets are
required to define the sequence of the operations and
to avoid ambiguities. The meta-symbols {and} will be
used for that purpose.

Thus the combined operation mentioned above would have
to be described by

£<a>> | <c>
The 3 operands could however have been combined as follows:
<a>€ | <c>»

If <a> consists of a single string AXA, of the single
string BYB, and <c> of the single string CZC, then it is
obvious, that the two results are different from each
other: The first result is a set consisting of the 2
strings AXABYB and CZC, the second result is a set consist-
ing of the 2 strings AXABYB and AXACZC.

Meta-brackets can be avoided to some extent, by assigning
priorities to the operators, which determine the sequence
of operations, in case meta-brackets are not present.

For the meta-operators defined in the preceding chapters,
the following sequence of priorities shall be valid
(highest priority first, lowest priority last):
repetition—-operator 000

concatenation-operator " , abbreviated by concatenating
operands.

union-operator |

containing-operator [containingw, abbreviated by
“containing”.

not-containing-operator [not-containing|, abbreviated by
"not-containing”

not-identical-operator [diff|, abbreviated by "diff".

The following convention determines the sequence of
operations if meta-brackets are not present:

1. If there is a conflict between unary and binary oper-
ations, the unary operation is executed first. Thus
<a>|eee is equivalent to <a>|€ eee? and <a>eee
is equivalent to <a>€eee?}

2. If two binary operations have different priority, the
operation with the higher priority is executed first.
Thus <a>|<c> is equivalent to <a>| €<c>}).

“« 216 =

3. If two binary operations have the same priority, the
order of execution is from left to right.
Thus <a><c> is equivalent to { <a>)<c>.

No priorities are assigned to the following operators:

option-operatar
operators for permutation

Their operands are clearly lLlocated in the string of
operators and operand-names. First the operands have to

be evaluated, afterwards the indicated operation has to be
executed. Because of the structure of the operator symbols
no meta-brackets are required to enclose the operands.

Thus, [<a>] requires first the evaluation of <a>,
that is the evaluation of the operand of the option-
operation, and then adding the empty string to the set,
that is the execution of the option-operation.
Similarly, ¢ <a>l<x><y> ¥ requires first the evaluation
of <a> and of <x><y>, that is the evaluation of the
operands of the permutation-operation, and then the
execution of the permutation-operation.
That is

<result>::=4¢ <a>+<x><y>) 2
is equivalent to

<result>::=€<a>}e<x><y>}| € <x><y>)€<a>y

ENGLISH LANGUAGE EXTENSIONS OF THE METALANGUAGE

1f required, the metalanguage described above is extended
by the use of the English language.

SETS OF CONNECTED EXAMPLES

The following three sets of examples illustrate the utili-
zation of the metalanguage.

Example 1

Formal Syntactic Definition of the Concept
"Possibly-Signed-Integer”

Formal Definition English Equivalent
<digit>::= A digit is any one of the
0111213 4|5l6l718]9 listed symbols.

= A =~
<integer>::= An integer is a sequence
<digit>eee of one or more digits.
<sign>::= A sign is either the symbol
+| - “+" or the symbol "-"
<possibly-signed-integer>::= A possibly-signed-integer
[<sign>]<integer> is an integer, optionally

preceded by a sign.

Example 2
Formal Syntactic Definition of the Concept “"Signed-Positive-
Integer”
Formal Definition English Equivalent
. <digit>::= A digit is any one of the
ol112(3|4l516]718]9 listed symbols.
<non-zero-digit>::= A non-zero-digit is a digit
<digit> diff O different from “0°
<integer>::= An integer is a sequence of
<digit>eee one or more digits.
<positive-integer>::= A positive-integer is an
<integer> integer that does contain
containing<non-zero-digit> a non-zero-digit.
<signed-positive-integer>::= A signed-positive-integer is
+<positive-integer> a positive-integer, preceded
by the symbol "+".
Example 3
" Formal Syntactic nginition of the Concept "Comment-Sentence”
Formal Definition English Equivalent
<computer—-character>::= Acomputer-character
<cobol-character>| is either a cobol-character
<additional-data-character> or an additional-data-
character.
<delimiting-period>::= A delimiting=period is a
o € <space>eo®) period followed by a sequence
of one or more spaces.
<comment-string>::= A comment-string is a se-
£ <computer-character>ese) quence of one or more com-
not containing puter-characters, that does
<delimiting-period> not contain a delimiting-
period.
<comment-entry>::= A comment-entry is a comment-
<comment-string> string followed by a delim-

<delimiting—period> iting—-period. I

