
 1

System.Threading.Monitor Class

[ILAsm]
.class public sealed Monitor extends System.Object

[C#]
public sealed class Monitor

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Provides a mechanism that synchronizes access to objects.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

The System.Threading.Monitor class controls access to objects by granting a
single thread a lock for an object. Object locks provide the ability to restrict
access to a block of code, commonly called a critical section. While a thread owns
the lock for an object no other thread can acquire the lock for the object.
Additionally, the System.Threading.Monitor class can be used to ensure that no
other thread can access a section of application code being executed by the lock
owner, unless the other thread is executing the code using a different locked
object.

The following information is maintained for each synchronized object:

• A reference to the thread that currently holds the lock.

• A reference to a "ready queue", which contains the threads that are ready to
obtain the lock.

• A reference to a "waiting queue", which contains the threads that are waiting
for notification of a change in the state of the locked object.

 2

The following table describes the actions taken by threads that access synchronized
objects:

Action Description

Enter

Acquires a lock for an object. Also marks the beginning of a critical section.
No other thread can enter the critical section unless they are executing the
instructions in the critical section using a different locked object. [Note: See
the System.Threading.Monitor.Enter and
System.Threading.Monitor.TryEnter methods.]

Wait

Releases the lock on an object in order to permit other threads to lock and
access the object. The calling thread waits while another thread accesses
the object. Pulse signals (see below) are used to notify waiting threads
about changes to an object's state. [Note: See
System.Threading.Monitor.Wait.]

Pulse
(signal)

Sends a signal to one or more waiting threads. The signal notifies a waiting
thread that the state of the locked object has changed, and the owner of
the lock is ready to release the lock. The waiting thread is placed in the
object's ready queue so that it can eventually receive the lock for the
object. Once the thread has the lock, it can check the new state of the
object to see if the required state has been reached. [Note: See
System.Threading.Monitor.Pulse and
System.Threading.Monitor.PulseAll.]

Exit
Releases the lock on an object. Also marks the end of a critical section
protected by the locked object. [Note: See
System.Threading.Monitor.Exit.]

The System.Threading.Monitor.Enter and System.Threading.Monitor.Exit
methods are used to mark the beginning and end of a critical section. If the critical
section is a set of contiguous instructions, then the lock acquired by the
System.Threading.Monitor.Enter method guarantees that only a single thread can
execute the enclosed code with the locked object. This facility is typically used to
synchronize access to a static or instance method of a class. If an instance method
requires synchronized thread access, the instance method invokes the
System.Threading.Monitor.Enter and corresponding
System.Threading.Monitor.Exit methods using itself (the current instance) as the
object to lock. Since only one thread can hold the lock on the current instance, the
method can only be executed by one thread at a time. Static methods are protected
in a similar fashion using the System.Type object of the current instance as the
locked object.

[Note: The functionality provided by the System.Threading.Monitor.Enter and
System.Threading.Monitor.Exit methods is identical to that provided by the C#
lock statement.

If a critical section spans an entire method, the locking facility described above can
be achieved by placing the

 3

System.Runtime.CompilerServices.MethodImplAttribute on the method, and
specifying the
System.Runtime.CompilerServices.MethodImplOptions.Synchronized option.
Using this attribute, the System.Threading.Monitor.Enter and
System.Threading.Monitor.Exit statements are not needed. Note that the
attribute causes the current thread to hold the lock until the method returns; if the
lock can be released sooner, use the System.Threading.Monitor class (or C# lock
statement) instead of the attribute.

While it is possible for the System.Threading.Monitor.Enter and
System.Threading.Monitor.Exit statements that lock and release a given object to
cross member and/or class boundaries, this practice is strongly discouraged.

]

 4

 Monitor.Enter(System.Object) Method

[ILAsm]
.method public hidebysig static void Enter(object obj)

[C#]
public static void Enter(object obj)

Summary

Acquires an exclusive lock on the specified object.

Parameters

Parameter Description
obj The System.Object on which to acquire the lock.

Description

This method acquires an exclusive lock on obj.

A caller of this method is required to invoke System.Threading.Monitor.Exit
once for each System.Threading.Monitor.Enter invoked.

The caller of this method is blocked if another thread has obtained the lock by
calling System.Threading.Monitor.Enter and specifying the same object. The
caller is not blocked if the current thread holds the lock. The same thread can
invoke System.Threading.Monitor.Enter more than once (and it will not
block); however, an equal number of System.Threading.Monitor.Exit calls are
required to be invoked before other threads waiting on the object will unblock.

[Note: Invoking this member is identical to using the C# lock statement.]

Exceptions

Exception Condition
System.ArgumentNullException obj is null.

 5

 Monitor.Exit(System.Object) Method

[ILAsm]
.method public hidebysig static void Exit(object obj)

[C#]
public static void Exit(object obj)

Summary

Releases an exclusive lock on the specified System.Object.

Parameters

Parameter Description
obj The System.Object on which to release the lock.

Description

This method releases an exclusive lock on obj. The caller is required to own the
lock on obj.

If the caller owns the lock on the specified object, and has made an equal
number of System.Threading.Monitor.Exit and
System.Threading.Monitor.Enter calls for the object, then the lock is released.
If the caller has not invoked System.Threading.Monitor.Exit as many times as
System.Threading.Monitor.Enter, the lock is not released.

[Note: If the lock is released and there are other threads in the ready queue for
the object, one of the threads will acquire the lock. If there are other threads in
the waiting queue waiting to acquire the lock, they are not automatically moved
to the ready queue when the owner of the lock calls
System.Threading.Monitor.Exit. To move one or more waiting threads into
the ready queue, call System.Threading.Monitor.Pulse or
System.Threading.Monitor.PulseAll prior to invoking
System.Threading.Monitor.Exit.]

Exceptions

Exception Condition
System.ArgumentNullException obj is null.

System.Threading.
SynchronizationLockException

The current thread does not own the
lock for the specified object.

 6

 7

 Monitor.Pulse(System.Object) Method

[ILAsm]
.method public hidebysig static void Pulse(object obj)

[C#]
public static void Pulse(object obj)

Summary

Notifies the next waiting thread (if any) of a change in the specified locked
object's state.

Parameters

Parameter Description
obj The System.Object a thread might be waiting for.

Description

The thread that currently owns the lock on the specified object invokes this
method to signal the next thread in line for the lock (in the queue of threads
waiting to acquire the lock on the object). Upon receiving the pulse, the waiting
thread is moved to the ready queue. When the thread that invoked Pulse
releases the lock, the next thread in the ready queue (which is not necessarily
the thread that was pulsed) acquires the lock.

[Note: To signal a waiting object using Pulse, you must be the current owner of
the lock.

To signal multiple threads, use the System.Threading.Monitor.PulseAll
method.

]

Exceptions

Exception Condition
System.ArgumentNullException obj is null.
System.Threading.
SynchronizationLockException

The calling thread does not own the
lock for the specified object.

 8

 Monitor.PulseAll(System.Object) Method

[ILAsm]
.method public hidebysig static void PulseAll(object obj)

[C#]
public static void PulseAll(object obj)

Summary

Notifies all waiting threads (if any) of a change in the specified locked object's
state.

Parameters

Parameter Description
obj The System.Object that one or more threads might be waiting for.

Description

The thread that currently owns the lock on the specified object invokes this
method to signal all threads waiting to acquire the lock on the object. After the
signal is sent, the waiting threads are moved to the ready queue. When the
thread that invoked PulseAll releases the lock, the next thread in the ready
queue acquires the lock.

[Note: To signal waiting objects using PulseAll, you must be the current owner
of the lock.

To signal a single thread, use the System.Threading.Monitor.Pulse method.

]

Exceptions

Exception Condition
System.ArgumentNullException obj is null.
System.Threading.
SynchronizationLockException

The calling thread does not own the
lock for the specified object.

 9

 Monitor.TryEnter(System.Object) Method

[ILAsm]
.method public hidebysig static bool TryEnter(object obj)

[C#]
public static bool TryEnter(object obj)

Summary

Attempts to acquire an exclusive lock on the specified object.

Parameters

Parameter Description
obj The System.Object on which to acquire the lock.

Return Value

true if the current thread acquired the lock; otherwise, false.

Description

If successful, this method acquires an exclusive lock on obj. This method returns
immediately, whether or not the lock is available.

This method is equivalent to System.Threading.Monitor.TryEnter (obj, 0).

Exceptions

Exception Condition
System.ArgumentNullException obj is null.

 10

 Monitor.TryEnter(System.Object,
System.Int32) Method

[ILAsm]
.method public hidebysig static bool TryEnter(object obj, int32
millisecondsTimeout)

[C#]
public static bool TryEnter(object obj, int millisecondsTimeout)

Summary

Attempts, for the specified number of milliseconds, to acquire an exclusive lock
on the specified object.

Parameters

Parameter Description
obj The System.Object on which to acquire the lock.

millisecondsTimeout A System.Int32 containing the maximum number of
milliseconds to wait for the lock.

Return Value

true if the current thread acquired the lock; otherwise, false.

Description

If successful, this method acquires an exclusive lock on obj.

If millisecondsTimeout equals System.Threading.Timeout.Infinite, this
method is equivalent to System.Threading.Monitor.Enter (obj). If
millisecondsTimeout equals zero, this method is equivalent to
System.Threading.Monitor.TryEnter (obj).

Exceptions

Exception Condition
System.ArgumentNullException obj is null.

System.ArgumentOutOfRangeException
millisecondsTimeout is negative, and
not equal to
System.Threading.Timeout.Infinite.

 11

 12

 Monitor.TryEnter(System.Object,
System.TimeSpan) Method

[ILAsm]
.method public hidebysig static bool TryEnter(object obj, valuetype
System.TimeSpan timeout)

[C#]
public static bool TryEnter(object obj, TimeSpan timeout)

Summary

Attempts, for the specified amount of time, to acquire an exclusive lock on the
specified object.

Parameters

Parameter Description
obj The System.Object on which to acquire the lock.

timeout A System.TimeSpan set to the maximum amount of time to wait for the
lock.

Return Value

true if the current thread acquires the lock; otherwise, false.

Description

If successful, this method acquires an exclusive lock on obj.

If the value of timeout converted to milliseconds equals
System.Threading.Timeout.Infinite, this method is equivalent to
System.Threading.Monitor.Enter (obj). If the value of timeout equals zero,
this method is equivalent to System.Threading.Monitor.TryEnter (obj).

Exceptions

Exception Condition
System.ArgumentNullException obj is null.

System.ArgumentOutOfRangeException

The value of timeout in milliseconds is
negative and is not equal to
System.Threading.Timeout.Infinite,
or is greater than

 13

System.Int32.MaxValue.

 14

 Monitor.Wait(System.Object,
System.Int32) Method

[ILAsm]
.method public hidebysig static bool Wait(object obj, int32
millisecondsTimeout)

[C#]
public static bool Wait(object obj, int millisecondsTimeout)

Summary

Releases the lock on an object and blocks the current thread until it reacquires
the lock or until a specified amount of time elapses.

Parameters

Parameter Description
obj The System.Object on which to wait.

millisecondsTimeout A System.Int32 containing the maximum number of
milliseconds to wait before this method returns.

Return Value

true if the lock was reacquired before the specified time elapsed; otherwise,
false.

Description

If successful, this method reacquires an exclusive lock on obj.

This method behaves identically to System.Threading.Monitor.Wait (obj),
except that it does not block indefinitely unless
System.Threading.Timeout.Infinite is specified for millisecondsTimeout. Once
the specified time has elapsed, this method returns a value that indicates
whether the lock has been reacquired by the caller. If millisecondsTimeout equals
0, this method returns immediately.

[Note: This method is called when the caller is waiting for a change in the state
of the object, which occurs as a result of another thread's operations on the
object. For additional details, see System.Threading.Monitor.Wait (obj).]

 15

Exceptions

Exception Condition
System.ArgumentNullException obj is null.
System.Threading.
SynchronizationLockException

The calling thread does not own the
lock for the specified object.

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is
negative, and not equal to
System.Threading.Timeout.Infinite.

 16

 Monitor.Wait(System.Object,
System.TimeSpan) Method

[ILAsm]
.method public hidebysig static bool Wait(object obj, valuetype
System.TimeSpan timeout)

[C#]
public static bool Wait(object obj, TimeSpan timeout)

Summary

Releases the lock on an object and blocks the current thread until it reacquires
the lock or until a specified amount of time elapses.

Parameters

Parameter Description
obj The System.Object on which to wait.

timeout A System.TimeSpan set to the maximum amount of time to wait before
this method returns.

Return Value

true if the lock was reacquired before the specified time elapsed; otherwise,
false.

Description

If successful, this method reacquires an exclusive lock on obj.

This method behaves identically to System.Threading.Monitor.Wait (obj),
except that it does not block indefinitely unless
System.Threading.Timeout.Infinite milliseconds is specified for timeout.
Once the specified time has elapsed, this method returns a value that indicates
whether the lock has been reacquired by the caller. If timeout equals 0, this
method returns immediately.

[Note: This method is called when the caller is waiting for a change in the state
of the object, which occurs as a result of another thread's operations on the
object. For additional details, see System.Threading.Monitor.Wait (obj).]

 17

Exceptions

Exception Condition
System.ArgumentNullException obj is null.
System.Threading.
SynchronizationLockException

The calling thread does not own the
lock for the specified object.

System.ArgumentOutOfRangeException

If timeout is negative, and is not equal
to
System.Threading.Timeout.Infinite,
or is greater than
System.Int32.MaxValue.

 18

 Monitor.Wait(System.Object) Method

[ILAsm]
.method public hidebysig static bool Wait(object obj)

[C#]
public static bool Wait(object obj)

Summary

Releases the lock on an object and blocks the current thread until it reacquires
the lock.

Parameters

Parameter Description
obj The System.Object on which to wait.

Return Value

true if the call returned because the caller reacquired the lock for the specified
object. This method does not return if the lock is not reacquired.

Description

This method reacquires an exclusive lock on obj.

The thread that currently owns the lock on the specified object invokes this
method in order to release the object so that another thread can access it. The
caller is blocked while waiting to reacquire the lock. This method is called when
the caller is waiting for a change in the state of the object, which occurs as a
result of another thread's operations on the object.

When a thread calls Wait, it releases the lock on the object and enters the
object's waiting queue. The next thread in the object's ready queue (if there is
one) acquires the lock and has exclusive use of the object. All threads that call
Wait remain in the waiting queue until they receive a signal via
System.Threading.Monitor.Pulse or System.Threading.Monitor.PulseAll
sent by the owner of the lock. If Pulse is sent, only the thread at the head of the
waiting queue is affected. If PulseAll is sent, all threads that are waiting for the
object are affected. When the signal is received, one or more threads leave the
waiting queue and enter the ready queue. A thread in the ready queue is
permitted to reacquire the lock.

This method returns when the calling thread reacquires the lock on the object.
Note that this method blocks indefinitely if the holder of the lock does not call
System.Threading.Monitor.Pulse or System.Threading.Monitor.PulseAll.

 19

The caller executes System.Threading.Monitor.Wait once, regardless of the
number of times System.Threading.Monitor.Enter has been invoked for the
specified object. Conceptually, the System.Threading.Monitor.Wait method
stores the number of times the caller invoked
System.Threading.Monitor.Enter on the object and invokes
System.Threading.Monitor.Exit as many times as necessary to fully release
the locked object. The caller then blocks while waiting to reacquire the object.
When the caller reacquires the lock, the system calls
System.Threading.Monitor.Enter as many times as necessary to restore the
saved Enter count for the caller.

Calling System.Threading.Monitor.Wait releases the lock for the specified
object only; if the caller is the owner of locks on other objects, these locks are
not released.

Exceptions

Exception Condition
System.ArgumentNullException obj is null.
System.Threading.
SynchronizationLockException

The calling thread does not own the
lock for the specified object.

