
 1

System.GC Class

[ILAsm]
.class public sealed GC extends System.Object

[C#]
public sealed class GC

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Provides a mechanism for programmatic control of the garbage collector.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

[Note: The garbagecollector is responsible for tracking and reclaiming objects
allocated in managed memory. Periodically, the garbage collector performs a
garbage collection to reclaim memory allocated to objects for which there are no
valid references. Garbage collections happen automatically when a request for
memory cannot be satisfied using available free memory.

A garbage collection consists of the following steps:

1. The garbage collector searches for managed objects that are referenced in
managed code.

2. The garbage collector attempts to finalize unreferenced objects.
3. The garbage collector frees unreferenced objects and reclaims their memory.

During a collection, the garbage collector will not free an object if it finds one or
more references to the object in managed code. However, the garbage collector does
not recognize references to an object from unmanaged code, and can free objects
that are being used exclusively in unmanaged code unless explicitly prevented from
doing so. The System.GC.KeepAlive method provides a mechanism that prevents
the garbage collector from collecting objects that are still in use in unmanaged code.

 2

Implementations of the garbage collector should track the following information:

• Memory allocated to objects that are still in use

• Memory allocated to objects that are no longer in use

• Objects that require finalization prior to being freed

Other than managed memory allocations, implementations of the garbage collector
should not maintain information about resources held by an object, such as file
handles or database connections. When a type uses unmanaged resources that must
be released before instances of the type are reclaimed, the type should implement a
finalizer. In most cases, finalizers are implemented by overriding the
System.Object.Finalize method; however, types written in C# or C++ implement
destructors, which compilers turn into an override of System.Object.Finalize.

In most cases, if an object has a finalizer, the garbage collector calls it prior to
freeing the object. However, the garbage collector is not required to call finalizers in
all situations. Also, the garbage collector is not required to use a specific thread to
finalize objects, or guarantee the order in which finalizers are called for objects that
reference each other but are otherwise available for garbage collection.

In scenarios where resources must be released at a specific time, classes should
implement the System.IDisposable interface, which contains a single method
(System.IDisposable.Dispose) that is used to perform resource management and
cleanup tasks. Classes that implement System.IDisposable.Dispose must specify,
as part of their class contract, if and when class consumers call the method to clean
up the object. The garbage collector does not, by default, call the
System.IDisposable.Dispose method; however, implementations of the
System.IDisposable.Dispose method can call methods in the System.GC class to
customize the finalization behavior of the garbage collector.

]

 3

 GC.Collect() Method

[ILAsm]
.method public hidebysig static void Collect()

[C#]
public static void Collect()

Summary

Requests that the garbage collector reclaim memory allocated to objects for
which there are no valid references.

Description

A call to this method is only a suggestion; such a call does not guarantee that
any inaccessible memory is, in fact, reclaimed.

 4

 GC.KeepAlive(System.Object) Method

[ILAsm]
.method public hidebysig static void KeepAlive(object obj)

[C#]
public static void KeepAlive(object obj)

Summary

Creates a reference to the specified object.

Parameters

Parameter Description
obj A System.Object that is not to be reclaimed by the garbage collector.

Description

The purpose of the System.GC.KeepAlive method is to ensure the existence of a
reference to an object that is at risk of being reclaimed by the garbage collector
prematurely.

The System.GC.KeepAlive method performs no operations and does not produce
any side effects.

This method is required to be implemented in such a way as to prevent
optimizing tools from omitting the method call from the executable code.

During program execution, after the call to the System.GC.KeepAlive method is
executed, if there are no additional references to obj in managed code or data,
obj is eligible for garbage collection.

 5

 GC.ReRegisterForFinalize(System.Object)
Method

[ILAsm]
.method public hidebysig static void ReRegisterForFinalize(object
obj)

[C#]
public static void ReRegisterForFinalize(object obj)

Summary

Requests that the specified object be added to the list of objects that require
finalization.

Parameters

Parameter Description
obj The System.Object to add to the set of objects that require finalization.

Description

The System.GC.ReRegisterForFinalize method adds obj to the list of objects
that request finalization before the garbage collector frees the object. obj is
required to be the caller of this method.

Calling the System.GC.ReRegisterForFinalize method does not guarantee that
the garbage collector will call an object's finalizer. [Note: For more information,
see System.Object.Finalize.]

[Note: By default, all objects that implement finalizers are added to the list of
objects that require finalization; however, an object might have already been
finalized, or might have disabled finalization by calling the
System.GC.SuppressFinalize method.]

Exceptions

Exception Condition
System.ArgumentNullException obj is a null reference.

 6

 GC.SuppressFinalize(System.Object)
Method

[ILAsm]
.method public hidebysig static void SuppressFinalize(object obj)

[C#]
public static void SuppressFinalize(object obj)

Summary

Instructs the garbage collector not to call the System.Object.Finalize method
on the specified object.

Parameters

Parameter Description

obj The System.Object whose System.Object.Finalize method will not be
called.

Description

The method removes obj from the set of objects that require finalization. obj is
required to be the caller of this method.

[Note: Objects that implement the System.IDisposable interface should call this
method from the System.IDisposable.Dispose method to prevent the garbage
collector from calling System.Object.Finalize on an object that does not
require it.]

Exceptions

Exception Condition
System.ArgumentNullException obj is a null reference.

 7

 GC.WaitForPendingFinalizers() Method

[ILAsm]
.method public hidebysig static void WaitForPendingFinalizers()

[C#]
public static void WaitForPendingFinalizers()

Summary

Suspends the current thread until the set of objects waiting for finalization is
empty.

Description

System.GC.WaitForPendingFinalizers blocks an application until all objects
that are awaiting finalization have been finalized.

When the garbage collector finds objects that can be reclaimed, it checks each
object to determine the object's finalization requirements. If an object
implements a finalizer and has not disabled finalization by calling
System.GC.SuppressFinalize, the object is passed to the thread that handles
finalization. The System.GC.WaitForPendingFinalizers method blocks until all
finalizers have run to completion.

