
 1

System.Collections.Generic.IComparer<T
> Interface

[ILAsm]
.class interface public abstract IComparer`1<T>

[C#]
public interface IComparer<T>

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Provides a mechanism to customize comparison in sort ordering of a generic
collection.

Library: BCL

 2

 IComparer<T>.Compare(T, T) Method

[ILAsm]
.method public hidebysig virtual abstract int32 Compare(!0 x, !0 y)

[C#]
int Compare(T x, T y)

Summary

Returns the sort order of two T instances.

Parameters

Parameter Description
x First T to compare.
y Second T to compare.

Return Value

A System.Int32 containing a value that reflects the sort order of x as compared
to y. The following table defines the conditions under which the returned value is
a negative number, zero, or a positive number.

Value Condition
A negative number x < y.
Zero x == y.
A positive number x > y.

Behaviors

For any objects A, B and C, the following are required to be true:

Compare(A,A) is required to return zero.

If Compare(A,B) returns zero then Compare(B,A) is required to return zero.

If Compare(A,B) is zero, then Compare(B,C) and Compare(A,C) must have the
same sign (negative, zero or positive).

If Compare(B,C) is zero, then Compare(A,B) and Compare(A,C) must have the
same sign (negative, zero or positive).

 3

If Compare(A,B) returns zero and Compare(B,C) returns zero then Compare(A,C)
is required to return zero.

If Compare(A,B) returns a value other than zero then Compare(B,A) is required
to return a value of the opposite sign.

If Compare(A,B) returns a value x not equal to zero, and Compare(B,C) returns a
value y of the same sign as x, then Compare(A,C) is required to a value of the
same sign as x and y.

The exact behavior of this method is unspecified. The intent of this method is to
provide a mechanism that orders instances of a class in a manner that is
consistent with the mathematical definitions of the relational operators (<, >,
and ==), without regard for class-specific definitions of the operators.

