System.String Class

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.X
Attributes:
0 CLSCompliantAttribute(true)

Type Attributes:

o DefaultMemberAttribute("Chars") [Note: This attribute requires the
Runtimelnfrastructure library.]

Implements:

e System.IComparable

e System.ICloneable

¢ System.lComparable<System.String>

¢ System.lEquatable<System.String>

e System.Collections.lIEnumerable

¢ System.Collections.Generic.lEnumerable<System.Char>
Summary

Represents an immutable series of characters.
Inherits From: System.Object
Library: BCL
Thread Safety: This type is safe for multithreaded operations.
Description

An index is the position of a character within a string. The first character in the
string is at index 0. The length of a string is the number of characters it is made

up of. The last accessible index of a string instance is System.String.Length -
1.

Strings are immutable; once created, the contents of a System.String do not
change. Combining operations, such as System.String.Replace, cannot alter
existing strings. Instead, such operations return a new string that contains the
results of the operation, an unchanged string, or the null value. To perform
modifications to a System.String use the System.Text.StringBuilder.

Implementations of System.String are required to contain a variable-length
character buffer positioned a fixed number of bytes after the beginning of the

String object. [Note: The
System.Runtime.CompilerServices.RuntimeHelpers.OffsetToStringData

method returns the number of bytes between the start of the String object and
the character buffer. This information is intended primarily for use by compilers,
not application programmers. For additional information, see
System.Runtime.CompilerServices.RuntimeHelpers.OffsetToStringData.]

[Note: Comparisons and searches are case-sensitive by default, and unless
otherwise specified, use the culture defined (if any) for the current thread to
determine the order of the alphabet used by the strings. This information is then
used to compare the two strings on a character-by-character basis. Upper case
letters evaluate greater than their lowercase equivalents.

The following characters are considered white space when present in a
System.String instance: 0x9, OxA, 0xB, OxC, O0xD, 0x20, 0xAO0, 0x2000,
0x2001, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006, 0x2007, 0x2008, 0x2009,
0x200A, 0x200B, 0x3000, and OxXFEFF. The null character is defined as
hexadecimal 0x00.

The System.String(System.String) constructor is omitted for performance
reasons. If you need a copy of a System.String, consider using
System.String.Copy Or the System.Text.StringBuilder class.

To insert a formatted string representation of an object into a string, use the
System.String.Format methods. These methods take one or more arguments to
be formatted, and a format string. The format string contains literals and zero or
more format specifications of the form { N [, M][: formatSpecifier]}, where:

e N is a zero-based integer indicating the argument to be formatted. If the
actual argument is a null reference, then an empty string is used in its place.

e M is an optional integer indicating the minimum width of the region to contain
the formatted value of argument N. If the length of the string representation
of the value is less than M, then the region is padded with spaces. If M is
negative, the formatted value is left justified in the region; if M is positive,
then the value is right justified. If M is not specified, it is assumed to be zero
indicating that neither padding nor alignment is customized. Note that if the
length of the formatted value is greater than M, then M is ignored.

o formatSpecifier is an optional string that determines the representation used
for arguments. For example, an integer can be represented in hexadecimal or
decimal format, or as a monetary value. If formatSpecifier is omitted and an
argument implements the System.IFormattable interface, then a null
reference is used as the System.IFormattable.ToString format specifier.
Therefore, all implementations of System.IFormattable.ToString are
required to allow a null reference as a format specifier, and return a string
containing the default representation of the object as determined by the
object type. For additional information on format specifiers, see
System.IFormattable.

If an object referenced in the format string implements System.IFormattable, then
the System. IFormattable.ToString method of the object provides the formatting.
If the argument does not implement System. IFormattable, then the
System.Object.ToString method of the object provides default formatting, and
formatSpecifier, if present, is ignored. For an example that demonstrates this, see
Example 2.

To include a curly bracket in a formatted string, specify the bracket twice; for
example, specify "{{" to include "{" in the formatted string. See Example 1.

The System.Console class exposes the same functionality as the
System.String.Format methods via System.Console.Write and
System.Console.WriteLine. The primary difference is that the
System.String.Format methods return the formatted string, while the
System.Console methods write the formatted string to a stream.

]

When a non-empty string is searched for the first or last occurrence of an empty
string, the empty string is found at the search start position.

Example

Example 1

The following example demonstrates formatting numeric data types and inserting
literal curly brackets into strings.

[C#]

using System;
class StringFormatTest {
public static void Main() {
decimal dec 1.99999m;
double doub = 1.0000000001;

string somenums = String.Format('Some formatted numbers:
dec={0,15:E} doub={1,20}", dec, doub);
Console.WriteLine(somenums);

string curlies = "Literal curly brackets: {{ and }} and {{0}}";

Console._WriteLine(curlies);

object nullObject = null;
string embeddedNull = String.Format(*A null argument looks
like: {0}, nullObject);
Console.WriteLine(embeddedNull);
}

}

The output is

Some formatted numbers: dec= 1.999990E+000 doub= 1.0000000001
Literal curly brackets: {{ and }} and {{0}}
A null argument looks like:

Example 2

The following example demonstrates how formatting works if System. IFormattable
is or is not implemented by an argument to the System.String.Format method.
Note that the format specifier is ignored if the argument does not implement
System.IFormattable.

[Cc#]
using System;
class StringFormatTest {
public class DefaultFormatEleven {
public override string ToString() {
return "11 string";
}

public class FormattableEleven:lFormattable {
// The IFormattable ToString implementation.
public string ToString(string format, IFormatProvider
formatProvider) {
Console . Write("'[IFormattable called] ");
return 11.ToString(format, formatProvider);

// Override Object.ToString to show that it is not called.
public override string ToString() {

return "Formatted 11 string";
}

}

public static void Main() {

DefaultFormatEleven defll = new DefaultFormatEleven ();
FormattableEleven forll = new FormattableEleven();

string defllstring = String.Format("'{0}",def1l);
Console _WriteLine(defllstring);
// The format specifier x is ignored.
defllstring = String.Format("'{0,15:x}", defll);
Console.WriteLine(defllstring);

string formllstring = String.Format(*'{0}',forll);
Console._WriteLine(formllstring);
formllstring = String.Format(*''{0,15:x}",forll);

Console . WriteLine(formllstring);

}
}
The output is

11 string

11 string
[1IFormattable called] 11
[1IFormattable called] b

Example 3

The following example demonstrates searching for an empty string in a non-empty
string.

[Cc#]
using System;
class EmptyStringSearch {
public static void Main() {
Console.WriteLine(""ABCDEF". IndexOF(""""));
Console._WriteLine(""ABCDEF" . IndexOf(*"™", 2));
Console._WriteLine(""ABCDEF" . IndexOf("""", 3, 2));
Console_WriteLine(""ABCDEF" .LastIndexOf(""));
Console.WriteLine(""ABCDEF" .LastIndexOf("""", 1));
Console._WriteLine(""ABCDEF".LastIndexOf(""", 4, 2));
¥
}
T

he output is

AP OUIWNO

String(System.Char, System.Int32)
Constructor

Summary

Constructs and initializes a new instance of System.String.

Parameters

lc |A System.Char.

|count |A System.Int32 containing the number of occurrences of c.

Description

If the specified number is O, System.String.Empty iS created.

Exceptions

|System.ArgumentOutOfRangeException |count is less than zero.

Example

The following example demonstrates using this constructor.
[C#]
using System;

public class StringExample {
public static void Main(Q) {

string s = new String("a®, 10);

Console._WriteLine(s);

}

}
The output is

daaaaaaaaa

String(System.Char*) Constructor

Summary

Constructs and initializes a new instance of System.String using a specified
pointer to a sequence of Unicode characters.

Type Attributes:
e CLSCompliantAttribute(false)

Parameters

A pointer to a null-terminated array of Unicode characters. If value is a

value - , .
null pointer, System.String.Empty iS created.

Description

This member is not CLS-compliant. For a CLS-compliant alternative, use the
System.String(System.Char[]) constructor.

This constructor copies the sequence of Unicode characters at the specified
pointer until a null character (hexadecimal 0x00) is reached.

If the specified array is not null-terminated, the behavior of this constructor is
system dependent. For example, such a situation might cause an access
violation.

[Note: In C# this constructor is defined only in the context of unmanaged code.]

String(System.Char[]) Constructor

Summary

Constructs and initializes a new instance of System.String by copying the
specified array of Unicode characters.

Parameters

|va|ue |An array of Unicode characters.

Description

If the specified array is a null reference or contains no elements,
System.String.Empty is created.

String(System.Char?*, System.Int32,
System.Int32) Constructor

Summary

Constructs and initializes a new instance of System.String using a specified
pointer to a sequence of Unicode characters, the index within that sequence at
which to start copying characters, and the number of characters to be copied to
construct the System.String.

Type Attributes:

e CLSCompliantAttribute(false)

Parameters

|va|ue |A pointer to an array of Unicode characters.

A System.Int32 containing the index within the array referenced by
startindex - -
value from which to start copying.

A System.Int32 containing the number of characters to copy from value
length to the new System.String. If length is zero, System.String.Empty is
created.

Description

This member is not CLS-compliant. For a CLS-compliant alternative, use the
System.String(System.Char, System.Int32, System.Int32) constructor.

This constructor copies Unicode characters from value, starting at startindex and
ending at (startindex + length - 1).

If the specified range is outside of the memory allocated for the sequence of
characters, the behavior of this constructor is system dependent. For example,
such a situation might cause an access violation.

[Note: In C# this constructor is defined only in the context of unmanaged code.]

10

Exceptions

startindex or length is less than zero.

or
System.ArgumentOutOfRangeException
value is a null pointer and length is not
zero.

11

String(System.SByte™, System.Int32,
System.Int32, System.Text.Encoding)
Constructor

Summary

Constructs and initializes a new instance of the string class to the value
indicated by a specified pointer to an array of 8-bit signed integers, a starting
character position within that array, a length, and an Encoding object.

Type Attributes:
e CLSCompliantAttribute(false)

Parameters

|va|ue |A pointer to a System.SByte array.

|start|ndex |A System. Int32 containing the starting position within value.

lenath A System.Int32 containing the number of characters within value to
9 use. If length is zero, System.String.Empty is created.
enc A System.Text .Encoding object that specifies how the array referenced
by value is encoded.

Description

If value is a null pointer, a System.String.Empty instance is constructed.

Exceptions

|System.ArgumentOutOfRangeException |start|ndex or length is less than zero.

12

-0r-

value is a null pointer and length is not
zero.

13

String(System.Char[], System.Int32,
System.Int32) Constructor

Summary

Constructs and initializes a new instance of System.String using an array of

Unicode characters, the index within array at which to start copying characters,
and the number of characters to be copied.

Parameters

|va|ue |An array of Unicode characters.

A System.Int32 containing the index within the array referenced by
startlndex - -
value from which to start copying.

lenath A System.Int32 containing the number of characters to copy from the
9 value array. If length is zero, System.String.Empty is created.

Description

This constructor copies the sequence Unicode characters found at value between
indexes startindex and startindex + length - 1.

Exceptions

|System.ArgumentNuIIException

|va|ue is a null reference.

startlndex or length is less than zero.

or
System.ArgumentOutOfRangeException The sum of startindex and length is

greater than the number of elements in
value.

14

String.Empty Field

Summary

A constant string representing the empty string.
Description

This field is read-only.

This field is a string of length zero, "".

15

String.Clone() Method

Summary
Returns a reference to the current instance of System.String.

Return Value

A reference to the current instance of System.String.

Description

[Note: System.String.Clone does not generate a new System.String instance.

Use the System.String.Copy Or System.String.CopyTo method to create a
separate System.String object with the same value as the current instance.

This method is implemented to support the System.ICloneable interface.

1

16

String.Compare(System.String,
INt32, System.String,
INt32, System.Int32,
Boolean) Method

System.
System.
System.

Summary

Compares substrings of two strings, ignoring or honoring their case.

Parameters

StrA

The first System.String containing a substring to compare. Can be a
null reference.

indexA

A System.Int32 containing the starting index of the substring within
StrA.

strB

The second System.String containing a substring to compare. Can be a
null reference.

indexB

A System.Int32 containing the starting index of the substring within
strB.

length

A System.Int32 containing the maximum number of characters in the
substrings to compare. If length is zero, then zero is returned.

ignoreCase

A System.Boolean indicating if the comparison is case-insensitive. If
ignoreCase is true, the comparison is case-insensitive. If ignoreCase is
false, the comparison is case-sensitive, and uppercase letters evaluate

greater than their lowercase equivalents.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified substrings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return

value:

17

|A negative number \The substring in strA is < the substring in strB.

|Zero ’The substring in strA == the substring in strB, or length is zero.

|A positive number \The substring in strA is > the substring in strB.

Description

[Note: The result of comparing any System.String (including the empty string)
to a null reference is greater than zero. The result of comparing two null
references is zero. Uppercase letters evaluate greater than their lower case
equivalents.

The maximum number of characters compared is the lesser of the length of strA
less indexA, the length of strB less indexB, and length.

When a culture is available, the method uses the culture of the current thread to

determine the ordering of individual characters. The two strings are compared on
a character-by-character basis.

]

Exceptions

Exception Condition

indexA is greater than strA.Length
Or
System.ArgumentOutOfRangeException indexB is greater than strB.Length

or

indexA, indexB, or length is negative.

Example

The following example demonstrates comparing substrings with and without case
sensitivity.

[C#]

using System;

public class StringCompareExample {
public static void Main() {

string strA "STRING A™;

string strB "string b";

18

int first = String.Compare(strA, strB, true);

int second = String.Compare(strA, 0, strB, 0, 4, true);

int third = String.Compare(strA, 0, strB, 0, 4, false);

Console._WriteLine("When the string "STRING A" is compared to the
string "string b" in a case-insensitive manner, the return value is
{0}.", first);

Console . WriteLine("When the substring "STRI" of "STRING A" is
compared to the substring "“stri® of "string b" in a case-insensitive
manner, the return value is {0}.", second);

Console._WriteLine("When the substring "STRI®" of "STRING A" is
compared to the substring "stri® of "string b" in a case-sensitive
manner, the return value is {0}.", third);

}

}

The output is

When the string "STRING A" is compared to the string "string b" in a
case-insensitive manner, the return value is -1.

When the substring "STRI" of "STRING A" is compared to the substring
"stri” of "string b" in a case-insensitive manner, the return value is
0.

When the substring "STRI" of "STRING A" is compared to the substring
"stri” of "string b" in a case-sensitive manner, the return value is 1

19

String.Compare(System.String,
System.Int32, System.String,
System.Int32, System.Int32) Method

Summary

Compares substrings of two strings.

Parameters

|strA |The first System.String to compare. Can be a null reference.
. A System.Int32 containing the starting index of the substring within
indexA

StrA.
|strB |The second System.String to compare. Can be a null reference.
. A System.Int32 containing the starting index of the substring within
indexB

strB.

A System.Int32 containing the maximum number of characters in the
length - . .

substrings to compare. If length is zero, then zero is returned.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified substrings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return
value:

|A negative number |The substring in strA is < the substring in strB.

|Zero |The substring in strA == the substring in strB, or length is zero.

|A positive number |The substring in strA is > the substring in strB.

Description

20

[Note: The result of comparing any System. String (including the empty string)
to a null reference is greater than zero. The result of comparing two null
references is zero. Uppercase letters evaluate greater than their lowercase
equivalents.

The method uses the culture (if any) of the current thread to determine the
ordering of individual characters. The two strings are compared on a character-
by-character basis.

1

Exceptions

|Excepﬁon Condition

The sum of indexA and length is greater
than strA.Length.

Or

The sum of indexB and length is greater

System.ArgumentOutOfRangeException than strB.Length.

-0r-

indexA, indexB, or length is negative.

Example

The following example demonstrates comparing substrings.
[C#]

using System;
public class StringCompareExample {
public static void Main() {
string strA = "A string";
string strB = "B ring";
int first = String.Compare(strA, 4, strB, 2, 3);
int second = String.Compare(strA, 3, strB, 3, 3);
Console._WriteLine("When the substring "rin® of "A string®" is compared
to the substring "rin® of "B ring®", the return value is {0}.", First);
Console._WriteLine("When the substring "tri® of "A string" is compared
to the substring "ing® of "B ring", the return value is {0}.", second
);
}
}

The output is

21

When the
"rin® of

When the
"ing" of

substring "rin® of "A string" is compared to the substring
"B ring", the return value is O.

substring "tri® of "A string” is compared to the substring
"B ring", the return value is 1.

22

String.Compare(System.String,
System.String, System.Boolean) Method

Summary

Returns sort order of two System.String objects, ignoring or honoring their

case.
Parameters

|strA |The first System.String to compare. Can be a null reference.

|strB |The second System.String to compare. Can be a null reference.

A System.Boolean indicating whether the comparison is case-
ignoreCase insensitive. If ignoreCase is true, the comparison is case-insensitive. If
ignoreCase is false, the comparison is case-sensitive, and uppercase

letters evaluate greater than their lowercase equivalents.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified substrings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return

value:

|A negative number |strA is < strB.
|strA == strB.

|strA is > strB.

|Zero
|A positive number

Description
[Note: The result of comparing any System.String (including the empty string)

to a null reference is greater than zero. The result of comparing two null
references is zero. Uppercase letters evaluate greater than their lowercase

23

equivalents.

The method uses the culture (if any) of the current thread to determine the
ordering of individual characters. The two strings are compared on a character-
by-character basis.

String.Compare(strA, strB, false) is equivalent to String.Compare(StrA, strB).

1

Example

The following example demonstrates comparing strings with and without case
sensitivity.

[C#]

using System;
public class StringCompareExample {

public static void Main() {

string strA = "A STRING";

string strB = "a string";

int first = String.Compare(strA, strB, true);
int second = String.Compare(strA, strB, false);
Console._WriteLine("When "A STRING" is compared to "a string® in a
case-insensitive manner, the return value is {0}.", first);
Console.WriteLine("When "A STRING" is compared to "a string” in a
case-sensitive manner, the return value is {0}.", second);

}
}

The output is

When "A STRING® is compared to "a string®" in a case-insensitive manner,
the return value is O.

When "A STRING" is compared to "a string” in a case-sensitive manner,
the return value is 1.

24

String.Compare(System.String,
System.String) Method

Summary

Compares two System.String objects in a case-sensitive manner.

Parameters
|strA |The first System.String to compare. Can be a null reference.
|strB |The second System.String to compare. Can be a null reference.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified strings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return

value:

|A negative number |strA is lexicographically < strB.
|Zero |strA is lexicographically == strB.
|A positive number |strA is lexicographically > strB.

Description
This method performs a case-sensitive operation.
[Note: The result of comparing any System.String (including the empty string)
to a null reference is greater than zero. The result of comparing two null

references is zero. Uppercase letters evaluate greater than their lowercase
equivalents.

The method uses the culture (if any) of the current thread to determine the
ordering of individual characters. The two strings are compared on a character-

25

by-character basis.

]

26

String.CompareOrdinal (System.String,
System.String) Method

Summary

Compares two specified System. String objects based on the code points of the
contained Unicode characters.

Parameters
|strA |The first System.String to compare.
|strB |The second System.String to compare.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified strings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return

value:

|A negative number |strA is < strB, or strA is a null reference.
|Zero |strA == strB, or both strA and strB are null references.

|A positive number |strA is > strB, or strB is a null reference.

Description

[Note: The result of comparing any System.String (including the empty string)
to a null reference is greater than zero. The result of comparing two null
references is zero. Uppercase letters evaluate greater than their lowercase

equivalents.

The method uses the culture (if any) of the current thread to determine the
ordering of individual characters. The two strings are compared on a character-
by-character basis.

27

28

String.CompareOrdinal (System.String,
System.Int32, System.String,
System.Int32, System.Int32) Method

Summary

Compares substrings of two specified System.String objects based on the code
points of the contained Unicode characters.

Parameters

|strA |The first System.String to compare.

|indexA |A System. Int32 containing the starting index of the substring in strA.
|strB |The second System.String to compare.

|indexB |A System. Int32 containing the starting index of the substring in strB.

A System.Int32 containing the number of characters in the substrings

Iength to compare.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the specified strings. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return

value:

A negative The substring in strA is < the substring in strB, or strA is a null

number reference.

Zero The substring in strA == the substring in strB, or both strA and strB
are null references.

A positive The substring in strA is > the substring in strB, or strB is a null

number reference.

29

Description

When either of the String arguments is the null reference an
System.ArgumentOutOfRangeException shall be thrown if the corresponding
index is non-zero.

[Note: The maximum number of characters compared is the lesser of the length
of strA less indexA, the length of strB less indexB, and length.

The result of comparing any System.String (including the empty string) to a null
reference is greater than zero. The result of comparing two null references is
zero. Upper case letters evaluate greater than their lowercase equivalents.

The method uses the culture (if any) of the current thread to determine the

ordering of individual characters. The two strings are compared on a character-
by-character basis.

]

Exceptions

|Exception Condition

indexA is greater than strA.Length
Or
System.ArgumentOutOfRangeException indexB is greater than strB.Length

or

indexA, indexB, or lengthis negative.

30

String.CompareTo(System.Object)
Method

Summary

Returns the sort order of the current instance compared to the specified object.

Parameters
|va|ue \The System.Object to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the current instance as compared to value. For non-zero return
values, the exact value returned by this method is unspecified. The following
table defines the return value:

A negative
9 The current instance is lexicographically < value.

number

|Zero |The current instance is lexicographically == value.

A positive The current instance is lexicographically > value, or value is a null

number reference.

Description

value is required to be a System.String object.

[Note: The result of comparing any System.String (including the empty string)
to a null reference is greater than zero. Uppercase letters evaluate greater than
their lowercase equivalents.

The method uses the culture (if any) of the current thread to determine the

31

ordering of individual characters. The two strings are compared on a character-
by-character basis.

This method is implemented to support the System. IComparable interface.

1

Exceptions

|System.ArgumentException |va|ue is not a System.String.

32

String.CompareTo(System.String) Method

Summary

Returns the sort order of the current instance compared to the specified string.

Parameters
|strB \The System.String to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the current instance as compared to strB. For non-zero return
values, the exact value returned by this method is unspecified. The following
table defines the return value:

A negative The current instance is lexicographically < strB.
number
|Zer0 |The current instance is lexicographically == strB.
A positive The current instance is lexicographically > strB, or strB is a null
number
reference.

Description
[Note: Uppercase letters evaluate greater than their lowercase equivalents.

The method uses the culture (if any) of the current thread to determine the
ordering of individual characters. The two strings are compared on a character-
by-character basis.

This method is implemented to support the
System.IComparable<System.Strings> interface.

33

34

String.Concat(System.Object,
System.Object) Method

Summary

Concatenates the system.String representations of two specified objects.

Parameters

|argO |The first System.Object to concatenate.

|argl |The second System.Object to concatenate.

Return Value

The concatenated System.String representation of the values of argO and arg1l.

Description

System.String.Empty is used in place of any null argument.

This version of System.String.Concat is equivalent to System.String.Concat(
arg0.ToString(), argl.ToString ()).

[Note: If either of the arguments is an array reference, the method concatenates

a string representing that array, instead of its members (for example,
System.String)[].]

Example

The following example demonstrates concatenating two objects.
[C#1
using System;

public class StringConcatExample {
public static void Main(Q) {

35

string str = String.Concat("c", 32);
Console.WriteLine("The concatenated Objects are: {0}, str);

}
}

The output is

The concatenated Objects are: c32

36

String.Concat(System.Object,
System.Object, System.Object) Method

Summary

Concatenates the system.String representations of three specified objects, in
order provided.

Parameters

|argO |The first System.Object to concatenate.
|argl |The second System.Object to concatenate.
|argZ |The third system.Object to concatenate.

Return Value

The concatenated System.String representations of the values of arg0, argl,
and arg2.

Description

This method concatenates the values returned by the System.String.ToString
methods on every argument. System.String.Empty is used in place of any null
argument.

This version of System.String.Concat is equivalent to String.Concat(
arg0.Tostring(), argl.ToString(), arg2.ToString ()).

Example

The following example demonstrates concatenating three objects.
[C#]

using System;

public class StringConcatExample {

public static void Main() {
string str = String.-Concat("c*, 32, "String"”);

37

Console._WriteLine(""The concatenated Objects are: {0}, str);

}
}

The output is

The concatenated Objects are: c32String

38

String.Concat(System.Object|[]) Method

Summary

Concatenates the system.String representations of the elements in an array of
System.Object instances.

Parameters

|args |An array of System.Object instances to concatenate.

Return Value

The concatenated System.String representations of the values of the elements
in args.

Description

This method concatenates the values returned by the System.String.ToString
methods on every object in the args array. System.String.Empty iS used in
place of any null reference in the array.

Exceptions

|System.ArgumentNuIIException |args is a null reference.

Example

The following example demonstrates concatenating an array of objects.
[c#]

using System;

public class StringConcatExample {

public static void Main() {

string str = String.Concat("c*, 32, "String"”);
Console._WriteLine("The concatenated Object array is: {0}, str);

39

}
}

The output is

The concatenated Object array is: c32String

40

String.Concat(System.String,
System.String) Method

Summary

Concatenates two specified instances of System.String.

Parameters

|str0 |The first System.String to concatenate.

|str1 |The second System.String to concatenate.

Return Value

A System.String containing the concatenation of strO and strl.

Description

System.String.Empty is used in place of any null argument.

Example

The following example demonstrates concatenating two strings.
[C#1

using System;

public class StringConcatExample {

public static void Main() {

string str = String.Concat('"one", "two");

Console._WriteLine("The concatenated strings are: {0}, str);
}
}

The output is

The concatenated strings are: onetwo

41

String.Concat(System.String,
System.String, System.String) Method

Summary

Concatenates three specified instances of System.String.

Parameters

|str0 |The first System.String to concatenate.
|str1 |The second System.String to concatenate.
|str2 |The third system.String to concatenate.

Return Value

A System.String containing the concatenation of strO, strl, and str2.

Description

System.String.Empty is used in place of any null argument.

Example

The following example demonstrates concatenating three strings.
[C#]

using System;

public class StringConcatExample {

public static void Main(Q) {

string str = String.Concat('one', "two', "three");
Console._WriteLine("The concatenated strings are: {0}, str);
}
}

The output is

The concatenated strings are: onetwothree

42

43

String.Concat(System.String[]) Method

Summary

Concatenates the elements of a specified array.

Parameters

|va|ues |An array of System.String instances to concatenate.

Return Value

A System.String containing the concatenated elements of values.
Description
System.String.Empty is used in place of any null reference in the array.

Exceptions

|System.ArgumentNuIIException |va|ues is a null reference.

Example

The following example demonstrates concatenating an array of strings.
[C#]

using System;
public class StringConcatExample {
public static void Main(Q) {
string str = String.-Concat("one", "two', 'three"™, "four"™, "five");
Console._WriteLine("The concatenated String array is: {0}, str);
}
}

44

The output is

The concatenated String array is: onetwothreefourfive

45

String.Copy(System.String) Method

Summary

Creates a new instance of System.String with the same value as a specified
instance of System.String.

Parameters

|str |The System.String to be copied.

Return Value

A new System.String with the same value as str.

Exceptions

|System.ArgumentNuIIException |str is a null reference.

Example

The following example demonstrates copying strings.
[C#]

using System;

public class StringCopyExample {

public static void Main(Q) {

string strA = "'string";

Console._WriteLine("The initial string, strA, is "{0}".", strA);
string strB = String.Copy(strA);

strA = strA_ToUpper();

Console._WriteLine("The copied string, strB, before strA.ToUpper, is
"{0}".", strB);

Console._WriteLine("The initial string after StringCopy and ToUpper,
is "{0}".", strA);

Console._WriteLine("The copied string, strB, after strA.ToUpper, is
"{0}".", strB);

46

The

The

The

The

The

output is

initial string, strA, is "string”.

copied string, strB, before strA._ToUpper,

is "string”.

initial string after StringCopy and ToUpper, is "STRING".

copied string, strB, after strA._ToUpper,

is "string”.

47

String.CopyTo(System.Int32,
System.Char[], System.Int32,
System.Int32) Method

Summary

Copies a specified number of characters from a specified position in the current

System.String instance to a specified position in a specified array of Unicode
characters.

Parameters

A System.Int32 containing the index of the current instance from
sourcelndex .
which to copy.

|destination |An array of Unicode characters.

L A System.Int32 containing the index of an array element in
destinationlndex S
destination to copy.

A System.Int32 containing the number of characters in the current
count . .2
instance to copy to destination.

Exceptions

|System.ArgumentNuIIException |destination is a null reference.
sourcelndex, destinationlndex, or count
is negative
or

System.ArgumentOutOfRangeException [count is greater than the length of the

substring from startindex to the end of
the current instance

Or

48

count is greater than the length of the
subarray from destinationlndex to the
end of destination

Example

The following example demonstrates copying characters from a string to a
Unicode character array.

[C#]

using System;

public class StringCopyToExample {

public static void Main() {

string str = "this is the new string";

Char[] CAry = {ItI’IhI’IeI’I ','O','I','d'};
Console.WriteLine("The initial string is "{0}"", str);
Console._Write("The initial character array is: """);
foreach(Char c in cAry)

Console . Write(c);

Console. WriteLine(""");

str.CopyTo(12, cAry, 4, 3);

Console._Write("The character array after CopyTo is: "');
foreach(Char c in cAry)

Console . Write(c);

Console.WriteLine("""");

}
}

The output is

The initial string is "this is the new string”
The initial character array is: "the old®

The character array after CopyTo is: "the new"

49

String.EndsWith(System.String) Method

Summary

Returns a System.Boolean value that indicates whether the ending characters of
the current instance match the specified System.String.

Parameters

|va|ue |A System.String to match.

Return Value

true if the end of the current instance is equal to value; false if value is not
equal to the end of the current instance or is longer than the current instance.

Description

This method compares value with the substring at the end of the current instance
that has a same length as value.

The comparison is case-sensitive.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

Example

The following example demonstrates determining whether the current instance
ends with a specified string.

[C#]
using System;

public class StringEndsWithExample {
public static void Main(Q) {

50

string str = "One string to compare';
Console.WriteLine("The given string is "{0}"", str);
Console._Write("The given string ends with “compare®? ");
Console._WriteLine(str.EndsWith("compare™));
Console _Write("The given string ends with “"Compare®? ™);
Console . WriteLine(str.EndsWith("Compare™));
}
}

The output is

The given string is "One string to compare”

The given string ends with “compare®? True

The given string ends with "Compare®? False

51

String.Equals(System.Object) Method

Summary

Determines whether the current instance and the specified object have the same
value.

Parameters

|0bj |A System.Object.

Return Value

true if obj is a System.String and its value is the same as the value of the
current instance; otherwise, false.

Description

This method checks for value equality. This comparison is case-sensitive.

[Note: This method overrides System.Object.Equals.]

Exceptions

|System.NuIIReferenceException |The current instance is a null reference.

Example

The following example demonstrates checking to see if an object is equal to the
current instance.

[c#]
using System;

public class StringEqualsExample {

52

public static void Main() {
string str = "A string";
Console._WriteLine("The given string is "{0} ", str);
Console._Write("The given string is equal to "A string™? ");
Console._WriteLine(str.Equals("A string"”));
Console.Write("The given string is equal to "A String"? ");
Console.WriteLine(str.Equals("A String"”));
}
}

The output is

The given string is "A string”

The given string is equal to "A string®"? True

The given string is equal to "A String®? False

53

String.Equals(System.String) Method

Summary

Determines whether the current instance and the specified string have the same
value.

Parameters

|va|ue |A System.String.

Return Value

true if the value of value is the same as the value of the current instance;
otherwise, false.

Description
This method checks for value equality. This comparison is case-sensitive.

[Note: This method is implemented to support the
System.IEquatable<System.String> interface.]

54

String.Equals(System.String,
System.String) Method

Summary
Determines whether two specified System.String objects have the same value.

Parameters

|a \A System.String or a null reference.

|b ‘A System.String or a null reference.

Return Value

true if the value of a is the same as the value of b; otherwise, false.
Description

The comparison is case-sensitive.

Example

The following example demonstrates checking to see if two strings are equal.
[C#]

using System;

public class StringEqualsExample {

public static void Main(Q) {

string strA = "A string';

string strB "a string';

string strC = "a string";

Console Write("The string "{0}" is equal to the string "{1}"? ",
strA, strB);

Console._WriteLine(String.Equals(strA, strB));

Console.Write("The string "{0}" is equal to the string "{1}"? ",
strC, strB);

Console _WriteLine(String.Equals(strC, strB));

}
}

55

The output is

The string "A string® is equal to the string "a string®? False

The string "a string” is equal to the string "a string"? True

56

String.Format(System.String,
System.Object[]) Method

Summary

Replaces the format specification in a specified System.String with the textual
equivalent of the value of a corresponding System.Object instance in a specified
array.

Parameters

|format |A System.String containing zero or more format specifications.

|args |A System.Object array containing the objects to be formatted.

Return Value

A System.String containing a copy of format in which the format specifications
have been replaced by the System.String equivalent of the corresponding
instances of System.Object in args.

Description

If an object referenced in the format string is a null reference, an empty string is
used in its place.

[Note: This version of System.String.Format is equivalent to

System.String.Format(null, format, args). For more information on the format
specification see the System.String class overview.]

Exceptions

|System.ArgumentNuIIException |format or args is a null reference.
|System.FormatException |format is invalid.

57

-0r-

The number indicating an argument to be
formatted is less than zero, or greater than or
equal to the length of the args array.

Example

The following example demonstrates the System.String.Format method.

[C#]

using System;
public class StringFormat {
public static void Main() {

Console.WriteLine(String.Format(*'The winning numbers were
{0:000} {1:000} {2:000} {3:000} {4:000} today.', 5, 10, 11, 37, 42));

Console._WriteLine("The winning numbers were {0, -6}{1, -6}{2, -
6}{3, -6}{4, -6} today.', 5, 10, 11, 37, 42);

}

}
The output is

The winning numbers were 005 010 011 037 042 today.

The winning numbers were 5

10

11 37 42 today .

58

String.Format(System.String,
System.Object) Method

Summary

Replaces the format specification in a provided System.String with a specified
textual equivalent of the value of a specified System.Object instance.

Parameters

|format |A System.String containing zero or more format specifications.

|argO |A System.Object to be formatted. Can be a null reference.

Return Value

A copy of format in which the first format specification has been replaced by the
formatted System.String equivalent of the argO.

Description

If an object referenced in the format string is a null reference, an empty string is
used in its place.

[Note: This version of System.String.Format is equivalent to String.Format(

null, format, new Object[] {arg0}). For more information on the format
specification see the System.String class overview.]

Exceptions

|System.ArgumentNuIIException |format is a null reference.

System.FormatException The format specification in format is invalid.

59

Or

The number indicating an argument to be

formatted (2).

formatted is less than zero, or greater than or
equal to the number of provided objects to be

Example

The following example demonstrates the System.String.Format method.

[C#]

using System;
public class StringFormat {
public static void Main() {
Console.WriteLine(String.Format(*'The high temperature today was
{O0:###} degrees.™, 88));
Console._WriteLine(""The museum had {0,-6} visitors today.", 88);
}

}
The output is

The high temperature today was 88 degrees.
The museum had 88 visitors today.

60

String.Format(System.String,
System.Object, System.Object) Method

Summary

Replaces the format specification in a specified System.String with the textual
equivalent of the value of two specified System.Object instances.

Parameters

|format |A System. String containing zero or more format specifications.
|argO |A System.Object to be formatted. Can be a null reference.
|argl |A System.Object to be formatted. Can be a null reference.

Return Value

A system.String containing a copy of format in which the format specifications
have been replaced by the System.String equivalent of arg0 and argl.

Description

If an object referenced in the format string is a null reference, an empty string is
used in its place.

[Note: This version of System.String.Format is equivalent to String.Format(

null, format, new Object [] {arg0, argl}). For more information on the format
specification see the System.String class overview.]

Exceptions

|System.ArgumentNuIIException |format is a null reference.

|System.FormatException |format is invalid.

61

-0r-

The number indicating an argument to be
formatted is less than zero, or greater than or
equal to the number of provided objects to be
formatted (2).

Example

The following example demonstrates the System.String.Format method.
[C#]

using System;
public class StringFormat {
public static void Main() {
Console._WriteLine(String.-Format("'The temperature today oscillated
between {0:####} and {1:####} degrees.', 78, 100));
Console.WriteLine(String.Format("'The temperature today oscillated
between {0:0000} and {1:0000} degrees.', 78, 100));
Console._WriteLine("The temperature today oscillated between {0, -4}
and {1, -4} degrees.', 78, 100);
}
}
The output is

The temperature today oscillated between 78 and 100 degrees.
The temperature today oscillated between 0078 and 0100 degrees.
The temperature today oscillated between 78 and 100 degrees.

62

String.Format(System.String,
System.Object, System.Object,
System.Object) Method

Summary

Replaces the format specification in a specified System.String with the textual
equivalent of the value of three specified System.Object instances.

Parameters

|format |A System.String containing zero or more format specifications.
|argO |The first System.Object to be formatted. Can be a null reference.
|argl |The second System.Object to be formatted. Can be a null reference.
|argz |The third system.Object to be formatted. Can be a null reference.

Return Value

A System.String containing a copy of format in which the first, second, and third
format specifications have been replaced by the System.String equivalent of
arg0, argl, and arg2.

Description

If an object referenced in the format string is a null reference, an empty string is
used in its place.

[Note: This version of System.String.Format is equivalent to String.Format(
null, format, new Object[] {argO, argl, arg2}). For more information on the
format specification see the System.String class overview.]

63

Exceptions

|Excepﬁon |Condnkn1

|System.ArgumentNuIIException |format is a null reference.

format is invalid.
Or

System.FormatException The number indicating an argument to be

formatted (3).

formatted is less than zero, or greater than or
equal to the number of provided objects to be

Example

The following example demonstrates the System.String.Format method.
[Cc#]
using System;

public class StringFormat {
public static void Main() {

Console.WriteLine(String.Format(''The temperature today oscillated

between {0:###} and {1:###} degrees. The average temperature was
{2:000} degrees.', 78, 100, 91));

Console._WriteLine(""The temperature today oscillated between {0,
4% and {1, 4} degrees. The average temperature was {2, 4} degrees.",
78, 100, 91);

}

}
The output is

The temperature today oscillated between 78 and 100 degrees. The
average temperature was 091 degrees.

The temperature today oscillated between 78 and 100 degrees. The
average temperature was 91 degrees.

64

String.Format(System.lFormatProvider,
System.String, System.Object[]) Method

Summary
Replaces the format specification in a specified System. String with the culture-
specific textual equivalent of the value of a corresponding System.Object
instance in a specified array.

Parameters

. A System.IFormatProvider interface that supplies an object that
provider : e . .
provides culture-specific formatting information. Can be a null reference.
|format |A System.String containing zero or more format specifications.
|args |A System.Object array to be formatted.

Return Value

A System.String containing a copy of format in which the format specifications
have been replaced by the System.String equivalent of the corresponding
instances of System.Object in args.

Description

If an object referenced in the format string is a null reference, an empty string is
used in its place.

The format parameter string is embedded with zero or more format specifications
of the form, {N [, M][: formatString]}, where N is a zero-based integer indicating
the argument to be formatted, M is an optional integer indicating the width of the
region to contain the formatted value, and formatString is an optional string of
formatting codes. [Note: For more information on the format specification see
the System.String class overview.]

65

Exceptions

|System.ArgumentNuIIException |format or args is a null reference.

format is invalid.

Or
System.FormatException The number indicating an argument to be
formatted (N) is less than zero, or greater than
or equal to the length of the args array.

66

String.GetEnumerator() Method

Summary

Retrieves an object that can iterate through the individual characters in the
current instance.

Return Value

A System.CharEnumerator object.

Description

This method is required by programming languages that support the
System.Collections.IEnumerator interface to iterate through members of a
collection.

67

String.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for this instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

68

String.IndexOf(System.Char) Method

Summary

Returns the index of the first occurrence of a specified Unicode character in the
current instance.

Parameters

Ivalue |A Unicode character.

Return Value

A system.Int32 containing the zero-based index of the first occurrence of value
character in the current instance; otherwise, -1 if value was not found.

Description

This method is case-sensitive.

69

String. IndexOf(System.Char,
System.Int32) Method

Summary

Returns the index of the first occurrence of a specified Unicode character in the
current instance, with the search starting from a specified index.

Parameters

|va|ue |A Unicode character.

A System.Int32 containing the index of the current instance from which

startindex to start searching.

Return Value

A system.Int32 containing the zero-based index of the first occurrence of value
in the current instance starting from the specified index; otherwise, -1 if value
was not found.

Description

This method is case-sensitive.

Exceptions

startindex is less than zero or greater

System.ArgumentOutOfRangeException than the length of the current instance.

Example

The following example demonstrates the System.String.IndexOf method.

[C#]

70

using System;

public class StringIndexOf {

public static void Main() {

String str = "This is the string";

Console _WriteLine("Searching for the index
0 yields {0}.", str.IndexOf("h", 0));
Console.WriteLine("Searching for the index
10 yields {0}.", str.IndexOf(“h", 10));

}

}
The output is

Searching for the index of "h" starting from

Searching for the index of "h" starting from

of "h" starting from index

of "h" starting from index

index O yields 1.

index 10 yields -1.

71

String. IndexOf(System.Char,
System.Int32, System.Int32) Method

Summary

Returns the index of the first occurrence of a specified Unicode character in the

current instance, with the search over the specified range starting at the
provided index.

Parameters

|va|ue |A Unicode character.

A System.Int32 containing the index of the current instance from which
startlndex .
to start searching.

A System.Int32 containing the number of consecutive elements of the
count . X
current instance to be searched starting at startindex.

Return Value

A system.Int32 containing the zero-based index of the first occurrence of value

in the current instance in the specified range of indexes; otherwise, -1 if value
was not found.

Description

The search begins at startindex and continues until startindex + count - 1 is
reached. The character at startindex + count is not included in the search.

This method is case-sensitive.

Exceptions

startindex or count is negative

System.ArgumentOutOfRangeException
Or

72

startindex + count is greater than the
length of the current instance.

73

String.IndexOf(System.String) Method

Summary

Returns the index of the first occurrence of a specified System.String in the
current instance.

Parameters
|va|ue |The System.String for which to search.

Return Value

A System.Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of .
value was found starting at

the first substring in the current instance that is equal to the index returned.

value.
-1 value was not found.

Description

The search begins at the first character of the current instance. The search is
case-sensitive, culture-sensitive, and the culture (if any) of the current thread is

used.

Exceptions

ISystem.ArgumentNuIIException |va|ue is a null reference.

74

Example

The following example demonstrates the System.String.Index0Of method.

[C#]

using System;

public class StringlndexOf {

public static void Main() {

String str = "This iIs the string";
Console.WriteLine("Searching for the
str.IndexOf("is"));
Console._WriteLine("Searching for the
str.IndexOf("Is"));
Console.WriteLine("Searching for the
str.IndexOfF("));

}
}
The output is

Searching for the index of "is" yields

Searching for the index of "Is" yields

Searching for the index of " yields O.

index of \"is\" yields {0,2}.",
index of \"Is\" yields {0,2}.",

index of \"\" yields {0,2}.",

75

String. IndexOf(System.String,
System.Int32) Method

Summary

Returns the index of the first occurrence of a specified System.String in the
current instance, with the search starting from a specified index.

Parameters

Ivalue |The System. String for which to search.

A System.Int32 containing the index of the current instance from which
to start searching.

startindex

Return Value

A System.Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of
the first substring in the current instance that is equal to
value.

-1 value was not found.

value was found starting at
the index returned.

Description
This method is case-sensitive.

Exceptions

ISystem.ArgumentNuIIException |va|ue is a null reference.

76

startlndex is greater than the length of
System.ArgumentOutOfRangeException [the current instance.

77

String. IndexOf(System.String,
System.Int32, System.Int32) Method

Summary

Returns the index of the first occurrence of a specified System.String in the
current instance, with the search over the specified range starting at the
provided index.

Parameters

|va|ue |The System.String for which to search

A System.Int32 containing the index of the current instance from which

startindex to start searching.

A System.Int32 containing the number of consecutive elements of the

count current instance to be searched starting at startindex.

Return Value

A System.Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of
the first substring in the current instance that is equal to
value.

value was found starting at
the index returned.

-1 value was not found.

Description

The search begins at startindex and continues until startindex + count - 1 is
reached. The character at startindex + count is not included in the search.

This method is case-sensitive.

78

Exceptions

|System.ArgumentNuIIException \value is a null reference.

startlndex or count is negative

or
System.ArgumentOutOfRangeException
startindex + count is greater than the
length of the current instance.

79

String.IndexOfAny(System.Char[])
Method

Summary

Reports the index of the first occurrence in the current instance of any character
in a specified array of Unicode characters.

Parameters
IanyOf IAn array of Unicode characters.

Return Value
The index of the first occurrence of an element of anyOf in the current instance;
otherwise, -1 if no element of anyOf was found.

Description
This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException |anyOf is a null reference.

80

String.IndexOfAny(System.Char([],
System.Int32) Method

Summary

Returns the index of the first occurrence of any element in a specified array of
Unicode characters in the current instance, with the search starting from a
specified index.

Parameters

|anyOf |An array of Unicode characters.

A System.Int32 containing the index of the current instance from which

startindex to start searching.

Return Value

A system.Int32 containing a positive value equal to the index of the first
occurrence of an element of anyOf in the current instance; otherwise, -1 if no
element of anyOf was found.

Description

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException |anyOf is a null reference.

startindex is greater than the length of

System.ArgumentOutOfRangeException the current instance

81

String.IndexOfAny(System.Char([],
System.Int32, System.Int32) Method

Summary

Returns the index of the first occurrence of any element in a specified Array of

Unicode characters in the current instance, with the search over the specified
range starting from the provided index.

Parameters

|anyOf |An array containing the Unicode characters to seek.

A System.Int32 containing the index of the current instance from which
startlndex .
to start searching.

count A System.Int32 containing the range of the current instance at which to
end searching.

Return Value

A system.Int32 containing a positive value equal to the index of the first

occurrence of an element of anyOf in the current instance; otherwise, -1 if no
element of anyOf was found.

Description

The search begins at startindex and continues until startindex + count - 1. The
character at startindex + count is not included in the search.

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException

|anyOf is a null reference.
|System.ArgumentOutOfRangeException |start|ndex or count is negative.

82

-0r-

startindex + count is greater than the
length of the current instance.

83

String.Insert(System.Int32,
System.String) Method

Summary

Returns a System.String equivalent to the current instance with a specified
System.String inserted at the specified position.

Parameters

|start|ndex |A System.Int32 containing the index of the insertion.

|va|ue |The System.String to insert.

Return Value

A new System.String that is equivalent to the current string with value inserted
at index startindex.

Description
In the new string returned by this method, the first character of value is at
startindex, and all characters in the current string from startindex to the end are
inserted in the new string after the last character of value.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

startindex is greater than the length of
System.ArgumentOutOfRangeException [the current instance.

84

String.Intern(System.String) Method

Summary

Retrieves the system'’s reference to a specified System.String.

Parameters

|St|’ |A System.String.

Return Value

The System.String reference to str.

Description

Instances of each unique literal string constant declared in a program, as well as
any unique instance of System.String you add programmatically are kept in a
table, called the "intern pool".

The intern pool conserves string storage. If a literal string constant is assigned to
several variables, each variable is set to reference the same constant in the
intern pool instead of referencing several different instances of System.String
that have identical values.

This method looks up a specified string in the intern pool. If the string exists, a
reference to it is returned. If it does not exist, an instance equal to the specified
string is added to the intern pool and a reference that instance is returned.

Exceptions

|System.ArgumentNuIIException |str is a null reference.

Example

85

The following example demonstrates the System.String.Intern method.

[C#]

using System;

using System.Text;

public class StringExample {
public static void Main() {

String s1 = "MyTest";
String s2 = new
StringBuilder() .Append(*"My') .Append(*'Test') .ToString();
String s3 = String.Intern(s2);

Console._WriteLine(Object.ReferenceEquals(sl, s2));
//different

Console._WriteLine(Object.ReferenceEquals(sl, s3));
same

}
}
The output is

False

True

//the

86

String.Islnterned(System.String) Method

Summary

Retrieves a reference to a specified System.String.

Parameters

|St|’ |A System.String.

Return Value

A System.String reference to str if it is in the system's intern pool; otherwise, a
null reference.

Description

Instances of each unique literal string constant declared in a program, as well as
any unique instance of System.String you add programmatically are kept in a
table, called the "intern pool".

The intern pool conserves string storage. If a literal string constant is assigned to
several variables, each variable is set to reference the same constant in the
intern pool instead of referencing several different instances of System.String
that have identical values.

[Note: This method does not return a System.Boolean value, but can still be
used where a System.Boolean is needed.]

Exceptions

|System.ArgumentNuIIException |str is a null reference.

Example

87

The following example demonstrates the System.String.IsInterned method.
[C#]

using System;
using System.Text;

public class StringExample {
public static void Main() {

String sl1 = new
StringBuilder() .Append(*"My') .Append(*'Test') .ToString();

Console._WriteLine(String.Isinterned(sl) = null);
3
3
The output is

True

88

String.Join(System.String,
System.String[]) Method

Summary
Concatenates the elements of a specified System.String array, inserting a
separator string between each element pair and yielding a single concatenated
string.

Parameters

|separator |A System.String.

|va|ue |A System.String array.

Return Value

A System.String consisting of the elements of value separated by instances of
the separator string.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

Example

The following example demonstrates the System.String.Join method.
[C#1

using System;

public class StringJoin {

public static void Main(Q) {

String[] strAry = { "Red", "'Green"™, "Blue" };
Console._WriteLine(String.Join(":: ", strAry));

}

89

}
The output is

Red:: Green::

Blue

90

String.Join(System.String,
System.String[], System.Int32,
System.Int32) Method

Summary

Concatenates a specified separator System. String between the elements of a
specified System.String array, yielding a single concatenated string.

Parameters

|separator |A System.String.

|va|ue |A System.String array.

|start|ndex |A System.Int32 containing the first array element in value to join.

|count |A System.Int32 containing the number of elements in value to join.

Return Value

A System.String consisting of the specified strings in value joined by separator.
Returns system.String.Empty if count is zero, value has no elements, or
separator and all the elements of value are Empty.

Exceptions

startindex plus count is greater than

System.ArgumentOutOfRangeException the number of elements in value.

Example

The following example demonstrates the System.String.Join method.

[C#]

91

using System;
public class StringJoin {

public static void Main() {

String[] strAry = { "Red", "Green"™, "Blue" };

Console _WriteLine(String.Join(":: ", strAry, 1, 2));

}
}
The output is

Green:: Blue

92

String.LastlndexOf(System.String,
System.Int32) Method

Summary

Returns the index of the last occurrence of a specified System.String within the
current instance, starting at a given position.

Parameters

Ivalue |A System.String.

A System.Int32 containing the index of the current instance from which
startindex .

to start searching.

Return Value

A System.Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of the last
substring in the current instance that is equal to value.

value was found.

value was not
-1
found.

Description

This method searches for the last occurrence of the specified System.String
between the start of the string and the indicated index.

This method is case-sensitive.

Exceptions

93

|System.ArgumentNuIIException ‘value is a null reference.

startlndex is less than zero or greater
System.ArgumentOutOfRangeException [than or equal to the length of the
current instance.

94

String.LastlndexOf(System.String,
System.Int32, System.Int32) Method

Summary

Returns the index of the last occurrence of a specified System.String in the
provided range of the current instance.

Parameters

|va|ue |The substring to search for.

A System.Int32 containing the index of the current instance from which
startlndex .
to start searching.

count A System.Int32 containing the range of the current instance at which to
end searching.

Return Value

A system. Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of the last
L . . value was found.
substring in the current instance that is equal to value.

-1

value was not
found.

Description

The search begins at startindex and continues until startindex - count + 1.

This method is case-sensitive.

95

Exceptions

|System.ArgumentNuIIException \value is a null reference.

startlndex or count is less than zero.

System.ArgumentOutOfRangeException | 0"

startindex - count is smaller than -1.

96

String.LastlndexOf(System.String)
Method

Summary

Returns the index of the last occurrence of a specified System.String within the
current instance.

Parameters

Parameter ~ Descripton
Ivalue

|A System.String.

Return Value

A system.Int32 that indicates the result of the search for value in the current
instance as follows:

A zero-based number equal to the index of the start of the last

L .) value was found.
substring in the current instance that is equal to value.
1 value was not

found.

Description

The search is case-sensitive.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

97

String.LastlndexOf(System.Char,
System.Int32, System.Int32) Method

Summary

Returns the index of the last occurrence of a specified character in the provided
range of the current instance.

Parameters

|va|ue |A Unicode character to locate.

A System.Int32 containing the index of the current instance from which
startlndex .
to start searching.

count A System.Int32 containing the range of the current instance at which to
end searching.

Return Value

A System.Int32 containing the index of the last occurrence of value in the

current instance if found between startindex and (startindex - count + 1);
otherwise, -1.

Description

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException

|va|ue is a null reference.

startindex or count is less than zero.

System.ArgumentOutOfRangeException —or-

98

startlndex - count is less than -1.

99

String.LastlndexOf(System.Char,
System.Int32) Method

Summary

Returns the index of the last occurrence of a specified character within the
current instance.

Parameters

|va|ue |A Unicode character to locate.

A System.Int32 containing the index in the current instance from which

startindex to begin searching.

Return Value

A System.Int32 containing the index of the last occurrence of value in the
current instance, if found; otherwise, -1.

Description

This method searches for the last occurrence of the specified character between
the start of the string and the indicated index.

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

startindex is less than zero or greater

System.ArgumentOutOfRangeException than the length of the current instance.

Example

100

The following example demonstrates the System.String.LastIndexOf method.
[C#]

using System;
public class StringlLastindexOfTest {
public static void Main() {
String str = "aa bb cc dd";

Console._WriteLine(str.LastindexOf("d", 8));
Console _WriteLine(str.LastindexOf("b", 8));

}

}
The output is

-1

101

String.LastlndexOf(System.Char) Method

Summary

Returns the index of the last occurrence of a specified character within the
current instance.

Parameters

Ivalue |The Unicode character to locate.

Return Value

A system.Int32 containing the index of the last occurrence of value in the
current instance, if found; otherwise, -1.

Description

This method is case-sensitive.

102

String.LastindexOfAny(System.Char[])
Method

Summary

Returns the index of the last occurrence of any element of a specified array of
characters in the current instance.

Parameters
IanyOf IAn array of Unicode characters.

Return Value
A system.Int32 containing the index of the last occurrence of any element of
anyOf in the current instance, if found; otherwise, -1.

Description
This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException |anyOf is a null reference.

103

String.LastlndexOfAny(System.Char([],
System.Int32) Method

Summary

Returns the index of the last occurrence of any element of a specified array of
characters in the current instance.

Parameters

|anyOf |An array of Unicode characters.

A System.Int32 containing the index of the current instance from which
startlndex .

to start searching.

Return Value

A system.Int32 containing the index of the last occurrence of any element of
anyOf in the current instance, if found; otherwise, -1.

Description

This method searches for the last occurrence of the specified characters between
the start of the string and the indicated index.

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException |anyOf is a null reference.

startindex is less than zero or greater
than or equal to the length of the

System.ArgumentOutOfRangeException current instance.

104

105

String.LastlndexOfAny(System.Char([],
System.Int32, System.Int32) Method

Summary

Returns the index of the last occurrence of any of specified characters in the
provided range of the current instance.

Parameters

|anyOf |An array of Unicode characters.

A System.Int32 containing the index of the current instance from which
startlndex .
to start searching.

count A System.Int32 containing the range of the current instance at which to
end searching.

Return Value

A system.Int32 containing the index of the last occurrence of any element of
anyOf if found between startindex and (startindex - count + 1); otherwise, -1.

Description

The search begins at startindex and continues until startindex - count + 1. The
character at startindex - count is not included in the search.

This method is case-sensitive.

Exceptions

|System.ArgumentNuIIException

|anyOf is a null reference.

startlndex or count is less than zero.
System.ArgumentOutOfRangeException

-0r-

106

startlndex - count is smaller than -1.

107

String.op_ Equality(System.String,
System.String) Method

Summary

Returns a System.Boolean value indicating whether the two specified string
values are equal to each other.

Parameters

Ia |The first System.String to compare.

|b |The second System.String to compare.

Return Value

true if a and b represent the same string value; otherwise, false.

108

String.op_Inequality(System.String,
System.String) Method

Summary

Returns a System.Boolean value indicating whether the two string values are not
equal to each other.

Parameters

Ia |The first System.String to compare.

|b |The second System.String to compare.

Return Value

true if a and b do not represent the same string value; otherwise, false.

109

String.PadLeft(System.Int32) Method

Summary

Right-aligns the characters in the current instance, padding with spaces on the
left, for a specified total length.

Parameters

A System.Int32 containing the number of characters in the resulting
string.

totalWidth

Return Value

A new System.String that is equivalent to the current instance right-aligned and
padded on the left with as many spaces as needed to create a length of
totalWidth. If totalWidth is less than the length of the current instance, returns a
new System.String that is identical to the current instance.

Description

[Note: A space in Unicode format is defined as the hexadecimal value 0x20.]

Exceptions

|System.ArgumentException |totaIWidth is less than zero.

110

String.PadLeft(System.Int32,
System.Char) Method

Summary

Right-aligns the characters in the current instance, padding on the left with a
specified Unicode character, for a specified total length.

Parameters

totalWidth

A System.Int32 containing the number of characters in the resulting
string.

|paddingChar |A System. Char that specifies the padding character to use.

Return Value

A new System.String that is equivalent to the current instance right-aligned and
padded on the left with as many paddingChar characters as needed to create a
length of totalwidth. If totalWidth is less than the length of the current instance,
returns a new System.String that is identical to the current instance.

Exceptions

|System.ArgumentException |totaIWidth is less than zero.

111

String.PadRight(System.Int32,
System.Char) Method

Summary

Left-aligns the characters in the current instance, padding on the right with a
specified Unicode character, for a specified total number of characters.

Parameters

totalWidth

A System.Int32 containing the number of characters in the resulting
string.

|paddingChar |A System. Char that specifies the padding character to use.

Return Value

A new System.String that is equivalent to the current instance left aligned and
padded on the right with as many paddingChar characters as needed to create a
length of totalwidth. If totalWidth is less than the length of the current instance,
returns a new System.String that is identical to the current instance.

Exceptions

|System.ArgumentException |totaIWidth is less than zero.

112

String.PadRight(System.Int32) Method

Summary

Left-aligns the characters in the current instance, padding with spaces on the
right, for a specified total number of characters.

Parameters

A System.Int32 containing the number of characters in the resulting
string.

totalWidth

Return Value

A new System.String that is equivalent to this instance left aligned and padded
on the right with as many spaces as needed to create a length of totalwidth. If
totalWidth is less than the length of the current instance, returns a new
System.String that is identical to the current instance.

Exceptions

|System.ArgumentException |totaIWidth is less than zero.

113

String.Remove(System.Int32,
System.Int32) Method

Summary
Deletes a specified number of characters from the current instance beginning at a

specified index.

Parameters

startindex

A System.Int32 containing the index of the current instance from which
to start deleting characters.

|count |A System.Int32 containing the number of characters to delete.

Return Value

A new System.String that is equivalent to the current instance without the
specified range characters.

Exceptions

startindex or count is less than zero.

Or
System.ArgumentOutOfRangeException

startindex plus count is greater than
the length of the current instance.

114

String.Replace(System.String,
System.String) Method

Summary

Replaces all instances of a specified substring within the current instance with
another specified string.

Parameters

IoIdVaIue |A System. String containing the string value to be replaced.

A System.String containing the string value to replace all occurrences

newValue
of oldVvalue. Can be a null reference.

Return Value

A System.String equivalent to the current instance with all occurrences of
oldValue replaced with newValue. If the replacement value is a null reference,
the specified substring is removed.

115

String.Replace(System.Char,
System.Char) Method

Summary

Replaces all instances of a specified Unicode character with another specified
Unicode character.

Parameters

IoIdChar |The Unicode character to be replaced.

|newChar |The Unicode character to replace all occurrences of oldChar.

Return Value

A System.String equivalent to the current instance with all occurrences of
oldChar replaced with newChar.

116

String.Split(System.Char[]) Method

Summary

Returns substrings of the current instance that are delimited by the specified

characters.

Parameters

|separator ‘A System. Char array of delimiters. Can be a null reference.

Return Value

A System.String array containing the results of the split operation as follows:

A single-element array containing the current
instance.

None of the elements of separator
are contained in the current
instance.

A multi-element System.String array, each
element of which is a substring of the current
instance that was delimited by one or more
characters in separator.

At least one element of separator
is contained in the current
instance.

A multi-element System.String array, each
element of which is a substring of the current
instance that was delimited by white space
characters.

The current instance contains
white space characters and
separator is a null reference or an
empty array.

Description

System.String.Empty is returned for any substring where two delimiters are
adjacent or a delimiter is found at the beginning or end of the current instance.

Delimiter characters are not included in the substrings.

117

String.Split(System.Char[],
System.Int32) Method

Summary

Returns substrings of the current instance that are delimited by the specified
characters.

Parameters

separator An array of Unicode characters that delimit the substrings in the current
P instance, an empty array containing no delimiters, or a null reference.
count A System.Int32 containing the maximum number of array elements to
return.

Return Value

A system.String array containing the results of the split operation as follows:

None of the elements of separator
are contained in the current
instance.

A single-element array containing the current
instance.

A multi-element System.String array, each
element of which is a substring of the current
instance that was delimited by one or more

At least one element of separator
is contained in the current

- instance.
characters in separator
A multi-element System. String array, each The current instance contains
element of which is a substring of the current white space characters and
instance that was delimited by white space separator is a null reference or an
characters. empty array.

Description

118

System.String.Empty is returned for any substring where two delimiters are
adjacent or a delimiter is found at the beginning or end of the current instance.

Delimiter characters are not included in the substrings.

If there are more substrings in the current instance than the maximum specified
number, the first count -1 elements of the array contain the first count - 1
substrings. The remaining characters in the current instance are returned in the
last element of the array.

Exceptions

|System.ArgumentOutOfRangeException |count is negative.

119

String.StartsWith(System.String) Method

Summary

Returns a System.Boolean value that indicates whether the start of the current
instance matches the specified System.String.

Parameters

|va|ue |A System.String.

Return Value

true if the start of the current instance is equal to value; false if value is not
equal to the start of the current instance or is longer than the current instance.

Description

This method compares value with the substring at the start of the current
instance that has a length of value.Length. If value.Length is greater than the
length of the current instance or the relevant substring of the current instance is

not equal to value, this method returns false; otherwise, this method returns
true.

The comparison is case-sensitive.

Exceptions

|System.ArgumentNuIIException |va|ue is a null reference.

120

String.Substring(System.Int32,
System.Int32) Method

Summary

Retrieves a substring from the current instance, starting from a specified index,
continuing for a specified length.

Parameters

A System.Int32 containing the index of the start of the substring in the
startindex .

current instance.
|Iength |A System.Int32 containing the number of characters in the substring.

Return Value

A System.String containing the substring of the current instance with the
specified length that begins at the specified position. Returns

System.String.Empty if startindex is equal to the length of the current instance
and length is zero.

Exceptions

length is greater than the length of the
current instance.

System.ArgumentOutOfRangeException |-or-

startindex or length is less than zero.

121

String.Substring(System.Int32) Method

Summary

Retrieves a substring from the current instance, starting from a specified index.

Parameters

A System.Int32 containing the index of the start of the substring in the

startindex .
current instance.

Return Value

A system.String equivalent to the substring that begins at startindex of the
current instance. Returns System.String.Empty if startlndex is equal to the
length of the current instance.

Exceptions

startindex is less than zero or greater
than the length of the current instance.

System.ArgumentOutOfRangeException

122

String.System.Collections.Generic.l[Enume

rable<System.Char>.GetEnumerator()
Method

Summary

This method is implemented to support the
System.Collections.Generics.IEnumerable<System.Char> interface.

123

String.System.Collections.IEnumerable.Ge
tEnumerator() Method

Summary

Implemented to support the System.Collections.IEnumerable interface. [Note:
For more information, see System.Collections.IEnumerable.GetEnumerator.]

124

String.ToCharArray() Method

Summary

Copies the characters in the current instance to a Unicode character array.

Return Value

A System.Char array whose elements are the individual characters of the current
instance. If the current instance is an empty string, the array returned by this
method is empty and has a zero length.

125

String.ToCharArray(System.Int32,
System.Int32) Method

Summary

Copies the characters in a specified substring in the current instance to a Unicode
character array.

Parameters

A System.Int32 containing the index of the start of a substring in the
startindex .
current instance.

A System.Int32 containing the length of the substring in the current
length instance

Return Value

A system.Char array whose elements are the length number of characters in the
current instance, starting from the index startlndex in the current instance. If the
specified length is zero, the entire string is copied starting from the beginning of
the current instance, and ignoring the value of startindex. If the current instance
is an empty string, the returned array is empty and has a zero length.

Exceptions

startindex or length is less than zero.

or
System.ArgumentOutOfRangeException

startindex plus length is greater than
the length of the current instance.

126

String.ToLower() Method

Summary

Returns a copy of this System.String in lowercase.

Return Value

A System.String in lowercase..

Description

This method takes into account the culture (if any) of the current thread.

127

String.ToString() Method

Summary

Returns a Ssystem. String representation of the value of the current instance.

Return Value

The current System.String.

Description

[Note: This method overrides System.Object.ToString.]

128

String.ToString(System.lIFormatProvider)
Method

Summary

Returns this instance of String; no actual conversion is performed.

Parameters

(Reserved) A System.IFormatProvider interface implementation which
supplies culture-specific formatting information.

provider

Return Value

This string.
Description

provider is reserved, and does not currently participate in this operation.

129

String.ToUpper() Method

Summary

Returns a copy of the current instance with all elements converted to uppercase,
using default properties.

Return Value

A new System.String in uppercase.

130

String. Trim(System.Char[]) Method

Summary

Removes all occurrences of a set of characters provided in a character
System.Array from the beginning and end of the current instance.

Parameters

|trimChars |An array of Unicode characters. Can be a null reference.

Return Value

A new System.String equivalent to the current instance with the characters in
trimChars removed from its beginning and end. If trimChars is a null reference,

all of the white space characters are removed from the beginning and end of the
current instance.

131

String. Trim() Method

Summary

Removes all occurrences of white space characters from the beginning and end of
the current instance.

Return Value

A new System.String equivalent to the current instance after white space
characters are removed from its beginning and end.

132

String. TrimEnd(System.Char[]) Method

Summary

Removes all occurrences of a set of characters specified in a Unicode character
System.Array from the end of the current instance.

Parameters

|trimChars |An array of Unicode characters. Can be a null reference.

Return Value

A new System.String equivalent to the current instance with characters in
trimChars removed from its end. If trimChars is a null reference, white space
characters are removed.

133

String.TrimStart(System.Char[]) Method

Summary

Removes all occurrences of a set of characters specified in a Unicode character
array from the beginning of the current instance.

Parameters

|trimChars |An array of Unicode characters or a null reference.

Return Value

A new System.String equivalent to the current instance with the characters in
trimChars removed from its beginning. If trimChars is a null reference, white
space characters are removed.

134

String.Chars Property

Summary

Gets the character at a specified position in the current instance.

Property Value

A Unicode character at the location index in the current instance.

Description
This property is read-only.
index is the position of a character within a string. The first character in the
string is at index 0. The length of a string is the number of characters it is made

up of. The last accessible index of a string instance is its length - 1.

Exceptions

index is greater than or equal to the length
of the current instance or less than zero.

System.IndexOutOfRangeException

135

String.Length Property

Summary

Gets the number of characters in the current instance.

Property Value

A system.Int32 containing the number of characters in the current instance.

Description
This property is read-only.

Example

The following example demonstrates the System.String.Length property.
[C#1

using System;

public class StringlLengthExample {

public static void Main() {

string str = "STRING";

Console._WriteLine("The length of string {0} is {1}", str, str.Length
)
}

}
The output is

The length of string STRING is 6

136

