
 1

System.Threading.Thread Class

[ILAsm]
.class public sealed Thread extends System.Object

[C#]
public sealed class Thread

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Represents a sequential thread of execution.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

A process can create and execute one or more threads to execute a portion of
the program code associated with the process. A
System.Threading.ThreadStart delegate is used to specify the program code
executed by a thread.

Some operating systems might not utilize the concepts of threads or preemptive
scheduling. Also, the concept of "thread priority" might not exist at all or its
meaning might vary, depending on the underlying operating system.
Implementers of the System.Threading.Thread type are required to describe
their threading policies, including what thread priority means, how many
threading priority levels exist, and whether scheduling is preemptive.

For the duration of its existence, a thread is always in one or more of the states
defined by System.Threading.ThreadState. A scheduling priority level, as
defined by System.Threading.ThreadPriority, can be requested for a thread,
but it might not be honored by the operating system.

If an unhandled exception is thrown in the code executed by a thread created by
an application, a System.AppDomain.UnhandledException event is raised

 2

(System.UnhandledExceptionEventArgs.IsTerminating is set to false), and
the thread is terminated; the current process is not terminated.

 3

 Thread(System.Threading.ThreadStart)
Constructor

[ILAsm]
public rtspecialname specialname instance void .ctor(class
System.Threading.ThreadStart start)

[C#]
public Thread(ThreadStart start)

Summary

Constructs and initializes a new instance of the System.Threading.Thread class.

Parameters

Parameter Description

start A System.Threading.ThreadStart delegate that references the
methods to be invoked when the new thread begins executing.

[Note: To schedule the thread for execution, call
System.Threading.Thread.Start.]

Until System.Threading.Thread.Start is called, the thread's state includes
System.Threading.ThreadState.Unstarted.

Exceptions

Exception Condition
System.ArgumentNullException start is null.

 4

 Thread.Abort(System.Object) Method

[ILAsm]
.method public hidebysig instance void Abort(object stateInfo)

[C#]
public void Abort(object stateInfo)

Summary

Raises a System.Threading.ThreadAbortException in the thread on which it is
invoked to begin the process of terminating the thread. In all but the most
extraordinary situations, calling this method will terminate the thread.

Parameters

Parameter Description

stateInfo A System.Object that contains application-specific information, such as
state, which can be used by the thread being aborted.

Description

The object passed as the stateInfo parameter can be obtained by accessing the
System.Threading.ThreadAbortException.ExceptionState property.

[Note: For details on aborting threads, see System.Threading.Thread.Abort
().]

Exceptions

Exception Condition

System.Security.SecurityException
Caller does not have
System.Security.Permissions.SecurityPermissionFlag.
ControlThread security permission for this thread.

Permissions

Permission Description

System.Security.SecurityPermission
Requires permission to control the thread to be aborted. Se
System.Security.Permissions.SecurityPermissionFlag
ControlThread.

 5

 6

 Thread.Abort() Method

[ILAsm]
.method public hidebysig instance void Abort()

[C#]
public void Abort()

Summary

Raises a System.Threading.ThreadAbortException in the thread on which it is
invoked to begin the process of terminating the thread. In all but the most
extraordinary situations, calling this method will terminate the thread.

Description

When this method is invoked on a thread, the system throws a
System.Threading.ThreadAbortException in the thread to abort it. Invoking
System.Threading.Thread.Abort on a thread is similar to arranging for the
target thread to throw a System.Threading.ThreadAbortException. Because,
unlike other exceptions, a System.Threading.ThreadAbortException is sent to
another thread, the exception might be delayed. A
System.Threading.ThreadAbortException is required to be delayed if and while
the target thread is executing any of the following:

• unmanaged code

• a catch handler

• a finally clause

• a filter clause

• a type initializer

A thread abort proceeds as follows:

1. An abort begins at the earliest of the following times:

a. when the thread transitions from unmanaged to managed code execution;

b. when the thread finishes the outermost currently executing catch handler;

c. immediately if the thread is running managed code outside of any catch
handler, finally clause, filter clause or type initializer

2. Whenever an outermost catch handler finishes execution, the
System.Threading.ThreadAbortException is rethrown unless the thread
being aborted has called System.Threading.Thread.ResetAbort since the
call to System.Threading.Thread.Abort.

 7

3. When all finally blocks have been called and the thread is about to transition
to any unmanaged code which executed before the first entry to managed
code, System.Threading.Thread.ResetAbort is called so that a return to
managed code will consider the abort to have been successfully processed.

Unexecuted finally blocks are executed before the thread is aborted; this includes
any finally block that is executing when the exception is thrown. The thread is not
guaranteed to abort immediately, or at all. This situation can occur if a thread does
an unbounded amount of computation in the finally blocks that are called as part of
the abort procedure, thereby indefinitely delaying the abort. To ensure a thread has
aborted, invoke System.Threading.Thread.Join on the thread after calling
System.Threading.Thread.Abort.

If System.Threading.Thread.Abort is called on a thread that has not been started,
the thread aborts when System.Threading.Thread.Start is called. If the target
thread is blocked or sleeping in managed code and is not inside any of the code
blocks that are required to delay an abort, the thread is resumed and immediately
aborted.

After System.Threading.Thread.Abort is invoked on a thread, the state of the
thread includes System.Threading.ThreadState.AbortRequested. After the thread
has terminated as a result of a successful call to System.Threading.Thread.Abort,
the state of the thread includes System.Threading.ThreadState.Stopped and
System.Threading.ThreadState.Aborted.

[Note: With sufficient permissions, a thread that is the target of a
System.Threading.Thread.Abort can cancel the abort using the
System.Threading.Thread.ResetAbort method. For an example that demonstrates
calling the System.Threading.Thread.ResetAbort method, see
System.Threading.ThreadAbortException.]

Exceptions

Exception Condition

System.Security.SecurityException

Caller does not have
System.Security.Permissions.SecurityPermissionFlag.
ControlThread security permission for the thread to be
aborted.

Permissions

Permission Description

System.Security.SecurityPermission
Requires permission to control the thread to be aborted. Se
System.Security.Permissions.SecurityPermissionFlag
ControlThread.

 8

 9

 Thread.Finalize() Method

[ILAsm]
.method family hidebysig virtual void Finalize()

[C#]
~Thread()

Summary

Releases the resources held by this instance.

Description

[Note: Application code does not call this method; it is automatically invoked
during garbage collection.]

 10

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Thread.GetDomain() Method

[ILAsm]
.method public hidebysig static class System.AppDomain GetDomain()

[C#]
public static AppDomain GetDomain()

Summary

Returns an object representing the application domain in which the current
thread is executing.

Return Value

A System.AppDomain object that represents the current application domain.

 11

 Thread.Join() Method

[ILAsm]
.method public hidebysig instance void Join()

[C#]
public void Join()

Summary

Blocks the calling thread until the thread on which this method is invoked
terminates.

Description

[Note: Use this method to ensure a thread has terminated. The caller will block
indefinitely if the thread does not terminate.]

System.Threading.Thread.Join cannot be invoked on a thread that is in the
System.Threading.ThreadState.Unstarted state.

This method changes the state of the calling thread to include
System.Threading.ThreadState.WaitSleepJoin.

Exceptions

Exception Condition

System.Threading.ThreadStateException

The caller attempted to join a thread that is
in the
System.Threading.ThreadState.Unstarted
state.

 12

 Thread.Join(System.TimeSpan) Method

[ILAsm]
.method public hidebysig instance bool Join(valuetype
System.TimeSpan timeout)

[C#]
public bool Join(TimeSpan timeout)

Summary

Blocks the calling thread until the thread on which this method is invoked
terminates or the specified time elapses.

Parameters

Parameter Description

timeout
A System.TimeSpan set to the amount of time to wait for the thread to
terminate. Specify System.Threading.Timeout.Infinite milliseconds
to wait indefinitely.

Return Value

true if the thread has terminated; false if the thread has not terminated after
the amount of time specified by timeout has elapsed.

Description

This method converts timeout to milliseconds, tests the validity of the converted
value, and calls System.Threading.Thread.Join(System.Int32).

[Note: If System.Threading.Timeout.Infinite milliseconds is specified for
timeout, this method behaves identically to Join (), except for the return value.]

Join cannot be invoked on a thread that is in the
System.Threading.ThreadState.Unstarted state.

This method changes the state of the current thread to include
System.Threading.ThreadState.WaitSleepJoin.

Exceptions

Exception Condition

 13

System.ArgumentOutOfRangeException

The value of timeout is negative and is not
equal to
System.Threading.Timeout.Infinite
milliseconds, or is greater than
System.Int32.MaxValue milliseconds.

System.Threading.ThreadStateException

The caller attempted to join a thread that is
in the
System.Threading.ThreadState.Unstarted
state.

 14

 Thread.Join(System.Int32) Method

[ILAsm]
.method public hidebysig instance bool Join(int32
millisecondsTimeout)

[C#]
public bool Join(int millisecondsTimeout)

Summary

Blocks the calling thread until the thread on which this method is invoked
terminates or the specified time elapses.

Parameters

Parameter Description

millisecondsTimeout A System.Int32 containing the number of milliseconds to wait
for the thread to terminate.

Return Value

true if the thread has terminated; false if the thread has not terminated after
millisecondsTimeout has elapsed.

Description

[Note: If System.Threading.Timeout.Infinite is specified for
millisecondsTimeout, this method behaves identically to Join (), except for the
return value.]

Join cannot be invoked on a thread that is in the
System.Threading.ThreadState.Unstarted state.

This method changes the state of the calling thread to include
System.Threading.ThreadState.WaitSleepJoin.

Exceptions

Exception Condition

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is negative
and is not equal to
System.Threading.Timeout.Infinite.

 15

System.Threading.ThreadStateException

The caller attempted to join a thread that is
in the
System.Threading.ThreadState.Unstarted
state.

 16

 Thread.MemoryBarrier() Method

[ILAsm]
.method public hidebysig static void MemoryBarrier ()

[C#]
public static void MemoryBarrier ()

Summary

Guarantees that all subsequent loads or stores from the current thread will not
access memory until after all previous loads and stores from the current thread
have completed, as observed from this or other threads.

 17

 Thread.ResetAbort() Method

[ILAsm]
.method public hidebysig static void ResetAbort()

[C#]
public static void ResetAbort()

Summary

Cancels a System.Threading.Thread.Abort requested for the current thread.

Description

This method cannot be called by untrusted code.

When a call is made to System.Threading.Thread.Abort to destroy a thread,
the system throws a System.Threading.ThreadAbortException.
System.Threading.ThreadAbortException is a special exception that can be
caught by application code, but is rethrown at the end of the catch block unless
ResetAbort is called. ResetAbort cancels the request to abort, and prevents
the ThreadAbortException from terminating the thread.

Exceptions

Exception Condition

System.Threading.ThreadStateException
System.Threading.Thread.Abort was not invoked o
current thread.

System.Security.SecurityException
Caller does not have
System.Security.Permissions.SecurityPermissio
ControlThread security permission for the current th

Example

For an example that demonstrates calling this method, see
System.Threading.ThreadAbortException.

Permissions

Permission Description

System.Security.SecurityPermission
Requires permission to control the current thread. See
System.Security.Permissions.SecurityPermissionFlag
ControlThread.

 18

 Thread.Sleep(System.Int32) Method

[ILAsm]
.method public hidebysig static void Sleep(int32
millisecondsTimeout)

[C#]
public static void Sleep(int millisecondsTimeout)

Summary

Blocks the current thread for the specified number of milliseconds.

Parameters

Parameter Description

millisecondsTimeout

A System.Int32 containing the number of milliseconds for
which the thread is blocked. Specify zero to indicate that this
thread should be suspended temporarily to allow other waiting
threads to execute. Specify
System.Threading.Timeout.Infinite to block the thread
indefinitely.

Description

The thread will not be scheduled for execution by the operating system for the
amount of time specified. This method changes the state of the thread to include
System.Threading.ThreadState.WaitSleepJoin.

Exceptions

Exception Condition

System.ArgumentOutOfRangeException
The value of millisecondsTimeout is
negative and is not equal to
System.Threading.Timeout.Infinite.

 19

 Thread.Sleep(System.TimeSpan) Method

[ILAsm]
.method public hidebysig static void Sleep(valuetype System.TimeSpan
timeout)

[C#]
public static void Sleep(TimeSpan timeout)

Summary

Blocks the current thread for a specified time.

Parameters

Parameter Description

timeout

A System.TimeSpan set to the amount of time for which the current
thread will be blocked. Specify zero to indicate that this thread should
be suspended temporarily to allow other waiting threads to execute.
Specify System.Threading.Timeout.Infinite milliseconds to suspend
the thread indefinitely.

Description

This method converts timeout to milliseconds, tests the validity of the converted
value, and calls System.Threading.Thread.Sleep(System.Int32).

The thread will not be scheduled for execution by the operating system for the
amount of time specified. This method changes the state of the thread to include
System.Threading.ThreadState.WaitSleepJoin.

Exceptions

Exception Condition

System.ArgumentOutOfRangeException

The value of timeout is negative and is
not equal to
System.Threading.Timeout.Infinite
milliseconds, or is greater than
System.Int32.MaxValue milliseconds.

 20

 Thread.Start() Method

[ILAsm]
.method public hidebysig instance void Start()

[C#]
public void Start()

Summary

Causes the operating system to consider the thread ready to be scheduled for
execution.

Description

Calling System.Threading.Thread.Start removes the
System.Threading.ThreadState.Unstarted state from the
System.Threading.Thread.ThreadState of the thread.

Once a thread is started, the operating system can schedule it for execution.
When the thread begins executing, the System.Threading.ThreadStart
delegate supplied to the constructor for the thread invokes its methods.

Once the thread terminates, it cannot be restarted with another call to
System.Threading.Thread.Start.

Exceptions

Exception Condition

System.OutOfMemoryException There is not enough memory available
to start the thread.

System.NullReferenceException This method was invoked on a null
thread reference.

System.Threading.ThreadStateException The thread has already been started.

Example

The following example demonstrates creating a thread and starting it.

[C#]

using System;
using System.Threading;
public class ThreadWork {
 public static void DoWork() {
 for (int i = 0; i<3;i++) {
 Console.WriteLine ("Working thread...");

 21

 Thread.Sleep(100);
 }
 }
}
class ThreadTest{
 public static void Main() {
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork);
 Thread myThread = new Thread(myThreadDelegate);
 myThread.Start();
 for (int i = 0; i<3; i++) {
 Console.WriteLine("In main.");
 Thread.Sleep(100);
 }
 }
}

One possible set of output is

In main.

Working thread...

In main.

Working thread...

In main.

Working thread...

Note that the sequence of the output statements is not guaranteed to be identical
across systems.

 22

 Thread.VolatileRead(System.Object&)
Method

[ILAsm]
.method public hidebysig static object VolatileRead (object&
address)

[C#]
public static object VolatileRead (ref object address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Object that specifies the address in memory
from which to read.

Return Value

A System.Object containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 23

 Thread.VolatileRead(System.Double&)
Method

[ILAsm]
.method public hidebysig static float64 VolatileRead (float64&
address)

[C#]
public static double VolatileRead (ref double address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Double that specifies the address in memory
from which to read.

Return Value

A System.Double containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 24

 Thread.VolatileRead(System.Single&)
Method

[ILAsm]
.method public hidebysig static float32 VolatileRead (float32&
address)

[C#]
public static float VolatileRead (ref float address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Single that specifies the address in memory
from which to read.

Return Value

A System.Single containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 25

 Thread.VolatileRead(System.UInt64&)
Method

[ILAsm]
.method public hidebysig static unsigned int64 VolatileRead
(unsigned int64& address)

[C#]
public static ulong VolatileRead (ref ulong address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.UInt64 that specifies the address in memory
from which to read.

Return Value

A System.UInt64 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 26

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Thread.VolatileRead(System.UIntPtr&)
Method

[ILAsm]
.method public hidebysig static uintPtr VolatileRead (class
System.UIntPtr& address)

[C#]
public static UIntPtr VolatileRead (ref UIntPtr address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.UIntPtr that specifies the address in memory
from which to read.

Return Value

A System.UIntPtr containing the value at the specified address after any
pending writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 27

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Thread.VolatileRead(System.IntPtr&)
Method

[ILAsm]
.method public hidebysig static intptr VolatileRead (class
System.IntPtr& address)

[C#]
public static IntPtr VolatileRead (ref IntPtr address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.IntPtr that specifies the address in memory
from which to read.

Return Value

A System.IntPtr containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 28

 Thread.VolatileRead(System.UInt32&)
Method

[ILAsm]
.method public hidebysig static unsigned int32 VolatileRead
(unsigned int32& address)

[C#]
public static uint VolatileRead (ref uint address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.UInt32 that specifies the address in memory
from which to read.

Return Value

A System.UInt32 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 29

 Thread.VolatileRead(System.UInt16&)
Method

[ILAsm]
.method public hidebysig static unsigned int16 VolatileRead
(unsigned int16& address)

[C#]
public static ushort VolatileRead (ref ushort address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.UInt16 that specifies the address in memory
from which to read.

Return Value

A System.UInt16 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 30

 Thread.VolatileRead(System.SByte&)
Method

[ILAsm]
.method public hidebysig static sbyte VolatileRead (class
System.Sbyte& address)

[C#]
public static sbyte VolatileRead (ref sbyte address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.SByte that specifies the address in memory
from which to read.

Return Value

A System.SByte containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 31

 Thread.VolatileRead(System.Int64&)
Method

[ILAsm]
.method public hidebysig static int64 VolatileRead (int64& address)

[C#]
public static long VolatileRead (ref long address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Int64 that specifies the address in memory
from which to read.

Return Value

A System.Int64 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 32

 Thread.VolatileRead(System.Int32&)
Method

[ILAsm]
.method public hidebysig static int32 VolatileRead (int32& address)

[C#]
public static int VolatileRead (ref int address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Int32 that specifies the address in memory
from which to read.

Return Value

A System.Int32 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 33

 Thread.VolatileRead(System.Int16&)
Method

[ILAsm]
.method public hidebysig static int16 VolatileRead (int16& address)

[C#]
public static short VolatileRead (ref short address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Int16 that specifies the address in memory
from which to read.

Return Value

A System.Int16 containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 34

 Thread.VolatileRead(System.Byte&)
Method

[ILAsm]
.method public hidebysig static byte VolatileRead (class
System.Byte& address)

[C#]
public static byte VolatileRead (ref byte address)

Summary

Performs a volatile read from the specified address.

Parameters

Parameter Description

address A reference to a System.Byte that specifies the address in memory from
which to read.

Return Value

A System.Byte containing the value at the specified address after any pending
writes.

Description

The value at the given address is atomically loaded with acquire semantics,
meaning that the read is guaranteed to occur prior to any references to memory
that occur after the execution of this method in the current thread. It is
recommended that System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileWrite if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the load CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 35

 Thread.VolatileWrite(System.UInt32&,
System.UInt32) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (unsigned int32&
address, unsigned int32 value)

[C#]
public static void VolatileWrite (ref uint address, uint value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.UInt32 that specifies the address in memory at
which to write.

value A System.UInt32 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 36

 Thread.VolatileWrite(System.UInt64&,
System.UInt64) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (unsigned int64&
address, unsigned int64 value)

[C#]
public static void VolatileWrite (ref ulong address, ulong value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.UInt64 that specifies the address in memory at
which to write.

value A System.UInt64 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 37

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Thread.VolatileWrite(System.UIntPtr&,
System.UIntPtr) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (class
System.UIntPtr& address, UIntPtr value)

[C#]
public static void VolatileWrite (ref UIntPtr address, UIntPtr
value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.UIntPtr that specifies the address in memory
at which to write.

value A System.UIntPtr that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 38

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Thread.VolatileWrite(System.IntPtr&,
System.IntPtr) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (class
System.IntPtr& address, IntPtr value)

[C#]
public static void VolatileWrite (ref IntPtr address, IntPtr value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.IntPtr that specifies the address in memory at
which to write.

value A System.IntPtr that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 39

 Thread.VolatileWrite(System.Single&,
System.Single) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (float32&
address, float32 value)

[C#]
public static void VolatileWrite (ref float address, float value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Single that specifies the address in memory at
which to write.

value A System.Single that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 40

 Thread.VolatileWrite(System.Double&,
System.Double) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (float64&
address, float64 value)

[C#]
public static void VolatileWrite (ref double address, double value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Double that specifies the address in memory at
which to write.

value A System.Double that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 41

 Thread.VolatileWrite(System.Object&,
System.Object) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (object& address,
object value)

[C#]
public static void VolatileWrite (ref object address, object value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Object that specifies the address in memory at
which to write.

value A System.Object that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 42

 Thread.VolatileWrite(System.UInt16&,
System.UInt16) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (unsigned int16&
address, unsigned int16 value)

[C#]
public static void VolatileWrite (ref ushort address, ushort value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.UInt16 that specifies the address in memory at
which to write.

value A System.UInt16 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 43

 Thread.VolatileWrite(System.SByte&,
System.SByte) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (class
System.SByte& address, sbyte value)

[C#]
public static void VolatileWrite (ref sbyte address, sbyte value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.SByte that specifies the address in memory at
which to write.

value A System.SByte that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 44

 Thread.VolatileWrite(System.Int64&,
System.Int64) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (int64& address,
int64 value)

[C#]
public static void VolatileWrite (ref long address, long value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Int64 that specifies the address in memory at
which to write.

value A System.Int64 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 45

 Thread.VolatileWrite(System.Int32&,
System.Int32) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (int32& address,
int32 value)

[C#]
public static void VolatileWrite (ref int address, int value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Int32 that specifies the address in memory at
which to write.

value A System.Int32 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 46

 Thread.VolatileWrite(System.Int16&,
System.Int16) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (int16& address,
int16 value)

[C#]
public static void VolatileWrite (ref short address, short value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Int16 that specifies the address in memory at
which to write.

value A System.Int16 that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 47

 Thread.VolatileWrite(System.Byte&,
System.Byte) Method

[ILAsm]
.method public hidebysig static void VolatileWrite (class
System.Byte& address, byte value)

[C#]
public static void VolatileWrite (ref byte address, byte value)

Summary

Performs a volatile write to the specified address.

Parameters

Parameter Description

address A reference to a System.Byte that specifies the address in memory at
which to write.

value A System.Byte that specifies the value to write.

Description

The value is written atomically to the specified address with release semantics,
meaning that the write is guaranteed to happen after any references to memory
that occur prior to the execution. It is recommended that
System.Threading.Thread.VolatileRead and
System.Threading.Thread.VolatileWrite be used in conjunction. Calling this
method affects only this single access; other accesses to the same location are
required to also be made using this method or
System.Threading.Thread.VolatileRead if the volatile semantics are to be
preserved. This method has exactly the same semantics as using the volatile
prefix on the store CIL instruction, except that atomicity is provided for all types,
not just those 32 bits or smaller in size. [Note: For additional information, see
Partition I of the CLI Specification.]

 48

 Thread.CurrentThread Property

[ILAsm]
.property class System.Threading.Thread CurrentThread { public
hidebysig static specialname class System.Threading.Thread
get_CurrentThread() }

[C#]
public static Thread CurrentThread { get; }

Summary

Gets a System.Threading.Thread instance that represents the currently
executing thread.

Property Value

An instance of System.Threading.Thread representing the current thread.

Description

This property is read-only.

 49

 Thread.IsAlive Property

[ILAsm]
.property bool IsAlive { public hidebysig specialname instance bool
get_IsAlive() }

[C#]
public bool IsAlive { get; }

Summary

Gets a System.Boolean value indicating the execution status of the current
thread.

Property Value

true if this thread has been started, and has not terminated; otherwise, false.

Description

This property is read-only.

 50

 Thread.IsBackground Property

[ILAsm]
.property bool IsBackground { public hidebysig specialname instance
bool get_IsBackground() public hidebysig specialname instance void
set_IsBackground(bool value) }

[C#]
public bool IsBackground { get; set; }

Summary

Gets or sets a System.Boolean value indicating whether a thread is a
background thread.

Property Value

true if the thread is or is to become a background thread; otherwise, false.

Description

The default value of this property is false. The property value can be changed
before the thread is started and before it terminates.

[Note: A thread is either a background thread or a foreground thread.
Background threads are identical to foreground threads except for the fact that
background threads do not prevent a process from terminating. Once all
foreground threads belonging to a process have terminated, the execution engine
ends the process by invoking System.Threading.Thread.Abort on any
background threads that are still alive.]

Exceptions

Exception Condition

System.Threading.ThreadStateException
The thread has reached the
System.Threading.ThreadState.Stopped
state.

 51

 Thread.Name Property

[ILAsm]
.property string Name { public hidebysig specialname instance string
get_Name() public hidebysig specialname instance void
set_Name(string value) }

[C#]
public string Name { get; set; }

Summary

Gets or sets the name of the thread.

Property Value

A System.String containing the name of the thread, or null if no name was set.

Description

This property is write-once. Once this property has been set to a non-null value,
attempts to set this property to a new value cause an exception.

Exceptions

Exception Condition

System.InvalidOperationException
A set operation was requested, and the Name
property has already been set.

 52

 Thread.Priority Property

[ILAsm]
.property valuetype System.Threading.ThreadPriority Priority {
public hidebysig specialname instance valuetype
System.Threading.ThreadPriority get_Priority() public hidebysig
specialname instance void set_Priority(valuetype
System.Threading.ThreadPriority value) }

[C#]
public ThreadPriority Priority { get; set; }

Summary

Gets or sets a value indicating the scheduling priority of a thread.

Property Value

A System.Threading.ThreadPriority value.

Description

A thread can be assigned any one of the following priority values:

• System.Threading.ThreadPriority.Highest

• System.Threading.ThreadPriority.AboveNormal

• System.Threading.ThreadPriority.Normal

• System.Threading.ThreadPriority.BelowNormal

• System.Threading.ThreadPriority.Lowest

The default value is System.Threading.ThreadPriority.Normal.

Operating systems are not required to honor the priority of a thread.

Exceptions

Exception Condition

System.Threading.ThreadStateException
The thread is in the
System.Threading.ThreadState.Stopped
state.

System.ArgumentException
The value specified for a set operation is
not a valid
System.Threading.ThreadPriority

 53

value.

 54

 Thread.ThreadState Property

[ILAsm]
.property valuetype System.Threading.ThreadState ThreadState {
public hidebysig specialname instance valuetype
System.Threading.ThreadState get_ThreadState() }

[C#]
public ThreadState ThreadState { get; }

Summary

Gets a value containing the states of the current thread.

Property Value

A combination of one or more System.Threading.ThreadState values, which
indicate the state of the current thread.

Description

This property is read-only.

A thread is running if the value returned by this property does not include
System.Threading.ThreadState.Unstarted and does not include
System.Threading.ThreadState.Stopped.

