
 1

System.Environment Class

[ILAsm]
.class public sealed Environment extends System.Object

[C#]
public sealed class Environment

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Provides the current settings for, and information about, the execution
environment.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

[Note: Use this class to retrieve the following information:

• Command line arguments

• Exit codes

• Environment variable settings

• Contents of the call stack

• Time since last system boot

• Version of the execution engine

]

 2

 Environment.Exit(System.Int32) Method

[ILAsm]
.method public hidebysig static void Exit(int32 exitCode)

[C#]
public static void Exit(int exitCode)

Summary

Terminates the current process and sets the process exit code to the specified
value.

Parameters

Parameter Description
exitCode A System.Int32 value that is provided to the operating system.

Description

This method causes an executing program to halt.

Exceptions

Exception Condition

System.Security.SecurityException
The immediate caller does not have the
required permission.

Permissions

Permission Description

System.Security.Permissions.
SecurityPermission

Requires unmanaged code permission. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 3

 Environment.GetCommandLineArgs()
Method

[ILAsm]
.method public hidebysig static string[] GetCommandLineArgs()

[C#]
public static string[] GetCommandLineArgs()

Summary

Returns the arguments specified on the command line.

Return Value

Returns a System.String array. Each System.String in the array contains a
single command line argument.

Description

The first element in the array contains the filename of the executing program. If
the filename is not available, the first element is equal to System.String.Empty.
The remaining elements contain any additional tokens entered on the command
line.

[Note: The program filename can, but is not required to, include path
information.

To obtain the command line as a single System.String, use the
System.Environment.CommandLine property.

]

 4

Environment.GetEnvironmentVariable(Sys
tem.String) Method

[ILAsm]
.method public hidebysig static string GetEnvironmentVariable(string
variable)

[C#]
public static string GetEnvironmentVariable(string variable)

Summary

Returns the value of the specified environment variable.

Parameters

Parameter Description
variable A System.String containing the name of an environment variable.

Return Value

A System.String containing the current setting of variable, or null.

Description

If variable contains a valid name for an environment variable, and if the caller
has sufficient permissions, this method returns the current setting for variable.
Environment variable names are case-insensitive.

If variable specifies an invalid name or the system does not support environment
variables, this method returns null.

[Note: To obtain names and settings for all environment variables, use the
System.Environment.GetEnvironmentVariables method.]

Exceptions

Exception Condition
System.ArgumentNullException variable is a null reference.

System.Security.SecurityException
The caller does not have the required
permission.

 5

Permissions

Permission Description

System.Security.Permissions.
EnvironmentPermission

Requires permission to read environment
variables. See System.Security.Permissions.
EnvironmentPermissionAccess.Read.

 6

 Environment.GetEnvironmentVariables()
Method

[ILAsm]
.method public hidebysig static class System.Collections.IDictionary
GetEnvironmentVariables()

[C#]
public static IDictionary GetEnvironmentVariables()

Summary

Returns all environment variables and their current settings.

Return Value

A System.Collections.IDictionary object containing environment variable
names and settings, or null if the system does not support environment
variables.

Description

The names and settings for the environment variables are stored in the returned
System.Collections.IDictionary object as keys and values, respectively.

[Note: To obtain the setting of a single environment variable, use the
System.Environment.GetEnvironmentVariable method.]

Exceptions

Exception Condition

System.Security.SecurityException
The caller does not have the required
permission.

Example

The following example prints the names and values of all environment variables
defined in the environment.

[C#]

using System;
using System.Collections;

 7

class EnvTest:Object {
 public static void Main() {
 Console.WriteLine("Environment Variables");
 IDictionary envars =
 Environment.GetEnvironmentVariables();
 IDictionaryEnumerator varEnumerator =
 envars.GetEnumerator();
 while(varEnumerator.MoveNext() != false) {
 Console.WriteLine("{0}={1}",
 varEnumerator.Key,
 varEnumerator.Value);
 }
 }
}

The output will vary depending on your system.

Permissions

Permission Description

System.Security.Permissions.
EnvironmentPermission

Requires permission to read environment
variables. See System.Security.Permissions.
EnvironmentPermissionAccess.Read.

 8

 Environment.CommandLine Property

[ILAsm]
.property string CommandLine { public hidebysig static specialname
string get_CommandLine() }

[C#]
public static string CommandLine { get; }

Summary

Gets the information entered on the command line when the current process was
started.

Property Value

A System.String containing the command line arguments.

Description

This property is read-only.

This property provides access to the program name and any arguments specified
on the command line when the current process was started.

If the environment does not support a program name, as can be the case with
compact devices, then the program name is equal to System.String.Empty.

The format of the information returned by this property is implementation-
specific.

[Note: The program name can, but is not required to, include path information.

Use the System.Environment.GetCommandLineArgs method to retrieve the
command line information parsed and stored in an array of strings.

]

 9

 Environment.ExitCode Property

[ILAsm]
.property int32 ExitCode { public hidebysig static specialname int32
get_ExitCode() public hidebysig static specialname void
set_ExitCode(int32 value) }

[C#]
public static int ExitCode { get; set; }

Summary

Gets or sets the exit code of a process.

Property Value

A System.Int32 value returned by a process. The default value is zero.

Description

When a process exits, if the process does not return a value, the value of
System.Environment.ExitCode is returned. If the value of this property is not
set by an application, zero is returned.

On operating systems that do not support process exit codes, CLI
implementations are required to fully support getting and setting values for this
property.

 10

 Environment.HasShutdownStarted
Property

[ILAsm]
.property bool HasShutdownStarted { public hidebysig static
specialname instance bool get_HasShutdownStarted() }

[C#]
public static bool HasShutdownStarted { get; }

Summary

Gets a value indicating whether an application has started to shut down.

Property Value

A System.Boolean where true indicates the shutdown process has started;
otherwise false.

Description

This property is read-only.

[Note: This property is for use inside the finalizer of an application. If the
shutdown process has started, static members should not be accessed; they
might have been cleaned up by the garbage collector. If the member has been
cleaned up, any access attempt will cause an exception to be thrown.

System.Console.Out is a special case that is always available after the shutdown
process has started.

]

 11

 Environment.NewLine Property

[ILAsm]
.property string NewLine { public hidebysig static specialname
string get_NewLine() }

[C#]
public static string NewLine { get; }

Summary

Gets the newline string for the current platform.

Property Value

A System.String containing the characters required to write a newline.

Description

This property is read-only.

[Note: This property is intended for platform-independent formatting of multi-line
strings. This value is automatically appended to text when using WriteLine
methods, such as System.Console.WriteLine.]

Example

The following example demonstrates using the System.Environment.NewLine
property. The string returned by System.Environment.NewLine is inserted
between "Hello" and "World", causing a line break between the words in the
output.

[C#]

using System;
class TestClass {
 public static void Main() {
 Console.WriteLine("Hello,{0}World",
 Environment.NewLine);
 }
}
The output is

Hello,

World

 12

 13

 Environment.StackTrace Property

[ILAsm]
.property string StackTrace { public hidebysig static specialname
string get_StackTrace() }

[C#]
public static string StackTrace { get; }

Summary

Returns a string representation of the state of the call stack.

Property Value

A System.String containing a description of the methods currently in the call
stack. This value can be System.String.Empty.

Description

This property is read-only.

[Note: An example of how the System.String returned by this property might be
formatted follows, where one line of information is provided for each method on
the call stack:

at FullClassName.MethodName(MethodParms) in FileName:line LineNumber

FullClassName, MethodName, MethodParms, FileName, and LineNumber are
defined as follows:

Item Description
FullClassName The fully qualified name of the class.
MethodName The name of the method.

MethodParms
The list of parameter type/name pairs. Each pair is separated by a
comma (,). This information is omitted if MethodName takes zero
parameters.

FileName
The name of the source file where the MethodName method is
declared. This information is omitted if debug symbols are not
available.

LineNumber
The number of the line in FileName that contains the source code
from MethodName for the instruction that is on the call stack. This
information is omitted if debug symbols are not available.

The literal "at" is preceded by a single space.

The literals "in" and ":line" are omitted if debug symbols are not available.

 14

The method calls are described in reverse chronological order (the most recent
method call is described first).

System.Environment.StackTrace might not report as many method calls as
expected, due to code transformations that occur during optimization.

]

Example

The following example gets the System.Environment.StackTrace property from
within a series of nested calls.

[C#]

using System;
public class TestCallStack {
 public void MyMethod1 () {
 MyMethod2();
 }
 public void MyMethod2 () {
 MyMethod3();
 }
 public void MyMethod3 () {
 Console.WriteLine("TestCallStack: {0}",
 Environment.StackTrace);
 }
 public static void Main() {
 TestCallStack t = new TestCallStack();
 t.MyMethod1();
 }
}
Without debug symbols the output is

TestCallStack: at System.Environment.GetStackTrace(Exception e)

at System.Environment.GetStackTrace(Exception e)

at System.Environment.get_StackTrace()

at TestCallStack.Main()

With debug symbols the output is

TestCallStack: at System.Environment.GetStackTrace(Exception e)

at System.Environment.GetStackTrace(Exception e)

 15

at System.Environment.get_StackTrace()

at TestCallStack.MyMethod3() in c:\ECMAExamples\envstack.cs:line 10

at TestCallStack.MyMethod2() in c:\ECMAExamples\envstack.cs:line 8

at TestCallStack.MyMethod1() in c:\ECMAExamples\envstack.cs:line 5

at TestCallStack.Main() in c:\ECMAExamples\envstack.cs:line 15

 16

 Environment.TickCount Property

[ILAsm]
.property int32 TickCount { public hidebysig static specialname
int32 get_TickCount() }

[C#]
public static int TickCount { get; }

Summary

Gets the number of milliseconds elapsed since the system was started.

Property Value

A System.Int32 value containing the amount of time in milliseconds that has
passed since the last time the computer was started.

Description

This property is read-only.

The resolution of the System.Environment.TickCount property cannot be less
than 500 milliseconds.

The value of this property is derived from the system timer.

The System.Environment.TickCount property handles an overflow condition by
resetting its value to zero. The minimum value returned by
System.Environment.TickCount is 0.

[Note: System.Environment.TickCount is measured in milliseconds, not in
"ticks".

The System.Environment.TickCount reaches its maximum value after
approximately 24.8 days of continuous up time.

For applications that require a finer granularity or a larger maximum time than
System.Environment.TickCount supports, see System.DateTime.Now.

]

 17

 Environment.Version Property

[ILAsm]
.property class System.Version Version { public hidebysig static
specialname class System.Version get_Version() }

[C#]
public static Version Version { get; }

Summary

Gets the current version of the execution engine.

Property Value

A System.Version object that contains the major, minor, build, and revision
numbers of the execution engine.

Description

This property is read-only.

