
 1

System.ICloneable Interface

[ILAsm]
.class interface public abstract ICloneable

[C#]
public interface ICloneable

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Implemented by classes that require control over the way in which copies of
instances are constructed.

Library: BCL

Description

[Note: System.ICloneable contains the System.ICloneable.Clone method. The
consumer of an object should call this method when a copy of the object is
needed.]

 2

 ICloneable.Clone() Method

[ILAsm]
.method public hidebysig virtual abstract object Clone()

[C#]
object Clone()

Summary

Creates a copy of the current instance.

Return Value

A System.Object of the same type as the current instance, containing copies of
the non-static members of the current instance.

Description

The exact behavior of this method is unspecified. The intent of the method is to
provide a mechanism that constructs instances that are copies of the current
instance, without regard for class-specific definitions of the term "copy".

[Note: Use the System.Object.MemberwiseClone method to create a shallow
copy of an object. For more information, see System.Object.MemberwiseClone.]

Behaviors

This method is required to return an instance of the same type as the current
instance.

How and When to Override

Implement this method to provide class-specific copying behavior.

Usage

Use the System.ICloneable.Clone method to obtain a copy of the current
instance.

 3

Example

The following example shows an implementation of System.ICloneable.Clone
that uses the System.Object.MemberwiseClone method to create a copy of the
current instance.

[C#]

using System;
class MyClass:ICloneable {
 public int myField;
 public MyClass() {
 myField = 0;
 }
 public MyClass(int value) {
 myField = value;
 }
 public object Clone() {
 return this.MemberwiseClone();
 }
}
public class TestMyClass {
 public static void Main() {
 MyClass my1 = new MyClass(44);
 MyClass my2 = (MyClass) my1.Clone();
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);
 my2.myField = 22;
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);
 }
}
The output is

my1 44 my2 44

my1 44 my2 22

