
 1

System.Object Class

[ILAsm]
.class public serializable Object

[C#]
public class Object

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Summary

Provides support for classes. This class is the root of the object hierarchy.

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

[Note: Classes derived from System.Object can override the following methods
of the System.Object class:

• System.Object.Equals - Enables comparisons between objects.

• System.Object.Finalize - Performs clean up operations before an object is
automatically reclaimed.

• System.Object.GetHashCode - Generates a number corresponding to the
value of the object (to support the use of a hashtable).

• System.Object.ToString - Manufactures a human-readable text string that
describes an instance of the class.

]

 2

 Object() Constructor

[ILAsm]
public rtspecialname specialname instance void .ctor()

[C#]
public Object()

Summary

Constructs a new instance of the System.Object class.

Usage

This constructor is called by constructors in derived classes, but it can also be
used to directly create an instance of the Object class. This might be useful, for
example, if you need to obtain a reference to an object so that you can
synchronize on it, as might be the case when using the C# lock statement.

 3

 Object.Equals(System.Object) Method

[ILAsm]
.method public hidebysig virtual bool Equals(object obj)

[C#]
public virtual bool Equals(object obj)

Summary

Determines whether the specified System.Object is equal to the current
instance.

Parameters

Parameter Description
obj The System.Object to compare with the current instance.

Return Value

true if obj is equal to the current instance; otherwise, false.

Behaviors

The statements listed below are required to be true for all implementations of the
System.Object.Equals method. In the list, x, y, and z represent non-null object
references.

• x.Equals(x) returns true.

• x.Equals(y) returns the same value as y.Equals(x).

• If (x.Equals(y) && y.Equals(z)) returns true, then x.Equals(z) returns true.

• Successive invocations of x.Equals(y) return the same value as long as the
objects referenced by x and y are not modified.

• x.Equals(null) returns false for non-null x.

See System.Object.GetHashCode for additional required behaviors pertaining to the
System.Object.Equals method.

[Note: Implementations of System.Object.Equals should not throw exceptions.]

Default

 4

The System.Object.Equals method tests for referential equality, which means
that System.Object.Equals returns true if the specified instance of Object and
the current instance are the same instance; otherwise, it returns false.

[Note: An implementation of the System.Object.Equals method is shown in the
following C# code:

public virtual bool Equals(Object obj) {

return this == obj;

}

]

How and When to Override

For some kinds of objects, it is desirable to have System.Object.Equals test for
value equality instead of referential equality. Such implementations of Equals
return true if the two objects have the same "value", even if they are not the
same instance. The definition of what constitutes an object's "value" is up to the
implementer of the type, but it is typically some or all of the data stored in the
instance variables of the object. For example, the value of a System.String is
based on the characters of the string; the Equals method of the System.String
class returns true for any two string instances that contain exactly the same
characters in the same order.

When the Equals method of a base class provides value equality, an override of
Equals in a class derived from that base class should invoke the inherited
implementation of Equals.

All implementations of System.Object.GetHashCode are required to ensure that
for any two object references x and y, if x.Equals(y) == true, then
x.GetHashCode() == y.GetHashCode().

If your programming language supports operator overloading, and if you choose
to overload the equality operator for a given type, that type should override the
Equals method. Such implementations of the Equals method should return the
same results as the equality operator. Following this guideline will help ensure
that class library code using Equals (such as System.Collections.ArrayList
and System.Collections.Hashtable) behaves in a manner that is consistent
with the way the equality operator is used by application code.

If you are implementing a value type, you should follow these guidelines:

• Consider overriding Equals to gain increased performance over that provided
by the default implementation of Equals on System.ValueType.

• If you override Equals and the language supports operator overloading, you
should overload the equality operator for your value type.

 5

For reference types, the guidelines are as follows:

• Consider overriding Equals on a reference type if the semantics of the type
are based on the fact that the type represents some value(s). For example,
reference types such as Point and BigNumber should override Equals.

• Most reference types should not overload the equality operator, even if they
override Equals. However, if you are implementing a reference type that is
intended to have value semantics, such as a complex number type, you
should override the equality operator.

If you implement System.IComparable on a given type, you should override Equals
on that type.

Usage

The System.Object.Equals method is called by methods in collections classes
that perform search operations, including the System.Array.IndexOf method
and the System.Collections.ArrayList.Contains method.

Example

Example 1:

The following example contains two calls to the default implementation of
System.Object.Equals.

[C#]

using System;
class MyClass {
 static void Main() {
 Object obj1 = new Object();
 Object obj2 = new Object();
 Console.WriteLine(obj1.Equals(obj2));
 obj1 = obj2;
 Console.WriteLine(obj1.Equals(obj2));
 }
}
The output is

False

True

Example 2:

The following example shows a Point class that overrides the

 6

System.Object.Equals method to provide value equality and a class Point3D, which
is derived from Point. Because Point's override of System.Object.Equals is the first
in the inheritance chain to introduce value equality, the Equals method of the base
class (which is inherited from System.Object and checks for referential equality) is
not invoked. However, Point3D.Equals invokes Point.Equals because Point
implements Equals in a manner that provides value equality.

[C#]
using System;
public class Point: object {
 int x, y;
 public override bool Equals(Object obj) {
 //Check for null and compare run-time types.
 if (obj == null || GetType() != obj.GetType()) return false;
 Point p = (Point)obj;
 return (x == p.x) && (y == p.y);
 }
 public override int GetHashCode() {
 return x ^ y;
 }
}

class Point3D: Point {
 int z;
 public override bool Equals(Object obj) {
 return base.Equals(obj) && z == ((Point3D)obj).z;
 }
 public override int GetHashCode() {
 return base.GetHashCode() ^ z;
 }
}
The Point.Equals method checks that the obj argument is non-null and that it
references an instance of the same type as this object. If either of those checks fail,
the method returns false. The System.Object.Equals method uses
System.Object.GetType to determine whether the run-time types of the two objects
are identical. (Note that typeof is not used here because it returns the static type.)
If instead the method had used a check of the form obj is Point, the check would
return true in cases where obj is an instance of a subclass of Point, even though obj
and the current instance are not of the same runtime type. Having verified that both
objects are of the same type, the method casts obj to type Point and returns the
result of comparing the instance variables of the two objects.

In Point3D.Equals, the inherited Equals method is invoked before anything else is
done; the inherited Equals method checks to see that obj is non-null, that obj is an
instance of the same class as this object, and that the inherited instance variables
match. Only when the inherited Equals returns true does the method compare the
instance variables introduced in the subclass. Specifically, the cast to Point3D is not
executed unless obj has been determined to be of type Point3D or a subclass of
Point3D.

Example 3:

In the previous example, operator == (the equality operator) is used to compare the
individual instance variables. In some cases, it is appropriate to use the
System.Object.Equals method to compare instance variables in an Equals

 7

implementation, as shown in the following example:

[C#]
using System;
class Rectangle {
 Point a, b;
 public override bool Equals(Object obj) {
 if (obj == null || GetType() != obj.GetType()) return false;
 Rectangle r = (Rectangle)obj;
 //Use Equals to compare instance variables
 return a.Equals(r.a) && b.Equals(r.b);
 }
 public override int GetHashCode() {
 return a.GetHashCode() ^ b.GetHashCode();
 }
}
Example 4:

In some languages, such as C#, operator overloading is supported. When a type
overloads operator ==, it should also override the System.Object.Equals method to
provide the same functionality. This is typically accomplished by writing the Equals
method in terms of the overloaded operator ==. For example:

[C#]
using System;
public struct Complex {
 double re, im;
 public override bool Equals(Object obj) {
 return obj is Complex && this == (Complex)obj;
 }
 public override int GetHashCode() {
 return re.GetHashCode() ^ im.GetHashCode();
 }
 public static bool operator ==(Complex x, Complex y) {
 return x.re == y.re && x.im == y.im;
 }
 public static bool operator !=(Complex x, Complex y) {
 return !(x == y);
 }
}
Because Complex is a C# struct (a value type), it is known that there will be no
subclasses of Complex. Therefore, the System.Object.Equals method need not
compare the GetType() results for each object, but can instead use the is operator
to check the type of the obj parameter.

 8

 Object.Equals(System.Object,
System.Object) Method

[ILAsm]
.method public hidebysig static bool Equals(object objA, object
objB)

[C#]
public static bool Equals(object objA, object objB)

Summary

Determines whether two object references are equal.

Parameters

Parameter Description
objA First object to compare.
objB Second object to compare.

Return Value

true if one or more of the following statements is true:

• objA and objB refer to the same object,

• objA and objB are both null references,

• objA is not null and objA.Equals(objB) returns true;

otherwise returns false.

Description

This static method checks for null references before it calls objA.Equals(objB)
and returns false if either objA or objB is null. If the Equals(object obj)
implementation throws an exception, this method throws an exception.

Example

The following example demonstrates the System.Object.Equals method.

[C#]

using System;

 9

public class MyClass {
 public static void Main() {
 string s1 = "Tom";
 string s2 = "Carol";
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = "Tom";
 s2 = "Tom";
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = null;
 s2 = "Tom";
 Console.WriteLine("Object.Equals(null, \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = "Carol";
 s2 = null;
 Console.WriteLine("Object.Equals(\"{0}\", null) => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = null;
 s2 = null;
 Console.WriteLine("Object.Equals(null, null) => {2}",
 s1, s2, Object.Equals(s1, s2));
 }
}

The output is

Object.Equals("Tom", "Carol") => False

Object.Equals("Tom", "Tom") => True

Object.Equals(null, "Tom") => False

Object.Equals("Carol", null) => False

Object.Equals(null, null) => True

 10

 Object.Finalize() Method

[ILAsm]
.method family hidebysig virtual void Finalize()

[C#]
~Object()

Summary

Allows a System.Object to perform cleanup operations before the memory
allocated for the System.Object is automatically reclaimed.

Behaviors

During execution, System.Object.Finalize is automatically called after an
object becomes inaccessible, unless the object has been exempted from
finalization by a call to System.GC.SuppressFinalize. During shutdown of an
application domain, System.Object.Finalize is automatically called on objects
that are not exempt from finalization, even those that are still accessible.
System.Object.Finalize is automatically called only once on a given instance,
unless the object is re-registered using a mechanism such as
System.GC.ReRegisterForFinalize and System.GC.SuppressFinalize has not
been subsequently called.

Conforming implementations of the CLI are required to make every effort to
ensure that for every object that has not been exempted from finalization, the
System.Object.Finalize method is called after the object becomes
inaccessible. However, there might be some circumstances under which
Finalize is not called. Conforming CLI implementations are required to explicitly
specify the conditions under which Finalize is not guaranteed to be called.
[Note: For example, Finalize might not be guaranteed to be called in the event
of equipment failure, power failure, or other catastrophic system failures.]

In addition to System.GC.ReRegisterForFinalize and
System.GC.SuppressFinalize, conforming implementations of the CLI are
allowed to provide other mechanisms that affect the behavior of
System.Object.Finalize. Any mechanisms provided are required to be specified
by the CLI implementation.

The order in which the Finalize methods of two objects are run is unspecified,
even if one object refers to the other.

The thread on which Finalize is run is unspecified.

Every implementation of System.Object.Finalize in a derived type is required
to call its base type's implementation of Finalize. This is the only case in which
application code calls System.Object.Finalize.

 11

Default

The System.Object.Finalize implementation does nothing.

How and When to Override

A type should implement Finalize when it uses unmanaged resources such as
file handles or database connections that must be released when the managed
object that uses them is reclaimed. Because Finalize methods can be invoked
in any order (including from multiple threads), synchronization can be necessary
if the Finalize method can interact with other objects, whether accessible or
not. Furthermore, since the order in which Finalize is called is unspecified,
implementers of Finalize (or of destructors implemented through overriding
Finalize) must take care to correctly handle references to other objects, as their
Finalize method might already have been invoked. In general, referenced
objects should not be considered valid during finalization.

See the System.IDisposable interface for an alternate means of disposing of
resources.

Usage

For C# developers: Destructors are the C# mechanism for performing cleanup
operations. Destructors provide appropriate safeguards, such as automatically
calling the base type's destructor. In C# code, System.Object.Finalize cannot
be called or overridden.

 12

 Object.GetHashCode() Method

[ILAsm]
.method public hidebysig virtual int32 GetHashCode()

[C#]
public virtual int GetHashCode()

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for the current instance.

Description

System.Object.GetHashCode serves as a hash function for a specific type.
[Note: A hash function is used to quickly generate a number (a hash code)
corresponding to the value of an object. Hash functions are used with
hashtables. A good hash function algorithm rarely generates hash codes that
collide. For more information about hash functions, see The Art of Computer
Programming, Vol. 3, by Donald E. Knuth.]

Behaviors

All implementations of System.Object.GetHashCode are required to ensure that
for any two object references x and y, if x.Equals(y) == true, then
x.GetHashCode() == y.GetHashCode().

Hash codes generated by System.Object.GetHashCode need not be unique.

Implementations of System.Object.GetHashCode are not permitted to throw
exceptions.

Default

The System.Object.GetHashCode implementation attempts to produce a unique
hash code for every object, but the hash codes generated by this method are not
guaranteed to be unique. Therefore, System.Object.GetHashCode can generate
the same hash code for two different instances.

How and When to Override

 13

It is recommended (but not required) that types overriding
System.Object.GetHashCode also override System.Object.Equals. Hashtables
cannot be relied on to work correctly if this recommendation is not followed.

Usage

Use this method to obtain the hash code of an object. Hash codes should not be
persisted (i.e. in a database or file) as they are allowed to change from run to
run.

Example

Example 1

In some cases, System.Object.GetHashCode is implemented to simply return an
integer value. The following example illustrates an implementation of
System.Int32.GetHashCode, which returns an integer value:

[C#]

using System;
public struct Int32 {
 int value;
 //other methods...

 public override int GetHashCode() {
 return value;
 }
}
Example 2

Frequently, a type has multiple data members that can participate in generating the
hash code. One way to generate a hash code is to combine these fields using an xor
(exclusive or) operation, as shown in the following example:

[C#]
using System;
public struct Point {
 int x;
 int y;
 //other methods

 public override int GetHashCode() {
 return x ^ y;
 }
}
Example 3

The following example illustrates another case where the type's fields are combined

 14

using xor (exclusive or) to generate the hash code. Notice that in this example, the
fields represent user-defined types, each of which implements
System.Object.GetHashCode (and should implement System.Object.Equals as
well):

[C#]
using System;
public class SomeType {
 public override int GetHashCode() {
 return 0;
 }
}

public class AnotherType {
 public override int GetHashCode() {
 return 1;
 }
}

public class LastType {
 public override int GetHashCode() {
 return 2;
 }
}
public class MyClass {
 SomeType a = new SomeType();
 AnotherType b = new AnotherType();
 LastType c = new LastType();

 public override int GetHashCode () {
 return a.GetHashCode() ^ b.GetHashCode() ^ c.GetHashCode();
 }
}
Avoid implementing System.Object.GetHashCode in a manner that results in circular
references. In other words, if AClass.GetHashCode calls BClass.GetHashCode, it
should not be the case that BClass.GetHashCode calls AClass.GetHashCode.

Example 4

In some cases, the data member of the class in which you are implementing
System.Object.GetHashCode is bigger than a System.Int32. In such cases, you
could combine the high order bits of the value with the low order bits using an XOR
operation, as shown in the following example:

[C#]
using System;
public struct Int64 {
 long value;
 //other methods...

 public override int GetHashCode() {
 return ((int)value ^ (int)(value >> 32));
 }
}

 15

 Object.GetType() Method

[ILAsm]
.method public hidebysig instance class System.Type GetType()

[C#]
public Type GetType()

Summary

Gets the type of the current instance.

Return Value

The instance of System.Type that represents the run-time type (the exact type)
of the current instance.

Description

For two objects x and y that have identical run-time types,
System.Object.ReferenceEquals(x.GetType(),y.GetType()) returns true.

Example

The following example demonstrates the fact that System.Object.GetType
returns the run-time type of the current instance:

[C#]

using System;
public class MyBaseClass: Object {
}
public class MyDerivedClass: MyBaseClass {
}
public class Test {
 public static void Main() {
 MyBaseClass myBase = new MyBaseClass();
 MyDerivedClass myDerived = new MyDerivedClass();

 object o = myDerived;
 MyBaseClass b = myDerived;

 Console.WriteLine("mybase: Type is {0}", myBase.GetType());
 Console.WriteLine("myDerived: Type is {0}", myDerived.GetType());
 Console.WriteLine("object o = myDerived: Type is {0}", o.GetType());
 Console.WriteLine("MyBaseClass b = myDerived: Type is {0}",
b.GetType());
 }
}

 16

The output is

mybase: Type is MyBaseClass

myDerived: Type is MyDerivedClass

object o = myDerived: Type is MyDerivedClass

MyBaseClass b = myDerived: Type is MyDerivedClass

 17

 Object.MemberwiseClone() Method

[ILAsm]
.method family hidebysig instance object MemberwiseClone()

[C#]
protected object MemberwiseClone()

Summary

Creates a shallow copy of the current instance.

Return Value

A shallow copy of the current instance. The run-time type (the exact type) of the
returned object is the same as the run-time type of the object that was copied.

Description

System.Object.MemberwiseClone creates a new instance of the same type as
the current instance and then copies each of the object's non-static fields in a
manner that depends on whether the field is a value type or a reference type. If
the field is a value type, a bit-by-bit copy of all the field's bits is performed. If the
field is a reference type, only the reference is copied. The algorithm for
performing a shallow copy is as follows (in pseudo-code):

for each instance field f in this instance

if (f is a value type)

bitwise copy the field

if (f is a reference type)

copy the reference

end for loop

[Note: This mechanism is referred to as a shallow copy because it copies rather
than clones the non-static fields.]

Because System.Object.MemberwiseClone implements the above algorithm, for
any object, a, the following statements are required to be true:

 18

• a.MemberwiseClone() is not identical to a.

• a.MemberwiseClone().GetType() is identical to a.GetType().

System.Object.MemberwiseClone does not call any of the type's constructors.

[Note: If System.Object.Equals has been overridden,
a.MemberwiseClone().Equals(a) might return false.]

Usage

For an alternate copying mechanism, see System.ICloneable.

System.Object.MemberwiseClone is protected (rather than public) to ensure
that from verifiable code it is only possible to clone objects of the same class as
the one performing the operation (or one of its subclasses). Although cloning an
object does not directly open security holes, it does allow an object to be created
without running any of its constructors. Since these constructors might establish
important invariants, objects created by cloning might not have these invariants
established, and this can lead to incorrect program behavior. For example, a
constructor might add the new object to a linked list of all objects of this class,
and cloning the object would not add the new object to that list -- thus
operations that relied on the list to locate all instances would fail to notice the
cloned object. By making the method protected, only objects of the same class
(or a subclass) can produce a clone and implementers of those classes are
(presumably) aware of the appropriate invariants and can arrange for them to be
true without necessarily calling a constructor.

Example

The following example shows a class called MyClass as well as a representation
of the instance of MyClass returned by System.Object.MemberwiseClone.

[C#]

using System;
class MyBaseClass {
 public static string CompanyName = "My Company";
 public int age;
 public string name;
}

class MyDerivedClass: MyBaseClass {

 static void Main() {

 //Create an instance of MyDerivedClass
 //and assign values to its fields.
 MyDerivedClass m1 = new MyDerivedClass();
 m1.age = 42;

 19

 m1.name = "Sam";

 //Do a shallow copy of m1
 //and assign it to m2.
 MyDerivedClass m2 = (MyDerivedClass) m1.MemberwiseClone();
 }
}
A graphical representation of m1 and m2 might look like this

+---------------+

| 42 | m1

+---------------+

| +---------|-----------------> "Sam"

+---------------+ /|\

 |

+---------------+ |

| 42 | | m2

+---------------+ |

| +--------|---------------------|

+---------------+

 20

 Object.ReferenceEquals(System.Object,
System.Object) Method

[ILAsm]
.method public hidebysig static bool ReferenceEquals(object objA,
object objB)

[C#]
public static bool ReferenceEquals(object objA, object objB)

Summary

Determines whether two object references are identical.

Parameters

Parameter Description
objA First object to compare.
objB Second object to compare.

Return Value

True if a and b refer to the same object or are both null references; otherwise,
false.

Description

This static method provides a way to compare two objects for reference equality.
It does not call any user-defined code, including overrides of
System.Object.Equals.

Example

[C#]

using System;
class MyClass {
 static void Main() {
 object o = null;
 object p = null;
 object q = new Object();
 Console.WriteLine(Object.ReferenceEquals(o, p));
 p = q;
 Console.WriteLine(Object.ReferenceEquals(p, q));
 Console.WriteLine(Object.ReferenceEquals(o, p));
 }

 21

}

The output is

True

True

False

 22

 Object.ToString() Method

[ILAsm]
.method public hidebysig virtual string ToString()

[C#]
public virtual string ToString()

Summary

Creates and returns a System.String representation of the current instance.

Return Value

A System.String representation of the current instance.

Behaviors

System.Object.ToString returns a string whose content is intended to be
understood by humans. Where the object contains culture-sensitive data, the
string representation returned by System.Object.ToString takes into account
the current system culture. For example, for an instance of the System.Double
class whose value is zero, the implementation of System.Double.ToString might
return "0.00" or "0,00" depending on the current UI culture. [Note: Although
there are no exact requirements for the format of the returned string, it should
as much as possible reflect the value of the object as perceived by the user.]

Default

System.Object.ToString is equivalent to calling System.Object.GetType to
obtain the System.Type object for the current instance and then returning the
result of calling the System.Object.ToString implementation for that type.
[Note: The value returned includes the full name of the type.]

How and When to Override

It is recommended, but not required, that System.Object.ToString be
overridden in a derived class to return values that are meaningful for that type.
For example, the base data types, such as System.Int32, implement
System.Object.ToString so that it returns the string form of the value the
object represents.

Subclasses that require more control over the formatting of strings than
System.Object.ToString provides should implement System.IFormattable,
whose System.Object.ToString method uses the culture of the current thread.

 23

Example

The following example outputs the textual description of the value of an object of
type System.Object to the console.

[C#]

using System;

class MyClass {
 static void Main() {
 object o = new object();
 Console.WriteLine (o.ToString());
 }
}

The output is

System.Object

