System.Security.Permissions.ReflectionPe
rmission Class

[ILAsm]
.class public sealed serializable ReflectionPermission extends

System.Security.CodeAccessPermission

[C#]
public sealed class ReflectionPermission: CodeAccessPermission

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.x
Attributes:
0 CLSCompliantAttribute(true)

Implements:
e System.Security.lPermission

Summary

Secures access to the metadata of non-public types and members through
reflection.

Inherits From: System.Security.CodeAccessPermission
Library: Reflection

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

Code with the appropriate
System.Security.Permissions.ReflectionPermission has access to non-
public members of a type. Without
System.Security.Permissions.ReflectionPermission, code can access only
the public members of assemblies.

[Note: Without System.Security.Permissions.ReflectionPermission,

untrusted code can perform the following operations on members of loaded
assemblies:

e Obtain type information from metadata for public types and members.

e Invoke public members.
¢ Invoke members defined with family access in the calling code's base classes.
¢ Invoke members defined with assembly access in the calling code's assembly.

e Invoke members defined with FamilyAndAssembly Or FamilyOrAssembly
access in the calling code's base classes and/or assembly.

e Enumerate assemblies.
e Enumerate public types.
e Enumerate types in the calling code's assembly.

]

System.Security.Permissions.ReflectionPermission instances can allow
untrusted code to obtain type and member information, invoke members, and
enumerate types that would otherwise be inaccessible. [Note: Because
System.Security.Permissions.ReflectionPermission can provide access to
members and information that were not intended for public access, it is
recommended that System.Security.Permissions.ReflectionPermission be
granted only to trusted code.]

The XML encoding of a System.Security.Permissions.ReflectionPermission
instance is defined below in EBNF format. The following conventions are used:

e All non-literals in the grammar below are shown in normal type.

e All literals are in bold font.

The following meta-language symbols are used:

e '*'represents a meta-language symbol suffixing an expression that can
appear zero or more times.

e '?' represents a meta-language symbol suffixing an expression that can
appear zero or one time.

e '+'represents a meta-language symbol suffixing an expression that can
appear one or more times.

e '(",)' is used to group literals, non-literals or a mixture of literals and non-
literals.

e '|' denotes an exclusive disjunction between two expressions.

e '::="'denotes a production rule where a left hand non-literal is replaced by a
right hand expression containing literals, non-literals or both.

BuildVersion refers to the build version of the shipping CLI. This is specified as a
dotted build number such as '2412.0'.

ECMAPubKeyToken::= b77a5¢c561934e089
ReflectionPermissionFlag = MemberAccess | TypeInformation

Each ReflectionPermissionFlag can appear in the XML no more than once. For
example, Flags=MemberAccess,MemberAccess is illegal.

The XML encoding of a System.Security.Permissions.ReflectionPermission
instance is as follows:

ReflectionPermissionXML::=

<IPermission

class="

System.Security.Permissions.ReflectionPermission, mscorlib,

Version=1.0.BuildVersion,

Culture=neutral,

PublicKeyToken=ECMAPubKeyToken"

version="1"

Unrestricted="true"

Flags="NoFlags | (ReflectionPermissionFlag
(,ReflectionPermissionFlag)*"

/>

ReflectionPermission(System.Security.Per
missions.ReflectionPermissionFlag)
Constructor

Summary

Constructs and initializes a new instance of the
System.Security.Permissions.ReflectionPermission class with the specified
access.

Parameters

One or more System.Security.Permissions.
ReflectionPermissionFlag values.

flag

Exceptions

The flag parameter contains a value that is not a
System.ArgumentException |combination of System.Security.Permissions.
ReflectionPermissionFlag values.

ReflectionPermission.Copy() Method

Summary

Returns a new System.Security.Permissions.ReflectionPermission object
containing the same values as the current instance.

Return Value

A new System.Security.Permissions.ReflectionPermission instance that
contains the same values as the current instance.

Description

[Note: The object returned by this method represents the same access to
resources as the current instance.

This method overrides System.Security.CodeAccessPermission.Copy and is
implemented to support the System.Security.IPermission interface.

1

ReflectionPermission.FromXml(System.Se
curity.SecurityElement) Method

Summary

Reconstructs the state of a
System.Security.Permissions.ReflectionPermission object using the
specified XML encoding.

Parameters

A System.Security.SecurityElement instance containing the XML
esd encoding to use to reconstruct the state of a
System.Security.Permissions.ReflectionPermission object.

Description

The state of the current instance is changed to the state encoded in esd.

[Note: For the XML encoding for this class, see the
System.Security.Permissions.ReflectionPermission class page.

This method overrides System.Security.CodeAccessPermission.FromXml.

1

Exceptions

ISystem.ArgumentNuIIException IThe esd parameter is null.

The esd parameter is not a
System.Security.Permissions.ReflectionPermission

. element.
System.ArgumentException

-0r-

The esd parameter's version number is not valid.

ReflectionPermission.Intersect(System.Se
curity.lPermission) Method

Summary

Returns a new System.Security.Permissions.ReflectionPermission object
that is the intersection of the current instance and the specified object.

Parameters

A System.Security.Permissions.ReflectionPermission instance to
intersect with the current instance.

target

Return Value

A new System.Security.Permissions.ReflectionPermission instance that
represents the intersection of the current instance and target. If the intersection
is empty, returns null. If target is null, returns null.

Description

[Note: The intersection of two permissions is a permission that secures the
resources and operations secured by both permissions. Specifically, it represents
the minimum permission such that any demand that passes both permissions will
also pass their intersection.

This method overrides System.Security.CodeAccessPermission.Intersect
and is implemented to support the System.Security.IPermission interface.

1

Exceptions

|System.ArgumentException |The target parameter is not null and is not an instance

of
System.Security.Permissions.ReflectionPermission.

10

ReflectionPermission.IsSubsetOf(System.
Security.lPermission) Method

Summary
Determines whether the current instance is a subset of the specified object.

Parameters

A System.Security.Permissions.ReflectionPermission instance that
is to be tested for the subset relationship.

target

Return Value

true if the current instance is a subset of target; otherwise, false. If the
current instance is unrestricted, and target is not, returns false. If target is
unrestricted, returns true. If target is null and the access level of the current

instance is
System.Security.Permissions.ReflectionPermissionFlag.NoFlags, returns
true. If target is null and the access level of the current instance is any value

other than
System.Security.Permissions.ReflectionPermissionFlag.NoFlags, returns

false.

Description
[Note: The current instance is a subset of target if the current instance specifies
a set of accesses to resources that is wholly contained by target. For example, a
permission that represents access to type information is a subset of a permission
that represents access to type information and members.

This method overrides System.Security.CodeAccessPermission.IsSubsetOf
and is implemented to support the System.Security.IPermission interface.

1

11

Exceptions

The target parameter is not null and is not an instance
System.ArgumentException |of
System.Security.Permissions.ReflectionPermission.

12

ReflectionPermission. ToXml() Method

Summary

Returns the XML encoding of the current instance.

Return Value
A System.Security.SecurityElement containing the XML encoding of the state
of the current instance.

Description

[Note: For the XML encoding for this class, see the
System.Security.Permissions.ReflectionPermission class page.

This method overrides System.Security.CodeAccessPermission. ToXml.

]

13

ReflectionPermission.Union(System.Secur
ity.IPermission) Method

Summary

Returns a new System.Security.Permissions.ReflectionPermission object
that is the union of the current instance and the specified object.

Parameters

A System.Security.Permissions.ReflectionPermission instance to
be combined with the current instance.

other

Return Value

A new System.Security.Permissions.ReflectionPermission instance that
represents the union of the current instance and other. If the current instance or
other is unrestricted, returns a
System.Security.Permissions.ReflectionPermission instance that is
unrestricted. If other is null, returns a copy of the current instance.

Description

[Note: The result of a call to
System.Security.Permissions.ReflectionPermission.Union iS a permission
that represents all of the access to resources represented by both the current
instance and other. Any demand that passes either the current instance or other
passes their union.

This method overrides System.Security.CodeAccessPermission.Union and is
implemented to support the System.Security.IPermission interface.

1

Exceptions

14

The other parameter is not null and is not an instance of
System.Security.Permissions.ReflectionPermission.

System.ArgumentException

15

