System.Text.Encoding Class

[ILAsm]
.class public abstract serializable Encoding extends System.Object

[C#1
public abstract class Encoding

Assembly Info:

Name: mscorlib

e Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
e Version: 2.0.x.X
e Attributes:
0 CLSCompliantAttribute(true)
Summary

Represents a character encoding.

Inherits From: System.Object

Library: BCL

Thread Safety: This type is safe for multithreaded operations.

Description

Characters are abstract entities that can be represented using many different
character schemes or codepages. For example, Unicode UTF-16 encoding
represents, or encodes, characters as sequences of 16-bit integers while Unicode
UTF-8 represents the same characters as sequences of 8-bit bytes.

The BCL includes the following types derived from System. Text .Encoding:

System.Text .ASCIIEncoding - encodes Unicode characters as 7-bit ASCII
characters. This encoding only supports code points between U+0000 and
U+007F inclusive.

System.Text .UnicodeEncoding - encodes each Unicode character as two
consecutive bytes. Both little-endian and big-endian byte orders are
supported.

System.Text .UTF8Encoding - encodes Unicode characters using the UTF-8
(UCS Transformation Format, 8-bit form) encoding. This encoding supports all
Unicode character values.

An application can use the properties of this class such as
System.Text.Encoding.ASCII, System.Text.Encoding.Default,

System.Text .Encoding.Unicode, and System.Text .Encoding.UTF8 to obtain
encodings. Applications can initialize new instances of System. Text .Encoding
objects through the System.Text .ASCIIEncoding, System.Text .UnicodeEncoding,
and System.Text .UTF8Encoding classes.

Through an encoding, the System.Text .Encoding.GetBytes method is used to
convert arrays of Unicode characters to arrays of bytes, and the

System.Text .Encoding.GetChars method is used to convert arrays of bytes to
arrays of Unicode characters. The System. Text .Encoding.GetBytes and
System.Text .Encoding.GetChars methods maintain no state between conversions.
When the data to be converted is only available in sequential blocks (such as data
read from a stream) or when the amount of data is so large that it needs to be
divided into smaller blocks, an application can choose to use a System. Text .Decoder
or a System.Text .Encoder to perform the conversion. Decoders and encoders allow
sequential blocks of data to be converted and they maintain the state required to
support conversions of data that spans adjacent blocks. Decoders and encoders are
obtained using the System.Text .Encoding.GetDecoder and

System.Text .Encoding.GetEncoder methods.

The core System.Text .Encoding.GetBytes and System. Text .Encoding.GetChars
methods require the caller to provide the destination buffer and ensure that the
buffer is large enough to hold the entire result of the conversion. When using these
methods, either directly on a System.Text .Encoding object or on an associated
System.Text .Decoder Or System.Text .Encoder, an application can use one of two
methods to allocate destination buffers.

1. The System.Text.Encoding.GetByteCount and
System.Text .Encoding.GetCharCount methods can be used to compute the
exact size of the result of a particular conversion, and an appropriately sized
buffer for that conversion can then be allocated.

2. The System.Text .Encoding.GetMaxByteCount and
System.Text .Encoding.GetMaxCharCount methods can be used to compute
the maximum possible size of a conversion of a given number of characters or
bytes, regardless of the actual character or byte values, and a buffer of that
size can then be reused for multiple conversions.

The first method generally uses less memory, whereas the second method generally
executes faster.

Encoding() Constructor

Summary

Constructs a new instance of the System. Text .Encoding class.

Encoding.Convert(System.Text.Encoding,
System.Text.Encoding, System.Bytel[],
System.Int32, System.Int32) Method

Summary

Converts the specified range of the specified System.Byte array from one
specified encoding to another specified encoding.

Parameters

|srcEncoding |The System.Text .Encoding that bytes is in.

dstEncoding The System.Text .Encoding desired for the returned System.Byte
array.

|bytes |The System.Byte array containing the values to convert.

index A System.Int32 containing the first index of bytes from which to
convert.

|count |A System. Int32 containing the number of bytes to convert.

Return Value

A System.Byte array containing the result of the conversion.

Exceptions

srcEncoding, dstEncoding, or bytes is
System.ArgumentNullException null.

System.ArgumentOutOfRangeException index gnd count do not denote a valid
range in bytes.

Encoding.Convert(System.Text.Encoding,
System.Text.Encoding, System.Byte[])
Method

Summary

Converts the specified System.Byte array from one specified encoding to another
specified encoding.

Parameters

|srcEncoding |The System.Text .Encoding that bytes is in.

The System.Text .Encoding desired for the returned System.Byte

dstEncoding array

Ibytes |The System.Byte array containing the values to convert.

Return Value

A System.Byte array containing the result of the conversion.

Exceptions

|System.ArgumentNuIIException |srcEncoding, dstEncoding or bytes is null.

Encoding.Equals(System.Object) Method

Summary

Determines whether the current instance and the specified System.Object
represent the same type and value.

Parameters

|va|ue |The System.Object to compare to the current instance.

Return Value

true if obj represents the same type and value as the current instance. If obj is a
null reference or is not an instance of System. Text .Encoding, returns false.

Description

[Note: This method overrides System.Object .Equals.]

Encoding.GetByteCount(System.Char[])
Method

Summary

Returns the number of bytes required to encode the specified System.Char
array.

Parameters

|chars |The System.Char array to encode.

Return Value

A System.Int32 containing the number of bytes needed to encode chars.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

System.Text .Encoding.GetByteCount can be used to determine the exact
number of bytes that will be produced from encoding the given array of
characters. An appropriately sized buffer for that conversion can then be
allocated.

Alternatively, System.Text .Encoding.GetMaxByteCount can be used to
determine the maximum number of bytes that will be produced from converting

a given number of characters, regardless of the actual character values. A buffer
of that size can then be reused for multiple conversions.

System.Text .Encoding.GetByteCount generally uses less memory and
System.Text .Encoding.GetMaxByteCount generally executes faster.

Exceptions

|System.ArgumentNuIIException |chars is null.

Encoding.GetByteCount(System.String)
Method

Summary
Returns the number of bytes required to encode the specified System.String.

Parameters

|s |The System.String to decode.

Return Value

A System.Int32 containing the number of bytes needed to encode s.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

System.Text .Encoding.GetByteCount can be used to determine the exact
number of bytes that will be produced from encoding the given System.String.
An appropriately sized buffer for that conversion can then be allocated.

Alternatively, System.Text .Encoding.GetMaxByteCount can be used to
determine the maximum number of bytes that will be produced from converting
a given number of characters, regardless of the actual character values. A buffer
of that size can then be reused for multiple conversions.

10

System.Text .Encoding.GetByteCount generally uses less memory and
System.Text .Encoding.GetMaxByteCount generally executes faster.

Exceptions

|System.ArgumentNuIIException \s is null.

11

Encoding.GetByteCount(System.Char[],
System.Int32, System.Int32) Method

Summary

Returns the number of bytes required to encode the specified range of characters
in the specified Unicode character array.

Parameters

|chars |The System.Char array to encode.
|index |A System.Int32 containing the first index of chars to encode.
|count |A System.Int32 containing the number of characters to encode.

Return Value
A System.Int32 containing the number of bytes required to encode the range in
chars from index to index + count - 1.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

System.Text .Encoding.GetByteCount can be used to determine the exact the
number of bytes that will be produced from encoding a given range of characters.

12

An appropriately sized buffer for that conversion can then be allocated.

Alternatively, System.Text .Encoding.GetMaxByteCount can be used to
determine the maximum number of bytes that will be produced from converting
a given number of characters, regardless of the actual character values. A buffer
of that size can then be reused for multiple conversions.

System.Text .Encoding.GetByteCount generally uses less memory and
System.Text .Encoding.GetMaxByteCount generally executes faster.

Exceptions

|System.ArgumentNuIIException ‘chars is null.

The number of bytes required to encode
the specified elements in chars is
greater than System.Int32.MaxValue.

or

System.ArgumentOutOfRangeException index or count is less than zero.

Or
index and count do not specify a valid

range in chars (i.e. (index + count) >
chars.Length).

13

Encoding.GetBytes(System.Char[])
Method

Summary

Encodes the specified System.Char array.

Parameters

|chars |The System.Char array to encode.

Return Value

A System.Byte array containing the encoded representation of chars.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
perform the encoding.

Exceptions

|System.ArgumentNuIIException |chars is null.

14

Encoding.GetBytes(System.Char[],
System.Int32, System.Int32) Method

Summary

Encodes the specified range of the specified System.Char array.

Parameters

|chars |The System.Char array to encode.
|index |A System.Int32 containing the first index of chars to encode.
|count |A System. Int32 containing the number of characters to encode.

Return Value

A System.Byte array containing the encoded representation of the range in chars
from index to index + count - 1.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System. Text .Encoding to
perform the encoding.

Exceptions

|System.ArgumentNuIIException |chars is null.

15

index and count do not denote a valid

System.ArgumentOutOfRangeException range in chars.

16

Encoding.GetBytes(System.Char[],
System.Int32, System.Int32,
System.Byte[], System.Int32) Method

Summary

Encodes the specified range of the specified System.Char array into the specified
range of the specified System.Byte array.

Parameters

|chars |A System.Char array to encode.

Icharlndex /A System.Int32 containing the first index of chars to encode.

|charCount |A System.Int32 containing the number of characters to encode.

|bytes |A System.Byte array to encode into.

|byte|ndex |A System.Int32 containing the first index of bytes to encode into.

Return Value

The number of bytes encoded into bytes.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
perform the encoding.

17

Usage

System.Text .Encoding.GetByteCount can be used to determine the exact
number of bytes that will be produced for a given range of characters.
Alternatively, System. Text .Encoding.GetMaxByteCount can be used to
determine the maximum number of bytes that will be produced for a given
number of characters, regardless of the actual character values.

Exceptions

bytes does not contain sufficient space
System.ArgumentException to store the encoded characters.

chars is null.

System.ArgumentNullException -or-

bytes is null.

charindex < 0.
—or-
charCount < 0.
—or-
bytelndex < O.
System.ArgumentOutOfRangeException

Or

(chars.Length - charlndex) <
charCount.

-0r-

bytelndex > bytes.Length.

18

Encoding.GetBytes(System.String)
Method

Summary

Encodes the specified System.String.

Parameters

|S |The System.String to encode.

Return Value

A System.Byte array containing the encoded representation of s.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
perform the encoding.

Exceptions

|System.ArgumentNuIIException |s is null.

19

Encoding.GetBytes(System.String,
System.Int32, System.Int32,
System.Byte[], System.Int32) Method

Summary

Encodes the specified range of the specified system.String into the specified
range of the specified System.Byte array.

Parameters

|S |A System.String to encode.

Icharlndex |A System.Int32 containing the first index of s from which to encode.

|charCount |A System.Int32 containing the number of characters of s to encode.

|bytes |The System.Byte array to encode into.

|byte|ndex |A System.Int32 containing the first index of bytes to encode into.

Return Value

A System.Int32 containing the number of bytes encoded into bytes.
Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
perform the encoding.

20

Exceptions

bytes does not contain sufficient space
System.ArgumentException to store the encoded characters.

s is null.

System.ArgumentNullException -or-

bytes is null.

charindex < 0.
-or-

charCount < 0.
-or-
System.ArgumentOutOfRangeException bytelndex < 0.
-or-

(s.Length - charIndex) < charCount.
-or-

bytelndex >= bytes.Length.

21

Encoding.GetCharCount(System.Byte[])
Method

Summary

Determines the exact number of characters that will be produced by decoding the
specified System.Byte array.

Parameters

|bytes |The System.Byte array to decode.

Return Value
A System.Int32 containing the number of characters produced by decoding
bytes.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System. Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage
Use System.Text .Encoding.GetCharCount to determine the exact number of
characters that will be produced from converting a given byte array. An
appropriately sized buffer for that conversion can then be allocated.

Alternatively, use System.Text .Encoding.GetMaxCharCount to determine the

22

maximum number of characters that will be produced for a given number of
bytes, regardless of the actual byte values. A buffer of that size can then be
reused for multiple conversions.

System.Text .Encoding.GetCharCount generally uses less memory and
System.Text .Encoding.GetMaxCharCount generally executes faster.

Exceptions

|System.ArgumentNuIIException |bytes isnull.

23

Encoding.GetCharCount(System.Byte[],
System.Int32, System.Int32) Method

Summary

Determines the exact number of characters that will be produced by decoding the
specified range of the specified System.Byte array.

Parameters

|bytes |The System.Byte array to decode.
|index |The first index in bytes to decode.
|count |The number of bytes to decode.

Return Value

A System.Int32 containing the number of characters the next call to
System.Text .Decoder.GetChars will produce if presented with the specified
range of bytes.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

24

Use System.Text .Encoding.GetCharCount to determine the exact number of
characters that will be produced from converting a given range of bytes. An
appropriately sized buffer for that conversion can then be allocated.

Alternatively, use System.Text .Encoding.GetMaxCharCount to determine the
maximum number of characters that will be produced for a given number of
bytes, regardless of the actual byte values. A buffer of that size can then be
reused for multiple conversions.

System.Text .Encoding.GetCharCount generally uses less memory and
System.Text .Encoding.GetMaxCharCount generally executes faster.

Exceptions

|System.ArgumentNuIIException ’bytes isnull.

index and count do not specify a valid
System.ArgumentOutOfRangeException [range in bytes (i.e. (index + count) >
bytes.Length).

25

Encoding.GetChars(System.Byte[])
Method

Summary

Decodes a System.Byte array.

Parameters

|bytes |The System.Byte array to decode.

Return Value

A System.Char array produced by decoding bytes.

Exceptions

ISystem.ArgumentNuIIException Ibytes is null.

26

Encoding.GetChars(System.Byte[],
System.Int32, System.Int32) Method

Summary

Decodes the specified range of the specified System.Byte array.

Parameters

|bytes |The System.Byte array to decode.
|index |A System.Int32 containing the first index of bytes to decode.
|count |A System.Int32 containing the number of bytes to decode.

Return Value

A System.Char array containing the decoded representation of the range in bytes
between index to index + count.

Exceptions

|System.ArgumentNuIIException |bytes is null.

index and count do not denote a valid

System.ArgumentOutOfRangeException range in the byte array.

27

Encoding.GetChars(System.Byte[],
System.Int32, System.Int32,
System.Char[], System.Int32) Method

Summary

Decodes the specified range of the specified System.Byte array into the specified
range of the specified System.Char array.

Parameters

|bytes |The System.Byte array to decode.

|byte|ndex |A System.Int32 containing the first index of bytes to decode.

|byteCount |A System. Int32 containing the number of bytes to decode.

|chars |The System.Char array to decode into.

|char|ndex |A System.Int32 containing the first index of chars to decode into.

Return Value

The number of characters stored in chars.
Behaviors

This method requires the caller to provide the destination buffer and ensure that
the buffer is large enough to hold the entire result of the conversion.

How and When to Override

This method is overridden by types derived from System. Text .Encoding to
perform the particular decoding.

28

Usage

When using this method directly on a System.Text .Encoding object or on an
associated System.Text .Decoder Or System.Text .Encoder, use
System.Text .Encoding.GetCharCount oOr

System.Text .Encoding.GetMaxCharCount to allocate destination buffers.

Exceptions

chars does not contain sufficient space
System.ArgumentException to store the decoded characters.

bytes is null.

System.ArgumentNullException -or-

chars is null.

bytelndex < O.
or
byteCount < 0.
Or
charindex < 0.
System.ArgumentOutOfRangeException —or-
bytelndex and byteCount do not specify
a valid range in bytes (i.e. (bytelndex +
byteCount) > bytes.Length).

-0r-

charlndex > chars.Length.

29

Encoding.GetDecoder() Method

Summary

Returns a System. Text .Decoder for the current instance.

Return Value

A System.Text .Decoder for the current instance.
Behaviors

As described above.

Default

The default implementation returns a System. Text .Decoder that forwards calls
made to the System.Text .Encoding.GetCharCount and

System.Text .Encoding.GetChars methods to the corresponding methods of the
current instance.

How and When to Override

Encoding that requires state to be maintained between successive conversions
should override this method and return an instance of an appropriate
System.Text .Decoder implementation.

Usage

Unlike the System.Text .Encoding.GetChars methods, a System.Text .Decoder
can convert partial sequences of bytes into partial sequences of characters by
maintaining the appropriate state between the conversions.

30

Encoding.GetEncoder() Method

Summary

Returns a System.Text .Encoder for the current instance.

Return Value

A System.Text .Encoder for the current encoding.
Behaviors

As described above.

Default

The default implementation returns a System. Text . Encoder that forwards calls
made to the System.Text .Encoding.GetByteCount and

System.Text .Encoding.GetBytes methods to the corresponding methods of the
current instance.

How and When to Override

Types derived from System.Text .Encoding override this method to return an
instance of an appropriate System. Text .Encoder.

Usage

Unlike the System.Text .Encoding.GetBytes method, a System.Text .Encoder
can convert partial sequences of characters into partial sequences of bytes by
maintaining the appropriate state between the conversions.

31

Encoding.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for the current instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

32

Encoding.GetMaxByteCount(System.Int32
) Method

Summary

Returns the maximum number of bytes required to encode the specified number
of characters, regardless of the actual character values.

Parameters

|charCount |A System.Int32 containing the number of characters to encode.

Return Value
A System.Int32 containing the maximum number of bytes required to encode
charCount characters.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

System.Text .Encoding.GetMaxByteCount can be used to determine the
minimum buffer size for byte arrays passed to the

System.Text .Encoding.GetBytes of the current encoding. Using this minimum
buffer size ensures that no buffer overflow exceptions occur.

33

34

Encoding.GetMaxCharCount(System.Int32
) Method

Summary

Returns the maximum number of characters produced by decoding the specified
number of bytes, regardless of the actual byte values.

Parameters

|byteCount |A System. Int32 containing the number of bytes to decode.

Return Value
A System.Int32 containing the maximum number of characters that would be
produced by decoding byteCount bytes.

Behaviors

As described above.

How and When to Override

This method is overridden by types derived from System.Text .Encoding to
return the appropriate number of bytes for the particular encoding.

Usage

System.Text .Encoding.GetMaxCharCount can be used to determine the
minimum buffer size for byte arrays passed to the

System.Text .Encoding.GetChars of the current encoding. Using this minimum
buffer size ensures that no buffer overflow exceptions will occur.

35

36

Encoding.GetPreamble() Method

Summary

Returns the bytes used at the beginning of a System.I0.Stream to determine
which System.Text .Encoding the stream was created with.

Return Value

A System.Byte array that identifies the encoding used on a stream.

Description

[Note: The preamble can be the Unicode byte order mark (U+FEFF written in the
appropriate encoding) or any other type of identifying marks. This method can
return an empty array.]

Behaviors

As described above.

Default

The default implementation returns an empty System.Byte array.

How and When to Override

Override this method to return a System.Byte array containing the preamble
appropriate for the type derived from System. Text .Encoding.

37

Encoding.GetString(System.Byte[])
Method

Summary

Decodes the specified System.Byte array.

Parameters

|bytes |The System.Byte array to decode.

Return Value

A System.String containing the decoded representation of bytes.
Behaviors

As described above.

How and When to Override

This method is overridden by particular character encodings.

Exceptions

ISyStem.ArgumentNuIIException |bytes isnull.

38

Encoding.GetString(System.Bytel[],
System.Int32, System.Int32) Method

Summary

Decodes the specified range of the specified System.Byte array.

Parameters

|bytes |The System.Byte array to decode.
|index |A System. Int32 containing the starting index of bytes to decode.
|count |A System.Int32 containing the number of bytes to decode.

Return Value

A System.String containing the decoded representation of the range of bytes
from index to index + count.

Behaviors

As described above.

How and When to Override

This method is overridden by particular character encodings.

Exceptions

|System.ArgumentNuIIException |bytes is null.

39

index and count do not denote a valid

System.ArgumentOutOfRangeException range in bytes.

40

Encoding.ASCII Property

Summary

Gets an encoding for the ASCII (7-bit) character set.
Description

This property is read-only.

[Note: ASCII characters can represent Unicode characters from U+0000 to
U+007f, inclusive.

1

41

Encoding.BigEndianUnicode Property

Summary

Gets an encoding for the Unicode format in big-endian byte order.

Property Value

A System.Text .Encoding for the Unicode format in big-endian byte order.

Description
This property is read-only.

[Note: Unicode characters can be stored in two different byte orders, big-endian
and little-endian. On little-endian platforms such as those implemented on Intel
processors, it is generally more efficient to store Unicode characters in little-
endian byte order. However, many other platforms can store Unicode characters
in big-endian byte order. Unicode files can be distinguished by the presence of
the byte order mark (U+FEFF), which will be written as either Oxfe Oxff or Oxff
Oxfe.

This encoding automatically detects a byte order mark and, if necessary,
switches byte orders.

1

42

Encoding.Default Property

Summary

Gets an encoding for the ANSI code page of the current system.

Property Value

A System.Text .Encoding for the ANSI code page of the current system.

Description

This property is read-only.

43

Encoding.Unicode Property

Summary

Gets an encoding for the Unicode format in little-endian byte order.

Property Value

A System.Text .Encoding for the Unicode format in little-endian byte order.

Description
This property is read-only.

[Note: Unicode characters can be stored in two different byte orders, big-endian
and little-endian. On little-endian platforms such as those implemented on Intel
processors, it is generally more efficient to store Unicode characters in little-
endian byte order. However, many other platforms can store Unicode characters
in big-endian byte order. Unicode files can be distinguished by the presence of
the byte order mark (U+FEFF), which will be written as either Oxfe Oxff or Oxff
Oxfe.

This encoding automatically detects a byte order mark and, if necessary,
switches byte orders.

1

44

Encoding.UTF8 Property

Summary

Gets an encoding for the UTF-8 format.

Property Value

A System.Text .Encoding for the UTF-8 format.
Description
This property is read-only.

[Note: For detailed information regarding UTF-8 encoding, see
System.Text .UTF8Encoding.

]

45

