
 1

System.Net.Sockets.Socket Class

[ILAsm]
.class public Socket extends System.Object implements
System.IDisposable

[C#]
public class Socket: IDisposable

Assembly Info:

• Name: System
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Implements:

• System.IDisposable

Summary

Creates a communication endpoint through which an application sends or
receives data across a network.

Inherits From: System.Object

Library: Networking

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

This class enables a System.Net.Sockets.Socket instance to communicate with
another socket across a network. The communication can be through connection-
oriented and connectionless protocols using either data streams or datagrams
(discrete message packets).

Message-oriented protocols preserve message boundaries and require that for
each System.Net.Sockets.Socket.Send method call there is one corresponding
System.Net.Sockets.Socket.Receive method call. For stream-oriented
protocols, data is transmitted without regards to message boundaries. In this
case, for example, multiple System.Net.Sockets.Socket.Receive method calls
might be necessary to retrieve all the data from one
System.Net.Sockets.Socket.Send method call. The protocol is set in the
Socket class constructor.

 2

A System.Net.Sockets.Socket instance has a local and a remote endpoint
associated with it. The local endpoint contains the connection information for the
current socket instance. The remote endpoint contains the connection
information for the socket that the current instance communicates with. The
endpoints are required to be an instance of a type derived from the
System.Net.EndPoint class. For the Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) protocols, an endpoint includes the address
family, an Internet Protocol (IP) address, and a port number. For connection-
oriented protocols (for example, TCP), the remote endpoint does not have to be
specified when transferring data. For connectionless protocols (for example,
UDP), the remote endpoint is required to be specified.

Methods are provided for both synchronous and asynchronous operations. A
synchronous method can operate in blocking mode, in which it waits (blocks)
until the operation is complete before returning, or in non-blocking mode, where
it returns immediately, possibly before the operation has completed. The blocking
mode is set through the System.Net.Sockets.Socket.Blocking property.

An asynchronous method returns immediately and, by convention, relies on a
delegate to complete the operation. Asynchronous methods have names which
correspond to their synchronous counterparts prefixed with either 'Begin' or End'.
For example, the synchronous System.Net.Sockets.Socket.Accept method has
asynchronous counterpart methods named
System.Net.Sockets.Socket.BeginAccept and
System.Net.Sockets.Socket.EndAccept. The example for the
System.Net.Sockets.Socket.BeginAccept method shows the basic steps for
using an asynchronous operation. A complete working example follows this
discussion.

Connection-oriented protocols commonly use the client/server model. In this
model, one of the sockets is set up as a server, and one or more sockets are set
up as clients. A general procedure demonstrating the synchronous
communication process for this model is as follows.

On the server-side:

1. Create a socket to listen for incoming connection requests.
2. Set the local endpoint using the System.Net.Sockets.Socket.Bind method.
3. Put the socket in the listening state using the

System.Net.Sockets.Socket.Listen method.
4. At this point incoming connection requests from a client are placed in a

queue.
5. Use the System.Net.Sockets.Socket.Accept method to create a server

socket for a connection request issued by a client-side socket. This sets the
remote endpoint.

6. Use the System.Net.Sockets.Socket.Send and
System.Net.Sockets.Socket.Receive methods to communicate with the
client socket.

7. When communication is finished, terminate the connection using the
System.Net.Sockets.Socket.Shutdown method.

8. Release the resources allocated by the server socket using the
System.Net.Sockets.Socket.Close method.

 3

9. Release the resources allocated by the listener socket using the
System.Net.Sockets.Socket.Close method.

On the client-side:

1. Create the client socket.
2. Connect to the server socket using the

System.Net.Sockets.Socket.Connect method. This sets both the local and
remote endpoints for the client socket.

3. Use the System.Net.Sockets.Socket.Send and
System.Net.Sockets.Socket.Receive methods to communicate with the
server socket.

4. When communication is finished, terminate the connection using the
System.Net.Sockets.Socket.Shutdown method.

5. Release the resources allocated by the client socket using the
System.Net.Sockets.Socket.Close method.

The shutdown step in the previous procedure is not necessary but ensures that any
pending data is not lost. If the System.Net.Sockets.Socket.Shutdown method is
not called, the System.Net.Sockets.Socket.Close method shuts down the
connection either gracefully or by force. A graceful closure attempts to transfer all
pending data before the connection is terminated. Use the
System.Net.Sockets.SocketOptionName.Linger socket option to specify a graceful
closure for a socket.

[Note: This implementation is based on the UNIX sockets implementation in the
Berkeley Software Distribution (BSD, release 4.3) from the University of California at
Berkeley.

]

Example

The following examples provide a client/server application that demonstrates the
use of asynchronous communication between sockets. Run the client and server
on different consoles.

The following code is for the server application. Start this application before the
client application.

[C#]

using System;
using System.Threading;
using System.Text;
using System.Net;
using System.Net.Sockets;

public class Server
{
 // used to pass state information to delegate
 internal class StateObject

 4

 {
 internal byte[] sBuffer;
 internal Socket sSocket;
 internal StateObject(int size, Socket sock) {
 sBuffer = new byte[size];
 sSocket = sock;
 }
 }
 static void Main()
 {
 IPAddress ipAddress =
 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint ipEndpoint =
 new IPEndPoint(ipAddress, 1800);

 Socket listenSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 listenSocket.Bind(ipEndpoint);
 listenSocket.Listen(1);
 IAsyncResult asyncAccept = listenSocket.BeginAccept(
 new AsyncCallback(Server.acceptCallback),
 listenSocket);

 // could call listenSocket.EndAccept(asyncAccept) here
 // instead of in the callback method, but since
 // EndAccept blocks, the behavior would be similar to
 // calling the synchronous Accept method

 Console.Write("Connection in progress.");
 if(writeDot(asyncAccept) == true)
 {
 // allow time for callbacks to
 // finish before the program ends
 Thread.Sleep(3000);
 }
 }

 public static void
 acceptCallback(IAsyncResult asyncAccept) {
 Socket listenSocket = (Socket)asyncAccept.AsyncState;
 Socket serverSocket =
 listenSocket.EndAccept(asyncAccept);

 // arriving here means the operation completed
 // (asyncAccept.IsCompleted = true) but not
 // necessarily successfully
 if(serverSocket.Connected == false)
 {
 Console.WriteLine(".server is not connected.");
 return;
 }
 else Console.WriteLine(".server is connected.");

 5

 listenSocket.Close();

 StateObject stateObject =
 new StateObject(16, serverSocket);

 // this call passes the StateObject because it
 // needs to pass the buffer as well as the socket
 IAsyncResult asyncReceive =
 serverSocket.BeginReceive(
 stateObject.sBuffer,
 0,
 stateObject.sBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(receiveCallback),
 stateObject);

 Console.Write("Receiving data.");
 writeDot(asyncReceive);
 }

 public static void
 receiveCallback(IAsyncResult asyncReceive) {
 StateObject stateObject =
 (StateObject)asyncReceive.AsyncState;
 int bytesReceived =
 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(
 ".{0} bytes received: {1}",
 bytesReceived.ToString(),
 Encoding.ASCII.GetString(stateObject.sBuffer));

 byte[] sendBuffer =
 Encoding.ASCII.GetBytes("Goodbye");
 IAsyncResult asyncSend =
 stateObject.sSocket.BeginSend(
 sendBuffer,
 0,
 sendBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(sendCallback),
 stateObject.sSocket);

 Console.Write("Sending response.");
 writeDot(asyncSend);
 }

 public static void sendCallback(IAsyncResult asyncSend) {
 Socket serverSocket = (Socket)asyncSend.AsyncState;
 int bytesSent = serverSocket.EndSend(asyncSend);
 Console.WriteLine(
 ".{0} bytes sent.{1}{1}Shutting down.",
 bytesSent.ToString(),
 Environment.NewLine);

 serverSocket.Shutdown(SocketShutdown.Both);
 serverSocket.Close();

 6

 }

 // times out after 20 seconds but operation continues
 internal static bool writeDot(IAsyncResult ar)
 {
 int i = 0;
 while(ar.IsCompleted == false)
 {
 if(i++ > 40)
 {
 Console.WriteLine("Timed out.");
 return false;
 }
 Console.Write(".");
 Thread.Sleep(500);
 }
 return true;
 }
}

The following code is for the client application. When starting the application, supply
the hostname of the console running the server application as an input parameter
(for example, ProgramName hostname).

[C#]
using System;
using System.Threading;
using System.Text;
using System.Net;
using System.Net.Sockets;

public class Client {

 // used to pass state information to delegate
 class StateObject
 {
 internal byte[] sBuffer;
 internal Socket sSocket;
 internal StateObject(int size, Socket sock) {
 sBuffer = new byte[size];
 sSocket = sock;
 }
 }

 static void Main(string[] argHostName)
 {
 IPAddress ipAddress =
 Dns.Resolve(argHostName[0]).AddressList[0];

 IPEndPoint ipEndpoint =
 new IPEndPoint(ipAddress, 1800);

 Socket clientSocket = new Socket(
 AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 7

 IAsyncResult asyncConnect = clientSocket.BeginConnect(
 ipEndpoint,
 new AsyncCallback(connectCallback),
 clientSocket);

 Console.Write("Connection in progress.");
 if(writeDot(asyncConnect) == true)
 {
 // allow time for callbacks to
 // finish before the program ends
 Thread.Sleep(3000);
 }
 }

 public static void
 connectCallback(IAsyncResult asyncConnect) {
 Socket clientSocket =
 (Socket)asyncConnect.AsyncState;
 clientSocket.EndConnect(asyncConnect);
 // arriving here means the operation completed
 // (asyncConnect.IsCompleted = true) but not
 // necessarily successfully
 if(clientSocket.Connected == false)
 {
 Console.WriteLine(".client is not connected.");
 return;
 }
 else Console.WriteLine(".client is connected.");

 byte[] sendBuffer = Encoding.ASCII.GetBytes("Hello");
 IAsyncResult asyncSend = clientSocket.BeginSend(
 sendBuffer,
 0,
 sendBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(sendCallback),
 clientSocket);

 Console.Write("Sending data.");
 writeDot(asyncSend);
 }

 public static void sendCallback(IAsyncResult asyncSend)
 {
 Socket clientSocket = (Socket)asyncSend.AsyncState;
 int bytesSent = clientSocket.EndSend(asyncSend);
 Console.WriteLine(
 ".{0} bytes sent.",
 bytesSent.ToString());

 StateObject stateObject =
 new StateObject(16, clientSocket);

 // this call passes the StateObject because it
 // needs to pass the buffer as well as the socket
 IAsyncResult asyncReceive =
 clientSocket.BeginReceive(

 8

 stateObject.sBuffer,
 0,
 stateObject.sBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(receiveCallback),
 stateObject);

 Console.Write("Receiving response.");
 writeDot(asyncReceive);
 }

 public static void
 receiveCallback(IAsyncResult asyncReceive) {
 StateObject stateObject =
 (StateObject)asyncReceive.AsyncState;

 int bytesReceived =
 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(
 ".{0} bytes received: {1}{2}{2}Shutting down.",
 bytesReceived.ToString(),
 Encoding.ASCII.GetString(stateObject.sBuffer),
 Environment.NewLine);

 stateObject.sSocket.Shutdown(SocketShutdown.Both);
 stateObject.sSocket.Close();
 }

 // times out after 2 seconds but operation continues
 internal static bool writeDot(IAsyncResult ar)
 {
 int i = 0;
 while(ar.IsCompleted == false)
 {
 if(i++ > 20)
 {
 Console.WriteLine("Timed out.");
 return false;
 }
 Console.Write(".");
 Thread.Sleep(100);
 }
 return true;
 }
}

The output of the server application is

Connection in progress...........server is connected.

Receiving data......5 bytes received: Hello

Sending response....7 bytes sent.

 9

Shutting down.

The output of the client application is

Connection in progress......client is connected.

Sending data......5 bytes sent.

Receiving response......7 bytes received: Goodbye

Shutting down.

 10

Socket(System.Net.Sockets.AddressFamil
y, System.Net.Sockets.SocketType,
System.Net.Sockets.ProtocolType)
Constructor

[ILAsm]
public rtspecialname specialname instance void .ctor(valuetype
System.Net.Sockets.AddressFamily addressFamily, valuetype
System.Net.Sockets.SocketType socketType, valuetype
System.Net.Sockets.ProtocolType protocolType)

[C#]
public Socket(AddressFamily addressFamily, SocketType socketType,
ProtocolType protocolType)

Summary

Constructs and initializes a new instance of the System.Net.Sockets.Socket
class.

Parameters

Parameter Description

addressFamily One of the values defined in the
System.Net.Sockets.AddressFamily enumeration.

socketType One of the values defined in the System.Net.Sockets.SocketType
enumeration.

protocolType One of the values defined in the System.Net.Sockets.ProtocolType
enumeration.

Description

The addressFamily parameter specifies the addressing scheme used by the
current instance, the socketType parameter specifies the socket type of the
current instance, and the protocolType parameter specifies the protocol used by
the current instance. The three parameters are not independent. Some address
families restrict which protocols are used, and often the socket type is
determined by the protocol. When the specified values are not a valid
combination, a System.Net.Sockets.SocketException exception is thrown.

Using the Unknown member of either the System.Net.Sockets.AddressFamily
or System.Net.Sockets.ProtocolType enumeration, results in a
System.Net.Sockets.SocketException exception being thrown.

 11

Exceptions

Exception Condition

System.Net.Sockets.SocketException

The combination of addressFamily,
socketType, and protocolType is invalid.

-or-

An error occurred while creating the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

 12

 Socket.Accept() Method

[ILAsm]
.method public hidebysig instance class System.Net.Sockets.Socket
Accept()

[C#]
public Socket Accept()

Summary

Creates and initializes a new System.Net.Sockets.Socket instance and connects
it to an incoming connection request.

Return Value

A new connected System.Net.Sockets.Socket instance.

Description

This method is used only on the server-side of connection-oriented protocols. It
extracts the first connection request from the queue of pending requests, creates
a new System.Net.Sockets.Socket instance, and connects this instance to the
socket associated with the request.

The System.Net.Sockets.Socket.Blocking property of the socket determines
the behavior of this method when there are no pending connection requests.
When false, this method will throw a System.Net.Sockets.SocketException.
When true, this method blocks.

The following properties of the new System.Net.Sockets.Socket instance
returned by this method have values identical to the corresponding properties of
the current instance:

• System.Net.Sockets.Socket.AddressFamily

• System.Net.Sockets.Socket.Blocking

• System.Net.Sockets.Socket.LocalEndPoint

• System.Net.Sockets.Socket.ProtocolType

• System.Net.Sockets.Socket.SocketType

The System.Net.Sockets.Socket.RemoteEndPoint property of the new instance is
set to the local endpoint of the first request in the input queue. The
System.Net.Sockets.Socket.Connected property is set to true.

 13

Exceptions

Exception Condition

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
listening socket or while creating the new
socket.

-or-

The
System.Net.Sockets.Socket.Blocking
property is set to false.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 14

Socket.BeginAccept(System.AsyncCallbac
k, System.Object) Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginAccept(class System.AsyncCallback callback, object state)

[C#]
public IAsyncResult BeginAccept(AsyncCallback callback, object
state)

Summary

Begins an asynchronous operation to accept an incoming connection request.

Parameters

Parameter Description
callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

To retrieve the results of the operation and release resources allocated by the
System.Net.Sockets.Socket.BeginAccept method, call the
System.Net.Sockets.Socket.EndAccept method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndAccept method should be called
exactly once for each call to the System.Net.Sockets.Socket.BeginAccept
method.]

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the System.Net.Sockets.Socket.EndAccept
method.

 15

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

To determine the connection status, check the
System.Net.Sockets.Socket.Connected property, or use either the
System.Net.Sockets.Socket.Poll or System.Net.Sockets.Socket.Select
method.

[Note: For more information, see System.Net.Sockets.Socket.Accept, the
synchronous version of this method.

]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accepting the
connection. [Note: For additional
information on causes of the
SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

The following excerpt from the System.Net.Sockets.Socket class overview
example outlines an asynchronous accept operation.

[C#]

public class Server
{
 static void Main()
 {
 .
 .
 .
 listenSocket.BeginAccept(
 new AsyncCallback(Server.acceptCallback),
 listenSocket);
 .
 .
 .

 16

 // EndAccept can be called here
 .
 .
 .
 }

 public static void
 acceptCallback(IAsyncResult asyncAccept)
 {
 Socket listenSocket =
 (Socket)asyncAccept.AsyncState;

 Socket serverSocket =
 listenSocket.EndAccept(asyncAccept);

 serverSocket.BeginReceive(...);
 .
 .
 .
 }
}

 17

Socket.BeginConnect(System.Net.EndPoin
t, System.AsyncCallback, System.Object)
Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginConnect(class System.Net.EndPoint remoteEP, class
System.AsyncCallback callback, object state)

[C#]
public IAsyncResult BeginConnect(EndPoint remoteEP, AsyncCallback
callback, object state)

Summary

Begins an asynchronous operation to associate the current instance with a
remote endpoint.

Parameters

Parameter Description

remoteEP The System.Net.EndPoint associated with the socket to connect to.

callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

To release resources allocated by the
System.Net.Sockets.Socket.BeginConnect method, call the
System.Net.Sockets.Socket.EndConnect method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndConnect method should be called
exactly once for each call to the System.Net.Sockets.Socket.BeginConnect
method.]

 18

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the System.Net.Sockets.Socket.EndConnect
method.

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

To determine the connection status, check the
System.Net.Sockets.Socket.Connected property, or use either the
System.Net.Sockets.Socket.Poll or System.Net.Sockets.Socket.Select
method.

[Note: For more information, see System.Net.Sockets.Socket.Connect, the
synchronous version of this method.

]

Exceptions

Exception Condition

System.ArgumentNullException remoteEP is null.

System.Net.Sockets.SocketException

An error occurred while making the
connection. [Note: For additional
information on causes of the
SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException
A caller higher in the call stack does not
have permission for the requested
operation.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.BeginConnect method, see the
System.Net.Sockets.Socket class overview.

 19

Permissions

Permission Description

System.Net.SocketPermission

Requires permission to make a connection to the
endpoint defined by remoteEP. [Note: See
System.Net.NetworkAccess.Connect.]

 20

 Socket.BeginReceive(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.AsyncCallback, System.Object)
Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginReceive(class System.Byte[] buffer, int32 offset, int32 size,
valuetype System.Net.Sockets.SocketFlags socketFlags, class
System.AsyncCallback callback, object state)

[C#]
public IAsyncResult BeginReceive(byte[] buffer, int offset, int
size, SocketFlags socketFlags, AsyncCallback callback, object state)

Summary

Begins an asynchronous operation to receive data from a socket.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

offset A System.Int32 containing the zero-based position in buffer to begin
storing the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

 21

To retrieve the results of the operation and release resources allocated by the
System.Net.Sockets.Socket.BeginReceive method, call the
System.Net.Sockets.Socket.EndReceive method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndReceive method should be called
exactly once for each call to the System.Net.Sockets.Socket.BeginReceive
method.]

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the System.Net.Sockets.Socket.EndReceive
method.

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

[Note: For more information, see System.Net.Sockets.Socket.Receive, the
synchronous version of this method.

]

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException
socketFlags is not a valid combination of
values.

-or-

 22

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.BeginReceive method, see the
System.Net.Sockets.Socket class overview.

 23

 Socket.BeginReceiveFrom(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint&,
System.AsyncCallback, System.Object)
Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginReceiveFrom(class System.Byte[] buffer, int32 offset, int32
size, valuetype System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint& remoteEP, class System.AsyncCallback callback,
object state)

[C#]
public IAsyncResult BeginReceiveFrom(byte[] buffer, int offset, int
size, SocketFlags socketFlags, ref EndPoint remoteEP, AsyncCallback
callback, object state)

Summary

Begins an asynchronous operation to receive data from a socket and, for
connectionless protocols, store the endpoint associated with the socket that sent
the data.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

offset A System.Int32 containing the zero-based position in buffer to begin
storing the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP
An instance of a class derived from the System.Net.EndPoint class,
which contains the endpoint associated with the socket that sent the
data.

callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

 24

Return Value

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

To retrieve the results of the operation and release resources allocated by the
System.Net.Sockets.Socket.BeginReceiveFrom method, call the
System.Net.Sockets.Socket.EndReceiveFrom method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndReceiveFrom method should be
called exactly once for each call to the
System.Net.Sockets.Socket.BeginReceiveFrom method.]

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the
System.Net.Sockets.Socket.EndReceiveFrom method.

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

[Note: For more information, see System.Net.Sockets.Socket.ReceiveFrom,
the synchronous version of this method.

]

Exceptions

Exception Condition

System.ArgumentNullException

buffer is null.

-or-

remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

 25

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
see System.Net.Sockets.Socket.

Permissions

Permission Description

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint
property of the current instance. See
System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 26

 27

 Socket.BeginSend(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.AsyncCallback, System.Object)
Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginSend(class System.Byte[] buffer, int32 offset, int32 size,
valuetype System.Net.Sockets.SocketFlags socketFlags, class
System.AsyncCallback callback, object state)

[C#]
public IAsyncResult BeginSend(byte[] buffer, int offset, int size,
SocketFlags socketFlags, AsyncCallback callback, object state)

Summary

Begins an asynchronous operation to send data to a connected socket.

Parameters

Parameter Description
buffer A System.Byte array storing data to send to the socket.

offset A System.Int32 containing the zero-based position in buffer containing
the starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

Return Value

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

 28

To retrieve the results of the operation and release resources allocated by the
System.Net.Sockets.Socket.BeginSend method, call the
System.Net.Sockets.Socket.EndSend method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndSend method should be called
exactly once for each call to the System.Net.Sockets.Socket.BeginSend
method.]

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the System.Net.Sockets.Socket.EndSend
method.

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

[Note: For more information, see System.Net.Sockets.Socket.Send, the
synchronous version of this method.

]

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException
socketFlags is not a valid combination of
values.

-or-

 29

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.BeginSend method, see the
System.Net.Sockets.Socket class overview.

 30

 Socket.BeginSendTo(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint,
System.AsyncCallback, System.Object)
Method

[ILAsm]
.method public hidebysig instance class System.IAsyncResult
BeginSendTo(class System.Byte[] buffer, int32 offset, int32 size,
valuetype System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint remoteEP, class System.AsyncCallback callback,
object state)

[C#]
public IAsyncResult BeginSendTo(byte[] buffer, int offset, int size,
SocketFlags socketFlags, EndPoint remoteEP, AsyncCallback callback,
object state)

Summary

Begins an asynchronous operation to send data to the socket associated with the
specified endpoint.

Parameters

Parameter Description
buffer A System.Byte array storing data to send to the socket.

offset A System.Int32 containing the zero-based position in buffer to begin
sending data.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP
The System.Net.EndPoint associated with the socket to receive the
data.

callback A System.AsyncCallback delegate, or null.
state An application-defined object, or null.

Return Value

 31

A System.IAsyncResult instance that contains information about the
asynchronous operation.

Description

To retrieve the results of the operation and release resources allocated by the
System.Net.Sockets.Socket.BeginSendTo method, call the
System.Net.Sockets.Socket.EndSendTo method, and specify the
System.IAsyncResult object returned by this method.

[Note: The System.Net.Sockets.Socket.EndSendTo method should be called
exactly once for each call to the System.Net.Sockets.Socket.BeginSendTo
method.]

If the callback parameter is not null, the method referenced by callback is
invoked when the asynchronous operation completes. The System.IAsyncResult
object returned by this method is passed as the argument to the method
referenced by callback. The method referenced by callback can retrieve the
results of the operation by calling the System.Net.Sockets.Socket.EndSendTo
method.

The state parameter can be any object that the caller wishes to have available
for the duration of the asynchronous operation. This object is available via the
System.IAsyncResult.AsyncState property of the object returned by this
method.

[Note: For more information, see System.Net.Sockets.Socket.SendTo, the
synchronous version of this method.

]

Exceptions

Exception Condition

System.ArgumentNullException

buffer is null.

-or-

remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

 32

size < 0.

-or-

size > buffer.Length - offset.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
see the System.Net.Sockets.Socket class overview.

Permissions

Permission Description

System.Net.SocketPermission

Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 33

 Socket.Bind(System.Net.EndPoint)
Method

[ILAsm]
.method public hidebysig instance void Bind(class
System.Net.EndPoint localEP)

[C#]
public void Bind(EndPoint localEP)

Summary

Associates the current instance with a local endpoint.

Parameters

Parameter Description

localEP The local System.Net.EndPoint to be associated with the socket.

Description

This method sets the System.Net.Sockets.Socket.LocalEndPoint property of
the current instance to localEP.

[Note: For connection-oriented protocols, this method is generally used only on
the server-side and is required to be called before the first call to the
System.Net.Sockets.Socket.Listen method. On the client-side, binding is
usually performed implicitly by the System.Net.Sockets.Socket.Connect
method.

For connectionless protocols, the
System.Net.Sockets.Socket.ConnectSystem.Net.Sockets.Socket.SendTo,
and System.Net.Sockets.Socket.BeginSendTo methods bind the current
instance to the local endpoint if the current instance has not previously been
bound.

]

Exceptions

Exception Condition
System.ArgumentNullException localEP is null.

System.Net.Sockets.SocketException
An error occurred while accessing the
socket. [Note: For additional information

 34

on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permission.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections on the
endpoint defined by localEP. See
System.Net.NetworkAccess.Accept.

 35

 Socket.Close() Method

[ILAsm]
.method public hidebysig instance void Close()

[C#]
public void Close()

Summary

Closes the current instance and releases all managed and unmanaged resources
allocated by the current instance.

Description

This method calls the System.Net.Sockets.Socket.Dispose(System.Boolean)
method with the argument set to true, which frees both managed and
unmanaged resources used by the current instance.

The socket attempts to perform a graceful closure when the
System.Net.Sockets.SocketOptionName.Linger socket option is enabled and
set to a non-zero linger time. In all other cases, closure is forced and any
pending data is lost.

 36

 Socket.Connect(System.Net.EndPoint)
Method

[ILAsm]
.method public hidebysig instance void Connect(class
System.Net.EndPoint remoteEP)

[C#]
public void Connect(EndPoint remoteEP)

Summary

Associates the current instance with a remote endpoint.

Parameters

Parameter Description

remoteEP The System.Net.EndPoint associated with the socket to connect to.

Description

This method sets the System.Net.Sockets.Socket.RemoteEndPoint property of
the current instance to remoteEP.

[Note: For connection-oriented protocols, this method establishes a connection
between the current instance and the socket associated with remoteEP. This
method is used only on the client-side. The
System.Net.Sockets.Socket.Accept method establishes the connection on the
server-side. Once the connection has been made, data can be sent using the
System.Net.Sockets.Socket.Send method, and received using the
System.Net.Sockets.Socket.Receive method.

For connectionless protocols, the System.Net.Sockets.Socket.Connect method
can be used from both client and server-sides, allowing the use of the
System.Net.Sockets.Socket.Send method instead of the
System.Net.Sockets.Socket.SendTo method. The
System.Net.Sockets.Socket.RemoteEndPoint property is set to remoteEP and
the System.Net.Sockets.Socket.LocalEndPoint property is set to a value
determined by the protocol; however, a connection is not established.
Subsequent data is required to be received on the endpoint set in the
System.Net.Sockets.Socket.LocalEndPoint property.

]

Exceptions

 37

Exception Condition
System.ArgumentNullException remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permission.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 38

 Socket.Dispose(System.Boolean) Method

[ILAsm]
.method family hidebysig virtual void Dispose(bool disposing)

[C#]
protected virtual void Dispose(bool disposing)

Summary

Closes the current instance, releases the unmanaged resources allocated by the
current instance, and optionally releases the managed resources.

Parameters

Parameter Description

disposing A System.Boolean. Specify true to release both managed and
unmanaged resources; false to release only unmanaged resources.

Behaviors

This method closes the current System.Net.Sockets.Socket instance and
releases all unmanaged resources allocated by the current instance. When
disposing is true, this method also releases all resources held by any managed
objects allocated by the current instance.

Default

This method closes the current System.Net.Sockets.Socket instance but does
not release any managed resources.

How and When to Override

The System.Net.Sockets.Socket.Dispose method can be called multiple times
by other objects. When overriding this method, do not reference objects that
have been previously disposed in an earlier call.

Usage

 39

Use this method to release resources allocated by the current instance.

 40

 Socket.EndAccept(System.IAsyncResult)
Method

[ILAsm]
.method public hidebysig instance class System.Net.Sockets.Socket
EndAccept(class System.IAsyncResult asyncResult)

[C#]
public Socket EndAccept(IAsyncResult asyncResult)

Summary

Ends an asynchronous call to accept an incoming connection request.

Parameters

Parameter Description

asyncResult A System.IAsyncResult object that holds the state information for the
asynchronous operation.

Return Value

A new connected System.Net.Sockets.Socket instance.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndAccept method completes an
asynchronous request that was started with a call to the
System.Net.Sockets.Socket.BeginAccept method. The object specified for the
asyncResult parameter is required to be the same object as was returned by the
System.Net.Sockets.Socket.BeginAccept method call that began the request.

If the System.Net.Sockets.Socket.EndAccept method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginAccept method, the asyncResult parameter
is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.

System.ArgumentException asyncResult was not returned by the
current instance from a call to the

 41

System.Net.Sockets.Socket.BeginAccept
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndAccept
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation.
[Note: For additional information on causes
of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.EndAccept method, see the
System.Net.Sockets.Socket class overview.

 42

 Socket.EndConnect(System.IAsyncResult)
Method

[ILAsm]
.method public hidebysig instance void EndConnect(class
System.IAsyncResult asyncResult)

[C#]
public void EndConnect(IAsyncResult asyncResult)

Summary

Ends an asynchronous call to associate the current instance with a remote
endpoint.

Parameters

Parameter Description

asyncResult A System.IAsyncResult object that holds the state information for the
asynchronous operation.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndConnect method completes an
asynchronous request that was started with a call to the
System.Net.Sockets.Socket.BeginConnect method. The object specified for
the asyncResult parameter is required to be the same object as was returned by
the System.Net.Sockets.Socket.BeginConnect method call that began the
request.

If the System.Net.Sockets.Socket.EndConnect method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginConnect method, the asyncResult parameter
is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.

System.ArgumentException
asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginConnect
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndConnect

 43

was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation.
[Note: For additional information on causes
of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.EndConnect method, see the
System.Net.Sockets.Socket class overview.

 44

 Socket.EndReceive(System.IAsyncResult)
Method

[ILAsm]
.method public hidebysig instance int32 EndReceive(class
System.IAsyncResult asyncResult)

[C#]
public int EndReceive(IAsyncResult asyncResult)

Summary

Ends an asynchronous call to receive data from a socket.

Parameters

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndReceive method completes an
asynchronous request that was started with a call to the
System.Net.Sockets.Socket.BeginReceive method. The object specified for
the asyncResult parameter is required to be the same object as was returned by
the System.Net.Sockets.Socket.BeginReceive method call that began the
request.

If the System.Net.Sockets.Socket.EndReceive method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginReceive method, the asyncResult parameter
is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.

 45

System.ArgumentException
asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginReceive
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndReceive
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation.
[Note: For additional information on causes
of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.EndReceive method, see the
System.Net.Sockets.Socket class overview.

 46

Socket.EndReceiveFrom(System.IAsyncRe
sult, System.Net.EndPoint&) Method

[ILAsm]
.method public hidebysig instance int32 EndReceiveFrom(class
System.IAsyncResult asyncResult, class System.Net.EndPoint&
endPoint)

[C#]
public int EndReceiveFrom(IAsyncResult asyncResult, ref EndPoint
endPoint)

Summary

Ends an asynchronous call to receive data from a socket and store the endpoint
associated with the socket that sent the data.

Parameters

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

endPoint A reference to the System.Net.EndPoint associated with the socket
that sent the data.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndReceiveFrom method completes an
asynchronous request that was started with a call to the
System.Net.Sockets.Socket.BeginReceiveFrom method. The object specified
for the asyncResult parameter is required to be the same object as was returned
by the System.Net.Sockets.Socket.BeginReceiveFrom method call that began
the request.

If the System.Net.Sockets.Socket.EndReceiveFrom method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginReceiveFrom method, the asyncResult
parameter is the System.IAsyncResult argument passed to the delegate's
method.

 47

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.

System.ArgumentException
asyncResult was not returned by the current
instance from a call to the
System.Net.Sockets.Socket.BeginReceiveFrom
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndReceiveFrom
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation. [Note:
For additional information on causes of the
SocketException, see the
System.Net.Sockets.SocketException class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
see the System.Net.Sockets.Socket class overview.

 48

 Socket.EndSend(System.IAsyncResult)
Method

[ILAsm]
.method public hidebysig instance int32 EndSend(class
System.IAsyncResult asyncResult)

[C#]
public int EndSend(IAsyncResult asyncResult)

Summary

Ends an asynchronous call to send data to a connected socket.

Parameters

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndSend method completes an asynchronous
request that was started with a call to the
System.Net.Sockets.Socket.BeginSend method. The object specified for the
asyncResult parameter is required to be the same object as was returned by the
System.Net.Sockets.Socket.BeginSend method call that began the request.

If the System.Net.Sockets.Socket.EndSend method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginSend method, the asyncResult parameter is
the System.IAsyncResult argument passed to the delegate's method.

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.
System.ArgumentException asyncResult was not returned by the

 49

current instance from a call to the
System.Net.Sockets.Socket.BeginSend
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndSend
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation.
[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
which uses the System.Net.Sockets.Socket.EndSend method, see the
System.Net.Sockets.Socket class overview.

 50

 Socket.EndSendTo(System.IAsyncResult)
Method

[ILAsm]
.method public hidebysig instance int32 EndSendTo(class
System.IAsyncResult asyncResult)

[C#]
public int EndSendTo(IAsyncResult asyncResult)

Summary

Ends an asynchronous call to send data to a socket associated with a specified
endpoint.

Parameters

Parameter Description

asyncResult
A System.IAsyncResult object that holds the state information for the
asynchronous operation.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method blocks if the asynchronous operation has not completed.

The System.Net.Sockets.Socket.EndSendTo method completes an
asynchronous request that was started with a call to the
System.Net.Sockets.Socket.BeginSendTo method. The object specified for the
asyncResult parameter is required to be the same object as was returned by the
System.Net.Sockets.Socket.BeginSendTo method call that began the request.

If the System.Net.Sockets.Socket.EndSendTo method is invoked via the
System.AsyncCallback delegate specified to the
System.Net.Sockets.Socket.BeginSendTo method, the asyncResult parameter
is the System.IAsyncResult argument passed to the delegate's method.

Exceptions

Exception Condition
System.ArgumentNullException asyncResult is null.

 51

System.ArgumentException
asyncResult was not returned by the
current instance from a call to the
System.Net.Sockets.Socket.SendTo
method.

System.InvalidOperationException System.Net.Sockets.Socket.EndSendTo
was previously called for this operation.

System.Net.Sockets.SocketException

An error occurred during the operation.
[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

For an outline of an asynchronous operation, see the
System.Net.Sockets.Socket.BeginAccept method. For the complete example,
see the System.Net.Sockets.Socket class overview.

 52

 Socket.Finalize() Method

[ILAsm]
.method family hidebysig virtual void Finalize()

[C#]
~Socket()

Summary

Closes the current instance and releases unmanaged resources allocated by the
current instance.

Description

[Note: Application code does not call this method; it is automatically invoked
during garbage collection unless finalization by the garbage collector has been
disabled. For more information, see System.GC.SuppressFinalize, and
System.Object.Finalize.

This method calls System.Net.Sockets.NetworkStream.Dispose(false) to free
unmanaged resources used by the current instance.

This method overrides System.Object.Finalize.

]

 53

 Socket.GetHashCode() Method

[ILAsm]
.method public hidebysig virtual int32 GetHashCode()

[C#]
public override int GetHashCode()

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for the current instance.

Description

The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object.GetHashCode.]

 54

Socket.GetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName)
Method

[ILAsm]
.method public hidebysig instance object GetSocketOption(valuetype
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype
System.Net.Sockets.SocketOptionName optionName)

[C#]
public object GetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName)

Summary

Retrieves an object containing the value of the specified socket option.

Parameters

Parameter Description

optionLevel One of the values defined in the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName One of the values defined in the
System.Net.Sockets.SocketOptionName enumeration.

Return Value

The following table describes the values returned by this method.

optionName Return value

Linger
An instance of the
System.Net.Sockets.LingerOption
class.

AddMembership

-or-

DropMembership

An instance of the
System.Net.Sockets.MulticastOption
class.

All other values defined in the
System.Net.Sockets.SocketOptionName
enumeration.

A System.Int32 containing the value of
the option.

 55

Description

Socket options determine the behavior of the current instance.

optionLevel and optionName are not independent. See the
System.Net.Sockets.Socket.SetSocketOption(SocketOptionLevel,
SocketOptionName, Int32) method for a listing of the values of the
System.Net.Sockets.SocketOptionName enumeration grouped by
System.Net.Sockets.SocketOptionLevel.

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Example

The following example gets the state of the linger option and the size of the
receive buffer, changes the values of both, then gets the new values.

[C#]

using System;
using System.Net.Sockets;

class OptionTest{

 public static void Main() {

 // Get the current option values.
 Socket someSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 LingerOption lingerOp =
 (LingerOption)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger);

 56

 int receiveBuffer =
 (int)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(
 "Linger option is {0} and set to {1} seconds.",
 lingerOp.Enabled.ToString(),
 lingerOp.LingerTime.ToString());

 Console.WriteLine(
 "Size of the receive buffer is {0} bytes.",
 receiveBuffer.ToString());

 // Change the options.
 lingerOp = new LingerOption(true, 10);
 someSocket.SetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger,
 lingerOp);

 someSocket.SetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer,
 2048);

 Console.WriteLine(
 "The SetSocketOption method has been called.");

 // Get the new option values.
 lingerOp =
 (LingerOption)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger);

 receiveBuffer =
 (int)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(
 "Linger option is now {0} and set to {1} seconds.",
 lingerOp.Enabled.ToString(),
 lingerOp.LingerTime.ToString());

 Console.WriteLine(
 "Size of the receive buffer is now {0} bytes.",
 receiveBuffer.ToString());
 }
}

The output is

Linger option is False and set to 0 seconds.

 57

Size of the receive buffer is 8192 bytes.

The SetSocketOption method has been called.

Linger option is now True and set to 10 seconds.

Size of the receive buffer is now 2048 bytes.

 58

Socket.GetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName,
System.Byte[]) Method

[ILAsm]
.method public hidebysig instance void GetSocketOption(valuetype
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype
System.Net.Sockets.SocketOptionName optionName, class System.Byte[]
optionValue)

[C#]
public void GetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName, byte[] optionValue)

Summary

Retrieves the value of the specified socket option.

Parameters

Parameter Description

optionLevel One of the values defined in the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName One of the values defined in the
System.Net.Sockets.SocketOptionName enumeration.

optionValue A System.Byte array that receives the value of the specified socket
option.

Description

Socket options determine the behavior of the current instance.

Upon successful completion, the array specified by the optionValue parameter
contains the value of the specified socket option.

When the length of the optionValue array is smaller than the number of bytes
required to store the value of the specified socket option, a
System.Net.Sockets.SocketException exception is thrown.

Exceptions

Exception Condition

 59

System.Net.Sockets.SocketException

optionValue is too small to store the value
of the specified socket option.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 60

Socket.GetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName,
System.Int32) Method

[ILAsm]
.method public hidebysig instance class System.Byte[]
GetSocketOption(valuetype System.Net.Sockets.SocketOptionLevel
optionLevel, valuetype System.Net.Sockets.SocketOptionName
optionName, int32 optionLength)

[C#]
public byte[] GetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName, int optionLength)

Summary

Retrieves the value of the specified socket option.

Parameters

Parameter Description

optionLevel One of the values defined in the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName One of the values defined in the
System.Net.Sockets.SocketOptionName enumeration.

optionLength A System.Int32 containing the maximum length, in bytes, of the value
of the specified socket option.

Return Value

A System.Byte array containing the value of the specified socket option.

Description

Socket options determine the behavior of the current instance.

The optionLength parameter is used to allocate an array to store the value of the
specified option. When this value is smaller than the number of bytes required to
store the value of the specified option, a System.Net.Sockets.SocketException
exception is thrown. When this value is greater than or equal to the number of
bytes required to store the value of the specified option, the array returned by
this method is allocated to be exactly the required length.

 61

Exceptions

Exception Condition

System.Net.Sockets.SocketException

optionLength is smaller than the number of
bytes required to store the value of the
specified socket option.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 62

 Socket.IOControl(System.Int32,
System.Byte[], System.Byte[]) Method

[ILAsm]
.method public hidebysig instance int32 IOControl(int32
ioControlCode, class System.Byte[] optionInValue, class
System.Byte[] optionOutValue)

[C#]
public int IOControl(int ioControlCode, byte[] optionInValue, byte[]
optionOutValue)

Summary

Provides low-level access to the socket, the transport protocol, or the
communications subsystem.

Parameters

Parameter Description

ioControlCode A System.Int32 containing the control code of the operation to
perform.

optionInValue A System.Byte array containing the input data required by the
operation.

optionOutValue A System.Byte array containing the output data supplied by the
operation.

Return Value

A System.Int32 containing the length of the optionOutValue array after the
method returns.

Description

If an attempt is made to change the blocking mode of the current instance, an
exception is thrown. Use the System.Net.Sockets.Socket.Blocking property to
change the blocking mode.

The control codes and their requirements are implementation defined. Do not use
this method if platform independence is a requirement.

[Note: Input data is not required for all control codes. Output data is not supplied
by all control codes and, if not supplied, the return value is 0.]

 63

Exceptions

Exception Condition

System.InvalidOperationException

An attempt was made to change the
blocking mode.

[Note: Use the
System.Net.Sockets.Socket.Blocking
property to change the blocking mode.

]

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

Example

The following example gets the number of bytes of available data to be read and
writes the result to the console on a Windows system. The remote endpoint
(remoteEndpoint) to connect to might need to be changed to a value that is valid
on the current system.

[C#]

using System;
using System.Net;
using System.Net.Sockets;

class App {

 static void Main() {

 IPAddress remoteAddress =
 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint remoteEndpoint =
 new IPEndPoint(remoteAddress, 80);

 Socket someSocket =

 64

 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 someSocket.Connect(remoteEndpoint);

 int fionRead = 0x4004667F;
 byte[]inValue = {0x00, 0x00, 0x00, 0x00};
 byte[]outValue = {0x00, 0x00, 0x00, 0x00};

 someSocket.IOControl(fionRead, inValue, outValue);

 uint bytesAvail = BitConverter.ToUInt32(outValue, 0);

 Console.WriteLine(
 "There are {0} bytes available to be read.",
 bytesAvail.ToString());
 }
}

The output is

There are 0 bytes available to be read.

Permissions

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 65

 Socket.Listen(System.Int32) Method

[ILAsm]
.method public hidebysig instance void Listen(int32 backlog)

[C#]
public void Listen(int backlog)

Summary

Places the current instance into the listening state where it waits for incoming
connection requests.

Parameters

Parameter Description

backlog A System.Int32 containing the maximum length of the queue of
pending connections.

Description

Once this method is called, incoming connection requests are placed in a queue.
The maximum size of the queue is specified by the backlog parameter. The size
of the queue is limited to legal values by the underlying protocol. Illegal values of
the backlog parameter are replaced with a legal value, which is implementation
defined.

If a connection request arrives and the queue is full, a
System.Net.Sockets.SocketException is thrown on the client.

A socket in the listening state has no remote endpoint associated with it.
Attempting to access the System.Net.Sockets.Socket.RemoteEndPoint
property throws a System.Net.Sockets.SocketException exception.

This method is ignored if called more than once on the current instance.

[Note: This method is used only on the server-side of connection-oriented
protocols. Call the System.Net.Sockets.Socket.Bind method before this
method is called the first time. Call the System.Net.Sockets.Socket.Listen
method before the first call to the System.Net.Sockets.Socket.Accept method.

]

Exceptions

Exception Condition

 66

System.Net.Sockets.SocketException

The
System.Net.Sockets.Socket.Connected
property of the current instance is true.-
or-

Bind has not been called on the current
instance.-or-

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 67

 Socket.Poll(System.Int32,
System.Net.Sockets.SelectMode) Method

[ILAsm]
.method public hidebysig instance bool Poll(int32 microSeconds,
valuetype System.Net.Sockets.SelectMode mode)

[C#]
public bool Poll(int microSeconds, SelectMode mode)

Summary

Determines the read, write, or error status of the current instance.

Parameters

Parameter Description

microSeconds
A System.Int32 containing the time to wait for a response, in
microseconds. Set the microSeconds parameter to a negative value to
wait indefinitely for a response.

mode One of the values defined in the System.Net.Sockets.SelectMode
enumeration.

Return Value

A System.Boolean where true indicates the current instance satisfies at least
one of the conditions in the following table corresponding to the specified
System.Net.Sockets.SelectMode value; otherwise, false. false is returned if
the status of the current instance cannot be determined within the time specified
by microSeconds.

SelectMode
value Condition

SelectRead

Data is available for reading (includes out-of-band data if the
System.Net.Sockets.SocketOptionName.OutOfBandInline value
defined in the System.Net.Sockets.SocketOptionName enumeration
is set).

-or-

The socket is in the listening state with a pending connection, and the
System.Net.Sockets.Socket.Accept method has been called and is
guaranteed to succeed without blocking.

-or-

 68

The connection has been closed, reset, or terminated.

SelectWrite

Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is
being processed and the connection has succeeded.

SelectError

The System.Net.Sockets.SocketOptionName.OutOfBandInline value
defined in the System.Net.Sockets.SocketOptionName enumeration
is not set and out-of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is
being processed and the connection has failed.

Exceptions

Exception Condition

System.NotSupportedException
mode is not one of the values defined in
the System.Net.Sockets.SelectMode
enumeration.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 69

 Socket.Receive(System.Byte[],
System.Int32,
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[]
buffer, int32 size, valuetype System.Net.Sockets.SocketFlags
socketFlags)

[C#]
public int Receive(byte[] buffer, int size, SocketFlags socketFlags)

Summary

Receives data from a socket.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.
size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0,
size, socketFlags).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException
size < 0.

 70

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. See
System.Net.NetworkAccess.Accept.

 71

 Socket.Receive(System.Byte[],
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[]
buffer, valuetype System.Net.Sockets.SocketFlags socketFlags)

[C#]
public int Receive(byte[] buffer, SocketFlags socketFlags)

Summary

Receives data from a socket.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0,
buffer.Length, socketFlags).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException
socketFlags is not a valid combination of
values.

 72

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. [Note:
See System.Net.NetworkAccess.Accept.]

 73

 Socket.Receive(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[]
buffer, int32 offset, int32 size, valuetype
System.Net.Sockets.SocketFlags socketFlags)

[C#]
public int Receive(byte[] buffer, int offset, int size, SocketFlags
socketFlags)

Summary

Receives data from a socket.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

offset A System.Int32 containing the zero-based position in buffer to begin
storing the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

Return Value

A System.Int32 containing the number of bytes received.

Description

The System.Net.Sockets.Socket.LocalEndPoint property is required to be set
before this method is called.

The System.Net.Sockets.Socket.Blocking property of the socket determines
the behavior of this method when no incoming data is available. When false, the
System.Net.Sockets.SocketException exception is thrown. When true, this
method blocks and waits for data to arrive.

For System.Net.Sockets.SocketType.Stream socket types, if the remote socket

 74

was shut down gracefully, and all data was received, this method immediately
returns zero, regardless of the blocking state.

For message-oriented sockets, if the message is larger than the size of buffer,
the buffer is filled with the first part of the message, and the
System.Net.Sockets.SocketException exception is thrown. For unreliable
protocols, the excess data is lost; for reliable protocols, the data is retained by
the service provider.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part
of the socketFlags parameter and the socket is configured for in-line reception of
out-of-band (OOB) data (using the
System.Net.Sockets.SocketOptionName.OutOfBandInline socket option) and
OOB data is available, only OOB data is returned.

When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of
the socketFlags parameter, available data is copied into buffer but is not
removed from the system buffer.

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

The
System.Net.Sockets.Socket.LocalEndPoint
property was not set.

-or-

 75

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint
property of the current instance. See
System.Net.NetworkAccess.Accept.

 76

 Socket.Receive(System.Byte[]) Method

[ILAsm]
.method public hidebysig instance int32 Receive(class System.Byte[]
buffer)

[C#]
public int Receive(byte[] buffer)

Summary

Receives data from a socket.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.Receive(buffer, 0,
buffer.Length, System.Net.Sockets.SocketFlags.None).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

 77

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections. See
System.Net.NetworkAccess.Accept.

 78

 Socket.ReceiveFrom(System.Byte[],
System.Net.EndPoint&) Method

[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class
System.Byte[] buffer, class System.Net.EndPoint& remoteEP)

[C#]
public int ReceiveFrom(byte[] buffer, ref EndPoint remoteEP)

Summary

Receives data from a socket and, for connectionless protocols, stores the
endpoint associated with the socket that sent the data.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

remoteEP A reference to the System.Net.EndPoint associated with the socket
that sent the data.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer,
0, buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP).

Exceptions

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the

 79

System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from
the endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 80

 Socket.ReceiveFrom(System.Byte[],
System.Net.Sockets.SocketFlags,
System.Net.EndPoint&) Method

[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class
System.Byte[] buffer, valuetype System.Net.Sockets.SocketFlags
socketFlags, class System.Net.EndPoint& remoteEP)

[C#]
public int ReceiveFrom(byte[] buffer, SocketFlags socketFlags, ref
EndPoint remoteEP)

Summary

Receives data from a socket and, for connectionless protocols, stores the
endpoint associated with the socket that sent the data.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP A reference to the System.Net.EndPoint associated with the socket
that sent the data.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer,
0, buffer.Length, socketFlags, remoteEP).

Exceptions

Exception Condition

 81

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags specified an invalid value.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from
the endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 82

 Socket.ReceiveFrom(System.Byte[],
System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint&) Method

[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class
System.Byte[] buffer, int32 size, valuetype
System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint& remoteEP)

[C#]
public int ReceiveFrom(byte[] buffer, int size, SocketFlags
socketFlags, ref EndPoint remoteEP)

Summary

Receives data from a socket and, for connectionless protocols, stores the
endpoint associated with the socket that sent the data.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.
size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP A reference to the System.Net.EndPoint associated with the socket
that sent the data.

Return Value

A System.Int32 containing the number of bytes received.

Description

This method is equivalent to System.Net.Sockets.Socket.ReceiveFrom(buffer,
0, size, socketFlags, remoteEP).

 83

Exceptions

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to accept connections from
the endpoint defined by remoteEP. See
System.Net.NetworkAccess.Accept.

 84

 Socket.ReceiveFrom(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint&) Method

[ILAsm]
.method public hidebysig instance int32 ReceiveFrom(class
System.Byte[] buffer, int32 offset, int32 size, valuetype
System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint& remoteEP)

[C#]
public int ReceiveFrom(byte[] buffer, int offset, int size,
SocketFlags socketFlags, ref EndPoint remoteEP)

Summary

Receives data from a socket and, for connectionless protocols, stores the
endpoint associated with the socket that sent the data.

Parameters

Parameter Description
buffer A System.Byte array to store data received from the socket.

offset A System.Int32 containing the zero-based position in buffer to begin
storing the received data.

size A System.Int32 containing the number of bytes to receive.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.OutOfBand, or
System.Net.Sockets.SocketFlags.Peek.

remoteEP A reference to the System.Net.EndPoint associated with the socket
that sent the data.

Return Value

A System.Int32 containing the number of bytes received.

Description

For connectionless protocols, when this method successfully completes, remoteEP
contains the endpoint associated with the socket that sent the data.

 85

For connection-oriented protocols, remoteEP is left unchanged.

The System.Net.Sockets.Socket.LocalEndPoint property is required to be set
before this method is called or a System.Net.Sockets.SocketException is
thrown.

The System.Net.Sockets.Socket.Blocking property of the socket determines
the behavior of this method when no incoming data is available. When false, the
System.Net.Sockets.SocketException exception is thrown. When true, this
method blocks and waits for data to arrive.

For System.Net.Sockets.SocketType.Stream socket types, if the remote socket
was shut down gracefully, and all data was received, this method immediately
returns zero, regardless of the blocking state.

For message-oriented sockets, if the message is larger than the size of buffer,
the buffer is filled with the first part of the message, and the
System.Net.Sockets.SocketException exception is thrown. For unreliable
protocols, the excess data is lost; for reliable protocols, the data is retained by
the service provider.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part
of thesocketFlags parameter and the socket is configured for in-line reception of
out-of-band (OOB) data (using the
System.Net.Sockets.SocketOptionName.OutOfBandInline socket option) and
OOB data is available, only OOB data is returned.

When the System.Net.Sockets.SocketFlags.Peek flag is specified as part of
the socketFlags parameter, available data is copied into buffer but is not
removed from the system buffer.

Exceptions

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

 86

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

The
System.Net.Sockets.Socket.LocalEndPoint
property was not set.

-or-

An error occurred while accessing the socket.

[Note: For additional information on causes of
the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission

Requires permission to accept a connection on the
endpoint defined by the
System.Net.Sockets.Socket.LocalEndPoint
property of the current instance. See
System.Net.NetworkAccess.Accept.

Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 87

 Socket.Select(System.Collections.IList,
System.Collections.IList,
System.Collections.IList, System.Int32)
Method

[ILAsm]
.method public hidebysig static void Select(class
System.Collections.IList checkRead, class System.Collections.IList
checkWrite, class System.Collections.IList checkError, int32
microSeconds)

[C#]
public static void Select(IList checkRead, IList checkWrite, IList
checkError, int microSeconds)

Summary

Determines the read, write, or error status of a set of
System.Net.Sockets.Socket instances.

Parameters

Parameter Description

checkRead A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for read status.

checkWrite A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for write status.

checkError A System.Collections.IList object containing the
System.Net.Sockets.Socket instances to check for error status.

microSeconds
A System.Int32 that specifies the time to wait for a response, in
microseconds. Specify a negative value to wait indefinitely for the
status to be determined.

Description

Upon successful completion, this method removes all
System.Net.Sockets.Socket instances from the specified list that do not satisfy
one of the conditions associated with that list. The following table describes the
conditions for each list.

List Condition to remain in list

checkRead
Data is available for reading (includes out-of-band data if the
System.Net.Sockets.SocketOptionName.OutOfBandInline value
defined in the System.Net.Sockets.SocketOptionName enumeration is

 88

set).

-or-

The socket is in the listening state with a pending connection, and the
System.Net.Sockets.Socket.Accept method has been called and is
guaranteed to succeed without blocking.

-or-

The connection has been closed, reset, or terminated.

checkWrite

Data can be sent.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has succeeded.

checkError

The System.Net.Sockets.SocketOptionName.OutOfBandInline value
defined in the System.Net.Sockets.SocketOptionName enumeration is
not set and out-of-band data is available.

-or-

A non-blocking System.Net.Sockets.Socket.Connect method is being
processed and the connection has failed.

[Note: To determine the status of a specific System.Net.Sockets.Socket
instance, check whether the instance remains in the list after the method
returns.]

When the method cannot determine the status of all the
System.Net.Sockets.Socket instances within the time specified in the
microseconds parameter, the method removes all the
System.Net.Sockets.Socket instances from all the lists and returns.

At least one of checkRead, checkWrite, or checkError, is required to contain at
least one System.Net.Sockets.Socket instance. The other parameters can be
empty or null.

Exceptions

Exception Condition
System.ArgumentNullException All of the following parameters are null or

 89

empty: checkRead, checkWrite, and
checkError.

System.Net.Sockets.SocketException

An error occurred while accessing one of
the sockets. [Note: For additional
information on causes of the
SocketException, see the
System.Net.Sockets.SocketException
class.]

Example

The following example determines the status of the socket instance named
socket3 and writes the result to the console.

[C#]

using System;
using System.Collections;
using System.Net.Sockets;

class SelectTest {

 public static void Main() {

 Socket socket1 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 Socket socket2 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 Socket socket3 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 ArrayList readList = new ArrayList();
 ArrayList writeList = new ArrayList();
 ArrayList errorList = new ArrayList();

 readList.Add(socket1);
 readList.Add(socket2);
 readList.Add(socket3);
 errorList.Add(socket1);
 errorList.Add(socket3);

 // readList.Contains(Socket3) returns true
 // if Socket3 is in ReadList.
 Console.WriteLine(

 90

 "socket3 is placed in readList and errorList.");
 Console.WriteLine(
 "socket3 is {0}in readList.",
 readList.Contains(socket3) ? "": "not ");
 Console.WriteLine(
 "socket3 is {0}in writeList.",
 writeList.Contains(socket3) ? "": "not ");
 Console.WriteLine(
 "socket3 is {0}in errorList.",
 errorList.Contains(socket3) ? "": "not ");

 Socket.Select(readList, writeList, errorList, 10);
 Console.WriteLine("The Select method has been called.");
 Console.WriteLine(
 "socket3 is {0}in readList.",
 readList.Contains(socket3) ? "": "not ");
 Console.WriteLine(
 "socket3 is {0}in writeList.",
 writeList.Contains(socket3) ? "": "not ");
 Console.WriteLine(
 "socket3 is {0}in errorList.",
 errorList.Contains(socket3) ? "": "not ");
 }
}

The output is

socket3 is placed in readList and errorList.

socket3 is in readList.

socket3 is not in writeList.

socket3 is in errorList.

The Select method has been called.

socket3 is not in readList.

socket3 is not in writeList.

socket3 is not in errorList.

 91

 Socket.Send(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[]
buffer, int32 offset, int32 size, valuetype
System.Net.Sockets.SocketFlags socketFlags)

[C#]
public int Send(byte[] buffer, int offset, int size, SocketFlags
socketFlags)

Summary

Sends data to a connected socket.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

offset A System.Int32 that specifies the zero-based position in buffer that is
the starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.

Description

For connection-oriented protocols, the
System.Net.Sockets.Socket.LocalEndPoint property of the current instance is
required to be set before calling this method.

For connectionless protocols, calling the System.Net.Sockets.Socket.Connect
methods sets the System.Net.Sockets.Socket.RemoteEndPoint property and
allows the System.Net.Sockets.Socket.Send method to be used instead of the
System.Net.Sockets.Socket.SendTo method.

When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part

 92

of the socketFlags parameter, the sent data is not routed.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part
of the socketFlags parameter, only out-of-band (OOB) data is sent.

When the System.Net.Sockets.Socket.Blocking property of the current
instance is set to true and buffer space is not available within the underlying
protocol, this method blocks.

For message-oriented sockets, when size is greater than the maximum message
size of the underlying protocol, no data is sent and the
System.Net.Sockets.SocketException exception is thrown.

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

 93

System.ObjectDisposedException The current instance has been disposed.

 94

 Socket.Send(System.Byte[]) Method

[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[]
buffer)

[C#]
public int Send(byte[] buffer)

Summary

Sends data to a connected socket.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0,
buffer.Length, System.Net.Sockets.SocketFlags.None).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

 95

System.ObjectDisposedException The current instance has been disposed.

 96

 Socket.Send(System.Byte[],
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[]
buffer, valuetype System.Net.Sockets.SocketFlags socketFlags)

[C#]
public int Send(byte[] buffer, SocketFlags socketFlags)

Summary

Sends data to a connected socket.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0,
buffer.Length, socketFlags).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException
socketFlags is not a valid combination of
values.

 97

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 98

 Socket.Send(System.Byte[],
System.Int32,
System.Net.Sockets.SocketFlags) Method

[ILAsm]
.method public hidebysig instance int32 Send(class System.Byte[]
buffer, int32 size, valuetype System.Net.Sockets.SocketFlags
socketFlags)

[C#]
public int Send(byte[] buffer, int size, SocketFlags socketFlags)

Summary

Sends data to a connected socket.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.
size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.Send(buffer, 0, size,
socketFlags).

Exceptions

Exception Condition
System.ArgumentNullException buffer is null.

System.ArgumentOutOfRangeException
size < 0.

 99

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 100

 Socket.SendTo(System.Byte[],
System.Net.EndPoint) Method

[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[]
buffer, class System.Net.EndPoint remoteEP)

[C#]
public int SendTo(byte[] buffer, EndPoint remoteEP)

Summary

Sends data to the socket associated with the specified endpoint.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

remoteEP
The System.Net.EndPoint associated with the socket to receive the
data.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0,
buffer.Length, System.Net.Sockets.SocketFlags.None, remoteEP).

Exceptions

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the

 101

System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 102

 Socket.SendTo(System.Byte[],
System.Net.Sockets.SocketFlags,
System.Net.EndPoint) Method

[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[]
buffer, valuetype System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint remoteEP)

[C#]
public int SendTo(byte[] buffer, SocketFlags socketFlags, EndPoint
remoteEP)

Summary

Sends data to the socket associated with the specified endpoint.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP
The System.Net.EndPoint associated with the socket to receive the
data.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0,
buffer.Length, socketFlags, remoteEP).

Exceptions

Exception Condition

 103

System.ArgumentNullException buffer or remoteEP is null.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 104

 Socket.SendTo(System.Byte[],
System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint) Method

[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[]
buffer, int32 size, valuetype System.Net.Sockets.SocketFlags
socketFlags, class System.Net.EndPoint remoteEP)

[C#]
public int SendTo(byte[] buffer, int size, SocketFlags socketFlags,
EndPoint remoteEP)

Summary

Sends data to the socket associated with the specified endpoint.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.
size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP
The System.Net.EndPoint associated with the socket to receive the
data.

Return Value

A System.Int32 containing the number of bytes sent.

Description

This method is equivalent to System.Net.Sockets.Socket.SendTo(buffer, 0,
size, socketFlags, remoteEP).

Exceptions

 105

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

size < 0.

-or-

size > buffer.Length.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 106

 Socket.SendTo(System.Byte[],
System.Int32, System.Int32,
System.Net.Sockets.SocketFlags,
System.Net.EndPoint) Method

[ILAsm]
.method public hidebysig instance int32 SendTo(class System.Byte[]
buffer, int32 offset, int32 size, valuetype
System.Net.Sockets.SocketFlags socketFlags, class
System.Net.EndPoint remoteEP)

[C#]
public int SendTo(byte[] buffer, int offset, int size, SocketFlags
socketFlags, EndPoint remoteEP)

Summary

Sends data to the socket associated with the specified endpoint.

Parameters

Parameter Description
buffer A System.Byte array containing data to send to the socket.

offset A System.Int32 that specifies the zero-based position in buffer that is
the starting location of the data to send.

size A System.Int32 containing the number of bytes to send.

socketFlags

A bitwise combination of any of the following values defined in the
System.Net.Sockets.SocketFlags enumeration:
System.Net.Sockets.SocketFlags.None,
System.Net.Sockets.SocketFlags.DontRoute, or
System.Net.Sockets.SocketFlags.OutOfBand.

remoteEP
The System.Net.EndPoint associated with the socket to receive the
data.

Return Value

A System.Int32 containing the number of bytes sent.

Description

For connected sockets using connectionless protocols, remoteEP overrides the
endpoint specified in the System.Net.Sockets.Socket.RemoteEndPoint

 107

property.

For unconnected sockets using connectionless protocols, this method sets the
System.Net.Sockets.Socket.LocalEndPoint property of the current instance to
a value determined by the protocol. Subsequent data is required to be received
on LocalEndPoint.

When the System.Net.Sockets.SocketFlags.DontRoute flag is specified as part
of the socketFlags parameter, the sent data is not routed.

When the System.Net.Sockets.SocketFlags.OutOfBand flag is specified as part
of the socketFlags parameter, only out-of-band (OOB) data is sent.

When the System.Net.Sockets.Socket.Blocking property of the current
instance is set to true and buffer space is not available within the underlying
protocol, this method blocks.

For message-oriented sockets, when size is greater than the maximum message
size of the underlying protocol, no data is sent and the
System.Net.Sockets.SocketException exception is thrown.

For connection-oriented sockets, the remoteEP parameter is ignored.

Exceptions

Exception Condition

System.ArgumentNullException buffer or remoteEP is null.

System.ArgumentOutOfRangeException

offset < 0.

-or-

offset > buffer.Length.

-or-

size < 0.

-or-

size > buffer.Length - offset.

System.InvalidOperationException
An asynchronous call is pending and a
blocking method has been called.

System.Net.Sockets.SocketException

socketFlags is not a valid combination of
values.

-or-

 108

An error occurred while accessing the
socket.

[Note: For additional information on
causes of the SocketException, see the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have
the required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Net.SocketPermission
Requires permission to make a connection to the
endpoint defined by remoteEP. See
System.Net.NetworkAccess.Connect.

 109

Socket.SetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName,
System.Object) Method

[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype
System.Net.Sockets.SocketOptionName optionName, object optionValue)

[C#]
public void SetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName, object optionValue)

Summary

Sets the System.Net.Sockets.SocketOptionName.AddMembership,
System.Net.Sockets.SocketOptionName.DropMembership, or
System.Net.Sockets.SocketOptionName.Linger socket options.

Parameters

Parameter Description

optionLevel Either the Socket or IP member of the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName Either the Linger, AddMembership, or DropMembership member of the
System.Net.Sockets.SocketOptionName enumeration.

optionValue An instance of the System.Net.Sockets.LingerOption or
System.Net.Sockets.MulticastOption class.

Description

Socket options determine the behavior of the current instance. Multiple options
can be set on the current instance by calling this method multiple times.

The following table summarizes the valid combinations of input parameters.

optionLevel/optionName optionValue

Socket/Linger An instance of the System.Net.Sockets.LingerOption
class.

IP/AddMembership

- or -

An instance of the
System.Net.Sockets.MulticastOption class.

 110

IP/DropMembership

When setting the System.Net.Sockets.SocketOptionName.Linger option, a
System.ArgumentException exception is thrown if the
System.Net.Sockets.LingerOption.LingerTime property of the
System.Net.Sockets.LingerOption instance is less than zero or greater than
System.UInt16.MaxValue.

[Note: For more information on the
System.Net.Sockets.SocketOptionName.Linger option, see the
System.Net.Sockets.LingerOption class and the
System.Net.Sockets.Socket.Shutdown method.

For more information on the
System.Net.Sockets.SocketOptionName.AddMembership and
System.Net.Sockets.SocketOptionName.DropMembership options, see the
System.Net.Sockets.MulticastOption class.

For socket options with values of type System.Int32 or System.Boolean, see the
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOp
tionLevel, System.Net.Sockets.SocketOptionName, System.Int32) version of
this method.

]

Exceptions

Exception Condition

System.ArgumentException optionLevel, optionName, or optionValue
specified an invalid value.

System.ArgumentNullException optionValue is null.

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

 111

Permission Description

System.Security.Permissions.
SecurityPermission

The
System.Net.Sockets.SocketOptionName.AddMembership
and
System.Net.Sockets.SocketOptionName.DropMembership
options require permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 112

Socket.SetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName,
System.Byte[]) Method

[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype
System.Net.Sockets.SocketOptionName optionName, class System.Byte[]
optionValue)

[C#]
public void SetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName, byte[] optionValue)

Summary

Sets socket options with values of type Byte[].

Parameters

Parameter Description

optionLevel One of the values defined in the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName One of the values defined in the
System.Net.Sockets.SocketOptionName enumeration.

optionValue A System.Byte array containing the value of the option.

Description

Socket options determine the behavior of the current instance. Multiple options
can be set on the current instance by calling this method multiple times.

[Note: For socket options with values of type System.Int32 or System.Boolean,
see the
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOp
tionLevel, System.Net.Sockets.SocketOptionName, System.Int32) version of
this method.]

[Note: For the System.Net.Sockets.SocketOptionName.AddMembership,
System.Net.Sockets.SocketOptionName.DropMembership, or
System.Net.Sockets.SocketOptionName.Linger socket options, see the

 113

System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOp
tionLevel, System.Net.Sockets.SocketOptionName, System.Object) version
of this method.]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 114

Socket.SetSocketOption(System.Net.Sock
ets.SocketOptionLevel,
System.Net.Sockets.SocketOptionName,
System.Int32) Method

[ILAsm]
.method public hidebysig instance void SetSocketOption(valuetype
System.Net.Sockets.SocketOptionLevel optionLevel, valuetype
System.Net.Sockets.SocketOptionName optionName, int32 optionValue)

[C#]
public void SetSocketOption(SocketOptionLevel optionLevel,
SocketOptionName optionName, int optionValue)

Summary

Sets socket options with values of type System.Int32 and System.Boolean.

Parameters

Parameter Description

optionLevel One of the values defined in the
System.Net.Sockets.SocketOptionLevel enumeration.

optionName One of the values defined in the
System.Net.Sockets.SocketOptionName enumeration.

optionValue A System.Int32 containing the value of the option.

Description

Socket options determine the behavior of the current instance. Multiple options
can be set on the current instance by calling this method multiple times.

For a socket option with a System.Boolean data type, specify a non-zero
optionValue to enable the option, and an optionValue equal to zero to disable the
option.

Socket options are grouped by level of protocol support. The following tables list
the members of the System.Net.Sockets.SocketOptionName enumeration
supported by each member of the System.Net.Sockets.SocketOptionLevel
enumeration. Only members that have associated values of the System.Int32
and System.Boolean data types are listed.

The following table lists the members of the

 115

System.Net.Sockets.SocketOptionName enumeration supported by the Socket
member of the System.Net.Sockets.SocketOptionLevel enumeration. Options
that do not require permission to access unmanaged code are noted.

SocketOptionName Description

Broadcast A System.Boolean where true indicates broadcast messages
are allowed to be sent to the socket.

Debug A System.Boolean where true indicates to record debugging
information.

DontLinger
A System.Boolean where true indicates to close the socket
without lingering. This option does not require permission to
access unmanaged code.

DontRoute A System.Boolean where true indicates not to route data.

Error
A System.Int32 that contains the error code associated with
the last socket error. The error code is cleared by this option.
This option is read-only.

KeepAlive
A System.Boolean where true (the default) indicates to
enable keep-alives, which allows a connection to remain open
after a request has completed. This option does not require
permission to access unmanaged code.

OutOfBandInline A System.Boolean where true indicates to receive out-of-
band data in the normal data stream.

ReceiveBuffer
A System.Int32 that specifies the total per-socket buffer
space reserved for receives. This option does not require
permission to access unmanaged code.

ReceiveTimeout

A System.Int32 that specifies the maximum time, in
milliseconds, the System.Net.Sockets.Socket.Receive and
System.Net.Sockets.Socket.ReceiveFrom methods will block
when attempting to receive data. If data is not received within
this time, a System.Net.Sockets.SocketException exception
is thrown. This option does not require permission to access
unmanaged code.

ReuseAddress A System.Boolean where true allows the socket to be bound
to an address that is already in use.

SendBuffer
A System.Int32 that specifies the total per-socket buffer
space reserved for sends. This option does not require
permission to access unmanaged code.

SendTimeout

A System.Int32 that specifies the maximum time, in
milliseconds, the System.Net.Sockets.Socket.Send and
System.Net.Sockets.Socket.SendTo methods will block when
attempting to send data. If data is not sent within this time, a
System.Net.Sockets.SocketException exception is thrown.
This option does not require permission to access unmanaged
code.

Type One of the values defined in the
System.Net.Sockets.SocketType enumeration. This option is

 116

read-only.

The following table lists the members of the
System.Net.Sockets.SocketOptionName enumeration supported by the IP
member of the System.Net.Sockets.SocketOptionLevel enumeration. These
options require permission to access unmanaged code.

SocketOptionName Description

HeaderIncluded A System.Boolean where true indicates the application is
providing the IP header for outgoing datagrams.

IPOptions A System.Byte array that specifies IP options to be inserted
into outgoing datagrams.

IpTimeToLive
A System.Int32 that specifies the time-to-live for datagrams.
The time-to-live designates the number of networks on which
the datagram is allowed to travel before being discarded by a
router.

MulticastInterface A System.Byte array that specifies the interface for outgoing
multicast packets.

MulticastLoopback A System.Boolean where true enables multicast loopback.

MulticastTimeToLive A System.Int32 that specifies the time-to-live for multicast
datagrams.

TypeOfService A System.Int32 that specifies the type of service field in the
IP header.

UseLoopback A System.Boolean where true indicates to send a copy of the
data back to the sender.

The following table lists the members of the
System.Net.Sockets.SocketOptionName enumeration supported by the Tcp
member of the System.Net.Sockets.SocketOptionLevel enumeration. These
options do not require permission to access unmanaged code.

SocketOptionName Description

BsdUrgent
A System.Boolean where true indicates to use urgent data as
defined by IETF RFC 1222. Once enabled, this option cannot be
disabled.

Expedited
A System.Boolean where true indicates to use expedited data
as defined by IETF RFC 1222. Once enabled, this option cannot
be disabled.

NoDelay A System.Boolean where true indicates to disable the Nagle
algorithm for send coalescing.

 117

The following table lists the members of the
System.Net.Sockets.SocketOptionName enumeration supported by the Udp
member of the System.Net.Sockets.SocketOptionLevel enumeration. These
options do not require permission to access unmanaged code.

SocketOptionName Description
ChecksumCoverage A System.Boolean that specifies UDP checksum coverage.

NoChecksum A System.Boolean where true indicates to send UDP
datagrams with the checksum set to zero.

[Note: For the AddMembership, DropMembership, and Linger members of the
System.Net.Sockets.SocketOptionName enumeration, see the
System.Net.Sockets.Socket.SetSocketOption(System.Net.Sockets.SocketOp
tionLevel, System.Net.Sockets.SocketOptionName, System.Object) version
of this method.

]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.Security.SecurityException A caller in the call stack does not have the
required permissions.

System.ObjectDisposedException The current instance has been disposed.

Permissions

Permission Description

System.Security.Permissions.
SecurityPermission

Some options require permission to access unmanaged
code. All the options that do not require permission are
noted in the tables in the Description section. All options not

 118

so noted require this permission. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 119

Socket.Shutdown(System.Net.Sockets.Soc
ketShutdown) Method

[ILAsm]
.method public hidebysig instance void Shutdown(valuetype
System.Net.Sockets.SocketShutdown how)

[C#]
public void Shutdown(SocketShutdown how)

Summary

Terminates the ability to send or receive data on a connected socket.

Parameters

Parameter Description

how One of the values defined in the System.Net.Sockets.SocketShutdown
enumeration.

Description

When how is set to System.Net.Sockets.SocketShutdown.Send, the socket on
the other end of the connection is notified that the current instance will not send
any more data. If the System.Net.Sockets.Socket.Send method is
subsequently called, a System.Net.Sockets.SocketException exception is
thrown.

When how is set to System.Net.Sockets.SocketShutdown.Receive, the socket
on the other end of the connection is notified that the current instance will not
receive any more data. After all the data currently queued on the current
instance is received, any subsequent calls to the
System.Net.Sockets.Socket.Receive method cause a
System.Net.Sockets.SocketException exception to be thrown.

Setting how to System.Net.Sockets.SocketShutdown.Both terminates both
sends and receives as described above. Once this occurs, the socket cannot be
used.

[Note: To free resources allocated by the current instance, call the
System.Net.Sockets.Socket.Close method.

Expected common usage is for the System.Net.Sockets.Socket.Shutdown
method to be called before the System.Net.Sockets.Socket.Close method to
ensure that all pending data is sent or received.

 120

]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 121

 Socket.System.IDisposable.Dispose()
Method

[ILAsm]
.method private final hidebysig virtual void
System.IDisposable.Dispose()

[C#]
void IDisposable.Dispose()

Summary

Implemented to support the System.IDisposable interface. [Note: For more
information, see System.IDisposable.Dispose.]

 122

 Socket.AddressFamily Property

[ILAsm]
.property valuetype System.Net.Sockets.AddressFamily AddressFamily {
public hidebysig specialname instance valuetype
System.Net.Sockets.AddressFamily get_AddressFamily() }

[C#]
public AddressFamily AddressFamily { get; }

Summary

Gets the address family of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.AddressFamily
enumeration.

Description

This property is read-only.

This property is set by the constructor for the current instance. The value of this
property specifies the addressing scheme used by the current instance to resolve
an address.

 123

 Socket.Available Property

[ILAsm]
.property int32 Available { public hidebysig specialname instance
int32 get_Available() }

[C#]
public int Available { get; }

Summary

Gets the amount of data available to be read in a single
System.Net.Sockets.Socket.Receive or
System.Net.Sockets.Socket.ReceiveFrom call.

Property Value

A System.Int32 containing the number of bytes of data that are available to be
read.

Description

This property is read-only.

When the current instance is stream-oriented (for example, the
System.Net.Sockets.SocketType.Stream socket type), the available data is
generally the total amount of data queued on the current instance.

When the current instance is message-oriented (for example, the
System.Net.Sockets.SocketType.Dgram socket type), the available data is the
first message in the input queue.

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 124

 Socket.Blocking Property

[ILAsm]
.property bool Blocking { public hidebysig specialname instance bool
get_Blocking() public hidebysig specialname instance void
set_Blocking(bool value) }

[C#]
public bool Blocking { get; set; }

Summary

Gets or sets a System.Boolean value that indicates whether the socket is in
blocking mode.

Property Value

true indicates that the current instance is in blocking mode; false indicates that
the current instance is in non-blocking mode.

Description

Blocking is when a method waits to complete an operation before returning.
Sockets are created in blocking mode by default.

Exceptions

Exception Condition
System.ObjectDisposedException The current instance has been disposed.

 125

 Socket.Connected Property

[ILAsm]
.property bool Connected { public hidebysig specialname instance
bool get_Connected() }

[C#]
public bool Connected { get; }

Summary

Gets a System.Boolean value indicating whether the current instance is
connected.

Property Value

true indicates that the current instance was connected at the time of the last I/O
operation; false indicates that the current instance is not connected.

Description

This property is read-only.

When this property returns true, the current instance was connected at the time
of the last I/O operation; it might not still be connected. When this property
returns false, the current instance was never connected or is not currently
connected.

The current instance is considered connected when the
System.Net.Sockets.Socket.RemoteEndPoint property contains a valid
endpoint.

[Note: The System.Net.Sockets.Socket.Accept and
System.Net.Sockets.Socket.Connect methods, and their asynchronous
counterparts set this property.]

 126

 The following member must be implemented if the RuntimeInfrastructure library
is present in the implementation.

Socket.Handle Property

[ILAsm]
.property valuetype System.IntPtr Handle { public hidebysig
specialname instance valuetype System.IntPtr get_Handle() }

[C#]
public IntPtr Handle { get; }

Summary

Gets the operating system handle for the current instance.

Property Value

A System.IntPtr containing the operating system handle for the current
instance.

Description

This property is read-only.

Permissions

Permission Description

System.Security.Permissions.
SecurityPermission

Requires permission to access unmanaged code. See
System.Security.Permissions.SecurityPermissionFlag.
UnmanagedCode.

 127

 Socket.LocalEndPoint Property

[ILAsm]
.property class System.Net.EndPoint LocalEndPoint { public hidebysig
specialname instance class System.Net.EndPoint get_LocalEndPoint() }

[C#]
public EndPoint LocalEndPoint { get; }

Summary

Gets the local endpoint associated with the current instance.

Property Value

The local System.Net.EndPoint associated with the current instance.

Description

This property is read-only.

This property contains the network connection information for the current
instance.

[Note: The System.Net.Sockets.Socket.Bind and
System.Net.Sockets.Socket.Accept methods, and their asynchronous
counterparts set this property. If not previously set, the
System.Net.Sockets.Socket.Connect and
System.Net.Sockets.Socket.SendTo methods, and their asynchronous
counterparts set this property.]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 128

 129

 Socket.ProtocolType Property

[ILAsm]
.property valuetype System.Net.Sockets.ProtocolType ProtocolType {
public hidebysig specialname instance valuetype
System.Net.Sockets.ProtocolType get_ProtocolType() }

[C#]
public ProtocolType ProtocolType { get; }

Summary

Gets the protocol type of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.ProtocolType
enumeration.

Description

This property is read-only.

This property is set by the constructor for the current instance. The value of this
property specifies the protocol used by the current instance.

 130

 Socket.RemoteEndPoint Property

[ILAsm]
.property class System.Net.EndPoint RemoteEndPoint { public
hidebysig specialname instance class System.Net.EndPoint
get_RemoteEndPoint() }

[C#]
public EndPoint RemoteEndPoint { get; }

Summary

Gets the remote endpoint associated with the current instance.

Property Value

The remote System.Net.EndPoint associated with the current instance.

Description

This property is read-only.

This property contains the network connection information associated with the
socket communicating with the current instance.

There is no remote endpoint associated with a socket in the listening state. An
attempt to access the System.Net.Sockets.Socket.RemoteEndPoint property
causes a System.Net.Sockets.SocketException exception to be thrown.

[Note: The System.Net.Sockets.Socket.Accept and
System.Net.Sockets.Socket.Connect methods, and their asynchronous
counterparts set this property.]

Exceptions

Exception Condition

System.Net.Sockets.SocketException

An error occurred while accessing the
socket. [Note: For additional information
on causes of the SocketException, see
the
System.Net.Sockets.SocketException
class.]

System.ObjectDisposedException The current instance has been disposed.

 131

 132

 Socket.SocketType Property

[ILAsm]
.property valuetype System.Net.Sockets.SocketType SocketType {
public hidebysig specialname instance valuetype
System.Net.Sockets.SocketType get_SocketType() }

[C#]
public SocketType SocketType { get; }

Summary

Gets the socket type of the current instance.

Property Value

One of the values defined in the System.Net.Sockets.SocketType enumeration.

Description

This property is read-only.

This property is set by the constructor for the current instance.

