System.Type Class

[ILAsm]
.class public abstract serializable Type extends System.Object

[C#1
public abstract class Type: Object

Assembly Info:

¢ Name: mscorlib
e Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
e Version: 2.0.x.x
e Attributes:
0 CLSCompliantAttribute(true)
Summary

Provides information about a type.

Inherits From: System.Object [Note: When implementing the Reflection library,
this type inherits from System.Reflection.Memberinfo.]

Library: BCL
Thread Safety: This type is safe for multithreaded operations.
Description

The System.Type class is abstract, as is the System.Reflection.MemberInfo
class and its subclasses System.Reflection.FieldInfo,
System.Reflection.PropertyInfo, System.Reflection.MethodBase, and
System.Reflection.EventInfo. System.Reflection.ConstructorInfo and
System.Reflection.MethodInfo are subclasses of
System.Reflection.MethodBase. The runtime provides non-public
implementations of these classes. [Note: For example, System. Type.GetMethod
is typed as returning a System.Reflection.MethodInfo object. The returned
object is actually an instance of the non-public runtime type that implements
System.Reflection.MethodInfo.]

A conforming CLI program which is written to run on only the Kernel profile
cannot subclass system. Type. [Note: This only applies to conforming programs
not conforming implementations.]

A System.Type object that represents a type is unique; that is, two System. Type

object references refer to the same object if and only if they represent the same
type. This allows for comparison of System. Type objects using reference
equality.

[Note: An instance of System.Type can represent any one of the following types:

Classes
Value types
Arrays
Interfaces
Pointers

Enumerations

Constructed generic types and generic type definitions

Type arguments and type parameters of constructed generic types, generic
type definitions, and generic method definitions

The following table shows what members of a base class are returned by the
methods that return members of types, such as System. Type.GetConstructor and
System.Type.GetMethod.

Member

Type Static

Constructor |No

Field No

Event Not .
applicable

Method No

Nested Type No

Property

Not
applicable

Non-Static

No
Yes. A field is always hide-by-name-and-signature.

The common type system rule is that the inheritance of an
event is the same as that of the accessors that implement
the event. Reflection treats events as hide-by-name-and-

signature.

Yes. A method (both virtual and non-virtual) can be hide-
by-name or hide-by-name-and-signature.

No

The common type system rule is that the inheritance is the
same as that of the accessors that implement the property.
Reflection treats properties as hide-by-name-and-
signature.

For reflection, properties and events are hide-by-name-and-signature. If a property
has both a get and a set accessor in the base class, but the derived class has only a
get accessor, the derived class property hides the base class property, and the setter
on the base class will not be accessible.

]

The description of System. Type.IsGenericType contains definitions for some
important terms.

—

Type() Constructor

Summary

Constructs a new instance of the system. Type class.

—

Type.Delimiter Field

Summary

Specifies the character that separates elements in the fully qualified name of a
System. Type.

Description

This field is read-only.

—

Type.EmptyTypes Field

Summary

Returns an empty array of type System. Type.

Description
This field is read-only.

The empty System. Type array returned by this field is used to specify that
lookup methods in the System. Type class, such as System. Type.GetMethod and
System.Type.GetConstructor, search for members that do not take
parameters. [Note: For example, to locate the public instance constructor that
takes no parameters, invoke System. Type.GetConstructor
(System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Instance, null, System.Type.EmptyTypes,
null).]

—

Type.Missing Field

Summary

Represents a missing value in the System. Type information.

Description
This field is read-only.

Use the Missing field for invocation through reflection to ensure that a call will
be made with the default value of a parameter as specified in the metadata.
[Note: If the Missing field is specified for a parameter value and there is no
default value for that parameter, a System.ArgumentException is thrown.]

—

Type.Equals(System.Type) Method

Summary

Determines if the underlying system type of the current System. Type is the same
as the underlying system type of the specified System. Type.

Parameters

'The System. Type whose underlying system type is to be compared with
the underlying system type of the current System. Type.

0 ‘

Return Value

true if the underlying system type of o is the same as the underlying system
type of the current System. Type; otherwise, false.

Type.GetArrayRank() Method

Summary

Returns the number of dimensions in the current System. Type.

Return Value

A System.Int32 containing the number of dimensions in the current
System. Type.

Exceptions

|System.ArgumentException |The current System. Type is not an array.

—

Type.GetAttributeFlagsImpl() Method

Summary

When overridden in a derived type implements the System.Type.Attributes
property and returns the attributes specified for the type represented by the
current instance.

Return Value
A System.Reflection.TypeAttributes value that signifies the attributes of the
type represented by the current instance.

Behaviors
This property is read-only.

This method returns a System.Reflection.TypeAttributes value that indicates
the attributes set in the metadata of the type represented by the current
instance.

Usage

Use this property to determine the visibility, semantics, and layout format of the
type represented by the current instance. Also use this property to determine if
the type represented by the current instance has a special name.

10

—

Type.GetConstructor(System.Reflection.Bi
ndingFlags, System.Reflection.Binder,
System.Typel],
System.Reflection.ParameterModifier|[])
Method

Summary

Returns a constructor defined in the type represented by the current instance.
The parameters of the constructor match the specified argument types and
modifiers, under the specified binding constraints.

Parameters

A bitwise combination of System.Reflection.BindingFlags values that
bindingAttr |control the binding process. If zero is specified, this method returns null.

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
binder members using reflection. Specify null to use the
System.Type.DefaultBinder.

An array of System. Type objects. The elements in the array are of the
same number, in the same order, and represent the same types as the

types parameters for the constructor to be returned.

modifiers | The only defined value for this parameter is null.

Return Value

11

A System.Reflection.ConstructorInfo object that reflects the constructor that
matches the specified criteria. If an exact match does not exist, binder will
attempt to coerce the parameter types specified in types to select a match. If
binder is unable to select a match, returns null. If the type represented by the
current instance is contained in a loaded assembly, the constructor that matches
the specified criteria is not public, and the caller does not have sufficient
permissions, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
constructors to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

e Specify System.Reflection.BindingFlags.Public to include public
constructors in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
constructors (that is, private and protected constructors) in the search.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.ConstructorInfo with the type parameters replaced by the
appropriate type arguments. If the current instance represents an unassigned type
parameter of a generic type or method, this method always returns null.

Exceptions

Exception Condition

types is null, or at least one of the elements in
System.ArgumentNullException |types is null.

System.ArgumentException types has more than one dimension.

Permissions

Permission Description

Requires permission to retrieve information on
non-public members of types in loaded
assemblies. See System.Security.Permissions.

System.Security.Permissions.
ReflectionPermission

12

ReflectionPermissionFlag.TypeInformation.

13

—

Type.GetConstructor(System.Type[])
Method

Summary

Returns a public instance constructor defined in the type represented by the

current instance. The parameters of the constructor match the specified
argument types.

Parameters

An array of System.Type objects. The elements in the array are of the
same number, in the same order, and represent the same types as the
types parameters for the constructor to be returned. Specify

System.Type.EmptyTypes to obtain a constructor that takes no
parameters.

Return Value

A System.Reflection.ConstructorInfo object representing the public instance
constructor whose parameters match exactly the types in types, if found;
otherwise, null. If the type represented by the current instance is contained in a
loaded assembly, the constructor that matches the specified criteria is not public,
and the caller does not have sufficient permissions, returns null.

If the current instance represents a generic type, this method returns the
System.Reflection.ConstructorInfo with the type parameters replaced by the
appropriate type arguments. If the current instance represents an unassigned
type parameter of a generic type or method, this method always returns null.

Description

14

This version of System.Type.GetConstructor is equivalent to

System.Type.GetConstructor(System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags. Instance, null, types, null).

Exceptions

types is null, or at least one of the elements in
System.ArgumentNullException [types is null.

System.ArgumentException types has more than one dimension.

Permissions

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission

assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

15

—

Type.GetConstructors() Method

Summary

Returns an array of the public constructors defined in the type represented by
the current instance.

Return Value

An array of System.Reflection.ConstructorInfo objects that reflect the public
constructors defined in the type represented by the current instance. If no public
constructors are defined in the type represented by the current instance, or if the
current instance represents an unassigned type parameter of a generic type or
method, returns an empty array.

If the current instance represents a generic type, this method returns the
System.Reflection.ConstructorInfo objects with the type parameters
replaced by the appropriate type arguments.

If the current instance represents a generic type parameter, the
System.Type.GetConstructorsmethod returns an empty array.

Description

This version of System.Type.GetConstructors is equivalent to
System.Type.GetConstructors(System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Instance).

16

—

Type.GetConstructors(System.Reflection.
BindingFlags) Method

Summary

Returns an array of constructors defined in the type represented by the current
instance, under the specified binding constraints.

Parameters
A bitwise combination of System.Reflection.BindingFlags values that

control the binding process. If zero is specified, this method returns
null.

bindingAttr

Return Value

An array of System.Reflection.ConstructorInfo objects that reflect the
constructors that are defined in the type represented by the current instance and
match the constraints of bindingAttr. If
System.Reflection.BindingFlags.NonPublic and
System.Reflection.BindingFlags.Static are specified, this array includes the
type initializer if it is defined. If no constructors meeting the constraints of
bindingAttr are defined in the type represented by the current instance, or if the
current instance represents an unassigned type parameter of a generic type or
method, returns an empty array. If the type represented by the current instance
is contained in a loaded assembly, the constructors that match the specified
criteria are not public, and the caller does not have sufficient permission, returns
null.

If the current instance represents a generic type, this method returns the

System.Reflection.ConstructorInfo objects with the type parameters
replaced by the appropriate type arguments.

17

If the current instance represents a generic type parameter, the
System.Type.GetConstructorsmethod returns an empty array.

Description

The following System.Reflection.BindingFlags are used to define which
constructors to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than

null.

e Specify System.Reflection.BindingFlags.Public to include public
constructors in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
constructors (that is, private and protected constructors) in the search.

[Note: For more information, see System.Reflection.BindingFlags.]

Behaviors

As described above.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

18

—

Type.GetDefaultMembers() Method

Summary

Returns an array of System.Reflection.MemberInfo objects that reflect the
default members defined in the type represented by the current instance.

Return Value

An array of System.Reflection.MemberInfo objects reflecting the default
members of the type represented by the current instance. If the type
represented by the current instance does not have any default members, returns
an empty array.

Description

If the current instance represents a generic type, this method returns the
System.Reflection.MemberInfo objects with the type parameters replaced by
the appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the members of the class constraint, or
the members of System.Object if there is no class constraint; the members of all
interface constraints; and the members of any interfaces inherited from class or
interface constraints.

Behaviors

The members returned by this method have the
System.Reflection.DefaultMemberAttribute attribute.

19

Type.GetElementType() Method

Summary

Returns the element type of the current System. Type.

Return Value

A System.Type that represents the type used to create the current instance if the
current instance represents an array, pointer, or an argument passed by
reference. Otherwise, returns null if the current instance is not an array or a
pointer, or is not passed by reference, or represents a generic type or a type
parameter of a generic type or method.

Example

The following example demonstrates the System. Type.GetElementType method.
[C#]

using System;
class TestType {

public static void Main() {

int[] array = {1,2,3};

Type t = array.GetType();

Type t2 = t._GetElementType();

Console._WriteLine("{0} element type is {1}",array, t2.ToString());

TestType newMe = new TestType();
t = newMe.GetType();
t2 = t.GetElementType();

Console _WriteLine("'{0} element type is {1}, newMe, t2==null? "null™:
t2_.ToString(Q));
}

}
The output is

System.Int32[] element type is System.Int32

TestType element type is null

20

—

Type.GetEvent(System.String) Method

Summary

Returns a System.Reflection.EventInfo object reflecting the public event that
has the specified name and is defined in the type represented by the current
instance.

Parameters

A System.String containing the name of the public event to be
returned.

name

Return Value

A System.Reflection.EventInfo object reflecting the public event that is
named name and is defined in the type represented by the current instance, if
found; otherwise, null.

If the current instance represents a generic type, this method returns the
System.Reflection.EventInfo with the type parameters replaced by the
appropriate type arguments.

Description

This version of System.Type.GetEvent is equivalent to System. Type.GetEvent(
name, System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public).

The search for name is case-sensitive.
If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the events of the class constraint; the

events of all interface constraints; and the events of any interfaces inherited
from class or interface constraints.

21

Exceptions

|System.ArgumentNuIIException |name is null.

22

—

Type.GetEvent(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns a System.Reflection.EventInfo object reflecting the event that has

the specified name, is defined in the type represented by the current instance,
and matches the specified binding constraints.

Parameters

Parameter Description
Iname

|A System.String containing the name of the event to be returned.

A bitwise combination of System.Reflection.BindingFlags values that
bindingAttr |control the binding process. If zero is specified, this method returns null.

Return Value

A System.Reflection.EventInfo object reflecting the event that is named

name, is defined in the type represented by the current instance, and matches
the constraints of bindingAttr. If an event matching these criteria is not found,
returns null. If the event is not public, the current instance represents a type

from a loaded assembly, and the caller does not have sufficient permission,
returns null.

If the current instance represents a generic type, this method returns the
System.Reflection.EventInfo with the type parameters replaced by the
appropriate type arguments.

Description

The following System.Reflection.BindingFlags are used to define which
events to include in the search:

23

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

e Specify System.Reflection.BindingFlags.Public to include public events
in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
events(that is, private and protected events) in the search.

The following System.Reflection.BindingFlags value can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the events
declared on the type, not events that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the events of the class constraint; the events of all
interface constraints; and the events of any interfaces inherited from class or
interface constraints.

Behaviors

As described above.

Exceptions

|System ArgumentNullException |name is null.

Permissions

Permission ~ Descripton
Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded

ReflectionPermission assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

24

—

Type.GetEvents() Method

Summary

Returns an array of System.Reflection.EventInfo objects that reflect the
public events defined in the type represented by the current instance.

Return Value

An array of System.Reflection.EventInfo objects that reflect the public events
defined in the type represented by the current instance. If no public events are
defined in the type represented by the current instance, returns an empty array.

If the current instance represents a generic type, this method returns the
System.Reflection.EventInfo objects with the type parameters replaced by
the appropriate type arguments.

Description

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the events of the class constraint; the
events of all interface constraints; and the events of any interfaces inherited
from class or interface constraints.

Behaviors

As described above.

Default

This version of System.Type.GetEvents is equivalent to
System.Type.GetEvents(System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance).

25

—

Type.GetEvents(System.Reflection.Bindin
gFlags) Method

Summary

Returns an array of System.Reflection.EventInfo objects that reflect the

events that are defined in the type represented by the current instance and
match the specified binding constraints.

Parameters

A bitwise combination of System.Reflection.BindingFlags values that
bindingAttr control the binding process. If zero is specified, this method returns null.

Return Value

An array of System.Reflection.EventInfo objects that reflect the events that
are defined in the type represented by the current instance and match the
constraints of bindingAttr. If no events match these constraints, returns an
empty array. If the type reflected by the current instance is from a loaded

assembly and the caller does not have permission to reflect on non-public objects
in loaded assemblies, returns only public events.

If the current instance represents a generic type, this method returns the

System.Reflection.EventInfo objects with the type parameters replaced by
the appropriate type arguments.

Description

The following System.Reflection.BindingFlags are used to define which
events to include in the search:

Specify either System.Reflection.BindingFlags.Instance Or

System.Reflection.BindingFlags.Static to get a return value other than
null.

26

e Specify System.Reflection.BindingFlags.Public to include public events

in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
events (that is, private and protected events) in the search.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the events of the class constraint; the events of all
interface constraints; and the events of any interfaces inherited from class or

interface constraints.

Behaviors

As described above.

Permissions

Permission

System.Security.Permissions.

ReflectionPermission

Description

Requires permission to retrieve information on
non-public members of types in loaded
assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

27

Type.GetField(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns a System.Reflection.FieldInfo object reflecting the field that has the

specified name, is defined in the type represented by the current instance, and
matches the specified binding constraints.

Parameters

Parameter Description
Iname

|A System.String containing the name of the field to be returned.

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr zigtlrol the binding process. If zero is specified, this method returns

Return Value

A System.Reflection.FieldInfo object reflecting the field that is named name,
is defined in the type represented by the current instance, and matches the
constraints of bindingAttr. If a field matching these criteria cannot be found,
returns null. If the field is not public, the current type is from a loaded
assembly, and the caller does not have sufficient permission, returns null.

If the current instance represents a generic type, this method returns the
System.Reflection.FieldInfo with the type parameters replaced by the
appropriate type arguments.

Description

The following System.Reflection.BindingFlags are used to define which fields
to include in the search:

28

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

e Specify System.Reflection.BindingFlags.Public to include public fields in
the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
fields (that is, private and protected fields) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the fields
declared in the type, not fields that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the fields of the class constraint; the fields of all
interface constraints; and the fields of any interfaces inherited from class or interface
constraints.

Behaviors

As described above.

Exceptions

Exception Condition
System.ArgumentNullException name is null.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

29

—

Type.GetField(System.String) Method

Summary

Returns a System.Reflection.FieldInfo object reflecting the field that has the
specified name and is defined in the type represented by the current instance.

Parameters

|name |A System.String containing the name of the field to be returned. ‘

Return Value

A System.Reflection.FieldInfo object reflecting the field that is named name
and is defined in the type represented by the current instance, if found;
otherwise, null. If the selected field is non-public, the type represented by the
current instance is from a loaded assembly and the caller does not have sufficient
permission to reflect on non-public objects in loaded assemblies, returns null.

If the current instance represents a generic type, this method returns the
System.Reflection.FieldInfo with the type parameters replaced by the
appropriate type arguments.

Description
The search for name is case-sensitive.

This version of System.Type.GetField is equivalent to System. Type.GetField(
name, System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance).

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the fields of the class constraint; the fields
of all interface constraints; and the fields of any interfaces inherited from class or
interface constraints.

30

Exceptions

|System.ArgumentNuIIException |name is null.

Permissions

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

31

—

Type.GetFields() Method

Summary

Returns an array of System.Reflection.FieldInfo objects that reflect the
public fields defined in the type represented by the current instance.

Return Value

An array of System.Reflection.FieldInfo objects that reflect the public fields
defined in the type represented by the current instance. If no public fields are
defined in the type represented by the current instance, returns an empty array.

If the current instance represents a generic type, this method returns the
System.Reflection.FieldInfo objects with the type parameters replaced by
the appropriate type arguments.

Description

This version of System.Type.GetFields is equivalent to
System.Type.GetFields(System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Public).

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the fields of the class constraint; the fields
of all interface constraints; and the fields of any interfaces inherited from class or
interface constraints.

32

—

Type.GetFields(System.Reflection.Binding
Flags) Method

Summary

Returns an array of System.Reflection.FieldInfo objects that reflect the fields

that are defined in the type represented by the current instance and match the
specified binding constraints.

Parameters

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr zzr;tlrol the binding process. If zero is specified, this method returns

Return Value

An array of System.Reflection.FieldInfo objects that reflect the fields that
are defined in the type represented by the current instance and match the
constraints of bindingAttr. If no fields match these constraints, returns an empty
array. If the type represented by the current instance is from a loaded assembly

and the caller does not have sufficient permission to reflect on non-public objects
in loaded assemblies, returns only public fields.

If the current instance represents a generic type, this method returns the
System.Reflection.FieldInfo objects with the type parameters replaced by
the appropriate type arguments.

Description

The following System.Reflection.BindingFlags are used to define which fields
to include in the search:

33

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static in order to get a return value
other than null.

e Specify System.Reflection.BindingFlags.Public to include public fields in
the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
fields (that is, private and protected fields) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the fields
declared in the type, not fields that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the fields of the class constraint; the fields of all
interface constraints; and the fields of any interfaces inherited from class or interface
constraints.

Behaviors

As described above.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of a type in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

34

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-method public hidebysig virtual class System.Type[]

GetGenericArguments()

[C#1
public virtual Type[] GetGenericArguments()

Summary

Returns an array of System. Type objects that represent the type arguments of a
generic type or the type parameters of a generic type definition.

Return Value

An array of System.Type objects that represent the type arguments of a generic
type or the type parameters of a generic type definition. Returns an empty array
if the current type is not a generic type. The array elements are returned in the
order in which they appear in the list of type arguments for the generic type.

Description

If the current type is a closed constructed type, the array returned by the
System.Type.GetGenericArguments method contains the type arguments that
are bound to the type parameters. If the current type is a generic type definition,
the array contains the type parameters. If the current type is an open
constructed type in which some of the type parameters are bound to specific
types, the array contains both type arguments and type parameters.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Example

For an example of using this method, see the example for
System.Type.GenericParameterPosition.

35

Type.GetGenericParameterConstraints()
Method

Summary

Returns an array of System.Type objects that represent the type constraints on
the current generic type parameter.

Return Value

An array of System. Type oObjects that represent the type constraints on the
current generic type parameter.

Description

Each constraint on a generic type parameter is expressed as a System. Type
object. The first element of the array is the class constraint, if any. If a type
parameter has no class constraint and no interface constraints, an empty array of
System. Type is returned for that type parameter. Use
System.Reflection.GenericParameterAttributes to get the special
constraints.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Exceptions

The current System. Type object is not a
generic type parameter. That is, the
System.Type.IsGenericParameter property
returns false.

System.InvalidOperationException

36

—

Type.GetGenericTypeDefinition() Method

Summary

Returns a System. Type object that represents a generic type from which the
current type can be constructed.

Return Value

A System.Type object representing a generic type from which the current type
can be constructed.

Description

If two constructed types are created from the same generic type definition, the
System.Type.GetGenericTypeDefinition method returns the same
System. Type object for both types.

If you call System.Type.GetGenericTypeDefinition On a System. Type object
that already represents a generic type definition, it returns the current
System.Type.

[Note: An array type whose element type is a generic type is not itself generic.
Use System.Type.IsGenericType to determine whether a type is generic before
calling System.Type.GetGenericTypeDefinition.]

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Exceptions

The current type is not a generic type. That

System.InvalidOperationException |is, System. Type .HasGenericArguments
returns false.

37

Example

For an example of using this method, see the example for
System. Type.MakeGenericType.

38

Type.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for this instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

39

—

Type.Getlnterface(System.String,
System.Boolean) Method

Summary
Returns the specified interface, specifying whether to do a case-sensitive search.

Parameters

|name |A System.String containing the name of the interface to return.

A System.Boolean where true indicates that the name search is to be
ignoreCase |done case-insensitively, and false performs a case-sensitive search.

Return Value

A System.Type object representing the interface with the specified name,
implemented or inherited by the type represented by the instance, if found;
otherwise, null.

Description

If the current instance represents a generic type, this method returns the
System. Type with the type parameters replaced by the appropriate type
arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the interface constraints and any
interfaces inherited from class or interface constraints.

[Note: The name parameter cannot include type arguments.]

[Note: Even with the introduction of generics, this method continues to return
only non-generic members. To get the generic ones, one must call
System.Type.GetInterfaces, and filter them out.]

40

Exceptions

|System.ArgumentNuIIException ’name is null.

The current instance represents a type that
implements the same generic interface with
different type arguments.

System.Reflection.
AmbiguousMatchException

41

—

Type.Getlnterface(System.String) Method

Summary

Searches for the interface with the specified name.

Parameters

|name |A System.String containing the name of the interface to get.

Return Value

A System.Type object representing the interface with the specified name,
implemented or inherited by the current System. Type, if found; otherwise, null.

Description
The search for name is case-sensitive.
If the current instance represents a generic type, this method returns the
System. Type with the type parameters replaced by the appropriate type
arguments.
If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the interface constraints and any

interfaces inherited from class or interface constraints.

[Note: The name parameter cannot include type arguments.]

[Note: Even with the introduction of generics, this method continues to return
only non-generic members. To get the generic ones, one must call
System.Type.GetInterfaces, and filter them out.]

42

Exceptions

|System.ArgumentNuIIException ‘name isnull.

The current instance represents a type that
implements the same generic interface with
different type arguments.

System.Reflection.
AmbiguousMatchException

43

—

Type.GetInterfaces() Method

Summary

Returns all interfaces implemented or inherited by the type represented by the
current instance.

Return Value

An array of System. Type objects representing the interfaces implemented or
inherited by the type represented by the current instance. If no interfaces are
found, returns an empty System. Type array.

Description

If the current instance represents a generic type, this method returns the
System. Type oObjects with the type parameters replaced by the appropriate type
arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the interface constraints and any
interfaces inherited from class or interface constraints.

[Note: Even with the introduction of generics, the overloads of
System.Type.GetInterface continue to return only non-generic members. To
get the generic ones, one must call System.Type.GetInterfaces, and filter them
out.]

44

—

Type.GetMember(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns an array of System.Reflection.MemberInfo objects that reflect the
members defined in the type represented by the current instance that have the
specified name and match the specified binding constraints.

Parameters

|name |A System.String containing the name of the member to be returned.

A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. If zero is specified, this method returns

bindingAttr null,

Return Value

An array of System.Reflection.MemberInfo objects that reflect the members
named name, are defined in the type represented by the current instance and
match the constraints of bindingAttr. If no members match these constraints,
returns an empty array. If the selected member is non-public, the type reflected
by the current instance is from a loaded assembly and the caller does not have
sufficient permission to reflect on non-public objects in loaded assembilies,
returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

45

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public

members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how

the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.MemberInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the members of the class constraint, or the members

of Ssystem.Object if there is no class constraint; the members of all interface
constraints; and the members of any interfaces inherited from class or interface
constraints.

[Note: The name parameter cannot include type arguments.]

Behaviors

As described above.

Exceptions

Exception Condition
System.ArgumentNullException name is null.

Permissions

Permission Description

System.Security.Permissions. Requires permission to retrieve information on

46

ReflectionPermission non-public members of types in loaded
assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

47

—

Type.GetMember(System.String) Method

Summary

Returns an array of System.Reflection.MemberInfo objects that reflect the
public members that have the specified name and are defined in the type
represented by the current instance.

Parameters

|name ’A System.String containing the name of the members to be returned.

Return Value

An array of System.Reflection.MemberInfo objects that reflect the public
members that are named name and are defined in the type represented by the
current instance. If no public members with the specified name are defined in the
type represented by the current instance, returns an empty array.

Description

This version of System. Type.GetMember iS equivalent to
System.Type.GetMember(name, System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public).

The search for name is case-sensitive.

If the current instance represents a generic type, this method returns the
System.Reflection.MemberInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the members of the class constraint, or
the members of System.Object if there is no class constraint; the members of all
interface constraints; and the members of any interfaces inherited from class or
interface constraints.

48

[Note: The name parameter cannot include type arguments.]

Exceptions

|System.ArgumentNuIIException |name is null.

49

—

Type.GetMembers(System.Reflection.Bind
iIngFlags) Method

Summary

Returns an array of System.Reflection.MemberInfo objects that reflect the
members that are defined in the type represented by the current instance and
match the specified binding constraints.

Parameters

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr izr;tlrol the binding process. If zero is specified, this method returns

Return Value

An array of System.Reflection.MemberInfo objects that reflect the members
defined in the type represented by the current instance that match the
constraints of bindingAttr. If no members match these constraints, returns an
empty array. If the type represented by the current instance is from a loaded
assembly and the caller does not have sufficient permission to reflect on non-
public objects in loaded assemblies, returns only public members.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or

System.Reflection.BindingFlags.Static to get a return value other than
null.

50

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.MemberInfo objects with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the members of the class constraint, or the members
of Ssystem.Object if there is no class constraint; the members of all interface
constraints; and the members of any interfaces inherited from class or interface
constraints.

Behaviors

As described above.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

51

—

Type.GetMembers() Method

Summary

Returns an array of System.Reflection.MemberInfo objects that reflect the
public members defined in the type represented by the current instance.

Return Value

An array of System.Reflection.MemberInfo objects that reflect the public
members defined in the type represented by the current instance. If no public
members are defined in the type represented by the current instance, returns an
empty array.

Description

This version of System. Type.GetMembers is equivalent to
System.Type.GetMembers(System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance).

If the current instance represents a generic type, this method returns the
System.Reflection.MemberInfo objects with the type parameters replaced by
the appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the members of the class constraint, or
the members of system.Object if there is no class constraint; the members of all
interface constraints; and the members of any interfaces inherited from class or
interface constraints.

52

—

Type.GetMethod(System.String,
System.Reflection.BindingFlags,
System.Reflection.Binder, System.Typel],

System.Reflection.ParameterModifier[])
Method

Summary

Returns a System.Reflection.MethodInfo object that reflects the method that

matches the specified criteria and is defined in the type represented by the
current instance.

Parameters

|name |A System.String containing the name of the method to be returned.

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr fl?lrﬁrol the binding process. If zero is specified, this method returns

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
binder members using reflection. Specify null to use the
System.Type.DefaultBinder.

An array of System. Type objects. The elements in the array are of the
tvpes same number, in the same order, and represent the same types as the
yp parameters for the method to be returned.

modifiers | The only defined value for this parameter is null.

53

Return Value

A System.Reflection.MethodInfo object that reflects the method defined in the
type represented by the current instance that matches the specified criteria. If no
method matching the specified criteria is found, returns null. If the selected
method is non-public, the type reflected by the current instance is from a loaded
assembly, and the caller does not have permission to reflect on non-public
objects in loaded assemblies, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

Specify System.Reflection.BindingFlags.Public to include public
members in the search.

Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

[Note:

System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the methods of the class constraint, or the methods of
System.Object if there is no class constraint; the methods of all interface
constraints; and the methods of any interfaces inherited from class or interface
constraints.

[Note:

The name parameter cannot include type arguments.]

54

Exceptions

System.Reflection. More than one method matching the
AmbiguousMatchException specified criteria was found.

name or types is null.

or
System.ArgumentNullException
At least one of the elements in types is
null.

System.ArgumentException types has more than one dimension.

Permissions

Permission ~ Descripton
Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded

ReflectionPermission assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

55

—

Type.GetMethod(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns a System.Reflection.MethodInfo object that reflects the method that
has the specified name and is defined in the type represented by the current
instance.

Parameters

|name |A System.String containing the name of the method to be returned.

A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. If zero is specified, this method returns

bindingAttr nall.

Return Value

A System.Reflection.MethodInfo object that reflects the method that is
defined in the type represented by the current instance and matches the
specified criteria, if found; otherwise, null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

o Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

o Specify System.Reflection.BindingFlags.Public to include public
members in the search.

56

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

This version of System. Type.GetMethod is equivalent to
System.Type.GetMethod(name, bindingAttr, null, null, null).

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the methods of the class constraint, or the methods of
System.Object if there is no class constraint; the methods of all interface
constraints; and the methods of any interfaces inherited from class or interface
constraints.

[Note: The name parameter cannot include type arguments.]

Exceptions

Exception Condition

System.Reflection. More than one method matching the
AmbiguousMatchException specified criteria was found.
System.ArgumentNullException name is null.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

57

58

—

Type.GetMethod(System.String) Method

Summary

Returns a System.Reflection.MethodInfo object that reflects the public method
that has the specified name and is defined in the type represented by the current
instance.

Parameters

A System.String containing the name of the public method to be
returned.

name

Return Value

A System.Reflection.MethodInfo object reflecting the public method that is
defined in the type represented by the current instance and has the specified
name, if found; otherwise, null.

Description

The search for name is case-sensitive.

This version of System. Type.GetMethod is equivalent to
System.Type.GetMethod(name, System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance, null, null, null).

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the methods of the class constraint, or the
methods of System.Object if there is no class constraint; the methods of all
interface constraints; and the methods of any interfaces inherited from class or
interface constraints.

59

[Note: The name parameter cannot include type arguments.]

Exceptions

System.Reflection. More than one method matching the
AmbiguousMatchException specified criteria was found.
|System.ArgumentNuIIException |name is null.

60

—

Type.GetMethod(System.String,
System.Type[]) Method

Summary

Returns a System.Reflection.MethodInfo object that reflects the public method
defined in the type represented by the current instance that has the specified
name and parameter information.

Parameters

A System.String containing the name of the public method to be
name

returned.

An array of System. Type objects. The elements in the array are of the
tvpes same number, in the same order, and represent the same types as the
yp parameters for the method to be returned.

Return Value

A System.Reflection.MethodInfo object reflecting the public method defined in
the type represented by the current instance that matches the specified criteria.
If no public method matching the specified criteria is found, returns null.

Description
The search for name is case-sensitive.

This version of System.Type.GetMethod is equivalent to
System.Type.GetMethod(name, System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags. Instance, null, types, null).

If the current instance represents a generic type, this method returns the

System.Reflection.MethodInfo with the type parameters replaced by the
appropriate type arguments.

61

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the methods of the class constraint, or the
methods of System.Object if there is no class constraint; the methods of all
interface constraints; and the methods of any interfaces inherited from class or
interface constraints.

[Note: The name parameter cannot include type arguments.]

Exceptions

Exception Condition
System.Reflection. More than one method matching the
AmbiguousMatchException specified criteria was found.

name or types is null.

or
System.ArgumentNullException

At least one of the elements in types is

null.

System.ArgumentException types has more than one dimension.

62

—

Type.GetMethod(System.String,
System.Typel],

System.Reflection.ParameterModifier[])
Method

Summary

Returns a System.Reflection.MethodInfo object that reflects the public method

that has the specified name and is defined in the type represented by the current
instance.

Parameters

name A System.String containing the name of the public method to be
returned.

An array of System. Type objects. The elements in the array are of the

tvpes same number, in the same order, and represent the same types as the
yp parameters for the method to be returned.

modifiers | The only defined value for this parameter is null.

Return Value

A System.Reflection.MethodInfo object reflecting the public method that is
defined in the type represented by the current instance and matches the
specified criteria, if found; otherwise, null.

Description

The default binder does not process modifier.

The search for name is case-sensitive.

63

This version of System. Type.GetMethod is equivalent to System. Type.GetMethod
(name, System.Reflection.BindingFlags.Public
|System.Reflection.BindingFlags.Static
|System.Reflection.BindingFlags.Instance, null, types, modifiers).

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the methods of the class constraint, or the
methods of System.Object if there is no class constraint; the methods of all
interface constraints; and the methods of any interfaces inherited from class or
interface constraints.

[Note: The name parameter cannot include type arguments.]

Exceptions

Exception Condition
System.Reflection. More than one method matching the
AmbiguousMatchException specified criteria was found.

name or types is null.

Or
System.ArgumentNullException

At least one of the elements in types is

null.

System.ArgumentException types has more than one dimension.

64

—

Type.GetMethods(System.Reflection.Bindi
ngFlags) Method

Summary

Returns an array of System.Reflection.MethodInfo objects that reflect the
methods defined in the type represented by the current instance that match the
specified binding constraints.

Parameters
A bitwise combination of System.Reflection.BindingFlags values that

control the binding process. If zero is specified, this method returns
null.

bindingAttr

Return Value

An array of System.Reflection.MethodInfo objects reflecting the methods
defined in the type represented by the current instance that match the
constraints of bindingAttr. If no such methods found, returns an empty array. If
the type represented by the current instance is from a loaded assembly and the
caller does not have permission to reflect on non-public objects in loaded
assemblies, returns only public methods.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

65

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo objects with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the methods of the class constraint, or the methods of
System.Object if there is no class constraint; the methods of all interface
constraints; and the methods of any interfaces inherited from class or interface
constraints.

Behaviors

As described above.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

66

—

Type.GetMethods() Method

Summary

Returns the public methods defined in the type represented by the current
instance.

Return Value

An array of System.Reflection.MethodInfo objects reflecting the public
methods defined in the type represented by the current instance. If no methods
are found, returns an empty array.

Description

This version of System. Type.GetMethods is equivalent to
System.Type.GetMethods(System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Public).

If the current instance represents a generic type, this method returns the
System.Reflection.MethodInfo objects with the type parameters replaced by
the appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the methods of the class constraint, or the
methods of System.Object if there is no class constraint; the methods of all
interface constraints; and the methods of any interfaces inherited from class or
interface constraints.

67

—

Type.GetNestedType(System.String)
Method

Summary

Returns the public nested type defined in the type represented by the current
instance

Parameters

A System.String containing the name of the public nested type to
return. Specify the unqualified name of the nested type. [Note: For

name example, for a type B nested within A, if typeA represents the type
object for A, the correct invocation is typeA.GetNestedType("B").]

Return Value

A System.Type object representing the public nested type with the specified
name, if found; otherwise, null.

Description

The search for name is case-sensitive.

Use the simple name of the nested class for name; do not qualify it with the
name of the outer class. CLS rules require a naming pattern for nested types;
see Partition 1.

If the current instance represents an unassigned type parameter of a generic
type or method definition, this method does not search the nested types of the
class constraint.

[Note: The name parameter cannot include type arguments. For example,
passing "MyGenericNestedType<int>" to this method searches for a nested type
with the text name "MyGenericNestedType<int>", rather than for a nested type
named MyGenericNestedType that has one generic argument of type int.]

68

[Note: If the nested type is generic, what is returned is always a generic type
definition.]

For information on constructing nested generic types from their generic type
definitions, see the System. Type.MakeGenericType (System.Type []) method.

Exceptions

|System.ArgumentNuIIException |name is null. ‘

69

—

Type.GetNestedType(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns a nested types defined in the type represented by the current instance
that match the specified binding constraints.

Parameters

A System.String containing the name of the nested type to return.
Specify the unqualified name of the nested type. [Note: For example, for

name a type B nested within A, if typeA represents the type object for A, the
correct invocation is typeA.GetNestedType("B").]

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr ;(I)Stlrol the binding process. If zero is specified, this method returns

Return Value

A System.Type object representing the nested type that matches the specified
criteria, if found; otherwise, null. If the selected nested type is non-public, the

current instance represents a type contained in a loaded assembly and the caller
does not have sufficient permissions, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

70

e Specify either System.Reflection.BindingFlags.Instance Or

System.Reflection.BindingFlags.Static to get a return value other than
null.

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the nested types of the class constraint.

[Note: The name parameter cannot include type arguments.]
Exceptions

|System.ArgumentNuIIException |name is null. ‘

Permissions

Permission Description
Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded

ReflectionPermission assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

71

Type.GetNestedTypes() Method

Summary

Returns all the public types nested within the current System. Type.

Return Value

An array of System. Type objects representing all public types nested within the

type represented by the current instance, if any. Otherwise, returns an empty
System.Type array.

Description

This version of System.Type.GetNestedTypes is equivalent to
System.Type.GetNestedTypes(System.Reflection.BindingFlags.Public).

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the nested types of the class constraint.

72

—

Type.GetNestedTypes(System.Reflection.
BindingFlags) Method

Summary

Returns an array containing the nested types defined in the type represented by
the current instance that match the specified binding constraints.

Parameters
A bitwise combination of System.Reflection.BindingFlags values that

control the binding process. If zero is specified, this method returns
null.

bindingAttr

Return Value

An array of Ssystem. Type objects representing all types nested within the type
represented by the current instance that match the specified binding constraints,
if any. Otherwise, returns an empty System. Type array. If the type reflected by
the current instance is contained in a loaded assembly, the type that matches the
specified criteria is not public, and the caller does not have sufficient permission,
returns only public types.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

73

e System.Reflection.BindingFlags.DeclaredOnly to search only the

members declared in the type, not members that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the nested types of the class constraint.

Permissions

Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded
ReflectionPermission

assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

74

—

Type.GetProperties(System.Reflection.Bin
dingFlags) Method

Summary

Returns an array of System.Reflection.PropertyInfo objects that reflect the
properties defined for the type represented by the current instance that match
the specified binding constraints.

Parameters

A bitwise combination of System.Reflection.BindingFlags values that

control the binding process. If zero is specified, this method returns
null.

bindingAttr

Return Value

An array of System.Reflection.PropertyInfo objects that reflect the properties
defined in the type represented by the current instance and match the
constraints of bindingAttr. If no matching properties are found, returns an empty
array. If the type represented by the current instance is from a loaded assembly
and the caller does not have permission to reflect on non-public objects in loaded
assemblies, returns only public properties.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

75

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

[Note: For more information, see System.Reflection.BindingFlags.]

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo objects with the type parameters replaced by
the appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the properties of the class constraint; the properties
of all interface constraints; and the properties of any interfaces inherited from class
or interface constraints.

Behaviors

A property is considered by reflection to be public if it has at least one accessor
that is public. Otherwise, the property is not public.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

76

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-method public hidebysig instance class
System.Reflection.Propertylnfo[] GetProperties()

[C#1
public Propertylnfo[] GetProperties()

Summary

Returns an array of System.Reflection.PropertyInfo objects that reflect the
public properties defined in the type represented by the current instance.

Return Value

An array of System.Reflection.PropertyInfo objects that reflect the public
properties defined in the type represented by the current instance. If no public
properties are found, returns an empty array.

Description

This version of System.Type.GetProperties is equivalent to
System.Type.GetProperties(System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Public).

A property is considered by reflection to be public if it has at least one accessor
that is public. Otherwise, the property is considered to be not public.

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo objects with the type parameters replaced by
the appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the properties of the class constraint; the
properties of all interface constraints; and the properties of any interfaces
inherited from class or interface constraints.

77

—

Type.GetProperty(System.String,
System.Type, System.Type[]) Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the public
property defined in the type represented by the current instance that matches
the specified search criteria.

Parameters

A System.String containing the name of the public property to be
returned.

name

A System.Type object that represents the type of the public property to

returnType be returned.

An array of System.Type objects. The elements in the array are of the
same number, in the same order, and represent the same types as the
types parameters for the indexer to be returned. Specify
System.Type.EmptyTypes for a property that is not indexed.

Return Value

A System.Reflection.PropertyInfo object reflecting the public property
defined in the type represented by the current instance that matches the
specified criteria. If no matching property is found, returns null.

Description

This version of System.Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(name,
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public, null, returnTypes, types, null).

78

The search for name is case-sensitive.

Different programming languages use different syntax to specify indexed
properties. Internally, this property is referred to by the name "lItem" in the
metadata. Therefore, any attempt to retrieve an indexed property using
reflection is required to specify this internal name in order for the PropertyInfo
to be returned correctly.

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the properties of the class constraint; the
properties of all interface constraints; and the properties of any interfaces
inherited from class or interface constraints.

Exceptions

Exception Condition
System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.

name or types is null, or at least one of
System.ArgumentNullException the elements in types is null.
System.ArgumentException types has more than one dimension.

79

—

Type.GetProperty(System.String,
System.Type[]) Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the public
property defined in the type represented by the current instance that matches
the specified search criteria.

Parameters

A System.String containing the name of the public property to be
returned.

name

An array of System. Type objects. The elements in the array are of the
same number, in the same order, and represent the same types as the
types parameters for the indexer to be returned. Specify
System.Type.EmptyTypes to obtain a property that is not indexed.

Return Value

A system.Reflection.PropertyInfo object reflecting the public property
defined on the type represented by the current instance that matches the
specified criteria. If no matching property is found, returns null.

Description

This version of System.Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(name,
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public, null, null, types, null).

The search for name is case-sensitive.

80

Different programming languages use different syntax to specify indexed
properties. Internally, this property is referred to by the name "Item" in the
metadata. Therefore, any attempt to retrieve an indexed property using
reflection is required to specify this internal name in order for the PropertyInfo
to be returned correctly.

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the properties of the class constraint; the
properties of all interface constraints; and the properties of any interfaces
inherited from class or interface constraints.

Exceptions

Exception Condition
System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.

name or types is null, or at least one of
System.ArgumentNullException the elements in types is null.

System.ArgumentException types has more than one dimension.

81

—

Type.GetProperty(System.String,
System.Type) Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the public
property defined in the type represented by the current instance that matches
the specified search criteria.

Parameters

|name |A System. String containing the name of the property to be returned.
returnType f\etsa/rs;:;jm.Type object that represents the type of the property to be

Return Value

A system.Reflection.PropertyInfo object reflecting the public property
defined on the type represented by the current instance that matches the
specified criteria. If no matching property is found, returns null.

Description

This version of System.Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(name,
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public, null, returnType, null, null).

The search for name is case-sensitive.
If the current instance represents a generic type, this method returns the

System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

82

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the properties of the class constraint; the

properties of all interface constraints; and the properties of any interfaces
inherited from class or interface constraints.

Exceptions

System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.
System.ArgumentNullException name is null.

83

—

Type.GetProperty(System.String) Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the public
property defined in the type represented by the current instance that has the
specified name.

Parameters

|name ‘A System.String containing the name of the property to be returned.

Return Value

A System.Reflection.PropertyInfo object reflecting the public property
defined on the type represented by the current instance that has the specified
name. If no matching property is found, returns null.

Description

This version of System. Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(nhame,
System.Reflection.BindingFlags.Static |
System.Reflection.BindingFlags.Instance |
System.Reflection.BindingFlags.Public, null, null, null, null).

The search for name is case-sensitive.

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic
type or method, this method searches the properties of the class constraint; the
properties of all interface constraints; and the properties of any interfaces
inherited from class or interface constraints.

84

Exceptions

System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.
System.ArgumentNullException name is null.

85

—

Type.GetProperty(System.String,
System.Reflection.BindingFlags) Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the property
defined in the type represented by the current instance that matches the
specified search criteria.

Parameters

|name |A System.String containing the name of the property to be returned.

A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. If zero is specified, this method returns

bindingAttr null,

Return Value

A Ssystem.Reflection.PropertyInfo object reflecting the property defined in
the type represented by the current instance that matches the specified criteria.
If no matching property is found, returns null. If the type reflected by the
current instance is contained in a loaded assembly, the property that matches
the specified criteria is not public, and the caller does not have sufficient
permission, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

o Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

86

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

o Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

This version of System. Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(name, bindingAttr, null, null, null, null).

The search for name is case-sensitive.

If the current instance represents a generic type, this method returns the
System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the properties of the class constraint; the properties
of all interface constraints; and the properties of any interfaces inherited from class
or interface constraints.

Exceptions

Exception Condition
System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.

System.ArgumentNullException name Is null.

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

87

88

—

Type.GetProperty(System.String,
System.Reflection.BindingFlags,
System.Reflection.Binder, System.Type,
System.Typel],

System.Reflection.ParameterModifier[])
Method

Summary

Returns a System.Reflection.PropertyInfo object that reflects the property

defined in the type represented by the current instance that matches the
specified search criteria.

Parameters

|name |A System.String containing the name of the property to be returned.

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr ;?Stlrol the binding process. If zero is specified, this method returns

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
binder members using reflection. Specify null to use the
System.Type.DefaultBinder.

returnType fefgrizzm.Type object that represents the type of the property to be

89

An array of System. Type objects. The elements in the array are of the
same number, in the same order, and represent the same types as the

types parameters for the indexer to be returned. Specify

System.Type.EmptyTypes to obtain a property that is not indexed.

modifiers |The only defined value for this parameter is null.

Return Value

A System.Reflection.PropertyInfo object reflecting the property that is
defined in the type represented by the current instance and matches the
specified criteria. If no matching property is found, returns null. If the type
reflected by the current instance is contained in a loaded assembly, the property
that matches the specified criteria is not public, and the caller does not have
sufficient permission, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

Specify System.Reflection.BindingFlags.Public to include public
members in the search.

Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

[Note:

System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

System.Reflection.BindingFlags.IgnoreCase to ignore the case of nhame.

For more information, see System.Reflection.BindingFlags.]

This version of System. Type.GetProperty is equivalent to
System.Type.GetPropertyImpl(name, bindingAttr, binder, returnType, types,
modifiers).

Different programming languages use different syntax to specify indexed properties.
Internally, this property is referred to by the name "ltem" in the metadata.

90

Therefore, any attempt to retrieve an indexed property using reflection is required to
specify this internal name in order for the PropertyInfo to be returned correctly.

If the current instance represents a generic type, this method returns the

System.Reflection.PropertyInfo with the type parameters replaced by the
appropriate type arguments.

If the current instance represents an unassigned type parameter of a generic type or
method, this method searches the properties of the class constraint; the properties

of all interface constraints; and the properties of any interfaces inherited from class
or interface constraints.

Exceptions

System.Reflection. More than one property matching the
AmbiguousMatchException specified criteria was found.

name or types is null, or at least one of
System.ArgumentNullException the elements in types is null.
System.ArgumentException types has more than one dimension.

Permissions

Permission Descripton
Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded

ReflectionPermission assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

91

—

Type.GetProperty lmpl(System.String,
System.Reflection.BindingFlags,
System.Reflection.Binder, System.Type,
System.Typel],

System.Reflection.ParameterModifier[])
Method

Summary

When overridden in a derived class implements the System.Type.GetProperty
method and returns a System.Reflection.PropertyInfo object that reflects the

property defined in the type represented by the current instance that matches
the specified search criteria.

Parameters

|name |A System.String containing the name of the property to be returned.

A bitwise combination of System.Reflection.BindingFlags values that

bindingAttr ;:liqtlrol the binding process. If zero is specified, this method returns

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
binder members using reflection. Specify null to use the
System.Type.DefaultBinder.

returnType ,rb\etsafrsntezm.Type object that represents the type of the property to be

92

An array of System. Type objects. The elements in the array are of the

same number, in the same order, and represent the same types as the
types parameters for the indexer to be returned. Specify

System.Type.EmptyTypes to obtain a property that is not indexed.

modifiers |The only defined value for this parameter is null.

Return Value

A System.Reflection.PropertyInfo object representing the property that
matches the specified search criteria, if found; otherwise, null. If the type
reflected by the current instance is from a loaded assembly, the matching
property is not public, and the caller does not have permission to reflect on non-
public objects in loaded assemblies, returns null.

Description

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than
null.

e Specify System.Reflection.BindingFlags.Public to include public
members in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

Behaviors

Different programming languages use different syntax to specify indexed
properties. Internally, this property is referred to by the name "Item" in the
metadata. Therefore, any attempt to retrieve an indexed property using
reflection is required to specify this internal name in order for the PropertyInfo
to be returned correctly.

93

Exceptions

System.Reflection.
AmbiguousMatchException

More than one property matching the
specified criteria was found.

name or types is null, or at least one of

System.ArgumentNullException the elements in types is null.

System.ArgumentException types has more than one dimension.

Permissions

Requires permission to retrieve information on

System.Security.Permissions. non-public members of types in loaded
ReflectionPermission

assemblies. See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

94

—

Type.GetType(System.String,
System.Boolean, System.Boolean) Method

Summary

Returns the System. Type with the specified name, optionally performing a case-
insensitive search and optionally throwing an exception if an error occurs while
loading the System. Type.

Parameters

|typeName |A System.String containing the name of the System. Type to return.

A System.Boolean. Specify true to throw a
System.TypeLoadException if an error occurs while loading the
throwOnError |System. Type. Specify false to ignore errors while loading the
System.Type.

A System.Boolean. Specify true to perform a case-insensitive search
for typeName. Specify false to perform a case-sensitive search for

ignoreCase typeName.

Return Value

The system. Type with the specified name, if found; otherwise, null. If the
requested type is non-public and the caller does not have permission to reflect
non-public objects outside the current assembly, this method returns null.

Description

typeName can be a simple type name, a fully qualified name, or a complex name
that includes an assembly name. [Note: System. Type.AssemblyQualifiedName

returns a fully qualified type name including nested types, the assembly name,
and generic type arguments.]

95

If typeName includes only the name of the System. Type, this method searches in
the calling object's assembly, then in the mscorlib.dll assembly. If typeName is
fully qualified with the partial or complete assembly name, this method searches
in the specified assembly.

[Note:

The following table shows calls to GetType for various types. (Some long strings
have been wrapped to fit in the right column.)

An
unmanaged
pointer to
MyType

Type.GetType("'MyType*™)

An
unmanaged
pointer to a
pointer to
MyType

Type.GetType("'"MyType**'")

A managed
pointer or
reference
to MyType

Type.GetType("'MyType&')Note that unlike pointers, references are limited to one
level.

A parent
class and a
nested
class

Type.GetType("'MyParentClass+MyNestedClass'™)

A one-
dimensional
array with
a lower
bound of O

Type.GetType("'MyArray[]1')

A one-
dimensional
array with
an

unknown
lower
bound

Type.GetType(""MyArray[*]'")

An n-
dimensional
array

A comma (,) inside the brackets a total of n-1 times. For example,
System.Object[, ,] represents a three-dimensional Object array.

A two-
dimensional
array's

Type.GetType("MyArray[1[1™)

96

array

A
rectangular
two-
dimensional
array with
unknown
lower
bounds

Type.GetType("'"MyArray[*,*]") or Type.GetType(*'MyArray[,]'")

A generic
type with
one type

argument

Type.GetType("'MyGenericType[MyType]')

A generic
type with
two type
arguments

Type.GetType("'MyGenericType[MyType,AnotherType]'™)

A generic
type with

two Type.GetType("'MyGenericType[[MyType,MyAssembly],

assembly- | Ao therType, AnotherAssembly]]"
qualified L ype: o

type
arguments
An
assembly-
qualified
generic
type with
an
assembly-
qualified
type
argument

Type.GetType("'MyGenericType[[MyType,MyAssembly]],MyGenericTypeAssembly'™)

A generic
type whose
type
argument
is a generic
type with
two type
arguments

Type.GetType("'MyGenericType[AnotherGenericType [MyType,AnotherType]]™)

1

Exceptions

97

|System.ArgumentNuIIException ‘typeName is null.
System.Reflection.
TargetlnvocationException

A type initializer was invoked and threw an
exception.

throwOnError is true and an error was

encountered while loading the selected
System.Type.

System.TypelLoadException

Permissions

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

98

—

Type.GetType(System.String,
System.Boolean) Method

Summary

Returns the System.Type with the specified name, optionally throwing an
exception if an error occurs while loading the System. Type.

Parameters

A System.String containing the case-sensitive name of the
System.Type to return.

typeName

A System.Boolean. Specify true to throw a
System.TypeLoadException if an error occurs while loading the
throwOnError |System. Type. Specify false to ignore errors while loading the
System. Type.

Return Value

The System. Type with the specified name, if found; otherwise, null. If the
requested type is non-public and the caller does not have permission to reflect
non-public objects outside the current assembly, this method returns null.

Description

This method is equivalent to System. Type.GetType(name, throwOnError,
false).

typeName can be a simple type name, a fully qualified name, or a complex name
that includes an assembly name specification. If typeName includes only the
name of the System. Type, this method searches in the calling object’'s assembly,
then in the mscorlib.dll assembly. If typeName is fully qualified with the partial or
complete assembly name, this method searches in the specified assembly.

[Note: System.Type.AssemblyQualifiedName can return a fully qualified type

99

name including nested types, the assembly name, and generic type arguments.
For complete details, see System.Type.GetType(System.String,
System.Boolean, System.Boolean).]

Exceptions

|System.ArgumentNuIIException

System.Reflection.
TargetlnvocationException

|typeName is null.

A type initializer was invoked and threw
an exception.

throwOnError is true and an error was
encountered while loading the
System. Type.

System.TypelLoadException

Permissions

Requires permission to retrieve information on
System.security.PermiSSionS. non-pub"c objects_ See

ReflectionPermission System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation

100

—

Type.GetType(System.String) Method

Summary

Returns the System.Type with the specified name.
Parameters

A System.String containing the case-sensitive name of the
System.Type to return.

‘typeName

Return Value

The system. Type with the specified name, if found; otherwise, null. If the
requested type is non-public and the caller does not have permission to reflect
non-public objects outside the current assembly, this method returns null.

Description

This method is equivalent to System. Type.GetType(name, false, false).

typeName can be a simple type name, a type name that includes a namespace,
or a complex name that includes an assembly name specification. If typeName
includes only the name of the System. Type, this method searches in the calling
object's assembly, then in the mscorlib.dll assembly. If typeName is fully
qualified with the partial or complete assembly name, this method searches in
the specified assembly.

[Note: System.Type.AssemblyQualifiedName can return a fully qualified type
name including nested types, the assembly name, and generic type arguments.
For complete details, see System.Type.GetType(System.String,
System.Boolean, System.Boolean).]

101

Exceptions

|System.ArgumentNuIIException ‘typeName is null.
System.Reflection.

A type initializer was invoked and
TargetlnvocationException threw an exception.

Permissions

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

102

—

Type.GetTypeArray(System.Object[])
Method

Summary

Returns the types of the objects in the specified array.

Parameters

|args \An array of objects whose types are to be returned.

Return Value

An array of System. Type objects representing the types of the corresponding
elements in args. If a requested type is not public and the caller does not have
permission to reflect non-public objects outside the current assembly, the
corresponding element in the array returned by this method will be null.

Exceptions

|System.ArgumentNuIIException |args is null.
System.Reflection. The type initializers were invoked and at
TargetlnvocationException least one threw an exception.

Permissions

Requires permission to retrieve information on
non-public members of types in loaded
assemblies. See System.Security.Permissions.

System.Security.Permissions.
ReflectionPermission

103

ReflectionPermissionFlag.TypeInformation.

104

Type.GetTypeFromHandle(System.Runtim
eTypeHandle) Method

Summary

Gets the system. Type referenced by the specified type handle.

Parameters

handle

The System.RuntimeTypeHandle object that refers to the desired
System.Type.

Return Value
The system. Type referenced by the specified System.RuntimeTypeHandle.
Description

The handles are valid only in the application domain in which they were obtained.

Exceptions

|System.ArgumentNuIIException \handle is null.

The requested type is non-public and
. . . outside the current assembly, and the
System.Security.SecurityException caller does not have the required
permission.

System.Reflection.
TargetlnvocationException

A type initializer was invoked and threw
an exception.

Permissions

105

Requires permission to retrieve information on

System.Security.Permissions. non-public objects. See

ReflectionPermission System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation

106

Type.GetTypeHandle(System.Object)
Method

Summary

Returns the handle for the system. Type of the specified object.

Parameters

|o |The object for which to get the type handle.

Return Value

The System.RuntimeTypeHandle for the System. Type of the specified
System.Object.

Description

The handle is valid only in the application domain in which it was obtained.

107

—

Type.HasElementTypelmpl() Method

Summary

When overridden in a derived class, implements the
System.Type.HasElementType property and determines whether the current
System. Type encompasses or refers to another type; that is, whether the current
System.Type iS an array, a pointer, or is passed by reference.

Return Value

true if the System.Type is an array, a pointer, or is passed by reference;
otherwise, false.

Description

[Note: For example, System. Type.GetType
("System.Int32[]").HasElementTypelmpl returns true, but
System.Type.GetType ("System.Int32").HasElementTypelmpl returns false.
System.Type.HasElementTypeImpl also returns true for "System.Int32*" and
"System.Int32&".]

108

Type.In

vokeMember(System.String,

System.Reflection.BindingFlags,
System.Reflection.Binder, System.Object,
System.Object[],
System.Globalization.Culturelnfo) Method

Summary

Invokes the
matching th

Parameters

specified member, using the specified binding constraints and
e specified argument list and culture.

name

A System.String containing the name of the constructor or method to
invoke, or property or field to access. If the type represented by the
current instance has a default member, specify System.String.Empty
to invoke that member. [Note: For more information on default
members, see System.Reflection.DefaultMemberAttribute.]

invokeAttr

A bitwise combination of System.Reflection.BindingFlags values that
control the binding process. If zero is specified,
System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Instance is used by default.

binder

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
members using reflection. Specify null to use the
System.Type.DefaultBinder.

target

A System.Object on which to invoke the member that matches the

109

other specified criteria. If the matching member is static, this

parameter is ignored.

An array of objects containing the arguments to pass to the member to
be invoked. The elements of this array are of the same number and in

args the same order by assignment-compatible type as specified by the
contract of the member to be bound. Specify an empty array or null for
a member that has no parameters.

culture

Return Value

The only defined value for this parameter is null.

A System.Object containing the return value of the invoked member. If the
invoked member does not have a return value, returns a System.Object

containing System.Void.

Description

This version of System. Type.InvokeMember iS equivalent to
System.Type. InvokeMember(hame, invokeAttr, binder, target, args, null,

culture, null).

Exceptions

Exception

System.ArgumentNullException

System.ArgumentException

Condition

name is null.

args has more than one dimension.
or

invokeAttr is not a valid
System.Reflection.BindingFlags value.

-0or-

The member to be invoked is a constructor and
System.Reflection.BindingFlags.CreatelInstance

is not specified in invokeAttr.

or

The member to be invoked is a method that is not a
type initializer or instance constructor, and
System.Reflection.BindingFlags.InvokeMethod is

not specified in invokeAttr.

Or

110

System.MissingFieldException

The member to be accessed is a field, and neither

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

specified in invokeAttr.

-0or-

GetField nor
SetField is

The member to be accessed is a property, and neither

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

specified in invokeAttr.
or

invokeAttr contains

System.Reflection.BindingFlags.

and at least one of

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.
System.Reflection.BindingFlags.
System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

or

invokeAttr contains both

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

or

invokeAttr contains both
System.Reflection.BindingFlags
Or

invokeAttr contains

System.Reflection.BindingFlags.

at least one of

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

or

invokeAttr contains

System.Reflection.BindingFlags.

args has more than one element.

GetProperty nor
SetProperty is

CreateInstance

InvokeMethod,
GetField,
SetField,
GetProperty, Or
SetProperty.

GetField and
SetField.

.GetProperty and
System.Reflection.BindingFlags.

SetProperty.

InvokeMethodand

SetField or
SetProperty.

SetField and

A field or property matching the specified criteria was

not found.

111

System.MissingMethodException

System.MethodAccessException

System.Reflection.TargetException

System.Reflection.
TargetlnvocationException

System.Reflection.
AmbiguousMatchException

Example

A method matching the specified criteria was not
found.

Or

The current instance object represents a type that
contains open type parameters (that is,

System.Type.ContainsGenericParameters returns

true).

The requested member is non-public and the caller
does not have the required permission.

The member matching the specified criteria cannot be
invoked on target.

The member matching the specified criteria threw an
exception.

More than one member matches the specified criteria.

For an example that demonstrates System. Type . InvokeMember, See
System.Type.InvokeMember(System.String,
System.Reflection.BindingFlags, System.Reflection.Binder,
System.Object, System.Object[], System.Reflection.ParameterModifier[],
System.Globalization.CultureInfo, System.String[]).

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

112

—

Type.lnvokeMember(System.String,
System.Reflection.BindingFlags,
System.Reflection.Binder, System.Object,
System.Object[]) Method

Summary

Invokes the specified member, using the specified binding constraints and
matching the specified argument list.

Parameters

Parameter Description
A System.String containing the name of the constructor or method to
invoke, or property or field to access. If the type represented by the
current instance has a default member, specify System.String.Empty

to invoke that member. [Note: For more information on default

name members, see System.Reflection.DefaultMemberAttribute.]

A bitwise combination of System.Reflection.BindingFlags values that
. control the binding process. If zero is specified,
invokeAttr

System.Reflection.BindingFlags.Public |
System.Reflection.BindingFlags.Instance is used by default.

A System.Reflection.Binder object that defines a set of properties
and enables the binding, coercion of argument types, and invocation of
binder members using reflection. Specify null to use the
System.Type.DefaultBinder.

A System.Object on which to invoke the member that matches the
target other specified criteria. If the matching member is static, this
parameter is ignored.

args An array of objects containing the arguments to pass to the member to

113

be invoked. The elements of this array are of the same number and in
the same order by assignment-compatible type as specified by the
contract of the member to be bound. Specify an empty array or null for
a member that has no parameters.

Return Value

A System.Object containing the return value of the invoked member. If the
invoked member does not have a return value, returns a System.Object

containing System.Void.

Description

This version of System. Type.InvokeMember iS equivalent to
System. Type . InvokeMember(name, invokeAttr, binder, target, args, null, null,

null).

[Note: For a demonstration of the use of System. Type. InvokeMember, see the
example for System.Type.InvokeMember(System.String,
System.Reflection.BindingFlags, System.Reflection.Binder,
System.Object, System.Object[], System.Reflection.ParameterModifier[],
System.Globalization.CultureInfo, System.String[]).]

Exceptions

Exception

System.ArgumentNullException

System.ArgumentException

Condition

name is null.

args has more than one dimension.
or

invokeAttr is not a valid
System.Reflection.BindingFlags value.

-0r-

The member to be invoked is a constructor and
System.Reflection.BindingFlags.CreatelInstance

is not specified in invokeAttr.
Or
The member to be invoked is a method that is not a

type initializer or instance constructor, and
System.Reflection.BindingFlags.InvokeMethod is

114

not specified in invokeAttr.

or

The member to be accessed is a field, and neither

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

specified in invokeAttr.

-0or-

GetField nor
SetField s

The member to be accessed is a property, and

neither

System.Reflection.BindingFlags.

nor

System.Reflection.BindingFlags.

specified in invokeAttr.
Or

invokeAttr contains
System.Reflection.

and at least one of
System.Reflection.
System.Reflection.
System.Reflection.
System.Reflection.
System.Reflection

Or

invokeAttr contains both

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

Or

invokeAttr contains both

System.Reflection.BindingFlags.

and

System.Reflection.BindingFlags.

Or

invokeAttr contains

System.Reflection.BindingFlags.

and at least one of

System.Reflection.BindingFlags.
System.Reflection.BindingFlags.

Or

invokeAttr contains

BindingFlags.

BindingFlags.
BindingFlags.
BindingFlags.
BindingFlags.
.BindingFlags.

GetProperty

SetProperty is

Createlnstance
InvokeMethod,
GetField,
SetField,

GetProperty, Or
SetProperty.

GetField and
SetField.

GetProperty

SetProperty.

InvokeMethod

SetField or
SetProperty.

115

System.MissingFieldException

System.MissingMethodException

System.MethodAccessException

System.Reflection.TargetException

System.Reflection.
TargetlnvocationException

System.Reflection.
AmbiguousMatchException

Permissions

System.Reflection.BindingFlags.SetField and
args has more than one element.

A field or property matching the specified criteria was
not found.

A method matching the specified criteria cannot be
found.

or

The current instance object represents a type that
contains open type parameters (that is,

System.Type.ContainsGenericParameters returns

true).

The requested member is non-public and the caller
does not have the required permission.

The member matching the specified criteria cannot
be invoked on target.

The member matching the specified criteria threw an
exception.

More than one member matches the specified
criteria.

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

116

—

Type.lnvokeMember(System.String,
System.Reflection.BindingFlags,
System.Reflection.Binder, System.Object,
System.Object[],
System.Reflection.ParameterModifier[],
System.Globalization.Culturelnfo,
System.String[]) Method

Summary

Invokes or accesses a member defined on the type represented by the current
instance that matches the specified binding criteria.

Parameters

A System.String containing the name of the constructor or
method to invoke, or property or field to access. If the type
represented by the current instance has a default member,
specify System.String.Empty to invoke that member. [Note: For
name more information on default members, see
System.Reflection.DefaultMemberAttribute.]

A bitwise combination of System.Reflection.BindingFlags
invokeAttr values that control the binding process. If zero is specified,
System.Reflection.BindingFlags.Public |

117

System.Reflection.BindingFlags.Instance is used by default.

A System.Reflection.Binder that defines a set of properties,
and enables the binding, coercion of argument types, and
invocation of members using reflection. Specify null to
useSystem.Type.DefaultBinder.

binder

A System.Object on which to invoke the member that matches
target the other specified criteria. If the matching member is static,
this parameter is ignored.

An array of objects containing the arguments to pass to the
member to be invoked. The elements of this array are of the
same number and in the same order by assignment-compatible
type as specified by the contract of the member to be bound if
and only if nameParameters is null. If namedParameters is not
null, the order of the elements in args corresponds to the order
of the parameters specified in namedParameters. Specify an
empty array or null for a member that takes no parameters.

args

- The only defined value for this parameter is null.
modifiers

The only defined value for this parameter is null.
culture

An array of System.String objects containing the names of the
parameters to which the values in args are passed. These names
are processed in a case-sensitive manner and have a one-to-one
correspondence with the elements of args. Specify an empty
array or null for a member that takes no parameters. Specify
null to have this parameter ignored.

namedParameters

Return Value

A System.Object containing the return value of the invoked or accessed
member. If the member does not have a return value, returns a System.Object
containing System.Void.

Description

System.Type. InvokeMember calls a constructor or a method, gets or sets a
property, gets or sets a field, or gets or sets an element of an array.

The binder finds all of the matching members. These members are found based
upon the type of binding specified by invokeAttr. The
System.Reflection.Binder.BindToMethod is responsible for selecting the
method to be invoked. The default binder selects the most specific match. The
set of members is then filtered by name, number of arguments, and a set of
search modifiers defined in the binder. After the member is selected, it is invoked
or accessed. Accessibility is checked at that point. Access restrictions are ignored
for fully trusted code; that is, private constructors, methods, fields, and
properties can be accessed and invoked via reflection whenever the code is fully
trusted.

118

The following System.Reflection.BindingFlags are used to define which
members to include in the search:

e Specify either System.Reflection.BindingFlags.Instance Or
System.Reflection.BindingFlags.Static to get a return value other than

null.

o Specify System.Reflection.BindingFlags.Public to include public
members in the search.

e Specify System.Reflection.BindingFlags.NonPublic to include non-public
members (that is, private and protected members) in the search.

The following System.Reflection.BindingFlags values can be used to change how
the search works:

e System.Reflection.BindingFlags.DeclaredOnly to search only the
members declared in the type, not members that were simply inherited.

e System.Reflection.BindingFlags.IgnoreCase to ignore the case of name.

[Note: For more information, see System.Reflection.BindingFlags.]

Behaviors

Each parameter in the namedParameters array is assigned the value in the
corresponding element in the args array. If the length of args is greater than the
length of namedParameters, the remaining argument values are passed in order.

A member will be found only if the number of parameters in the member
declaration equals the number of arguments in the args array (unless default
arguments are defined on the member). Also, The type of each argument is
required to be convertible by the binder to the type of the parameter.

It is required that the caller specify values for invokeAttr as follows:

Action

Invoke a
constructor.

Invoke a
method.

Define a
field value.

BindingFlags
System.Reflection.BindingFlags.CreateInstance. This flag is not

valid with the other flags in this table. If this flag is specified, name is
ignored.

System.Reflection.BindingFlags. InvokeMethod. This flag if not
valid with System.Reflection.BindingFlags.CreateInstance,
System.Reflection.BindingFlags.SetField, or
System.Reflection.BindingFlags.SetProperty.

System.Reflection.BindingFlags.SetField. This flag is not valid
with System.Reflection.BindingFlags.CreatelInstance,
System.Reflection.BindingFlags.InvokeMethod, or

119

System.Reflection.BindingFlags.GetField.

System.Reflection.BindingFlags.GetField. This flag is not valid
Return a with System.Reflection.BindingFlags.CreateInstance,
field value. |System.Reflection.BindingFlags.InvokeMethod, or
System.Reflection.BindingFlags.SetField.

System.Reflection.BindingFlags.SetProperty. This flag is not valid
Set a with System.Reflection.BindingFlags.CreateInstance,
property. System.Reflection.BindingFlags.InvokeMethod, or
System.Reflection.BindingFlags.GetProperty.

System.Reflection.BindingFlags.GetProperty. This flag is not valid
Get a with System.Reflection.BindingFlags.CreatelInstance,
property. System.Reflection.BindingFlags.InvokeMethod, or
System.Reflection.BindingFlags.SetProperty.

[Note: For more information, see System.Reflection.BindingFlags.]

Usage

System. Type. InvokeMember can be used to invoke methods with parameters
that have default values. To bind to these methods,
System.Reflection.BindingFlags.OptionalParamBinding must be specified.
For a parameter that has a default value, the caller can supply a value or supply
System.Type.Missing to use the default value.

System.Type. InvokeMember can be used to set a field to a particular value by
specifying System.Reflection.BindingFlags.SetField. For example, to set a
public instance field named F on class C, where F is a string, the value is set
using the following statement:

typeof(C). InvokeMember ("'F", BindingFlags.SetField, null, C, new
Object{ "strings new value'}, null, null, null);

A string array F can be initialized as follows:

typeof(C) . InvokeMember ("'F", BindingFlags.SetField, null, C, new
Object{new String[]{"a","z","c",""d"}, null, null, null);

Use System.Type.InvokeMember to set the value of an element in an array by

specifying the index of the value and the new value for the element as follows:

typeof(C). InvokeMember ("'F", BindingFlags.SetField, null, C, new
Object{1, "b"}, null, null, null);

The preceding statement changes "z" in array F to "b".

120

Exceptions

Exception

System.ArgumentNullException

System.ArgumentException

Condition

name is null.

args has more than one dimension.
or

invokeAttr is not a valid
System.Reflection.BindingFlags value.

or

The member to be invoked is a constructor and
System.Reflection.BindingFlags.CreatelInstance

is not specified in invokeAttr.
or

The member to be invoked is a method that is not a
type initializer or instance constructor, and
System.Reflection.BindingFlags.InvokeMethod is
not specified in invokeAttr.

Or

The member to be accessed is a field, and neither
System.Reflection.BindingFlags.GetField nor
System.Reflection.BindingFlags.SetField is
specified in invokeAttr.

Or

The member to be accessed is a property, and

neither
System.Reflection.BindingFlags.GetProperty

nor
System.Reflection.BindingFlags.SetProperty is
specified in invokeAttr.

Or

invokeAttr contains
System.Reflection.BindingFlags.CreateInstance
and at least one of
System.Reflection.BindingFlags.InvokeMethod,
System.Reflection.BindingFlags.GetField,
System.Reflection.BindingFlags.SetField,
System.Reflection.BindingFlags.GetProperty, Or
System.Reflection.BindingFlags.SetProperty.

121

-0r-

invokeAttr contains both
System.Reflection.BindingFlags.GetField and
System.Reflection.BindingFlags.SetField.

Or

invokeAttr contains both
System.Reflection.BindingFlags.GetProperty
and
System.Reflection.BindingFlags.SetProperty.

or

invokeAttr contains
System.Reflection.BindingFlags.InvokeMethod
and at least one of

System.Reflection.BindingFlags.SetField or
System.Reflection.BindingFlags.SetProperty.

—or-
invokeAttr contains
System.Reflection.BindingFlags.SetField and
args has more than one element.

—or-

namedParameters.Length > args.Length.

—or-

At least one element in namedParameters is null.
—or-

At least one element in args is not assignment-

compatible with the corresponding parameter in
namedParameters.

A field or property matching the specified criteria was

System.MissingFieldException not found.

A method matching the specified criteria cannot be
found.

System.MissingMethodException | '~

The current instance object represents a type that
contains open type parameters (that is,

122

System.Type.ContainsGenericParameters returns

true).

The requested member is non-public and the caller

System.MethodAccessException does not have the required permission.

The member matching the specified criteria cannot

System.Reflection.TargetException be invoked on target.

System.Reflection. The member matching the specified criteria threw an
TargetlnvocationException exception.
System.Reflection. More than one member matches the specified
AmbiguousMatchException criteria.

Example

The following example demonstrates the use of System. Type.InvokeMember to
construct a System. String, obtain its System.String.Length property, invoke
System.String.Insert on it, and then set its value using the
System.String.Empty field.

[C#]

using System;
using System.Reflection;

class InvokeMemberExample

{

static void Main(string[] args)
{
// Create the parameter arrays that will
// be passed to InvokeMember.
char[] cAry =
neW Char[] {IAI,I .,.S.,.t.,.r.,'i','n','g'};
object[] oAry = new object[] {cAry, 0, cAry.Length};

Type t = typeof(string);

// Invoke the constructor of a string.

string str =
(string)t. InvokeMember(null, BindingFlags. Instance |
BindingFlags.Public | BindingFlags.Createlnstance, null,
null, oAry, null, null, null);

Console._WriteLine("The string is \"{O}\".", str);

// Access a property of the string.

int i =
(int) t.InvokeMember(*'Length', BindingFlags.Ilnstance |
BindingFlags.Public | BindingFlags.GetProperty, null,
str, null, null, null, null);

Console.WriteLine("The length of the string is {0}.", i);

// Invoke a method on the string.

123

string newStr = "new '';

object[] oAry2 = new Object[] {2, newStr};

str = (string) t.InvokeMember('Insert”, BindingFlags.Instance |
BindingFlags.Public | BindingFlags.InvokeMethod, null, str,
OAry2, null, null, null);

Console . WriteLine("The modified string is \"{O}\".", str);

// Access a field of the string.

str = (string) t.InvokeMember('Empty', BindingFlags.Static |
BindingFlags.Public | BindingFlags.GetField, null, str,
null);

Console.WriteLine("The empty string is \"{O}\".", str);

}
}
The output is

The string is "A string".

The length of the string is 8.

The modified string is "A new string”

The empty string is .

Permissions

Permission Description

Requires permission to retrieve information on
System.Security.Permissions. non-public members of types in loaded
ReflectionPermission assemblies. See System.Security.Permissions.

ReflectionPermissionFlag.TypeInformation.

124

—

Type.lsArraylmpl() Method

Summary

When overridden in a derived class implements the System.Type.IsArray
property returning a System.Boolean value that indicates whether the type
represented by the current instance is an array.

Return Value

true if the System. Type is an array; otherwise, false.

Description

An instance of the system.Array class is required to return false because it is
an object, not an array.

Behaviors

As described above.

125

Type.lsAssignhableFrom(System.Type)
Method

Summary

Determines whether an instance of the current Ssystem. Type can be assigned
from an instance of the specified System. Type.

Parameters
|c |The System. Type to compare with the current System. Type.

Return Value

false if c is a null reference.

true if one or more of the following statements are true; otherwise false.
e If c and the current System. Type represent the same type.

o If the current system.Type is in the inheritance hierarchy of c.

o If the current Ssystem.Type is an interface and c supports that interface.

e If cis a generic type parameter and the current instance represents one of
the constraints of c.

Description

[Note: A generic type definition is not assignable from a closed constructed type.

1

Example

The following example demonstrates the System.Type.IsAssignableFrom
method using arrays.

126

[C#]

using System;

class ArrayTypeTest {
public static void Main() {
int i = 1;
int [] arrayl0 = new int [10];
int [] array2 = new int[2];
int [,]Jarray22 = new int[2,2];
int [,]Jarray24 = new int[2,4];
int [,,]array333 = new int[3,3,3];
Type arraylOType = arraylO0.GetType(Q);
Type array2Type = array2.GetType(Q);
Type array22Type array22.GetType();
Type array24Type array24.GetType(Q);
Type array333Type = array333.GetType();

// 1f X and Y are not both arrays, then false
Console . WriteLine("int[2] is assignable from int? {0} ",
array2Type. IsAssignableFrom(i.GetType()));

// 1f X and Y have same type and rank, then true.
Console . WriteLine(int[2] is assignable from int[10]? {0} ",
array2Type. IsAssignableFrom(arrayl0Type));
Console._WriteLine("int[2,2] is assignable from int[2,4]? {0}",
array22Type. IsAssignableFrom(array24Type));
Console._WriteLine("int[2,4] is assignable from int[2,2]? {0}",
array24Type. IsAssignhableFrom(array22Type));
Console._WriteLine("");

// If X and Y do not have the same rank, then false.
Console.WriteLine("int[2,2] is assignable from int[10]? {0}",
array22Type. IsAssignableFrom(arrayl0Type));
Console._WriteLine("int[2,2] is assignable from int[3,3,3]? {0}",
array22Type. IsAssignableFrom(array333Type));
Console.WriteLine("int[3,3,3] is assignable from int[2,2]? {0}",
array333Type. IsAssignableFrom(array22Type));

ihe output is

int[2] is assignable from int? False
int[2] is assignable from int[10]? True
int[2,2] is assignable from int[2,4]? True
int[2,4] is assignable from int[2,2]? True

int[2,2] is assignable from int[10]? False

int[2,2] is assignable from int[3,3,3]? False

127

int[3,3,3] is assignable from int[2,2]? False

128

—

Type.lIsByReflmpl() Method

Summary

When overridden in a derived class, implements the System. Type.IsByRef
property and determines whether the System. Type is passed by reference.

Return Value

true if the System. Type is passed by reference; otherwise, false.
Behaviors

As described above.

129

—

Type.IsCOMObjectimpl() Method

Summary

Reserved.

Return Value

false

Description

This abstract method is required to be present for legacy implementations.
Conforming implementations are permitted to throw the
System.NotSupportedException as their implementation.

130

Type.lslnstanceOfType(System.Object)
Method

Summary

Determines whether the specified object is an instance of the current
System. Type.

Parameters
|o |The object to compare with the current System. Type.

Return Value

true if either of the following statements is true; otherwise false.
e If the current System.Type is in the inheritance hierarchy of o.
e If the current System. Type is an interface and o supports that interface.

If o is a null reference or if the current instance is an open generic type (that is,
System.Type.ContainsGenericParameters returns true) returns false.

Description

As described above.

[Note: A constructed type is not an instance of its generic type definition.

1
Behaviors

As described above.

Example

131

The following example demonstrates the System.Type.IsInstanceOfType
method.

[C#]

using System;
public interface IFoo { }
public class MyClass: IFoo {}
public class MyDerivedClass: MyClass {}
class IslnstanceTest {

public static void Main() {

Type ifooType=typeof(1Fo0);

MyClass mc = new MyClass();

Type mcType = mc.GetType(Q);

MyClass mdc = new MyDerivedClass();

Type mdcType = mdc.GetType();

int [] array = new int [10];

Type arrayType = typeof(Array);

Console._WriteLine(int[] is instance of Array? {0}",
arrayType. IslnstanceOfType(array));

Console.WriteLine("myclass iInstance is instance of MyClass? {0}",
mcType. IsInstanceOfType(mc));

Console._WriteLine("'myderivedclass instance is instance of MyClass?
{0}, mcType.lsinstanceOfType(mdc));

Console._WriteLine("myclass instance is instance of IFoo? {0}",
ifooType. IslnstanceOfType(mc));

Console._WriteLine("'myderivedclass instance is instance of IFoo? {0}",
ifooType.IslnstanceOfType(mdc));

}
}
The output is

int[] is instance of Array? True
myclass instance is instance of MyClass? True
myderivedclass instance is instance of MyClass? True

myclass instance is instance of IFoo? True

myderivedclass instance is instance of 1Foo? True

132

—

Type.lsPointerimpl() Method

Summary

When overridden in a derived class, implements the System.Type.IsPointer
property and determines whether the System. Type is a pointer.

Return Value

true if the System. Type is a pointer; otherwise, false.
Behaviors

As described above.

133

—

Type.lIsPrimitivelmpl() Method

Summary

When overridden in a derived class, implements the System.Type.IsPrimitive
property and determines whether the System. Type is one of the primitive types.

Return Value

true if the System. Type is one of the primitive types; otherwise, false.

Behaviors

This method returns true if the underlying type of the current instance is one of
the following: System.Boolean, System.Byte, System.SByte, System.Int16,
System.UIntl6, System.Int32, System.UInt32, System.Inté64, System.UInté4,
System.Char, System.Double, and System.Single.

134

Type.lsSubclassOf(System.Type) Method

Summary

Determines whether the current System. Type derives from the specified
System. Type.

Parameters

|c |The System. Type to compare with the current System. Type.

Return Value

true if c and the current System. Type represent classes, and the class
represented by the current system. Type derives from the class represented by c;
otherwise false. Returns false if ¢ and the current System. Type represent the
same class.

Description

Interfaces are not considered.

If the current instance represents an unassigned type parameter of a generic
type or method, it derives from its class constraint, or from System.Object if it
has no class constraint.

Example

The following example demonstrates the System. Type.IsSubclassOf method.
[C#]

using System;

public interface IFoo { }

public interface IBar:IFoo{}

public class MyClass: IFoo {}

public class MyDerivedClass: MyClass {}
class IsSubclassTest {

public static void Main(Q) {

Type ifooType = typeof(1Fo0);

135

Type ibarType = typeof(IBar);

MyClass mc = new MyClass();

Type mcType mc.GetType();

MyClass mdc new MyDerivedClass();
Type mdcType = mdc.GetType(Q);

int [] array = new int [10];

Type arrayOflntsType = array.GetType();
Type arrayType = typeof(Array);

Console._WriteLine("Array is subclass of int[]? {0}",
arrayType.IsSubclassOf(arrayOfintsType));
Console.WriteLine("int [] is subclass of Array? {0}",
arrayOfIntsType. IsSubclassOf(arrayType));
Console._WriteLine("IFoo is subclass of I1Bar? {0},
ifooType.IsSubclassOf(ibarType));
Console . WriteLine("myclass is subclass of MyClass? {0}",
mcType. IsSubclassOf(mcType));
Console._WriteLine("'myderivedclass is subclass of MyClass? {0}",
mdcType . IsSubclassOf(mcType));
Console._WriteLine("IBar is subclass of 1Foo? {0}",
ibarType. IsSubclassOf(ifooType));
}
}
The output is

Array is subclass of int[]? False

int [] is subclass of Array? True
IFoo is subclass of IBar? False
myclass is subclass of MyClass? False

myderivedclass is subclass of MyClass? True

IBar is subclass of IFoo? False

136

—

Type.MakeArrayType() Method

Summary

Returns a System. Type object representing a one-dimensional array type whose
element type is the current type, with a lower bound of zero.

Return Value

A System.Type object representing a one-dimensional array type whose element
type is the current type, with a lower bound of zero.

Description

This method provides a way to generate an array type with any possible element
type, including generic types.

137

—

Type.MakeArrayType(System.Int32)
Method

Summary

Returns a System. Type object representing an array of the current type, with the
specified number of dimensions.

Parameters

|rank ‘The number of dimensions for the array.

Return Value

A System.Type object representing an array of the current type, with the
specified number of dimensions.

Description

This method provides a way to generate an array with any possible element type,
including generic types.

Exceptions

rank is invalid (being less than 1, for
System.IndexOutOfRangeException |example).

138

—

Type.MakeByRefType() Method

Summary

Returns a System. Type object that represents the current type when passed as a
byref parameter.

Return Value

A System.Type object that represents the current type when passed as a byref
parameter.

Description
This method provides a way to generate a byref type for any type.

[Note: Using ilasm syntax, if the current System. Type object represents int32,
this method returns a System. Type object representing int32&.]

139

—

Type.MakeGenericType(System.Type[])
Method

Summary

Substitutes the elements of an array of types for the type parameters of the
current generic type definition, and returns a System. Type object representing
the resulting constructed type.
The current type shall be a generic type definition.
Parameters
An array of types to be substituted for the type parameters of the
current generic type definition.

typeArguments

Return Value

A System.Type representing the constructed type formed by substituting the
elements of typeArguments for the type parameters of the current generic type
definition.

Description

This method allows you to write code that assigns specific types to the type
parameters of a generic type definition, thus creating a System. Type object that
represents a particular constructed type. You can use this System. Type object to
create runtime instances of the constructed type.

The system. Type object returned by this method is the same as that obtained by
calling the System.Object.GetType method of the resulting constructed type, or
the System.Object.GetType method of any constructed type that was created
from the same generic type using the same type arguments.

[Note: An array type whose element type is a generic type is not itself a generic

type. Thus, you cannot call this method to bind an array type. To bind a type
argument to this type, call System.Type.GetElementType to obtain the generic

140

type, then this method to bind the type argument to the generic type, and,
finally, System.Type.MakeArrayType to create the array type.]

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Exceptions

Exception Condition

The number of elements in typeArguments is
not the same as the number of type
parameters of the current generic type
definition.

System.ArgumentException -or-
An element of typeArguments does not
satisfy the constraints specified for the
corresponding type parameter of the current
generic type definition.

typeArguments is null.

System.ArgumentNullException -or-

An element of typeArguments is null.

The current type does not represent the
definition of a generic type. That is,

System.InvalidOperationException |System. Type.IsGenericTypeDefinition
returns false.

Example

The following example uses System.Type.GetType and
System.Type.MakeGenericType t0O create a constructed type from the generic
System.Collections.Generic.Dictionary type. The constructed type
represents a System.Collections.Generic.Dictionary of Test objects with
string keys.

[C#]
using System;

using System.Reflection;
using System.Collections.Generic;

141

public class Test

{
public static void Main()

{
Console._WriteLine(""\n--- Create a constructed type from
the generic Dictionary type.");

// Create a type object representing the generic
Dictionary

// type.

Type generic =
Type.GetType(*'System.Collections.Generic.Dictionary"');

DisplayTypelnfo(generic);

// Create an array of types to substitute for the type
// parameters of Dictionary. The key is of type string,

and
// the type to be contained in the Dictionary is Test.
Type[]1 typeArgs = { typeof(string), typeof(Test) };
Type constructed = generic.MakeGenericType(typeArgs);
DisplayTypelnfo(constructed);
// Compare the type objects obtained above to type
objects

// obtained using typeof() and
GetGenericTypeDefinition().

Console._WriteLine(""\n--- Compare types obtained by
different methods:™);

Type t = typeof(Dictionary<string, Test>);

Console_WriteLine('"\tAre the constructed types equal?
{0}, t == constructed);

Console._WriteLine('"\tAre the generic types equal? {0}",
t.GetGenericTypeDefinition() == generic);

}

private static void DisplayTypelnfo(Type t)
{
Console._WriteLine("'\n{0}", ©);
Console_WriteLine('"\tls this a generic type definition?
{0}, t.IsGenericTypeDefinition);
Console._WriteLine('"\tDoes it have generic type
arguments? {0}, t.HasGenericArguments);

Type[]1 typeArguments = t.GetGenericArguments();
Console._WriteLine(""\tList type arguments ({0}):",

typeArguments.Length);
foreach (Type tParam in typeArguments)

{
}

Console_WriteLine("\t\t{0}", tParam);

142

/* This example produces the following output:
-—- Create a constructed type from the generic Dictionary type.

System.Collections.Generic.Dictionary[KeyType,ValueType]
Is this a generic type definition? True
Does it have generic type arguments? True
List type arguments (2):
K

\

System.Collections.Generic.Dictionary[System.String, Test]
Is this a generic type definition? False
Does it have generic type arguments? True
List type arguments (2):
System.String
Test

-—- Compare types obtained by different methods:
Are the constructed types equal? True
Are the generic types equal? True

*/

143

—

Type.MakePointerType() Method

Summary

Returns a System. Type object that represents the type of an unmanaged pointer
to the current type.

Return Value

A System.Type object that represents the type of an unmanaged pointer to the
current type.

Description

This method provides a way to generate an unmanaged pointer type for types
computed at runtime.

[Note: Using ilasm syntax, if the current System. Type object represents int32,
this method returns a System.Type object representing int32*.]

144

Type.ToString() Method

Summary

Returns a System. String representation of the current System. Type.

Return Value

Returns System. Type.FullName.
Description

[Note: This method overrides System.Object.ToString.]

If the current instance represents a generic type, the type and its type
arguments are qualified by namespace and by nested type, but not by assembly.
If the current instance represents an unassigned type parameter of a generic
type or method, this method returns the unqualified name of the type parameter.

145

Type.Assembly Property

Summary

Gets the System.Reflection.Assembly in which the type is declared. For
generic types, gets the System.Reflection.Assembly that contains the generic
type definition.

Property Value

A System.Reflection.Assembly instance that describes the assembly containing
the current type. For generic types, the instance describes the assembly that
contains the definition of the generic type.

Description

If the current instance represents a generic type, this property returns the
assembly in which the type was defined. For example, suppose you create an
assembly named MyGenerics.dll that contains a class named
MyGenericStack<Ts>. If you create an instance of MyGenericStack<int> in
another assembly, the System. Type.Assembly property for the constructed type
returns a System.Reflection.Assembly that represents MyGenerics.dll.

Similarly, if the current instance represents a generic parameter T, this property
returns the assembly that contains the generic type definition that defines T.

Behaviors

This property is read-only.

146

—

Type.AssemblyQualifiedName Property

Summary

Gets the fully qualified name of the type represented by the current instance
including the name of the assembly from which the System. Type was loaded.

Property Value

The assembly-qualified name of the System. Type, including the name of the
assembly from which the system. Type was loaded. If the current System. Type
object represents a generic parameter, this property returns null.

Behaviors

This property is read-only.

Compilers emit the simple name of a nested class, and reflection constructs a
mangled name when queried, in accordance with the following conventions.

|Backslash N) |Escape character.

|Comma @) |Precedes the Assembly name.
|Plus sign (+) |Precedes a nested class.
|Period) |Denotes namespace identifiers.

After a type name, denotes an array of that type.
Or

For a generic type, encloses the entire generic type argument
Square brackets list.

(D

Or

Within a type argument list, encloses an assembly-qualified
type.

147

[Note: For example, the fully qualified name for a class might look like this:
TopNamespace.SubNameSpace.ContainingClass+NestedClass,MyAssembly

If the namespace were TopNamespace.Sub+Namespace, then the string would
have to precede the plus sign (+) with an escape character (\) to prevent it from
being interpreted as a nesting separator. Reflection emits this string as follows:

TopNamespace.Sub\+Namespace.ContainingClass+NestedClass,MyAssembly

A "++" becomes "\+\+", and a "\" becomes "\\".

]

Type names are permitted to include trailing characters that denote additional
information about the type, such as whether the type is a reference type, a
pointer type or an array type. To retrieve the type name without these trailing
characters, use t.GetElementType() -ToString(), where t is the type.

Spaces are significant in all type name components except the assembly name.
In the assembly name, spaces before the ',' separator are significant, but spaces
after the ', separator are ignored.

Generic arguments of generic types are themselves fully qualified. For example,
the output from the following C# program, if compiled to an assembly called
Try64

using System;
using System.Reflection;

class MyTest {
public static void Main(String[] args) {
Type b = typeof(B<string,object>);
Console._WriteLine(b.AssemblyQualifiedName);
}

public class B<T,U> { }
is as follows:

B 2[[System.String, mscorlib, Version=2.0.3600.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089], [System.Object, mscorlib,
Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]],
Try64, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

Usage

The name returned by this method can be persisted and later used to load the
System.Type. To search for and load a System. Type, use System.Type.GetType
either with the type name only or with the assembly qualified type name.
System.Type.GetType With the type name only will look for the System. Type in
the caller's assembly and then in the System assembly. System. Type.GetType

148

with the assembly qualified type name will look for the System. Type in any
assembly.

149

—

Type.Attributes Property

Summary

Gets the attributes associated with the type represented by the current instance.

Property Value

A System.Reflection.TypeAttributes object representing the attribute set of

the System. Type.

Description

This property is read-only.

If the current instance represents a generic type, this property returns the
attributes of the generic type definition.

If the current instance represents a generic type parameter T, the

System.Reflection.
System.Reflection.
System.Reflection.

System.Reflection
System.Reflection
System.Reflection

TypeAttributes
TypeAttributes
TypeAttributes

.TypeAttributes
.TypeAttributes
.TypeAttributes
System.Reflection.

returned by this property includes

.Abstract,
.AnsiClass,
.AutoLayout,
.Class,
.Public, and
TypeAttributes.

Sealed. These are arbitrary choices which

have no meaning in the context of a type parameter.

150

Type.BaseType Property

Summary

Gets the base System.Type of the current System. Type.

Property Value

A System.Type object representing the type from which the current System. Type
directly inherits, or null if the current System. Type represents the
System.Object class.

Description

The base type is the type from which the current type directly inherits.
System.Object is the only type that does not have a base type, therefore null is
returned as the base type of System.Object.

Interfaces inherit from System.Object and from zero or more base interfaces;
therefore, the base type of an interface is considered to be System.Object.

If the current instance represents a constructed generic type, the base type
reflects the generic arguments.

If the current instance represents an unassigned type parameter,
System.Type.BaseType returns the base class type constraint declared for that
parameter, or System.Object if no base class type constraint was declared.

Behaviors

This property is read-only.

Example

The following example demonstrates using the System. Type.BaseType property.

[C#]

using System;
class TestType {

151

public static void Main() {
Type t = typeof(int);
Console._WriteLine("{0} inherits from {1}, t,t.BaseType);

}
}
The output is

System. Int32 inherits from System.ValueType

152

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property bool ContainsGenericParameters { public hidebysig virtual
specialname bool get ContainsGenericParameters() }

[C#1
public virtual bool ContainsGenericParameters { get; }

Summary

Gets a value that indicates whether a System. Type object contains unassigned
generic parameters.

Property Value

true if a System. Type object contains unassigned generic parameters; otherwise
false.

Description

In order to create an instance of a generic type, there must be no generic type
definitions or open constructed types in the type arguments. For other
constructed types, such as arrays and managed pointers, the types from which
they are constructed must be able to be instantiated. If the
System.Type.ContainsGenericParameters property returns true, the type
cannot be instantiated.

The System.Type.ContainsGenericParameters property searches recursively
for type parameters. For example, it returns true for an array whose element
type is A<T>, even though the array type itself is not generic. Contrast this with
the behavior of the system.Type.IsGenericType property, which returns false
for arrays.

For a set of example classes and a table showing the values of the

System.Type.ContainsGenericParameters property, see the
System.Type.IsGenericType property description.

Behaviors
This property is read-only.
Example

For an example of using this method, see the example for
System.Type.GenericParameterPosition.

153

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property System.Reflection.MethodBase DeclaringMethod { public

hidebysig virtual specialname System.Reflection.MethodBase
get_DeclaringMethod() }

[C#]
public virtual MethodBase DeclaringMethod { get; }

Summary

If the current System. Type represents a type parameter of a generic method,
gets a System.Reflection.MethodInfo that represents the declaring method.

Property Value

If the current system. Type represents a type parameter of a generic method, a
System.Reflection.MethodInfo that represents the declaring method;
otherwise null.

Description

The declaring method is a generic method definition. That is, if
System.Type.DeclaringMethod does not return null, then
DeclaringMethod.IsGenericMethodDefinition returns true.

The System.Type.DeclaringType and System.Type.DeclaringMethod
properties identify the generic type definition or generic method definition where
the generic type parameter was originally defined:

e If the System.Type.DeclaringMethod property returns a
System.Reflection.MethodBase, that System.Reflection.MethodBase
represents a generic method definition, and the current System. Type object
represents a type parameter of that generic method definition.

o If the System.Type.DeclaringMethod property returns a null, then the
System.Type.DeclaringType property always returns a System. Type object
representing a generic type definition, and the current System. Type object
represents a type parameter of that generic type definition.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Behaviors

This property is read-only.

154

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property class System.Type DeclaringType { public hidebysig virtual

specialname class System.Type get DeclaringType() }

[C#1
public virtual Type DeclaringType { get; }

Summary
Gets the type that declares the type represented by the current instance.

Property Value

The System.Type object for the class that declares the type represented by the
current instance. If the type is a nested type, this property returns the enclosing
type; otherwise, returns the current instance.

Description

[Note: This property implements the abstract property inherited from
System.Reflection.MemberInfo.]

If the current System. Type represents a type parameter of a generic type or

method definition, the System. Type.DeclaringType and
System.Type.DeclaringMethod properties identify the generic type definition or
generic method definition where the generic type parameter was originally

defined:

e If the System.Type.DeclaringMethod property returns a
System.Reflection.MethodBase, that System.Reflection.MethodBase
represents a generic method definition, and the current System. Type object
represents a type parameter of that generic method definition.

o If the System.Type.DeclaringMethod property returns a null, then the
System.Type.DeclaringType property always returns a System. Type object
representing a generic type definition, and the current System. Type object
represents a type parameter of that generic type definition.

For a type parameter of a generic method, this property returns the type that
contains the generic method definition.

155

—

Type.DefaultBinder Property

Summary
Gets the default binder used by the system.

Property Value

The default System.Reflection.Binder used by the system.
Description
This property is read-only.

Reflection models the accessibility rules of the common type system. For
example, if the caller is in the same assembly, the caller does not need special
permissions for internal members. Otherwise, the caller needs
System.Security.Permissions.ReflectionPermission. This is consistent with
lookup of members that are protected, private, and so on.

[Note: The general principle is that System.Reflection.Binder.ChangeType
typically performs only widening coercions, which never lose data. An example of
a widening coercion is coercing a value that is a 32-bit signed integer to a value
that is a 64-bit signed integer. This is distinguished from a narrowing coercion,
which can lose data. An example of a narrowing coercion is coercing a 64-bit
signed integer to a 32-bit signed integer.]

The following table lists the coercions performed by the default binder's
implementation of ChangeType.

|Any type |Its base type.

|Any type |The interface it implements.

|Char |Unt16, Uint32, Int32, UInt64, Int64, Single, Double

Byte Char, Unt16, Int16, UInt32, Int32, UInt64, Int64, Single, Double
|SByte |Int16, Int32, Int64, Single, Double

156

uintl6
Int16
UInt32
Int32
Uint64
Int64
Single

UlInt32, Int32, UInt64, Int64, Single, Double
Int32, Int64, Single, Double

Ulnt64, Int64, Single, Double

Int64, Single, Double

Single, Double

Single, Double

Double

Non-reference |By-reference.

157

Type.FullName Property

Summary

Gets the fully qualified name of the type represented by the current instance.

Property Value

A System.String containing the fully qualified name of the System. Type.

Description

[Note: For example, the fully qualified name of the C# string type is
"System.String".]

If the current instance represents a generic type, the type arguments in the
string returned by System. Type.FullName are qualified by their assembly,
version, and so on, even though the string representation of the generic type
itself is not qualified by assembly. Thus, t.FullName + ", " +
t.Assembly.FullName produces the same result as t.AssemblyQualifiedName,
as with types that are not generic.

If the current instance represents an unassigned type parameter of a generic
type, this property returns null.

Behaviors

This property is read-only.

Example

The following example demonstrates using the System. Type.FullName property.

[C#]
using System;

class TestType {
public static void Main() {

158

Type t = typeof(Array);
Console.WriteLine("Full name of Array type is {0}",t.FullName);

}
}
The output is

Full name of Array type is System.Array

159

Type.GenericParameterAttributes
Property

Summary

Gets a combination of System.Reflection.GenericParameterAttributes flags
that describe the variance and special constraints of the current generic type
parameter.

Property Value

A System.Reflection.GenericParameterAttributes value that describes the
variance and special constraints of the current generic type parameter.

Description
This property is read-only.

The value of this property contains flags that describe whether the current
generic type parameter is variant, and flags that describe any special constraints.
Use System.GenericParameterAttributes.VarianceMask to select the variance
flags, and System.GenericParameterAttributes.SpecialConstraintMask to
select the constraint flags. Use
System.Reflection.GetGenericParameterConstraints to get the type
constraints.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Exceptions

The current System. Type oObject is not a
generic type parameter. That is, the
System.Type.IsGenericParameter property
returns false.

System.InvalidOperationException

160

161

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property int GenericParameterPosition { public hidebysig virtual
specialname int get_GenericParameterPosition() }

[C#1
public virtual int GenericParameterPosition { get; }

Summary

For a system. Type object that represents a type parameter of a generic type or
generic method, gets the position of the type parameter in the type parameter
list of the generic type or generic method.

Property Value

A zero-based integer representing the position of a type parameter in the type
parameter list of the generic type or generic method that declared the
parameter.

Description

This read-only property returns the position of a type parameter in the parameter
list of the generic type definition or generic method definition where the type
parameter was originally defined. The System.Type.DeclaringType and
System.Type.DeclaringMethod properties identify the generic type or method
definition:

e If the System.Type.DeclaringMethod property returns a
System.Reflection.MethodBase, that System.Reflection.MethodBase
represents a generic method definition, and the current System. Type object
represents a type parameter of that generic method definition.

e If the System.Type.DeclaringMethod property returns a null, then the
System.Type.DeclaringType property always returns a System. Type object
representing a generic type definition, and the current System. Type object
represents a type parameter of that generic type definition.

To provide the correct context for the value of the
System.Type.GenericParameterPosition property, it is necessary to identify the
generic type or method a type parameter belongs to. For example, consider the
return value of the generic method GetSomething in the following C# code:

public class B<T, U> { }
public class A<V>

{

162

public B<V, X> GetSomething<X>()
{

}

return new Base<V, X>();

}
The type returned by GetSomething depends on the type arguments supplied to
class A and GetSomething itself. You can obtain a System.Reflection.MethodInfo
for GetSomething and from that you can obtain the return type. When you examine
the type parameters of the return type, System.Type.GenericParameterPosition
returns zero for both. The position of Vv is zero because V is the first type parameter
in the type parameter list for class A. The position ofX is zero because X is the first
type parameter in the type parameter list for GetSomething.

[Note: Calling the System.Type.GenericParameterPosition property causes an
exception if the current System. Type does not represent a type parameter. When
you examine the type arguments of an open constructed type, use the
System.Type.IsGenericParameter property to tell which are type parameters and
which are types. The System.Type.IsGenericParameter property returnstrue for a
type parameter; you can then use the System.Type.GenericParameterPosition
method to obtain its position, and the System. Type.DeclaringMethod and
System.Type.DeclaringType properties to determine the generic method or type
definition that defines it.

]

Exceptions

Exception Condition

The current type does not represent a type
parameter. That is,
System.Type.IsGenericParameter returns
false.

System.InvalidOperationException

Example

The following example defines a generic class with two type parameters, and a
generic class that derives from it. The base class of the derived type has one
unbound type parameter and one type parameter bound to System.Int32. The
example displays information about these generic classes, including the positions
reported by System.Type.GenericParameterPosition.

[C#]

using System;

using System.Reflection;

using System.Collections.Generic;

// Define a base class with two type parameters.
public class Base<T, U> { }

163

// Define a derived class. The derived class inherits from a
constructed

// class that meets the following criteria:

// (1) 1ts generic type definition is Base<T, U>.

// (2) 1t specifies int for the first type parameter.

// (3) For the second type parameter, it uses the same type that is
used

// for the type parameter of the derived class.

// Thus, the derived class is a generic type with one type parameter,
but

// its base class is an open constructed type with one type argument
and

// one type parameter.

public class Derived<V>: Base<int,V> { }

public class Test

{
public static void Main()
{
Console._WriteLine(""\n--- Display a generic type and the
open constructed');
Console._WriteLine(" type from which it is derived.™);
// Create a Type object representing the generic type
Derived.
//
Type derivedType = Type.GetType(''Derived™);
DisplayGenericTypelnfo(derivedType);
// Display its open constructed base type.
DisplayGenericTypelnfo(derivedType.BaseType);
¥
private static void DisplayGenericTypelnfo(Type t)
{

Console._WriteLine("'\n{0}", ©);
Console_WriteLine('"\tls this a generic type definition?
{0}, t.IsGenericTypeDefinition);
Console_WriteLine(""\tDoes it have generic arguments?
{0}, t.HasGenericArguments);
Console.WriteLine("'"\tDoes it have unbound generic
parameters? {0}", t.ContainsGenericParameters);
if (t.HasGenericArguments)
{
// 1T the type is a generic type definition or a
// constructed type, display the type arguments.
//
Type[] typeArguments = t.GetGenericArguments();

Console.WriteLine('"\tList type arguments ({0}):",
typeArguments.Length);
foreach (Type tParam in typeArguments)

// l1sGenericParameter is true only for

generic type
// parameters.

164

//
if (tParam. lsGenericParameter)

{
Console._WriteLine("\t\t{0}
(unbound - parameter position {1})", tParam,
tParam.GenericParameterPosition);

}
else
{
Console_WriteLine("'\t\t{0}",
tParam);
}
}
}
else
{
Console.WriteLine(""\tThis iIs not a generic or
constructed type.");
¥
}

/* This example produces the following output:

--— Display a generic type and the open constructed
type from which it is derived.

Derived[V]
Is this a generic type definition? True
Does it have generic arguments? True
Does it have unbound generic parameters? True
List type arguments (1):
V (unbound - parameter position 0)

Base[System. Int32, V]
Is this a generic type definition? False
Does it have generic arguments? True
Does it have unbound generic parameters? True
List type arguments (2):
System. Int32
V (unbound - parameter position 0)
*/

165

—

Type.HasElementType Property

Summary

Gets a System.Boolean value indicating whether the type represented by the
current instance encompasses or refers to another type; that is, whether the
current System. Type IS an array, a pointer, or is passed by reference.

Property Value

true if the System. Type is an array, a pointer, or is passed by reference;
otherwise, false.

Description
This property is read-only.
[Note: For example, System. Type.GetType("System.Int32 []").HasElementType
returns true, but System. Type.GetType("System.Int32 ").HasElementType

returns false. System.Type.HasElementType also returns true for "Int32*" and
"Int32&".]

If the current instance represents a generic type, or a type parameter of a
generic type or method, this property returns false.

166

Type.lsAbstract Property

Summary

Gets a System.Boolean value indicating whether the type represented by the
current instance is abstract and is required to be overridden.

Property Value

true if the System. Type is abstract; otherwise, false.
Description
This property is read-only.
If the current instance represents an unassigned type parameter of a generic

type, this property always returns true. This is because it is not possible to
create an instance of a generic type parameter.

—

167

—

Type.lsAnsiClass Property

Summary
Indicates whether the type attribute

System.Reflection.TypeAttributes.AnsiClass is selected for the current
type.

Property Value

true if the type attribute system.Reflection.TypeAttributes.AnsiClass iS
selected for the current type; otherwise, false.

Description
This property is read-only.

If the current System. Type represents a generic type, this property applies to the
definition of the type. If the current System. Type represents a type parameter of
a generic type or method, this property always returns false.

168

Type.lsArray Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents an array.

Property Value

true if the current System. Type represents an array; otherwise false.
Description
This property is read-only.

This property returns true for an array of objects, but not for the System.Array
type itself, which is a class.

If the current instance represents a generic type, or a type parameter of a
generic type or method, this property returns false.

Example

The following example demonstrates using the System. Type.IsArray property.
[C#]

using System;
class TestType {

public static void Main() {

int [] array = {1,2,3,4};

Type at = typeof(Array);

Type t = array.GetType();

Console. WriteLine("Type is {0}. IsArray? {1}", at, at.lIsArray);
Console WriteLine("'Type is {0}. IsArray? {1}, t, t_.I1sArray);

}
}
The output is

Type is System.Array. IsArray? False

169

Type is System.Int32[]. IsArray? True

170

—

Type.lsAutoClass Property

Summary
Indicates whether the type attribute

System.Reflection.TypeAttributes.AutoClass is selected for the current
type.

Property Value

true if the type attribute system.Reflection.TypeAttributes.AutoClass IS
selected for the current type; otherwise, false.

Description
This property is read-only.

If the current System. Type represents a generic type, this property applies to the
definition of the type. If the current System. Type represents a type parameter of
a generic type or method, this property always returns false.

171

Type.lsAutoLayout Property

Summary

Gets a System.Boolean value indicating whether the type layout attribute
System.Reflection.TypeAttributes.AutoLayout is specified for the
System. Type.

Property Value

true if the type layout attribute
System.Reflection.TypeAttributes.AutoLayout is specified for the current
System.Type; otherwise, false.

Description
This property is read-only.
If the current instance represents a generic type, this property applies to the

definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

—

[Note: The System.Reflection.TypeAttributes.AutoLayout attribute specifies

that the system selects the layout the objects of the type. Types marked with

this attribute indicate that the system will choose the appropriate way to lay out

the type; any layout information that might have been specified is ignored.

1

172

—

Type.lsByRef Property

Summary

Gets a System.Boolean value indicating whether the System. Type is passed by
reference.

Property Value

true if the System. Type is passed by reference; otherwise, false.

Description

This property is read-only.

173

Type.lsClass Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents a class.

Property Value

true if the current System. Type represents a class; otherwise false.
Description
This property is read-only.

Note that this property returns true for System. Type instances representing
System.Enum and System.ValueType.

If the current instance represents a generic type, this property returns true if
the generic type definition is a class definition (that is, it does not define an
interface or a value type).

If the current instance represents an unassigned type parameter of a generic
type or method, this property always returns false.

174

Type.lIsEnum Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents an enumeration.

Property Value

true if the current System. Type represents an enumeration; otherwise false.

Description
This property is read-only.

This property returns true for an enumeration, but not for the system.Enum type
itself, which is a class.

If the current instance represents a generic type, this property applies to the
definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

Example

The following example demonstrates using the System. Type.IsEnum property.

[C#]

using System;
public enum Color {
Red, Blue, Green

class TestType {
public static void Main() {
Type colorType = typeof(Color);
Type enumType = typeof(Enum);
Console . _WriteLine('Color is enum ? {0}", colorType.lsEnum);
Console._WriteLine('Color is valueType? {0}", colorType.lsValueType);
Console _WriteLine("'Enum is enum Type? {0}, enumType.lsEnum);
Console._WriteLine("Enum is value? {0}, enumType.lsValueType);

}

175

The output is

Color is enum ? True

Color is valueType? True

Enum is enum Type? False

Enum is value? False

176

—

Type.lsExplicitLayout Property

Summary

Gets a System.Boolean value indicating whether the type layout attribute
System.Reflection.TypeAttributes.ExplicitLayout is specified for the
System. Type.

Property Value

true if the type layout attribute
System.Reflection.TypeAttributes.ExplicitLayout is specified for the
current System. Type; otherwise, false.

Description
This property is read-only.

[Note: Types marked with the
System.Reflection.TypeAttributes.ExplicitLayout attribute cause the
system to ignore field sequence and to use the explicit layout rules provided, in
the form of field offsets, overall class size and alignment.

1

If the current instance represents a generic type, this property applies to the
definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

177

—

Type.lsGenericParameter Property

Summary

Gets a value that indicates whether the current type represents a type parameter
of a generic type or method.

Property Value

true if the current object represents a type parameter of a generic type or method,;
otherwise false.

Description
This property is read-only.
Use this property to distinguish between type parameters and type arguments.
When you call System. Type.GetGenericArguments to obtain the type arguments
of a generic type, some elements of the array might be specific types (type
arguments) and others might be type

parameters.System. Type. IsGenericParameter returns false for the types and
true for the type parameters.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

Example

For an example of using this method, see the example for
System.Type.GenericParameterPosition.

178

—

Type.lsGenericType Property

Summary

Gets a value that indicates whether the current type has type arguments, and is
therefore a generic type.

Property Value

true if the current type has type arguments; otherwise false.

Description

Use this property to determine whether a System. Type object represents a

generic type.

Use the System.Type.ContainsGenericParameters property to

determine whether a System. Type object represents an open constructed type or
a closed constructed type.

[Note: The System.Type.HasGenericArguments property returns false if the
immediate type is not generic.]

The following table summarizes the invariant conditions for common terms used
in generic reflection.

generic type
definition

The System.Type.IsGenericTypeDefinition property is true.

Defines a generic type. A constructed type is created by calling the
System.Type.MakeGenericType (System.Type [1) method on a
System. Type object that represents a generic type definition, and
specifying an array of type arguments.

System.Type.MakeGenericType (System.Type []) can be called only on
generic type definitions.

Any generic type definition is a generic type, but the converse is not
true.

179

generic type

open
constructed
type

closed
constructed

type

generic type
parameter

generic type
argument

Behaviors

The System.Type.IsGenericType property is true.

Can be a generic type definition, an open constructed type, or a closed
constructed type.

Note that an array type whose element type is generic is not itself a
generic type. The same is true of a System. Type object representing a
pointer to a generic type.

The System.Type.ContainsGenericParameters property is true.
It is not possible to create an instance of an open constructed type.

Note that not all open constructed types are generic, such as an array
type whose element type is a generic type definition.

The System.Type.ContainsGenericParameters property is false.

When examined recursively, the type has no unassigned generic
parameters. The containing type or method has no generic type
parameters, and, recursively, no type arguments have unassigned
generic type parameters.

The System.Type.IsGenericParameter property is true.

In a generic type definition, a placeholder for a type that will be
assigned later.

Can be any type, including a generic type parameter.

Type arguments are specified as an array of System. Type objects
passed to the System.Type.MakeGenericType (System.Type [])
method when creating a constructed generic type. If instances of the
resulting type are to be created, the
System.Type.ContainsGenericParameters property must be false for
all the type arguments.

This property is read-only.

Example

For an example of using this method, see the example for
System.Type.MakeGenericType.

180

181

—

Type.lsGenericTypeDefinition Property

Summary

Gets a value that indicates whether the current object represents the definition of
a generic type, or whether one or more of its type parameters has been
specified.

Property Value

true if the current object represents the definition of a generic type, none of whose
type parameters have been bound to specific types; otherwise faise.

Description
This property is read-only.
Use this property to determine whether type arguments have been specified for
any of the type parameters of a generic type. If type arguments have been
specified (that is, bound to the corresponding type parameters), this property

returns false.

For a list of the invariant conditions for terms used in generic reflection, see the
System.Type.IsGenericType property description.

[Note: An open generic type can have type parameters even if types have been
specified for its type parameters.

]

Example

For an example of using this method, see the example for
System.Type.MakeGenericType..

182

—

Type.lsImport Property

Summary

Gets a System.Boolean value indicating whether the System. Type was imported
from another class.

Property Value

true if the System. Type was imported from another class; otherwise, false.
Description

This property is read-only.

If the current instance represents a generic type, this property applies to the

definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

183

Type.lslnterface Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents an interface.

Property Value

true if the current System. Type represents an interface; otherwise false.
Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type or method, this property always returns false.

184

—

Type.lsLayoutSequential Property

Summary

Gets a System.Boolean value indicating whether the type layout attribute
System.Reflection.TypeAttributes.SequentialLayout is specified for the
System. Type.

Property Value

true if the type layout attribute
System.Reflection.TypeAttributes.SequentialLayout is specified for the
current System. Type; otherwise, false.

Description
This property is read-only.

[Note: The System.Reflection.TypeAttributes.Sequentiallayout attribute is
used to indicate that the system is to preserve field order as emitted, but
otherwise the specific offsets are calculated based on the type of the field; these
might be shifted by explicit offset, padding, or alignment information.

1

If the current instance represents a generic type, this property applies to the
definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

185

—

Type.lsMarshalByRef Property

Summary

Gets a System.Boolean value indicating whether the current type is marshaled
by reference.

Property Value

true if the System.Type is marshaled by reference; otherwise, false.

Description

This property is read-only.

186

—

Type.lsNestedAssembly Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
nested and visible only within its own assembly.

Property Value

true if the System. Type is nested and visible only within its own assembly;
otherwise, false.

Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

187

—

Type.lsNestedFamANDAssem Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
nested and visible only to classes that belong to both its own family and its own
assembly.

Property Value

true if the System. Type is nested and visible only to classes that belong to both
its own family and its own assembly; otherwise, false.

Description
This property is read-only.

A system. Type object's family is defined as all objects of the exact same
System. Type and of its subclasses.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

188

—

Type.lsNestedFamily Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
nested and visible only within its own family.

Property Value

true if the System. Type is nested and visible only within its own family;
otherwise, false.

Description
This property is read-only.

A System.Type object's family is defined as all objects of the exact same
System. Type and of its subclasses.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

189

—

Type.lsNestedFamORAssem Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
nested and visible only to classes that belong to either its own family or to its
own assembly.

Property Value

true if the System. Type is nested and visible only to classes that belong to its
own family or to its own assembly; otherwise, false.

Description
This property is read-only.

A system. Type object's family is defined as all objects of the exact same
System. Type and of its subclasses.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

190

—

Type.lsNestedPrivate Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
nested and declared private.

Property Value

true if the System. Type is nested and declared private; otherwise, false.
Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

191

—

Type.lsNestedPublic Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is a
public nested class.

Property Value

true if the class is nested and declared public; otherwise, false.
Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

192

—

Type.lIsNotPublic Property

Summary

Gets a System.Boolean value indicating whether the top-level System. Type is
not declared public.

Property Value

true if the top-level system. Type is not declared public; otherwise, false.

Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns false.

193

Type.lsPointer Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents a pointer.

Property Value

This property is read-only.

true if the current System. Type represents a pointer; otherwise false.
Description

This property is read-only.

If the current instance represents a generic type, or a type parameter of a
generic type or method, this property always returns false.

194

—

Type.lsPrimitive Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is one
of the primitive types.

Property Value

true if the System. Type is one of the primitive types; otherwise, false.
Description

This property is read-only.

The primitive types are System.Boolean, System.Byte, System.SByte,

System.Intl6, System.UIntl6, System.Int32, System.UInt32, System.Inté4,

System.UInté64, System.Char, System.Double, and System.Single.

If the current instance represents a generic type, or a type parameter of a
generic type or method, this property always returns false.

195

—

Type.lsPublic Property

Summary

Gets a System.Boolean value indicating whether the top-level System. Type is
declared public.

Property Value

true if the top-level system. Type is declared public; otherwise, false.

Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns true.

196

—

Type.lsSealed Property

Summary

Gets a System.Boolean value indicating whether the current System. Type is
declared sealed.

Property Value

true if the System. Type is declared sealed; otherwise, false.
Description
This property is read-only.

If the current instance represents an unassigned type parameter of a generic
type, this property returns true.

197

—

Type.lsSpecialName Property

Summary

Gets a System.Boolean value indicating whether the current System.Type has a
name that requires special handling.

Property Value

true if the Ssystem.Type has a name that requires special handling; otherwise,
false.

Description
This property is read-only.

[Note: Names that begin with or contain an underscore character (_) are
examples of type names that might require special treatment by some tools.]

If the current instance represents a generic type, this property applies to the
definition of the type. If the current instance represents an unassigned type
parameter of a generic type or method, this property always returns false.

198

—

Type.lsUnicodeClass Property

Summary
Indicates whether the type attribute

System.Reflection.TypeAttributes.UnicodeClass is selected for the current
type.

Property Value

true if the type attribute system.Reflection.TypeAttributes.UnicodeClass IS
selected for the current type; otherwise, false.

Description
This property is read-only.

If the current System. Type represents a generic type, this property applies to the
definition of the type. If the current System. Type represents a type parameter of
a generic type or method, this property always returns false.

199

Type.lsValueType Property

Summary

Gets a System.Boolean value that indicates whether the current System. Type
represents a value type.

Property Value

true if the current System. Type represents a value type (structure); otherwise
false.

Description
This property is read-only.
This property returns true for enumerations, but not for the System.Enum type

itself, which is a class. [Note: For an example that demonstrates this behavior,
see System.Type.IsEnum.]

200

—

Type.Module Property

Summary

Gets the module in which the current System. Type is defined.

Property Value

A System.Reflection.Module that reflects the module in which the current
System. Type is defined.

Description

If the current instance represents a generic type, this property returns the
module in which the type was defined.

Similarly, if the current instance represents a generic parameter T, this property
returns the assembly that contains the generic type that defines T.

Behaviors

This property is read-only.

201

—

Type.Namespace Property

Summary

Gets the namespace of the System. Type.

Property Value

A System.String containing the namespace of the current System. Type.

Description

If the current instance represents a generic type, this property returns the
namespace that contains the generic type definition. Similarly, if the current
instance represents a generic parameter T, this property returns the namespace
that contains the generic type that defines T.

[Note: A namespace is a logical design-time naming convenience, used mainly to
define scope in an application and organize classes and other types in a

hierarchical structure. From the viewpoint of the system, there are no
namespaces.]

Behaviors

This property is read-only.

202

—

Type.ReflectedType Property

Summary

Gets the type that was used to obtain the current instance.

Property Value

The Type object through which the current instance was obtained.
Description
This property is read-only.

If the current instance represents a generic type, or a type parameter of a
generic type or method, this property returns the current instance.

203

Type.TypeHandle Property

Summary

Gets the handle for the current System. Type.

Property Value

The System.RuntimeTypeHandle for the current System. Type.

Description
This property is read-only.

The System.RuntimeTypeHandle encapsulates a pointer to an internal data
structure that represents the type. This handle is unique during the process
lifetime. The handle is valid only in the application domain in which it was
obtained.

204

—

Type.Typelnitializer Property

Summary

Gets the initializer for the type represented by the current instance.

Property Value

A System.Reflection.ConstructorInfo containing the name of the static
constructor for the type represented by the current instance

Description
This property is read-only.

[Note: Type initializers are available through System. Type.GetMember,
System.Type.GetMembers, and System. Type.GetConstructors.]

If the current instance represents an unassigned type parameter of a generic
type or method, this property returns null.

205

—

Type.UnderlyingSystemType Property

Summary

Returns the system-supplied type that represents the current type.

Property Value

The underlying system type for the System. Type.

Description
This property is read-only.
Behaviors

As described above.

206

