System.Double Structure

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:

e System.IComparable
e System.lFormattable

e System.lComparable<System.Double>
¢ System.lEquatable<System.Double>

Summary

Represents a 64-bit double-precision floating-point number.

Inherits From: System.ValueType

Library: ExtendedNumerics

Thread Safety: This type is not guaranteed to be safe for multithreaded operations.

Description
System.Double is a 64-bit double precision floating-point type that represents
values ranging from approximately 5.0E-324 to 1.7E+308 and from
approximately -5.0E-324 to -1.7E+308 with a precision of 15-16 decimal digits.
The System.Double type conforms to standard IEC 60559:1989, Binary Floating-

point Arithmetic for Microprocessor Systems.

A System.Double can represent the following values:

e The finite set of non-zero values of the form s * m * 2%, where sis 1 or -1,
and 0 < m < 2% and -1075 <= e <= 970.

e Positive infinity and negative infinity. Infinities are produced by operations
that produce results with a magnitude greater than that which can be
represented by a System.Double, such as dividing a non-zero number by
zero. For example, using System.Double operands, 1.0 / 0.0 yields
positive infinity, and -1.0 / 0.0 yields negative infinity. Operations include
passing parameters and returning values.

e The Not-a-Number value (NaN). NaN values are produced by invalid floating-
point operations, such as dividing zero by zero.

When performing binary operations, if one of the operands is a System.Double, then
the other operand is required to be an integral type or a floating-point type
(System.Double Or System.Single). Prior to performing the operation, if the other
operand is not a System.Double, it is converted to System.Double, and the
operation is performed using at least System.Double range and precision. If the
operation produces a numeric result, the type of the result is System.Double.

The floating-point operators, including the assignment operators, do not throw
exceptions. Instead, in exceptional situations, the result of a floating-point operation
is zero, infinity, or NaN, as described below:

e If the result of a floating-point operation is too small for the destination
format, the result of the operation is zero.

e If the magnitude of the result of a floating-point operation is too large for the
destination format, the result of the operation is positive infinity or negative
infinity, as appropriate for the sign of the result.

e If a floating-point operation is invalid, the result of the operation is NaN.

e If one or both operands of a floating-point operation are NaN, the result of
the operation is NaN.

Conforming implementations of the CLI are permitted to perform floating-point
operations using a precision that is higher than that required by the System.Double
type. For example, hardware architectures that support an "extended" or "long
double" floating-point type with greater range and precision than the System.Double
type could implicitly perform all floating-point operations using this higher precision
type. Expressions evaluated using a higher precision might cause a finite result to be
produced instead of an infinity.

Double.Epsilon Field

Summary

Represents the smallest positive System.Double value greater than zero.

Description

The value of this constant is 4.9406564584124654E-324.

Double.MaxValue Field

Summary

Contains the maximum positive value for the System.Double type.

Description

The value of this constant is 1.7976931348623157E+308.

Double.MinValue Field

Summary

Contains the minimum (most negative) value for the System.Double type.

Description

The value of this constant is -1.7976931348623157E+308.

Double.NaN Field

Summary

Represents an undefined result of operations involving System.Double.

Description

Not-a-Number (NaN) values are returned when the result of a System.Double
operation is undefined.

A NaN value is not equal to any other value, including another NaN value.
The value of this field is obtained by dividing System.Double zero by zero.
[Note: system.Double.NaN represents one of many possible NaN values. To test

whether a Ssystem.Double value is a NaN, use the System.Double.IsNaN
method.]

Double.Negativelnfinity Field

Summary

Represents a negative infinity of type System.Double.

Description

The value of this constant is obtained by dividing a negative System.Double by
zero.

[Note: To test whether a System.Double value is a negative infinity value, use
the System.Double.IsNegativeInfinity method.]

Double.Positivelnfinity Field

Summary
Represents a positive infinity of type System.Double.

Description

The value of this constant is obtained by dividing a positive System.Double by
zero.

[Note: To test whether a System.Double value is a positive infinity value, use the
System.Double.IsPositiveInfinity method.]

Double.CompareTo(System.Double)
Method

Summary

Returns the sort order of the current instance compared to the specified
System.Double.

Parameters

Ivalue |The System.Double to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the current instance as compared to value. For non-zero return
values, the exact value returned by this method is unspecified. The following
table defines the return value:

Current instance < value.

Any negative -or-
number
Current instance is a NaN and value is not a NaN.

Current instance == value.

Or
Zero
Current instance and value are both NaN, positive infinity, or
negative infinity.

Current instance > value.

A positive number —or-

'Current instance is not a NaN and value is a NaN.

Description

[Note: This method is implemented to support the
System. IComparable<Double> interface.]

10

Double.CompareTo(System.Object)

Method

Summary

Returns the sort order of the current instance compared to the specified

System.Object.

Parameters

|va|ue |The System.Object to compare to the current instance.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of the current instance as compared to value. For non-zero return
values, the exact value returned by this method is unspecified. The following
table defines the return value:

Current instance < value.

. -or-
Any negative
number
Current instance is a NaN and value is not a NaN and is not a null
reference.
Current instance == value.
Or
Zero

Current instance and value are both NaN, positive infinity, or
negative infinity.

A positive number

Current instance > value.

-0r-

value is a null reference.

11

-0r-

Current instance is not a NaN and value is a NaN.

Description

[Note: This method is implemented to support the System.IComparable
interface. Note that, although a NaN is not considered to be equal to another NaN

(even itself), the System. IComparable interface requires that A.CompareTo (A)
return zero.

1

Exceptions

value is not a null reference and is not of type
System.Double.

System.ArgumentException

12

Double.Equals(System.Double) Method

Summary

Determines whether the current instance and the specified System.Double
represent the same value.

Parameters

|obj |The System.Double to compare to the current instance.

Return Value

true if obj has the same value as the current instance, otherwise false. If either
obj or the current instance is a NaN and the other is not, returns false. If obj
and the current instance are both NaN, positive infinity, or negative infinity,
returns true.

Description

[Note: This method is implemented to support the System.IEquatable<Double>
interface.]

13

Double.Equals(System.Object) Method

Summary

Determines whether the current instance and the specified System.0Object
represent the same type and value.

Parameters

|obj |The System.Object to compare to the current instance.

Return Value

true if obj is a System.Double with the same value as the current instance,
otherwise false. If obj is a null reference or is not an instance of
System.Double, returns false. If either obj or the current instance is a NaN and
the other is not, returns false. If obj and the current instance are both NaN,
positive infinity, or negative infinity, returns true.

Description

[Note: This method overrides System.Object .Equals.]

14

Double.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for this instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

15

Double.IsInfinity(System.Double) Method

Summary

Determines whether the specified System.Double represents an infinity, which
can be either positive or negative.

Parameters

|d |The System.Double to be checked.

Return Value

true if d represents a positive or negative infinity value; otherwise false.

Description

[Note: Floating-point operations return positive or negative infinity values to
signal an overflow condition.]

16

Double.lIsNaN(System.Double) Method

Summary

Determines whether the value of the specified System.Double is undefined (Not-
a-Number).

Parameters

|d |The System.Double to be checked.

Return Value

true if d represents a NaN value; otherwise false.

Description

[Note: Floating-point operations return NaN values to signal that the result of the
operation is undefined. For example, dividing (Double) 0.0 by 0.0 results in a
NaN value.]

17

Double.lIsNegativelnfinity(System.Double
) Method

Summary

Determines whether the specified System.Double represents a negative infinity
value.

Parameters

|d |The System.Double to be checked.

Return Value

true if d represents a negative infinity value; otherwise false.
Description

[Note: Floating-point operations return negative infinity values to signal an
overflow condition.]

18

Double.lIsPositivelnfinity(System.Double)
Method

Summary

Determines whether the specified System.Double represents a positive infinity
value.

Parameters

Id |The System.Double to be checked.

Return Value

true if d represents a positive infinity value; otherwise false.
Description

[Note: Floating-point operations return positive infinity values to signal an
overflow condition.]

19

Double.Parse(System.String) Method

Summary

Returns the specified System.String converted to a System.Double value.

Parameters

A System.String containing the value to convert. The string is
S interpreted using the System.Globalization.NumberStyles.Float
and/or System.Globalization.NumberStyles.AllowThousands style

Return Value

The System.Double value obtained from s. If s equals

System.Globalization.NumberFormatInfo.NaNSymbol, this method returns
System.Double.NaN.

Description

This version of System.Double.Parse is equivalent to System.Double.Parse (S,
System.Globalization.NumberStyles.Float|
System.Globalization.NumberStyles.AllowThousands, null).

The string s is parsed using the formatting information in a

System.Globalization.NumberFormatInfo initialized for the current system
culture. [Note: For more information, see

System.Globalization.NumberFormatInfo.CurrentInfo.]

Exceptions

|System.ArgumentNuIIException |s is a null reference.
|System.FormatException |s is not in the correct style.

. S represents a value that is less than
System.OverflowException .
System.Double.MinValue or greater than

20

System.Double.MaxValue.

21

Double.Parse(System.String,

System.Globalization.NumberStyles)
Method

Summary

Returns the specified System.String converted to a System.Double value.

Parameters

S A System.String containing the value to convert. The string is
interpreted using the style specified by style.

Zero or more System.Globalization.NumberStyles values that specify
the style of s. Specify multiple values for style using the bitwise OR
operator. If style is a null reference, the string is interpreted using the
System.Globalization.NumberStyles.Float and
System.Globalization.NumberStyles.AllowThousands styles.

style

Return Value

The System.Double value obtained from s. If s equals

System.Globalization.NumberFormatInfo.NaNSymbol, this method returns
System.Double.NaN.

Description

This version of System.Double.Parse is equivalent to System.Double.Parse (5,
style, null).

The string s is parsed using the formatting information in a

System.Globalization.NumberFormatInfo initialized for the current system
culture. [Note: For more information, see

System.Globalization.NumberFormatInfo.CurrentInfo.]

22

Exceptions

|System.ArgumentNuIIException |s is a null reference.

|System.FormatException |s is not in the correct style.

S represents a value that is less than
System.OverflowException System.Double.MinValue or greater than
System.Double.MaxValue.

23

Double.Parse(System.String,
System.lFormatProvider) Method

Summary

Returns the specified System.String converted to a System.Double value.

Parameters

A System.String containing the value to convert. The string is
interpreted using the System.Globalization.NumberStyles.Float
and/or System.Globalization.NumberStyles.AllowThousands Style.

A System.IFormatProvider that supplies a

provider System.Globalization.NumberFormatInfo containing culture-specific
formatting information about s.

Return Value

The System.Double value obtained from s. If s equals

System.Globalization.NumberFormatInfo.NaNSymbol, this method returns
System.Double.NaN.

Description

This version of System.Double.Parse is equivalent to System.Double.Parse(s,
System.Globalization.NumberStyles.Float|

System.Globalization.NumberStyles.AllowThousands, provider).

The string s is parsed using the culture-specific formatting information from the
System.Globalization.NumberFormatInfo instance supplied by provider. If
provider is null or a System.Globalization.NumberFormatInfo cannot be

obtained from provider, the formatting information for the current system culture
is used.

Exceptions

24

|System.ArgumentNuIIException |s is a null reference.

|System.FormatException |s is not in the correct style.

s represents a value that is less than
System.OverflowException System.Double.MinValue or greater than
System.Double.MaxValue.

25

Double.Parse(System.String,
System.Globalization.NumberStyles,
System.lFormatProvider) Method

Summary

Returns the specified System.String converted to a System.Double value.

Parameters

A System.String containing the value to convert. The string is
interpreted using the style specified by style.

S

Zero or more System.Globalization.NumberStyles values that specify
the style of s. Specify multiple values for style using the bitwise OR
style operator. If style is a null reference, the string is interpreted using the
System.Globalization.NumberStyles.Float and
System.Globalization.NumberStyles.AllowThousands styles.

A System.IFormatProvider that supplies a
provider System.Globalization.NumberFormatInfo containing culture-specific
formatting information about s.

Return Value

The System.Double value obtained from s. If s equals
System.Globalization.NumberFormatInfo.NaNSymbol, this method returns
System.Double.NaN.

Description

The string s is parsed using the culture-specific formatting information from the
System.Globalization.NumberFormatInfo instance supplied by provider. If
provider is null or a System.Globalization.NumberFormatInfo cannot be
obtained from provider, the formatting information for the current system culture
is used.

26

Exceptions

|System.ArgumentNuIIException |s is a null reference

|System.FormatException |s is not in the correct style.

S represents a value that is less than
System.OverflowException System.Double.MinValue or greater than
System.Double.MaxValue.

27

Double.ToString(System.String,
System.lFormatProvider) Method

Summary

Returns a System.String representation of the value of the current instance.

Parameters

A System.String containing a character that specifies the format of the
format returned string, optionally followed by a non-negative integer that
specifies the precision of the number in the returned System.String.

A System.IFormatProvider that supplies a
provider System.Globalization.NumberFormatInfo instance containing culture-
specific formatting information.

Return Value

A System.String representation of the current instance formatted as specified
by format. The string takes into account the information in the
System.Globalization.NumberFormatInfo instance supplied by provider.

Description

If provider is null or a System.Globalization.NumberFormatInfo cannot be
obtained from provider, the formatting information for the current system culture
is used.

If format is a null reference, the general format specifier "G" is used.

The following table lists the format characters that are valid for the
System.Double type.

|C nen |Currency format.

|E "e" |Exponential notation format.

28

|Ian’ " ’Fixed—point format.

"G g \General format.
|N "R ’Number format.
"pr pt \Percent format.
"R", P ‘Round—trip format.

[Note: For a detailed description of formatting, see the System.IFormattable
interface.

This method is implemented to support the System. IFormattable interface.

1

Exceptions

|System.FormatException |format is invalid.

29

Double.ToString(System.lFormatProvider)
Method

Summary

Returns a System.String representation of the value of the current instance.

Parameters

A System.IFormatProvider that supplies a
provider System.Globalization.NumberFormatInfo containing culture-specific
formatting information.

Return Value

A System.String representation of the current instance formatted using the
general format specifier, ("G"). The string takes into account the formatting
information in the System.Globalization.NumberFormatInfo instance supplied
by provider.

Description

This version of System.Double.ToString is equivalent to
System.Double.ToString (null, provider).

If provider is null or a System.Globalization.NumberFormatInfo cannot be
obtained from provider, the formatting information for the current system culture
is used.

[Note: The general format specifier formats the number in either fixed-point or

exponential notation form. For a detailed description of the general format, see
the system.IFormattable interface.]

30

Double.ToString() Method

Summary

Returns a Ssystem. String representation of the value of the current instance.

Return Value

A System.String representation of the current instance formatted using the
general format specifier, ("G"). The string takes into account the current system
culture.

Description

This version of System.Double.ToString is equivalent to
System.Double.ToString (null, null).

[Note: The general format specifier formats the number in either fixed-point or
exponential notation form. For a detailed description of the general format, see
the System.IFormattable interface.

This method overrides System.Object.ToString.

1

31

Double.ToString(System.String) Method

Summary

Returns a Ssystem. String representation of the value of the current instance.

Parameters

A System.String that specifies the format of the returned string. [Note:
For a list of valid values, see System.Double.ToString

System.String, System.IFormatProvider).
format (sy tHg. SY v)]

Return Value

A System.String representation of the current instance formatted as specified
by format. The string takes into account the current system culture.

Description

This version of System.Double.ToString is equivalent to
System.Double.ToString (format, null).

If format is a null reference, the general format specifier "G" is used.

Exceptions

|System.FormatException |format is invalid.

Example

The following example shows the effects of various formats on the string
returned by System.Double.ToString.

[C#]

32

using System;
class test {
public static void Main() {
double d = 1234.56789;
Console._WriteLine(d);

string[] fmts = {"C","E","e5","F","G"," "N","P","R"}

for (int i=0;i<fmts.Length;i++)
Console _WriteLine("{0}: {1},
fmts[i],d.-ToString(fmts[i]));

}
}

The output is

1234.56789

C: $1,234.57

E: 1.234568E+003

e5: 1.23457e+003

F: 1234.57

G: 1234.56789

N: 1,234.57

P: 123,456.79 %

R: 1234.56789

33

