
 1

System.Collections.Comparer Class

[ILAsm]
.class public sealed serializable Comparer extends System.Object
implements System.Collections.IComparer

[C#]
public sealed class Comparer: IComparer

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Implements:

• System.Collections.IComparer

Summary

Provides the default implementation of the System.Collections.IComparer
interface.

Inherits From: System.Object

Library: BCL

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

 2

 Comparer.Default Field

[ILAsm]
.field public static initOnly class System.Collections.Comparer
Default

[C#]
public static readonly Comparer Default

Summary

Returns a new System.Collections.Comparer instance containing the default
implementation of the System.Collections.IComparer interface.

Description

This field is read-only.

 3

 Comparer.Compare(System.Object,
System.Object) Method

[ILAsm]
.method public final hidebysig virtual int32 Compare(object a,
object b)

[C#]
public int Compare(object a, object b)

Summary

Returns the sort order of two System.Object instances.

Parameters

Parameter Description
a The first System.Object to compare.
b The second System.Object to compare.

Return Value

The return value is a negative number, zero, or a positive number reflecting the
sort order of a as compared to b. For non-zero return values, the exact value
returned by this method is unspecified. The following table defines the return
value:

Value Condition
A negative number a < b.
Zero a == b.
A positive number a > b.

[Note: A null reference is considered to compare less than any other non-null
object, and equal to any other null reference, independent of the underlying
System.Type of either object.]

Description

The behavior of this method is as follows:

• If a implements the System.IComparable interface, returns a.CompareTo(b).

 4

• If a does not implement the System.IComparable interface but b does,
returns the negated result of b.CompareTo(a).

• If a and b both are not null and do not implement the System.IComparable
interface, System.ArgumentException is thrown.

Exceptions

Exception Condition

System.ArgumentException

Both a and b are not null and do not implement the
System.IComparable interface.

-or-

Both a and b are not null and are not assignment-
compatible types.

