System.Reflection.MethodBase Class

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.x.X
Attributes:
0 CLSCompliantAttribute(true)

Summary

Provides information about methods and constructors.
Inherits From: System.Reflection.MemberliInfo
Library: Reflection

Thread Safety: All public static members of this type are safe for multithreaded
operations. No instance members are guaranteed to be thread safe.

Description

[Note: MethodBase is used to represent method types.

The Base Class Library includes the following derived types:
e System.Reflection.MethodInfo

e System.Reflection.ConstructorInfo

MethodBase() Constructor

Summary

Constructs a new instance of the System.Reflection.MethodBase class.

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-method public hidebysig virtual class System.Type[]

GetGenericArguments()

[C#]
public virtual Type[] GetGenericArguments()

Summary

Returns an array of System. Type objects that represent the type arguments of a
generic method or the type parameters of a generic method definition.

Return Value

An array of System.Type objects that represent the type arguments of a generic
method or the type parameters of a generic method definition. Returns an empty
array if the current method is not a generic method.

Description

The default behavior, when not overridden in a derived class, is to throw
System.NotSupportedException. In other words, derived classes do not support
generics by default.

The elements of the returned array are in the order in which they appear in the
list of type parameters for the generic method.

e If the current method is a closed constructed method (that is, the
System.Reflection.MethodBase.ContainsGenericParameters property
returns false), the array returned by the
System.Reflection.MethodBase.GetGenericArguments method contains the
types that have been assigned to the generic type parameters of the generic
method definition.

e If the current method is a generic method definition, the array contains the
type parameters.

e If the current method is an open constructed method (that is, the
System.Reflection.MethodBase.ContainsGenericParameters property
returns true) in which specific types have been assigned to some type
parameters and type parameters of enclosing generic types have been
assigned to other type parameters, the array contains both types and type
parameters. Use the System. Type.IsGenericParameter property to tell them
apart.

For a list of the invariant conditions for terms specific to generic methods, see the
System.Reflection.MethodInfo.IsGenericMethod property. For a list of the
invariant conditions for other terms used in generic reflection, see the
System.Type.IsGenericType property.

Exceptions

Default behavior when not overridden in a
System.NotSupportedException |derived class.

MethodBase.GetMethodFromHandle(Syste
m.RuntimeMethodHandle) Method

Summary

Gets method information by using the method's internal metadata representation
(handle).

Parameters

|handle |The method's System.RuntimeMethodHandle handle.

Return Value

A System.Reflection.MethodBase Object containing information about the
method.

Description

The handles are valid only in the application domain in which they were obtained.

MethodBase.GetParameters() Method

Summary

Returns the parameters of the method or constructor reflected by the current
instance.

Return Value

An array of System.Reflection.ParameterInfo objects that contain information
that matches the signature of the method or constructor reflected by the current
instance.

Behaviors

As described above.

MethodBase.lnvoke(System.Object,
System.Reflection.BindingFlags,
System.Reflection.Binder,
System.Object[],
System.Globalization.Culturelnfo) Method

Summary

Invokes the method or constructor reflected by the current instance as
determined by the specified arguments.

Parameters

An instance of the type that contains the method reflected by the
current instance. If the method is static, obj is ignored. For non-static

obj methods, obj is an instance of a class that inherits or declares the
method.
invokeAttr A System.Reflection.BindingFlags value that controls the binding

process.

An object that enables the binding, coercion of argument types,
binder invocation of members, and retrieval of MemberInfo objects via
reflection. If binder is null, the default binder is used.

An array of objects that match the number, order and type of the
parameters for the constructor or method reflected by the current
instance. If the member reflected by the current instance takes no
parameters, specify either an array with zero elements or null. [Note:
Any object in this array that is not explicitly initialized with a value will
contain the default value for that object type. For reference-type
parameters |elements, this value is null. For value-type elements, this value is O,
0.0, or false, depending on the specific element type. If the method or
constructor reflected by the current instance is static, this parameter is
ignored.]

culture

‘The only defined value for this parameter is null.

Return Value

A System.Object that contains the return value of the invoked method, or a re-
initialized object if a constructor was invoked.

Description

Optional parameters can not be omitted in calls to
System.Reflection.MethodBase.Invoke.

Exceptions

The types of the elements of parameters do
not match the types of the parameters
System.ArgumentException accepted by the constructor or method
reflected by the current instance, under the
constraints of the default binder.

The constructor or method reflected by the
current instance is non-static, and obj is
System.Reflection.TargetException |null or is of a type that does not implement
the member reflected by the current

instance.
System.Reflection. The method reflected by the current instance
TargetlnvocationException threw an exception.

parameters.Length does not equal the
System.Reflection. number of parameters required by the
TargetParameterCountException contract of the constructor or method
reflected by the current instance.

The caller does not have permission to

System.MemberAccessException execute the method or constructor.

The type that declares the method is an open

generic type. That is,
System.Type.ContainsGenericParameters

returns true for the declaring type.

System.InvalidOperationException

Permissions

Requires permission to invoke non-public

members of loaded assemblies. See
System.Security.Permissions.

System.Security.Permissions.
ReflectionPermission

ReflectionPermissionFlag.MemberAccess.

MethodBase.lnvoke(System.Object,
System.Object[]) Method

Summary

Invokes the method or constructor reflected by the current instance on the
specified object and using the specified arguments.

Parameters

An instance of a type that contains the constructor or method reflected
by the current instance. If the member is static, obj is ignored. For non-
static methods, obj is an instance of a class that inherits or declares the
method.

obj

An array objects that match the number, order and type of the
parameters for the constructor or method reflected by the current
instance. If the member reflected by the current instance takes no
parameters, specify either an array with zero elements or null. [Note:
Any object in this array that is not explicitly initialized with a value will
contain the default value for that object type. For reference-type
parameters |elements, this value is null. For value-type elements, this value is O,
0.0, or false, depending on the specific element type. If the method or
constructor reflected by the current instance is static, this parameter is
ignored.]

Return Value

A System.Object that contains the return value of the invoked method, or a re-
initialized object if a constructor was invoked.

Description

This version of System.Reflection.MethodBase. Invoke is equivalent to
System.Reflection.MethodBase.Invoke(0bj, (BindingFlags)O, null,
parameters, null).

10

Optional parameters cannot be omitted in calls to
System.Reflection.MethodBase.Invoke.

Exceptions

The types of the elements of parameters do
not match the types of the parameters
System.ArgumentException accepted by the constructor or method
reflected by the current instance, under the
constraints of the default binder.

The constructor or method reflected by the
current instance is non-static and obj is
System.Reflection.TargetException [null, or is of a type that does not implement
the member reflected by the current

instance.
System.Reflection. The constructor or method reflected by the
TargetlnvocationException current instance threw an exception.

parameters.Length does not equal the
System.Reflection. number of parameters required by the
TargetParameterCountException contract of the member reflected by the
current instance.

The caller does not have permission to

System.MemberAccessException execute the method or constructor.

The type that declares the method is an open

generic type. That is,
System.Type.ContainsGenericParameters

returns true for the declaring type.

System.InvalidOperationException

Permissions

Requires permission to invoke non-public
System.Security.Permissions. |members of loaded assemblies. See
ReflectionPermission System.Security.Permissions.

ReflectionPermissionFlag.MemberAccess.

11

MethodBase.Attributes Property

Summary

Gets the attributes of the method reflected by the current instance.

Property Value

A System.Reflection.MethodAttributes value that signifies the attributes of
the method reflected by the current instance.

Behaviors
This property is read-only.
This property gets a System.Reflection.MethodAttributes value that indicates

the attributes set in the metadata of the method reflected by the current
instance.

Usage

Use this property to determine the accessibility, layout, and semantics of the
constructor or method reflected by the current instance. Also use this property to
determine if the member reflected by the current instance is implemented in
native code or has a special name.

Example

The following example demonstrates using this property to obtain the attributes
of three methods.

[C#]

using System;
using System.Reflection;

abstract class MyBaseClass

{

12

abstract public void MyPubliclnstanceMethod();

3
class MyDerivedClass: MyBaseClass
{
public override void MyPubliclnstanceMethod() {}
private static void MyPrivateStaticMethod() {}
}
class MethodAttributesExample
{
static void PrintMethodAttributes(Type t)
{

string str;

MethodInfo[] miAry = t.GetMethods(BindingFlags.Static |
BindingFlags.Instance | BindingFlags.Public |
BindingFlags.-NonPublic | BindingFlags.DeclaredOnly);

foreach (MethodInfo mi in miAry)

{

Console.WriteLine(""Method {0} is: ', mi.Name);
str = ((mi.Attributes & MethodAttributes.Static) != 0) ?
"Static': "Instance';
Console . Write(str + " '™);
str = ((mi.Attributes & MethodAttributes.Public) = 0) ?
"Public': "Not-Public™;
Console . Write(str + ™ '™);
str = ((mi.Attributes & MethodAttributes.HideBySig) !'= 0) ?
"HideBySig'": "Hide-by-name";
Console. Write(str + " '™);
str = ((mi.Attributes & MethodAttributes.Abstract) = 0) ?
"Abstract': String.-Empty;
Console._WriteLine(str);
3
3
public static void Main()
{
PrintMethodAttributes(typeof(MyBaseClass));
PrintMethodAttributes(typeof(MyDerivedClass));
3
3

The output is

Method MyPubliclnstanceMethod is:

13

Instance Public HideBySig Abstract

Method MyPubliclnstanceMethod is:

Instance Public HideBySig

Method MyPrivateStaticMethod is:

Static Not-Public HideBySig

14

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property bool ContainsGenericParameters { public hidebysig virtual
specialname bool get ContainsGenericParameters() }

[C#]
public virtual bool ContainsGenericParameters { get; }

Summary

Gets a value that indicates whether a generic method contains unassigned
generic type parameters.

Property Value

true if the current method contains unassigned generic type parameters;
otherwise false.

Description

The default behavior, when not overridden in a derived class, is to return false.
In other words, by default, derived classes do not support generics.

In order to invoke a generic method, there must be no generic type definitions or
open constructed types in the type arguments of the method itself, or in any
enclosing types. If the
System.Reflection.MethodBase.ContainsGenericParameters property returns
true, the method cannot be invoked.

The System.Reflection.MethodBase.ContainsGenericParameters property
searches recursively for type parameters. For example, it returns true for any
method in an open type A<T>, even though the method itself is not generic.
Contrast this with the behavior of the
System.Reflection.MethodBase.IsGenericMethod property, which returns
false for such a method.

For a list of the invariant conditions for terms specific to generic methods, see
the System.Reflection.MethodInfo.IsGenericMethod property. For a list of
the invariant conditions for other terms used in generic reflection, see the
System.Type.IsGenericType property.

Behaviors

This property is read-only.

15

—

MethodBase.lsGenericMethod Property

Summary

Gets a value that indicates whether the current object is a generic method.

Property Value

true if the current object is a generic method; otherwise false.
Description

The default behavior, when not overridden in a derived class, is to return false.
In other words, by default, derived classes do not support generics.

Use this property to determine whether the current
System.Reflection.MethodBase object represents a generic method. Use the
System.Reflection.MethodBase.ContainsGenericParameters property to
determine whether the current System.Reflection.MethodBase object
represents an open constructed method or a closed constructed method.

For a list of the invariant conditions for terms specific to generic methods, see
the System.Reflection.MethodInfo.IsGenericMethod property. For a list of
the invariant conditions for other terms used in generic reflection, see the
System.Type.IsGenericType property.

Behaviors

This property is read-only.

16

The following member must be implemented if the Reflection library is present in
the implementation.

[ILAsm]
-property bool IsGenericMethodDefinition { public hidebysig virtual

specialname bool get_lsGenericMethodDefinition() }

[C#]
public virtual bool IsGenericMethodDefinition { get; }

Summary

Gets a value that indicates whether the current System.Reflection.MethodBase
represents a definition of a generic method.

Property Value

true If the current system.Reflection.MethodBase Object represents the definition
of a generic method; otherwise false.

Description

The default behavior, when not overridden in a derived class, is to return false.
In other words, by default, derived classes do not support generics.

If the current System.Reflection.MethodBase represents a generic method
definition, then:

e System.Reflection.MethodBase.IsGenericMethodDefinition returns true.

e For each sSystem.Type object in the array returned by the
System.Reflection.MethodBase.GetGenericArguments method: The
System.Type.IsGenericParameter property returns true; the
System.Type.DeclaringMethod returns the current instance; and the
System.Type.GenericParameterPosition property is the same as the
position of the System. Type object in the array.

For a list of the invariant conditions for terms specific to generic methods, see the
System.Reflection.MethodInfo.IsGenericMethod property. For a list of the
invariant conditions for other terms used in generic reflection, see the
System.Type.IsGenericType property.

Behaviors

This property is read-only.

17

18

