
 1

System.Collections.Generic.IEnumerator<
T> Interface

[ILAsm]
.class interface public abstract IEnumerator`1<T> implements
System.IDisposable, System.Collections.IEnumerator

[C#]
public interface IEnumerator<T>: IDisposable, IEnumerator

Assembly Info:

• Name: mscorlib
• Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
• Version: 2.0.x.x
• Attributes:

o CLSCompliantAttribute(true)

Implements:

• System.IDisposable
• System.Collections.IEnumerator

Summary

Implemented by generic classes that support a simple iteration over a collection.

Library: BCL

Description

Enumerators can be used to read the data in the collection, but they cannot be
used to modify the underlying collection.

Initially, the enumerator is positioned before the first element in the collection. At
this position, callingSystem.Collections.Generic.IEnumerator<T>.Current is
unspecified. Therefore, you must call
System.Collections.IEnumerator.MoveNext to advance the enumerator to the
first element of the collection before reading the value of
System.Collections.Generic.IEnumerator<T>.Current.

System.Collections.Generic.IEnumerator<T>.Current returns the same
object until System.Collections.IEnumerator.MoveNext is called.
System.Collections.IEnumerator.MoveNext sets
System.Collections.Generic.IEnumerator<T>.Current to the next element.

If System.Collections.IEnumerator.MoveNext passes the end of the collection,
the enumerator is positioned after the last element in the collection and

 2

System.Collections.IEnumerator.MoveNext returns false. When the
enumerator is at this position, subsequent calls to
System.Collections.IEnumerator.MoveNext also return false. If the last call to
System.Collections.IEnumerator.MoveNext returned false, calling
System.Collections.Generic.IEnumerator<T>.Current is unspecified. You
cannot set System.Collections.Generic.IEnumerator<T>.Current to the first
element of the collection again; you must create a new enumerator instance
instead.

An enumerator remains valid as long as the collection remains unchanged and
the enumerator is not disposed. If changes are made to the collection, such as
adding, modifying, or deleting elements, the enumerator is irrecoverably
invalidated and its behavior is unspecified.

The enumerator does not have exclusive access to the collection; therefore,
enumerating through a collection is intrinsically not a thread-safe procedure. To
guarantee thread safety during enumeration, you can lock the collection during
the entire enumeration. To allow the collection to be accessed by multiple
threads for reading and writing, you must implement your own synchronization.

Default implementations of collections in System.Collections.Generic are not
synchronized.

[Note: Implementing this interface requires implementing the non-generic
interface System.Collections.IEnumerator. The methods MoveNext, Reset and
Dispose do not depend on the type parameter T, and appear only on the non-
generic interface System.Collections.IEnumerator. The property Current
appears on both interfaces, but with different return types. Implementations
should provide the non-generic Current property as an explicit interface
member implementation. This allows any consumer of the non-generic interface
to consume the generic interface.]

 3

 IEnumerator<T>.Current Property

[ILAsm]
.property !0 Current { public hidebysig virtual abstract specialname
!0 get_Current() }

[C#]
T Current { get; }

Summary

Gets the element in the collection over which the current instance is positioned.

Property Value

The element in the collection over which the current instance is positioned.

Description

System.Collections.Generic.IEnumerator<T>.Current is unspecified after
any of the following conditions:

• The enumerator is positioned before the first element in the collection,
immediately after the enumerator is created.
System.Collections.IEnumerator.MoveNext must be called to advance the
enumerator to the first element of the collection before reading the value of
System.Collections.Generic.IEnumerator<T>.Current.

• The last call to System.Collections.IEnumerator.MoveNext returned false,
which indicates the end of the collection.

• The enumerator is invalidated due to changes made in the collection, such as
adding, repositioning, or deleting elements.

• If it has been disposed.

If System.Collections.Generic.IEnumerator<T>.Current is accessed when its
value is unspecified, an exception of unspecified type can be, but need not be,
thrown.

System.Collections.Generic.IEnumerator<T>.Current returns the same object
until System.Collections.IEnumerator.MoveNext is called.
System.Collections.IEnumerator.MoveNext sets
System.Collections.Generic.IEnumerator<T>.Current to the next element.

This property is read-only.

Exceptions

 4

Exception Condition

An
unspecified
exception
type

If System.Collections.IEnumerator.MoveNext is not called before
the first call to
System.Collections.Generic.IEnumerator<T>.Current.

-or-

If the previous call to System.Collections.IEnumerator.MoveNext
returned false, indicating the end of the collection.

