System.Delegate Class

Assembly Info:

Name: mscorlib
Public Key: [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
Version: 2.0.X.X
Attributes:
0 CLSCompliantAttribute(true)

Implements:
e System.ICloneable

Summary

A class used to create types that invoke methods.
Inherits From: System.Object
Library: BCL
Description

Delegate types derive from the System.Delegate class. The declaration of a
delegate type establishes a contract that specifies the signature of one or more
methods. [Note: For an example of a delegate type declaration, see the
examples at the end of this topic.]

Delegate types are implicitly sealed: it is not permissible to derive a new type
from a delegate type. [Note: The System.Delegate class is not considered a
delegate type; it is a class used to derive delegate types.]

[Note: For information on subclassing the Delegate class, see Partition Il of the
CLI Specification.]

A delegate is an instance of a delegate type. A non-null delegate references an
invocation list, which is made up of one or more entries. Each entry consists of a
pair of values: a non-null method, and a corresponding object, called the target.
If the method is static, the corresponding target is null, otherwise the target is
the instance on which the method is to be called.

The signature of each method in the invocation list is required to exactly match
the signature specified by the delegate's type.

When a delegate is invoked, the methods in the corresponding invocation list are
invoked in the order in which they appear in that list. A delegate attempts to
invoke every method in its invocation list, with duplicate methods being invoked
once for each occurrence in that list.

Delegates are immutable; once created, the invocation list of a delegate does not
change. Combining operations, such as System.Delegate.Combine and
System.Delegate.Remove, cannot alter existing delegates. Instead, such
operations result in the return of either a new delegate that contains the results
of the operation, an existing delegate, or the null value. [Note: A combining
operation returns the null value when the result of the operation is an empty
invocation list. A combining operation returns an existing delegate when the
requested operation has no effect (for example, if an attempt is made to remove
a nonexistent entry).]

If an invoked method throws an exception, the method stops executing and the
exception is passed back to the caller of the delegate. The delegate does not
continue invoking methods from its invocation list. Catching the exception in the
caller does not alter this behavior. It is possible that non-standard methods that
implement combining operations allow the creation of delegates with different
behavior. When this is the case, the non-standard methods are required to
specify the behavior.

When the signature of the methods invoked by a delegate includes a return
value, the delegate returns the return value of the last element in the invocation
list. When the signature includes a parameter that is passed by reference, the
final value of the parameter is the result of every method in the invocation list
executing sequentially and updating the parameter's value. [Note: For an
example that demonstrates this behavior, see Example 2.]

Example

Examplel:

The following example creates two delegates. The first delegate invokes a static
method, and the second invokes an instance method on a target object.

[C#]

using System;
public delegate string DelegatedMethod(string s);
class MyClass {

public static string StaticMethod(string s) {
return ("'Static method Arg=" + s);

}

public string InstanceMethod(string s) {

return ("'Instance method Arg=" + Ss);

}
}

class TestClass {

public static void Main() {

MyClass mylnstance = new MyClass();

//Create delegates from delegate type DelegatedMethod.

DelegatedMethod delStatic = new DelegatedMethod(MyClass.StaticMethod);
DelegatedMethod dellnstance = new

DelegatedMethod(mylnstance. InstanceMethod);

//1Invoke the methods referenced by the delegates.

Console._WriteLine (delStatic("Call 1'));

Console._WriteLine (dellnstance (‘'Call 2'));

}

}
The output is

Static method Arg=Call 1

Instance method Arg=Call 2

Example2:

The following example shows the return value and the final value of a parameter that
is passed by reference to a delegate that invokes multiple methods.

[Cc#]
using System;
class MyClass {
public int Increment(ref int i) {
Console _WriteLine("Incrementing {0}',1);
return (i++);
}
public int Negate(ref iInt 1) {
Console._WriteLine("'Negating {0}",i1);
i=1*-1;
return i;
}
}

public delegate int DelegatedMethod(ref int i);
class TestClass {
public static void Main() {
MyClass mylnstance = new MyClass();
DelegatedMethod dellncrementer = new
DelegatedMethod(mylnstance. Increment);
DelegatedMethod delNegater = new DelegatedMethod(mylnstance.Negate);

DelegatedMethod d = (DelegatedMethod)
Delegate.Combine(delIncrementer, delNegater);
int 1 = 1;
Console._WriteLine("Invoking delegate using ref value {0}",1);
int retvalue = d(ref i);
Console . WriteLine("After Invoking delegate i = {0} return value is
{1}",1, retvalue);
}
}
The output is

Invoking delegate using ref value 1
Incrementing 1

Negating 2

After Invoking delegate i = -2 return value is -2

Delegate.Clone() Method

Summary

Creates a copy of the current instance.

Return Value

A System.Object that is a copy of the current instance.

Description

The System.Delegate.Clone method creates a new instance of the same type as

the current instance and then copies the contents of each of the current
instance's non-static fields.

[Note: This method is implemented to support the System.ICloneable
interface.]

Behaviors

The returned object must have the exact same type and invocation list as the
current instance.

Default

The default implementation of the System.Delegate.Clone method creates a
new instance, which is the exact same type as the current instance, and then
copies the contents of each of the current instance's non-static fields. If the field
is a value type, a bit-by-bit copy of the field is performed. If the field is a
reference type, the object referenced by the field is not copied; instead, the

returned object contains a copy of the reference. This behavior is identical to
System.Object .MemberwiseClone.

How and When to Override

Subclasses of System.Delegate should override System.Delegate.Clone to
customize the way in which copies of the subclass are constructed.

Delegate.Combine(System.Delegate,
System.Delegate) Method

Summary
Concatenates the invocation lists of the specified delegates.

Parameters

a The delegate whose invocation list will be first in the invocation list of
the new delegate.

b The delegate whose invocation list will be last in the invocation list of
the new delegate.

Return Value

A delegate, or null.

The following table describes the value returned when a or b is null.

Inull null Inull
|nu|| |non—nu|l |b
|non—nu|l |nu|| |a

When a and b are non-null, this method returns a new delegate with the
concatenated invocation lists of a and b.

Description
Unless a or b is null, a and b are required to be the exact same type.
Consider the following situation, in which D1, D2, D3, D4, and D5 are delegate

instances of the same type, D1's invocation list has one entry, E1, and D2's
invocation list has one entry, E2.

Then, D3 = Combine(D1, D2) results in D3's having an invocation list of E1 + E2.
Then, D4 = Combine(D2, D1) results in D4's having an invocation list of E2 + E1.

Then, D5 = Combine(D3, D4) results in D5's having an invocation list of E1 + E2
+ E2 + E1.

[Note: The invocation list of the returned delegate can contain duplicate
methods.

System.Delegate.Combine is useful for creating event handlers that call multiple
methods each time an event occurs.

1

Exceptions

'a and b are not null and not of the same type.

System.ArgumentException

Delegate.Combine(System.Delegate[])
Method

Summary

Concatenates the invocation lists of the specified delegates.

Parameters

|de|egates |An array of delegates of the exact same type.

Return Value

A new delegate, or null if delegates is null or has only null elements.

Description

The invocation list of the returned delegate is constructed by concatenating the
invocation lists of the delegates in delegates, in increasing subscript order. For
example, consider the following situation, in which the elements of delegates
have the following invocation lists (where En represents an entry in an invocation
list, and null represents an empty invocation list): [0O] = E1, [1] = null, [2] = E2
+ E3, and [3] = E4 + E5 + E6. When these elements are combined, the resulting
delegate contains the invocation list E1 + E2 + E3 + E4 + E5 + E6.

Null elements in delegates are not included in the returned delegate.

[Note: The invocation list of the returned delegate can contain duplicate
methods.]

Exceptions

|System.ArgumentException |The non-null delegates in delegates are not of the

same type.

10

—

Delegate.CreateDelegate(System.Type,
System.Object, System.String) Method

Summary
Returns a new delegate with the specified target and instance method as its

invocation list.

Parameters

tvpe The System.Type of the delegate to return. This System. Type is
yp required to derive from System.Delegate.
|target |An instance of an object that implements method.
A System.String containing the name of the instance method to be
method

invoke on target.

Return Value
A System.Delegate Of type type that invokes method on target.
Description

[Note: This method is used to dynamically create delegates that invoke instance
methods. To create a delegate that invokes static methods, see

System.Delegate.CreateDelegate(System. Type, System.Type,
System.String).]

Exceptions

11

System.ArgumentNullException type, target, or method is null.

type does not derive from System.Delegate.
Or
System.ArgumentException method is not an instance method.

Or

target does not implement method.

The caller does not have the required
System.MethodAccessException [permission.

Permissions

Requires permission to access type information.

See System.Security.Permissions.
ReflectionPermissionFlag.MemberAccess

System.Security.Permissions.
ReflectionPermission

12

—

Delegate.CreateDelegate(System.Type,
System.Type, System.String) Method

Summary

Returns a new delegate with the specified static method as its invocation list.

Parameters

tvpe The system. Type of delegate to return. This System. Type is required to
yp derive from System.Delegate.

Itarget |A System. Type representing the class that implements method.

A System.String containing the name of the static method
method .
implemented by target.

Return Value

A system.Delegate of type type that invokes method.

Description

[Note: This method is used to dynamically create delegates that invoke static
methods. To create a delegate that invokes instance methods, see

System.Delegate.CreateDelegate(System. Type, System.Object,
System.String).]

Exceptions

13

System.ArgumentNullException type, target, or method is null.

type does not derive from System.Delegate.
Or
System.ArgumentException method is not a static method.

Or

target does not implement method.

The caller does not have the required
System.MethodAccessException [permission.

Permissions

Requires permission to access type information.

See System.Security.Permissions.
ReflectionPermissionFlag.MemberAccess

System.Security.Permissions.
ReflectionPermission

14

—

Delegate.CreateDelegate(System.Type,
System.Reflection.MethodInfo) Method

Summary

Returns a new delegate with the specified static method as its invocation list.

Parameters

tvpe The System.Type of System.Delegate to return. This System. Type is
yp required to derive from System.Delegate.
|method |A System.Reflection.MethodInfo that reflects a static method.

Return Value

A System.Delegate of type type that invokes method.

Description

[Note: This method is used to dynamically create delegates that invoke static
methods. To create a delegate that invokes instance methods, see
System.Delegate.CreateDelegate(System. Type, System.Object,
System.String).]

Exceptions

ISystem.ArgumentNuIIException |type or method is null.

System.ArgumentException type does not derive from System.Delegate.

15

or

method does not reflect a static method.

The Invoke method of the type delegate was
System.InvalidProgramException |not found.

The caller does not have the required
System.MethodAccessException |permission.

Permissions

Requires permission to access type information.

See System.Security.Permissions.
ReflectionPermissionFlag.MemberAccess

System.Security.Permissions.
ReflectionPermission

16

—

Delegate.Dynamiclnvoke(System.Object[]
) Method

Summary

Causes a delegate to invoke the methods in its invocation list using the specified
arguments.

Parameters

An array of System.Object instances that are to be passed to the
methods in the invocation list of the current instance. Specify null if the

args methods invoked by the current instance do not take arguments.

Return Value

The System.Object returned by the last method in the invocation list of the
current instance.

Exceptions

The type of one or more elements in

args is invalid as a parameter to the

System.ArgumentException methods implemented by the current
instance.

The caller does not have the required
permissions.

System.MethodAccessException _or-

The number, order or type of parameters

17

listed in args is invalid.

System.Reflection.TargetException

A method in the invocation list of the
current instance is an instance method
and its target object is null.

Or

A method in the invocation list of the
current instance was invoked on a target
object or a class that does not
implement it.

System.Reflection.
TargetParamterCountException

The number of elements in args is not
equal to the number of parameters
required by the methods invoked by the
current instance.

System.Reflection.
TargetlnvocationException

A method in the invocation list of the
current instance threw an exception.

18

Delegate.Equals(System.Object) Method

Summary

Determines whether the specified object is equal to the current instance.

Parameters

|obj |The System.Object to compare with the current instance.

Return Value

true if obj is equal to the current instance, otherwise false.

Description

Two delegates are equal if they are not null and are of the exact same type, their
invocation lists contain the same number of elements, and every element in the
invocation list of the first delegate is equal to the element in the corresponding
position in the invocation list of the second delegate.

Two invocation list elements are equal if they invoke the same instance method
on the same target instance, or they invoke the same static method.

[Note: This method overrides System.Object .Equals.]

19

Delegate.GetHashCode() Method

Summary

Generates a hash code for the current instance.

Return Value

A System.Int32 containing the hash code for this instance.
Description
The algorithm used to generate the hash code is unspecified.

[Note: This method overrides System.Object .GetHashCode.]

20

Delegate.GetlnvocationList() Method

Summary

Returns the invocation list of the current delegate.

Return Value

An ordered set of System.Delegate instances whose invocation lists collectively
match those of the current delegate.

Behaviors

The array contains a set of delegates, each having an invocation list of one entry.
Invoking these delegates sequentially, in the order in which they appear in the
array, produces the same results as invoking the current delegate.

How and When to Override

Override System.Delegate.GetInvocationList when subclassing Delegate.

21

Delegate.op_Equality(System.Delegate,
System.Delegate) Method

Summary

Determines whether the specified delegates are equal.

Parameters

|d1 |The first delegate to compare.

|d2 |The second delegate to compare.

Return Value

true if d1.Equals(d2) returns true; otherwise, false.

Description

[Note: See System.Delegate.Equals.]

22

Delegate.op_Inequality(System.Delegate,
System.Delegate) Method

Summary

Determines whether the specified Delegates are not equal.

Parameters

|d1 |The first delegate to compare.

|d2 |The second delegate to compare.

Return Value

true if d1.Equals(d2) returns false; otherwise, false.

Description

[Note: See System.Delegate.Equals.]

23

Delegate.Remove(System.Delegate,
System.Delegate) Method

Summary

Removes the invocation list of a System.Delegate from the invocation list of
another delegate.

Parameters
|source |The delegate from which to remove the invocation list of value.
|va|ue |The delegate that supplies the invocation list to remove from source.

Return Value

Returns a new delegate, source, or null.

If source and value are not null, are not equal, and the invocation list of value is
contained in the invocation list of source, returns a new delegate with the
invocation list of value removed from the invocation list of source.

If the invocation lists of source and value are equal, returns null.

If the invocation list of value is not found in the invocation list of source, returns
source.

The following table describes the value returned when source or value is null.

Inull Inull Inull
|nu|| |non—nu|l |nu||
|non—nu|l |nu|| |source

Description

24

The invocation list of value is required to be an exact match of a contiguous set
of elements in the invocation list of source. If the invocation list of value occurs
more than once in the invocation list of source, the last occurrence is removed.

Example

The following example demonstrates the System.Delegate.Remove method.
[C#]

using System;

class MyClass {
public string InstanceMethod(string s) {
return (""Instance String " + s);

}

}

class MyClass2 {
public string InstanceMethod2(string s) {
return (""Instance String2 " + s);

}

public delegate string DelegatedMethod(string s);

class TestClass {
public static void WriteDelegate (string label, Delegate d) {
Console._WriteLine("Invocation list targets for {0}:",label);
foreach(Delegate x in d.GetlnvocationList())
Console_WriteLine("{0}",x.Target);
}

public static void Main() {

MyClass mylnstance = new MyClass();

DelegatedMethod dellnstance = new
DelegatedMethod(mylnstance. InstanceMethod) ;

MyClass2 mylnstance2 = new MyClass2();

DelegatedMethod dellnstance2 = new
DelegatedMethod(mylnstance2. InstanceMethod?2);

DelegatedMethod [] sourceArray = {dellnstance, dellnstance2,
dellnstance?2, dellnstance};

DelegatedMethod [] removel

DelegatedMethod [] remove2

DelegatedMethod [] remove3

{delInstance};
{dellnstance2, dellnstance2};
{dellnstance2, dellnstance};
DelegatedMethod [] remove4 = {dellnstance, dellnstance2};
DelegatedMethod [] remove5 = {dellnstance, dellnstance};
Delegate source = Delegate.Combine(sourceArray);
// Display invocation list of source
TestClass.WriteDelegate(''source', source);
//Test 1: value occurs iIn source twice.
Delegate valuel = Delegate.Combine(removel);
Delegate resultl = Delegate.Remove(source, valuel);
TestClass.WriteDelegate(''valuel™, valuel);
if (resultl==null) {

Console._WriteLine("removal test 1 result is null™);

} else {
TestClass.WriteDelegate("'resultl™, resultl);

25

}
}

}

//Test 2: value matches the middle two elements of source.
Delegate value2 = Delegate.Combine(remove2);
Delegate result2 = Delegate._Remove(source, value2);
TestClass._WriteDelegate('value2™, value2);
if (result2==null) {

Console.WriteLine("removal test 2 result2 is null');

} else {
TestClass.WriteDelegate("'result2”, result2);
}

//Test 3: value matches the last two elements of source.
Delegate value3 = Delegate.Combine(remove3l);
Delegate result3 = Delegate._Remove(source, value3);
TestClass._WriteDelegate("'value3"”, value3d);
it (result3==null) {

Console . WriteLine("removal test 3 result3 is null');

} else {
TestClass.WriteDelegate("'result3”, result3);

//Test 4: value matches the first two elements of source.
Delegate valued4 = Delegate.Combine(remove4);
Delegate result4 = Delegate.Remove(source, valued);
TestClass._WriteDelegate('valued™, valued);
if (result4==null) {

Console._WriteLine("'removal test 4 result4 is null');

} else {
TestClass.WriteDelegate("'result4”, resultd);
3

//Test 5: value does not occur In source.
Delegate value5 = Delegate.Combine(removeb);
Delegate result5 = Delegate.Remove(source, valueb);
TestClass.WriteDelegate("'value5™, valueb);
if (resultb==null) {
Console._WriteLine("'removal test 5 result5 is null');

} else {
TestClass.WriteDelegate("'result5", resultb5);
}

//Test 6: value exactly matches source.
Delegate result6 = Delegate._Remove(source, source);
TestClass.WriteDelegate('value=source', source);
if (result6==null) {
Console.WriteLine("removal test 6 result6 is null');

} else {

TestClass.WriteDelegate("'result6”, result6);

The output is

Invocation list targets for source:

MyClass

MyClass2

26

MyClass2

MyClass

Invocation list targets for valuel:

MyClass

Invocation list targets for resultl:

MyClass

MyClass2

MyClass2

Invocation list targets for value2:

MyClass2

MyClass2

Invocation list targets for result2:

MyClass

MyClass

Invocation list targets for value3:

MyClass2

MyClass

Invocation list targets for result3:

MyClass

27

MyClass2

Invocation list targets for value4:

MyClass

MyClass2

Invocation list targets for result4:

MyClass2

MyClass

Invocation list targets for value5:

MyClass

MyClass

Invocation list targets for resulth:

MyClass

MyClass2

MyClass2

MyClass

Invocation list targets for value=source:

MyClass

MyClass2

MyClass2

28

MyClass

removal test 6

result6

is null

29

Delegate.RemoveAll(System.Delegate,
System.Delegate) Method

Summary

Removes all matching occurrences of the invocation list of a System.Delegate
from the invocation list of another delegate.

Parameters

The delegate from which to remove all matching occurrences of the
invocation list of value.

|va|ue |The delegate that supplies the invocation list to remove from source.

source

Return Value

Returns a new delegate, source, or null.

If source and value are not null, are not equal, and the invocation list of value is
contained in the invocation list of source, returns a new delegate with all
matching occurrences of the invocation list of value removed from the invocation

list of source.

If the invocation lists of source and value are equal, or if source contains only a
succession of invocation lists equal to value, returns null.

If the invocation list of value is not found in the invocation list of source, returns
source.

The following table describes the value returned when source or value is null.

Inull Inull Inull
|nu|| |non—nu|l |nu||
|non-nu|l |nu|| |source

30

Description

The invocation list of value is required to be an exact match of a contiguous set
of elements in the invocation list ofsource. If the invocation list of value occurs
more than once in the invocation list of source, all occurrences are removed.

31

—

Delegate.Method Property

Summary

Gets the last method in a delegate's invocation list.

Property Value

A System.Reflection.MethodInfo.
Description
This property is read-only.

Exceptions

The caller does not have the required
permissions.

System.MemberAccessException

Permissions

Requires permission to access type information.
See System.Security.Permissions.
ReflectionPermissionFlag.TypeInformation.

System.Security.Permissions.
ReflectionPermission

32

Delegate.Target Property

Summary

Gets the last object upon which a delegate invokes an instance method.

Property Value

A System.Object instance, or null if the delegate invokes only static methods.

Description
This property is read-only.

If the delegate invokes only static methods, this property returns null. If the
delegate invokes one or more instance methods, this property returns the target
of the last instance method/target pair in the invocation list.

Example

Example 1:

The following example gets the System.Delegate.Target property values for
two delegates. The first delegate invokes a static method, and the second
invokes an instance method.

[C#]

using System;
public delegate string DelegatedMethod(string s);
class MyClass {
public static string StaticMethod(string s) {
return ('Static method Arg=" + s);
}

public string InstanceMethod(string s) {
return (“'Instance method Arg=" + s);
}

}

class TestClass {
public static void Main() {
MyClass mylnstance = new MyClass();
//Create delegates from delegate type DelegatedMethod.

33

DelegatedMethod delStatic = new
DelegatedMethod(MyClass.StaticMethod);

DelegatedMethod dellnstance = new
DelegatedMethod(mylnstance. InstanceMethod) ;

object t = delStatic.Target;

Console.WriteLine (‘'Static target is {0}, t==null ? "null":t);

t = dellnstance.Target;

Console._WriteLine (Instance target is {0}, t==null ? "null":t);

}

}
The output is

Static target is null

Instance target is MyClass

Example 2:

The following example gets the System.Delegate.Target property value for three
delegates created using instance methods, static methods, and a combination of the
two.

[C#]
using System;
class MyClass {
public static string StaticMethod(string s) {
return ('Static String " + s);

public string InstanceMethod(string s) {
return (""Instance String " + s);
}

}
class MyClass2 {
public static string StaticMethod2(string s) {
return ('Static String2 " + s);

public string InstanceMethod2(string s) {
return (""Instance String2 " + s);
}

}
public delegate string DelegatedMethod(string s);

class TestClass {
public static void Main() {
DelegatedMethod delStatic = new
DelegatedMethod(MyClass.StaticMethod);
DelegatedMethod delStatic2 = new
DelegatedMethod(MyClass2.StaticMethod?2);

MyClass mylnstance = new MyClass();
DelegatedMethod dellnstance = new
DelegatedMethod(mylnstance. InstanceMethod);

MyClass2 mylnstance2 = new MyClass2();

34

DelegatedMethod dellnstance2 = new
DelegatedMethod(mylnstance2. InstanceMethod?2);

Delegate d = Delegate.Combine(delStatic, dellnstance);
Delegate e = Delegate.Combine(dellnstance,dellnstance?);
Delegate f = Delegate.Combine(delStatic, delStatic2);

ifT (d'=null) {
Console._WriteLine(""Combined 1 static, 1 instance, same

class:™);
Console._WriteLine(''target...{0}'", d.Target == null ? "null":
d.Target);

foreach(Delegate x in d.GetlnvocationList())
Console._WriteLine('invoke element target: {0}",x.Target);

}

Console.WriteLine(""");
if (el=null) {
Console._WriteLine(""Combined 2 instance methods, different
classes:");
Console._WriteLine(''target...{0}'", e.Target == null ? "null":
e.Target);
foreach(Delegate x in e.GetlnvocationList())
Console._WriteLine(invoke element target: {0}",x.Target);
}
Console _WriteLine('"");
if (Fl=null) {
Console.WriteLine(""Combined 2 static methods, different
classes:™);
Console._WriteLine('target...{0}', f.Target == null ? "null":
f.Target);
foreach(Delegate x in F.GetlnvocationList())
Console.WriteLine("invoke element target: {0}",x.Target);

}
}

1he output is

Combined 1 static, 1 instance, same class:
target.. .MyClass

invoke element target:

invoke element target: MyClass

Combined 2 instance methods, different classes:

target.. .MyClass?2

invoke element target: MyClass

35

invoke element target: MyClass2

Combined 2 static methods, different classes:

target. . _.null

invoke element target:

invoke element target:

36

