
Requirements to Run Tool

C# Compiler / Visual Studio .NET* Requirements

Microsoft .NET Framework: Version 1.0.3705 (or higher)
Microsoft C# Compiler: Version 7.0.9466 (or higher)

Optional: Visual Studio .NET for IDE based development

Note: The tool has been primarily compiled and tested using version 1.1.4.3.22 of the .NET
Framework and version 7.10.6001.4 of the C# compiler. When building using this combination,
you may experience compiler obsolete warnings. These can be ignored, although the tool can be
updated to utilize more current methods.

Microsoft Office* Requirements

Microsoft Office 2000/XP/2003

A file named Word.dll needs to be created using the “tlbimp” tool that is provided with the
Microsoft .NET Framework. For Microsoft Office 2000, tlbimp should be run on its “msword9.olb”
file. The version of the created dll will be 8.1. For Microsoft Office XP, tlbimp should be run on its
“msword.olb”. The version of the created dll will be 8.2. For Microsoft Office 2003, tlbimp should
be run on its “msword.olb” file. The version of the created dll will be 8.3. See the Instructions for
Use section for more detail.

Note: The tool is mostly tested on the OfficeXP platform, so it is recommended that you run the
tool from that directory, even if using Office2003. However, the tool should work with the build in
the Office2003 directory as well.

XML

The tool uses the built in XML and XSL support in the .NET Framework that is provided with the
.NET Framework redistributable or Visual Studio .NET.

Operating System Requirements

The operating systems that the tool runs on include Windows 2000 and Windows XP. This tool
has not been tested on Windows ME or any earlier operating system.

Instructions for Use

The tool is currently implemented as a command line based tool.

Here are the steps to run the tool:

1. Extract the tool into any directory. Make sure all files are extracted into the same
directory

2. If not done already, create a COM interface to Word in order for the C# code to call into
the Microsoft Word APIs via COM Interop that is provided with the .NET Framework. This
is accomplished by using the ‘tlbimp’ command line tool that is part of the .NET
Framework.

• Open up a .NET aware Command Window
• For Microsoft Office 2003

1. Change directories to <Microsoft Office 2000 Path>\Office11
2. Run tlbimp on msword.olb

C:\Program Files\Microsoft Office\Office>tlbimp msword.olb

• For Microsoft OfficeXP
1. Change directories to <Microsoft Office XP Path>\Office10
2. Run tlbimp on msword.olb

• For Microsoft Office 2000
1. Change directories to <Microsoft Office 2000 Path>\Office
2. Run tlbimp on msword9.olb

C:\Program Files\Microsoft Office\Office>tlbimp msword9.olb

• This will create a file called ‘Word.dll’
• Copy Word.dll into the directory where “docbuilder.exe” was extracted

3. When running the tool, run it from one of the three given directories associated with the
proper Microsoft Office setup (for future versions of Office, the Word2003 should be
sufficient).

4. Run docbuilder.exe (from the appropriate directory associated with your Office build) from
a .NET Framework aware command prompt.
• The correct signature to run the tool is as follows:

docbuilder <Doc Type> <XML File> <XSL File> <Path to Save Docs>
[-NSD] [-NSN]

Where

<Doc Type> is one of “.cs”, “.doc”, “.txt” (without the quotes)
<XML File> is the name of the raw XML file to be transformed
<XSL File> is the name of the XSL file that will do the
transformation
<Path to Save Docs> is the path to where the docs will be saved.
[-NSD] – Optional – tells the tool to save the documents in a
directory structure in accordance with the namespace of the class
[-NSN] – Optional – tells the tool to prepend the namespace to
the name of the document

Example (use this to run the tool out of the box)

Docbuilder .cs Test.xml docs.xsl c:\temp\code\ -NSD

5. When the command in (3) is executed, the tool begins running. As it is running, Microsoft
Word documents will be opening and closing.

6. The tool has completed when Microsoft Word has closed and the command prompt again
has the focus. Note: It could take a long while depending on the size of the XML and the
makeup of the machine it is running on.

7. The output files will be located in the directory specified at the command line above.

Advanced Feature

There is currently one advanced feature worth mentioning. Each class in the XML is part of a
specific library. Currently the XML submission consists of six libraries. The default for the tool is to

generate documentation or code for every class in every library. Within the two provided XSL files
is a variable called “libraries-to-generate” which allows a user of the tool to specify which libraries
are generated when it is run. Currently, the tool is capable of generating whole libraries and has
no provision to selectively generate specific classes within a library.

Instructions for use of this feature are included in the XSL file, but here is the excerpt from the
“sigs.xsl” file:

<!-- This is set by the user if he/she wants more fine grained control
of the libraries that are transformed. The ECMA submission is one big
XML file with more than one library (BCL, Implementation, etc.). By
default this stylesheet transforms all libraries. But if the user wants
on one or two, he/she:

- MUST comment out __ALL__
- UNCOMMENT others or add the libraries desired to the libraries-to-
generate variable by using the xsl:value-of for each library, MAKING
SURE that each library is spelled exactly as it is in the XML and a
COMMA follows
-->

<!-- What libraries in the current XML to generate code from -->
<xsl:variable name="libraries-to-generate">
 <!-- Default -->
 <xsl:value-of select="'__ALL__'" />
 <!-- Other Possible Options. Must comment out __ALL__ -->
 <!--<xsl:value-of select="'BCL,'"/>-->
 <!--<xsl:value-of select="'RuntimeInfrastructure,'"/>-->
 <!--<xsl:value-of select="'XML,'"/>-->
 <!--<xsl:value-of select="'Reflection,'"/>-->
 <!--<xsl:value-of select="'Networking,'"/>-->
 <!--<xsl:value-of select="'ExtendedNumerics,'"/>-->
</xsl:variable>

Tool Limitations

Performance

Performance of the tool is not necessarily optimal. Code generation usually takes less time than
generating Word documentation, given the same set of data. Back in 2001, trying to generate
Word documentation from the entire version one standard submission, for example, took about
45 minutes on a Pentium II processor with 296 MB RAM. Updated machine configuration may
allow the tool to run faster.

Transforms
At this point, for all transforms, Word documents are created in the process. Also, unless you
change the actual C# code, the #Page Break Here, #Document Break Here and #Type Break
must remain in the XSL files as the tool only knows these keywords. Functionality to allow user
defined keywords may be added to a future release.

