Introducing TC53

ECMAScript Modules for Embedded Systems

Peter Hoddie
Chair, TC53
Co-founder, Moddable



Goal

* Bring benefits of software development on the web to
embedded developers

Rapid development — modern programming language
Vendor neutral — code runs on many hardware platforms
Secure — safe operation, user privacy respected
Scalable - large, complex projects are more manageable

Open — APlIs defined by collaboration of experts, not one
single company



“ECMAScript Modules for
Embedded Systems”

e JavaScript APls

e Common operations — I/O, networking, sensor, BLE, displays,
security, energy management, etc.

* Organized into software modules by operation
e Targeting wide range of embedded systems
* Includes low cost embedded devices
* No changes to the JavaScript language for embedded

* Exact same language as on the web



Standards are About
Interoperability

e Many common capabilities in all microcontrollers

e No common APIs
e Most silicon vendor has their own API

e Expensive for silicon vendor to maintain

e Difficult for software developers to learn

* Rewrite software to move change silicon platform
e Standard APls

e Stop re-inventing APIs for common tasks

e Increase code re-use



Design Priorities

Efficient

e Low CPU use, limited RAM use, small code size
Secure

* Protect users from privacy and safety vulnerabilities
Portable

* APIs work the same way across silicon vendors
Approachable

e Simple, consistent APls



Licensing

* Royalty free working group
* Contributors agree when joining TC53
* Anyone can implement the standard
e No royalty payment
e No licensing fee
e Similar policy as web technologies
e JavaScript language (Ecma International)

e HTML5 (W3C)



Contributors

Moddable - efficient scripting and touch screen support

Monotype — text handling, fonts, and text rendering

Whirlpool — embedded system requirements, focus on safe operation
Michigan State University — data precision for big data analysis
Agoric — provably secure script execution

Bocoup — sensors and robotics applications

LyTen - portable drivers for sensors, displays, and energy harvesting

Bob Frankston — open connectivity and open APlIs



Roadmap - Overview

Input/Output — drafting underway

Sensors — committee discussions

Energy management - contributor investigations
Secure ECMAScript — contributor investigations
Display Drivers — agreed future work

Network Protocols — agreed future work



Roadmap
Input/Output (1/0)

e Common microcontroller I/O capabilities

e Digital, Analog, 12C, SPI, UART/Serial, PWM, Network
sockets,

e “|O Class Pattern” provides common API for all I/0
e API design guidance for other I/O types
* “lO Provider Class Pattern” to access external 1/0

e GPIO expander, analog expander, network sensor, BLE
sensor



Roadmap
Sensors

“Sensor Class Pattern” provides common API for all
Sensors

* Access to unique features of each sensor

Builds on I/O

API design guidance for other sensor types



Roadmap
Energy Management

o Battery operation
o Efficient use of AC power (EU regulations)
e Capabilities

e Deep sleep

* Energy efficient execution modes

* Power down unused internal subsystems & external
components



Roadmap
Secure ECMAScript

Sandbox for JavaScript code
Necessary for large, complex systems

* Code from many engineers, departments, companies, open source
contributors

Compartments restrict access to resources
e Fully customizable security policy
e Built on proven Object Capabilities model (OCAP)
* Extremely efficient

Working to standardize with Ecma TC39 (JavaScript language committee)



Roadmap
Future Work

e Display drivers
 Reduce barriers to adding displays
e Build on Input/Output

e Network protocols
e HTTP, MQTT, WebSocket, mDNS, CoAPR, etc.
e TLS/SSL for secure communication

e Build on network socket



TC53 is Unique

e Standardizing APIs
e Most loT standards focus on data formats and communication protocols
* Preparing for the future, not predicting it

e With the right APIs, you can implement any data format or communication
protocol

e Focus on JavaScript
* Best language to build lIoT products
e Efficient development, secure and reliable, code, proven for communication

* Unique security properties



Why JavaScript?
Most Popular Language

* Most widely used programming language today
* Web pages
 Web servers
* Mobile apps
 Desktop apps

 Natural to extend to embedded systems



Why JavaScript?
JSON

Standard data interchange format

Subset of JavaScript
 Native data format of JavaScript

e Easy and efficient to use in JavaScript code

Common in loT communication



Why JavaScript?
Unmatched Ecosystem

e Learning resources

e Skilled developers

 Development tools



Why JavaScript?
A Real Standard

e JavaScript is a formal international standard
* Independent of any one company
e Dozens of companies contribute to its evolution

* Most scripting languages are not true standards (e.g. Lua, Perl,
Python, Ruby)

* Multiple implementations
* 6 full modern JavaScript engines

* Many specialized engines



Why JavaScript?
Stable. By Design.

* “Don’t break the web”

24 years of backwards compatibility

e Language stability critical for embedded products

Embedded products (washing machine, thermostat, LED
light bulb) have 10+ year life span

Software updates may be necessary during that time

Backwards incompatible language changes make updates
more difficult



Why JavaScript?
Efficient on Embedded

e JavaScript was relatively slow
e \/8 engine from Google changed that
e New techniques boosted speed by orders of magnitude
» Created new possibilities, reshaped the modern web
e JavaScript was too resource intensive for embedded
* XS engine from Moddable changes that
* New techniques reduce resource use by orders of magnitude

e Creates new possibilities, revolutionizing embedded products (we hope!)



Patrick Soquet



Impacts



Impacts

e Linux created a de-facto software standard for certain
kinds of computing

e TC53 aims to create a software Standard for embedded
systems.



Benefits

Software standards benefit the entire ecosystem

Microcontroller makers — create less proprietary
software, leverage design work of standard

Peripheral makers (sensors, actuators, displays) — focus
on great product not porting drivers

Software developers - build on top of a solid, well
designed platform. Higher quality result in less time.

Users — more reliable, secure, and innovative products



One More User
Benefit



One More User
Benefit

Apps



Apps

e User installable apps on embedded systems
e Change behavior and features of products
e JavaScript makes it possible
* Just like adding scripts to web pages
* Independent of silicon architecture
e Safe and secure with Secure ECMAScript
* Opens up new world of possibilities

e Product manufacturers can leverage third party developers



Get Involved!



Conclusion

Software for embedded systems is ready to be
standardized

 Huge benefits for entire ecosystem

Ecma TC53 is bringing the success of JavaScript on the
web to embedded systems

* Proven technology and processes

Now is the time to begin



Thank you!



