
Introducing TC53
ECMAScript Modules for Embedded Systems

Peter Hoddie 
Chair, TC53


Co-founder, Moddable




Goal
• Bring benefits of software development on the web to 

embedded developers


• Rapid development – modern programming language


• Vendor neutral – code runs on many hardware platforms


• Secure – safe operation, user privacy respected


• Scalable – large, complex projects are more manageable


• Open – APIs defined by collaboration of experts, not one 
single company



“ECMAScript Modules for 
Embedded Systems”

• JavaScript APIs


• Common operations – I/O, networking, sensor, BLE, displays, 
security, energy management, etc.


• Organized into software modules by operation


• Targeting wide range of embedded systems


• Includes low cost embedded devices


• No changes to the JavaScript language for embedded


• Exact same language as on the web



Standards are About 
Interoperability

• Many common capabilities in all microcontrollers


• No common APIs


• Most silicon vendor has their own API


• Expensive for silicon vendor to maintain 


• Difficult for software developers to learn


• Rewrite software to move change silicon platform


• Standard APIs


• Stop re-inventing APIs for common tasks


• Increase code re-use



Design Priorities
• Efficient


• Low CPU use, limited RAM use, small code size


• Secure


• Protect users from privacy and safety vulnerabilities


• Portable


• APIs work the same way across silicon vendors


• Approachable


• Simple, consistent APIs



Licensing
• Royalty free working group


• Contributors agree when joining TC53


• Anyone can implement the standard


• No royalty payment


• No licensing fee


• Similar policy as web technologies


• JavaScript language (Ecma International)


• HTML5 (W3C)



Contributors (partial)
• Moddable – efficient scripting and touch screen support


• Monotype – text handling, fonts, and text rendering


• Whirlpool – embedded system requirements, focus on safe operation


• Michigan State University – data precision for big data analysis


• Agoric – provably secure script execution


• Bocoup – sensors and robotics applications


• LyTen – portable drivers for sensors, displays, and energy harvesting


• Bob Frankston – open connectivity and open APIs



Roadmap – Overview
• Input/Output – drafting underway


• Sensors – committee discussions


• Energy management – contributor investigations


• Secure ECMAScript – contributor investigations


• Display Drivers – agreed future work


• Network Protocols – agreed future work



Roadmap 
Input/Output (I/O)

• Common microcontroller I/O capabilities


• Digital, Analog, I2C, SPI, UART/Serial, PWM, Network 
sockets,


• “IO Class Pattern” provides common API for all I/O


• API design guidance for other I/O types


• “IO Provider Class Pattern” to access external I/O


• GPIO expander, analog expander, network sensor, BLE 
sensor



Roadmap 
Sensors

• “Sensor Class Pattern” provides common API for all 
sensors


• Access to unique features of each sensor


• Builds on I/O


• API design guidance for other sensor types



Roadmap 
Energy Management

• Battery operation


• Efficient use of AC power (EU regulations)


• Capabilities


• Deep sleep


• Energy efficient execution modes


• Power down unused internal subsystems & external 
components



Roadmap 
Secure ECMAScript

• Sandbox for JavaScript code


• Necessary for large, complex systems


• Code from many engineers, departments, companies, open source 
contributors


• Compartments restrict access to resources


• Fully customizable security policy


• Built on proven Object Capabilities model (OCAP)


• Extremely efficient


• Working to standardize with Ecma TC39 (JavaScript language committee)



Roadmap 
Future Work

• Display drivers


• Reduce barriers to adding displays


• Build on Input/Output


• Network protocols


• HTTP, MQTT, WebSocket, mDNS, CoAP, etc.


• TLS/SSL for secure communication


• Build on network socket



TC53 is Unique
• Standardizing APIs


• Most IoT standards focus on data formats and communication protocols


• Preparing for the future, not predicting it


• With the right APIs, you can implement any data format or communication 
protocol 


• Focus on JavaScript


• Best language to build IoT products


• Efficient development, secure and reliable, code, proven for communication


• Unique security properties



Why JavaScript? 
 Most Popular Language

• Most widely used programming language today


• Web pages


• Web servers


• Mobile apps


• Desktop apps


• Natural to extend to embedded systems



Why JavaScript? 
JSON

• Standard data interchange format


• Subset of JavaScript


• Native data format of JavaScript


• Easy and efficient to use in JavaScript code


• Common in IoT communication



Why JavaScript? 
Unmatched Ecosystem

• Learning resources


• Skilled developers


• Development tools



Why JavaScript? 
A Real Standard

• JavaScript is a formal international standard


• Independent of any one company


• Dozens of companies contribute to its evolution 


• Most scripting languages are not true standards (e.g. Lua, Perl, 
Python, Ruby)


• Multiple implementations


• 6 full modern JavaScript engines


• Many specialized engines



Why JavaScript? 
Stable. By Design.

• “Don’t break the web”


• 24 years of backwards compatibility


• Language stability critical for embedded products


• Embedded products (washing machine, thermostat, LED 
light bulb) have 10+ year life span


• Software updates may be necessary during that time


• Backwards incompatible language changes make updates 
more difficult



Why JavaScript? 
Efficient on Embedded

• JavaScript was relatively slow


• V8 engine from Google changed that


• New techniques boosted speed by orders of magnitude


• Created new possibilities, reshaped the modern web


• JavaScript was too resource intensive for embedded


• XS engine from Moddable changes that


• New techniques reduce resource use by orders of magnitude


• Creates new possibilities, revolutionizing embedded products (we hope!)



Patrick Soquet



Impacts



Impacts

• Linux created a de-facto software standard for certain 
kinds of computing


• TC53 aims to create a software Standard for embedded 
systems.



Benefits
• Software standards benefit the entire ecosystem


• Microcontroller makers – create less proprietary 
software, leverage design work of standard


• Peripheral makers (sensors, actuators, displays) – focus 
on great product not porting drivers


• Software developers – build on top of a solid, well 
designed platform. Higher quality result in less time.


• Users – more reliable, secure, and innovative products



One More User 
Benefit



One More User 
Benefit

Apps



• User installable apps on embedded systems


• Change behavior and features of products


• JavaScript makes it possible


• Just like adding scripts to web pages


• Independent of silicon architecture


• Safe and secure with Secure ECMAScript


• Opens up new world of possibilities


• Product manufacturers can leverage third party developers

Apps



Get Involved!



Conclusion
• Software for embedded systems is ready to be 

standardized


• Huge benefits for entire ecosystem


• Ecma TC53 is bringing the success of JavaScript on the 
web to embedded systems


• Proven technology and processes


• Now is the time to begin



Thank you!


